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Abstract

Electron scattering is a powerful tool for studying the internal structure of the proton.

In particular, elastic electron-proton scattering is used to access the electromagnetic

form factors (GE and GM) due to an implied connection between the spatial dis-

tribution of the proton’s charge and magnetism to the form factors’ dependence on

the scattering momentum transfer (Q2). This focus was spurred by experimental de-

velopments of polarization parameters in scattering to access the elastic form factor

ratio (FFR = µGE/GM). There is a renewed interest in the low Q2 region where the

FFR can only be described by QCD-inspired models and phenomenological fits that

are sensitive to the long-range structure of the proton. This is important because the

form factors’ Q2 slope, as Q2 tends to zero, defines the proton’s radius.

This thesis reports on a novel method to analyze and extract the proton elas-

tic FFR at the lowest Q2 range ever attempted (0.01 ≤ Q2 ≤ 0.08 GeV2) from an

experiment conducted in 2012 at Jefferson Lab (E08-007). The experiment used a

polarized electron beam, a polarized proton target, and two high resolution spec-

trometers (HRS) to detect scattered electrons at ≈6◦ on either side of the beam (left,

right) for independent measurements. A previous independent analysis had been

conducted on the left HRS data, but experimental difficulties prevented that analysis

from extracting the FFR, but provided polarization asymmetries for the left HRS.

Our analysis method did not rely on the standard use of the magnetic optical

transformation matrix. The analysis utilized the measured momentum distributions

from the scattering reactions. A Monte Carlo simulation of the experiment was used

to model and fit the observed momentum distributions to extract the FFR. While

this method did not yield a reliable FFR result for the right HRS, it was able to

confirm the left HRS asymmetry found in the previous analysis and extracted one

value at Q2 = 0.0513 GeV2 for µGE/GM = 1.147 ± 0.017. This result indicates an

upward trend in the ratio as Q2 approaches zero, since it is significantly higher than

existing data at low Q2. Given the connection of the low Q2 form factor slope to the

proton size, the result of this thesis points to a need for follow-up measurements.

xiv
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Chapter 1

Introduction

1.1 Background

1.1.1 General

Nuclear physics experiments are used to study the fundamental constituents of matter

and their interactions. The first modern model of the atom was proposed by Ernest

Rutherford whose alpha-scattering experiments pointed to the atom being composed

of a densely charged core surrounded by an electron cloud. We now understand that

this core, or nucleus, is composed of neutrons and protons. These particles (protons

and neutrons—collectively called nucleons) were discovered in 1919 and 1931, respec-

tively, and account for 99.9% of an atom’s mass. Unraveling the internal structure of

these nucleons was, and still is, one of the most challenging fundamental questions in

modern physics.

Originally, nucleons were believed to be Dirac particles that were predicted to

have a Dirac magnetic moment µ similar to that of an electron given by:

µ =
q

mc
|S⃗| (1.1)

where the speed of light c, the magnetic moment µ, the electric charge q, the mass

m, and the spin S⃗ of the particle are used to define this moment. However, modern

measurements of µ provide indications of nucleonic substructure. In particular, the

measurements made by O. Stern et al. [1] provided the first conclusive evidence con-

firming that protons exhibited an internal substructure, having a magnetic moment:

µp = 2.79µN (1.2)

where µN is the nuclear magneton1. This observation directly contradicts (1.1) and

1The nuclear magneton is defined in terms of the proton mass mp, the speed of light c, Plank’s
constant h̄, and the electron’s charge e as: µN = eh̄

2mpc
.

1
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its underlying assumption of the proton being a structureless Dirac particle, with the

consequence that these particles must have some form of internal structure.

The fundamental properties of nucleons, and therefore of nuclei, are governed by

this internal structure. In the simplest picture, nucleons are composed of three bound

valence quarks that interact through the exchange of virtual gluons. This model is

the theory of the strong interaction, also known as quantum chromodynamics (QCD).

This theory can be used to make rigorous predictions when quarks become asymp-

totically free, which occurs when the four-momentum transfer squared Q2 is large,

which is sensitive to decreasingly small spatial extents. Unlike quantum electrody-

namics (QED), the coupling to gluons in QCD is strong and increases as the energy

decreases and the distance scale probed increases. As a result, particle confinement

dominates at low-energies. The strong coupling of QCD at low energies prevents the

perturbative expansions used in QED. Consequently, no exact analytic solutions of

QCD are forthcoming, so several phenomenological models are used in an attempt to

explain the data in this domain. As a result, precise measurements of the nucleon

form factors are desired in order to constrain and test these models.

1.1.2 Proton Form Factor: Early History

In the 1950s, electron scattering was used as a precise and powerful tool for study-

ing internal nuclear structure. The electron interacts with the nucleus through the

electromagnetic interaction, which is well understood through QED. This interaction

is both weak and dominated by the one-photon-exchange (OPE) process. In the ap-

proximation of this process, the electron-proton elastic scattering cross-section can be

expressed in terms of the electric GE and magnetic GM form factors as a function of

Q2. As a result, electron scattering experiments allow one to unravel the distributions

of the electric charge and magnetization in nucleons. These experiments have had a

rich history over the past half century in that they have provided measurements of

the proton charge radius and a detailed mapping of the elastic form factors over a

wide range of Q2 [2].

For over 40 years, the Rosenbluth separation technique based upon using unpolar-

ized electron-proton scattering cross-sections has dominated form factor studies (this

technique is detailed later in Section 1.3). Experiments based on this technique show
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that both Gp
E and Gp

M roughly follow the dipole form factor parameterization model

[3]. This approximation showed that the nucleon form factors, with the exception

that Gn
E→0 when Q2→0, approximately follow the dipole form factor given by,

GD =

(
1 +

Q2

λ2D

)−2

(1.3)

where the empirical parameter λ2D ≈ 0.71 GeV2 is identical for the proton and neutron

form factors Gp
E, G

p
M , and Gn

M resulting in Gp
E ≈GD and Gp,n

M ≈µ′
p,nGD with µ′

p,n =

µp,n/µN . To a good approximation these form factors then satisfy the following

relationships [4],

Gp
E(Q

2) ≈ Gp
M(Q2)

µ′
p

≈ Gn
M(Q2)

µ′
n

= GD(Q
2)

Gn
E ≈ 0

(1.4)

These form factors tend to unity when divided by GD and differ only by an overall

scale factor based upon their magnetic moments. This behaviour suggests that Gp
E

and Gp
M have similar spatial distributions.

Experiments performed in the 1960s and 70s using the Rosenbluth technique

started to show deviations from the dipole formula in (1.3). Studies performed by

Bartel et al. [5] and Berger et al. [6] both showed deviations at high Q2 for Gp
E and

Gp
M [7]. However, these measurements were not precise. Experiments performed later

at SLAC [8, 9] and JLab [10, 11] measured more precise cross-sections and agreed to

within 10% of the values predicted by the dipole formula at high Q2 (more discussion

on this topic appears later in this sub-section). Also, later in the 1970s, more precise

proton cross-section measurements at low Q2 were made [12, 13, 14]. These low Q2

studies also observed deviations from the dipole formula; nevertheless, these observa-

tions appear to have had little impact at the time because of the shift in focus to the

high Q2 regime and the determination of Gn
E form factors [7].

1.1.3 Proton Form Factors: Polarization Techniques

Advances in the technology of intense polarized electron beams, polarized targets,

and polarimetry have ushered in a new generation of electron scattering experiments

that rely on spin degrees of freedom. Compared to cross-section measurements, po-

larization techniques have several distinct advantages. First, they have increased
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sensitivity to small effects by observing the interference between large and small am-

plitudes of interest. For example, the polarized cross-section for electron-proton scat-

tering contains a mixed term proportional to GEGM , which is absent in unpolarized

cross-sections [2]. Secondly, spin-dependent experiments involve the measurement of

polarization or helicity asymmetries, and these asymmetries are independent of the

cross-section normalization. To first order, this eliminates the effects of luminosity,

detection acceptance, and detector efficiency. Other systematics such as beam and

target polarization, or polarimeter analyzing power, can also be canceled by measur-

ing a ratio of polarization observables [2].

The first experiment to measure the recoil proton polarization observable in electron-

proton elastic scattering was done at SLAC by Alguard [15]. However, the results of

the experiment were limited by low statistics. In addition, other proof-of-principle

proton form factor measurements using recoil polarimetry were carried out at MIT-

Bates [16, 17] and MAMI [18, 19]. Due to limited statistics and kinematics coverage,

these form factor ratios were found to agree, within uncertainties, with the earlier un-

polarized measurements.

More recent measurements using the recoil polarization method to measure the

proton form factor ratio [20, 21, 22, 23] at high Q2, have better precision and deviate

dramatically from the unpolarized data as seen in Figure 1.1. This has prompted

intense theoretical and experimental activities over the last 15 years to resolve these

discrepancies. The validity of analyzing data in the OPE approximation has been

questioned. However, it is now generally accepted that the two-photon exchange

(TPE) processes are considered as a significant correction to the unpolarized data,

and mostly account for the discrepancy at high Q2 [7]. As a result, it is believed that

the two-photon exchange corrections have little impact on the polarization technique

for determining form factors but do have a large impact on the Rosenbluth extraction

of the electric form factor contribution at high Q2.

1.1.4 Proton Form Factors: Focus on Low Q2

While measurements at large momentum transfer have provided information on the

details of the proton structure in regions sensitive to smaller spatial extents (ap-

proaching the QCD realm), the low Q2 form factor behaviour is sensitive to the
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Figure 1.1: Data of the proton Electric to Magnetic Form Factor Ratio. The crosses
represent older Rosenbluth separation data from a global re-analysis [7], the triangles
display the newer polarization transfer data [20, 21, 22] and the most recent JLab
Rosenbluth separation data are represented via filled circles [11].
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long-range structure where the best descriptions show dominance of the ‘pion cloud’

[24]. High-precision measurements at low Q2 were initially motivated by a recent

semi-phenomenological fit [25], which suggested that structure might be present in

all four nucleon form factors at2 Q2 ≈ 0.3 GeV2 [24]. However, later polarization

measurements from MIT-Bates [2] and JLab [26] that probed the low Q2 region with

a precision of approximately 2% found no indication of such structure in the form

factor ratio µpG
p
E/G

p
M [24].

The proton form factor ratio behaviour at low Q2 has become the subject of con-

siderable interest after a potential discrepancy was observed from the most recent

high precision measurements for Q2 < 1 GeV2. BLAST [2] conducted the first pro-

ton form factor ratio measurements using beam-target asymmetry for a Q2 range of

0.15− 0.65 GeV2 and found them to be consistent with µpG
p
E/G

p
M →1. Nonetheless,

the LEDEX experiment at JLab used recoil polarimetry and observed a substantial

deviation from unity at Q2≈0.35 GeV2 [26]. However, the LEDEX data quality was

compromised due to background issues and the low degree of beam polarization. As

a result, it was necessary to carry out new high precision measurements to either

confirm or refute these observations.

1.1.5 JLab Experiment E08-007

To meet this requirement, in 2012 experiment E08-007 was conducted in Hall A of the

Thomas Jefferson National Accelerator facility (JLab) in Newport News, VA, USA

[27]. This experiment had two separate components. The first part of this experiment

measured the proton form factor ratio µpG
p
E/G

p
M over a Q2 range of 0.3− 0.7 GeV2

using recoil polarimetry. This new data set has been analyzed and published [24, 28]

and had two major implications. First, previous measurements had suggested that

the ratio was flat up until Q2≈ 0.2 GeV2 prior to decreasing, which further implied

that the form factors had identical low Q2 behaviour suggesting that the charge and

magnetization radii for the proton were equal. However, this experiment observed

that the form factor ratio was significantly below unity over the entire Q2 range for

this data set and there was no indication that the ratio approached unity noticeably

2The units of Q2 and energy used in this report assume natural units of h̄ = c = ϵ0 = 1 and are
given repeatedly as GeV2 and GeV.
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above Q2 = 0. Secondly, there was also no indication of any structure in the form

factor ratio over the Q2 range of these high precision measurements.

The analysis and results of the second component of experiment E08-007 are the

principle focus reported in this thesis. This component of the experiment measured

the proton form factor ratio µpG
p
E/G

p
M over a Q2 range of 0.01−0.08 GeV2 using the

Double Spin Asymmetry (DSA) and the single beam asymmetry techniques, utilizing

a polarized electron beam and a polarized proton target. The relevant theoretical

background and terminology are provided in the remaining sections of Chapter 1.

The experimental setup, kinematics, target preparation, and data acquisition sys-

tems are described in Chapter 2. Chapter 3 describes the data analysis process used

and discusses experimental issues. Finally, Chapter 4 summarizes the overall results

achieved and presents final conclusions along with recommendations to support fur-

ther experimental research in this field of study.

1.2 Definitions and Formalisms

The following sections cover the fundamental definitions and topics that relate to the

the descriptions and formalisms of the elastic scattering process, the electromagnetic

form factors, and hadronic currents.

1.2.1 Electron Scattering

Elastic scattering of electrons in the OPE, or Born, approximation is a simple process

that conserves both energy and momentum. In QED, the leading order approximation

for electron-proton elastic scattering is described by the exchange of a single virtual

photon γ∗ in the field of the nucleus. As a result, an incident electron of energy E and

momentum k⃗ emits a photon that carries the momentum q⃗ and the energy ω lost by

the electron during the scattering process. This photon is absorbed by a component

of the nucleus in a fundamental process described by QED [29]. Consequently, this

process is ideal for probing the electromagnetic structure of the nucleus. The incident

electron is deflected by an angle θ having a scattered energy E ′ and momentum k⃗′.

This process is illustrated in Figure 1.2.
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Figure 1.2: A schematic representation showing the elastic scattering interaction in
the lab frame.

In the lab frame, the four momentum transfer qµ is defined by [29]:

qµ = (ω, q⃗)

ω = E − E ′

q⃗ = k⃗ − k⃗′

⎫⎪⎪⎬⎪⎪⎭ (1.5)

The angle through which the electron is scattered is related to the momentum trans-

ferred by the photon from the electron to the nucleon by:

q2 = −4E E ′ sin2 (θ/2) (1.6)

where the mass of the electron has been neglected and q2 =
∑

µ q
µqµ. For convenience,

the four momentum transfer Q2 is defined to be positive, i.e.,

Q2 = −q2 = −(ω2 − q⃗ 2) (1.7)

The OPE approximation is justified at low momentum transfer based upon the

small electromagnetic coupling constant3 α; however, it is not valid above Q2 ≈ 1

GeV2 for the same reason as stated in the previously noted discrepancies between

cross-section and polarization measurements [7]. For these reasons, the approximation

is considered valid for the primary focus of this work.

1.2.2 Formalism

The OPE amplitude for the electron-proton elastic scattering is determined from the

Feynman diagram in Figure 1.3. This figure shows the four-momenta associated with

3This constant is also know as the electromagnetic fine structure constant and has a value of
α = e2/4π≈1/137 written in natural units of h̄ = c = ϵ0 = 1.
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Figure 1.3: Leading order Feynman electron-proton elastic scattering diagram.

the electron (k, k′) and the proton (p, p′) that results from the exchange of the virtual

photon γ∗(ω, q⃗). One of the advantages of using electrons as an electromagnetic probe

lies in the fact that the leptonic vertex e(k) → e(k′)+γ∗(q) is fully described by QED.

Furthermore, the information that relates to the unknown electromagnetic properties

of the nucleon are solely contained by the hadronic vertex γ∗(q) + P (p) → P (p′). In

the OPE process, the elastic scattering amplitude can be written as the product of

the leptonic ℓµ and hadronic Jµ currents [3]. Using this Feynman diagram, the elastic

scattering amplitude is represented by the following expression:

iM = [i e v̄ (p′) Γµ (p′, p) v (p)]
−i gµν
q2

[ieū (k′) γνu (k)]

= − i

q2
[i e v̄ (p′) Γµ (p′, p) v (p)] [i e ū (k′) γµ u (k)] ,

(1.8)

where gµν is the metric tensor and the γµ terms represent the following Dirac matri-

ces4:

γ0 =

(
0 I

I 0

)
; γi =

(
0 σi

−σi 0

)
(1.9)

where 0 and I denote 2×2 null and identity matrices, respectively. The σi’s represent

the following three Pauli matrices:

σx =

(
0 1

1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0

0 −1

)
. (1.10)

4The Dirac matrices are shown in the Weyl or chiral basis.
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The initial and final electron Dirac four-spinors are represented by the functions u(k)

and ū(k′), respectively. While the target and recoil proton Dirac four-spinors are

correspondingly given by v(p) and v̄(p′). The wave-functions associated with spin-

1/2 particles are represented by plane-waves ψ(x)=v(p) e−i pµxµ
that satisfy the Dirac

equation5:

(−i γµ ∂µ −m) ψ(x) = 0 (1.11)

Solutions to this equation have the following form:

v(p) =

[√
pµ · σµ χ√
pµ · σ̄µ χ

]
(1.12)

where χ is a normalized two-spinor such that χ†χ = 1 and the four-vectors σµ = (I, σ⃗)

and σ̄ = (I,−σ⃗) are defined in terms of the Pauli vector σ⃗ = (σx, σy, σz). While QED

fully describes the leptonic current ℓµ = ie ū (k′) γµ u (k), the hadronic current J µ =

ie v̄ (p′) Γµ (p′, p) v (p) contains the additional factor Γµ (p′, p). This factor represents

the information about the internal electromagnetic structure of the proton, which is

not known in QED. The symmetries of the electromagnetic interaction implies that

the most general form of Γµ is a linear combination of p, p′, and γµ in addition to

containing constants such as the proton mass m and the electric charge e. Since the

hadronic current transforms as a vector, Γµ must be a linear combination of these

vectors having coefficients that are solely functions of Q2. That is,

Γµ = γµ F1

(
Q2
)
+ i

σµν

2Mp

κp F2

(
Q2
)
. (1.13)

Using this results in the following expression for the hadronic current [30]:

J µ = ie v̄ (p′)

[
γµ F1

(
Q2
)
+ i

σµν

2Mp

κp F2

(
Q2
)]

v (p) (1.14)

where σµν = i
2
[γµ, γν ], κp is the proton anomalous magnetic moment, and F1,2 (Q

2) are

the proton elastic form factors. All of the information concerning the electromagnetic

structure of the proton are therefore contained in these form factors.

5This equation is written in natural units of h̄ = c = ϵ0 = 1, where these constants are included
in the specific units implemented.



11

1.2.3 Nucleon Form Factors

Since the elastic scattering cross-section is proportional to the square of the amplitude,

it can be expressed in terms of the form factors, as a function of Q2. The Dirac

and Pauli form factors are denoted by F1(Q
2) and F2(Q

2), respectively. They are

distinguished according to their helicity states, which is defined as the projection of

the electron’s spin along its direction of momentum. The Dirac form factor F1(Q
2)

represents the helicity preserving part of the scattering process, while the Pauli form

factor F2(Q
2) represents the helicity flipping part. These form factors are usually

normalized according to their static properties at Q2=0. Specifically, for the proton:

F p
1 = 1 F p

2 = 1 (1.15)

and for the neutron:

F n
1 = 0 F n

2 = 1 (1.16)

An alternative definition of the form factors provided by Sachs [31] conveniently

links experimental observation with theoretical analysis. In particular, the distribu-

tion of electric charge within the nucleus and the magnetization over the volume of

the nucleus are described by the respective functions GE and GM . These functions

are expressed in the following form:

GE = F1 − τκF2 (1.17)

GM = F1 + κF2 (1.18)

with the kinematic factor τ = Q2

4m2 and κ is the nucleon anomalous magnetic moment.

The Sachs form factors allow for a more simple physical interpretation when they are

expressed in the Breit reference frame, described below in Section 1.2.4. These form

factors are normalized according to the static properties of the corresponding nucleon

at Q2=0. That is,

Gp
E(0) = 1 Gp

M(0) = µp (1.19)

Gn
E(0) = 0 Gn

M(0) = µn (1.20)
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where µp = 2.79µN and µn = 1.91µN are respectively the magnetic moments of the

proton and neutron in units of the nuclear magneton µN .

1.2.4 Hadronic Current

The physical meaning of the electric and magnetic form factors, GE and GM , are best

understood when the hadronic current is written in the Breit frame6 [3]. In this frame

of reference, scattered electrons only transfer momentum q⃗B not energy (ωB=0). As a

result, the proton undergoes only a change in its momentum. Specifically, it undergoes

a change from −q⃗B/2 to +q⃗B/2. Consequently, the initial and final nucleon momenta

are equal and opposite in this framework resulting in a simplified interpretation of

the the hadronic current7. Using the Gordon identity [30]:

v̄(p′) γµ v(p) = v̄(p′)

[
p′µ + pµ

2Mp

+
i σµν qν
2Mp

]
v(p) (1.21)

allows the (p′ + p) term to be swapped for the one involving the σµν qν . Doing so

results in the following expression in terms of the Dirac and Pauli form factors:

J µ = v̄(p′) Γµ v(p) = v̄(p′)

[
(F1 + κF2) γ

µ − (p+ p′)µ

2Mp

κF2

]
v(p) (1.22)

Consequently, the time and spacial components of the hadronic current in this frame-

work are respectively given by:

J 0 = i e v̄(p′)

[
(F1 + κF2) γ

0 − EpB

Mp

κF2

]
v(p) (1.23)

J⃗ = i e (F1 + κF2) v̄(p
′) γ⃗ v(p) (1.24)

where γ⃗ = (γ1, γ2, γ3) and EpB is the proton energy. Using the expression v̄(p′) =

v†(p′) γ0 results in a time component J 0 having the following form:

J 0 = i e

[
(F1 + κF2) v

†(p′) v(p)− κF2
EpB

Mp

v†(p′) γ0 v(p)

]
(1.25)

6Variables in the Breit reference frame are denoted with a subscript B.
7In a Breit frame, the interaction only flips the sign of the nucleon three momentum vector.
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Furthermore, using the definitions of v(p) and γ0 from (1.9) and (1.12) gives:

J 0 = i e (F1 + κF2)χ
′†
(√

p′µ · σµ
√
p′µ · σ̄µ

)(√pµ · σµ χ√
pµ · σ̄µ χ

)

− i e κ F2
EpB

Mp

χ′
(√

p′µ · σµ
√
p′µ · σ̄µ

)(0 1

1 0

)(√
pµ · σµ χ√
pµ · σ̄µ χ

)
.

(1.26)

Using the following identities:

Mp =
√
p′µ · σµ ·

√
pµ · σµ =

√
p′µ · σ̄µ ·

√
pµ · σ̄µ (1.27)

2EpB =
√
p′µ · σµ ·

√
pµ · σ̄µ +

√
p′µ · σ̄µ ·

√
pµ · σµ (1.28)

τ =
Q2

4M2
p

=
q⃗2B
4M2

p

=
E2

pB −M2
p

M2
p

(1.29)

gives the following simplified result for the time component:

J 0 = 2 i eMp χ
′†χ (F1 − τ κF2) = 2 i eMp χ

′†χGE (1.30)

The vector current J⃗ can also be expressed in a similar way in this framework as:

J⃗ = −e χ′† (σ⃗ × q⃗B)χ (F1 + κF2) = −e χ′† (σ⃗ × q⃗B)χGM . (1.31)

These results enable a simple interpretation of the Sachs form factors in the Breit

reference frame. Specifically, the information on the electric charge and magnetic

current distributions are contained in GE and GM , respectively. The electric and

magnetic form factors can be associated with the Fourier transforms of the charge and

magnetic current densities in this framework, in the non-relativistic limit. Expanding

the Fourier transforms of these form factors in powers of q2 gives the expressions:

GE,M(Q2) =

∫
ρ(r⃗)E,M ei q⃗ . r⃗ d3r =

∫
ρ(r⃗)E,M d3r − q⃗2

6

∫
ρ(r⃗)E,M r⃗2 d3r + ... (1.32)

The first term in this expansion gives the total electric or magnetic charge; the second

term provides the corresponding root-mean-squared radii of the respective nucleon [4].

However, this simplified interpretation is complicated by a Lorentz contraction of the

nucleon in the direction of motion. This contraction leads to non-spherical charge

density distributions that complicate the Fourier transform interpretation of these

form factors.
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1.3 Measurement Techniques

There are several measurement techniques that are usually used to investigate the

nuclear structure associated with elastic electron-proton scattering. The fundamental

concepts of the Rosenbluth, the Polarization Transfer, Single Beam Asymmetries, and

the Double Spin Asymmetries (DSA) techniques are discussed in this section.

1.3.1 The Rosenbluth Technique

The Rosenbluth method was the only technique used to obtain separated values

for Gp,n
E and Gp,n

M until the 1990s [3]. To understand the principle associated with

this separation technique requires an understanding of the electron-proton elastic

scattering cross-section. The differential of the cross-section σ with respect to the

solid angle8 Ω is expressed in the following way:

dσ

dΩ
=

⟨|M|2⟩
64π2

(
E ′

E

)
1

Mp

(1.33)

where M is the scattering amplitude.

The formula for the differential cross-section for electrons scattering off nucleons

for the single-photon exchange case is given by:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

E ′

E

[
F 2
1 (Q

2) + 2
[
F1(Q

2) + F2(Q
2)
]2
tan2 θ

2

]
(1.34)

where (dσ/dΩ)Mott is the Mott cross-section9, which is expressed as:(
dσ

dΩ

)
Mott

=
( α

2E

)2(cos2 θ
2

sin4 θ
2

)
. (1.35)

Substituting the Sachs form factors from (1.17) and (1.18) into (1.34) gives the well

known Rosenbluth formula:

dσ

dΩ
=
α2

Q2

(
E ′

E

)2
[
2 τ G2

M +
cot2 θ

2

1 + τ

[
G2

E + τ G2
M

]]
(1.36)

A simple separation of the form factors is possible in this representation because there

are no interference multiplicative terms.

8The solid angle Ω is a two-dimensional angle in three-dimensional space that an object subtends
at a point. It is a measure of how large the object appears to an observer looking from that point.

9The Mott cross-section applies to the case of electrons scattering off spin-1/2 point-like particles.
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The Rosenbluth cross-section has contributions from both the electric GE and

magnetic GM terms. Consequently, a reduced cross-section can be defined as:

σred = (1 + τ)
ϵ

τ

dσ/dΩ

(dσ/dΩ)Mott

= G2
M +

ϵ

τ
G2

E (1.37)

where the virtual photon polarization ϵ is given by ϵ=[1+2 (1+ τ) tan2(θ/2)]−1. The

reduced cross-section isolates the contribution of the internal structure represented

by the Sachs form factors. At a fixed Q2, ϵ can be varied by changing the incident

electron beam energy and the scattering angle. Consequently, one can measure the

elastic scattering cross-section and separate the two form factors using a linear fit

to the cross-section data. The slope and intercept of the fit respectively equal G2
E/τ

and G2
M providing a separation of the two factors. This method has been extensively

used over the past 40 years to measure the elastic form factors. Although the Rosen-

bluth separation technique was, and still is, a successful method it has some practical

limitations. A main disadvantage is the need to make a cross-section measurement.

Such absolute measurements suffer systematic errors associated with inconsistent ac-

ceptance, luminosity, and detector efficiency between kinematic settings as well as

requiring absolute normalization. The precision of this technique is also limited by

cross-section measurements that require a broad range of kinematic settings in order

to cover the required range of ϵ. Furthermore, to use such data in the same form

factor extraction process requires that all of these systematics be well understood. In

addition, the scaling of the contributions implies a low sensitivity for GE and GM for

high and low Q2, respectively.

1.3.2 Polarization Transfer Measurements

Over the past fifteen years, more form factor measurements have relied upon po-

larization measurement techniques. The polarization transfer process occurs when

polarized electrons scatter elastically from protons. This transfer can be measured

using the Recoil Polarization method (RPM) [32, 33, 34], which has been used in

recent measurements to extract the proton form factor ratio [18, 20, 21, 22, 23]. In

addition, Polarized Beam - Polarized Target Asymmetry measurements provide an-

other way to extract this ratio, and will be discussed in Section 1.3.3. These alterna-

tive methods are based upon spin degrees of freedom and are focused on interference
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terms of the form GE GM . Compared to cross-section experiments, the polariza-

tion spin-dependent experiments involve the measurement of polarization or helicity

asymmetries. These quantities are independent of the cross-section normalization.

Furthermore, most of the systematic uncertainties usually cancel when measuring a

ratio of the polarization observables.

In particular, Akheizer and Rekalo’s RPM measurements [34] suggested that the

interference term GE GM could be determined by measuring the transverse compo-

nents of the recoil proton polarization. Instead of directly measuring the individual

proton form factors, the GE/GM ratio can be obtained by measuring the recoil pro-

ton’s transverse Pt and longitudinal Pl polarization components [3]:

GE

GM

= −Pt

Pl

E + E ′

2Mp

tan
θ

2
(1.38)

where Pt and Pl are given by:

σred Pt = −2
√
τ (1 + τ) tan

(
θ

2

)
GE GM (1.39)

σred Pl =
E + E ′

MP

√
τ (1 + τ) tan2

(
θ

2

)
G2

M (1.40)

and σred represents the reduced cross-section. By taking the ratio of Pl and Pt the

extracted ratio becomes [3]:

µp
Gp

E

Gp
M

= −µp
E + E ′

2Mp

tan

(
θ

2

)
Pt

Pl

(1.41)

It is easy to see that this method offers several experimental advantages compared to

making cross-section measurements. In particular,

• The systematic errors associated with changes in the settings of the spectrom-

eter and beam energy are greatly reduced since only a single measurement is

required at each Q2.

• Polarization ratio measurements are not sensitive to such factors as the detector

efficiency, beam polarization, and the analyzing power of the polarimeter.

• In addition, the electric form factor is more accurately characterized by making

measurements of the interference term GE GM .

• Finally, the associated systematic uncertainties are usually much smaller be-

cause a measurement of the absolute cross-section is not required.
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1.3.3 Double Spin Asymmetry Measurements

Although the recoil polarization method can in principle extract the form factor ratio

at any Q2, doing so requires a measurement of the recoil proton polarization. The

proton does not acquire enough energy to reach the polarimeter at low Q2 due to

the low energy transfer, which prevents its exit from the target material [35]. An

alternative method based on spin degrees of freedom is the Double Spin Asymmetry

(DSA) technique. The second part of Experiment E08-007 was designed to measure

the proton form factor ratio using this technique. Double polarization experiments

such as this measure the asymmetry in the scattering of longitudinally polarized

electrons by polarized protons or neutrons. The form factor ratio can be obtained

from the beam helicity asymmetry by keeping the electron and nucleon detection

angles constant while alternating the helicity of the electron beam.

Following the prescription of Donnelly and Raskin [36], the inclusive electron-

proton cross-section can be expressed as a sum of an unpolarized cross-section10, Σ,

and the polarized spin-dependent cross-section11, ∆. The differential cross-section

for longitudinally polarized electrons scattering from a polarized proton target can

be written as:

σ(h) = Σ + h∆ , (1.42)

where the helicity of the electron h is defined as the projection of the electron spin

along its momentum direction, which can be either positive or negative for longitu-

dinally polarized electron beams, i.e., h = ±1.

Donnely and Raskin showed that the spin-dependent ∆ and unpolarized Σ cross-

section ratio could be represented by the expression:

∆

Σ
= −f1

aF 2
T + b FL FT

F 2
(1.43)

with the following definitions taken from [36] (in the ultra-relativistic approxima-

tion)12:

f1 =
1√
2

(1.44)

10The unpolarized cross-section is given in (1.36), i.e, Σ= dσ
dΩ .

11The polarized spin-dependent cross-section component is different from zero when the beam is
longitudinally polarized.

12When comparing with the original work by Donnely and Raskin, note that the definition of Q2

uses opposite sign relative to the notations in this report.
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vL =

(
Q2

q2

)2

(1.45)

vT = −1

2

(
−Q2

q2

)
+ tan2 θ

2
(1.46)

vTL =
1√
2

(
−Q2

q2

)√
Q2

q2
+ tan2 θ

2
(1.47)

vT ′ =

√
Q2

q2
+ tan2 θ

2
tan

θ

2
(1.48)

vTL′ =
1√
2

(
−Q2

q2

)
tan

θ

2
(1.49)

FL =
1 + τ√
4π

GE (1.50)

FT =
−
√
2τ(1 + τ)√
4π

GM (1.51)

F 2 = vLF
2
L + vTF

2
T (1.52)

a =
√
2vT ′ cos θ∗ (1.53)

b = 2
√
2vTL′ sin θ∗ cosϕ∗ (1.54)

It should be noted that both the scattering angle θ of the electron in the lab frame and

the spherical coordinates (θ∗, ϕ∗)13 of the polarization axis relative to the scattering

plane are required in these relationships.

The asymmetry between the cross-sections of the different helicities states is rep-

resented by (1.43). As a result, this asymmetry can be expressed as:

A =
σ+ − σ−
σ+ + σ−

=
∆

Σ
(1.55)

13The spherical coordinates (θ∗, ϕ∗) of the polarization axis relative to the scattering plane in the
direction of the recoil momentum are illustrated in Figure 3.8 of Section 3.1.1.
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where σ± delineates the different cross-sections associated with the two helicity states

of the polarized electron beam.

The experimental asymmetry Araw is related to the spin-dependent physical asym-

metry by the relationship:

Araw = Pb Pt f Aphys (1.56)

where Pb and Pt are the respective beam and target polarization values. Here, the

dilution factor f is used to account for the reduction in the amount of hydrogen seen

by the beam due to the fact that the NH3 target (used to make the polarized proton

target) also contains nitrogen atoms.

In terms of the Donnely and Raskin notation, the asymmetry given by (1.55) can

be rewritten as:

Aphys = f1
aF 2

T + b FL FT

F 2
= f1

aF 2
T + b FL FT

vL F 2
L + vT F 2

T

. (1.57)

Furthermore, dividing this expression by F 2
T gives it the following form:

Aphys = f1
a+ b

[
FL

FT

]
vT + vL

[
FL

FT

]2 (1.58)

Therefore, the beam-target asymmetry can be defined using (1.55), (1.56), and (1.58)

to give the following result:

Aphys =
1

Pb Pt f

σ+ − σ−
σ+ + σ−

=
1

Pb Pt f

∆

Σ
=

1

Pb Pt f
f1

a+ b
[
FL

FT

]
vT + vL

[
FL

FT

]2 . (1.59)

Substituting the Donnely and Raskin definitions defined in (1.44) through (1.54) into

this equation gives the following well known result:

Aphys =
1

Pb Pt f

[
2

√
τ

1 + τ
tan

(
θ

2

)]
×[√

τ (1 + (1 + τ) tan2
(
θ
2

)
cos (θ∗) G2

M + sin (θ∗) cos (ϕ∗) GM GE

]
[
G2

E+G2
M

1+τ
+ 2 τ G2

M tan2
(
θ
2

)] .

(1.60)

This expression is a function of the form factor ratio GE/GM
14, which the DSA

technique exploits. This technique extracts the proton elastic form factor ratio using

14This explicit dependence on the form factor ratio can be seen by dividing the numerator and
denominator by the factor G2

M .



20

Figure 1.4: The kinematics for the two simultaneous measurements where the scat-
tered electrons e1 and e2 are detected in right and left high resolution spectrometer
(HRS), respectively. The recoil protons p1 and p2 point in the direction of the trans-

ferred momenta q⃗1 and q⃗2, respectively. S⃗ denotes the target spin direction where
θ∗1 and θ∗2 represent the angles with respect to q⃗1 and q⃗2 in the coordinate frame
illustrated in Figure 3.8 [27].

only measurements of scattered electrons negating the need to detect the recoil proton.

As a result, this technique is able to measure the form factor ratio in much lower Q2

regions than previously attained.

Experiment E08-007 conducted DSA measurements using two high resolution

spectrometers configured to have equal scattering angles on either side of the beam

and measuring the same Q2. Measuring the asymmetries simultaneously in two spec-

trometers with different angles between the momentum transfer and the target spin

axis can be used to extract the form factor ratio. The kinematics associated with

these simultaneous measurements are illustrated in Figure 1.4. Taking the ratio of

the two asymmetries defined by (1.60) can be used to derive an expression for the

ratio of GE/GM [37]. Doing so, gives the following result for the proton form factor

ratio:

µP
GP

E

GP
M

= −µP

a(τ1, θ1) cos (θ
∗
1)−

f2
f1
Λ a(τ2, θ2) cos (θ

∗
2)

cos (ϕ∗
1) sin (θ

∗
1)−

f2
f1
Λ cos (ϕ∗

2) sin (θ
∗
2)

(1.61)

where a(τn, θn)=
√
τn (1 + (1 + τn) tan2 (θn/2)) has subscripts that correspond to the

respective HRS arms as defined in Figure 1.4. The angles θ∗i and ϕ∗
i correspond to

the polar and azmuthal angles of the respective target spin axis associated with each

spectrometer in the scattering plane coordinate frame shown later in Figure 3.8. The
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ratio of the two asymmetry measurements is represented by Λ=A1/A2; however, the

values of target and beam polarizations, Pt and Pb, cancel when forming this ratio

and therefore do not appear in the final expression [27]. This eliminates one of the

larger systematic uncertainties of a single-beam target asymmetry measurement [37].

Furthermore, it is noted that the two spectrometers are essentially identical at least to

first order; therefore, the dilution factors associated with each arm are approximately

the same, i.e., f1 ≈ f2 [27]. It is however conceivable that small differences in the two

spectrometers could result in slightly different dilution factors; as a result, their ratio

has been retained in the final expression15 [37].

1.3.4 Single Arm Asymmetry Measurements

Another technique for calculating the form factor ratio from asymmetry measure-

ments is possible using (1.60), which is quadratic in terms of the ratio of the form

factors. This calculation requires a physical asymmetry measurement obtained from

a single arm of the spectrometer rather than two raw asymmetries used by the DSA

technique. Therefore, the single arm calculation can be used to generate an estimate

of the form factor ratio albeit with greater uncertainties. The results can be compared

to those obtained using the DSA method. Solving (1.60) for the ratio of the form

factors gives:

GE

GM

= − b

2Aphys

sin(θ∗) cos(ϕ∗) +

√
b2

4A2
phys

sin2(θ∗) cos2(ϕ∗)− a

Aphys

cos(θ∗)− c

(1.62)

where Aphys is the physical asymmetry obtained from a single set of spectrometer

measurements that accounts for beam and target polarization, and the dilution factor.

The form factor ratio is obtained by multiplying (1.62) by µp. The coefficients a, b,

and c are kinematic factors defined in terms of τ , and θ and are given by:

a = 2 τ tan

(
θ

2

)√
1 + τ + (1 + τ)2 tan2

(
θ

2

)
b = 2 tan

(
θ

2

) √
τ (1 + τ)

c = τ + 2 τ (1 + τ) tan2

(
θ

2

)
15The factor µp has been included in the final result to normalize (1.61) to unity.
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1.4 Motivation for Form Factor Ratio Measurements at Low Q2

Previous studies have focused on the high Q2 proton elastic form factors, while more

recent studies have focused on the low Q2 region primarily for the following reasons.

Firstly, the electromagnetic form factors are fundamental properties of the nucleon

that require a greater degree of understanding that can only be obtained by perform-

ing more accurate experimental measurements. Secondly, theory generally indicates

that the proton elastic form factors are smooth functions of Q2; however, current theo-

retical results and measurements suggest that the form factors may exhibit structure.

Experiment E08-007 was designed to expose such structures in the form factors (or

the form factor ratio).

In the high Q2 regime, it is now generally accepted that the proton form factor

ratio decreases smoothly as Q2 increases. As previously discussed, for Q2 < 1 GeV2

the existing world data appear to be less conclusive. Analysis performed by Friedrich

and Walcher [25] found deviations in the nucleon form factor fits that indicated the

existence of structure at low Q2. This has been interpreted as evidence of the virtual

pion cloud surrounding the nucleon [27]. It is possible to fit all four nucleon form fac-

tors if one employs phenomenological fits [24, 25] and fits based upon the constituent

quark model. These results each show evidence of the virtual pion cloud. The previ-

ous examinations of the pion cloud contributions have mainly looked at the structure

relative to the dipole form factor (except Gn
E) [27]. Whereas, experiment E08-007

measurements were designed to allow for a precise model-independent comparison of

the behaviour of Gp
M and Gp

E that does not depend on the dipole form factor being

appropriate at low Q2.

All of the high precision world data for the form factor ratio at low Q2 obtained

from polarization measurements, fits, and models are presented in Figure 1.5. This

region has been a subject of increased interest in recent years due to high precision

measurements of the proton radius by muonic hydrogen lamb shift measurements

[38]. These measurements show a 7σ deviation of the proton charge radius relative to

the values extracted by electron scattering and Lamb shift measurements as shown

in Figure 1.6. However, there is a possibility that the source of the discrepancy with
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Figure 1.5: High precision results of the proton form factor ratio having a total
uncertainty of σtot<3% compared to several fits and parameterizations [27].
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Figure 1.6: A summary of some recent proton charge radius determinations: Sick
[39], CODATA 2006 [40], Bernauer el al. [41], CODATA 2010 [42], and Zhan el al.
[28] represent results associated with electron-proton scattering experiments. Exper-
iments by Pohl el al. [43] and Antognini el al. [44] used muonic hydrogen lamb
shift.

the radii arises from the way that the fits are performed in the low Q2 region. Since

the proton RMS radius16 is defined by the slope of the form factor as Q2 tends to

zero, precise knowledge of the functional behaviour at low Q2 is required in order to

make reliable comparisons between the scattering and Lamb shift data.

The form factor ratio was measured to about 2% and found to be consistent with

unity in the Bates BLAST experiment17 [2] while JLAB’s LEDEX experiment [26]

had uncertainties of approximately 1% over a similar Q2 region18. Both of these

experiments showed that the ratio clearly drops below unity in the region of Q2

16The proton RMS radius is defined by the slope of the form factor as Q2 tends to zero using an
approximation of (1.32) for qR ≪ 1.

17In the BLAST experiment, longitudinally polarized electrons were elastically scattered from a
polarized hydrogen internal gas target in the region of 0.15 ≤ Q2 ≤ 0.65 GeV.

18The LEDEX experiment used the polarization transfer technique with a hydrogen target to
perform its measurements in the region of 0.2 ≤ Q2 ≤ 0.5 GeV2.
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equal to 0.30 GeV2 with the implication that the form factor ratio has some form of

structure in the region of low Q2.

In Figure 1.5, the three solid lines represent different quark model calculations.

Both the Boffi el al. [45] and Faessler et al. [47] calculations show structures in

the ratio although they tend to be higher than the data [27]. Nevertheless, they

suggest that narrow structures might be theoretically possible. From the fits and

data shown, one can conclude that the ratio is only known to within about ±2% over

the low Q2 range. Note that the fit by Friedrich and Walcher crosses over the data

near Q2=0.25 GeV2. This indicates that the structures are not actually present but

represent artifacts of the fitting process [27].

A series of polarization transfer measurements were conducted at the MIT-Bates

facility [2, 16, 17], the MAMI facility [18, 19], and at Jefferson Lab [20, 21, 22, 23,

26, 48, 49]. Figure 1.7 shows the results obtained by these experiments relative to

the Rosenbluth separation results [35]. Unlike the Rosenbluth results, a clear decline

in the ratio as Q2 increases is evident for the polarization data. This discrepancy

has been the focus of much theoretical and experimental work. It is today considered

most probable that the OPE approximation is not valid in this region of Q2 and that

the two-photon-exchange (TPE) corrections are in fact required at higher Q2 [7]. The

bottom plot of Figure 1.7 shows a re-analysis of the Rosenbluth results illustrated in

the top plot with TPE corrections.

The aim of Experiment E08-007 was to provide a high precision survey of the

proton form factor ratio in the low Q2 regime. As a result, the hope was to confirm

the existence of any deviation of the proton form factor ratio from unity and to expose

any local structure in this low momentum transfer region.

1.5 Models and Global Fits

Significant theoretical progress has been made in recent years in understanding the

nucleon electromagnetic structure from the underlying theory of QCD. Ideally, one

should be able to calculate the nucleon electromagnetic form factors directly in the

pQCD regime to confront the data19. Unfortunately, it is not possible to solve QCD

19This has been extremely well tested in the high energy region, i.e., in the perturbative QCD
(pQCD) regime.
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Figure 1.7: Ratio µpG
p
E/G

p
M extracted from the polarization transfer (filled blue

diamonds) and Rosenbluth method (open red circles). The top/bottom figures show
Rosenbluth method data without/with TPE corrections applied to the cross-section
data. These figures were obtained from reference [35].
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analytically in the confinement regime where the available world experimental data

are located. Several QCD-inspired models, phenomenological models, and empirical

fits have been suggested to provide predictions of the form factor behaviour in this

Q2 region [35], the details associated with these efforts are provided in References

[50, 51, 52]. The following sections provide brief discussions on various models and

fits used to calculate nucleon electromagnetic form factors.

Vector Meson Dominance

The vector meson dominance model (VDM) was developed before the introduction

of QCD to describe the interactions between energetic photons and hadronic matter.

The model was hypothesized to explain the electromagnetic interactions with hadrons

through coupling with intermediate vector mesons [53]. In this model, a virtual

photon will transform into a lower lying vector mesons, such as ρ(770), ω(782), and

ϕ(1020), which have the same quantum numbers as the photon, before interacting

with the target hadron. The motivation for such a model is through the process

e−e+→hadrons, where mesons show up as prominent resonances. The contributions

due to these resonances to the space-like diagram of an eN scattering process can

then be evaluated and predictions can be made.

In these models, the strength of the coupling coefficients are left as free parameters

that are fit to existing form factor data [53]. Early VMD fits were developed by

Iachello et al [54]. These fits were later improved by Gari and Krümpelmanm [55]

who included pQCD effects at higher Q2, and more recently, this model has been

extended to include more mesons in a fit by Lomon [56]. A phenomenological addition

including the quark structure of the hadron was added by Bijker and Iachello [57].

Such models have had great success in fitting measured data, but less so in regards

to making predictions [58].

Constituent Quarks Models

Constituent quark models (CQMs) assume that the structure of nucleons are com-

prised of three valence quarks. In these models, the quarks are taken to have masses

of about mN/3≈300 MeV and are placed in a confining potential. The ground state

of such a system is then taken to describe the nucleon. Relativistic effects are taken
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into account such that these models can be used to describe scattering at Q2 on the

order of the constituent quark masses. These models have had general success in the

description of the form factors at higher Q2, but the lower Q2 data includes additional

degrees of freedom, such as in the form of the pion cloud or local structure of the

constituent quarks [53].

Recently, calculations by Miller were performed using light front dynamics and a

model called the Light Front Cloudy Bag Model (LFCBM) [59]. In this model, the

addition of a pion cloud allows for a virtual photon to interact with these pions, as

well as the constituent quarks. This model has had success in describing all of the

electromagnetic form factors with the exception of Gn
M at low Q2.

Fits

The nucleon electromagnetic form factors are needed for various calculations in nu-

clear physics such as the proton radius. As a result, a simple parameterization that

accurately and reasonably represents the data over a wide range of Q2 particularly

for both Q2 → 0 and Q2 → ∞ would be of convenience. For reasonable behaviour

at low Q2, the power-series representation should involve only even powers of Q. At

high Q2, dimensional scaling rules require GE,M ∝Q−4. However, at present the most

common parameterizations violate one or both of these conditions. Recently, Kelly

proposed a much simpler parametrization that takes the form [60]:

GE,M (Q2) ∝ Σn
k=0 ak τ

k

1 + Σn+2
k=1 bk τ

k
. (1.63)

Both the numerator and denominator are polynomials in terms of τ =Q2/4m2
p that

have orders dependent upon the parameter n and whose coefficients are ak and bk,

respectively. Note that the degree of the denominator is chosen larger than that of the

numerator to ensure the GE,M ∝Q−4 for large Q2. Figure 1.8 shows good agreement

with data using only four parameters for Gp
E, G

p
M , and Gp

M , and only two for Gn
E.

Arrington and Sick [61] performed a fit of the world data at low momentum

transfers by a continued fraction expansion [28]:

GE,M(Q2) =
1

1 + b1 Q2

1+
b2 Q2

1+ ...

(1.64)
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Figure 1.8: Fits to nucleon electromagnetic form factors. For Gn
E, data using recoil

or target polarization [62] - [68] are shown as filled circles while data obtained from
the deuteron quadrupole form factor [69] are shown as open circles. Figure obtained
from reference [60].

in terms of the expansion coefficients bi. This model was found to provide good

fits for the low momentum transfer region extending upwards to Q2 = 0.64GeV2.

Their analysis included the effects of both Coulomb distortion and TPE. Later on,

Arrington et al. [70] performed a global analysis of the world data that combined the

corrected Rosenbluth cross-sections and polarized data to produce the first extraction

of GE and GM that included an explicit TPE correction. Figure 1.9 shows this global

analysis compared with the world data.
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Figure 1.9: Extracted values of GE and GM from the global analysis. The open cir-
cles are the results of the combined analysis of the cross-section data and polarization
measurements. The solid lines are the fits to TPE-corrected cross-section and polar-
ization data. The dotted curves show the results of taking GE and GM from a fit to
the TPE-uncorrected reduced cross-sections. Figure obtained from Reference [70].



Chapter 2

Experiment

This chapter provides a brief description of the experimental details associated with

experiment E08-007 spin and double-spin asymmetry measurements. In particular,

it provides a description of the experimental setup, the kinematics, the Continuous

Electron Beam Accelerator Facility (CEBAF) [46], and some of the subsystems con-

figured in Hall A for this experiment. In addition, particulars on the polarized target

and the data acquisition system are also provided.

2.1 Experimental Setup

The experimental setup was designed to measure the proton elastic form factor ratio

using spin and double-spin asymmetries over the kinematics range of 0.01≤Q2≤0.08

GeV2. An illustration of the experimental setup is provided in Figure 2.1 showing all

of the major sub-systems and their placement in Hall A. With the exception of the

chicane and septum magnets, itemized as sub-systems 7 and 10 in Figure 2.1, all of

the sub-systems shown are standard instrumentation used in Hall A. A description

of these components can be found in Reference [46].

In this setup, the polarized electron beam passes through a set of fast and slow

rasters before entering the two chicane magnets designed to compensate for the effect

of the magnetic field used to polarized NH3 target. The scattered beam of electrons

was then bent further by the two septum magnets in order to achieve the required

scattering angles in line with the acceptance of two identical High Resolution Spec-

trometers (HRS) used for detecting scattering events.

2.2 Kinematics

This experiment used three different kinematic settings having beam energies of 1.1,

1.7, and 2.2 GeV. Furthermore, the left and right HRS were set up to symmetrically

31
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E (GeV) ARM θ (deg) θ* (deg) ϕ* (deg) E’ (GeV) Q2 (GeV2)
2.253 left 6.0 85.5 0.0 2.224 0.054
1.712 left 6.0 87.2 0.0 1.695 0.032
1.157 left 7.5 87.3 0.0 1.145 0.023
2.253 right 6.0 74.3 0.0 2.224 0.054
1.712 right 6.0 76.0 0.0 1.695 0.032
1.157 right 7.5 76.1 0.0 1.145 0.023

Table 2.1: Central kinematics for the left and right HRS where θ is the scattering angle
and the star angles are the angles associated with the polarization axis relative to the
recoil direction. Note that when the target polarization field is flipped ϕ∗

new = 180◦

and θ∗new = 180◦ − θ∗.

detect electrons on opposite sides of the beam-line. Specifically, they were configured

in order to detect elastic scattering events at approximately 6◦ in line with these

beam energies. The central kinematics are provided in Table 2.1 and correspond to

scattering events that enter each HRS at their central point of acceptance. This table

shows the initial beam energy E, the scattering angle θ, the central scattering plane

variables θ* and ϕ*, the final beam energy E ′, and the corresponding central value

of Q2 for each kinematic setting listed in this table.

2.3 CEBAF

The high energy electron beam is produced by JLAB’s CEBAF facility shown in

Figure 2.2. This accelerator facility consists of four major components that include

the injector site, two linear accelerators (linacs), and a series of recirculation arcs at

each end of the accelerator. Its configuration is capable of redirecting the beam into

one or more of the three experimental halls. Each of these components will now be

discussed.

The injector system produces and injects a beam of electrons into the accelerator

from either a thermionic or a polarized electron gun [46]. Experiment E08-007 made

use of the facility’s polarized electron gun to generate the beam by illuminating a

strained GaAs cathode using a 1497 MHz gain-switched diode laser system operating

at 780 nm. The degree of polarization obtained was measured at the injector using a

5 MeV Mott polarimeter while the orientation of the polarization vector was achieved

using a Wien filter. As a result, the degree of polarization achieved for this experiment
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Figure 2.2: Schematic of the Jefferson Lab continuous electron beam accelerator facil-
ity (CEBAF). This system consists of two linacs that are connected by recirculation
arcs (magnets) that are used to accelerate the electron beam to higher energies for
experimental purposes.

was between 80% and 90%. The electron helicity was randomly generated using a

right or left circularly polarized laser that was pseudo-randomly flipped at a rate of

960.015 Hz. Occasionally, a half-wave plate (HWP) was inserted into the injector to

flip the helicity sign as an additional systematic check of the asymmetries obtained.

The beam current delivered to the three experimental halls can be controlled

independently [46]. In Figure 2.2, the beam begins its first orbit when it enters the

accelerator at the injector site into the first of two superconducting RF linacs that are

connected by two 180◦ recirculation arcs constructed of magnets. Each linac consists

of 20 cryo-modules. The beam is accelerated as it passes through each linac but

travels through different bending magnets on each lap dependent upon its current

energy. After the first full pass around the accelerator, the beam may then be split

and directed to any of the experimental halls. The beam continues to recirculate

and can achieve a total energy of about 6 GeV. A refrigeration plant provides liquid

helium to remove the heat dissipated in the accelerator’s components. As a side note,

after this experiment CEBAF was upgraded, where the beam energy was increased

to approximately 12 GeV by adding ten new high performance cryo-modules (five per



35

Figure 2.3: Schematic cross section of Hall A with one of the HRS spectrometers in
the (fictitious) 0◦ position [46].

linac). In addition, a new experimental hall, Hall D, was constructed as part of this

upgrade.

2.4 Experimental Hall A

Hall A is the largest experimental hall at CEBAF and its basic layout is provided in

Figure 2.3. The central elements consist primarily of the target scattering chamber

and the two HRS arms. These spectrometers are capable of making accurate mea-

surements of momentum and angle at high luminosities. In the case of experiment

E08-007, the presence of these spectrometers was crucial in obtaining measurements

for determining the form factor ratio at a number of kinematic settings. A more

detailed description of the equipment used in Hall A to support this experiment are

discussed in the following sections.

2.4.1 Rasters

Fast and slow raster systems were used in E08-007 in order to decrease target damage,

polarization loss, and to reduce the systematic uncertainties associated with the po-

larization measurements performed using Nuclear Magnetic Resonance (NMR). These

uncertainties were due to the fact that the NMR coil was in contact only with the
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Figure 2.4: The fast and slow raster patterns are shown respectively in the left and
right images. They illustrate the distribution of the beam over the surface of the
target as indicated by the green and blue that respectively represent greater and
lesser degrees of intensity in these images [35].

outer layer of the target [35]. Each raster was positioned 17 meters upstream of the

target.

The fast raster was made up of two dipole magnets: one vertical and one horizon-

tal. The beam position is moved with a time-varying magnetic field with a triangular

waveform, allowing for a uniform intensity distribution of beam on the target [71].

The fast raster magnets used a common triangular waveform with a frequency of 25

kHz and resulted in a 2×2 mm2 square. However, the slow raster system applied two

30 Hz sine functions with a relative phase of π/2 between the vertical and horizontal

axes in order to obtain a circular pattern with a diameter of approximately 2 cm.

The use of the slow raster system was necessary in order to evenly distribute the

heating and ionizing effect on the target. The increase in the target temperature was

minimized by linearly scanning the beam [71]. Both raster patterns are respectively

shown in Figure 2.4.

2.4.2 Møller Polarimeter

The Møller polarimeter is an apparatus that exploits the process of Møller scattering

of polarized electrons from polarized atomic electrons in a magnetized foil in order

to measure the degree of polarization in the electron beam. For experiment E08-007,
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this apparatus was used to measure the beam polarization several times through-

out the experiment. Specifically, the Hall A Møller polarimeter was used to make

measurements before, during, and after each production run.

The primary purpose of the polarimeter for this experiment was to provide the

means to measure the longitudinal component of the beam polarization. To do this,

the Møller polarimeter uses a ferromagnetic foil magnetized in a field of 24 mT along

its plane as a target of polarized electrons. Furthermore, the target foil can be tilted at

various angles to the beam in the horizontal plane, thus providing a target polarization

that has both longitudinal and transverse components [46]. The spin of the incoming

electron beam may also have transverse components due to the precession in the

accelerator and in the extraction arc. In order to measure the longitudinal component

of the beam polarization, the asymmetry was measured at two target angles of about

±20◦. In order to cancel the transverse asymmetries, these results were then averaged

because at these angles they have opposite signs. This method also has the added

benefit of reducing the impact of the uncertainty in the target angle measurements.

Specifically, for a given target angle, two sets of measurements were taken for opposite

target polarization directions. Averaging these results helps to cancel some of the false

asymmetries including those coming from the residual helicity-driven asymmetry of

the beam flux.

2.4.3 Chicane Magnet

The experimental NH3 target used in experiment E08-007 was polarized by a 5 T

magnetic field at ∼ 5.6◦ towards the x -axis in the horizontal plane as described in

the Hall Coordinate System (see Section 3.1.1). The transverse component of the

magnetic field in the region of the target causes a downward deflection of the beam.

To compensate for this effect, two chicane magnets shown in Figure 2.5 were placed

in front of the target. The two dipole magnets were tuned based on simulations to

correct the beam’s initial deflection with the aim of getting it as close as possible to

the center of the target in the horizontal orientation [35].
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Figure 2.5: The two chicane magnets used to bend the beam.

2.4.4 Septum Magnets

Experiment E08-007 required the installation of two septum magnets in order to

detect the scattered electrons at forward angles required to accommodate the spec-

trometers acceptance [27]. The scattering angles ranged from 4◦ to 7◦. However, due

to technical limitations the spectrometer arms could not accommodate angles below

12.5◦. To compensate for this, the target was placed 88 cm upstream from the center

of the Hall A coordinate system and two septum magnets were installed in front of

the spectrometer. This was done to re-direct the desired scattering events into the

spectrometer in order to detect these interactions [27]. However, a series of technical

failures in the right septum occurred between the production runs configured at beam

energies of 2.2 GeV and 1.7 GeV. As a consequence, the optics for the right arm of

the spectrometer was difficult to work with, which required a different non-standard

approach when analyzing this data. A schematic diagram of the septum magnet is

shown in Figure 2.6.

2.4.5 High Resolution Spectrometer

The data was collected using the standard Hall A HRS configuration [46]. The spec-

trometers were positioned at 12.5◦ and the septum magnets were incorporated to

achieve the smaller scattering angles required for the experiment. The detector pack-

age consisted of several components that provided information on particle trajectories,
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Figure 2.6: Illustration of septum magnets [35].

Figure 2.7: Layout of the detector package. The arrow illustrates particle trajectories.

identification, and event triggering1. A general layout of the HRS detector package

is shown in Figure 2.7. This thesis focuses on the detector components that were

relevant to experiment E08-007. In particular, the spectrometer’s main magnet sys-

tem directs incoming particles into the two Vertical Drift Chambers (VDCs) where

the electron’s momentum and trajectory information are extracted. The timing in-

formation and the main triggers are provided by two scintillator planes separated by

a distance of two meters. In addition, due to the small scattering angle and energy

transfer kinematics used in this experiment, particle identification was not needed.

This was because the π− momenta were emitted into the solid angle not associated

with the desired elastic scattering peak.

1A detailed description of all detector package components can be found in Reference [46].
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Figure 2.8: Layout of the HRS magnetic and detection systems in Hall A [35].

HRS Magnet System

The spectrometer contains four superconducting magnets in a quadrupole-quadrupole-

dipole-quadrupole (QQDQ) configuration. This design directs the incoming charged

particles into the detector system to optimize ability to detect their momentum and

angle to very high precision. A schematic view of the HRS magnetic and detection

systems are shown in Figure 2.8 while the spectrometer’s main characteristics from

Reference [46] are provided in Table 2.2.

The first two superconducting quadrupoles are used to focus the beam in both

the vertical and transverse directions. The dipole magnet is used to bend the beam

and map the momentum dispersion into a focal plane positional distribution. The

remaining quadrupole makes final corrections to the deflected beam in the transverse

direction. Each spectrometer has an effective vertical bend angle of 45◦ that deflects

the beam into its HRS detector package [46].

Vertical Drift Chambers

The HRS detection packages both contain a set of VDC detectors. Each VDC cham-

ber contains two wire planes that are separated by 335 mm and have the standard UV
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Configuration QQDQ vertical bend
Bend Angle 45◦

Momentum Range 0.3 - 4.0 GeV
Momentum Acceptance |δp/p|<4.5%

Momentum Resolution (FWHM) 1× 10−4

Angular Range
HRS-L 12.5 - 150◦

HRS-R 12.5 - 150◦

Angular Acceptance
Horizontal ±28 mr
Vertical ±60 mr

Angular Resolution
Horizontal 0.6 mr
Vertical 2.0 mr

Solid Angle
(rectangular approximation) 6.7 msr
(elliptical approximation) 5.3 msr

Transverse Length Acceptance ±5 cm
Transverse Position Resolution 1 mm

Transverse Position Resolution (FWHM) 1.5 mm
Spectrometer Angle Determination Accuracy 0.1 mr

Table 2.2: Main design characteristics of the Hall A high resolution spectrometers
showing their resolution and acceptance [46].
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configuration as described in Reference [46]. In this configuration, the wires of each

successive plane are oriented at 90◦ to one another and are horizontal. The VDCs are

inclined at 45◦ with respect to the dispersive and non-dispersive directions in order

to match the 45◦ angle that the spectrometer’s magnetic system bends the scattered

and recoil particles. As a result, particle trajectories cross the wire planes at an angle

of 45◦. There are a total of 368 wires in each plane that are spaced 4.24 mm apart.

The electric field of the VDCs is shaped by gold plated Mylar planes nominally at

-4.0 kV in a constantly circulated gas mixture of 62% argon and 38% ethane. When

a charged particle passes through the VDC it ionizes the gas along its trajectory. The

resulting ionized electrons then drift towards the wires along a well defined geodesic

path2. The strength of those signals are related to the distance between the incoming

particle and the wires associated with those signals [72].

Using the pattern of the affected wires in the four layers, a trajectory for the

detected particle can be determined. If more than one possible trajectory is avail-

able, typically one is singled out. This selected trajectory is known as the “golden”

track and its selection is based on a χ2-minimization algorithm used in the software

to analyze the VDC detections [72]. An illustration of the vertical drift chamber’s

detection planes is provided in Figure 2.9.

Scintillators

There are two scintillating planes labeled S1 and S2 in the detector package shown in

Figure 2.7 that are spaced 2 m apart and are illustrated in Figure 2.10. Each plane

consists of overlapping paddles made of thin plastic scintillating material to minimize

hadron absorption (i.e., 5 mm BC4087) [46]. The S1 scintillator plane has 6 paddles

in a 1×6 configuration while the S2 plane has 16 paddles in a 1×16 configuration

that have active volumes of 0.5×29.5×35.5 cm3 and 0.5×37.0×54.0 cm3, respectively.

Each scintillator paddle is connected to two photomultipliers tubes (PMT).

The purpose of incorporating scintillators was for triggering the data acquisition

system. Every scintillator bar contained two PMTs, one located on each end of the

bar. The PMTs send any particle detection signals to the data acquisition system.

This system first looks for coincidences between the two PMTs from a single bar and

2The geodesic path is the path of minimum drift-time to the charged wires.
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Figure 2.9: Schematic layout of a pair of Vertical Drift Chambers for one HRS. The
active area of each wire plane is rectangular and has a size of 2118 mm x 288 mm.
Each VDC consists of a single U and V wire plane with the lower VDC positioned as
close as possible to the spectrometer’s focal plane [46].

Figure 2.10: Layout of the scintillator planes used in the E08-007 experiment [35].
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then looks for associated coincidences between the S1 and S2 scintillating planes. If

two signals arrive within a predetermined timing window, the electronics determine

that a particle has been detected and produces a pulse known as a ‘trigger’. If

two triggers occur within a ‘coincidence window’ a third signal is produced known

as the ‘coincidence trigger’. This indicates that a relevant experimental event may

have occurred. In addition, the scintillators are also used for timing measurements.

Typically, the length of the wires connecting the PMTs to the electronics is carefully

exploited. This is done so that the signal from the PMTs on one side of one scintillator

plane, such as the right side of the S2 plane, always arrive at the electronics last. This

sets the timing of every other signal relative to that particular side. Thus allowing

for a simple coincidence timing calculation between the two arms [72].

2.5 Polarized Target

A highly polarized proton target was needed for experiment E08-007 in order to ex-

tract data required to study the proton’s structure using polarization asymmetries.

The target used in this experiment was from the University of Virginia, which con-

sisted of solid ammonia beads. This section discusses the processes used to: polarize

the ammonia material using dynamic nuclear polarization (DNP), measure the de-

gree of polarization using nuclear magnetic resonance (NMR), and calibrate the target

using thermal equilibrium [73].

2.5.1 Dynamic Nuclear Polarization

The target polarization level P in ammonia is defined as the difference between the

positive (↑) and negative (↓) alignment3 of the nuclear spins relative to the polar-

ization axis in the material divided by the total number of nuclear spin states by:

P =
N↑ −N↓

N↑ +N↓
, (2.1)

where N↑ and N↓ correspond respectively to the number of ± nuclear spin states. The

process begins with the cooling of the material to a low temperature and placing it in a

strong magnetic field [71]. This process is known as thermal equilibrium polarization.

3The positive (↑) and negative (↓) nuclear spin alignments correspond to the z projection mz =
±1/2 spin states.
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For experiment E08-007, the ammonia target was cooled to a temperature of 1 K in

a 5 T magnetic field [35]. The strong magnetic field causes Zeeman splitting4 that

creates two sub-levels having spin-1/2 protons. For a spin-1/2 target, the thermal

equilibrium polarization process gives [35]:

P = tanh

[
g µxB

KB T

]
(2.2)

where g is the particles g-factor, B is the magnetic field, and µx is the magnetic

moment of the particle5. For electrons, thermal equilibrium polarization can reach

polarization levels above 90%. However, much lower polarization levels result for

protons due to their lower µp value. For example, at a temperature of 0.5 K and

a magnetic field of 5 T, the thermal equilibrium polarization for protons is ∼ 0.01

whereas an electron approches ∼ 1.00 [35]. Clearly, this is not practical for experi-

mental purposes [71].

The Dynamic Nuclear Polarization (DNP) technique allows for the increase in the

the nuclear polarization levels by applying microwave radiation to the target [35],

which then takes advantage of electron-proton spin coupling [71]. The spin of the

electron and the proton can be aligned by carefully tuning microwaves to the energy

of the band gap between their two states [71]. However, the alignment of the electron

and proton spins are not a permanent effect and only lasts on the order of tens of

minutes. After which, the electrons relax back into their lowest energy state where

they can then be reused to polarize additional protons [71]. As long as the rate of

proton polarization is greater than the rate of proton relaxation, the polarization may

be maintained using microwaves.

2.5.2 Target Material

When selecting the target material for an experiment a number of factors need to be

considered. These requirements should include consideration of [73]:

• The degree of polarization that the material can obtain,

4Zeeman splitting is the effect of splitting a spectral line into several components in the presence
of a static magnetic field.

5The proton and electron magnetic moments µx are represented respectively by µp and µe.
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• The ratio of free polarizable nucleons to the total number of nucleons in the

target as quantified by its dilution factor6, and

• The ability of the target to resist radiation damage.

The choice of NH3 as the proton target for experiment E08-007 was made for the

following reasons. First, this target was capable of reaching polarization levels above

90% at a magnetic field strength of 5 T [71]. Second, it polarizes very quickly on the

order of 30 minutes or less. An additional concern is that radiation damage is usually

a main cause for reductions in the achievable levels of polarization. Therefore, this

target was chosen because of its high resistance to radiation damage and the fact that

it recovers from this damage via low temperature annealing at ∼77 K [73].

The solid NH3 used in experiment E08-007 was formed into approximately 2 mm

diameter beads. These beads were prepared by the polarized target lab at the Uni-

versity of Virginia by condensing ammonia gas and sealing it in a stainless steel tub

coated with teflon [35]. The whole assembly was then cooled in a liquid nitrogen

bath. Once frozen, the solid ammonium was forced through a mesh in order to form

the beads.

2.5.3 Target Setup

The standard University of Virginia polarized target was used by experiment E08-007

[35]. Figure 2.11 shows the general setup of the target whose main components are

a superconducting 5 T Target Polarization Magnet, a Target Refrigeration Unit, a

Microwave System, a NMR Readout System, and the Target Insert.

Target Magnet

An extensive setup procedure is needed to maintain the low temperature and the high

magnetic field required by the DNP process. Several months prior to the experiment,

the target magnet was damaged beyond repair during testing prior to its installation

in Hall A when it shorted during a large quench. Fortunately, an alternative magnet

from Hall B was identified as a suitable replacement and the target group was able to

6The dilution factor is defined to be the fraction of free polarizable protons to the total number
of nucleons in the target.



47

Figure 2.11: Schematic of the target assembly and its major components. This figure
illustrates the location of the target, the location of the beam’s input and the target
polarization field orientation, as well as the NMR coil used to measure the target’s
polarization. Also shown, are the major refrigeration elements and the access points
used to inject the microwave input and retrieve the NMR output signals from this
assembly [35].
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modify it quite successfully [71]. As a result, a strong uniform magnetic field over the

target volume ensured an efficient DNP process. The magnet was designed with an

open geometry that allowed the beam to pass through the target then on to the HRS

arms. This design also permitted operations in both the parallel and perpendicular

magnetic field configurations [35].

Target Refrigeration Unit

The original target refrigeration unit was damaged in a previous experiment so a new

4He unit was used during this experiment to cool the target to ∼1 K [35]. This unit

was installed vertically along the central-axis of the target magnet [73]. For further

details on this unit, refer to References [74, 75].

Microwave System

The microwave system is used by the DNP process to increase the nuclear polarization

levels via application of microwave radiation to the target. This system consists of a

microwave chamber used to generate the microwaves, a motor control unit used by

the system to change the frequency of microwaves by altering the chamber’s length,

a water cooling system, a high voltage power supply, a power meter used to measure

the frequency, and a circular wave guide system used to transport the microwaves to

the target [73].

The actual generation of the microwaves occurs at the Extended Interaction Oscil-

lator tube (EIO)7. The use of a 5 T magnetic field requires microwaves at a frequency

of 140 GHz.

NMR Readout System

Nuclear magnetic resonance is a physical phenomenon where nuclei in the presence

of a magnetic field absorb and re-emit electromagnetic radiation. When the nuclear

magnetic moment associated with a specific nuclear spin is placed in an external

magnetic field the different spin states have different magnetic potential energies8.

7The extended interaction oscillator tube is a linear-beam vacuum tube designed to convert direct
current to RF power.

8The nuclear magnetic moment, also known as the magnetic dipole moment, has a potential
energy that is related to its orientation with respect to the external magnetic field.
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The presence of the static magnetic field produces a small amount of spin polarization

and an RF signal of the proper frequency can be used to induce a transition between

spin states. This results in some of the spin states transiting to higher energy states.

If the RF energy is then switched off, the relaxation of the spins back to their lower

energy states produce a measurable amount of RF signal at the resonant frequency

associated with these transitions. This process is called NMR.

Note that the electron and proton spin magnetic moments are respectively 180◦

and 0◦ in alignment with their respective spins. These spins tend to precess around

the magnetic field with the Larmor frequency9. As a practical technique, a sample

containing protons is placed in a strong magnetic field to produce partial polarization

while the application of a strong RF field is used to excite some of the nuclear spins

into their higher energy states. When the strong RF signal is switched off, the spins

tend to return to their lower energy states, producing a small amount of RF signal

at the Larmor frequency. It is this signal that is detected in a coil and then amplified

to produce a measurable NMR signal that is used to measure the polarization level

of the target.

Target Insert

The target insert consists of several cells as shown in Figure 2.12. The insert contains

two cells with NH3 targets that were used during production runs, and a dummy cell

that was used to calculate the dilution factor of the target10. In addition, the insert

has a carbon cell and two holes for loading CH2 and carbon foils used for performing

optics studies [73].

9The frequency of precession of the magnetic moment of an object about an external magnetic
field is known as the Larmor frequency.

10The dummy cell has the same structure as the NH3 cells without the ammonia beads.
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Figure 2.12: This figure shows the vertical orientation of the target insert shown in
Figure 2.11 along with the placement of each of its target cells. In particular, it
highlights the locations associated with the top and bottom NH3 targets, the carbon
and dummy targets, as well as the CH2 target and the position of the carbon holes
[73].
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2.6 Data Acquisition

The standard HRS Hall A data acquisition system (DAQ) was utilized during exper-

iment E08-007 [35]. The scintillator plates S1 and S2 used a logical ‘AND’ signal as

a trigger. Note the trigger efficiency was not determined for the asymmetry portion

of the experiment, but it was estimated to be above 99% based upon the Cherenkov

analysis done during this experiment. In addition, two scaler modules were employed.

The first was the SIS3800 module acting as a counter where both the charge and clock

signals were used as triggers. The second module, the SIS3801 acted as a ring buffer

triggered by the helicity state. When so triggered, it saved the current helicity signals

stored in the SIS3800 before clearing its buffer.

The helicity of the beam was set using a helicity control board. The orientation

of the laser polarization was controlled by the level of the high voltage supply. As

a result, this determined the sign of the helicity. The helicity was produced pseudo

randomly in either a “−++−” or “+−−+” pattern. The helicity control board also

generates outputs that were sent to the experimental hall to be recorded and used to

set helicity values of detected events by the off-line reconstruction process [76].

The target polarization was measured with a continuous-wave NMR coil and an

enclosure containing two separate Q-meters11 and Yale gain cards12 for the two dif-

ferent target cells seen in Figure 2.12. The signals from the Q-meters were passed

through the Yale gain cards before digitization. To enhance the signal-to-noise ratio,

signal averaging was employed during a single target event associated with a given

time stamp. The integration of the averaged signal provided a NMR polarization area

for that event. Each target event was then recorded. All NMR system parameters

and target environmental variables needed to calculate the final polarizations were

written and stored in these records.

11A Q-meter is a piece of equipment used in the testing of radio frequency circuits. In particular,
it measures the quality factor of a circuit which expresses how much energy is stored to how much
is dissipated per cycle.

12Yale-gain cards provide addition signal amplification prior to signal digitization.



Chapter 3

Analysis

The overall analysis for the polarized target part of experiment E08-007 will be de-

scribed in this chapter. The analysis requires an understanding of the different co-

ordinate systems that are used to analyze spectrometer measurements and to make

calculations. This includes creating the standard Hall A reaction variables following

the normal processes used for reconstruction, and those used to calibrate the optics

of the two spectrometers. The presence of the target magnetic field deflected the

beam prior to interacting with the target. In order to correct for this effect, chi-

cane magnets were used to correct the beam deflections. The loss of beam position

monitoring (BPM) data for the right arm and issues with one of the magnets in the

spectrometer precluded using the normal reconstruction process typically used dur-

ing the analysis phase. In order to analyze the right arm data, a novel approach

was developed to overcome these short comings. This chapter will discuss how the

reconstruction process was achieved using simulated data to represent the reaction

components responsible for the measured events in the spectrometer. Using these

simulated reaction components, a fitting process was developed to fit the measured

momentum spectrum in the focal plane. The subsequent elastic hydrogen reaction

components obtained for each helicity state via the fitting process were then used to

extract the raw asymmetries used to estimate the form factor ratios. In the follow-

ing sections, the spectrometer optics and the reconstruction processes are discussed,

along with the approach taken to analyze the right arm data.

3.1 Spectrometer Optics

The spectrometer optics are used to determine the physical variables of the scattering

process at the target from the measured quantities made at the detector package. The

standard optics studies were performed for experiment E08-007 with modifications

to account for the effect of the target and septa magnetic fields [77, 35]. A detailed

52
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Figure 3.1: Geometric configuration of the sieve slit where dimensions are given in
mm. The two large holes in the plate are used to determine the orientation of the
sieve slit and have a diameter of 2.7 mm. The smaller sized holes have a diameter of
1.4 mm [78].

description of this procedure can be found in Reference [78]. The sieve slit plates

shown in Figure 3.1 were placed in front of the septum magnets in order to perform

the optics studies required to calibrate the spectrometers. These calibrations were

required in order to reconstruct scattering events back to the target vertex. To

understand this process requires an understanding of the different Hall A coordinate

systems. A brief description is provided below; however, a more detailed account of

these coordinate systems can be found in Reference [77].

3.1.1 Definition of Coordinate Systems used in Hall A

Hall A uses a number of different coordinate systems in order to support its description

of various required vectors in data analysis. All of the coordinate systems used in

Hall A are Cartesian style reference frames. In this section, brief descriptions of these

different coordinate systems are provided.

Hall Coordinate System

The Hall A coordinate system (HCS) uses a Cartesian frame of reference to define

the primary directions in the experimental hall. The origin of the HCS is located at
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Figure 3.2: Hall A Coordinate System [77].

the center of the hall, which is defined to be the intersection of the electron beam and

the vertical symmetry axis of the target system [77]. The positive z-axis (ẑ) is along

the beam line and points in the direction of the beam dump. The positive y-axis (ŷ)

points vertically upward and the positive x-axis (x̂) points to the left of where the

beam enters, as seen in Figure 3.2.

Target Coordinate System

Each spectrometer has its own Target Coordinate System (TCS). For a given spec-

trometer, the z-axis of the TCS ẑtg is defined by the line perpendicular to the sieve

slit surface that goes through the midpoint of the central hole in the plate. The

corresponding ŷtg axis points to the right facing the spectrometer while the x̂tg axis

points vertically downwards as illustrated in Figure 3.3.

The ideal case corresponds to when the spectrometer points directly at the hall’s

center and the sieve slit is perfectly centered on the spectrometer. When this occurs,

the TCS has the same origin as the HCS. However, the TCS typically deviates from

the HCS by factors Dx and Dy in the vertical and horizontal directions, respectively.

These offsets are typically obtained via survey data [28].

The TCS variables are used to calculate the scattering angle θ and the reaction

point zreact along the beam line for each event. In addition, the angles θtg and ϕtg,

as well as, the reaction point at the target are determined via optics studies that use

the sieve hole positions. A more detailed explanation is provided in Reference [28].
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Figure 3.3: Target Coordinate System [28].

Detector Coordinate System

The Detector Coordinate System (DCS) is defined with respect to the vertical drift

chambers (VDC) located in the detector packages. Specifically, the DCS origin is

defined by the intersection of wire No. 184 (the middle wire) of the first plane (VDC1

U1) and the perpendicular projection of that wire onto the second plane (VDC2

V1) of the vertical drift chambers as illustrated in Figure 3.4. From this figure, the

positive z-axis ẑ is seen to be perpendicular to VDC U1 pointing vertically upward,

while it is seen that the y-axis ŷ and x-axis x̂ are respectively parallel to the short and

long symmetry axes of the VDC [77]. The coordinates of the detector vertex can be

calculated using the particle trajectory intersection points with the four VDC planes

illustrated in Figure 3.5. In this figure, the four planes are respectively labelled U1,

V1, U2, and V2. When a particle is detected using the VDCs, the following angular

and spatial coordinates θdet, ϕdet, xdet, and ydet are respectively calculated using this

coordinate system. The details of their calculations are provided in the following

References [77, 79]. These angular and spatial coordinates are then used by the

Transport Coordinate System to translate VDC detections to the focal plane of the

spectrometer.
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Figure 3.4: Vertical Drift Chamber Detector Coordinate System [77].

Figure 3.5: Four planes of the VDC [77].

Transport Coordinate System

The Transport Coordinate System TRCS is an intermediate reference frame used

to transport DCS detections to the focal plane of the spectrometer. Transport to

the focal plane is accomplished by performing a 45◦ clockwise rotation of the DCS

coordinates around its ŷ-axis as illustrated in Figure 3.6. This rotation results in

the following set of equations that represent DCS detections in transport coordinates

where ρ0 is the rotation angle (-45◦) [35]:

θtra =
θdet + tan ρ0
1− θdet tan ρ0

ϕtra =
ϕdet

cos ρ0 (1− θdet tan ρ0)

xtra = xdet cos ρ0 (1 + θtra tan ρ0)

ytra = ydet + sin ρ0 ϕtra xdet

(3.1)
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Figure 3.6: Vertical Drift Chamber Transport Coordinate System [77].

Focal Plane Coordinate System

Due to the focusing provided by the HRS magnetic system, particles from different

scattering angles having the same momentum are focused in the focal plane. The Focal

Plane Coordinate System (FCS) is obtained by rotating the DCS around its ŷ-axis

by an angle ρ, where ρ is the angle between the local central ray1 and the DCS ẑ-axis

as seen in Figure 3.7. In this rotated system, the dispersive angle θfp is small for all

points across the focal plane. As a result, the expressions for the reconstructed vertex

converge faster during optics calibrations [28]. The FCS transformation also includes

corrections for the offsets incurred due to misalignments in the VDC packages. The

processes used to calibrate the optics of the Hall A spectrometers are more fully

described in Reference [77].

Figure 3.7: The Focal Plane Coordinate System (FCS). [77].

1The local central ray is the one with TCS coordinates θtg, ϕtg =0 with corresponding relative

momentum ∆p
p .
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3.1.2 Analysis Coordinate Systems

To support the overall analysis process, two additional coordinate systems were uti-

lized in this study. The first, was the Scattering Plane Coordinate System (SPCS),

and the second, was the Starred Coordinate System (SCS). These reference frames

will now be discussed.

Scattering Plane Coordinate System

The scattering plane coordinate system used in this report defines the ûz-axis as the

direction of the difference between the incoming and scattered electron’s momentum

q⃗ = k⃗− k⃗′. The scattering angle θ is defined as the angle between k⃗ and its scattered

momentum vector k⃗′ as illustrated in Figure 3.8. These quantities are expressed as:

ûz =
q⃗

|q⃗|

cos θ =
k⃗ · k⃗′

|⃗k| · |⃗k′|

(3.2)

In this analysis, the azimuthal angle ϕ is arbitrary and plays no part in the calculation

of asymmetry or the form factor ratio. However, its sole importance is that it defines

the scattering plane required to calculate the starred coordinates discussed in the

next section.

Starred Coordinate System

The starred coordinate system is the reference frame having coordinates θ∗ and ϕ∗

shown in Figure 3.8. This coordinate system is used to perform asymmetry calcula-

tions. The normal to the scattering plane is defined by k⃗ and the virtual photon’s

momentum q⃗= k⃗ − k⃗′ in the following manner:

n⃗1 = q⃗ × k⃗, (3.3)

and the normal to the plane containing the virtual photon momentum and target

polarization S⃗ is given by:

n⃗2 = q⃗ × S⃗ (3.4)
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Figure 3.8: Coordinate systems for the scattering of polarized electrons from polarized
target. In this figure, the vectors u⃗N and u⃗L are respectively normal to the scattering
plane and parallel to k⃗ with u⃗S = u⃗N × u⃗L. The starred coordinate system is defined
by vectors u⃗z = q⃗, u⃗y = k⃗ × k⃗′, and u⃗x = u⃗y × u⃗z. Illustration taken from Reference
[36].

Using these two last expressions, the starred coordinates are defined as:

θ∗ = arccos

(
q⃗ · S⃗

|q⃗| · |S⃗|

)

ϕ∗ = arccos

(
n⃗1 · n⃗2

|n⃗1| · |n⃗2|

) (3.5)

Unlike the scattering azimuthal angle ϕ, the azimuthal angle ϕ∗ is required for calcu-

lating the proton form factor ratio µp
Gp

E

Gp
M
.

3.1.3 Reaction Variable Reconstruction

Standard Approach

The standard reconstruction process for the HRS variables is provided in [77]. The

trajectories of particles are reconstructed when no target field is present to prevent

any additional disturbances to the detected particles. This experiment, however,

utilizes a 5 T magnet that provides a magnetic field presence around the target, com-

plicating the reconstruction process. As a result, the optics calibration and analysis

are completed separately. Trajectories between the target and the septum magnet

entrance are calculated using simulations of the electron motion in the magnetic field.
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The magnetic field is characterized by applying the Biot-Savart law to the current

density distribution, and a cross-check is done by direct measurement of the target

field. The reconstruction of the trajectories from the focal plane to the entrance of

the septa is done using the optics matrix. The optics matrix correlates the focal plane

variables with the TCS variables θtg, ytg, ϕtg, and the delta momentum variable:

δ =
P − P0

P0

, (3.6)

where P is the particle momentum and P0 is the HRS central momentum. During

the calibration, xtg is effectively set to zero. The optics matrix, to the first order

approximation, can be expressed as:⎛⎜⎜⎜⎜⎜⎝
δ

θ

y

ϕ

⎞⎟⎟⎟⎟⎟⎠
tg

=

⎛⎜⎜⎜⎜⎜⎝
⟨δ|x⟩ ⟨δ|θ⟩ 0 0

⟨θ|x⟩ ⟨θ|θ⟩ 0 0

0 0 ⟨y|y⟩ ⟨y|ϕ⟩
0 0 ⟨ϕ|y⟩ ⟨ϕ|ϕ⟩

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
x

θ

y

ϕ

⎞⎟⎟⎟⎟⎟⎠
fp

(3.7)

The optimization of the matrix is done using the sieve slit and is based on the well

known behaviour of elastic scattering and the measured survey data. The simula-

tion of the magnetic field is required for the optics matrix optimization since linear

propagation of the trajectories from the target to the sieve slit cannot be assumed

[81].

Reconstruction Approach for the Right Spectrometer

In experiment E08-007, the standard reconstruction process could not be used due to

magnet issues and a loss of BPM data2. In particular, the magnet issues in the right

spectrometer seem to have distorted the measured momentum distributions observed

in the focal plane. This effect, is also apparent in the target frame where it seems to

manifest as a bifurcation in the observed distributions of the data. When comparing

the left and right spectrometer data shown in Figures 3.9 and 3.10, this effect is clearly

seen; the data distributions shown are samples using the 2.2 GeV beam energy at the

settings listed in Table 3.1

2Details on the BPM system can be found in [46].
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Figure 3.9: Left HRS and right HRS positional distributions of the data when
observed in the focal plane coordinate system.

Figure 3.9 illustrates the distribution of the events in terms of the focal plane

positional variables, x and y. The dense yellow and red events in these distributions

represent mostly the heavy elastic reaction components associated with He and N,

while the lower slanted less dense sweeping distribution represents the region where

the elastic hydrogen events are found. When comparing the plots for the left and right

arms, it is clear that the right events are being distributed differently than those of

the left in the region −0.06 ≤ y ≤ −0.05 m. Furthermore, Figure 3.10 shows the

same events in terms of the target plane positional variables. In this representation,

a distinct difference in the distributions are apparent. The right plot shows a clear

split, or bifurcation, in the right arm distributions. Such an effect suggests that
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Figure 3.10: Left HRS and right HRS positional distributions of the data when
observed in the target coordinate system.

the events are mapped to two different interaction points, which is not physically

possible. As a result, the standard optics and reconstruction approaches cannot be

used to analyze the right arm data.

The beam position information usually provides a non-invasive measurement of

the position and direction of the beam at the location of the target. This information

is used as part of the reconstruction of detected events back to the target in order

to determine their kinematics. To complicate matters further, the beam current was

reduced to ∼10 nA to improve the degradation of the target’s polarization. However,

this resulted in the loss of the beam position information. In order to compensate
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beam energy (GeV) Field TCS x TCS y θb ϕb

2.2 5 T -0.19 1.00 17.93 -2.36
2.2 5 T -0.04 -1.28 16.00 -2.15
2.2 5 T -3.99 23.72 39.54 -24.07

Table 3.1: Mean BPM entries are in mm and mrad.

for this loss, the required information was obtained using a simulation [35] and has

been provided as average quantities in Table 3.1 above. These data were then used

in the analysis to support reconstruction of the interaction variables via simulation.

In particular, they were used to simulate events for each reaction component first for

the reconstruction of the HRS variables, and secondly, to transform from the HRS

to the scattering coordinate system, where the physical reaction momentum vectors

are analyzed. This simulation was developed by the gp2 team to support experiment

E08-027, which was designed to measure gp2 for a polarized proton target over the

range 0.02 ≤ Q2 ≤ 0.40 GeV2. This range of Q2 encompasses the values shown for

the central kinematics associated with experiment E08-007 provided in Table 2.1. As

such, this suggests that the gp2 simulation may be a suitable tool for supporting the

analysis of the right arm data in this analysis.

Given the aforementioned issues, an alternative method for analyzing the right arm

data was developed that uses the gp2 simulation to create and fit reaction components

to the measured momentum distributions. This simulation and fitting process are

discussed in the following sections.

3.2 Methodology

The methodology developed to extract asymmetries and DSA form factor ratios using

the data from experiment E08-007 will now be discussed. In particular, the following

sections describe the data processing performed, the gp2 team’s simulation g2psim, the

fitting process that was developed, the extraction process used to generate asymmetry

estimates, and the generation of both single arm and DSA form factor ratios.
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3.2.1 Data Processing

In order to process the extracted data from the spectrometers, it was decided to focus

on generating focal plane momentum spectra, given that the standard reconstruction

process could not be used to analyze the right arm data. Since the process of interest

was electron-proton elastic scattering, and the magnet issues with the right arm still

allow a reasonable momentum reconstruction, elastic events remain identifiable in the

basic moderate-resolution momentum spectra. These spectra then formed the basis

upon which to start our analysis because, as stated, the spectrometers are known to

measure the momentum sufficiently accurately even in the light of the right arm’s

magnet and BPM issues. For each energy setting, an initial cut in momentum was

chosen that captured the overall characteristics of the spectra. Namely, the radiative

tail and the peaks associated with the elastic scattering events. The approach taken

here was to then simulate each “reaction component” using g2psim so that they could

then be used to generate an overall model that could be fit to these spectra. For

this purpose, “reaction component” refers to those physical processes that contribute

to (e, e′) reactions from target elements that populate the focal plane (this will be

explained in detail later). Such an approach, if done properly should account for

the overall background and provide an estimate of the elastic hydrogen component

to support the extraction of asymmetry data. This process also negates the need to

estimate a dilution factor as it is already accounted for via the estimated background.

Furthermore, these simulated events would also allow for the generation of kinematic

variables required to support the estimation of both single arm and DSA form factor

ratios, since determination of kinematic quantities on an event-by-event basis using

the data was not reliably possible with the right arm.

3.2.2 Monte Carlo Simulation

The Monte-Carlo simulation, g2psim, was developed to support optics studies and

data analysis. Furthermore, it models the “reaction components” associated with the

experimental conditions seen in experiment E08-007. The simulation includes the

field map of the trajectory of the scattered electrons, as well as, the calibration of the

optics matrix. The particle trajectories are calculated by integration of the equation
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of motion in the magnetic fields using the Runge-Kutta-Nyström method3. Energy

losses due to ionization, electron scattering, internal and external Bremsstrahlung are

accounted for as described in Reference [80]. In addition, the simulation calculates

and adds an average value to correct for the energy losses before Eloss,b and after

Eloss,a the scattering interaction. The reaction energies before E and after E ′ the

scattering events are given by:

E = Ebeam − Eloss,b

E ′ = Edetected + Eloss,a

(3.8)

To support the analysis role, g2psim contains elastic models for protons, 4He, 12C and

14N, which were coded based on experimental-based form factor parameterizations

[7, 82]. However, inelastic data at the relevant kinematics were not available. To

compensate for this, the simulation models inelastic scattering components using the

QFS4 and PBosted5 models [83, 84]. Reference [35] found that the two inelastic

models produced different yields at the quasi-elastic region for the chosen kinematics

by comparing unpublished nitrogen data at similar kinematics for these models, it

was found that the PBosted model produced more accurate results at the quasi-elastic

peak. For this reason, the PBosted model was chosen here over the QFS model to

support the overall fitting process developed to analyze the right arm data.

3.2.3 The Fitting Process

The fitting process starts by using g2psim to generate momentum histograms for (e, e′)

events from each simulated reaction component at the relevant kinematics (within the

spectrometer physical acceptance) for each of the spectrometer arms. This was done

using the g2psim simulation discussed in the previous section. In particular, the elas-

tic models in g2psim are used to simulate events for hydrogen, helium, and nitrogen

along with quasi-elastic simulations using the PBosted model to simulate events for

helium and nitrogen (noting that the Virginia polarized target, previously discussed,

contains helium and nitrogen in the beam path, along with the primary hydrogen

3The Runge-Kutta-Nyström method includes formulae for the numerical integration of ρ-
reversible second order ordinary differential equations.

4The QFS model covers an electron beam energy range of 0.5−5 GeV.
5The PBosted model covers a Q2 range of 0.2<Q2<1 GeV2.
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target material). These simulated events are then used to create the reaction compo-

nent momentum histograms hk[Pm] used in the fitting process, where Pm represents

the measured momentum that results from g2psim transporting the simulated events

to the focal plane. Each histogram hk[Pm] corresponds to the elastic (H, He, N)

and quasi-elastic (He, N) reaction components that are respectively identified by the

subscript k=0 . . . 4 in the overall fit model.

For each simulated reaction component, k, the histograms hk[Pm] are transformed

as a function of the measured momentum Pm to specifically create a scaled γk, skewed

αk, and shifted βk version of itself using:

Hk [Pm] = γk hk [αk (Pm − βk)] . (3.9)

This was done as a method to account for the unknown potential “shifts” in our

interpretation of momentum in the spectrometer data due to the septum magnet

(and BPM) problems noted in Chapter 2. The final fit model is then given by the

sum of these simulated reaction components:

H [Pm] =
∑
k

Hk [Pm] (3.10)

and has a total of fifteen free parameters to accommodate the fitting process. The

fit parameters αk, βk, and γk obtained for each reaction component via the fitting

process are provided in Appendix A6.

In order to prepare each reaction component to support the overall fit process,

their histograms are smoothed and splined using ROOT [85]. The splined histograms

are then used to define each of the functions Hk [Pm]. Once these functions have

been defined, they are initially “placed” in appropriate regions under the measured

momentum spectrum. The elastic H, He, and N are placed under the corresponding

elastic peaks while the quasi-elastic components for He and N initially reside under the

radiative tail of the spectrum being fitted. To accomplish this, momentum markers

are determined and placed on each spectrum, and appear as vertical dashed lines to

give a visual cue as to where the reaction components are placed prior to fitting as

illustrated in Figure 3.11.

6Appendix A provides the 2.2 GeV kinematic fit parameters αk, βk, and γk for each reaction
component obtained by Algorithm 3 for both the NI and NO run lists for each HRS and helicity
state (as described in Section 3.2.4).
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In order to facilitate the overall fit process, a baseline fit of a single run-pair7 was

undertaken at the relevant kinematics for each of the spectrometer arms. That is, a fit

was performed on a single set of simultaneous runs taken from each spectrometer arm.

These fits were then used by subsequent fitting operations to initialize the placement

of each reaction component when performing fits on run lists8, rather than process

each run individually.

Fit Initialization

Three different parameter-constraint algorithms9 were considered in order to help

identify the best way to accomplish the most representative fits to the measured

data. The approach taken was to perform the initial fits on the baseline run-pair.

In particular, measured spectra were created for each arm that included all valid

events (that is, all the ±1 helicity events). In this way, baseline run-pair fits were

obtained that were representative of all events, and which could be used to initialize

the individual ±1 helicity spectra during the fit process.

The parameter-constraint algorithms used were:

1. Algorithm 1: The baseline run-pair fits obtained for the spectra containing all

helicity events were then used to fit the individual ±1 helicity spectra. This

was achieved by freezing the model parameters γk, αk, and βk for all of the

reaction components. By doing this, these fits provide new models for fitting

the individual helicity spectra. A scaled γ, skewed α, and shifted β version of

these frozen fit models was created using (3.10); that is,

Ĥ [Pm] = γ H [α (Pm − β) ] . (3.11)

These fits only have three free parameters to accommodate the fitting process,

7A run-pair is defined to be data measurements taken from both spectrometer arms during a
specified time interval. Those measurements were then stored independently in binary data files
that were sequentially and uniquely numbered for each arm. Those files, or runs, that occurred
simultaneously in time form run-pairs. For the 2.2 GeV kinematics, runs 3100/22186 (left/right
HRS) were selected as the base-line run-pair used to support the fitting process.

8A run list is a collection of all “runs” having a specific: kinematic setting, half-wave plate setting,
target polarization orientation, and spectrometer arm. This is described in more detail in Section
3.2.4.

9The parameter-constraint algorithms focussed on establishing initial parameter values prior to
performing the actual fits.
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Figure 3.11: These plots illustrate the visual placement of each reaction component
using vertical dashed lines (momentum markers) to support the fitting process. Each
reaction component is plotted using a different colour. Elastic H, He, and N are
respectively plotted as purple, dark green, and cyan. The quasi-elastic He and N
show up as magenta and brown. In addition, the blue dots/curve represents the
measured data.
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and to initialize them, the scale and shift parameters were set to match the

maximum peaks of the ±1 helicity spectra being fitted.

2. Algorithm 2: The baseline run-pair fits obtained for the spectra containing all

helicity events were then used to fit the individual ±1 helicity spectra. This

was achieved by independently skewing γk, scaling αk, and shifting βk their

reaction components. These fits have fifteen free parameters to accommodate

the fitting process, and to initialize them, the same overall scale and shift factors

determined by Algorithm 1 were used to shift and scale each reaction component

in this model prior to fitting the helicity spectra.

3. Algorithm 3: This algorithm follows the same process as algorithm 2; however,

each reaction component is shifted differently according to β̂i = β+ βi/α. Here

the skew factor α is selected slightly different from unity while the shift factor β

is selected so that the maximum peaks align as in algorithm 2. The intent was to

have a slightly different initialization process in order to check the consistency

of the fit solutions between this algorithm and that of algorithm 2. This is a

fifteen parameter fit.

The idea behind the fit process described above was that unknowns in the inputs

used in the simulations might not produce reaction components that accurately rep-

resent the measured histograms (e.g., the physics model for each reaction component

may be more or less realistic). The scaling, skewing, and shifting performed by the

fit process was designed to account for some of these unknowns. In effect, the fit

process allows a degree of flexibility in remodelling the final forms of the simulated

reaction components. This relaxes a rigid requirement that the input models be a

priori “perfect” descriptions; rather, it provides a flexible method to optimize the

models themselves based on comparison to the data.

To verify the fitting process, a number of systematic checks were performed to

validate the approach taken. The most obvious check was to shift all of the reaction

components as a single unit while allowing them to skew and scale independently

resulting in a fit that uses eleven free parameters. It was also reasonable to consider

the case when all reaction components are skewed and shifted as a single unit but

scaled independently. In this case, the fit process uses seven free parameters. Figure
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3.12 shows the overall results obtained for fits that result when using either eleven or

seven free parameters during the fitting process for the left arm data.

In the top plot of Figure 3.12, the resultant eleven parameter fit clearly under and

over estimates the measured spectrum in numerous regions. In the bottom plot, the

seven parameter fit is clearly even worse than the results in the top plot. Given these

results, it was clear that neither of these two fit processes were suitable. Consequently,

it was decided to focus on the fifteen parameter fit method as the most optimal for the

best description of the data. Although Algorithm 1 above is only a three parameter

fit, it does incorporate a fit model based on an initial fifteen parameter fit to the

spectra having all (both) helicity events. Consequently, all three algorithms described

above were assessed here for their ability to generate fits that accurately represent

the individual ±1 helicity spectra.
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Figure 3.12: LHRS histograms showing the results for eleven and seven parameter
fits. The top plot shows the fit results when all reaction components are shifted as a
single unit but are free to scale and skew independently when being fit. The bottom
plot shows the case when they are skewed and shifted as a single unit but scaled
independently of each other. The description in Figure 3.11 provides a legend for the
reaction components. The overall fit model is represented by the black curve.
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beam energy (GeV) Q2 (GeV2) A (%) ∆Astat (%) ∆Asys (%)
2.2 0.053–0.080 -3.57 0.061 0.142
2.2 0.030–0.053 -2.41 0.044 0.096
1.7 0.036–0.053 -2.73 0.078 0.109
1.7 0.023–0.036 -2.02 0.019 0.081
1.1 0.020–0.030 -1.63 0.083 0.082

Table 3.2: LHRS elastic hydrogen asymmetries for experiment E08-007 reported in
Reference [35].

Algorithm Selection

The selection of the best parameter-constraint algorithm to support fitting considered

whether or not the resultant fits were representative of the measured spectra, and

assessed the physical asymmetries that resulted as a consequence of those fits. It was

found that the fits generated using the three choices provided accurate representations

of the measured spectra, although the three parameter fit offered by Algorithm 1

had a tendency to slightly over and under fit the data in the regions of the elastic

peaks more so than the others. The actual fit results were important only in the

sense that they provided estimates of the reaction components in the region of the

elastic hydrogen peak suitable for generating consistent and reliable estimates of the

hydrogen elastic asymmetry. In order to assess each algorithm, the hydrogen elastic

asymmetries associated with the 2.2 GeV baseline run-pair were plotted for the series

of cuts used to assess the cut-sensitivity of the asymmetry estimation process. The

cuts performed are described later in Section 3.2.6, and the asymmetry results are

shown in Figure 3.13.

An analysis of the left arm data for this experiment was completed independent

of our analysis approach by the author in Reference [35], M. Friedman. In Friedman’s

analysis, he extracted the elastic hydrogen physical beam asymmetries for the three

kinematics. Those results are provided in Table 3.2. In particular, the results shown

in this table for the 2.2 GeV kinematic are seen to be in line with the results plotted in

Figure 3.13 for Algorithms 2 and 3. The results generated using these two algorithms

are consistent, and essentially the same for their respective arms, across all cuts.

However, Algorithm 1 results are not consistent with those reported in Reference

[35]. In fact, little variation in these results suggest that three parameter fits are not

sufficient for fitting the measurements. Based on these results, and given that there
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Figure 3.13: The 2.2 GeV baseline run-pair physical asymmetry results for the LHRS
and RHRS are plotted for each initialization algorithm. The points encompassed in
the blue circle contain two groupings with four entries. The first and second group
of four entries represent the LHRS and RHRS asymmetries, respectively. Within
one grouping the colours represent the cuts in momentum: None (blue), Large (red),
Medium (green), and Small (pink). In addition, each grouping of the LHRS and
RHRS results are associated with similar cuts in Q2 defined along the x-axis of the
plot. The definition of these cuts is described in Table 3.9 of Section 3.2.6.
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was little difference in the results generated for Algorithms 2 and 3, it was decided

that Algorithm 3 would be used in all subsequent analysis of the run lists described

in Section 3.2.4 below.

Fit Results

Now that Algorithm 3 has been selected to initialize the fit process, the next step is

to provide results that are representative of that process. To that end, the baseline

fits discussed above in Section 3.2.3 are provided in Figures 3.14 and 3.15 for the

run-pair used to represent the 2.2 GeV measurements. These figures show the fits

for both spectrometer arms, and the individual fits associated with the ±1 helicity

measurements. The fitted models are represented by the black curves. Overall, the

fitted models provide a realistic representation of the measurements even though some

regions appear to have a small degree of mis-modelling10.

These figures show how each of the individual reaction components are fit to

their respective momentum distributions. However, for the RHRS the QE reaction

component shown in magenta is stretched in order to fit the extended tail on the right

of the distribution past the red vertical line. As a result of this, the fitting process

minimizes the brown QE component in order to achieve an excellent overall fit to the

data. In order to assess how this affects the overall results of the fitting process, the

2.2 GeV fits for the NI run list (described in the next subsection) are shown in Figures

3.16 and 3.17. The estimated elastic hydrogen components, total backgrounds, and

the fitted models are respectively plotted in these figures as purple, magenta, and

black curves along with the measurements (data) shown in blue.

The NI results shown in these figures provide an accurate representation of the

data; however, the fit process for the RHRS clearly show that the elastic hydrogen

and background contributions to the spectra seem to be respectively under and over

estimated when compared to the LHRS results. Furthermore, these results are typical

for all of the run lists processed, analyzed, and reported herein.

This issue was investigated to see if fits could be generated that mirrored the

results shown in the LHRS, with our understanding that the two arms were measur-

ing nearly identical kinematic regimes, and that the LHRS was properly functioning

10In the end, for this analysis only the fitting in the region of the hydrogen elastic peak is relevant.
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Figure 3.14: The 2.2 GeV baseline run-pair fits for the +1 helicity spectra associated
with each arm of the spectrometer. The black curves in the plots represent the fitted
model, the blue curve represents the measured data, while the colour of each reaction
component is provided in the caption of Figure 3.11.
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Figure 3.15: The 2.2 GeV baseline run-pair fits for the −1 helicity spectra associated
with each arm of the spectrometer. The black curves in the plots represent the fitted
model, the blue curve represents the measured data, while the colour of each reaction
component is provided in the caption of Figure 3.11.
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Figure 3.16: The 2.2 GeV fits for the +1 helicity measurements for each arm of
the spectrometer for run list NI. The blue curves represent the measured data, the
black curves in the plots represent the fitted model while the magenta and purple
curves represent the estimated background and elastic hydrogen reaction component
associated with each fit, respectively.
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Figure 3.17: The 2.2 GeV fits for the −1 helicity measurements for each arm of
the spectrometer for run list NI. The blue curves represent the measured data, the
black curves in the plots represent the fitted model while the magenta and purple
curves represent the estimated background and elastic hydrogen reaction component
associated with each fit, respectively.
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Run Target HWP
List Polarization Status
NI Negative In
NO Negative Out
PI Positive In
PO Positive Out
S Negative Out

Table 3.3: Convention used for identifying run lists.

throughout the experiment. The LHRS fits showed no suppression of reaction compo-

nents used to fit anomalous extensions or tails on the right hand side of the spectra.

Initially, fits for the RHRS were constrained to the region between the red vertical

lines. However, there was little to no change in the subsequent results. Next, the tail

on the right hand side of the spectrum was modified to roll-off in a manner similar

to that of the LHRS measurements. This did produce fits and placements of reaction

components similar to the LHRS results shown in the top plots of Figures 3.14 and

3.15. However, the asymmetries and form factor ratios obtained using this data were

problematic (clearly unphysical). Consequently, all run lists were processed using

fits without any modifications to the RHRS spectra given that there was no credible

rationale to change the prescribed fitting process and their subsequent results.

3.2.4 Run Lists

In order to process groups of runs performed under identical conditions, the runs were

organized into a series of run lists. A master list of runs for each kinematic setting and

arm of the spectrometer was compiled. This was done by reviewing all of the Hall A

electronic logs for experiment E08-007. The information contained in these files was

then used to compile the individual run lists. The resultant lists were sorted based

upon spectrometer arm, the kinematic setting, whether the half-wave plate HWP was

in or out, and the sign of the target polarization. This resulted in twenty-four run

lists identified using the first four entries shown in Table 3.3. The process for choosing

which runs were included in the individual lists took into account: the run energy,

the spectrometer arm, the HWP status, the target polarization was at least 40% and

its signage, the target type had to be NH3, the run was designated a production run

and that it actually contained events, and that the logs did not identify any major
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issues with the run being considered.

When these run lists were processed, the convention shown in this table was

used to identify the subsequent results being reported. This table also contains an

additional identifier S, which refers to the single run-pair used as the baseline fits in

the fit process described above.

3.2.5 Uncertainty Analysis

The approach taken here to estimate uncertainty values follows the standard differen-

tial analysis process [86]. This includes all uncertainty estimates whether they were

generated using measurements or derived from mathematical expressions.

Target and Beam Polarization

All measurement variables usually have uncertainty estimates, and where appropri-

ate, they were combined using the standard differential analysis methodology [86].

For example, the choice to process lists of runs for each arm of the spectrometer re-

quired that the individual values of the target polarization be combined to produce a

single result for each run list. This was accomplished by performing a narrow cut in

the measured momentum around the elastic hydrogen peak in order to determine the

number of events for each run11. These data, and the individual run target polariza-

tion values, were then used to produce a weighted average12 of the target polarization

for each run list. A differential uncertainty analysis of this averaging process was then

used to combine the uncertainties for each run in order to generate the uncertainty

for that run list.

For the beam polarization data, Møller measurements were conducted for experi-

ments E08-027 and E08-007, from February 16 through May 17, 2012. The individual

values used for the run lists were selected based upon the dates associated with the

runs contained in the list. An average value was then generated and used in the

subsequent asymmetry calculations.

Table 3.4 provides the target and beam polarization used to generate asymmetry

and form factor ratios for the 2.2 GeV series of runs. This table also lists the number

11The number of events measured in the momentum cut provided an estimate (or, a proxy) for
the total charge required for generating a weighted target polarization result for each run list.

12The target polarization is weighted with respect to charge.
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List
LHRS RHRS

Runs Pt Pb Runs Pt Pb

NI 34 -0.7625± 0.0044 -0.8008± 0.0083 35 -0.7806± 0.0047 -0.8008± 0.0083
NO 20 -0.7528± 0.0056 0.8008± 0.0083 22 -0.7721± 0.0059 0.8008± 0.0083
PI 4 0.6726± 0.0090 -0.8008± 0.0083 4 0.6173± 0.0110 -0.8008± 0.0083
PO 6 0.5641± 0.0076 0.8008± 0.0083 7 0.5608± 0.0071 0.8008± 0.0083
S 1 -0.8520± 0.0260 0.8008± 0.0083 1 -0.8543± 0.0260 0.8008± 0.0083

Table 3.4: Target and beam polarization data for each run list processed for the 2.2
GeV series of runs.

of runs contained in each of the lists using the convention shown in Table 3.3.

Asymmetry

The fit process provides estimates of the elastic hydrogen “reaction components” that

can then be used to perform asymmetry calculations. Note that this method utilizes

these best-fits to the hydrogen elastic component to become the proxy for the actual

data in the remaining part of the analysis process. This is because the problems with

the RHRS prevented any ability to reliably perform kinematic interpretation beyond

the momentum spectrum, and therefore the now properly scaled hydrogen elastic fit

results can be fully utilized in replacement of the data to make kinematic cuts, and

determine the helicity asymmetries.

The number of events in the fitted hydrogen elastic components are represented

by N±, where the counts for a specific helicity state are indicated by the noted

superscript. The raw asymmetry was then calculated using:

Araw =
N+ −N−

N+ +N− . (3.12)

and its uncertainty was expressed as

∆Araw =

[
2N+N−

(N+ +N−)2

] √[
∆N+

N+

]2
+

[
∆N−

N−

]2
(3.13)

The relative terms
[
∆N+

N+

]
and

[
∆N−

N−

]
in (3.13) contain two types of uncertainty.

The first being statistical based upon the fit to the number of raw counts, while

the other is the uncertainty associated with the model fitting process. This second

model uncertainty provides a direct comparison between how well the fitted model

represents the measurements. The relative model uncertainty M±
rel for each of the
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helicity histograms was defined in the following manner:

∆M±
rel =

|data± −model±|
data±

(3.14)

where data± and model± represent respectively the helicity states associated with

the measurement and model spectra, where this comparison is done between the

full fit (sum of the reaction components) and the data. The statistical and model

uncertainties were then added in quadrature as relative quantities to arrive at a total

uncertainty in the number of counts for each of the helicity states. That is,[
∆N±

N±

]2
Total

=

[√
N±

N±

]2
Statistical

+

[
∆M±

rel

]2
Model

(3.15)

These total relative uncertainties were then substituted into their respective terms

in (3.13). This then provides an uncertainty estimate for the raw asymmetry that

accounts for both statistical uncertainty and an estimate of the systematic uncertainty

associated with the modelling errors. The physical asymmetry is then obtained by

dividing the raw hydrogen elastic component asymmetry by the their respective target

and beam polarizations, i.e., Aphys=Araw/PT PB. The uncertainty in Aphys due to the

target and beam polarizations are then incorporated using the standard differential

uncertainty analysis approach.

Form Factor Ratio

Equations 1.61 and 1.62 express the form factor ratios (FFR) in terms of their kine-

matic variables for DSA (FFRDSA) and the single arm (FFRSA) calculations, re-

spectively. It is clear that these expressions can be written in the following form to

expressly show their dependent variables:

FFR
DSA

= FFR
DSA

[µp, τ, θ1, θ
∗
1, ϕ

∗
1, θ2, θ

∗
2, ϕ

∗
2, Γ12 ]

FFR
SA

= FFR
SA

[µp, τ, θ, θ
∗, ϕ∗, Ap ]

Γ12 = Ar1

Ar2

τ = τ [Q2, Mp ]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.16)

where Γ12 is the ratio of the raw asymmetries respectively for the right and left spec-

trometer arms as denoted by their subscripts. The subscripts on the FFR functions

indicate that they are either for the DSA or single arm calculations. The uncertainties
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associated with these expressions were derived via direct application of the standard

differential uncertainty analysis technique discussed above. The resulting expressions

were then used to calculate the uncertainties using the kinematic variables associated

with the elastic hydrogen events estimated via simulation and the fitting process.

Kinematic Variables

The best fit simulation of the hydrogen elastic scattering process produced by g2psim

provides a sufficient framework to calculate the kinematic variables required to sup-

port the overall analysis. On an event-by-event basis in the simulation, the kinematic

variables Q2, θ, θ∗, and ϕ∗ are generated for each arm and kinematic setting, along

with error estimates ∆θ∗[S⃗] and ∆ϕ∗[S⃗] for the uncertainties in the target polar-

ization orientation S⃗. In the analysis, histograms of these kinematic variables are

used to provide estimates and uncertainties suitable for calculating the single arm

and DSA form factor ratios13. The variable τ and its uncertainty is calculated using

τ = Q2/4M2
p . The error estimates for θ∗ and ϕ∗ due to the orientation of S⃗ are pro-

duced using the standard differential uncertainty analysis based on the mathematical

relationship between these variables and S⃗ 14. The resulting estimates were then

added in quadrature with the standard uncertainties obtained via the histograms for

these variables.

Example form factor ratio calculations using these kinematic variables are pro-

vided in Tables 3.5, 3.6, and 3.7. The first two tables show single arm calculations

respectively for the 2.2 GeV kinematic for the NI run list for the LHRS and RHRS.

These results were obtained using a medium momentum cut, as described in Section

3.2.6. The third table shows the corresponding DSA results for the same conditions.

13Histograms of the kinematic variables provide means and standard deviations. The means are
used to estimate the variables while their standard deviations σstd determine associated uncertainties
using equation σu = σstd/

√
N for a histogram containing N events [86].

14Vector S⃗ has a orientation defined by angles θS⃗ and ϕS⃗ ; therefore, it is a function of these

variables. Equation 3.5 defines θ∗ and ϕ∗ in terms of S⃗; therefore, these angles are also functions
of θS⃗ and ϕS⃗ . As a result, uncertainties in θS⃗ and ϕS⃗ can be accounted for in the angles θ∗ and ϕ∗

using standard differential uncertainty analysis [86].
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Variable Value and Error Units
µ 2.793 ± 8.5×10−13 µN

Mp 0.938 ± 5.8×10−13 GeV
Q2 0.051 ± 2.3×10−5 GeV2

τ 0.015 ± 6.6×10−6 -
θ2 0.103 ± 3.3×10−5 rad
θ∗2 1.645 ± 4.8×10−4 rad
ϕ∗
2 3.140 ± 1.5×10−4 rad

A2 0.029 ± 4.9×10−4 -
FFR 1.142 ± 0.023 µN

Table 3.5: Single arm FFR results for the LHRS and the 2.2 GeV NI run list. Values
for µ and Mp are obtained from Reference [87].

Variable Value and Error Units
µ 2.793 ± 8.5×10−13 µN

Mp 0.938 ± 5.8×10−13 GeV
Q2 0.051 ± 2.3×10−5 GeV2

τ 0.015 ± 6.6×10−6 -
θ1 0.098 ± 3.3×10−5 rad
θ∗1 1.833 ± 4.8×10−4 rad
ϕ∗
1 3.163 ± 1.5×10−4 rad

A1 0.038 ± 8.2×10−4 -
FFR 0.802 ± 0.022 µN

Table 3.6: Single arm FFR Results for the RHRS and the 2.2 GeV NI run list. Values
for µ and Mp are obtained from Reference [87].

Variable Value and Error Units
µ 2.793 ± 8.5×10−13 µN

Mp 0.938 ± 5.8×10−13 GeV
Q2 0.051 ± 2.3×10−5 GeV2

τ 0.015 ± 6.6×10−6 -
θ1 0.098 ± 3.3×10−5 rad
θ2 0.103 ± 3.3×10−5 rad
θ∗1 1.833 ± 4.8×10−4 rad
θ∗2 1.645 ± 4.8×10−4 rad
ϕ∗
1 3.163 ± 1.5×10−4 rad
ϕ∗
2 3.140 ± 1.5×10−4 rad

A1 0.024 ± 4.3×10−4 -
A2 0.018 ± 2.2×10−4 -

A1/A2 1.357 ± 2.9×10−2 -
FFR 0.138 ± 0.012 µN

Table 3.7: DSA FFR Results where RHRS and LHRS are denoted by subscripts 1
and 2, respectively. This is for the 2.2 GeV NI run list. Values for µ and Mp are
obtained from Reference [87].
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Energy Lower Momentum Cut Upper Momentum Cut
[GeV] [GeV] [GeV]
2.2 2.10 2.30
1.7 1.60 1.74
1.1 1.08 1.18

Table 3.8: The initial focal plane momentum cuts for each of the kinematic settings.

3.2.6 Measurement Cuts

The conventional approach to processing spectrometer measurements requires a proper

selection of cuts in order to ensure that the selection process correctly captures the

targeted scattering events for further analysis. For experiment E08-007, the primary

events of interest were the elastic hydrogen events. To achieve this, as was previously

outlined, an initial momentum range was selected for each kinematic setting in order

to generate focal plane spectra suitable for fitting. These initial cuts are provided in

Table 3.8 for each kinematic setting.

In addition to making these initial cuts to create spectra for fitting, it was also

important to assess the sensitivity of the asymmetry estimation process—that is,

to understand how the asymmetry changes when normal cuts are applied to the

elastic hydrogen reaction component that were estimated during the fitting process.

Typically, further cuts in the measured momentum Pm and in other relevant kinematic

variables such as Q2 are performed. In the end, cut sensitivity was assessed by

performing four cuts in both Pm and Q2.

These cuts were performed using a data centric approach that perform symmetric

cuts using each variable’s mean and standard deviation. The algorithm creates cuts

in both Pm and Q2 by using their distributions to define a range as a percentage of

a two standard deviation spread about their means. Table 3.9 describes these cuts

while Figures 3.18 and 3.19 provide an illustration of the generated results.

Cuts Defined in terms of the variable’s mean and standard deviation
None Includes all events no cuts
Large Includes 85% of the events in the 2σ range about the mean
Medium Includes 50% of the events in the 2σ range about the mean
Small Includes 20% of the events in the 2σ range about the mean

Table 3.9: Pm and Q2 cuts algorithm used to investigate the cut-sensitivity of the
extracted hydrogen elastic asymmetry.
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Figure 3.18: This figure shows the cuts made in Pm for the left and right arms of the
spectrometer. These cuts are identified as being None, Large, Medium, and Small
delineated respectively by vertical lines that are black, red, green, and blue. The
horizontal axis units are in GeV for Pm. These plots are for the 2.2 GeV NI run list.

Tables 3.10 through 3.17 provide the 2.2 GeV physical hydrogen elastic asymmetry

results for both spectrometers, and for each run list identified in Table 3.3. The results

shown are for all cut combinations in Pm and Q2 using Algorithm 3 applied to the

fitted elastic hydrogen reaction component. What stands out in these tables is the

fact that the results are consistent for all cuts with only their uncertainties showing

any growth due to the increased degree of cuts performed. Given these results, the

question to be answered was: what is the optimal selection of cuts in Pm and Q2 for

best estimating the hydrogen elastic asymmetry from each run list?

In order to answer this question, there are two factors that need to be considered.

Firstly, Reference [35] has processed the left spectrometer data generating estimates

of physical asymmetry for the elastic hydrogen component using the normal/standard

Hall A reconstruction process. As such, those data can be used to perform a direct

comparison with results obtained here, even though there are differences in how these
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Figure 3.19: This figure shows the cuts made in Q2 for the left and right arms of the
spectrometer. These cuts are identified as being None, Large, Medium, and Small
delineated respectively by vertical lines that are black, red, green, and blue. The
horizontal axis units are in GeV2 for Q2. These plots are for the 2.2 GeV NI run list.

results were generated. For example, the author of that report uses a beam polariza-

tion of 89% for all calculations, and processes each run individually before producing

an average result for each kinematic. Furthermore, a dilution factor of f=0.75±0.25

was used, which our analysis accounts for implicitly by the nature of “fitting out”

the background contributions. The physical asymmetries reported in [35] are pro-

vided in Table 3.2, and were for two different Q2 regions on either side of the central

kinematics value of Q2 shown in Table 2.1.
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Aphys Q2

(×10−2) None Large Medium Small

Pm

None 2.869 ± 0.140 2.869 ± 0.140 2.869 ± 0.140 2.869 ± 0.140
Large 2.869 ± 0.049 2.869 ± 0.049 2.869 ± 0.053 2.869 ± 0.067

Medium 2.869 ± 0.049 2.869 ± 0.049 2.869 ± 0.054 2.869 ± 0.068
Small 2.869 ± 0.077 2.869 ± 0.077 2.869 ± 0.081 2.869 ± 0.091

Table 3.10: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the LHRS Elastic Hydrogen reaction component for Algorithm 3 and run list NI, for
the 2.2 GeV setting.

Aphys Q2

(×10−2) None Large Medium Small

Pm

None 3.803 ± 0.060 3.803 ± 0.061 3.803 ± 0.067 3.803 ± 0.087
Large 3.803 ± 0.084 3.803 ± 0.085 3.803 ± 0.091 3.803 ± 0.110

Medium 3.803 ± 0.082 3.803 ± 0.083 3.803 ± 0.089 3.803 ± 0.110
Small 3.803 ± 0.076 3.803 ± 0.077 3.803 ± 0.086 3.803 ± 0.110

Table 3.11: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the RHRS Elastic Hydrogen reaction component for Algorithm 3 and run list NI, for
the 2.2 GeV setting.

Aphys Q2

(×10−2) None Large Medium Small

Pm

None 2.851 ± 0.120 2.851 ± 0.120 2.851 ± 0.130 2.851 ± 0.130
Large 2.851 ± 0.056 2.851 ± 0.057 2.851 ± 0.063 2.851 ± 0.081

Medium 2.851 ± 0.053 2.851 ± 0.054 2.851 ± 0.060 2.851 ± 0.080
Small 2.851 ± 0.099 2.851 ± 0.099 2.851 ± 0.100 2.851 ± 0.120

Table 3.12: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the LHRS Elastic Hydrogen reaction component for Algorithm 3 and run list NO, for
the 2.2 GeV setting.

Aphys Q2

(×10−2) None Large Medium Small

Pm

None 3.597 ± 0.065 3.597 ± 0.067 3.597 ± 0.076 3.597 ± 0.100
Large 3.597 ± 0.084 3.597 ± 0.086 3.597 ± 0.090 3.597 ± 0.120

Medium 3.597 ± 0.088 3.597 ± 0.090 3.597 ± 0.098 3.597 ± 0.120
Small 3.597 ± 0.084 3.597 ± 0.086 3.597 ± 0.097 3.597 ± 0.120

Table 3.13: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the RHRS Elastic Hydrogen reaction component for Algorithm 3 and run list NO,
for the 2.2 GeV setting.
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Aphys Q2

(×10−2) None Large Medium Small

Pm

None 3.007 ± 0.110 3.007 ± 0.110 3.007 ± 0.130 3.007 ± 0.200
Large 3.007 ± 0.170 3.007 ± 0.170 3.007 ± 0.180 3.007 ± 0.240

Medium 3.007 ± 0.130 3.007 ± 0.140 3.007 ± 0.160 3.007 ± 0.220
Small 3.007 ± 0.130 3.007 ± 0.140 3.007 ± 0.160 3.007 ± 0.230

Table 3.14: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the LHRS Elastic Hydrogen reaction component for Algorithm 3 and run list PI, for
the 2.2 GeV setting.

Aphys Q2

(×10−2) None Large Medium Small

Pm

None 3.302 ± 0.150 3.302 ± 0.160 3.302 ± 0.200 3.302 ± 0.300
Large 3.302 ± 0.170 3.302 ± 0.180 3.302 ± 0.200 3.302 ± 0.330

Medium 3.302 ± 0.160 3.302 ± 0.170 3.302 ± 0.200 3.302 ± 0.330
Small 3.302 ± 0.210 3.302 ± 0.210 3.302 ± 0.260 3.302 ± 0.370

Table 3.15: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the RHRS Elastic Hydrogen reaction component for Algorithm 3 and run list PI, for
the 2.2 GeV setting.

Aphys Q2

(×10−2) None Large Medium Small

Pm

None 2.754 ± 0.910 2.754 ± 0.093 2.754 ± 0.110 2.754 ± 0.160
Large 2.754 ± 0.110 2.754 ± 0.110 2.754 ± 0.130 2.754 ± 0.180

Medium 2.754 ± 0.190 2.754 ± 0.190 2.754 ± 0.200 2.754 ± 0.240
Small 2.754 ± 0.170 2.754 ± 0.170 2.754 ± 0.190 2.754 ± 0.230

Table 3.16: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the LHRS Elastic Hydrogen reaction component for Algorithm 3 and run list PO, for
the 2.2 GeV setting.

Aphys Q2

(×10−2) None Large Medium Small

Pm

None 3.703 ± 0.140 3.703 ± 0.150 3.703 ± 0.190 3.703 ± 0.290
Large 3.703 ± 0.180 3.703 ± 0.190 3.703 ± 0.220 3.703 ± 0.330

Medium 3.703 ± 0.150 3.703 ± 0.160 3.703 ± 0.210 3.703 ± 0.320
Small 3.703 ± 0.200 3.703 ± 0.210 3.703 ± 0.250 3.703 ± 0.360

Table 3.17: Physical asymmetry results obtained for the cuts made in Q2 and Pm on
the RHRS Elastic Hydrogen reaction component for Algorithm 3 and run list PO, for
the 2.2 GeV setting.
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Figure 3.20: The LHRS and RHRS Q2 simulated distributions for the elastic hydrogen
events using a medium cut in Pm. The distribution having no cuts is indicated in red
while the one in blue shows the effect of the cut for the 2.2 GeV setting.

The other factor to consider was that the standard reconstruction process cannot

be performed on the right arm of the spectrometer. Thus, kinematic variables (like

Q2) cannot be determined directly from measured data and therefore cuts cannot be

made on the data itself. In fact, as stated previously, the only quantity reliably avail-

able from the RHRS data is the measured momentum detected by the spectrometer.

It was therefore important to assess how cuts in Pm affect the simulated distributions

of Q2 in the approach taken here. To this end, Figure 3.20 shows the simulated Q2

distributions for both spectrometers for the elastic hydrogen events as a result of only

using a medium cut in Pm. The distributions in this figure are largely confined to the

overall cut range utilized in Reference [35], i.e., 0.030≤Q2 ≤ 0.080 GeV2. As such,

this should allow us to perform a relative comparison of results.

Given these factors, it was decided to analyze the data using only medium cuts in
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Pm. Furthermore, the plots in Figure 3.20 clearly show that the medium cut covers

the most significant portion of the simulated elastic hydrogen distributions. Thus,

this should ensure that an accurate representation of these distributions remains to

support asymmetry calculations that have a range of Q2 similar to what was used in

Reference [35].

3.2.7 Asymmetries

As previously indicated, the LHRS measurements from experiment E08-007 were

previously analyzed and reported in Reference [35]. Those results, shown in Table

3.2, provide estimates of the proton physical asymmetry for lower and upper cut

regions of Q2 for each kinematic setting. The 2.2 GeV results shown in this table are

used here as a basis of comparison for the fit-based results generated for the five 2.2

GeV run lists shown in Table 3.3. The physical and raw asymmetries extracted via

the fit process are provided in Tables 3.18 and 3.19.

Figure 3.21 shows the physical asymmetry measurements extracted for each run

list. For each spectrometer arm, this figure shows an average asymmetry indicated

by the coloured dashed lines. In Figure 3.22, these results are plotted along side the

asymmetries obtained for the lower and upper Q2 cut regions from Reference [35].

The mean physical asymmetries extracted for the LHRS are found to lie between the

two results in Reference [35] while the RHRS values are somewhat higher. Given

that the medium Q2 cut covers both ranges used in [35], suggests that the extracted

results for the LHRS are in fact reasonable and in agreement with those results.
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Energy HRS Run List Aphys ∆Asys+stat

(GeV) (×10−2) (×10−2)
2.2 LHRS NI 2.866 0.049
2.2 NO 2.851 0.053
2.2 PI 3.010 0.130
2.2 PO 2.750 0.190
2.2 S 2.520 0.160
2.2 RHRS NI 3.800 0.082
2.2 NO 3.597 0.088
2.2 PI 3.300 0.160
2.2 PO 3.700 0.150
2.2 S 3.670 0.260

Table 3.18: The 2.2 GeV physical proton elastic asymmetries extracted via the fit
process.

Energy HRS Run List Araw ∆Asys+stat

(GeV) (×10−2) (×10−2)
2.2 LHRS NI 1.752 0.022
2.2 NO - 1.719 0.023
2.2 PI - 1.619 0.066
2.2 PO 1.244 0.083
2.2 S - 1.722 0.092
2.2 RHRS NI 2.377 0.043
2.2 NO - 2.224 0.046
2.2 PI - 1.632 0.073
2.2 PO 1.663 0.063
2.2 S - 2.510 0.160

Table 3.19: The 2.2 GeV raw proton elastic asymmetries extracted via the fit process.
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Figure 3.21: The 2.2 GeV physical asymmetries extracted via the fit process for each
run list and spectrometer arm. Estimated means and standard deviations for each
arm of the spectrometer are provided on the plot. The mean asymmetries are plotted
and indicated by the coloured dashed curves.
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Figure 3.22: The 2.2 GeV physical asymmetries extracted for each run list via the fit
process for the LHRS are replotted from Figure 3.21. Also plotted are the asymmetries
obtained for the lower and upper Q2 cut regions from Reference [35]. These regions
are delineated by (Q2:LC) and (Q2:UC), respectively. The mean run list asymmetry
lies between the Reference [35] results as indicated by the blue dashed line.
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3.2.8 Experimental Issues

During the review of the Hall A logs for experiments E08-027 and E08-00715, a number

of issues with the 1.7 and 1.1 GeV cases surfaced. After processing the 2.2 GeV run

lists for PO and PI, some additional issues were noted. These issues are discussed in

the following sections.

Run Lists for 2.2 GeV

For the 2.2 GeV kinematics, a review of the experimental logs brought to light a

number of issues that occurred during the production PI and PO runs. These lists

consisted of four, and up to seven, individual runs which had a wide range of target

polarization values recorded, between 0.43 and 0.80. A consequence of this, was that

the average target polarization calculated for these lists were not necessarily the most

representative for the measured overall data. From reviewing the logs, it was noted

that the target magnet’s current would spontaneously drop, in addition to a series

of unidentified high voltage alarms that occurred. Even though the asymmetries for

these lists shown in Tables 3.18 and 3.19 were in agreement with the other run lists,

the subsequent form factor ratio calculations would be affected by these issues since it

was unclear what the mean target polarization value actually was. As a result, the PI

and PO lists are omitted from further analysis because of the uncertainty associated

with these issues. Note, that since these represented only a small number of runs, the

overall statistical precision was not greatly affected by these omissions.

Run Lists for 1.7 GeV

It was found that the 1.7 GeV fitting process produced fits that were less represen-

tative of the overall measurements, as shown in Figures 3.23 and 3.24. The elastic

hydrogen reaction component was shifted somewhat towards the heavy elastic peak.

In addition, one of the quasi-elastic components was suppressed in order to obtain

the best overall fits. There was also a noticeable degree of mis-fit along the radiative

tail, and more so in the region of the hydrogen elastic peak. The identical fit process

used to optimize the 2.2 GeV run list fits discussed previously was applied to the 1.7

15These experiments acquired data during the same time period.
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Figure 3.23: The 1.7 GeV baseline run-pair fits for the +1 helicity spectra associated
with each spectrometer. The black curves in the plots represent the fitted model
while the colour of each reaction component is provided in the caption of Figure 3.11.
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Figure 3.24: The 1.7 GeV baseline run-pair fits for the −1 helicity spectra associated
with each spectrometer. The black curves in the plots represent the fitted model
while the colour of each reaction component is provided in the caption of Figure 3.11.
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Figure 3.25: The simulated LHRS and RHRS scattering angle distributions for the
1.1 GeV kinematic created using the mean beam data provided in Table 3.1.

GeV run lists. Unfortunately, this fit process failed to generate representative fits

as illustrated in these figures. The asymmetries produced from the fits resulted in

small negative DSA form factor ratios, and non-realistic results for the single arm

calculations. A significant issue was also noted in the logs with the septum magnets

tripping off and not being at the proper current. For these reasons, the 1.7 GeV run

lists were omitted from further analysis for this thesis.

Run Lists for 1.1 GeV

When attempting to analyze the 1.1 GeV data, evidence of a beam misalignment

arose. To illustrate, the simulated scattering angle distributions for this kinematic

were generated for each arm of the spectrometer using the mean beam data provided in

Table 3.1. Those results are shown in Figure 3.25. These distributions are significantly

different in their overall shape, degree of overlap, and their angular placement. This

suggests that there was a beam misalignment issue. To investigate this further, the Q2
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distributions associated with the 2.2, 1.7 and 1.1 GeV kinematics were also generated.

In addition, new Q2 distributions were generated assuming perfect beam alignment

rather than using the data from Table 3.1. These results are provided in Figures

3.26 through 3.28. Each figure has four plots. The top two plots show the Q2

distributions generated using the data from Table 3.1 while the bottom two plots

show perfect beam alignment results. The LHRS distributions are shown in the first

and third plots while the RHRS distributions are provided in the second and fourth

plots of these figures, respectively. The 2.2 and 1.7 GeV distributions are very similar

for both cases; however, that is not the case for the 1.1 GeV distributions shown in

Figure 3.28. The most noticeable trait in the top two plots of this figure is the lack

of sufficient overlap in the Q2 distributions required to support the DSA form factor

ratio calculations. The 1.1 GeV beam orientation data in Table 3.1 are as much as 2.4

cm off the optimal beam position in Y and −4 mm in X. The mean beam angles θb

and ϕb in this table are seen to be more than twice and ten times larger than the data

associated with the other two kinematics, respectively. This shows that the beam was

in fact misaligned for these runs and that the issue was not with the spectrometer.

As a result, the 1.1 GeV data were omitted from further analysis in this thesis due

to this issue.
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Figure 3.26: The 2.2 GeV simulated Q2 distributions for LHRS and RHRS created
using the mean beam data provided in Table 3.1 are shown in the top two plots of
this figure. The perfect beam alignment results are shown in the bottom two plots.



101

Figure 3.27: The 1.7 GeV simulated Q2 distributions for LHRS and RHRS created
using the mean beam data provided in Table 3.1 are shown in the top two plots of
this figure. The perfect beam alignment results are shown in the bottom two plots.
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Figure 3.28: The 1.1 GeV simulated Q2 distributions for LHRS and RHRS created
using the mean beam data provided in Table 3.1 are shown in the top two plots of
this figure. The perfect beam alignment results are shown in the bottom two plots.



Chapter 4

Discussion and Conclusions

This chapter will discuss and present the main results of this investigation. In partic-

ular, the fitting process’s ability to support the extraction of proton elastic scattering

asymmetry results from the momentum spectra will be addressed. Furthermore, the

ability to use Monte Carlo simulations to support the calculation of proton elastic

form factor ratios using the asymmetries provided by the fit process will be explored.

The proton elastic form factor ratios that were able to be determined from the data

will be shown in comparison to existing world data, and to theoretical predictions.

Asymmetry Extraction

The fact that the RHRS had a number of issues during the data taking period (as

discussed), precluded using the standard reconstruction process. Therefore, the ap-

proach taken here was to fit simulated reaction components (hydrogen elastic, plus

background contributions) to support the extraction of proton elastic asymmetry re-

sults. To that end, it was found that this approach has merit. In particular, the

independent analysis results from Reference [35] support this conclusion specifically

for the 2.2 GeV results associated with the left arm spectrometer. With respect

to the right arm results, Figure 3.22 indicates that higher asymmetry values were

obtained. In fact, even though the fitted models were found to clearly represent

the measured momentum spectra, some issues were noted. When the spectra had

background tail structures at its higher momentum range, the fit process tended to

enhance the quasi-elastic background reaction components to fit these structures. An

examination of Figures 3.14 through 3.17 in Section 3.2.3, shows a marked difference

in the fitted contributions associated with the modelled backgrounds and the elastic

hydrogen components associated with the LHRS and RHRS. The consequence of the

fit process modelling these extended structures at the high momentum ranges appears

to be that higher backgrounds are estimated for these RHRS spectra with respect to

103
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Energy (GeV) Method Run List Q2 (GeV2) FFR ∆ FFR
2.2 DSA NI 0.0513 0.138 0.012

NO 0.0514 0.169 0.019
LHRS NI 0.0513 1.142 0.023

NO 0.0514 1.153 0.025
Avg 0.0513 1.147 0.017

RHRS NI 0.0513 0.802 0.022
NO 0.0514 0.860 0.025
Avg 0.0518 0.831 0.017

Table 4.1: The 2.2 GeV form factor ratios obtained for the NI and NO run lists
generated using DSA and single arm calculations. In addition, an error of 2.3×10−5

GeV2 is associated with the values of Q2 in the table.

their elastic hydrogen contributions.

Even with this issue, the quality of the fits obtained suggests that a model based

extraction of asymmetry data shows promise and has the potential to be an effective

tool to support experimental analysis.

Form Factor Ratios

The previous section confirmed that the fit process was able to extract realistic proton

elastic asymmetry results for the LHRS. Given that the RHRS data could not be

reconstructed in the normal fashion, a Monte Carlo simulation was used to estimate

the kinematic variables associated with the simulated events. In particular, the elastic

hydrogen reaction events used in the fitting process were used to generate estimates of

the variables required to support form factor ratio calculations. Histograms of these

variables provided estimated means and uncertainties used in these calculations.

The form factor ratio was calculated using the asymmetries provided in Section

3.2.7 using both the DSA technique and the single arm method described in Sections

1.3.3 and 1.3.4, respectively. Table 4.1 summarizes the form factor ratio results for

the 2.2 GeV run lists for each calculation method. The single arm results for the

LHRS run lists are self-consistent to within experimental uncertainty. How this result

compares to the unpolarized and polarized world data are illustrated in Figure 1.1

and the theoretical predictions/models along with the world’s data shown in Figure

1.5 will now be explored. The data in Table 4.1 are plotted in Figures 4.1 and

4.2 along with the average result for the left and right arms of the spectrometer
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(labelled as “Avg” in Table 4.1). The left and top graphics in these figures show the

individual run list results plotted along with the established world’s data. The right

and bottom graphics show the averaged results clearly contribute a single reliable

measurement of the form factor ratio; however, its magnitude does little to resolve

the discrepancies and the question regarding structures in the proton form factor

ratio, unfortunately. The unusual/discrepant result observed in the DSA form factor

ratios stem in part from the overall issues associated with the right arm data and its

subsequent spectra. It was noted that the fit process over estimates the background

while under estimating the elastic hydrogen contribution when it accounts for tail

structures in the higher momentum range. This results in higher estimated proton

elastic asymmetries for the right arm. Consequently, the ratio of the asymmetries is

quite high. Figure 4.3 uses the data in Table 3.7 to plot the DSA form factor ratio

as a function of the asymmetry ratio (A1/A2). This figure shows that an asymptote

exists at A1/A2 =0.9683. In addition, it illustrates that the NI run list form factor

ratio is 0.138 when A1/A2 = 1.357. For the NO run list, the the form factor ratio

jumps to 0.169 at A1/A2 = 1.294. This figure illustrates how the form factor ratio

behaves with respect to the ratio of the asymmetries. It is clear that larger values

of A1/A2, such as in the NO and NI cases, result in the small form factor ratios.

Ultimately, this shows that the DSA approach is quite sensitive to the asymmetry

ratio afforded by the fit process used here.

Even though the LHRS single arm asymmetry results were in agreement with the

independent analysis [35], the uncertainties in subsequent form factor ratios deter-

mined here using that data need to be understood and assessed. Table 4.2 shows the

overall contributors to the form factor ratio uncertainties for the DSA and single arm

calculations. This table shows the % errors associated with each partial derivative of

the form factor ratios given by the expressions in Equation 3.16. Using differential

uncertainty analysis, these partials are multiplied by the uncertainty in their associ-

ated kinematic variable and added in quadrature. What these values highlight are

that the dominant contributor to the overall uncertainty in the estimated form factor

ratios comes from the uncertainty in the estimated asymmetries.

It is important to understand that any number of issues with the equipment, as

well as, any mistakes in calibrations can affect subsequent results calculated using
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Figure 4.1: The 2.2 GeV single arm form factor ratios from Table 4.1 are plotted
along with the established body of data. The left graphic contains the individual run
list results while the right graphic shows the averaged results for the LHRS and the
RHRS.



107

Figure 4.2: The 2.2 GeV single arm form factor ratios from Table 4.1 are plotted with
recent world data [2, 23, 28, 88] and the Carlson Model results [38]. The top graphic
contains the individual run list results while the bottom graphic shows the averaged
results for the LHRS and the RHRS.
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FFR FFR Run List: NI Run List: NO
Method Partials Errors (%) Errors (%)
DSA ∂µ 3.00× 10−11 3.00× 10−11

∂θ1 1.35× 10−4 1.32× 10−4

∂θ2 5.41× 10−5 5.04× 10−5

∂θ∗1 0.26 0.25
∂θ∗2 0.39 0.36
∂ϕ∗

1
7.79× 10−4 9.29× 10−4

∂ϕ∗
2

1.00× 10−4 1.11× 10−4

∂Γ12 8.96 11.32
∂τ 0.02 0.02

∆FFR 8.97 11.33
LHRS ∂µ 3.00× 10−11 3.00× 10−11

∂θ2 0.04 0.04
∂θ∗2 0.01 0.01
∂ϕ∗

2
3.20× 10−5 3.17× 10−5

∂As 1.99 2.15
∂τ 0.02 0.02

∆FFR 1.98 2.15
RHRS ∂µ 3.00× 10−11 3.00× 10−11

∂θ1 0.04 0.04
∂θ∗1 8.22× 10−3 6.53× 10−3

∂ϕ∗
1

3.51× 10−4 3.42× 10−4

∂As 2.69 2.95
∂τ 0.02 0.02

∆FFR 2.69 2.95

Table 4.2: Contribution sources from the differential uncertainty analysis to the over-
all form factor ratio errors for the 2.2 GeV NI and NO run lists. The form factor
ratio partials with respect to a variable ‘x’ are denoted by “∂x” and represents the
error term |∂xFFR × ∆x|. The percent error is determined by dividing this term
by the FFR value and multiply by 100%. Therefore, if these % errors are added in
quadrature they result in the ∆FFR values shown in this table.
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Figure 4.3: The 2.2 GeV form factor ratio as a function of the asymmetry ratio A1/A2

using the data found in Table 3.7 and Equation 1.61. An asymptote exists at xo and
the form factor ratio is plotted as the blue square.

those data. Any misalignment of the chicane magnets, errors in the field map, or

problems with the spectrometer magnets are problematic. These kinds of issues

are clearly evident in the distortions noted in the distributions of the RHRS plots

shown in Figures 3.9 and 3.10. The Monte Carlo simulation uses both the field map

and optics calibrations to generate events. Therefore, any errors would manifest

in the simulated reaction component events. However, the fit process’s ability to

generate representative spectra models suggest that the simulation is an effective tool

for supporting this kind of analysis.

The analysis performed here has shown several things of note. First, it seems

that a model based approach for extracting asymmetries can generate realistic results

given that the measured momentum spectra are well behaved and representative of

the underlying physics. Second, the fit process for the case when the data are not well

behaved suggests that the modelling process is missing something because it seems

that the background is not being correctly estimated. Possibly adding duplicate

reaction components to the fit process might provide a better estimate while still

accounting for the tail structures observed in the higher momentum range. However,

this would require a much better understanding of how the right arm issues resulted

in the measured distributions observed in the plots shown in Figures 3.9 and 3.10.
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In addition, Figure 4.2 clearly illustrates that the attempt to provide new informa-

tion on the electromagnetic form-factor ratio for elastic electron scattering from the

proton at the lowest-ever attempted value of momentum-transfer resulted in a highly

intriguing result. If correct, it indicates that there is a trend at Q2 tends to zero that

is unexpected based on other existing data at low Q2 (although these measurements

are for larger values of Q2 compared to this new result). This result would suggest

that further studies in this Q2 region demands a follow up measurement to check the

validity.

Furthermore, this result is related intimately with the extraction of the proton

radius. In order to determine the proton radius, the individual form factors are

required. Unfortunately, this thesis measured the ratio of the form factors not the

individual form factors themselves. Therefore, it cannot be definitively stated that the

proton radius is larger than previously measured but it does indicate that something

may be happening with the form factors as Q2 tends to zero. This however, will

require further investigation to understand what is driving the low Q2 form factor

ratio behaviour (either GE or GM).

Finally, the analysis method employed here generated independent results for

the form factor ratios for each of the left and right arms, each having an estimated

uncertainty of roughly the same magnitude as the previous measurements done at

the lowest-to-date Q2 values (i.e, the LEDEX and BLAST data). However, the fact

that the left and right arm results do not agree to within their uncertainty, points

to a problem somewhere in these results. The problem could either be that: (1) the

uncertainties are underestimated, or (2) the right arm results simply are not reliable.

It seems less likely that option (1) is the culprit since our method for estimating the

model uncertainty and folding it into the quoted errors was very conservative. Thus,

making option (2) the more plausible choice since the extracted left arm asymmetry

does not disagree with the independent analysis performed by Friedman [35], and that

is coupled with all of the stated issues with the right arm. Clearly, the method used

here was unable to salvage the right arm data, nor was it able to provide the sought

after DSA form factor ratios. However, it was able to confirm Friedman’s asymmetry

extraction with an independent approach plus provide a now-proven technique for

extracting the form factor ratios using the left arm asymmetry data.



Appendix A

Reaction Component Parameter Values

The tables provided in this appendix include the values for the fit parameters αk, βk,

and γk that were obtained from the fitting process for Algorithm 3. Specifically, it

includes the fit results for the 2.2 GeV kinematic for both the NI and NO run lists

for each HRS and helicity state.
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Table A.1: Fit parameters for the left HRS NI run list for the −1 helicity events.

Models γi αi βi

H 9.2678×10−1 ± 4.9746×10−4 1.0411×10+0 ± 1.6835×10−4 9.0420×10−2 ± 3.4589×10−4

Elastic He 7.0516×10+1 ± 5.0418×10−1 1.0030×10+0 ± 1.5086×10−4 1.6909×10−2 ± 3.3384×10−4

N 5.1645×10+1 ± 1.6174×10−1 1.0016×10+0 ± 7.3076×10−5 9.9922×10−3 ± 1.6507×10−4

QE
He 7.1544×10−1 ± 3.8637×10−4 8.2814×10−1 ± 8.1209×10−5 -4.6291×10−1 ± 2.6599×10−4

N 1.7192×10−1 ± 1.4376×10−4 9.6067×10−1 ± 1.7673×10−4 -8.8982×10−2 ± 4.3192×10−4

Table A.2: Fit parameters for the left HRS NI run list for the +1 helicity events.

Models γi αi βi

H 9.5708×10−1 ± 4.6747×10−4 1.0381×10+0 ± 1.2864×10−5 8.4208×10−2 ± 2.7341×10−5

Elastic He 7.0422×10+1 ± 2.6474×10−1 1.0024×10+0 ± 3.0745×10−5 1.5594×10−2 ± 6.6421×10−5

N 5.1755×10+1 ± 8.5704×10−2 1.0018×10+0 ± 2.0948×10−5 1.0426×10−2 ± 4.3589×10−5

QE
He 7.1439×10−1 ± 5.5772×10−4 8.2770×10−1 ± 2.1761×10−6 -4.6435×10−1 ± 6.9108×10−6

N 1.7199×10−1 ± 2.2488×10−4 9.6020×10+1 ± 2.5614×10−4 -9.0147×10−2 ± 6.2710×10−4

Table A.3: Fit parameters for the right HRS NI run list for the −1 helicity events.

Models γi αi βi

H 4.1393×10−1 ± 3.3031×10−4 1.0488×10+0 ± 4.4984×10−4 9.8819×10−2 ± 9.1183×10−4

Elastic He 1.7190×10+2 ± 4.9064×10−2 9.0845×10−1 ± 5.3891×10−5 -2.1232×10−1 ± 1.4358×10−4

N 1.1908×10+0 ± 3.2200×10−3 7.0730×10−1 ± 8.6904×10−4 -8.7217×10−1 ± 3.8475×10−3

QE
He 3.3242×10−1 ± 4.4007×10−4 8.1807×10−1 ± 1.2468×10−4 -5.0054×10−1 ± 4.1677×10−4

N 8.1839×10−2 ± 1.7130×10−4 9.3654×10−1 ± 3.1827×10−5 -1.5349×10−1 ± 8.2131×10−5

Table A.4: Fit parameters for the right HRS NI run list for the +1 helicity events.

Models γi αi βi

H 4.3393×10−1 ± 3.3243×10−4 1.0484×10+0 ± 4.1737×10−4 9.7987×10−2 ± 8.4662×10−4

Elastic He 1.7229×10+2 ± 4.9224×10−2 9.0882×10−1 ± 5.3841×10−5 -2.1132×10−1 ± 1.4332×10−4

N 1.1951×10+0 ± 3.2288×10−3 7.0754×10−1 ± 8.7848×10−4 -8.7112×10−1 ± 3.8882×10−3

QE
He 3.3130×10−1 ± 4.4145×10−4 8.1805×10−1 ± 1.2762×10−4 -5.0063×10−1 ± 4.2663×10−4

N 8.2027×10−2 ± 1.7193×10−4 9.3649×10−1 ± 3.1841×10−5 -1.5363×10−1 ± 8.2177×10−5
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Table A.5: Fit parameters for the left HRS NO run list for the −1 helicity events.

Models γi αi βi

H 5.9557×10−1 ± 5.0430×10−4 1.0474×10+0 ± 4.8319×10−4 1.0311×10−1 ± 9.8105×10−4

Elastic He 5.2707×10+1 ± 7.2138×10−1 9.9459×10−1 ± 4.4196×10−4 -1.5834×10−3 ± 9.9521×10−4

N 2.9948×10+1 ± 2.3503×10−1 9.9794×10−1 ± 1.5623×10−4 2.0755×10−3 ± 3.4774×10−4

QE
He 4.5629×10−1 ± 3.9387×10−4 8.4708×10−1 ± 1.0027×10−4 -4.0243×10−1 ± 3.1275×10−4

N 1.0889×10−1 ± 1.8746×10−4 9.7845×10−1 ± 2.2366×10−5 -4.6573×10−2 ± 5.2918×10−5

Table A.6: Fit parameters for the left HRS NO run list for the +1 helicity events.

Models γi αi βi

H 5.7633×10−1 ± 4.9884×10−4 1.0490×10+0 ± 5.0321×10−4 1.0644×10−1 ± 1.0185×10−3

Elastic He 5.2199×10+1 ± 7.0995×10−1 9.9506×10−1 ± 4.4229×10−4 -5.1635×10−4 ± 9.9454×10−4

N 3.0101×10+1 ± 2.3121×10−1 9.9777×10−1 ± 1.5733×10−4 1.6795×10−3 ± 3.5030×10−4

QE
He 4.5704×10−1 ± 3.9341×10−4 8.4754×10−1 ± 1.0123×10−4 -4.0098×10−1 ± 3.1537×10−4

N 1.0901×10−1 ± 1.8730×10−4 9.7878×10−1 ± 2.2248×10−5 -4.5808×10−2 ± 5.2604×10−5

Table A.7: Fit parameters for the right HRS NO run list for the −1 helicity events.

Models γi αi βi

H 2.9568×10−1 ± 2.7356×10−4 1.0534×10+0 ± 5.2063×10−4 1.0798×10−1 ± 1.0462×10−3

Elastic He 1.1594×10+2 ± 4.0029×10−2 9.1136×10−1 ± 6.6315×10−5 -2.0476×10−1 ± 1.7557×10−4

N 7.0059×10−1 ± 2.3756×10−3 7.0512×10−1 ± 1.1590×10−3 -8.8150×10−1 ± 5.1613×10−3

QE
He 2.2380×10−1 ± 3.6623×10−4 8.2047×10−1 ± 1.6450×10−4 -4.9263×10−1 ± 5.4670×10−4

N 5.6829×10−2 ± 1.4299×10−4 9.3995×10−1 ± 3.7620×10−5 -1.4496×10−1 ± 9.6374×10−5

Table A.8: Fit parameters for the right HRS NO run list for the +1 helicity events.

Models γi αi βi

H 2.8338×10−1 ± 2.7223×10−4 1.0555×10+0 ± 5.6525×10−4 1.1228×10−1 ± 1.1313×10−3

Elastic He 1.1583×10+2 ± 3.9931×10−2 9.1108×10−1 ± 6.6362×10−5 -2.0550×10−1 ± 1.7582×10−4

N 6.9470×10−1 ± 2.3704×10−3 7.0437×10−1 ± 1.1583×10−3 -8.8477×10−1 ± 5.1661×10−3

QE
He 2.2421×10−1 ± 3.6607×10−4 8.2065×10−1 ± 1.6750×10−4 -4.9204×10−1 ± 5.5642×10−4

N 5.6847×10−2 ± 1.4299×10−4 9.3999×10−1 ± 3.7596×10−5 -1.4485×10−1 ± 9.6306×10−5
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