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Abstract

As the cost to manufacture quadcopters decrease, multi-agent applications for civil-
ian tasks, such as large-scale surveying, search and rescue missions and fire fighting,
are becoming increasingly realizable. However, a multi-agent system of fast moving
quadcopters has a high risk of collisions with neighbouring quadcopters or obstacles.
The objective of this work is to develop a control strategy for collision and obstacle
avoidance of multiple quadcopters. In this thesis, the problem of distributed model
predictive control (MPC) for collision avoidance among a team of multiple quad-
copters attempting to reach consensus is investigated. Violations of a predetermined
safety radius generates output constraints on the MPC optimization function. In
addition, logarithmic barrier functions are implemented as input rate constraints on
the control actions. Extensive simulation studies for a team of four quadcopters il-
lustrate promising results of the proposed control strategy and case variations. In
addition, distributed MPC parameter effects on the system performance are studied

and a successful isolated study for obstacle avoidance of static objects is presented.
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Chapter 1

Introduction

Multiple agents are often used for the advantages of cooperative behaviour, where
they can interact and solve complex problems that are beyond the capacity of a
single agent. A multi-agent system (MAS) is a network of software agents or compu-
tationally capable physical (electro-mechanical) devices, that exchange information
to make decisions or determine actuations in order to progress towards an objective.
The main advantage of an unmanned MAS is that they are useful for missions/tasks
that are beyond human limitations. They are not subject to human conditions such
as fatigue and endurance, and they are expendable and recoverable; removing the
risk to humans. Planetary explorations, factory floor operations and transportation
can be carried out by cooperative unmanned ground vehicles (UGVs) and a team of
unmanned underwater vehicles (UUVs) could be deployed for large-scale surveying,
seismic monitoring, underwater explorations and searches. As the cost to manufac-
ture an unmanned aerial vehicle (UAV) decreases, multi-agent applications can aid
with civilian tasks such as search and rescue missions, surveillance, fire fighting, crop
monitoring and explorations in extreme environments. In addition, multi-agent sys-
tems are not limited to homogeneous compositions. A MAS makeup can include a
mix (various structures) of one type of unmanned vehicle or combinations of UG Vs,

UUVs and UAVs.

Due to the operational nature of MASs, it is suitable that centralized control ap-
proaches are restricted to small groups like a leader follower configuration. However,
for large sizes of MASs the centralized approach fails since centralized information
gathering is not sustainable and the computational load becomes impractical. There-

fore, a distributed methodology is more effective.

In a multiple quadcopter system, information can be efficiently collected from
spatially distributed agents. The structure of a quadcopter allows for versatile move-

ment, making it a popular choice for the applications listed previously. However, a
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quadcopter’s primary restriction is its battery life. Developments in sensor perfor-
mance also allow quadcopters to be designed with different characteristics. This is
advantageous because various capabilities can be distributed and assigned to agents

in the system.

1.1 Research Motivation

A quadcopter can be considered a challenging system, and to an even greater extent
with multiple quadcopters. This premise can be highlighted through comparisons
with a UGV. A UGV travels on a 2-dimensional plane, it is slow moving, has low-
lying sensors that can give feedback on objects nearby, and it has the ability to make
a full stop. On the other hand, a quadcopter operates in 3-dimensions, is fast moving,
and therefore has a higher risk of collisions.

Many control schemes have been successfully developed for formation control [2],
consensus control [3], communication constraints [4] and trajectory tracking [5] for
multiple quadcopters. However, certain aspects are lacking in the control for colli-
sion and obstacle avoidance of multiple quadcopters. Research to fill these gaps is
especially important in enhancing the operational capabilities of multiple quadcopter
technologies, allowing important applications like rescue missions or explorations to

progress to a functional reality in society.

1.2 Literature Review

Collision avoidance is the maintenance of a strategy designed to prevent agents collid-
ing with other agents. Generally, agents that observe a relative safety distance with
other agents can achieve collision avoidance. In addition, collision avoidance applies
to inter-agent behaviours of the MAS or with agents from an outside MAS. Evasive

movement with static objects is considered obstacle avoidance.

1.2.1 Multi-Agent Collision Avoidance

For a team of multiple quadcopters, a successful performance depends on the ability
to fly without collision. In literature, many control strategies have been developed to

deal with collision avoidance among multi-agent systems. Methods include trajectory
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generation [6] [7] of a collision free path, and gradient methods [8] [9] to determine
control gains that fulfill collision avoidance criteria. In [10], fuzzy logic was used
to implement trajectory shapes (example: S-shape) that would steer the agents out
of the 2-dimensional collision territory. The fuzzy logic control was successful in
a leader follower structure, and with inherent knowledge that these shapes would
provide sufficient evasive movement for collision avoidance. Potential functions can
be used for collision avoidance as in [11] [12] and an adaptive potential function in [13],
where repulsive forces were bounded to maintain a desired communication topology.
The work in [6] also used collision avoidance potential functions, but designed various
regions (communication, maintenance and avoidance) for control. However, potential
forces alone may drive agents to a deadlock situation; the repulsive forces cancel with
the attractive forces leaving agents unable to advance from their current positions.
A unique solution [14] to this problem was to introduce gyroscopic forces (these
forces act perpendicular to the direction of motion) to swing the agents out and
break free of deadlock situations. A deep learned collision avoidance strategy in [15]
provides a method for dealing with noisy sensor measurements. Noise in sensor data
or inaccurate data can adversely affect the situational awareness of an agent and can
lead to a misguided strategy or poor actuation. The differential game approach [16]
allows access to a deduced performance of the control strategy to aid with collision
avoidance. However, in order to exploit this a priori performance, a centralized

framework is necessary.

1.2.2 Model Predictive Control Collision Avoidance

Collision avoidance can also be achieved with optimization based approaches. One
scheme with recent developments is model predictive control (MPC), which has the
ability to handle hard constraints on the control action and states [17]. While many
types of MPC schemes exist, most research practice the state-space formulation.

In [18], a decentralized linear time-varying hierarchical MPC is implemented for
control. The top layer is a hybrid MPC that generates online desired positions to
reach a known target position and avoid collisions; the middle layer contains a real-
time linear MPC for tracking; in the bottom layer, a nonlinear MPC is used for

quadcopter control. In [19], decentralized MPC is used for evasive action in the
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vertical direction by applying a penalty term, which requires less computation time.
However, while evasive movement in the vertical direction is effective, more freedom
to avoid other quadcopters could be gained if the x,y-directions were considered.
In addition, the decentralized approach is vulnerable should the leader lapse. The
converse is true in [20] because distributed MPC is implemented. A distributed
methodology is more effective since agents are coupled only with their neighbours [21].
In [20], evasive action between two teams of unmanned aerial vehicles occurs on the
horizontal plane by implementing a Kalman filter to estimate the positions of the
other team. This method is useful for multiple MAS already in formation (steady
state positions) and could be extended for static obstacle avoidance. Following a
similar 2-dimensional distributed MPC approach, [22] proposes terminal elements
on the controller. Terminal constraints are applied for future predictions and are
implemented to guarantee stability [23]. The drawback to this strategy is that final
desired positions are needed. The work presented in [24], achieves collision avoidance
by separating pairs of vehicles by a shared hyperplane; however only 2-dimensions are
considered. The synthesis approach [25] of distributed MPC is unique because this
method can utilize past predicted states. This allows for less communication among
agents, however the computation times are quite large (between 1-9 seconds).

It is observed that the number of MPC strategies for collision avoidance is limited.
Most literature only employ evasive movement in the z-direction, or only consider 2-
dimensional movement on the x,y-plane. In addition, some simulations begin when
the agents are already in motion or that final desired positions are needed, which is

not always practicable.

1.3 Thesis Contributions

The main contribution of this thesis is the development of a new distributed MPC
strategy for collision and obstacle avoidance of multiple quadcopters. This work

contains the following contributions:
e A consensus algorithm is employed to determine desired setpoints online.

e While other MPC schemes have been applied for collision avoidance, a thorough
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search of relevant literature yielded no implementation of dynamic matrix con-
trol (DMC). In this work, DMC is firstly used to generate conditional output

constraints on quadcopter positions for collision and obstacle avoidance.

e Input rate constraints are implemented in the form of a logarithmic barrier
function to limit control actions. Input rate constraints remove the need for
hard input constraints such as saturation. In addition, the logarithmic barrier
function is a penalty formulation, which helps reduce the overall number of hard

constraints on the MPC optimization function.

e In order to observe the influence of constraints on system performance, case
studies for collision and obstacle avoidance are formulated by modifying the

criteria for output constraint generation.

e In this work, collision and obstacle avoidance in all 3-dimensions (z, y, z-directions)
is successful. Unlike many literature, simulations begin with quadcopters at rest

and on the ground.

e Extensive simulation studies are conducted and discussions are given regarding

system performance and parameter effects.

1.4 Thesis Organization

The organization of this thesis is as follows. Chapter 2 describes the relevant back-
ground theories, specifically, graph terminology, the consensus algorithm and a multi-
agent control structure comparison. Chapter 3 gives a detailed overview of quadcopter
dynamics and the mathematical model used in this work. Model predictive control
for consensus of multiple quadcopters is shown in Chapter 4. Chapter 5 presents
the formulation of input constraints, details the output constraints for collision and
obstacle avoidance and highlights the differences between case variations. Chapter
6 discusses the simulation studies for the collision avoidance algorithms. Chapter
7 presents the simulation results for obstacle avoidance. Chapter 8 summarizes the

conclusions of this work and potential areas for future research.



Chapter 2
Background Theory

2.1 Graph Theory

In this section, basic graph theory concepts that are essential in the study of multi-
agent systems are presented. A network structure is used to describe the communi-
cation topology among agents and can be mathematically modelled as an algebraic
graph. With reference to a multi-agent system, the agents are represented by nodes
and a communication link from agent j to agent ¢ is represented by an edge.

Directed Graph: A directed graph G = (V, &) for n, agents, has node set
V = {vy,...,v,, } that is finite and nonempty and an edge set £ of ordered pairs called
edges. For a directed graph, an edge e;; of £ shows that information is transmitted
from node v; to v;. Therefore, it is considered that v; is the parent node and v; is the
child node. If v; can receive from agent v; and vice versa, then this case is specified
as a bidirectional edge. Self edges, defined as when a node has the ability to send
information to itself, are not allowed unless specifically indicated [26]. An example of
a directed graph with four agents is shown in Fig.2.1, where {ey1, 39, €43} are directed
edges and eq3 is a bidirectional edge.

Undirected Graph: In an undirected graph, agent ¢ and agent j can receive
information from each other, indicating that they have bidirectional edges. This is
considered a special case, where in an undirected graph e;; corresponds to e;; and e;;

in a directed graph. An example of an undirected graph with four agents is shown in

(1
O‘O O

Figure 2.1: Directed graph



Figure 2.2: Undirected graph

Fig.2.2, where {ejs, €93, €34, €41 } are bidirectional edges.

Weighted Graph: A weighted graph is when an edge has an associated weight
or penalty; often used to indicate the reliability or cost of information from a specific
node. However, in undirected graphs the weights of e;; and e;; must be the same.

An adjacency matrix,

A= | . (2.1)

describes the communication topology or channels for information exchange among

agents. It is developed by the following rules:

1 s if e;i € 5
Q5 = / (22)
0, otherwise .

In (2.2), if agent i can receive from agent j, then element a;; = 1, otherwise a;; = 0.
The associated adjacency matrices for the directed graph in Fig.2.1 and the undirected

graph in Fig.2.2 are respectively,

0010 0101
1 000 1010
A= and A= (2.3)
1 100 0101
0010 1 010

Graph Connectivity: The in-degree of a node refers to the number of edges
flowing towards the node and can be mathematically determined as the row sum of

the adjacency matrix,

di,in = Z CL,‘j . (24)
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The out-degree is the number of edges flowing outwards from a node and can be

determined from the adjacency matrix using column sum,
Na
di,out = Zaﬁ . (25)
j=1

A graph is referred to as balanced if the in-degree and out-degree are equal. Therefore,
it can be said that an undirected graph is always balanced.

A directed tree is a directed graph where a sequence of ordered edges exists from
one node to another. Multiple directed trees can exist in a single directed graph. A
directed spanning tree occurs if a node does not have a parent node (in-degree of
zero) and a subset of edges forms a directed tree. Accordingly, all other nodes are
reachable from a single node called the root. An example of a directed spanning tree

with four agents is presented in Fig.2.3, where agent 1 is the root node.

Figure 2.3: Directed spanning tree

A directed graph is strongly connected if distinct nodes pairs can be connected
by following a directed path of edges [27]. Consider Fig.2.4, it is strongly connected
because an agent can reach every other agent. From a different perspective, the
directed graph is strongly connected because each agent is a root node with an as-
sociated spanning tree. A directed graph is weakly connected if when its edges are

replaced with bidirectional edges, all nodes can reach one another.

Figure 2.4: Strongly connected graph with multiple spanning trees



2.2 Consensus Control Algorithms

In a network of agents, consensus means that an agreement is reached regarding
a certain variable of interest that depends on the states of all agents. Consensus
guarantees that agents communicating information according to a network topology
is consistent. This is critical to any type of coordination task such as rendezvous [28],
swarm [29] or formation [30] [31]. Characterization of formation control schemes are
often based on sensing capability and the communication topology of agents. The
three main types of formation control schemes identified by [32] are described below.

One type of control is distance based, where inter-agent distances are actively
controlled for desired formation. Each agent can sense relative positions of neighbours
with respect to their local coordinate system (LCS). It is important to note that
LCS orientations are not always aligned with each other, and due to the neighbour
dependency, more interactions are crucial.

In displacement based control, agents control displacements of neighbouring agents
for desired formation. In this case, each agent only senses the relative positions of
neighbour agents with respect to the global coordinate system (GCS). However, each
agent does not require their positions with respect to the GCS, only knowledge of
the GCS orientation. This type of control, has a moderate tradeoff between sensing
capability and interactions.

The type of consensus control used in this work is position based, where agents
sense their own positions with respect to a GCS. Each agent must control their own
positions to achieve the overall desired formation. With this type of control, a greater
sensing capability among agents is required.

A consensus algorithm (or protocol) is the method of negotiation or the interaction
rule used to reach consensus. The main component of a consensus algorithm is the
update law, which is designed such that the information state of all agents converges

to a common value. For MASs with single integrator as
&=, (2.6)

a common linear consensus algorithm is,

wi =Y a;(& &), (2.7)
=1
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where (2.7) is the control input and &; is the i*" agent’s information state. The
objective of (2.7) is to guarantee consensus for any initial condition &;(0) as ¢t — oo.
If a formation is desired, the input can be designed with relative distance &,

between agents,

Na

ui= Y ay&—&—&,). (2.8)

i=1
Consider the calculation for relative distances §,, used to achieve a ring formation
in the z-y plane. First define the desired distance to the center of the ring as r4. The

relative z-y distance between an agent and the ring’s center is calculated as
re, = raliro (2.9)

where 7o = [1 0] is used to select matrix elements and R; is the rotation matrix

shown below:

R — [cos(%) —sin(%)] ‘ (2.10)

sin(v;)  cos(;)
In (2.10), ; is the accumulative angle for each agent around the ring; the angle
separation with respect to agent 1.
The vector of relative distances between agent 1 and the remaining agents can be

extracted using

i =Te, = Te, - (2.11)

Then the final relative distances between agents is determined as,
fri =T51 — Ti1, for Z,]: 1,...,na . (212)

An example of consensus with a ring formation is presented, where r; = 10 meters,

the number of agents is six and the communication topology is undirected according

to ) _
01 0O0O01
1 01 0 0O
01 01 0O
A =
001 010
000101
1 00 0 1 0]




T

—— Agent 1

11

—— Agent 2
Agent 3
\ ——— Agent 4

\ Agent 5
\ | —— Agent 6
—#— Final Position | |

y-position (m)
o
T
Il

z-position (m)

Figure 2.5: Consensus with ring formation

In this case,

0 -5 —15 —20 —15 -5
i = ;o1 = ,T31 = ;T4 = ;51 = ;Te1r = .
0 8.6 8.6 0 —8.6 —8.6

The 2-dimensional result of the simulation is shown in Fig.2.5.

2.3 Distributed Control vs. Centralized Control

There are typically two features to consider when developing a control approach for
a multi-agent system. One feature is the distribution of information, which usually
refers to associated communication costs. The other feature is the complexity of the
problem, which directly relates to the computation time.

In a centralized approach, available information about all agents is collected at a
single location, as shown in Fig.2.6. With the substantial advances in computer elec-
tronics, specifically memory and processing power, the centralized control structure
can be advantageous because it can produce system wide solutions based on consistent
system wide information. This is because a global optimal control problem must be

solved with respect to all agent actuators, given the entire set of information states.
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Control Center

Network

0 0 O :

v v v v
Agent 1 Agent 2 Agent 3| 000 [Agentn,

Figure 2.6: Centralized schematic diagram

However, distributing locally collected information will typically result in a larger
communication cost and can be disadvantageous because the centralized approach
depends on the reliability of inter-agent communication links. The complexity of the
centralized approach requires significant computation to determine a solution. In this
regard, feasibility depends on the computational capability at the single centralized
location. A numerical simulation study was performed in [21] to compare computa-
tion times for a team of UAVs under distributed and centralized control. The results
showed that the computation time required for distributed control was significantly
lower than the centralized approach as the number of agents increased. Therefore, it
can be reasoned that the centralized approach will fail for large sizes of MASs, or if
the agent responsible for system management /processing is disabled.

A distributed approach is based on local information states communicated by
the agent’s neighbours, as shown in Fig.2.7. Therefore, the control problem can be
divided into a set of smaller local optimization problems. This allows for a small

computation time for each agent. However, since the optimization problem is based

Control Center Control Center Control Center Control Center
A A A A
Y Y Y Y
Agent 1 » Agent 2 |« » Agent 3| 000 |Agentn,
A

Figure 2.7: Distributed schematic diagram
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on local information states, it results in a suboptimal solution of control actions
[33]; this is the main disadvantage of a distributed control structure. The scale of
suboptimality depends on the communication topology (degree of interaction) of the
multi-agent system [34]. The problem of local information is also significant if an
agent is attempting to predict a neighbour’s or the group’s behaviour. A distributed
control scheme can also be viewed as modular, as in each agent is responsible for
itself. This is advantageous because possible failures will not necessarily affect the

overall multi-agent system [35].



Chapter 3

System Modelling

A type of UAV is a quadcopter, also known as a quadrotor. A quadcopter has
four rotors directed upwards on each arm and the four arms are arranged in square
formation. A quadcopter is capable of vertical takeoff and landing and its inherent
dynamic nature allows for maneuverability [36]. For modelling purposes, it is assumed
that the quadcopter is manufactured with identical arm lengths and symmetric mass
distribution. This chapter presents general quadcopter dynamics and a linearized

model for multiple quadcopter control from a Euler-Lagrange formulation.

3.1 Quadcopter Dynamics

Movement of a quadcopter is defined using two reference frames as shown in Fig.3.1.
The inertial frame (3.1), which is considered earth-fixed, is made up of z,y, z-axes
and is used to reference the absolute linear position. The angular position (3.2) of

the quadcopter in the inertial frame is defined using the Euler angles.

(3.1)

(3.2)

Figure 3.1: Quadcopter frame of reference [1]

14
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The roll angle ¢ signifies the rotation about the x-axis, the pitch angle 6 is the

rotation about the y-axis, and the yaw angle refers to the rotation around the z-axis.

The body frame is made up of xp, yp, zp-axes and its origin occurs at the center
of mass of the quadcopter. It is assumed that the body frame is attached to the
quadcopter and is therefore, a moving coordinate system. The linear and angular

velocities with respect to the body frame are defined as (3.3) and (3.4), respectively.

V= [vm Uy UZ}T (3.3)

V= [p q rr (3.4)

The rotation matrix can be used to move from the body frame to the inertial

frame and is defined as
CyCyp CySeSy — SyCy  CySeCy + SySy
R =|8,Cyp S4SsSs+ CyCy SySsCys— CySyl (3.5)
—Sp CoSy CoCly

where C, = cos(x) and S, = sin(z). Since the rotation matrix is orthogonal, the
rotation matrix from the inertial frame to the body frame is (Rf)_l = (Rf)T.
The angular velocities v in the body frame can be transformed to the Fuler angular

velocities 7 in the inertial frame and vice versa using
v=Wpm, (3.6)

and

: -1
n=Ww, v, (3.7)

respectively, where the transformation matrix is given as

1 0 —Sp
0 —S, CyC,

The thrust produced by each rotor is proportional to the square angular velocity [1]
and is given by

fi = kw? ; 1= 1727374a (39)
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where k is a lift constant assumed to be the same for all rotors. The total thrust in

zp-direction is the sum of forces produced by the rotors as

T = Zf . (3.10)

Therefore, the force input vector in the body frame directions is fg =1[0 0 T]".

2
7

The torque around each rotor axis is found using 7y, = bw;, where b is a drag

constant. Therefore, the torque input vector can be calculated as

T U fs— f2)
T=|m| = |lfs=f)] (3.11)
Ty > ims T,

where [ is the length from the center of mass of the quadcopter to the rotor.

3.2 Quadcopter Model

The linear quadcopter model is developed using the Lagrangian approach and lin-
earization about an equilibrium point [37].

In general, the Lagrangian is the sum of kinetic energy minus the potential energy
of the system. For the quadcopter dynamics, the linear and angular components are
separate and cane therefore be studied independently; the Lagrangian has transla-
tional and rotational kinetic energies and the gravitational potential energy. Define

q=1[£" n']", then the Lagrangian is,

‘C(Q7 Q) = Etrans + Erot - Epat
= %mSTf + %ﬁT I/VNTII/V?7 N —mgz, (3.12)
——

J

where m denotes the mass of the quadcopter and payload, ¢ is the gravitational
constant and I = diag(I,y, Iy, I.,) is the inertia matrix for the quadcopter. Since it

is assumed that the quadcopter is symmetric, then I, = I,,.

The full quadcopter dynamics is obtained from the Euler-Lagrange equations with
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external forces and torques. The Euler-Lagrange translational equation is

‘ (a%%ans) ) a%,gm o],
7n5+4ng[0 0 1]r=1ﬁ[0 0 TJT. (3.13)

The Euler-Lagrange rotational equation is

i aEjrot . aErot
dt \ On on

(. 10N
jﬁ+(«7—§a—n(77 j))ﬁ—T
Jii+Cm,nn=r1, (3.14)

where C'(n,7) is the Coriolis matrix; refer to Appendix A for the terms in the Coriolis

matrix.

The Euler-Lagrange equations (3.13) and (3.14) can be rearranged and written as

z —Sp 0
y| = Z CoSy | — 0 (3.15)
Yyl = m 09 ¢ g ) .
: CyCly 1
and
Jij=1—C(n,nn . (3.16)

To simplify the rotational dynamics in (3.16), a new input variable [38] can be
defined as

7 =Cn, )0+ J7. (3.17)

Substituting (3.17) into (3.16), results in J7j = J7. Similar to [39], the full



quadcopter dynamics from (3.15) and (3.16) are rewritten as,

18

mi = —u sin(0) , (3.18)
miy = u cos(0)sin(¢) , (3.19)
mz = u cos(f)cos(¢) — mg , (3.20)
6=ry, (3.21)
b=y, (3.22)
V=" . (3.23)
Define the following states and input variables,
-
[xl T2 X3 T4 Ts Te L7 Ty L9 Lio Ti1 $12} =
. (3.24)
cby s s b 000 4]
T T
[ul Uy Us u;;} = [T —mg Ty To 7-4 : (3.25)
then equations (3.18)-(3.23) can be written in a state space form as
~ N - - . -
o —2Lsinrg — gsinrg
T3 Ty
Ty “L €08 T SIN 11 + § COS Tg SIN T
Ts Tg
9?:6 L COS Tg COS T11 + § COS Ty COST11 — ¢ (3.26)
X7 xs
Ty Ug
Ty T10
T1g us
T11 T12
_1’12_ L Ug i

The solution of nonlinear quadcopter dynamics is complicated because of the
dependency on aerodynamics forces and moments due to flight conditions, such as,

altitude, speed and weight. A simpler approach is based on a linearized model that
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describes the quadcopter’s motion provided that the perturbations from a known

equilibrium state is small.

From the nonlinear quadcopter dynamics produced in (3.26), linearization by Tay-

lor series expansion about an equilibrium point equal to the origin, with f(0,0) = 0,

produces the quadcopter dynamics modelled by the following linear state equations;

similarly used in [40] [41],

] [o 1
il oo
6| 1o o
6] [0 0
] o 1
il oo
ol 1o 0
o] [0 0
21 o
L___o

n 0

o O « O

—_

ol [z] [o
ol | 0
+
1| |o 0
ol |0 1
ol [y] o]
ol |4 0
Y1 +
1 ¢ 0
0| |¢ 1
-z 0] =
T,
K P

T , (327)
7'¢ s (328)
(3.29)

(3.30)

The linearized model is decoupled into four sets of equations and is valid given

small angle values for # and ¢. The flight dynamics in the x, y, 1)-directions are subject

to control moments that generate torques around the y, z, z-axes, respectively. The

motion in the z-direction is generated via a thrust force, which is the sum of the

thrusts from all motors minus the force due to gravity.



Chapter 4

Model Predictive Control for Consensus of Multiple
Quadcopters

A brief overview of MPC and its components are presented in this chapter. The
general approach in MPC schemes is to utilize a mathematical model to predict the
system future output given a set of optimized control actions. The future outputs
(prediction) are determined across the prediction horizon n,, as shown in Fig.4.1,
using the system model, past outputs, past inputs and the future inputs (control

moves) to be sent to the system. The future control moves are solved by applying

Past Future
1>
— Future Input
Past Input i

Control Horizon :
[ €————>

Future Output

Past Output

TT~——_
i i i i i
t—1 t t+1 t+ny, t+k r+n,

Prediction Horizon

Figure 4.1: Model predictive control strategy

optimization over a finite control horizon. The objective of the cost function is for the
system output to be as close as possible to the desired setpoints [42]. This is achieved
by formulating the cost function to minimize the error between the prediction and

the setpoints; as illustrated in Fig.4.2 where the future errors and cost function is

20
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Cost Function

Constraints
Future
Setpoints Errors
Optimizer
+
.. Future
Prediction Control Moves
Model Past

Outputs/Inputs

Figure 4.2: Basic model predictive control block diagram

sent to the MPC optimizer. If the cost function is quadratic and unconstrained,
and the model is linear, then an explicit solution can be determined analytically.
Otherwise, if the cost function is subject to constraints, then a numerical solver must
be implemented. According to the receding horizon policy, the first control move
of the optimal control sequence is applied. This is because new output values are
obtained at the next sampling instant and the prediction is updated based on these
output measurements [43]. The receding horizon policy is especially recommended if
setpoint changes are expected.

The MPC algorithm implemented in this work is a dynamic matrix control (DMC)
method. DMC is a mature technique that was first developed in the seventies by
Cutler and Ramaker [44]. It utilizes a dynamic step response model, developed from
experimental data, to predict the future control moves. DMC has the ability to handle

hard constraints and can correct for modelling mismatch and nonlinearities.

4.1 Dynamic Matrix Control

The MPC algorithm implemented requires a dynamic matrix to solve for the predicted
response of the process output variable. The DMC algorithm cannot handle open loop
unstable systems because the system will never reach steady state [45]. The linear
quadcopter model (3.27)-(3.30) presented in Section 3.2 is marginally stable [46].
Therefore, feedback gains are used to obtain a stable step response; similar to [47].

Full state feedback gains are designed by selecting desired closed loop poles and solved
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using Ackermann’s formula [48]; feedback gains are implemented for all directions,
AT
. 7 T
ufy:_Ky[y y ¢ Qb} ,
T
Ufr = _Kz |:Z Z] )
AT
upy = — Ky [w w] :

The dynamic matrix G is developed with normalized step response coefficients

(4.1)

as shown in (4.2), where n,, represents the number of control moves to be evaluated
(length of the optimal control sequence), also know as the control horizon. Note
that the prediction horizon, n, should ideally contain the number of discrete intervals

needed to reach at least 95% of the steady state.

g2 G 0
G=|g @ - (42)
gnp gnp—l e gnp—nu—H

K 4 npxng
It is desired to control positions in the z,y, z,y-directions, therefore, dynamic ma-
trices G, Gy, G, and Gy are developed for each direction. It is assumed that the
system dynamics do not change, therefore, the dynamic matrices are calculated once
and remain constant.

In this work, the discrete form of the linear consensus algorithm in (2.7) is imple-

mented as
(

To =02 0% (Vi — Yi — Ynyy)
o = 52 a’lj( —Ti— xm‘j)

T —52 Vi (2 — 2z — 2,

(7o =020 ai(y — ¥ — ),
for i = 1,...,n,, where x;, v;, 2, ¥; are the i'" agent’s information states, and Ty
Yrij» Zriy> Ury; are the predetermined relative state from agent 4 to j and time step 9.

This consensus algorithm is used to determine the desired positions x4, ¥4, 24, V4.
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A setpoint tuning parameter «, can be applied to reduce the aggressiveness of the
control action by creating a smooth first order approach to the desired position. This

is expressed in (4.4), where ¢ is the time and k is an index from 1 to n,,

Tap(t+ k) = 0zt +k — 1) + (1 - a)ag
Ysp(t + k) = aygp(t + k — 1) + (1 — a)ya
st +h) = azy(t+k—1)+ (1 - a)z
Yp(t + k) =ape,(t+k—1)+ (1 — a)i)y .

(4.4)

The prediction error is determined as the difference between the setpoints and the

future prediction as,

€y = Tgp — T

ey:ysp_g (45)
€, = Zsp— 2

€¢:¢sp—¢-

Note, « is a number between 0 and 1 and if applied, reduces the prediction error by
modifying the setpoints. This intuitive modification affects the transient performance
of the controller: as « increases, the closed loop response is slower.

The optimization function of the MPC controller to be minimized is shown in (4.6),

where Au,, Au,, Auy, Au, are the control moves based on [u, w, uy u,| = [19 75 T4 1.
Jo = (& —xg)? + Au) R Au, ,
Jy = Z) — ysp)2 + AU/;—RyAUy y

(

( (4.6)
J, =(2—z9)*+ Aul R.Au, ,

(

’17@ — ZZJsp)Q + AU;ZRwAUQp .

In general, Ry = diag(\y, ..., A\(y) with tuning parameter A for each direction z,

Y, 2, ¥. The tuning parameter A is implemented as move suppression to account for

the aggressiveness of the closed-loop response by reducing the magnitude of Awuy.,.
Note, that the general form of the optimization problem in (4.6) can also be

written as,

J = (GAu —e)® + Au' RAu . (4.7)
By taking the partial derivative and setting it equal to zero,

0Jy 0Jy _ 8. O0Jy
OAug 0, OAuy 0, A, =0, OAuy, =0, (48)
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the unconstrained solution of the optimization functions are obtained as,

= (G;GI + R;)” 1G1(x8p ),
Au, = (G, Gy + R))7'G) (ysp — 9), (49)
= (GZTGZ + RZ) zT(ZSP 2),

Auy = (GGy + Ry) "G (g — ).

As observed in (4.9), it is often difficult to estimate a small value for A. Instead,
the move suppression can be applied by multiplying the diagonals of the square matrix
GG, where ) is a number slightly larger than 1.

In general, when the optimal solution of (4.6) is determined, the control input is

designed as
u=Au+u , (4.10)

where u~ represents the previous control input.
The generalized form for the future prediction ¢ of the system response is shown
n (4.11) as an example. The equation consists of three distinct terms that account

for I) past, II) current and III) future control moves,

II and III
11 - k %
gt+k)= 90+ D G)Au(t+k—il,)
et (4.11)
z—i-np—l -
+ Y G(i) = Gli — k)Au(t —k —1i) .
i=k+1

The future prediction is calculated according to the number of discrete intervals

and updated by shifting the predictions forward:

T(t+1) gt +1) t+1) Yt +1)

Z(t +nyp) gt + ny) 2t +ny) Ut + ny)
(4.12)

With the new control input the future prediction is evaluated as

(4.13)
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where according to the receding horizon policy only the first optimal control move in
the sequence is applied.
From the current measured value of the response, (4.14) is used to adjust the future

system dynamic prediction to account for modelling mismatch or nonlinearities in the

model,
(D‘T}t xmlt_A@—i_l)lt’
(I)y‘t ym‘t_g(t—i_l)‘t ) (4.14)
(Dz}t Zm}t 2(t+1)|t’
(I)tl)’t wm’t 1[}(25 + 1)|t :

4.2 General Effects of Prediction and Control Horizon

It is often difficult to determine the prediction horizon or control horizon. If a desired
sampling time is known, then the prediction horizon can be determined based on
an accurate reflection of the step response. Otherwise, some consequential control
characteristics should be consider.

A short prediction horizon deprives the control optimization of important infor-
mation. This short-sighted control produces aggressive control actions and instability
can result. Theoretically, a prediction horizon equal to infinity will capture the full
effects of the control action, however, this is not computationally feasible. In addi-
tion, if the matrix resulting from the least squares algorithm (G G) is ill-conditioned,
difficulty in controlling outputs can occur. This can be moderately corrected using
substantive values of move suppression, which increases the magnitude of the diag-
onal elements of the matrix inverted in the least squares calculation. Note that an
ill-conditioned matrix can lead to numerical issues, specifically, inversion of a nearly
singular matrix. Large control horizons can introduce more zeros into the dynamic
matrix, especially if deadtime is present; inversion of such a matrix should also be

considered. In general, a small control horizon can produce cautious control actions.



Chapter 5

Optimization in Collision and Obstacle Avoidance

To ensure a successful group performance, a safe relative distance between agents
should be enforced. Collision and obstacle avoidance among agents is achieved by
applying output constraints on the MPC optimization function of each controlled

position variable.

5.1 Output Constraints

The generation of output constraints necessary for collision and obstacle avoidance
require a few parameters to first be defined. First, the actual relative distance is

calculated using the current positions of agent ¢ and neighbour agents 7,

N (S PR .Y (5.1)

The predicted relative distance is calculated using the predicted positions of agent 7

(Z4, Ui, 2;) and the current position of neighbour agents 7,

rp = (B — )2+ (5 — )2 + (3 — )2 (5.2)

As shown in Fig.5.1, a spherical safety region around each agent is the space that
no object should enter and is defined by a radius r,. Therefore, the relative safety
distance between any two agents is 2r,. The avoidance distance r, is used to apply

output constraints before reaching the relative safety distance. With 0 < 2ry < rg,

Figure 5.1: Safety and avoidance distances
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output constraints are applied when the condition (5.3) is valid:

Ty < Tq . (5.3)

The avoidance distance cannot be greater than the smallest relative distance be-
tween agents according to the desired geometric formation. Otherwise, output con-
straints will be generated and affected agents will be unable to reach the final desired
formation.

To properly formulate constraints, the shape of the future prediction must be
evaluated. As a general example, consider Fig.5.2; the general constraint value o in

Prediction I is a maximum constraint while in Prediction II is a minimum constraint.

Prediction I Prediction 11

Figure 5.2: Constraint generation considering shape of future prediction with f being
the general variable

In this work eight shapes were included, as shown in Fig.5.3, when formulating
constraints. This is because in simulation, positions can be positive or negative.
The additional shapes are needed, since minimum or maximum constraints change
depending on a negative or positive position value. Identification of the prediction
shape is guaranteed by determining the relationship between oy and o3. Let o1 be the
constraint value in question and oy be a value at the end of the prediction horizon.
Note, it is important to determine the constraint value oy, according to (5.3), as the
earliest occurrence along the prediction horizon. A summary of the identification and
constraints according to shape in the z,y, z-directions are presented in Table 5.1.

The constraint equations for the controlled variables (except 1) are formulated
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Figure 5.3: Future prediction shapes used for determining constraints
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Table 5.1: Identification and prediction shapes for constraint generation

Shape Identification  x constraints  y constraints 2 constraints
01 < 09 " Y y . i .

° ( ) o'; > 0 Lmin — _lnf Ymin = _1nf Zmin = 0
Fig.5.3 (b) Ui S 02 Tae = +Hinf Ymaz = +Hinf Z o — +inf
.0, . ; 0 Tmin = 01 Ymin = 01 Zimin = 01

01 < 09 .
Fig.5.3 (c) o, <0 Tmaz = 01 Ymaz = O1 Zman = Hinf
Flg 5.3 (d> 0'1 > 02 Tmag = +inf Ymax = +inf Zmaz = +inf
LI, . - 0 Tmin = 01 Ymin = 01 Zimin = 01
o1 < 09 .
Flg 5.3 (e) o < 0 Tmaxr — 01 Ymaz = 01 Zmaz = +1nf
o9 <0 Tmin = —inf Ymin = —inf Zmin = 0
o1 > O . ) ‘
Flg 5 3 (f) 0_1 < 02 Tmaz = +lnf Ymaz = +1nf Zmaz = +lnf
.. . 2 0 Tmin = 01 Ymin = 01 Zmin = 0
i 01 = 02 Tmaz = 01 Ymaxz = 01 Zmaz = 01
Fig.5.3 | '
1g (g) o1 > 0 LTomin = —inf Ymin = —inf Zin = 0
. 01 = 09 Tmaxr — 01 Ymazr = 01 Zmaw = +1Hf
Fig.5.3 (h . !
12 ( ) 01 g 0 Lmin = +lnf Ymin = +1nf Zmin, = 0

below for maximum

and minimum constraints

GxAua; S Tmaz — xsp + S
GyAuy < Ymaz — Ysp T €y (54)

GZAU’Z S Zmaz Zsp + €z,

Ga:Aux Z LTmin — Lsp + €z,
GyAuy Z Ymin — Ysp + €y (55)

GzAuz 2 Zmin — Zsp + €z .
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5.2 Input Constraints

Limits on the control action are applied directly to the optimization function in the
form of a logarithmic barrier function (5.6), similar components presented in [49]
[50]. From the control action limit, the maximum and minimum rates of control are

AUy mazr and Ay min, Tespectively.

B(Au()) = p (— Z In { Au) maz (9) — Augy(9)}

s (5.6)
— Zln {Augy(q) — Au(.),mm(q)}> :
q=1
The maximum control rate,
AUy maz = Uz maz — Uy + Ufz
AUy maz = Uy maz — U, + Upy (5.7)
AUz maz = Uzymar — Uy + Ugz
AUy maz = Ugp maz — Uy + Uy
and the minimum control rate,
AUy min = Ugmin — Uy + Ufy
AUy min = Uy, min — Uy, + Upy (5.8)

AUy i = Uz min — U, + Ups

Aty min = U min — Uy + Uy
are calculated at each sampling instant, where () ma, and ()i, are the system’s
maximum and minimum control limit.

The penalty from the barrier increases and decreases smoothly as points move
near to far from the limits. A positive factor p can also be introduced to ma-
nipulate the severity of the penalty as boundaries on the control action are ap-
proached. Fig.5.4 illustrates the effects of p on a logarithmic barrier function with
limits [Atmin, Atimas] = [—1, 1]. If 4 =1 is the point of reference, then p > 1 results

in a severe penalty as the limits are approached and p < 1 gives a less severe penalty.

Constraints that cannot be violated are called hard constraints and the converse

are referred to as soft constraints. Note that soft constraints do not necessarily violate
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— =05
—_—u=

Logarithmic Barrier Function

Figure 5.4: Logarithmic barrier function with varying pu

limits, rather they can be considered constraints that are not explicitly applied to the
cost function. The logarithmic barrier function is used to reduce the number of
active hard constraints on the MPC optimization function, which allows for a quicker
computation. In addition, implementing constraints on input control rates means

hard limits, like saturation, are not needed.

5.3 MPC Optimization Function

The optimization function of the x,y, z-direction controllers to be minimized, with

input constraints and subject to output constraints are
(GoAu, — €;)? + 3Au] RyAu, + B(Auy,)

(GyAuy, — e,)* + 3Au) RyAu, + B(Auy,) (5.9)
(G.Au, —e,)? + %AUIRZAUZ + B(Au,) .

T

Jy

N[ NI N

z

The optimization function to be minimized with only an input constraint is for

the 1-direction control,

1 1
Jd’ = §(G¢AU¢ — 6¢)2 + 5AU£R¢AU¢ + B(Auw) . (510)



32

Neighbour Cost Function
states Constraints
l Future l System
Consensus | Setpoints Errors .. Input Response
P Optimizer > Plant >
rotocol + ¥
A A A _
Prediction
M K {
Future
Control Moves
Past Outputs/Inputs
Model [«

Figure 5.5: Block diagram of the proposed control strategy

The block diagram of the control strategy is shown in Fig.5.5. It depicts the
general procedure as: neighbour states and agent states are received and used to
determine desired setpoints. The prediction error enters the MPC subject to input
and output constraints. The optimal solution calculated by the MPC is added with
the feedback control, and this summation is the input to the quadcopter; this is done

simultaneously for all agents in all z,y, z, ¥-directions.

5.4 Algorithm for Case Variations

An algorithm structure for the control strategy and variations will be presented in this
section. An algorithm structure is used to effectively highlight the differences among
the control variations, which are referred to as cases. The main difference among cases
is the constraint generation for collision avoidance. Note that the positions referenced
in the following algorithms are with respect to the absolute reference frame.

Case 1: In this case, output constraints are engaged if the actual relative distances
are less than or equal to the avoidance distance. In addition, evasive action is only

in the z-direction and is a calculated value. This evasive value is
Ze =Tq—T, (5.11)

which is the distance required for the relative distance to be greater than the avoidance
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distance. The evasive value is subtracted from the current z-position as
Zmax = Ri T e (512)

to then be used to formulate a maximum constraint according to (5.4). The process

evaluated by each agent can be found in Algorithm 1.

Algorithm 1 Collision avoidance

Require: All agents execute simultaneously.
1: repeat
2: Obtain current position and neighbour positions.
3: Determine desired positions using (4.3) and generate setpoints (4.4).
4: Adjust prediction with (4.14) and calculate the actual relative distances (5.1).
5 if r <r, then
6: Determine zy,,, according to (5.12). Generate output constraints (5.4) and
(5.5).
7. Find solution to optimization functions (5.9) and (5.10) via numerical solver.
8: Apply the sum of MPC control input (4.10) and feedback gains (4.1).
9: Update prediction (4.13).

10: until Consensus = true

Case 2: In this case, output constraints are generated for only one (z, y or z)
predetermined direction. The output constraints (for the particular direction) are
engaged if the predicted relative distances are less than or equal to the avoidance
distance. The process for Case 2 is outlined in Algorithm 2.

Case 3: In this case, output constraints are applied for all directions (z, y and
z) and evasive movement occurs only in the z-direction. First, the actual relative
distance between neighbours is checked using current positions. If the actual relative
distance is less than or equal to the avoidance distance then an output constraint is
generated to restrict the agent to its current position; this is done for x,y-directions.

The x and y constraints are generated as a minimum or maximum according the
relationship between the current and previous position. For example, consider Fig.5.6,
where x; represents the current position and x( represents the previous position of

the agent. In event (a) x; would be a minimum, while in event (b) x; would be
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Algorithm 2 Collision avoidance

Require: All agents execute simultaneously.
1: repeat
Obtain current position and neighbour positions.
Determine desired positions using (4.3) and generate setpoints (4.4).
Adjust prediction with (4.14) and calculate the predicted relative distances (5.2).
if r, <r, then

Generate output constraints (5.4) and (5.5) in the predetermined direction,
according to Table 5.1.
7. Find solution to optimization functions (5.9) and (5.10) via numerical solver.
8: Apply the sum of MPC control input (4.10) and feedback gains (4.1).
9: Update prediction (4.13).

10: until Consensus = true

() (b)

A
N
-
A
N
-

X1 X0 X0 X1

Figure 5.6: Previous and current xz-positions for constraint generation

a maximum. All possible combinations of current and previous positions for x and
y constraint generation are illustrated in Fig.B.1 and Fig.B.2, respectively; refer to
Appendix B. A summary of the event identification and constraint generation for
Case 3 can be found in Table 5.2.

Similar to Case 1, the evasive value in the z-direction is calculated using (5.11).

The evasive value is either added to the current z-position
Zmin = 2i T Ze (513>
or subtracted from the current z-position as

Zmaxz = % — Ze - (514)



Table 5.2: Event identification and constraint generation
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Event Identification Max. constraints Min. constraints
Fig.B.1 (a) To>x1, v1 >0, 29 >0 Tmaz = Hinf Tomin = T1
FigB2(a) w>wy, 120, %9>0  Yme = +inf Ymin = Y1
Fig.B.1 (b) To<x1, v1 >0, 29 >0 Tmaz = T1 Tynin = —Iinf
FigB2 () %<y, 120, 9>0  Ymaw =1 Ymin = —inf
Fig.B.1 (c) To<x1, v1 >0, 29 <0 Tmaz = T1 Tynin = —Inf
FigB2(c)  wo<w, 120, %<0 Ymaz =t Ymin = —inf
Fig.B.1 (d) To>x1, 01 <0, 29 >0 Tmaz = Finf Tonin = T1
FigB2(d) >, 150, %>0  Ymae = +inf Ymin = Y1
Fig.B.1 (e) To>x1, v1 <0, 29 <0 Tmaz = -Finf Tonin = T1
FigB2 ()  wyo>wy1, 11 <0, %<0  Ymar = +inf Ymin = Y1
Fig.B.1 (e) To<x1, 1 <0, 29 <0 Tmaz = T1 Tynin = —Inf
FigB2(e) o<y, 1N®<0, %<0  Ynaw=u Ymin = —inf

Whether the evasive value is added or subtracted, is predetermined for each agent.

This feature allows some agents to have evasive action by increasing their z-position,

while others have evasive action by decreasing their z-position. Note that in all cases,

the complementary constraint for (5.13) and (5.14) iS z4: = +inf and 2, = 0,

respectively. The structure of this collision avoidance strategy is shown in Algorithm

3.

Case 4: This case is the control strategy for obstacle avoidance. Output con-

straints in all directions are engaged if the predicted relative distances (between the

agent and obstacles) are less than or equal to the avoidance distance. The process

for the obstacle avoidance can be found in Algorithm 4.
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Algorithm 3 Collision avoidance

Require: All agents execute simultaneously.

1:
2:
3:

e

10:

repeat
Obtain current position and neighbour positions.
Determine desired positions using (4.3) and generate setpoints (4.4).
Adjust prediction with (4.14) and calculate the actual relative distances (5.1).
if r <r, then
Determine z,,, according to (??7). Generate output constraints (5.4) and

(5.5) using current positions for z,y-directions and z,,, for the z-direction.

Find solution to optimization functions (5.9) and (5.10) via numerical solver.
Apply the sum of MPC control input (4.10) and feedback gains (4.1).
Update prediction (4.13).

until Consensus = true

Algorithm 4 Obstacle avoidance

Require: All agents execute simultaneously.

i

10:

repeat
Obtain current position and obstacle positions.
Determine desired positions using (4.3) and generate setpoints (4.4).
Adjust prediction with (4.14) and calculate the predicted relative distances (5.2).
if r, <r, then
Generate output constraints (5.4) and (5.5) according to Table 5.1

Find solution to optimization functions (5.9) and (5.10) via numerical solver.
Apply the sum of MPC control input (4.10) and feedback gains (4.1).
Update prediction (4.13).

until Consensus = true




Chapter 6

Simulation Studies on Collision Avoidance

This chapter presents the simulation results for the proposed control strategies out-
lined in Algorithms 1-3 from Chapter 5. Note that in order to better view simulation
details some plots only display a portion of the full simulation time.

The simulation consists of a leaderless 4 agent team of quadcopters at rest and
spatially distributed on the ground. The quadcopters are required to form a ring with
a relative distance of 7.5 meters to the circle’s center at a height of 15 meters. The
initial quadcopter positions (z,y, z,v) are Q1 = (2,1,0,0), @2 = (-3,-7,0,0.1),
@3 = (5,5,0,0.4) and Q4 = (8,0,0,0.5); all remaining states are zero. The team of
quadcopters exchange information with their direct neighbours; the resulting adja-

cency matrix is undirected

1 010

The radius of the safety region was chosen to be r, = 0.75 meters; this is based on
a quadcopter with arm lengths of 0.3 meters. Therefore, the relative safety distance
between quadcopters is calculated as 1.5 meters. The avoidance distance is equal to
6 meters (Case 1), 7 meters (Case 2) and 5 meters (Case 3). Based on motor thrust
details in [51], the control limits in simulation are £12 Newton-meters and +20 New-
tons. Parameter selection is summarized in Table 6.1. Simulations were performed on

Matlab 2017b and MPC optimization functions were solved using “fmincon” solver.

The full state feedback gains used to stabilize the quadcopter open loop response

were designed by selecting desired closed loop poles [_1 —1 —1 —1|; gain values

37
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Table 6.1: Simulation Parameters

Definition Value
mass (kg) m=2
sampling time (s) 0 =0.05
K, =[-0.1019 —0.4077 6 4]
state feedback gains {Ky B [0'1019 040776 4]
K.=[2 4]
K,=1[1 2]
control horizon Ny = 2
prediction horizon n, = 180
move suppression A =1.001
setpoint tuning parameter a=0.6

logarithmic barrier function parameter p =1

are presented in in Table 6.1. The normalized step response for the quadcopter
dynamics in x, y, 2z, ¥-directions can be see in Fig.6.1. The normalized step responses

are sampled to obtain the position coefficients for the dynamic matrices.

The 2-dimensional and 3-dimensional views of the results without a collision avoid-
ance strategy are shown in Fig.6.2 and Fig.6.3 respectively. It is observed that the
quadcopters can reach consensus and achieve the desired formation at the requested
height of 15 meters. Note that the red circles represent points where the relative dis-
tance between two quadcopters was below the relative safety distance, and the black

star is the final quadcopter position.

The relative distances between all combinations of quadcopters are presented in
Fig.6.4, where Qij for i,7 = 1,...,n, and 7 # j in the figure legends refers to quad-
copter ¢ and quadcopter j. Between 3 and 6 seconds, all four quadcopters violate the
relative safety distance with another quadcopter (Q14 and Q23). Quadcopters 2 and
3 have the smallest violating relative distance of 0.0573 meters while Quadcopters 1

and 4 have a relative distance of 0.6462 meters.

Although collisions occurred, it is observed in Fig.6.5 that the input was success-

fully constrained using the logarithmic barrier function.
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Figure 6.1: Normalized step response for quadcopter dynamics
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Figure 6.5: Control actions without collision avoidance

6.1 Case 1 - Collision avoidance with z-direction constraints

This section presents the collision avoidance results of Algorithm 1. The 3-dimensional
view of the Case 1 collision avoidance results is found in Fig.6.6. It is observed that
Quadcopter 3 and Quadcopter 4 both remain close to the ground in order to avoid
collisions with Quadcopter 1 and Quadcopter 2. This is expected since the collision
avoidance strategy applies constraints only in the z-direction. All quadcopters reach
the desired height of 15 meters and the desired geometric formation.

The relative distances between all combinations of quadcopters can be seen in
Fig.6.7. It can be observed from this plot that the quadcopters do not violate the
relative safety distance of 1.5 meters. Notice that the large relative distance decrease
that appears around 20 seconds, only occurs with quadcopter pairs Q13, Q14, Q23
and Q24. This is because Quadcopters 3 and 4 make a steep altitude gain, which
brings them closer to Quadcopters 1 and 2

The control action results for Case 1 is presented in Fig.6.8. In the figure, it can
be verified that the logarithmic barrier function was able to limit the control actions
successfully, specifically in the z-direction. In addition, the control actions are quite

smooth.
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Figure 6.8: Control actions with collision avoidance (Case 1)

As presented in Fig.6.9, the team of quadcopters also achieved consensus in the
1-direction and converged to a value of 0 radians. Among the quadcopters, the
largest value for the pitch angle is 0.1401 radians and the largest value for the roll
angle is 0.1806 radians. Both of these angles are relatively small and abide by the
linearized quadcopter model condition. Consider that the percent error of small

angle approximations exceed 1% at about 0.245 radians for sine, and 0.663 radians

for cosine; refer to Appendix C.

6.2 Case 2 - Collision avoidance in one predetermined direction

This section presents the collision avoidance results of Algorithm 2. In this case,
Quadcopters 1, 2, 3 and 4 have constraints applied in the z-direction, z-direction,
y-direction and z-direction, respectively.

The 3-dimensional plot in Fig.6.10 illustrates the effects of the output constraints
as motion in the z-direction dips down and up for Quadcopters 2 and 4.

The relative distance between all quadcopter combinations is presented in Fig.6.11.
Quadcopters 1 and 3 reach the closest to the relative safety distance, at a distance of

1.6 meters but remain above the mark.
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Figure 6.11: Relative distances with collision avoidance (Case 2)

Fig.6.12 shows that the control inputs were successfully limited, however, there
is chatter in the z thrust for Quadcopter 4. The effects of the chatter on the z-
positions of Quadcopter 2 and Quadcopter 4 is difficult to observe in Fig.6.10. The
first 4.65 seconds of chatter (where the control does not dip too far past zero) may be
attributed to the constraints turning on/off every third or fourth sampling instant.
Slightly larger values of move suppression can reduce the chatter , however, it also

affects the overall result of the obstacle avoidance.

In Case 2, the quadcopter team achieve consensus in the 1-direction as shown in
Fig.6.13. The largest value for the quadcopter pitch angle and roll angle is 0.1806
radians and 0.1794 radians, respectively. These relatively small angle values satisfy

the linearized quadcopter model condition; refer to Appendix C.

In this control strategy, it is observed that 2 quadcopters must be assigned z-
direction constraints, otherwise collision avoidance is not achieved. This is not un-
expected, since constraints only limit movement in the direction the quadcopter is
already headed according to setpoints. The relative distance between setpoints actu-
ally reveal that quadcopters will collide with each other. Since the desired z-position

is reached quite quickly, the quadcopters are all on the same x-y plane; Therefore, x
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Figure 6.14: Control actions with collision avoidance (Case 2, A = 1.100)

and y constraints are not enough for collision avoidance.

6.2.1 Effects of Tuning Parameters

Move Suppression

Recall that the move suppression is used to manipulate the aggressiveness of the closed
loop response. As mentioned previously, the chatter that occurred in Fig.6.12, can
be reduced by increasing the move suppression. By increasing the move suppression
in the z-direction to A, = 1.100, it is observed in Fig.6.14 that the magnitude of the
chatter is reduced. Similar to the original case, 2.85 seconds to 7.70 seconds (where
the control does not dip too far past zero) may be attributed to the constraints turning
on/off every fifth or sixth sampling instant.

However, the move suppression affects the control actions, which in turn affects the
overall collision avoidance performance. For example, consider the 3-dimensional view
in Fig.6.15. It is evident that Quadcopter 2 lowers less severely to avoid Quadcopter
3, compared to Fig.6.10 where A = 1.001; less aggressive control actions results in
less aggressive movements.

A comparison of relative distances is presented in Fig.6.16, where (a) is when
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A, = 1.100 and (b) is the original Case 2 with A, = 1.001. It is observed when
A, = 1.100, the relative distances of Q12, Q23, Q34, Q14 jump higher than when
A, = 1.001 in the first 5 seconds. On the other hand, when A\, = 1.001, Q24 jumps
and remains higher in the first 5 seconds. The lowest relative distance was 1.873

meters and 1.769 meters for A, = 1.100 and A, = 1.001, respectively.

Setpoint Tuning Parameter

Recall that the setpoint tuning parameter o can be implemented to also reduce the
aggressiveness of the control actions. As a comparison two simulations were done:
a case where a = 0.9 and a case where the parameter was removed (o = 0). The
control actions for the z-direction can be seen in Fig.6.17. Note that as an isolated
study, A was not increased to reduce the chatter.

However, the effects of the setpoint tuning parameter also affects the collision
avoidance performance. For example, The 3-dimensional view of when o = 0 and
a = 0.9 is shown in Fig.6.18 and Fig.6.19, respectively. When observing Quadcopter
2, it is apparent that a = 0 results in more aggressive movements compared to
a=0.9.

A comparison of relative distances is presented in Fig.6.20. It seems that in
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Fig.6.20 (a), the more aggressive movements can result in positive and negative gains.
For example, when o = 0, Q14, Q24, and Q34 maintain a greater relative distance
than when o = 0.9. Conversely, when a = 0.9, Q13, Q23, and Q12 maintain a greater

relative distance than when o = 0. This comparison could be considered inconclusive.

6.2.2 Effects of Number of Agents

The current form of the control strategy is unable to successfully achieve collision
avoidance with a team of more than 4 quadcopters. Some trials of 5 quadcopter
teams were successful with a strongly connected communication topology, however,
it appeared to be circumstantial. Not all strongly connected topologies achieved
collision avoidance, and no pattern or characteristic of the successful/unsuccessful
topologies could be identified.

The successful and unsuccessful 5 agent trial had communication topologies ac-
cording to Fig.6.21. The difference between the successful and unsuccessful trial is
that Quadcopter 5 additionally receives information from Quadcopter 1.

The 3-dimensional view of topology (a) and (b) can be found in Fig.6.22 and
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Figure 6.21: Communication topology (a) successful 5 agent topology (b) unsuccessful
5 agent topology

Fig.6.23, respectively. Despite the occurrence of collisions in topology (b), some
avoidance can be seen.

The proposed control strategy achieves consensus by limiting the quadcopter’s
positions in the direction it was already headed in. The consensus algorithm with a
ring formation (along with the specified initial positions) develops setpoints that bring
quadcopters towards the center of the ring, before moving outwards. Therefore, some
quadcopters are unaware as they approach or are being approached by non-neighbour
quadcopters. An apparent answer to this problem is to include more communication
links among the quadcopters, however, the argument of centralized versus distributed
control resurfaces. A possible solution would be to have an underlying distributed
communication topology used to develop desired setpoints and achieve consensus,
and have quadcopters receive broadcasted positions as they are within range of non-

network quadcopters.

6.2.3 Effects of Initial Conditions

In this section, the effects of different x,y initial conditions were observed. The
relative distances between quadcopters is shown in Fig.6.24 as a comparison for the
investigated variations. Variation (a) places the team closer together so their relative
distances are smaller, while Variation (b) creates larger relative distances between
the quadcopters. The original variation contains the initial conditions according to

the simulations shown for Case 2, and has relative distances inclusive to Variation (a)
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Figure 6.24: Relative distance comparison according to initial condition variations

and (b).

The 3-dimensional result of Variation (a) without and with collision avoidance
is presented in Fig.6.25 and Fig.6.26, respectively. It is easy to observe that the
quadcopters are closer.

The 3-dimensional result of Variation (b) without and with collision avoidance
is presented in Fig.6.27 and Fig.6.28, respectively. Compared to Variation (a), the
initial positions of the quadcopter team appear to be farther apart.

The variations in initial conditions show effects on the points of collision, and
therefore, the collision avoidance path. In addition, the initial positions affect the
setpoints developed by the consensus algorithm, which in turn influences the pairing
and amount of colliding quadcopters. For example, the quadcopters that exceed the
relative safety<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>