
DISTRIBUTED MODEL PREDICTIVE CONTROL FOR
COLLISION AND OBSTACLE AVOIDANCE OF MULTIPLE

QUADCOPTERS

by

Shaundell Dubay

Submitted in partial fulfillment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

July 2018

c© Copyright by Shaundell Dubay, 2018

This thesis is dedicated to my parents, Rickey and Molly, and my

brother, Stefan.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . x

List of Abbreviations and Symbols Used xi

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Research Motivation . 2

1.2 Literature Review . 2

1.2.1 Multi-Agent Collision Avoidance 2

1.2.2 Model Predictive Control Collision Avoidance 3

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 5

Chapter 2 Background Theory . 6

2.1 Graph Theory . 6

2.2 Consensus Control Algorithms . 9

2.3 Distributed Control vs. Centralized Control 11

Chapter 3 System Modelling . 14

3.1 Quadcopter Dynamics . 14

3.2 Quadcopter Model . 16

Chapter 4 Model Predictive Control for Consensus of Multiple Quad-

copters . 20

4.1 Dynamic Matrix Control . 21

4.2 General Effects of Prediction and Control Horizon 25

iii

Chapter 5 Optimization in Collision and Obstacle Avoidance . . . 26

5.1 Output Constraints . 26

5.2 Input Constraints . 30

5.3 MPC Optimization Function . 31

5.4 Algorithm for Case Variations . 32

Chapter 6 Simulation Studies on Collision Avoidance 37

6.1 Case 1 - Collision avoidance with z-direction constraints 41

6.2 Case 2 - Collision avoidance in one predetermined direction 43
6.2.1 Effects of Tuning Parameters 47
6.2.2 Effects of Number of Agents 51
6.2.3 Effects of Initial Conditions 52
6.2.4 Effects of Different Communication Topologies 54
6.2.5 3-Dimensional Formation . 58

6.3 Case 3 - Collision avoidance with x, y and z constraints 59

6.4 Case Comparison . 64

Chapter 7 Simulation Studies on Obstacle Avoidance 66

7.1 Case 4 - Obstacle avoidance with x, y and z constraints 66

7.2 Case Design Comparison . 70

Chapter 8 Conclusions and Future Work 73

Bibliography . 75

Appendix A Quadcopter Model - Coriolis Terms 80

Appendix B Case 3 - Positions for x and y Constraint Generation . 81

Appendix C Small Angle Approximation 83

Appendix D Author’s Publication List 85

iv

List of Tables

5.1 Identification and prediction shapes for constraint generation . 29

5.2 Event identification and constraint generation 35

6.1 Simulation Parameters . 38

6.2 Simulation Times . 64

v

List of Figures

2.1 Directed graph . 6

2.2 Undirected graph . 7

2.3 Directed spanning tree . 8

2.4 Strongly connected graph with multiple spanning trees 8

2.5 Consensus with ring formation 11

2.6 Centralized schematic diagram 12

2.7 Distributed schematic diagram 12

3.1 Quadcopter frame of reference [1] 14

4.1 Model predictive control strategy 20

4.2 Basic model predictive control block diagram 21

5.1 Safety and avoidance distances 26

5.2 Constraint generation considering shape of future prediction
with f being the general variable 27

5.3 Future prediction shapes used for determining constraints . . . 28

5.4 Logarithmic barrier function with varying µ 31

5.5 Block diagram of the proposed control strategy 32

5.6 Previous and current x-positions for constraint generation . . 34

6.1 Normalized step response for quadcopter dynamics 39

6.2 2-dimensional view without collision avoidance 39

6.3 3-dimensional view without collision avoidance 40

6.4 Relative distances without collision avoidance 40

6.5 Control actions without collision avoidance 41

6.6 3-dimensional view with collision avoidance (Case 1) 42

vi

6.7 Relative distances with collision avoidance (Case 1) 42

6.8 Control actions with collision avoidance (Case 1) 43

6.9 Roll, pitch, yaw angles with collision avoidance (Case 1) . . . 44

6.10 3-dimensional view with collision avoidance (Case 2) 44

6.11 Relative distances with collision avoidance (Case 2) 45

6.12 Control actions with collision avoidance (Case 2) 46

6.13 Roll, pitch, yaw angles with collision avoidance (Case 2) . . . 46

6.14 Control actions with collision avoidance (Case 2, λ = 1.100) . 47

6.15 3-dimensional view with collision avoidance (Case 2, λ = 1.100) 48

6.16 Relative distance with collision avoidance comparison (Case 2,
λ = 1.100 and λ = 1.001) . 49

6.17 Control actions with collision avoidance (Case 2, α = 0.9 and
α = 0) . 49

6.18 3-dimensional view with collision avoidance (Case 2, α = 0) . . 50

6.19 3-dimensional view with collision avoidance (Case 2, α = 0.9) . 50

6.20 Relative distance with collision avoidance comparison (Case 2,
α = 0 and α = 0.9) . 51

6.21 Communication topology (a) successful 5 agent topology (b)
unsuccessful 5 agent topology 52

6.22 3-dimensional view with collision avoidance (Case 2, topology
(a)) . 53

6.23 3-dimensional view with collision avoidance (Case 2, topology
(b)) . 53

6.24 Relative distance comparison according to initial condition vari-
ations . 54

6.25 3-dimensional view without collision avoidance (Variation (a),
Case 2) . 55

6.26 3-dimensional view with collision avoidance (Variation (a), Case
2) . 55

6.27 3-dimensional view without collision avoidance (Variation (b),
Case 2) . 56

vii

6.28 3-dimensional view with collision avoidance (Variation (b), Case
2) . 56

6.29 3-dimensional view with collision avoidance (Case 2, strongly
connected topology) . 57

6.30 3-dimensional view with collision avoidance (Case 2, spanning
tree topology) . 58

6.31 Relative distance comparison with collision avoidance (Case 2,
(a) strongly connected topology (b) spanning tree topology (c)
original undirected topology) 59

6.32 3-dimensional view without collision avoidance (Case 2, 3-dimensional
formation . 60

6.33 3-dimensional view with collision avoidance (Case 2, 3-dimensional
formation . 60

6.34 Relative distance comparison (Case 2, (a) without collision avoid-
ance (b) with collision avoidance 61

6.35 3-dimensional view with collision avoidance (Case 3) 61

6.36 Relative distances with collision avoidance (Case 3) 62

6.37 Control actions with collision avoidance (Case 3) 63

6.38 Roll, pitch, yaw angles with collision avoidance (Case 3) . . . 63

7.1 2-dimensional view without obstacle avoidance (Case 4) 67

7.2 3-dimensional view without obstacle avoidance (Case 4) 67

7.3 Relative distances without obstacle avoidance (Case 4) 68

7.4 Control actions without obstacle avoidance (Case 4) 69

7.5 3-dimensional view with obstacle avoidance (Case 4) 69

7.6 Relative distances with obstacle avoidance (Case 4) 70

7.7 Control actions with obstacle avoidance (Case 4) 71

7.8 Roll, pitch, yaw angles with obstacle avoidance (Case 4) . . . 71

B.1 Previous and current x-positions for constraint generation . . 81

B.2 Previous and current y-positions for constraint generation . . . 82

viii

C.1 Percent error between approximation and actual values 84

ix

Abstract

As the cost to manufacture quadcopters decrease, multi-agent applications for civil-

ian tasks, such as large-scale surveying, search and rescue missions and fire fighting,

are becoming increasingly realizable. However, a multi-agent system of fast moving

quadcopters has a high risk of collisions with neighbouring quadcopters or obstacles.

The objective of this work is to develop a control strategy for collision and obstacle

avoidance of multiple quadcopters. In this thesis, the problem of distributed model

predictive control (MPC) for collision avoidance among a team of multiple quad-

copters attempting to reach consensus is investigated. Violations of a predetermined

safety radius generates output constraints on the MPC optimization function. In

addition, logarithmic barrier functions are implemented as input rate constraints on

the control actions. Extensive simulation studies for a team of four quadcopters il-

lustrate promising results of the proposed control strategy and case variations. In

addition, distributed MPC parameter effects on the system performance are studied

and a successful isolated study for obstacle avoidance of static objects is presented.

x

List of Abbreviations and Symbols Used

α Setpoint tuning parameter

A Adjacency matrix

B Logarithmic barrier function

∆u Optimal control move(s)

∆umax Maximum control rate

∆umin Minimum control rate

η Euler angles

e Error

G Dynamic matrix

g Gravitational constant

J Cost function

K State feedback gains

λ Move suppression

µ Logarithmic barrier function penalty parameter

m Mass of quadcopter and payload

na Number of agents

no Number of obstacles

np Prediction horizon

nu Control horizon

r Relative distance

ra Relative avoidance distance

rp Relative predicted distance

φ Roll angle

Φ Prediction correction

ψ Yaw angle

T Resultant thrust

θ Pitch angle

τθ Pitching torque, torque about the y-axis

xi

τφ Rolling torque, torque about the x-axis

τψ Yawing torque, torque about the z-axis

ξ Inertial frame

x Position along the x-axis

y Position along the y-axis

z Position along the z-axis

DMC Dynamic matrix control

GCS Global coordinate system

LCS Local coordinate system

MAS Multi-agent system

MPC Model predictive control

UAV Unmanned aerial vehicle

UGV Unmanned ground vehicle

UUV Unmanned underwater vehicle

xii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Ya-Jun Pan, whose

careful guidance and patience aided in the successful completion of this thesis. Deep

appreciation to the members of the Supervisory Committee, Dr. Robert Bauer and

Dr. Guy Kember, for their thoughtful feedback and time.

My profound gratitude goes to my parents and my brother, whose continuous

encouragement and insights are immeasurable.

Special thanks to the Advanced Controls and Mechantronics research group for

their generosity and enthusiasm over the years. Finally, I would like to acknowl-

edge the enormous efforts of Ms. Kate Hide, Ms. Donna Laffin and Ms. Jascinth

Butterfield during my time at Dalhousie University.

xiii

Chapter 1

Introduction

Multiple agents are often used for the advantages of cooperative behaviour, where

they can interact and solve complex problems that are beyond the capacity of a

single agent. A multi-agent system (MAS) is a network of software agents or compu-

tationally capable physical (electro-mechanical) devices, that exchange information

to make decisions or determine actuations in order to progress towards an objective.

The main advantage of an unmanned MAS is that they are useful for missions/tasks

that are beyond human limitations. They are not subject to human conditions such

as fatigue and endurance, and they are expendable and recoverable; removing the

risk to humans. Planetary explorations, factory floor operations and transportation

can be carried out by cooperative unmanned ground vehicles (UGVs) and a team of

unmanned underwater vehicles (UUVs) could be deployed for large-scale surveying,

seismic monitoring, underwater explorations and searches. As the cost to manufac-

ture an unmanned aerial vehicle (UAV) decreases, multi-agent applications can aid

with civilian tasks such as search and rescue missions, surveillance, fire fighting, crop

monitoring and explorations in extreme environments. In addition, multi-agent sys-

tems are not limited to homogeneous compositions. A MAS makeup can include a

mix (various structures) of one type of unmanned vehicle or combinations of UGVs,

UUVs and UAVs.

Due to the operational nature of MASs, it is suitable that centralized control ap-

proaches are restricted to small groups like a leader follower configuration. However,

for large sizes of MASs the centralized approach fails since centralized information

gathering is not sustainable and the computational load becomes impractical. There-

fore, a distributed methodology is more effective.

In a multiple quadcopter system, information can be efficiently collected from

spatially distributed agents. The structure of a quadcopter allows for versatile move-

ment, making it a popular choice for the applications listed previously. However, a

1

2

quadcopter’s primary restriction is its battery life. Developments in sensor perfor-

mance also allow quadcopters to be designed with different characteristics. This is

advantageous because various capabilities can be distributed and assigned to agents

in the system.

1.1 Research Motivation

A quadcopter can be considered a challenging system, and to an even greater extent

with multiple quadcopters. This premise can be highlighted through comparisons

with a UGV. A UGV travels on a 2-dimensional plane, it is slow moving, has low-

lying sensors that can give feedback on objects nearby, and it has the ability to make

a full stop. On the other hand, a quadcopter operates in 3-dimensions, is fast moving,

and therefore has a higher risk of collisions.

Many control schemes have been successfully developed for formation control [2],

consensus control [3], communication constraints [4] and trajectory tracking [5] for

multiple quadcopters. However, certain aspects are lacking in the control for colli-

sion and obstacle avoidance of multiple quadcopters. Research to fill these gaps is

especially important in enhancing the operational capabilities of multiple quadcopter

technologies, allowing important applications like rescue missions or explorations to

progress to a functional reality in society.

1.2 Literature Review

Collision avoidance is the maintenance of a strategy designed to prevent agents collid-

ing with other agents. Generally, agents that observe a relative safety distance with

other agents can achieve collision avoidance. In addition, collision avoidance applies

to inter-agent behaviours of the MAS or with agents from an outside MAS. Evasive

movement with static objects is considered obstacle avoidance.

1.2.1 Multi-Agent Collision Avoidance

For a team of multiple quadcopters, a successful performance depends on the ability

to fly without collision. In literature, many control strategies have been developed to

deal with collision avoidance among multi-agent systems. Methods include trajectory

3

generation [6] [7] of a collision free path, and gradient methods [8] [9] to determine

control gains that fulfill collision avoidance criteria. In [10], fuzzy logic was used

to implement trajectory shapes (example: S-shape) that would steer the agents out

of the 2-dimensional collision territory. The fuzzy logic control was successful in

a leader follower structure, and with inherent knowledge that these shapes would

provide sufficient evasive movement for collision avoidance. Potential functions can

be used for collision avoidance as in [11] [12] and an adaptive potential function in [13],

where repulsive forces were bounded to maintain a desired communication topology.

The work in [6] also used collision avoidance potential functions, but designed various

regions (communication, maintenance and avoidance) for control. However, potential

forces alone may drive agents to a deadlock situation; the repulsive forces cancel with

the attractive forces leaving agents unable to advance from their current positions.

A unique solution [14] to this problem was to introduce gyroscopic forces (these

forces act perpendicular to the direction of motion) to swing the agents out and

break free of deadlock situations. A deep learned collision avoidance strategy in [15]

provides a method for dealing with noisy sensor measurements. Noise in sensor data

or inaccurate data can adversely affect the situational awareness of an agent and can

lead to a misguided strategy or poor actuation. The differential game approach [16]

allows access to a deduced performance of the control strategy to aid with collision

avoidance. However, in order to exploit this a priori performance, a centralized

framework is necessary.

1.2.2 Model Predictive Control Collision Avoidance

Collision avoidance can also be achieved with optimization based approaches. One

scheme with recent developments is model predictive control (MPC), which has the

ability to handle hard constraints on the control action and states [17]. While many

types of MPC schemes exist, most research practice the state-space formulation.

In [18], a decentralized linear time-varying hierarchical MPC is implemented for

control. The top layer is a hybrid MPC that generates online desired positions to

reach a known target position and avoid collisions; the middle layer contains a real-

time linear MPC for tracking; in the bottom layer, a nonlinear MPC is used for

quadcopter control. In [19], decentralized MPC is used for evasive action in the

4

vertical direction by applying a penalty term, which requires less computation time.

However, while evasive movement in the vertical direction is effective, more freedom

to avoid other quadcopters could be gained if the x, y-directions were considered.

In addition, the decentralized approach is vulnerable should the leader lapse. The

converse is true in [20] because distributed MPC is implemented. A distributed

methodology is more effective since agents are coupled only with their neighbours [21].

In [20], evasive action between two teams of unmanned aerial vehicles occurs on the

horizontal plane by implementing a Kalman filter to estimate the positions of the

other team. This method is useful for multiple MAS already in formation (steady

state positions) and could be extended for static obstacle avoidance. Following a

similar 2-dimensional distributed MPC approach, [22] proposes terminal elements

on the controller. Terminal constraints are applied for future predictions and are

implemented to guarantee stability [23]. The drawback to this strategy is that final

desired positions are needed. The work presented in [24], achieves collision avoidance

by separating pairs of vehicles by a shared hyperplane; however only 2-dimensions are

considered. The synthesis approach [25] of distributed MPC is unique because this

method can utilize past predicted states. This allows for less communication among

agents, however the computation times are quite large (between 1-9 seconds).

It is observed that the number of MPC strategies for collision avoidance is limited.

Most literature only employ evasive movement in the z-direction, or only consider 2-

dimensional movement on the x, y-plane. In addition, some simulations begin when

the agents are already in motion or that final desired positions are needed, which is

not always practicable.

1.3 Thesis Contributions

The main contribution of this thesis is the development of a new distributed MPC

strategy for collision and obstacle avoidance of multiple quadcopters. This work

contains the following contributions:

• A consensus algorithm is employed to determine desired setpoints online.

• While other MPC schemes have been applied for collision avoidance, a thorough

5

search of relevant literature yielded no implementation of dynamic matrix con-

trol (DMC). In this work, DMC is firstly used to generate conditional output

constraints on quadcopter positions for collision and obstacle avoidance.

• Input rate constraints are implemented in the form of a logarithmic barrier

function to limit control actions. Input rate constraints remove the need for

hard input constraints such as saturation. In addition, the logarithmic barrier

function is a penalty formulation, which helps reduce the overall number of hard

constraints on the MPC optimization function.

• In order to observe the influence of constraints on system performance, case

studies for collision and obstacle avoidance are formulated by modifying the

criteria for output constraint generation.

• In this work, collision and obstacle avoidance in all 3-dimensions (x, y, z-directions)

is successful. Unlike many literature, simulations begin with quadcopters at rest

and on the ground.

• Extensive simulation studies are conducted and discussions are given regarding

system performance and parameter effects.

1.4 Thesis Organization

The organization of this thesis is as follows. Chapter 2 describes the relevant back-

ground theories, specifically, graph terminology, the consensus algorithm and a multi-

agent control structure comparison. Chapter 3 gives a detailed overview of quadcopter

dynamics and the mathematical model used in this work. Model predictive control

for consensus of multiple quadcopters is shown in Chapter 4. Chapter 5 presents

the formulation of input constraints, details the output constraints for collision and

obstacle avoidance and highlights the differences between case variations. Chapter

6 discusses the simulation studies for the collision avoidance algorithms. Chapter

7 presents the simulation results for obstacle avoidance. Chapter 8 summarizes the

conclusions of this work and potential areas for future research.

Chapter 2

Background Theory

2.1 Graph Theory

In this section, basic graph theory concepts that are essential in the study of multi-

agent systems are presented. A network structure is used to describe the communi-

cation topology among agents and can be mathematically modelled as an algebraic

graph. With reference to a multi-agent system, the agents are represented by nodes

and a communication link from agent j to agent i is represented by an edge.

Directed Graph: A directed graph G = (V , E) for na agents, has node set

V = {v1, ..., vna} that is finite and nonempty and an edge set E of ordered pairs called

edges. For a directed graph, an edge eij of E shows that information is transmitted

from node vj to vi. Therefore, it is considered that vi is the parent node and vj is the

child node. If vi can receive from agent vj and vice versa, then this case is specified

as a bidirectional edge. Self edges, defined as when a node has the ability to send

information to itself, are not allowed unless specifically indicated [26]. An example of

a directed graph with four agents is shown in Fig.2.1, where {e21, e32, e43} are directed

edges and e13 is a bidirectional edge.

Undirected Graph: In an undirected graph, agent i and agent j can receive

information from each other, indicating that they have bidirectional edges. This is

considered a special case, where in an undirected graph eij corresponds to eij and eji

in a directed graph. An example of an undirected graph with four agents is shown in

432

1

Figure 2.1: Directed graph

6

7

432

1

Figure 2.2: Undirected graph

Fig.2.2, where {e12, e23, e34, e41} are bidirectional edges.

Weighted Graph: A weighted graph is when an edge has an associated weight

or penalty; often used to indicate the reliability or cost of information from a specific

node. However, in undirected graphs the weights of eij and eji must be the same.

An adjacency matrix,

A =







a11 · · · a1j
...

...

ai1 · · · aij






, (2.1)

describes the communication topology or channels for information exchange among

agents. It is developed by the following rules:

aij =

{

1 , if eij ∈ E

0 , otherwise .
(2.2)

In (2.2), if agent i can receive from agent j, then element aij = 1, otherwise aij = 0.

The associated adjacency matrices for the directed graph in Fig.2.1 and the undirected

graph in Fig.2.2 are respectively,

A =










0 0 1 0

1 0 0 0

1 1 0 0

0 0 1 0










and A =










0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0










. (2.3)

Graph Connectivity: The in-degree of a node refers to the number of edges

flowing towards the node and can be mathematically determined as the row sum of

the adjacency matrix,

di,in =
na∑

j=1

aij . (2.4)

8

The out-degree is the number of edges flowing outwards from a node and can be

determined from the adjacency matrix using column sum,

di,out =
na∑

j=1

aji . (2.5)

A graph is referred to as balanced if the in-degree and out-degree are equal. Therefore,

it can be said that an undirected graph is always balanced.

A directed tree is a directed graph where a sequence of ordered edges exists from

one node to another. Multiple directed trees can exist in a single directed graph. A

directed spanning tree occurs if a node does not have a parent node (in-degree of

zero) and a subset of edges forms a directed tree. Accordingly, all other nodes are

reachable from a single node called the root. An example of a directed spanning tree

with four agents is presented in Fig.2.3, where agent 1 is the root node.

432

1

Figure 2.3: Directed spanning tree

A directed graph is strongly connected if distinct nodes pairs can be connected

by following a directed path of edges [27]. Consider Fig.2.4, it is strongly connected

because an agent can reach every other agent. From a different perspective, the

directed graph is strongly connected because each agent is a root node with an as-

sociated spanning tree. A directed graph is weakly connected if when its edges are

replaced with bidirectional edges, all nodes can reach one another.

432

1

Figure 2.4: Strongly connected graph with multiple spanning trees

9

2.2 Consensus Control Algorithms

In a network of agents, consensus means that an agreement is reached regarding

a certain variable of interest that depends on the states of all agents. Consensus

guarantees that agents communicating information according to a network topology

is consistent. This is critical to any type of coordination task such as rendezvous [28],

swarm [29] or formation [30] [31]. Characterization of formation control schemes are

often based on sensing capability and the communication topology of agents. The

three main types of formation control schemes identified by [32] are described below.

One type of control is distance based, where inter-agent distances are actively

controlled for desired formation. Each agent can sense relative positions of neighbours

with respect to their local coordinate system (LCS). It is important to note that

LCS orientations are not always aligned with each other, and due to the neighbour

dependency, more interactions are crucial.

In displacement based control, agents control displacements of neighbouring agents

for desired formation. In this case, each agent only senses the relative positions of

neighbour agents with respect to the global coordinate system (GCS). However, each

agent does not require their positions with respect to the GCS, only knowledge of

the GCS orientation. This type of control, has a moderate tradeoff between sensing

capability and interactions.

The type of consensus control used in this work is position based, where agents

sense their own positions with respect to a GCS. Each agent must control their own

positions to achieve the overall desired formation. With this type of control, a greater

sensing capability among agents is required.

A consensus algorithm (or protocol) is the method of negotiation or the interaction

rule used to reach consensus. The main component of a consensus algorithm is the

update law, which is designed such that the information state of all agents converges

to a common value. For MASs with single integrator as

ξ̇i = ui , (2.6)

a common linear consensus algorithm is,

ui =
na∑

i=1

aij(ξj − ξi) , (2.7)

10

where (2.7) is the control input and ξi is the ith agent’s information state. The

objective of (2.7) is to guarantee consensus for any initial condition ξi(0) as t→ ∞.

If a formation is desired, the input can be designed with relative distance ξri

between agents,

ui =
na∑

i=1

aij(ξj − ξi − ξri) . (2.8)

Consider the calculation for relative distances ξri used to achieve a ring formation

in the x-y plane. First define the desired distance to the center of the ring as rd. The

relative x-y distance between an agent and the ring’s center is calculated as

rci = rdRir0 , (2.9)

where r0 = [1 0]> is used to select matrix elements and Ri is the rotation matrix

shown below:

Ri =

[

cos(γi) − sin(γi)

sin(γi) cos(γi)

]

. (2.10)

In (2.10), γi is the accumulative angle for each agent around the ring; the angle

separation with respect to agent 1.

The vector of relative distances between agent 1 and the remaining agents can be

extracted using

ri1 = rci − rc1 . (2.11)

Then the final relative distances between agents is determined as,

ξri = rj1 − ri1, for i, j = 1, ..., na . (2.12)

An example of consensus with a ring formation is presented, where rd = 10 meters,

the number of agents is six and the communication topology is undirected according

to

A =















0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0















.

12

Control Center

Agent 3Agent 2Agent 1

Network

Agent n

a

Figure 2.6: Centralized schematic diagram

However, distributing locally collected information will typically result in a larger

communication cost and can be disadvantageous because the centralized approach

depends on the reliability of inter-agent communication links. The complexity of the

centralized approach requires significant computation to determine a solution. In this

regard, feasibility depends on the computational capability at the single centralized

location. A numerical simulation study was performed in [21] to compare computa-

tion times for a team of UAVs under distributed and centralized control. The results

showed that the computation time required for distributed control was significantly

lower than the centralized approach as the number of agents increased. Therefore, it

can be reasoned that the centralized approach will fail for large sizes of MASs, or if

the agent responsible for system management/processing is disabled.

A distributed approach is based on local information states communicated by

the agent’s neighbours, as shown in Fig.2.7. Therefore, the control problem can be

divided into a set of smaller local optimization problems. This allows for a small

computation time for each agent. However, since the optimization problem is based

Control Center

Agent 3Agent 2Agent 1

Control Center Control Center

Agent n

a

Control Center

Figure 2.7: Distributed schematic diagram

13

on local information states, it results in a suboptimal solution of control actions

[33]; this is the main disadvantage of a distributed control structure. The scale of

suboptimality depends on the communication topology (degree of interaction) of the

multi-agent system [34]. The problem of local information is also significant if an

agent is attempting to predict a neighbour’s or the group’s behaviour. A distributed

control scheme can also be viewed as modular, as in each agent is responsible for

itself. This is advantageous because possible failures will not necessarily affect the

overall multi-agent system [35].

Chapter 3

System Modelling

A type of UAV is a quadcopter, also known as a quadrotor. A quadcopter has

four rotors directed upwards on each arm and the four arms are arranged in square

formation. A quadcopter is capable of vertical takeoff and landing and its inherent

dynamic nature allows for maneuverability [36]. For modelling purposes, it is assumed

that the quadcopter is manufactured with identical arm lengths and symmetric mass

distribution. This chapter presents general quadcopter dynamics and a linearized

model for multiple quadcopter control from a Euler-Lagrange formulation.

3.1 Quadcopter Dynamics

Movement of a quadcopter is defined using two reference frames as shown in Fig.3.1.

The inertial frame (3.1), which is considered earth-fixed, is made up of x, y, z-axes

and is used to reference the absolute linear position. The angular position (3.2) of

the quadcopter in the inertial frame is defined using the Euler angles.

ξ =
[

x y z

]>

, (3.1)

η =
[

φ θ ψ

]>

. (3.2)

Figure 3.1: Quadcopter frame of reference [1]

14

15

The roll angle φ signifies the rotation about the x-axis, the pitch angle θ is the

rotation about the y-axis, and the yaw angle refers to the rotation around the z-axis.

The body frame is made up of xB, yB, zB-axes and its origin occurs at the center

of mass of the quadcopter. It is assumed that the body frame is attached to the

quadcopter and is therefore, a moving coordinate system. The linear and angular

velocities with respect to the body frame are defined as (3.3) and (3.4), respectively.

V =
[

vx vy vz

]>

(3.3)

ν =
[

p q r

]>

(3.4)

The rotation matrix can be used to move from the body frame to the inertial

frame and is defined as

Rb
i =







CψCθ CψSθSφ − SψCφ CψSθCφ + SψSφ

SψCθ SψSθSφ + CψCφ SψSθCφ − CψSφ

−Sθ CθSφ CθCφ






, (3.5)

where Cx = cos(x) and Sx = sin(x). Since the rotation matrix is orthogonal, the

rotation matrix from the inertial frame to the body frame is
(
Rb
i

)−1
=
(
Rb
i

)>
.

The angular velocities ν in the body frame can be transformed to the Euler angular

velocities η̇ in the inertial frame and vice versa using

ν = Wηη̇ , (3.6)

and

η̇ = W−1
η ν , (3.7)

respectively, where the transformation matrix is given as

Wη =







1 0 −Sθ

0 Cφ CθSφ

0 −Sφ CθCφ






. (3.8)

The thrust produced by each rotor is proportional to the square angular velocity [1]

and is given by

fi = kω2
i , i = 1, 2, 3, 4, (3.9)

16

where k is a lift constant assumed to be the same for all rotors. The total thrust in

zB-direction is the sum of forces produced by the rotors as

T =
4∑

i=1

fi . (3.10)

Therefore, the force input vector in the body frame directions is fB = [0 0 T]>.

The torque around each rotor axis is found using τMi
= bω2

i , where b is a drag

constant. Therefore, the torque input vector can be calculated as

τ =







τφ

τθ

τψ






=







l(f4 − f2)

l(f3 − f1)
∑4

i=1 τMi






, (3.11)

where l is the length from the center of mass of the quadcopter to the rotor.

3.2 Quadcopter Model

The linear quadcopter model is developed using the Lagrangian approach and lin-

earization about an equilibrium point [37].

In general, the Lagrangian is the sum of kinetic energy minus the potential energy

of the system. For the quadcopter dynamics, the linear and angular components are

separate and cane therefore be studied independently; the Lagrangian has transla-

tional and rotational kinetic energies and the gravitational potential energy. Define

q = [ξ> η>]>, then the Lagrangian is,

L(q, q̇) = Etrans + Erot − Epot

= 1
2
mξ̇>ξ̇ + 1

2
η̇>W>

η IWη
︸ ︷︷ ︸

J

η̇ −mgz , (3.12)

where m denotes the mass of the quadcopter and payload, g is the gravitational

constant and I = diag(Ixx, Iyy, Izz) is the inertia matrix for the quadcopter. Since it

is assumed that the quadcopter is symmetric, then Ixx = Iyy.

The full quadcopter dynamics is obtained from the Euler-Lagrange equations with

17

external forces and torques. The Euler-Lagrange translational equation is

d

dt

(
∂Etrans

∂ξ̇

)

−
∂Etrans

∂ξ
= Rb

i

[

0 0 T

]>

,

mξ̈ +mg
[

0 0 1
]>

= Rb
i

[

0 0 T

]>

. (3.13)

The Euler-Lagrange rotational equation is

d

dt

(
∂Erot

∂η̇

)

−
∂Erot

∂η
= τ

J η̈ +

(

J̇ −
1

2

∂

∂η
(η̇>J)

)

η̇ = τ

J η̈ + C(η, η̇)η̇ = τ , (3.14)

where C(η, η̇) is the Coriolis matrix; refer to Appendix A for the terms in the Coriolis

matrix.

The Euler-Lagrange equations (3.13) and (3.14) can be rearranged and written as







ẍ

ÿ

ż






=
T

m







−Sθ

CθSφ

CθCφ






− g







0

0

1






, (3.15)

and

J η̈ = τ − C(η, η̇)η̇ . (3.16)

To simplify the rotational dynamics in (3.16), a new input variable [38] can be

defined as

τ = C(η, η̇)η̇ + J τ̄ . (3.17)

Substituting (3.17) into (3.16), results in J η̈ = J τ̄ . Similar to [39], the full

18

quadcopter dynamics from (3.15) and (3.16) are rewritten as,

mẍ = −u sin(θ) , (3.18)

mÿ = u cos(θ)sin(φ) , (3.19)

mz̈ = u cos(θ)cos(φ)−mg , (3.20)

θ̈ = τθ , (3.21)

φ̈ = τφ , (3.22)

ψ̈ = τψ . (3.23)

Define the following states and input variables,

[

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

]>

=
[

x ẋ y ẏ z ż ψ ψ̇ θ θ̇ φ φ̇

]>

,

(3.24)

[

u1 u2 u3 u4

]>

=
[

T −mg τψ τθ τφ

]>

, (3.25)

then equations (3.18)-(3.23) can be written in a state space form as
































ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12
































=
































x2

−u1
m
sin x9 − g sin x9

x4
u1
m
cosx9 sin x11 + g cos x9 sin x11

x6
u1
m
cosx9 cos x11 + g cos x9 cosx11 − g

x8

u2

x10

u3

x12

u4
































. (3.26)

The solution of nonlinear quadcopter dynamics is complicated because of the

dependency on aerodynamics forces and moments due to flight conditions, such as,

altitude, speed and weight. A simpler approach is based on a linearized model that

19

describes the quadcopter’s motion provided that the perturbations from a known

equilibrium state is small.

From the nonlinear quadcopter dynamics produced in (3.26), linearization by Tay-

lor series expansion about an equilibrium point equal to the origin, with f(0, 0) = 0,

produces the quadcopter dynamics modelled by the following linear state equations;

similarly used in [40] [41],










ẋ

ẍ

θ̇

θ̈










=










0 1 0 0

0 0 −g 0

0 0 0 1

0 0 0 0



















x

ẋ

θ

θ̇










+










0

0

0

1










τθ , (3.27)










ẏ

ÿ

φ̇

φ̈










=










0 1 0 0

0 0 g 0

0 0 0 1

0 0 0 0



















y

ẏ

φ

φ̇










+










0

0

0

1










τφ , (3.28)

[

ż

z̈

]

=

[

0 1

0 0

][

z

ż

]

+

[

0

1
m

]

T , (3.29)

[

ψ̇

ψ̈

]

=

[

0 1

0 0

][

ψ

ψ̇

]

+

[

0

1

]

τψ . (3.30)

The linearized model is decoupled into four sets of equations and is valid given

small angle values for θ and φ. The flight dynamics in the x, y, ψ-directions are subject

to control moments that generate torques around the y, x, z-axes, respectively. The

motion in the z-direction is generated via a thrust force, which is the sum of the

thrusts from all motors minus the force due to gravity.

Chapter 4

Model Predictive Control for Consensus of Multiple

Quadcopters

A brief overview of MPC and its components are presented in this chapter. The

general approach in MPC schemes is to utilize a mathematical model to predict the

system future output given a set of optimized control actions. The future outputs

(prediction) are determined across the prediction horizon np, as shown in Fig.4.1,

using the system model, past outputs, past inputs and the future inputs (control

moves) to be sent to the system. The future control moves are solved by applying

t − 1 t t + 1 t + k

t + n

p

Prediction Horizon

Control Horizon

Future Input

Past Future

t + n

u

Future Output

Past Output

Past Input

Figure 4.1: Model predictive control strategy

optimization over a finite control horizon. The objective of the cost function is for the

system output to be as close as possible to the desired setpoints [42]. This is achieved

by formulating the cost function to minimize the error between the prediction and

the setpoints; as illustrated in Fig.4.2 where the future errors and cost function is

20

21

Optimizer

Model

Cost Function

Constraints

Future
Errors

Prediction

Setpoints

Future
Control Moves

Past
Outputs/Inputs

+ _

Figure 4.2: Basic model predictive control block diagram

sent to the MPC optimizer. If the cost function is quadratic and unconstrained,

and the model is linear, then an explicit solution can be determined analytically.

Otherwise, if the cost function is subject to constraints, then a numerical solver must

be implemented. According to the receding horizon policy, the first control move

of the optimal control sequence is applied. This is because new output values are

obtained at the next sampling instant and the prediction is updated based on these

output measurements [43]. The receding horizon policy is especially recommended if

setpoint changes are expected.

The MPC algorithm implemented in this work is a dynamic matrix control (DMC)

method. DMC is a mature technique that was first developed in the seventies by

Cutler and Ramaker [44]. It utilizes a dynamic step response model, developed from

experimental data, to predict the future control moves. DMC has the ability to handle

hard constraints and can correct for modelling mismatch and nonlinearities.

4.1 Dynamic Matrix Control

The MPC algorithm implemented requires a dynamic matrix to solve for the predicted

response of the process output variable. The DMC algorithm cannot handle open loop

unstable systems because the system will never reach steady state [45]. The linear

quadcopter model (3.27)-(3.30) presented in Section 3.2 is marginally stable [46].

Therefore, feedback gains are used to obtain a stable step response; similar to [47].

Full state feedback gains are designed by selecting desired closed loop poles and solved

22

using Ackermann’s formula [48]; feedback gains are implemented for all directions,

ufx = −Kx

[

x ẋ θ θ̇

]>

,

ufy = −Ky

[

y ẏ φ φ̇

]>

,

ufz = −Kz

[

z ż

]>

,

ufψ = −Kψ

[

ψ ψ̇

]>

.

(4.1)

The dynamic matrix G is developed with normalized step response coefficients

as shown in (4.2), where nu represents the number of control moves to be evaluated

(length of the optimal control sequence), also know as the control horizon. Note

that the prediction horizon, np should ideally contain the number of discrete intervals

needed to reach at least 95% of the steady state.

G =













g1 0 · · · 0

g2 g1 · · · 0

g3 g2 · · ·
...

...
... · · ·

...

gnp gnp−1 · · · gnp−nu+1













np×nu

(4.2)

It is desired to control positions in the x, y, z, ψ-directions, therefore, dynamic ma-

trices Gx, Gy, Gz and Gψ are developed for each direction. It is assumed that the

system dynamics do not change, therefore, the dynamic matrices are calculated once

and remain constant.

In this work, the discrete form of the linear consensus algorithm in (2.7) is imple-

mented as 





τφ = δ
∑na

j=1 aij(yj − yi − yrij)

τθ = δ
∑na

j=1 aij(xj − xi − xrij)

T̄ = δ
∑na

j=1 aij(zj − zi − zrij)

τψ = δ
∑na

j=1 aij(ψj − ψi − ψrij),

(4.3)

for i = 1, ..., na, where xi, yi, zi, ψi are the ith agent’s information states, and xrij ,

yrij , zrij , ψrij are the predetermined relative state from agent i to j and time step δ.

This consensus algorithm is used to determine the desired positions xd, yd, zd, ψd.

23

A setpoint tuning parameter α, can be applied to reduce the aggressiveness of the

control action by creating a smooth first order approach to the desired position. This

is expressed in (4.4), where t is the time and k is an index from 1 to np,

xsp(t+ k) = αxsp(t+ k − 1) + (1− α)xd

ysp(t+ k) = αysp(t+ k − 1) + (1− α)yd

zsp(t+ k) = αzsp(t+ k − 1) + (1− α)zd

ψsp(t+ k) = αψsp(t+ k − 1) + (1− α)ψd .

(4.4)

The prediction error is determined as the difference between the setpoints and the

future prediction as,

ex = xsp − x̂

ey = ysp − ŷ

ez = zsp − ẑ

eψ = ψsp − ψ̂ .

(4.5)

Note, α is a number between 0 and 1 and if applied, reduces the prediction error by

modifying the setpoints. This intuitive modification affects the transient performance

of the controller: as α increases, the closed loop response is slower.

The optimization function of the MPC controller to be minimized is shown in (4.6),

where ∆ux,∆uy,∆uψ,∆uz are the control moves based on [ux uy uψ uz] = [τθ τφ τψ T].

Jx = (x̂− xsp)
2 +∆u>xRx∆ux ,

Jy = (ŷ − ysp)
2 +∆u>y Ry∆uy ,

Jz = (ẑ − zsp)
2 +∆u>z Rz∆uz ,

Jψ = (ψ̂ − ψsp)
2 +∆u>ψRψ∆uψ .

(4.6)

In general, R(·) = diag(λ(·), ..., λ(·)) with tuning parameter λ(·) for each direction x,

y, z, ψ. The tuning parameter λ is implemented as move suppression to account for

the aggressiveness of the closed-loop response by reducing the magnitude of ∆u(·).

Note, that the general form of the optimization problem in (4.6) can also be

written as,

J = (G∆u− e)2 +∆u>R∆u . (4.7)

By taking the partial derivative and setting it equal to zero,

∂Jx
∂∆ux

= 0 , ∂Jy
∂∆uy

= 0 , ∂Jz
∂∆uz

= 0 ,
∂Jψ
∂∆uψ

= 0 , (4.8)

24

the unconstrained solution of the optimization functions are obtained as,

∆ux = (G>
xGx +Rx)

−1G>
x (xsp − x̂),

∆uy = (G>
y Gy +Ry)

−1G>
y (ysp − ŷ),

∆uz = (G>
z Gz +Rz)

−1G>
z (zsp − ẑ),

∆uψ = (G>
ψGψ +Rψ)

−1G>
ψ (ψsp − ψ̂).

(4.9)

As observed in (4.9), it is often difficult to estimate a small value for λ. Instead,

the move suppression can be applied by multiplying the diagonals of the square matrix

G>G, where λ is a number slightly larger than 1.

In general, when the optimal solution of (4.6) is determined, the control input is

designed as

u = ∆u+ u− , (4.10)

where u− represents the previous control input.

The generalized form for the future prediction ŷ of the system response is shown

in (4.11) as an example. The equation consists of three distinct terms that account

for I) past, II) current and III) future control moves,

ŷ(t+ k
∣
∣
t
) =

II
︷︸︸︷

ŷ(t) +

II and III
︷ ︸︸ ︷

k∑

i=k−nu−1

G(i)∆u(t+ k − i
∣
∣
t
)

+

I
︷ ︸︸ ︷

k+np−1
∑

i=k+1

G(i)−G(i− k)∆u(t− k − i) .

(4.11)

The future prediction is calculated according to the number of discrete intervals

and updated by shifting the predictions forward:

x̂ =







x̂(t+ 1)
...

x̂(t+ np)






, ŷ =







ŷ(t+ 1)
...

ŷ(t+ np)






, ẑ =







ẑ(t+ 1)
...

ẑ(t+ np)






, ψ̂ =







ψ̂(t+ 1)
...

ψ̂(t+ np)






.

(4.12)

With the new control input the future prediction is evaluated as

x̂ = x̂+Gx∆ux ,

ŷ = ŷ +Gy∆uy ,

ẑ = ẑ +Gz∆uz ,

ψ̂ = ψ̂ +Gψ∆uψ ,

(4.13)

25

where according to the receding horizon policy only the first optimal control move in

the sequence is applied.

From the current measured value of the response, (4.14) is used to adjust the future

system dynamic prediction to account for modelling mismatch or nonlinearities in the

model,

Φx

∣
∣
t
= xm

∣
∣
t
− x̂(t+ 1)

∣
∣
t
,

Φy

∣
∣
t
= ym

∣
∣
t
− ŷ(t+ 1)

∣
∣
t
,

Φz

∣
∣
t
= zm

∣
∣
t
− ẑ(t+ 1)

∣
∣
t
,

Φψ

∣
∣
t
= ψm

∣
∣
t
− ψ̂(t+ 1)

∣
∣
t
.

(4.14)

4.2 General Effects of Prediction and Control Horizon

It is often difficult to determine the prediction horizon or control horizon. If a desired

sampling time is known, then the prediction horizon can be determined based on

an accurate reflection of the step response. Otherwise, some consequential control

characteristics should be consider.

A short prediction horizon deprives the control optimization of important infor-

mation. This short-sighted control produces aggressive control actions and instability

can result. Theoretically, a prediction horizon equal to infinity will capture the full

effects of the control action, however, this is not computationally feasible. In addi-

tion, if the matrix resulting from the least squares algorithm (G>G) is ill-conditioned,

difficulty in controlling outputs can occur. This can be moderately corrected using

substantive values of move suppression, which increases the magnitude of the diag-

onal elements of the matrix inverted in the least squares calculation. Note that an

ill-conditioned matrix can lead to numerical issues, specifically, inversion of a nearly

singular matrix. Large control horizons can introduce more zeros into the dynamic

matrix, especially if deadtime is present; inversion of such a matrix should also be

considered. In general, a small control horizon can produce cautious control actions.

27

output constraints are applied when the condition (5.3) is valid:

rp ≤ ra . (5.3)

The avoidance distance cannot be greater than the smallest relative distance be-

tween agents according to the desired geometric formation. Otherwise, output con-

straints will be generated and affected agents will be unable to reach the final desired

formation.

To properly formulate constraints, the shape of the future prediction must be

evaluated. As a general example, consider Fig.5.2; the general constraint value σ in

Prediction I is a maximum constraint while in Prediction II is a minimum constraint.

f f

σ σ
t t

Prediction I Prediction II

Figure 5.2: Constraint generation considering shape of future prediction with f being
the general variable

In this work eight shapes were included, as shown in Fig.5.3, when formulating

constraints. This is because in simulation, positions can be positive or negative.

The additional shapes are needed, since minimum or maximum constraints change

depending on a negative or positive position value. Identification of the prediction

shape is guaranteed by determining the relationship between σ1 and σ2. Let σ1 be the

constraint value in question and σ2 be a value at the end of the prediction horizon.

Note, it is important to determine the constraint value σ1, according to (5.3), as the

earliest occurrence along the prediction horizon. A summary of the identification and

constraints according to shape in the x, y, z-directions are presented in Table 5.1.

The constraint equations for the controlled variables (except ψ) are formulated

28

σ

1

t

f

σ

1

σ

2

σ

2

t

f

(a) (b)

σ

1

t

f

σ

1

σ

2

σ

2

t

f

(c) (d)

σ

1

t

f

σ

1

σ

2

σ

2

t

f

(e) (f)

t

f

(g)

(h)

σ

1

σ

2

t

f

σ

1

σ

2

Figure 5.3: Future prediction shapes used for determining constraints

29

Table 5.1: Identification and prediction shapes for constraint generation

Shape Identification x constraints y constraints z constraints

Fig.5.3 (a)
σ1 < σ2
σ1 > 0
σ2 > 0

xmax = σ1
xmin = −inf

ymax = σ1
ymin = −inf

zmax = σ1
zmin = 0

Fig.5.3 (b)
σ1 > σ2
σ1 ≥ 0
σ2 > 0

xmax = +inf
xmin = σ1

ymax = +inf
ymin = σ1

zmax = +inf
zmin = σ1

Fig.5.3 (c)
σ1 < σ2
σ1 ≤ 0
σ2 > 0

xmax = σ1
xmin = −inf

ymax = σ1
ymin = −inf

zmax = +inf
zmin = 0

Fig.5.3 (d)
σ1 > σ2
σ1 > 0
σ2 < 0

xmax = +inf
xmin = σ1

ymax = +inf
ymin = σ1

zmax = +inf
zmin = σ1

Fig.5.3 (e)
σ1 < σ2
σ1 < 0
σ2 < 0

xmax = σ1
xmin = −inf

ymax = σ1
ymin = −inf

zmax = +inf
zmin = 0

Fig.5.3 (f)
σ1 > σ2
σ1 ≤ 0
σ2 < 0

xmax = +inf
xmin = σ1

ymax = +inf
ymin = σ1

zmax = +inf
zmin = 0

Fig.5.3 (g)
σ1 = σ2
σ1 > 0

xmax = σ1
xmin = −inf

ymax = σ1
ymin = −inf

zmax = σ1
zmin = 0

Fig.5.3 (h)
σ1 = σ2
σ1 ≤ 0

xmax = σ1
xmin = +inf

ymax = σ1
ymin = +inf

zmax = +inf
zmin = 0

below for maximum

Gx∆ux ≤ xmax − xsp + ex ,

Gy∆uy ≤ ymax − ysp + ey ,

Gz∆uz ≤ zmax − zsp + ez ,

(5.4)

and minimum constraints

Gx∆ux ≥ xmin − xsp + ex ,

Gy∆uy ≥ ymin − ysp + ey ,

Gz∆uz ≥ zmin − zsp + ez .

(5.5)

30

5.2 Input Constraints

Limits on the control action are applied directly to the optimization function in the

form of a logarithmic barrier function (5.6), similar components presented in [49]

[50]. From the control action limit, the maximum and minimum rates of control are

∆u(·),max and ∆u(·),min, respectively.

B(∆u(·)) = µ

(

−

nu∑

q=1

ln
{
∆u(·),max(q)−∆u(·)(q)

}

−
nu∑

q=1

ln
{
∆u(·)(q)−∆u(·),min(q)

}

)

.

(5.6)

The maximum control rate,

∆ux,max = ux,max − u−x + ufx ,

∆uy,max = uy,max − u−y + ufy ,

∆uz,max = uz,max − u−z + ufz ,

∆uψ,max = uψ,max − u−ψ + ufψ ,

(5.7)

and the minimum control rate,

∆ux,min = ux,min − u−x + ufx ,

∆uy,min = uy,min − u−y + ufy ,

∆uz,min = uz,min − u−z + ufz ,

∆uψ,min = uψ,min − u−ψ + ufψ ,

(5.8)

are calculated at each sampling instant, where u(·),max and u(·),min are the system’s

maximum and minimum control limit.

The penalty from the barrier increases and decreases smoothly as points move

near to far from the limits. A positive factor µ can also be introduced to ma-

nipulate the severity of the penalty as boundaries on the control action are ap-

proached. Fig.5.4 illustrates the effects of µ on a logarithmic barrier function with

limits [∆umin,∆umax] = [−1, 1]. If µ = 1 is the point of reference, then µ > 1 results

in a severe penalty as the limits are approached and µ < 1 gives a less severe penalty.

Constraints that cannot be violated are called hard constraints and the converse

are referred to as soft constraints. Note that soft constraints do not necessarily violate

32

Consensus
Protocol Optimizer Plant

Model

K

Neighbour
states

Cost Function

Constraints

Future
Errors

Prediction

Setpoints

Future
Control Moves

Past Outputs/Inputs

System
ResponseInput

+ +_ _

Figure 5.5: Block diagram of the proposed control strategy

The block diagram of the control strategy is shown in Fig.5.5. It depicts the

general procedure as: neighbour states and agent states are received and used to

determine desired setpoints. The prediction error enters the MPC subject to input

and output constraints. The optimal solution calculated by the MPC is added with

the feedback control, and this summation is the input to the quadcopter; this is done

simultaneously for all agents in all x, y, z, ψ-directions.

5.4 Algorithm for Case Variations

An algorithm structure for the control strategy and variations will be presented in this

section. An algorithm structure is used to effectively highlight the differences among

the control variations, which are referred to as cases. The main difference among cases

is the constraint generation for collision avoidance. Note that the positions referenced

in the following algorithms are with respect to the absolute reference frame.

Case 1: In this case, output constraints are engaged if the actual relative distances

are less than or equal to the avoidance distance. In addition, evasive action is only

in the z-direction and is a calculated value. This evasive value is

ze = ra − r , (5.11)

which is the distance required for the relative distance to be greater than the avoidance

33

distance. The evasive value is subtracted from the current z-position as

zmax = zi − ze , (5.12)

to then be used to formulate a maximum constraint according to (5.4). The process

evaluated by each agent can be found in Algorithm 1.

Algorithm 1 Collision avoidance

Require: All agents execute simultaneously.

1: repeat

2: Obtain current position and neighbour positions.

3: Determine desired positions using (4.3) and generate setpoints (4.4).

4: Adjust prediction with (4.14) and calculate the actual relative distances (5.1).

5: if r ≤ ra then

6: Determine zmax according to (5.12). Generate output constraints (5.4) and

(5.5).

7: Find solution to optimization functions (5.9) and (5.10) via numerical solver.

8: Apply the sum of MPC control input (4.10) and feedback gains (4.1).

9: Update prediction (4.13).

10: until Consensus = true

Case 2: In this case, output constraints are generated for only one (x, y or z)

predetermined direction. The output constraints (for the particular direction) are

engaged if the predicted relative distances are less than or equal to the avoidance

distance. The process for Case 2 is outlined in Algorithm 2.

Case 3: In this case, output constraints are applied for all directions (x, y and

z) and evasive movement occurs only in the z-direction. First, the actual relative

distance between neighbours is checked using current positions. If the actual relative

distance is less than or equal to the avoidance distance then an output constraint is

generated to restrict the agent to its current position; this is done for x,y-directions.

The x and y constraints are generated as a minimum or maximum according the

relationship between the current and previous position. For example, consider Fig.5.6,

where x1 represents the current position and x0 represents the previous position of

the agent. In event (a) x1 would be a minimum, while in event (b) x1 would be

34

Algorithm 2 Collision avoidance

Require: All agents execute simultaneously.

1: repeat

2: Obtain current position and neighbour positions.

3: Determine desired positions using (4.3) and generate setpoints (4.4).

4: Adjust prediction with (4.14) and calculate the predicted relative distances (5.2).

5: if rp ≤ ra then

6: Generate output constraints (5.4) and (5.5) in the predetermined direction,

according to Table 5.1.

7: Find solution to optimization functions (5.9) and (5.10) via numerical solver.

8: Apply the sum of MPC control input (4.10) and feedback gains (4.1).

9: Update prediction (4.13).

10: until Consensus = true

(a) (b)

y

x

x

1

x

0

y

x

x

0

x

1

Figure 5.6: Previous and current x-positions for constraint generation

a maximum. All possible combinations of current and previous positions for x and

y constraint generation are illustrated in Fig.B.1 and Fig.B.2, respectively; refer to

Appendix B. A summary of the event identification and constraint generation for

Case 3 can be found in Table 5.2.

Similar to Case 1, the evasive value in the z-direction is calculated using (5.11).

The evasive value is either added to the current z-position

zmin = zi + ze , (5.13)

or subtracted from the current z-position as

zmax = zi − ze . (5.14)

35

Table 5.2: Event identification and constraint generation

Event Identification Max. constraints Min. constraints

Fig.B.1 (a)
Fig.B.2 (a)

x0 > x1, x1 ≥ 0, x0 ≥ 0
y0 > y1, y1 ≥ 0, y0 ≥ 0

xmax = +inf
ymax = +inf

xmin = x1
ymin = y1

Fig.B.1 (b)
Fig.B.2 (b)

x0 < x1, x1 ≥ 0, x0 ≥ 0
y0 < y1, y1 ≥ 0, y0 ≥ 0

xmax = x1
ymax = y1

xmin = −inf
ymin = −inf

Fig.B.1 (c)
Fig.B.2 (c)

x0 < x1, x1 ≥ 0, x0 ≤ 0
y0 < y1, y1 ≥ 0, y0 ≤ 0

xmax = x1
ymax = y1

xmin = −inf
ymin = −inf

Fig.B.1 (d)
Fig.B.2 (d)

x0 > x1, x1 ≤ 0, x0 ≥ 0
y0 > y1, y1 ≤ 0, y0 ≥ 0

xmax = +inf
ymax = +inf

xmin = x1
ymin = y1

Fig.B.1 (e)
Fig.B.2 (e)

x0 > x1, x1 ≤ 0, x0 ≤ 0
y0 > y1, y1 ≤ 0, y0 ≤ 0

xmax = +inf
ymax = +inf

xmin = x1
ymin = y1

Fig.B.1 (e)
Fig.B.2 (e)

x0 < x1, x1 ≤ 0, x0 ≤ 0
y0 < y1, y1 ≤ 0, y0 ≤ 0

xmax = x1
ymax = y1

xmin = −inf
ymin = −inf

Whether the evasive value is added or subtracted, is predetermined for each agent.

This feature allows some agents to have evasive action by increasing their z-position,

while others have evasive action by decreasing their z-position. Note that in all cases,

the complementary constraint for (5.13) and (5.14) is zmax = +inf and zmin = 0,

respectively. The structure of this collision avoidance strategy is shown in Algorithm

3.

Case 4: This case is the control strategy for obstacle avoidance. Output con-

straints in all directions are engaged if the predicted relative distances (between the

agent and obstacles) are less than or equal to the avoidance distance. The process

for the obstacle avoidance can be found in Algorithm 4.

36

Algorithm 3 Collision avoidance

Require: All agents execute simultaneously.

1: repeat

2: Obtain current position and neighbour positions.

3: Determine desired positions using (4.3) and generate setpoints (4.4).

4: Adjust prediction with (4.14) and calculate the actual relative distances (5.1).

5: if r ≤ ra then

6: Determine zmax according to (??). Generate output constraints (5.4) and

(5.5) using current positions for x,y-directions and zmax for the z-direction.

7: Find solution to optimization functions (5.9) and (5.10) via numerical solver.

8: Apply the sum of MPC control input (4.10) and feedback gains (4.1).

9: Update prediction (4.13).

10: until Consensus = true

Algorithm 4 Obstacle avoidance

Require: All agents execute simultaneously.

1: repeat

2: Obtain current position and obstacle positions.

3: Determine desired positions using (4.3) and generate setpoints (4.4).

4: Adjust prediction with (4.14) and calculate the predicted relative distances (5.2).

5: if rp ≤ ra then

6: Generate output constraints (5.4) and (5.5) according to Table 5.1

7: Find solution to optimization functions (5.9) and (5.10) via numerical solver.

8: Apply the sum of MPC control input (4.10) and feedback gains (4.1).

9: Update prediction (4.13).

10: until Consensus = true

Chapter 6

Simulation Studies on Collision Avoidance

This chapter presents the simulation results for the proposed control strategies out-

lined in Algorithms 1-3 from Chapter 5. Note that in order to better view simulation

details some plots only display a portion of the full simulation time.

The simulation consists of a leaderless 4 agent team of quadcopters at rest and

spatially distributed on the ground. The quadcopters are required to form a ring with

a relative distance of 7.5 meters to the circle’s center at a height of 15 meters. The

initial quadcopter positions (x, y, z, ψ) are Q1 = (2, 1, 0, 0), Q2 = (−3,−7, 0, 0.1),

Q3 = (5, 5, 0, 0.4) and Q4 = (8, 0, 0, 0.5); all remaining states are zero. The team of

quadcopters exchange information with their direct neighbours; the resulting adja-

cency matrix is undirected

A =















0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0















.

The radius of the safety region was chosen to be rs = 0.75 meters; this is based on

a quadcopter with arm lengths of 0.3 meters. Therefore, the relative safety distance

between quadcopters is calculated as 1.5 meters. The avoidance distance is equal to

6 meters (Case 1), 7 meters (Case 2) and 5 meters (Case 3). Based on motor thrust

details in [51], the control limits in simulation are ±12 Newton-meters and ±20 New-

tons. Parameter selection is summarized in Table 6.1. Simulations were performed on

Matlab 2017b and MPC optimization functions were solved using “fmincon” solver.

The full state feedback gains used to stabilize the quadcopter open loop response

were designed by selecting desired closed loop poles
[

−1 −1 −1 −1
]

; gain values

37

38

Table 6.1: Simulation Parameters

Definition Value

mass (kg) m = 2

sampling time (s) δ = 0.05

state feedback gains







Kx =
[

−0.1019 −0.4077 6 4
]

Ky =
[

0.1019 0.4077 6 4
]

Kz =
[

2 4
]

Ks =
[

1 2
]

control horizon nu = 2

prediction horizon np = 180

move suppression λ = 1.001

setpoint tuning parameter α = 0.6

logarithmic barrier function parameter µ = 1

are presented in in Table 6.1. The normalized step response for the quadcopter

dynamics in x, y, z, ψ-directions can be see in Fig.6.1. The normalized step responses

are sampled to obtain the position coefficients for the dynamic matrices.

The 2-dimensional and 3-dimensional views of the results without a collision avoid-

ance strategy are shown in Fig.6.2 and Fig.6.3 respectively. It is observed that the

quadcopters can reach consensus and achieve the desired formation at the requested

height of 15 meters. Note that the red circles represent points where the relative dis-

tance between two quadcopters was below the relative safety distance, and the black

star is the final quadcopter position.

The relative distances between all combinations of quadcopters are presented in

Fig.6.4, where Qij for i, j = 1, ..., na and i 6= j in the figure legends refers to quad-

copter i and quadcopter j. Between 3 and 6 seconds, all four quadcopters violate the

relative safety distance with another quadcopter (Q14 and Q23). Quadcopters 2 and

3 have the smallest violating relative distance of 0.0573 meters while Quadcopters 1

and 4 have a relative distance of 0.6462 meters.

Although collisions occurred, it is observed in Fig.6.5 that the input was success-

fully constrained using the logarithmic barrier function.

52

4

3

2

1

5

(a)

4

3

2

1

5

(b)

Figure 6.21: Communication topology (a) successful 5 agent topology (b) unsuccessful
5 agent topology

Fig.6.23, respectively. Despite the occurrence of collisions in topology (b), some

avoidance can be seen.

The proposed control strategy achieves consensus by limiting the quadcopter’s

positions in the direction it was already headed in. The consensus algorithm with a

ring formation (along with the specified initial positions) develops setpoints that bring

quadcopters towards the center of the ring, before moving outwards. Therefore, some

quadcopters are unaware as they approach or are being approached by non-neighbour

quadcopters. An apparent answer to this problem is to include more communication

links among the quadcopters, however, the argument of centralized versus distributed

control resurfaces. A possible solution would be to have an underlying distributed

communication topology used to develop desired setpoints and achieve consensus,

and have quadcopters receive broadcasted positions as they are within range of non-

network quadcopters.

6.2.3 Effects of Initial Conditions

In this section, the effects of different x, y initial conditions were observed. The

relative distances between quadcopters is shown in Fig.6.24 as a comparison for the

investigated variations. Variation (a) places the team closer together so their relative

distances are smaller, while Variation (b) creates larger relative distances between

the quadcopters. The original variation contains the initial conditions according to

the simulations shown for Case 2, and has relative distances inclusive to Variation (a)

64

Table 6.2: Simulation Times

Case & Variation Reference
Consensus Computation Time (s)

Time (s) x-dir. y-dir. z-dir. ψ-dir.

1 Section 6.1 110.95 0.0224 0.0229 0.0120 0.0151

2, Original Section 6.2 107.95 0.0222 0.0232 0.0129 0.0152

2, λ = 1.100 Section 6.2.1 109.90 0.0230 0.0231 0.0166 0.0155

2, α = 0 Section 6.2.1 107.55 0.0228 0.0232 0.0134 0.0156

2, α = 0.9 Section 6.2.1 119.85 0.0230 0.0235 0.0133 0.0155

2, 5 agents† Section 6.2.2 161.50 0.0211 0.0209 0.0128 0.0163

2, 5 agents†† Section 6.2.2 182.20 0.0234 0.0219 0.0122 0.0163

2, Far Section 6.2.3 124.15 0.0220 0.0226 0.0134 0.0152

2, Close Section 6.2.3 109.45 0.0225 0.0232 0.0129 0.0152

2, SC‡ Section 6.2.4 87.00 0.0217 0.0222 0.0134 0.0159

2, Spanning tree Section 6.2.4 173.15 0.0209 0.0213 0.0118 0.0135

2, 3D formation Section 6.2.5 110.95 0.0222 0.0213 0.0129 0.0152

3 Section 6.3 103.25 0.1084 0.1078 0.1835 0.1020

†successful, ††unsuccessful, ‡strongly connected

6.4 Case Comparison

The time to reach consensus and the computation time of the optimization functions

are presented in Table 6.2, and compared for the collision avoidance case studies.

Consensus time refers to the time is took for the quadcopters to reach the desired ge-

ometric formation in the x-y plane and reached the desired altitude in the z-direction.

This was calculated using the number of simulation iterations and the sampling time.

Computation time refers to the time it took for the processor (the computer run-

ning the simulation) to 1) formulate the optimization function, 2) formulate the con-

straints, and 3) solve the optimization function. The computation times presented in

Table 6.2 are the averaged values among the quadcopters according to the optimiza-

tion function in each direction. The computation time was measured using Matlab

functions: “tic” (records the internal time at execution) and “toc” (determines elapsed

time).

In Case 2, it is observed that the when the setpoint tuning parameter increased

(α = 0 to α = 0.9) the consensus time increased. This is because the first order

approach to the desired setpoint is less aggressive, which means that the setpoints

65

across the prediction horizon are more gradual. As a result, the larger α value reduced

the control aggressiveness and therefore, the system of quadcopters took longer to

achieve consensus.

As expected, the team of quadcopters took longer to reach consensus in Case 2

with far initial conditions versus Case 2 with close initial conditions. This result is

attributed to the additional distances covered by the quadcopters.

In Case 2, the strongly connected topology outperformed the spanning tree topol-

ogy with respect to consensus time. This is because with the spanning tree topology,

the root hardly moved forcing the other quadcopters to achieve consensus without

its contribution in covering distance. In addition, the strongly connected topology

reached consensus quicker than the original undirected topology. As the number of

edges increases, the connectivity increases, which allows agreement to be reached

quicker [27].

While the consensus time in Case 3 is similar to the other case studies, the com-

putation times are quite large; especially in the z-direction. The large computation

times in the x and y-directions, indicate that solving the optimization function nu-

merically to constrain the quadcopter to its current position, may not be practical.

Simply applying control that guarantees hovering behaviour may be more reasonable.

It is difficult to draw conclusions for the high computation time in the ψ-direction,

since no output constraints are applied. All case study computation times, except for

Case 3, indicate that a sampling time of 0.05 seconds is reasonable.

Chapter 7

Simulation Studies on Obstacle Avoidance

7.1 Case 4 - Obstacle avoidance with x, y and z constraints

This chapter presents the simulation results for the proposed control strategy outlined

in Algorithm 4. This is an isolated study on obstacle avoidance, where collision

avoidance is not considered. Simulations are designed such that quadcopters will

collide with obstacles and not each other. Note, in order to better view simulation

details some plots only display a portion of the full simulation time.

The simulation consists of a leaderless 3 agent team of quadcopters at rest and

spatially distributed on the ground. The quadcopters are required to form a ring with

a relative distance of 7.5 meters to the ring’s center at a height of 15 meters. The

initial quadcopter positions (x, y, z, ψ) are Q1 = (2, 1, 0, 0), Q2 = (−3,−7, 0, 0.1), and

Q3 = (5, 0, 0, 0.4); all remaining states are zero. There are two spherical obstacles

(no = 2) with center positions and radius (x, y, z, radius) as O1 = (2,−2, 8, 2) and

O2 = (−1, 0, 15, 3). In this study, the team of quadcopters have position information

of all obstacles.

The radius of the safety region was chosen to be rs = 0.75 meters; this is based on

a quadcopter with arm lengths of 0.3 meters. Therefore, the relative safety distance

between quadcopters is 1.5 meters. The avoidance distance is 3 meters and the control

limits based on motor thrust values [51], are ±12 Newton-meters and ±20 Newtons.

The parameters are selected as presented in Table 6.1. Simulations were performed

in Matlab 2017b and the optimization functions were solved using “fmincon” solver.

The 2-dimensional and 3-dimensional views of the results without the obstacle

avoidance strategy are shown in Fig.7.1 and Fig.7.2, respectively. It is observed

that the quadcopters can reach consensus and achieve the desired formation at the

requested height of 15 meters. Note that the green circles represent points where the

relative distance between a quadcopter and an obstacle was below the relative safety

distance or inside the obstacle region, and the black star is the final position.

66

72

2). However, the differences between the collision avoidance Algorithm 2 and the ob-

stacle avoidance Algorithm 4, can provide greater insight on the considerations that

led to current control designs. The main consideration in obstacle avoidance of static

objects, is that the avoidance solely depends on the agent’s tactic. Simple evaluation:

the obstacle will not move, so the agent must. From this idea, the quadcopter in

Algorithm 4 will generate constraints all x, y, z-directions to obtain full evasive move-

ment. The opposite idea was the main consideration in collision avoidance Algorithm

2. In a team of agents communicating with one another, the avoidance depends on

all agents involved. For instance, consider two agents approaching each other with

the ability of full evasive movement. It is more likely that they will collide during the

evasive movement, than if they were restricted to evading in different directions, like

in Algorithm 2, or in the positive and negative directions of an axis, like in Algorithm

3.

Chapter 8

Conclusions and Future Work

The objective of this work was to develop a control strategy for collision and obsta-

cle avoidance of multiple quadcopters. The proposed MPC strategy and variations,

allow for multiple quadcopters to reach consensus in the x, y, ψ-directions and obtain

a preassigned desired altitude in the z-direction. The collision and obstacle avoid-

ance is achieved by applying conditional output constraints on the x, y, z-position of

the quadcopter, based on the positions of neighbouring quadcopters. If collision is

not imminent, then the output constraints are not applied to the MPC optimization

function. This on/off feature aids in reducing the frequency the MPC optimization

function is subject to hard constraints. In turn, this promotes minimizing compu-

tation times. In addition, implementing logarithmic barrier functions as input rate

constraints on the control actions, help to reduce computation times. Simulation

studies for a team of four quadcopters illustrated successful trials of the case vari-

ations under the proposed condition that all quadcopters start from rest. This is

a feature that is practical in real world applications but often overlooked. Exten-

sive simulations were conducted to properly interpret the parameter effects of the

distributed MPC on the overall system performance. A general understanding of

the MPC parameters and initial condition effects were determined, however, due to

mutual parametric dependence, the effects of communication topology has yet to be

determined. As an isolated study, a case variation of the proposed control method

was successfully applied for obstacle avoidance of static objects.

There are many potential extensions and current challenges to consider for future

development of this work. First would be to apply the proposed control strategy and

variations to a real system of multiple quadcopters. This would be an interesting

experiment since no current collision avoidance methods employ DMC. Recall that

DMC can use real experimental data to develop predictions and can correct for mod-

elling mismatch and nonlinearities. Currently, the controllers depend on obtaining

73

74

full state feedback to stabilize the marginally stable quadcopter dynamics. Output

feedback could be investigated, or another method of stabilizing the system with-

out full state knowledge could be explored. It is also practical to explore collision

avoidance control design for quadcopters subject to time delays or communication

constraints. Other considerations include hardware limitations such as noisy sensor

measurements or onboard processing power. Solutions to these possible extensions

will aid in the main goal of improving performance and operational capabilities of

multiple quadcopters.

Bibliography

[1] T. Luukkonen, “Modelling and control of quadcopter,” tech. rep., Aalto Univer-
sity, 2011.

[2] Q. Ali and S. Montenegro, “Explicit model following distributed control scheme
for formation flying of mini uavs,” IEEE Access, vol. 4, pp. 397–406, 2016.

[3] H. Du, J. Zhang, W. Zhu, and D. Wu, “Finite-time consensus control for a group
of quadrotor aircraft,” in 2017 Chinese Automation Congress (CAC), pp. 1531–
1536, Oct 2017.

[4] Y.-J. Pan, H. Werner, Z. Huang, and M. Bartels, “Distributed cooperative
control of leader-follower multi-agent systems under packet dropouts for quad-
copters,” Systems & Control Letters, vol. 106, pp. 47 – 57, 2017.

[5] N. T. Nguyen, I. Prodan, and L. Lefevre, “Multi-layer optimization-based control
design for quadcopter trajectory tracking,” in 2017 25th Mediterranean Confer-
ence on Control and Automation (MED), pp. 601–606, July 2017.

[6] Y. Lin and S. Saripalli, “Sampling-based path planning for UAV collision
avoidance,” IEEE Transactions on Intelligent Transportation Systems, vol. 18,
pp. 3179–3192, Nov 2017.

[7] S. Vera, J. Cobano, G. Heredia, and A. Ollero, “Collision avoidance for multiple
UAVs using rolling-horizon policy,” Journal of Intelligent & Robotic Systems,
vol. 84, 10 2016.

[8] Q. Gong, C. Wang, Z. Qi, and Z. Ding, “Gradient-based collision avoidance
algorithm for second-order multi-agent formation control,” in 2017 36th Chinese
Control Conference (CCC), pp. 8183–8188, July 2017.

[9] A. Mondal and L. Behera, “Gradient-based collision free desired formation gen-
eration,” IFAC Proceedings Volumes, vol. 47, no. 1, pp. 448 – 454, 2014. 3rd
International Conference on Advances in Control and Optimization of Dynami-
cal Systems (2014).

[10] A. Souliman, A. Joukhadar, H. Alturbeh, and J. F. Whidborne, “Real time
control of multi-agent mobile robots with intelligent collision avoidance system,”
in 2013 Science and Information Conference, pp. 93–98, Oct 2013.

[11] Y. Xia, X. Na, Z. Sun, and J. Chen, “Formation control and collision avoidance
for multi-agent systems based on position estimation,” ISA Transactions, vol. 61,
pp. 287 – 296, 2016.

75

76

[12] Y. Kuriki and T. Namerikawa, “Experimental validation of cooperative formation
control with collision avoidance for a multi-UAV system,” in 2015 6th Interna-
tional Conference on Automation, Robotics and Applications (ICARA), pp. 531–
536, Feb 2015.

[13] A. Mondal, L. Behera, S. R. Sahoo, and A. Shukla, “A novel multi-agent forma-
tion control law with collision avoidance,” IEEE/CAA Journal of Automatica
Sinica, vol. 4, no. 3, pp. 558–568, 2017.

[14] D. E. Chang, S. C. Shadden, J. E. Marsden, and R. Olfati-Saber, “Collision
avoidance for multiple agent systems,” in 42nd IEEE International Conference
on Decision and Control, vol. 1, pp. 539–543 Vol.1, Dec 2003.

[15] P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy for dis-
tributed multiagent navigation,” IEEE Robotics and Automation Letters, vol. 2,
pp. 656–663, April 2017.

[16] T. Mylvaganam, M. Sassano, and A. Astolfi, “A differential game approach
to multi-agent collision avoidance,” IEEE Transactions on Automatic Control,
vol. 62, pp. 4229–4235, Aug 2017.

[17] E. F. Camacho and C. Bordons, Model Predictive Control. Springer-Verlag Lon-
don, 1999.

[18] A. Bemporad and C. Rocchi, “Decentralized linear time-varying model predictive
control of a formation of unmanned aerial vehicles,” in 2011 50th IEEE Confer-
ence on Decision and Control and European Control Conference, pp. 7488–7493,
Dec 2011.

[19] Y. Kuriki and T. Namerikawa, “Formation control with collision avoidance for
a multi-UAV system using decentralized MPC and consensus-based control,” in
Control Conference (ECC), 2015 European, pp. 3079–3084, July 2015.

[20] M. Ille and T. Namerikawa, “Collision avoidance between multi-UAV-systems
considering formation control using MPC,” in IEEE International Conference
on Advanced Intelligent Mechatronics, July 2017.

[21] A. Richards and J. How, “Decentralized model predictive control of cooperating
UAVs,” in 2004 43rd IEEE Conference on Decision and Control, vol. 4, pp. 4286–
4291, December 2004.

[22] L. Dai, Q. Cao, Y. Xia, and Y. Gao, “Distributed MPC for formation of multi-
agent systems with collision avoidance and obstacle avoidance,” Journal of the
Franklin Institute, vol. 354, no. 4, pp. 2068 – 2085, 2017.

[23] J. Rossiter, Model-Based Predictive Control: A Practical Approach. CRC Press,
2003.

77

[24] R. V. Parys and G. Pipeleers, “Distributed model predictive formation control
with inter-vehicle collision avoidance,” in 2017 11th Asian Control Conference
(ASCC), pp. 2399–2404, Dec 2017.

[25] P. Wang and B. Ding, “A synthesis approach of distributed model predictive con-
trol for homogeneous multi-agent system with collision avoidance,” International
Journal of Control, vol. 87, no. 1, pp. 52–63, 2014.

[26] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of
Multi-Agent Systems: Optimal and Adaptive Design Approaches. Springer, 2014.
Graph theory Chapter 2.

[27] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Transactions on Automatic
Control, vol. 49, pp. 1520–1533, Sept 2004.

[28] Z. Huang and Y. J. Pan, “Observer based leader following consensus for multi-
agent systems with random packet loss,” in 2017 IEEE Conference on Control
Technology and Applications (CCTA), pp. 1698–1703, Aug 2017.

[29] F. Meng, J. Xi, Z. Shi, and Y. Zhong, “Leader-following consensus for singu-
lar swarm systems,” in Proceedings of the 31st Chinese Control Conference,
pp. 6357–6362, July 2012.

[30] L. Sheng, Y.-J. Pan, and X. Gong, “Consensus formation control for a class
of networked multiple mobile robot systems,” Journal of Control Science and
Engineering, vol. 2012, Jan. 2012.

[31] U. Pilz, A. P. Popov, and H. Werner, “Robust controller design for formation
flight of quad-rotor helicopters,” in Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, pp. 8322–8327, Dec 2009.

[32] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation con-
trol,” Automatica, vol. 53, pp. 424 – 440, 2015.

[33] J. S. Shamma, ed., Cooperative Control of Distributed Multi-Agent Systems. John
Wiley & Sons Ltd, 2007.

[34] J. M. Maestre and R. R. Negenborn, eds., Distributed Model Predictive Control
Made Easy. Springer, 2014.

[35] F. Lamnabhi-Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson, P. Khargonekar,
R. M. Murray, H. Nijmeijer, T. Samad, D. Tilbury, and P. V. den Hof, “Systems
& control for the future of humanity, research agenda: Current and future roles,
impact and grand challenges,” Annual Reviews in Control, vol. 43, pp. 1 – 64,
2017.

78

[36] P. Castillo, R. Lozano, and A. E. Dzul, Modelling and Control of Mini-Flying
Machines. Springer, 2005.

[37] J.-J. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991.

[38] L. R. G. Carrillo, A. Dzul, R. Lozano, and C. Pgard, Quad Rotorcraft Con-
trol: Vision-Based Hovering and Navigation. Springer, 2012. Euler Langrange
formulation.

[39] P. Castillo, A. Dzul, and R. Lozano, “Real-time stabilization and tracking of a
four-rotor mini rotorcraft,” IEEE Transactions on Control Systems Technology,
vol. 12, pp. 510–516, July 2004.

[40] D. Lara, A. Sanchez, R. Lozano, and P. Castillo, “Real-time embedded control
system for VTOL aircrafts: Application to stabilize a quad-rotor helicopter,” in
International Conference on Control Applications, Oct 2006. Proceedings of the
2006 IEEE.

[41] Y. Kuriki and T. Namerikawa, “Formation control of UAVs with a fourth-order
flight dynamics,” 52nd IEEE Conference on Decision and Control, pp. 6706–
6711, 2013.

[42] L. Wang, Model Predictive Control System Design and Implementation Using
MATLAB. Springer, 2009.

[43] W. S. Levine, ed., The Control Systems Handbook: Control System Advanced
Methods, ch. 28: Linear Model Predictive Control in the Process Industries,
pp. 28.1–28.24. CRC Press, 2010.

[44] C. R. Cutler and B. L. Ramaker, “Dynamic matrix control - a computer control
algorithm,” Automatic Control Conference, 1980.

[45] K. Z. Qi and D. G. Fisher, “Model predictive control for open loop unstable
process,” in 1993 American Control Conference, pp. 791–795, June 1993.

[46] N. S. Nise, Control Systems Engineering. John Wiley & Sons, 6th ed., 2011.

[47] J. K. Lee and S. W. Park, “Model predictive control for multivariable unstable
processes with constraints on manipulated variables,” Korean Journal of Chem-
ical Engineering, vol. 8, pp. 195–202, July 1991.

[48] K. Ogata, Modern Control Engineering. Upper Saddle River, NJ, USA: Prentice
Hall, 5th ed., 2010.

[49] A. G. Wills and W. P. Heath, “Barrier function based model predictive control,”
Automatica, vol. 40, no. 8, pp. 1415 – 1422, 2004.

[50] R. Dunia and G. Fernandez, “MPC with conditional penalty cost,” in 2009 35th
Annual Conference of IEEE Industrial Electronics, pp. 1657–1662, Nov 2009.

79

[51] A. V. Hystad, “Model, design and control of a quadcopter,” Master’s thesis,
Norwegian University of Science and Technology, 2015. Reference for control
limits.

[52] T. Bennison and E. Hall, A Level Mathematics: A Comprehensive and Supportive
Companion to the Unified Curriculum. Tarquin Group, 2016.

Appendix A

Quadcopter Model - Coriolis Terms

As presented in [1] the Coriolis terms are contained in the matrix

C(η, η̇) =








C11 C12 C13

C21 C22 C23

C31 C32 C33







, (A.1)

C11 = 0

C12 = (Iyy − Izz)(θ̇CφSφ + ψ̇S2
φCθ) + (Izz − Iyy)ψ̇C

2
φCθ − Ixxψ̇Cθ

C13 = (Izz − Iyy)ψ̇CφSφC
2
θ

C21 = (Izz − Iyy)(θ̇CφSφ + ψ̇SφCθ) + (Iyy − Izz)ψ̇C
2
φCθ + Ixxψ̇Cθ

C22 = (Izz − Iyy)φ̇CφSφ

C23 = −Ixxψ̇SθCθ + Iyyψ̇S
2
φSθCθ + Izzψ̇C

2
φSθCθ

C31 = (Iyy − Izz)ψ̇C
2
θSφCφ − Ixxθ̇Cθ

C32 = (Izz − Iyy)(θ̇CφSφSθ + φ̇S2
φCθ) + (Iyy − Izz)φ̇C

2
φCθ + Ixxψ̇SθCθ

− Iyyψ̇S
2
φSθCθ − Izzψ̇C

2
φSθCθ

C33 = (Iyy − Izz)φ̇CφSφC
2
θ − Iyyθ̇S

2
φCθSθ − Izz θ̇C

2
φCθSθ + Ixxθ̇CθSθ .

Note: Cx = cos(x), Sx = sin(x) and Ixx, Iyy, Izz are the inertia values for the quad-

copter.

80

Appendix B

Case 3 - Positions for x and y Constraint Generation

(a) (b)

(c) (d)

(e) (f)

y

x

x

1

x

0

y

x

x

0

x

1

y

x

x

1

x

0

y

x

x

0

x

1

y

x

x

1

x

0

y

x

x

0

x

1

Figure B.1: Previous and current x-positions for constraint generation

81

82

(a) (b)

(c) (d)

(e) (f)

y

x

y

0

y

1

y

x

y

1

y

0

y

x

y

1

y

0

y

x

y

0

y

1

y

x

y

0

y

1

y

x

y

1

y

0

Figure B.2: Previous and current y-positions for constraint generation

Appendix C

Small Angle Approximation

Let the approximate sine value for small angles be represented as,

sin θ ≈ θ . (C.1)

Similarly in [52], the approximate cosine value can be determined from a double

angle identity as,

cos 2θ ≈ 1− 2 sin θ2 ,

cos θ ≈ 1− 2 sin 1
2
θ
2
.

(C.2)

Using (C.1), it can be stated that if θ is small, then sin 1
2
θ ≈ 1

2
θ. Now substituting

into (C.2),

cos θ ≈ 1− 2(1
2
θ
2
) ,

cos θ ≈ 1− θ2

2
. (C.3)

The percent errors of equations C.1 and C.3, with respect to the actual sine and

cosine values is presented in Fig.C.1. It is observed, that a minimal percent error of

1% is obtained when θ = 0.245 radians for sine, and θ = 0.663 radians for cosine.

The values determined at 1% error can be used as a benchmark for the quadcopter

linearization condition of small φ and θ angles. Therefore, it is safe to reason that

roll and pitch angle values less than 0.245 radians are sufficient for the quadcopter

linearization condition.

83

Appendix D

Author’s Publication List

Peer-Reviewed

S. Dubay and Y.J. Pan,“Distributed MPC based Collision Avoidance Approach

for Consensus of Multiple Quadcopters”, Proceedings of the 14th IEEE International

Conference on Control and Automation, 2018.

S. Dubay, Y.J. Pan, M. Charest and D. Shukla,“A Master Follower Device for

Demonstrating Concepts of Modelling and Control”, Proceedings of the 2016 CSME

International Congress, 2016.

Other Publications

S. Dubay and Y.J. Pan, “Distributed MPC for Multi-Agent Systems with Appli-

cations to Quadcopters”, (Presentation) 2017 Dalhousie University Mechanical and

Materials Engineering Conference, 2017.

In Preparation

S. Dubay and Y.J. Pan, “Distributed DMC with Constrained Optimization for Col-

lision and Obstacle Avoidance of Multiple Quadcopters”, (Journal).

85

