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ABSTRACT 

 

Super resolution image can be obtained from combining several low resolution noisy and 

blurred images. We propose an efficient algorithm to produce super resolution 

microscopic images. In the proposed algorithm, accurate sub-pixel motion between 

images is essential for reconstructing the image. Denoising is carried initially by 

adjusting the low resolution images. Shift fusion approach is applied to enhance the 

resolution of image and improved optical flow method is used for registration of images. 

The proposed method is applied to each color channel separately. The results are tested 

with synthetic downgraded images, popular low resolution datasets and experimental 

real-life images showing significant improvement in quality of images, with considerable 

less time cost and memory consumption than those of existing methods. Qualitative 

analysis is studied through edge detection method and observing visible features. 

Quantitative analysis is inspected showing improvement in resolution by measuring 

observable minimum distance. 
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Chapter 1 Introduction 

 

1.1 Preface 

 

This thesis focuses on fast super resolution image reconstruction from a series of low 

resolution microscopic images. The prefix “super” comes from Latin and means “above” 

or “beyond” [1]. Super-resolution is used to describe techniques that enhance the 

resolution of the resultant image through several low resolution images. Each low 

resolution image can be obtained from the same source but has new information present 

in form of subpixel shifts which are fused together by accessing relevant information 

from these shifts to reconstruct an image having higher resolution than the input image. 

Lukosz was the first to realize that spatial resolution can be gained from temporal 

bandwidth [2]. 

 

Multiframe super resolution has been studied extensively over the past few years. 

There are still challenges which exist while performing super resolution. One of them is 

time complexity when dealing with real time data. There are many super resolution 

methods proposed [2-6] and studied which relies correct registration of images and 

deblurring. They also rely upon on known blur kernel and level of noise in the image 

sequences. Many real world applications need a fast super resolution method which can 

perform the task quickly. The applications are in space technology, medical field, 

surveillance cameras, forensic and satellite imaging. One of the applications this thesis 

focuses is on medical technology for blood analysis. It should be noted that in this work 

new algorithm for super resolution is implemented, but due to the technology propriatery 

rights; part of this implementation is not shown in detail. On the other hand, a publication 

was accepted in a conference from this thesis.   

  

The task is challenging because there are many unknown parameters involved. There 

is unknown noise in sensor, optical blur, varying illumination and camera features for 

each frame. We propose a complete working super resolution method with the models 

described in chapter 3 and 4 and results presented in chapter 5.  
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1.2 Motivation 

 

Setup of high resolution imaging is expensive and there are limitations of sensor and 

optical devices, so that high resolution images are not always available. This constraint 

may be overcome by image processing algorithms giving rise to super resolution which is 

the focus of this thesis. In biomedical applications, there is need of simple-to-use but 

accurate devices. A portable hematology system offers opportunities for people to have 

access to valuable diagnostic analysis, anywhere in the world. This could be done using 

low resolution images which can be combined together to achieve a desirable high 

resolution for analysis.  

  

 Many super resolution algorithms produce high detail image but lacks in the 

computational complexity needed for large volume of image datasets. Combining the 

numerous advantageous, pragmatic applications and possibilities this algorithm can 

accomplish and challenges on making it computationally inexpensive at the same time 

producing a high quality result has excited us to work on this research. This book 

presents the process of obtaining a super resolved image which is accurate enough onto 

which blood cells classification and other analysis can be performed. 

 

 

1.3 Objectives 

1. To design a complete and computationally efficient super resolution algorithm 

reconstructing a high resolution image for doing complete blood count.  

2. To design a motion estimation algorithm which accurately determines subpixel 

shift between the captured low resolution images, independent of hard 

configuration of optical device. 

3. To use a benchmark for image quality for testing simulated images and 

experimental images.  

4. To quantitatively analyze the reconstructed results expressing the minimum 

distance resolved between the two objects. 
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1.4 Outline of Thesis 

 

The chapters in the book are organized as follows. In chapter 2, the theory behind super 

resolution is described with previous works done in this area in the past. The criteria used 

behind the assessment of quality images are also discussed. Chapter 3 provides the 

improved method used for motion estimation and analysis of performance. In chapter 4, 

the proposed super resolution method is explained in detail outlining various steps 

involved. Chapter 5 gives thorough analysis of results through various image quality 

parameters. These are categorized into three sections, which are: standard test images, 

simulated images and experimental dataset. Quantitative analysis for simulated and 

several experiments is shown. Time complexity is also discussed by our suggested 

method. Chapter 6 concludes with our interpretations, reviews primary contributions and 

remarks for possibility of future research. 
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Chapter 2 Background Theory 

2.1 Super Resolution 

In today’s world, images with high resolution are desirable and sometimes need as a 

requirement for critical applications [1]. High resolution images provide more details; 

have less noise and more pixel density but common imaging systems have limits during 

image acquisition as shown in Figure 2.1 which contains optical distortion, spatial 

aliasing, motion blur and noise in the system. Figure 2.2 provides connection between 4 

low resolution samples and high resolution image. 

 

 

 
Figure 2.1 Common Imaging System [7] 
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(a) Frame 1 of LR dataset (b) Frame 2 (c) Frame 3 

 
(d) Frame 4 (e) Irregularly sampled 

HR image 

(f) Regularly sampled 

HR image 

 

Figure 2.2 Relationship between LR and HR images [8] 

 

The super resolution is possible when Nyquist criterion is satisfied as LR 

observed image represents aliased version of the original image. The observed images 

can be combined to remove aliasing producing higher resolution image. Description 

about possibility of super resolution is as follows [9][10]  

 

Consider a 1D signal, free from blur or noise. If this signal is continuous with p 

kinds shifted by amount 𝛿𝑘, where 𝑘 = 0,1,2… . . 𝑝 − 1, then 

𝑓𝑘(𝑥) = 𝑓(𝑥 + 𝛿𝑘) 

 

A sampled version of 𝑓𝑘, for 𝑛 =  0,1,2… . . 𝑁 − 1, will be,  

𝑓𝑘𝑛 = 𝑓(𝑛𝑇 + 𝛿𝑘) 

where, T is the sampling period. 

 

(2.1) 

(2.2) 
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Let, 𝐹𝑘(𝜔) and 𝐹(𝜔) be the Fourier transform of 𝑓𝑘(𝑥) and 𝑓(𝑥), respectively. 

 

The continuous Fourier transform of equation (2.1) is,  

 

𝐹𝑘(𝜔) = 𝑒𝑖2𝜋𝛿𝑘𝜔𝐹(𝜔) 

 

Let, 𝐹𝑘𝑙 be the N-point discrete Fourier transform (DFT) of kth sampled image 𝑓𝑘𝑛,  

 

𝐹𝑘𝑙 = ∑ 𝑓𝑘𝑛 exp (−𝑗2𝜋
𝑙𝑛

𝑁
) , 𝑙 = 0,1,2… ,𝑁 − 1𝑁−1

𝑛=0  

 

We can relate Fourier Transform of 𝑓𝑘(𝑥) and discrete Fourier transform of its sampled 

version by sampling theorem [11], that is, 

 

𝐹𝑘𝑙 = 
1

𝑇
∑ 𝐹𝑘(

𝑙

𝑁𝑇
+ 𝑚

1

𝑇
)

∞

𝑚=−∞

 

where, 𝑙 =  0,1,2…𝑁 − 1 

𝐹𝑘𝑙 = 
1

𝑇
∑ 𝑒𝑗2𝜋𝛿𝑘(

𝑙
𝑁𝑇

+𝑚
1
𝑇
)𝐹𝑘(

𝑙

𝑁𝑇
+ 𝑚

1

𝑇
)

∞

𝑚=−∞

 

 

Since 𝑓 is bandlimited and sampling period given as 𝑇, sampling period  𝜔𝑠 =

1/𝑇, and 𝐿 being integer, the values in the frequency spectrum can be calculated at 

−𝐿𝜔𝑠, −𝐿𝜔𝑠 +
1

𝑁𝑇
,…, −𝐿𝜔𝑠 −

1

𝑁𝑇
 which results in an enhancement of 2𝐿 times in 

resolution. 

 

𝐹(𝜔) = 0 𝑓𝑜𝑟 |(𝜔)| ≥ 𝐿/𝑇 

 

In order to avoid aliasing we should have sampled with 𝑇′  =  𝑇/2𝐿 . From above 

equation (2.6), each 𝐹𝑘𝑛, can be expressed as combination of 2𝐿 samples of 𝐹(𝜔). There 

are set of 𝑝 ×  𝑁 linear equations and 2𝐿 ×  𝑁 unknown. It can be solved if ≥ 2𝐿 . The 

2L × N calculated samples of 𝐹(𝜔) can now be used to estimate 𝑓(𝑥)from 𝑥 =

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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 0, . . . , (𝑁 −  1)𝑇, with spacing 𝑇/2𝐿. Using 𝑘 =  0 and replacing 𝑁 by 2𝐿𝑁 and 𝑇 by 

𝑇/2𝐿 in above equation the resolution can be increased by a factor of 2𝐿. This is the 

simple case for theoretical explanation. There are other factors such as blur and noise 

which should be taken into account. 

 

 

2.1.1 Previous Works 

Reconstruction of super resolution image is a restoration of image. The super resolution 

problems in the past years are solved in frequency domain and spatial domain. 

Extrapolation techniques using prolate spheroidal wave functions have been proposed by 

Slepian and Pollak[12]. Papolous and Gerchberg used extrapolation by error energy 

reduction [13][14]. The initial work to produce a super resolution image through many 

downsampled low resolution frames was done by Tsai and Huang [15]. They considered 

𝑚 low resolution frames with shift 𝑠𝑘. These frames are {𝑓𝑘}𝑘=1,2…𝑚. If 𝑓(𝑥) is the ideal 

continuous image and then 𝑓𝑘 are the samples from 𝑓(𝑥 + 𝑠𝑘). The continuous Fourier 

transform of these samples is,  

𝐹𝑘(𝜔) =  𝑒𝑖𝑠𝑘𝜔𝐹(𝜔) 

 

The discrete Fourier transform of the samples is, 

𝐹𝑘 = (exp (−𝑖2𝜋
𝑗𝑛

𝑁
))𝑗,𝑛𝑓𝑘 

 

Using relationship between continuous Fourier Transform and discrete Fourier transform, 

given T as temporal spacing between samples, 𝜔𝑠 as sampling frequency of each low 

resolution frames.  

𝐹𝑘𝑛 =
1

𝑇
∑ 𝐹𝑘(

𝑛

𝑁𝑇
+ 𝑝𝜔𝑠)

∞

𝑝=−∞
 

 

They calculated the values in the frequency spectrum. Kim et al discuss a recursive 

algorithm, also in the frequency domain, for the restoration of super-resolution images 

from noisy and blurred observations [16].  

(2.8) 

(2.9) 

(2.10) 
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Projection onto convex sets (POCS) method was done by Sauer and Allebach [17] 

as an interpolation problem for non-uniform data. Ur and Gross [18] use the Papoulis 

generalized multichannel sampling theorem [19][20] to obtain an improved resolution 

picture from interpolation values. Blur in the images with restoration during 

reconstruction was considered by Irani and Peleg using iterative back projection 

algorithm [21]. Structure adaptive normalized convolution was formulated in [22] but is 

computationally expensive algorithm. Tikhnonov regularization was proposed in [23] and 

addressed the issue of under determined cases. Farsiu et. al incorporated regularization by 

estimating a blurred image with L1 norm minimization in regularization and 

measurement terms, they used total variation bilateral filter as deblurring function [3] 

which works very well for small size of the datasets but it takes lot of time to produce 

higher resolution image as the size of the low resolution increases. Several papers have 

considered super resolution from a single image [24-26] but are limited to small increase 

in resolution (sometimes by factors smaller than 2). Super resolution through training a 

set of images by learning correspondence through a database between the patches of low 

resolution and high resolution images was given in [27] but are unable to deliver high 

resolution image if blur in the images is varied. Compressed sensing approach through 

sparsity of patches of low resolution images was addressed in [28] and based on single 

image by [25]. Modelling high resolution image as Maximum a posteriori-Markov 

Random Field (MAP-MRF) framework and solving using graph cut optimization was 

investigated in [26-29], but they suffer high computational complexity for large image 

size.  Gunturk et al proposed a Bayesian approach for the super-resolution of MPEG-

compressed video sequence considering both the quantization noise and the additive 

noise [30] but require significant time and space complexity for processing the images. 

Our method overcomes these difficulties by providing an efficient approach. 
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2.1.2 Diffraction Limit 

The resolution of an optical microscope is defined as the shortest distance between two 

points on a sample that can be distinguished by the observer or camera system as separate 

objects. The resolution of optical imaging instruments, for example, telescopes and 

microscopes is limited by diffraction of light which was proposed by a German physicist 

Ernst Abbe in 1873 [31]. The Abbe criterion is defined as:  

 

𝑟 =  
0.5𝜆

𝑁𝐴
=  

0.5𝜆

𝑛 sin (𝜃)
 

 

 𝑁𝐴 is the numerical aperture of the objective lens, r is the distance between two 

objects from each other. 𝜆 is the wavelength of the light, 𝑛 is the diffraction between 

objective and the sample. The resolution is limited through other criterions such as the 

Rayleigh criterion which is described mathematically as:  

 

𝑟 =  
0.61𝜆

𝑁𝐴
= 

0.61𝜆

𝑛 sin (𝜃)
 

 

 
Figure 2.3 Conventional resolution limits: Rayleigh limit, Abbe limit and Sparrow limit [32] 

 

 

 

(2.19) 

(2.18) 
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2.1.3 Point Spread Function 

The diffraction limit is caused due to the wave nature of the light and the influence with 

the optical system which can be diffraction, scattering at the point of contact. Point 

Spread Function (PSF) describes the response of the imaging system to the point source, 

which is basically the impulse response of the system. In spatial domain it is also transfer 

function of the system. Resolution depends on the wavelength of light and Numerical 

Aperture (𝑁𝐴) which is collecting ability of the objective lens.  

 
Figure 2.4 Resolution limit and ability to differentiate between point sources [33] 

 

 

An image is a convolution of the object and the PSF function  

 

𝐼𝑚𝑎𝑔𝑒 = 𝑂𝑏𝑗𝑒𝑐𝑡 ⊛ 𝑃𝑆𝐹 

 

(2.20) 
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(a) 

 
(b) 

Figure 2.5 Blurring due to an imaging system [34] 

 

The image of a point source is blurred and degraded by noise of the imaging system. If 

the imaging system is linear, the image of an object can be expressed as:  

 

𝑔(𝑥, 𝑦) =  ∬ ℎ(𝑥, 𝑦; 𝛼, 𝛽)𝑓(𝛼, 𝛽) 𝑑𝛼 𝑑𝛽 +  𝜂(𝑥, 𝑦)
∞

−∞
 

 

Where, 𝜂(𝑥, 𝑦) is the additive noise function,  𝑓(𝛼, 𝛽) is the object, 𝑔(𝑥, 𝑦) is the 

image, and ℎ(𝑥, 𝑦; 𝛼, 𝛽) is the point spread function. The “;” is used to describe the input 

and output pairs of the coordinates in this scenario. The point spread function (PSF) 

describes the imaging system response to a point input, and is analogous to the impulse 

response. A point input, represented as a single pixel in the “ideal” image, will be 

reproduced as something other than a single pixel in the “real” image. 

The output image is regarded as two dimensional convolution of the ideal image. 

The PSF describes the imaging system response to a point input and is analogous to the 

impulse response. 

 

 

(2.21) 
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2.1.4 Optical Transfer Function 

Modulation Transfer function is a quantity used to characterize the performance of an 

optical system, photonic system, film scanners and video cameras. This is the system`s 

ability to transfer contrast to image plane at a particular resolution.  

 

 
Figure 2.6 Modulation and Contrast Transfer functions [35] 

 

MTF and OTF are related by,  

𝑂𝑇𝐹 = 𝑀𝑇𝐹 × 𝑒𝑖𝜑(𝑓) 

 

Optical Transfer Function is conventionally expressed as the normalized Fourier 

transform of Point Spread Function where normalization would be such that the value of 

at zero frequency is one. Therefore, the optical transfer function is a spatial frequency-

dependent complex variable whose modulus is the modulation transfer function, and 

whose phase is described by the phase transfer function. 

A perfect optical system will have a unity modulation transfer function at all 

spatial frequencies. The relationship between the modulation transfer function and the 

point spread function for a diffraction-limited optical microscope is illustrated in Figure 

2.7. 

(2.22) 
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Figure 2.7 Fourier Relationship between MTF and PSF [35] 

 

2.2 Median Filtering 

Median filtering is a nonlinear method for removing noise in the image. Noise in the 

image is random difference of brightness or color information in the pixel values. It can 

be produced by sensor or circuit elements of the optical system which captures the image.  

 

𝑚𝑒𝑑𝑖𝑎𝑛[𝐴(𝑥) + 𝐵(𝑥)]  ≠ 𝑚𝑒𝑑𝑖𝑎𝑛 [𝐴(𝑥)] + 𝑚𝑒𝑑𝑖𝑎𝑛[𝐵(𝑥)] 

 

Median filter is effective in removing noise because it preserves edges in the 

image which are crucial for implementing image segmentation for detecting the 

boundaries of the blood cells in the microscopic image.  

 

Figure 2.8 Example of Median Filtering [36] 

(2.23) 
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The assumption for the neighboring pixels is that the pixel value represents the 

same feature as the reference pixel taking into account. In this filtering process, the pixel 

values in the neighbourhood window are listed according to the intensity and the middle 

value which is the median becomes the output value of pixel operating upon. An example 

of median filter operation is shown in the figure 2.9. 

 

Fig. 2.9 Median filter operation for middle pixel value of 150 [37] 

 

 

2.3 Assessment of Image Quality 

Image enhancement or improving the visual quality of a digital image can be subjective.  

Quality through visual perception can vary based on different parameters used by 

persons. Thus, it is necessary to establish quantitative measures to compare the effects of 

image enhancement algorithms on image quality when the original image is available. 

 

2.3.1 Peak Signal to Noise Ratio 

Most extensively used full- reference quality measurement is peak signal to noise ratio 

(PSNR) and mean squared error (MSE), which is computed by averaging the squared 

intensity differences of low resolution and original image pixels [38]. PSNR is the ratio 

of power between the maximum possible value of a signal under consideration to the 

power of corrupted signal. It is represented on a logarithmic decibel scale.  
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For a standard two dimensional array of matrix, typically an image, the mathematical 

representation of PSNR is given as,  

 

 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10

𝑀𝐴𝑋𝑓

√𝑀𝑆𝐸
 

Mean squared error (MSE), is calculated as, 

 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑ ||𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)||2

𝑛−1

0

𝑚−1

0

 

 

Here, f is the matrix data of our ground truth image 

g is the matrix data of our degraded image in question 

m are the numbers of rows of pixels of the images and i represents the index of that row 

n are the number of columns of pixels of the image and j represents the index of that 

column 

MAXf is the maximum signal value that exists in original image. 

 

The drawback of this measurement is that it relies stringently on numeric 

evaluation and does not essentially take into account any level of other factors of the 

human vision system such as the structural similarity index (SSIM). 

 

 

2.3.2 Structural Similarity Index 

PSNR and MSE are appealing because they are easy to calculate, have clear physical 

meanings, and are mathematically convenient in the context of optimization. But they are 

not very well matched to perceived visual quality and only rely on numerical calculations 

[38-41].  

 SSIM attempts to measure the change by three factors which are luminance, 

contrast and structure of the image. The results are combined and averaged to generate a 

final SSIM index value as shown in Figure 2.10. 

(2.24) 

(2.25) 
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Figure 2.10 Diagram showing Structural similarity measurement system [42] 

 

To show how SSIM is calculated [42], consider 𝑥 and 𝑦 are positive image signals which 

are aligned with each other. Constant 𝐶1 , 𝐶2 , 𝐶3  are included to avoid instability. In 

grayscale image, the luminance value is the pixel value. In a color image, luminance is 

calculated by 

 

𝐿 =  0.27 𝑟𝑒𝑑 +  0.67 𝑔𝑟𝑒𝑒𝑛 +  0.06 𝑏𝑙𝑢𝑒 

 

Let 𝜇𝑦 be the distorted signal and 𝜇𝑥 be the original signal. The luminance comparison  

𝑙(𝑥, 𝑦) is function of 𝜇𝑥 and 𝜇𝑦 

𝜇𝑥 = 
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

The constant 𝐶1  is defined as, 

𝐶1 = (𝐾1𝐿)2, 

 

where 𝐿 is the dynamic range of the pixel values (255 for 8 − 𝑏𝑖𝑡 grayscale images), and 

𝐾1 ≪  1 is a small constant. 

𝑙(𝑥, 𝑦) =  
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 

 

 

(2.27) 

(2.28) 

(2.29) 

(2.26) 
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For contrast comparison 𝑐(𝑥, 𝑦), constant 𝐶2 is given as, 

𝐶2 = (𝐾2𝐿)2, 

where, 𝐾2 ≪  1  is a small constant. 

 

𝑐(𝑥, 𝑦) =  
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 

 

Structure comparison is defined by,  

𝑠(𝑥, 𝑦) =  
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

 

Similarity measure is function of the three parameters defined above,  

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑓(𝑙(𝑥, 𝑦), 𝑐(𝑐, 𝑦), 𝑠(𝑥, 𝑦)) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)𝛼 ∙ 𝑐(𝑥, 𝑦)𝛽 ∙ 𝑠(𝑥, 𝑦)𝛾 

 

With setting parameters, 𝛼 = 1, 𝛽 = 1, and 𝛾 = 1 and 𝐶3 = 
𝐶2

2⁄ , the equation is 

derived in Appendix A1. 

 

2.4 Image Features 

Edges are local variation in the image intensity. Edges typically occur on the boundary of 

the regions. Edge detection has major feature for image analysis and has many 

application in field of morphology, computer vision research [43]. 

 

The edge of an image greatly reduces the quantity of data to be processed, and 

preserves essential information regarding the shapes of objects in the scene. Image 

segmentation is standard and fundamental problem in computer vision [44]. Edge 

detection methods such as the Robert edge detector, the Sobel edge detector [45] and the 

Canny edge detector [46] are based on variation of intensity. 

  

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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We use edge detection technique to see edges of the components in the blood 

cells. The low resolution image edges remain undistinguishable while our reconstruction 

method provides sharp edges. Sobel edge detection method [44] is used to find the 

approximate absolute gradient magnitude which are the horizontal and vertical direction 

edges in an input grayscale image which is quiet useful for image segmentation. Let 𝐺𝑥 

and 𝐺𝑦 be the convolution kernels in the vertical and horizontal directions.  

 

Table 2.1 Vertical mask 𝐺𝑥for sobel edge detector 

-1 0 1 

-2 0 2 

-1 0 1 

 

Table 2.2 Horizontal mask 𝐺𝑦 

-1 -2 -1 

0 0 0 

1 2 1 

 

The gradient magnitude is given in (2.34) and an example of this operation is given in 

Figure 2.11. 

|𝐺| = |𝐺𝑥| + |𝐺𝑦| 

 

 

 

 

 

(2.34) 
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(a) 8 bit Lena image  

 
(b) Image after applying Horizontal Mask 

 
(c) Image after applying Vertical Mask 

 
(d) Image after calculating magnitude of the gradient. 

 

Figure 2.11 Sobel operator example 
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Chapter 3 Motion Estimation 

 

3.1 Introduction 

Super resolution can be obtained when all the prerequisites are complete. One of them is 

presence of motion between the frames, in this case, images which are captured. Small 

amount of motion is necessary for reproducing high quality images because each frame 

contains new and different information from other frames. When the frames are captured 

there can be motion in any direction. This can be in vertical, horizontal or even rotational. 

In this thesis we are focusing on vertical and horizontal motion only. 

 

Motion is natural property of the universe. Motion estimation is important for 

doing super resolution. It is essential for doing image registration which is one of the 

components in super resolution. It is a pre-processing step required to produce a high 

resolution image. It is an ill-posed problem; therefore various restraints are needed to 

obtain a unique and stable solution [47]. Parameters are determined from motion 

estimation which is global translational displacements. Accurate subpixel displacements 

are crucial for registration of image which directly affects the quality of reconstruction of 

super resolved image. It is the preprocessing step for super resolution. Subpixel details 

are extracted through optical flow method for each frame from the dataset. This 

information is used to register all these frames to a chosen reference frame. Inaccurate 

registration leads to noisy and misaligned reconstruction of image. The method we 

employ finds the estimation parameters from the image produces very good results. 

 

In this chapter, we describe the optical flow model for raw data sets [48][49] and 

use the modified model for motion estimation for microscopic images. Suitable frame 

size of the motion is chosen for real world images instead of considering full scale image. 

This step is processed rapidly depending upon the number of images, which reduces 

computation speed by considerable amount. Pseudo flat field correction is required step 

to remove outliers, noise and to have constant to minimum variation brightness in the 

pixels. This is processed through taking a Gaussian smoothing filter and performing two 

dimensional convolution.  
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Resolution of image is enhanced by relative displacements in the image sequence 

and aligning them to the reference image chosen. This process of aligning is called image 

registration. Low resolution image suffers from geometrical transformation which is 

misalignment in the image because of sensor and lens distortions. Figure 3.1 shows 

different types of transformations on an image. We consider translational model which is 

the shift in 2D space. These images have to be registered to a reference frame which is 

also a low resolution frame which is fused together onto a high resolution empty grid. 

 
Figure 3.1 Various transformations shown above.  

A. Rigid transformation involving rotation and translation; B. Affine transformation includes 

skew and scaling; C. Projective transformation; D. Deformable transformation 

 

 

 

 

 

 

A. 

B. 

C. D. 
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3.2 Optical Flow  

Lukas Kanade proposed an algorithm for image alignment in 1981 which is widely used 

for various computer vision applications [50]. Optical flow is a process used to compute 

motion of pixels in an image sequence. It is dense image based motion estimation which 

relies on certain assumptions in order to compute the required parameters for super 

resolution algorithm. These parameters are shifts in the x and y direction in the image. 

When there is difference between the brightness and illumination in the scenes, in this 

case the microscopic image of human blood sample, the difference is observed which is 

the motion between the objects in the world and apparent motion. 

 

 The brightness consistency is one of the assumptions which is rather not constant 

in the real world scenario. There are frequent changes in the illumination in the real world 

scenes. As we are dealing with microscopic images which have uneven illumination in 

each frame, it becomes challenging to estimate the pixel movement in subpixel 

dimension. We solve this problem by employing the PFFC method explained later in the 

chapter which not only robustly gives accurate estimation for different kinds of scenes 

but is computationally inexpensive as well. 

 

Motion field can be defined as the 2D projection of a 3D motion onto an image 

plane. Optical flow is defined as the apparent motion of the brightness pattern in the 

space. It is the core area of computer vision used to approximate motion. Given a 

sequence of images, we want to determine the movement of the objects which gives us 

the optical field approximation as shown in the Figure 3.2 [52] 
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Figure 3.2 Movement of objects over two frames on the left and optical flow vectors for objects 

on the right 

 

The optical flow can also be seen by a famous barberpole illusion in the following figure.  

 
Figure 3.3 Barberpole illusion showing difference between motion field and optical flow 
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3.2.1 Preliminaries 

In order to estimate motion through method we are using, there are some assumptions 

made for it to work. Here are the following assumptions –  

1. Constant Brightness – The total intensity is conserved from one frame to another. 

The apparent brightness of moving objects remains constant. This is a rather heavy 

assumption as it fairly holds true under ideal conditions. Let 𝐼(𝑥, 𝑦, 𝑡) be the image 

intensity function in space and time. The movement of image intensity of a pixel can 

be represented as:  

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) 

 
Figure 3.4 Pixel movement from one frame to another 

 

By first order Taylor expansion of (3.1)  

𝐼(𝑥(𝑡 + 1), 𝑦(𝑡 + 1), 𝑡 + 1) = 𝐼 + 
𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 

𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑡
+ 

𝜕𝐼

𝜕𝑡
   

= 𝐼 + 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 

The linearized version of this constancy assumption yields the optical flow constraint, 

𝐼 + 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 𝐼 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 

There are two velocities with only one equation. We introduce another assumption of 

spatial coherence. 

 

2. Spatial Coherence – The points beside each other which are neighbours, in this 

case – the image pixel neighbours belong to the same surface, therefore should 

have similar motion or more so have same velocities. If 𝑛 × 𝑛 is the size of the 

window, it solves the aperture problem [51]. But it gives us lots of equations to 

(3.2) 

(3.3) 

(3.1) 
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solve with many unknowns, so it becomes a minimization problem. If 𝑝𝑛 are the 

neighbouring pixels, we can write in matrix form: 

[
 
 
 
𝐼𝑥(𝑝1) 𝐼𝑦(𝑝1)

𝐼𝑥(𝑝2)
⋮

𝐼𝑥(𝑝𝑛)

𝐼𝑦(𝑝2)

⋮
𝐼𝑦(𝑝𝑛)]

 
 
 
 [
𝑢
𝑣
] =  − [

𝐼𝑡(𝑝1)
𝐼𝑡(𝑝2)

⋮
𝐼𝑡(𝑝𝑛)

] 

The above equation can be expressed as: 

𝐴 𝑥 = 𝑏 

𝑥 =  (𝐴𝑡𝐴)−1𝐴𝑡𝑏 

 

Using iterative estimation, optical flow can be approximated as shown in the figure 3.5 

 
Figure 3.5 Example of 1D iterative optical flow where 𝑓1(𝑥) is the starting function and 𝑓2(𝑥) is 

the target function 

 

 

In the next section, we will look into a famous optical flow method to solve these 

equations. 

 

 

 

(3.4) 

(3.5) 
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3.2.2 Lukas Kanade Algorithm 

One of the popular methods for optical flow computation is Lukas and Kanade’s 

differential method [50]. It uses weighted least squares method to approximate the optical 

flow relying on the assumption of spatial coherence such that the vector is similar to the 

surrounding pixel area and the displacement between the frames is small and 

approximately constant within the neighbourhood of pixel (𝑢, 𝑣) under consideration. 

 

Sum of squared differences can be written as:  

SSD =  Σ(𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) − 𝑅(𝑥, 𝑦, 𝑡))2 

 

We aim to find (𝑢, 𝑣) that minimizes the sum of squared differences over the region 𝐴. 

min
𝑢,𝑣

𝑆𝑆𝐷(𝑢, 𝑣) =  min
𝑥,𝑦

∑ (𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2

𝑥,𝑦𝜖𝐴

 

 

Optimal (𝑢, 𝑣) which satisfies Lukas-Kanade equation given the following conditions are 

met for the following equation: 

[
Σ𝐼𝑥

2 Σ𝐼𝑥𝐼𝑦

Σ𝐼𝑥𝐼𝑦 Σ𝐼𝑦
2 ] [

𝑢
𝑣
] =  − [

Σ𝐼𝑥𝐼𝑡
Σ𝐼𝑦𝐼𝑡

] 

𝐴𝑇𝐴                      =        𝐴𝑇𝑏 

In order to solve the equation, following conditions are to be met, 

1. 𝐴𝑇𝐴 should be invertible. 

2. Eigen values 𝜆1and 𝜆2 of 𝐴𝑇𝐴 should not be too small. 

3. 
𝜆1

𝜆2
⁄  should not be too large to avoid noise. 

This method has an advantage over iterative method of Horn and Schunk [52] 

because the optical flow vector is local instead of global so we are able to find a good 

estimate. For each pixel, an optical flow consistent with the neighbouring spatial and 

temporal gradients is calculated.  

Let 𝐼 be the input image, 𝑅 be the reference image and 𝑇 be the transformation 

between the input and the output image. We assume that motion is very small in the 

amount of subpixel shift. We have, 

(3.6) 

(3.7) 

(3.8) 
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0 = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐻(𝑥, 𝑦) 

≈ 𝐼(𝑥, 𝑦) − 𝐼𝑥𝑢 + 𝐼𝑦𝑢 − 𝐻(𝑥, 𝑦) 

Where, image 𝐻 is warped or transformed towards 𝐼 using the estimated flow 

field and this is repeated until convergence. For improving accuracy, iterative Lukas-

Kanade algorithm is implemented by estimating the velocity at each pixel by solving the 

equation (3.8) using Newton-Raphson method.  

 

Temporal Aliasing:  Images having lower temporal sampling rates than required 

by sampling theorem to uniquely construct continuous signal causes a problem  in motion 

estimation. This can be solved by using iterative process of creating Gaussian pyramids 

and calculating image derivatives at the coarsest image level. 

 

If the motion is found to be large, we reduce the resolution of the image using 

Gaussian pyramids. It decomposes images into information at multiple scales to extract 

features and to attenuate noise. Optical flow can be estimated at coarsest scale of a 

Gaussian pyramid where velocities are very slow because of subsampling. As shown in 

Figure 3.6 and 3.7, each estimate can be used to warp the next pyramid level to stabilize 

the motion between the frames. This can be repeated until the optimum level of pyramid 

is reached.  

 

(3.9) 
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Figure 3.6 Reducing resolution if the motion is large to estimate [52] 

 

 
(a) 

 
(b) 

Fig 3.7 Coarse to fine optical flow motion estimation through Gaussian pyramids [52] 
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3.3 Pseudo Flat Field Correction 

FFC are used to improve the quality of digital imaging by removing artifacts triggered 

due to variation of pixel intensity across the chip during image acquisition. The effects of 

the stationary noise patterns and variable pixel responses that commonly occur with 

uniform exposure of digital detectors can be effectively reduced by simple 'flat- field' 

image processing methods [54]. 

 

If optical method described is implemented for finding motion estimate between 

the microscopic frames, it would fail because it doesn’t employ the uneven illumination 

in the equation. As the method of capturing these experimental images are designed in 

such a manner that it creates uneven illumination, we need a flat field image to correct 

the captured image, and then proceed to estimate the motion. With image processing 

algorithms we can generate pseudo flat field image which is very fast in speed and 

corrects the frames captured. This overall process is called Pseudo Flat Field Correction 

(PFFC).  

 

Let’s consider 𝐺 the blur kernel. The FFT convolution between the image under 

consideration which is the input image and the blur kernel in time domain would be 

equivalent to multiplication in the frequency domain, according to convolution theorem. 

The Fourier transform between image I and kernel G can be expressed as,  

𝐹{𝐼 ∗ 𝐺} = 𝐹{𝐼} . 𝐹{𝐺} 

or, 

𝑓(𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦) = 𝐹(𝑢, 𝑣). 𝐺(𝑢, 𝑣) 

 

Where, 𝑓(𝑥, 𝑦) is the image in spatial domain 𝑔(𝑥, 𝑦) is the Gaussian kernel.  

 

Discrete Fourier transform for the image can be written as, 

𝐹(𝑢, 𝑣) =  
1

𝑁𝑀
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−2𝜋𝑖(

𝑢𝑥
𝑁

+
𝑣𝑦
𝑀

)

𝑀−1

𝑦=0

𝑁−1

𝑥=0

 

 

 

(3.10) 

(3.11) 
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Gaussian kernel with 2D distribution is expressed as, 

𝑔(𝑥, 𝑦) =  
1

2𝜋𝜎2
exp (−

𝑥2 + 𝑦2

2𝜎2
) 

 

The discrete Fourier transform would be, 

𝐺(𝑢, 𝑣) =  
1

𝑁𝑀
∑ ∑

1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 𝑒−2𝜋𝑖(
𝑢𝑥
𝑁

+
𝑣𝑦
𝑀

)

𝑀−1

𝑦=0

𝑁−1

𝑥=0

 

 

Let, 

𝐻(𝑢, 𝑣) =  𝐹(𝑢, 𝑣). 𝐺(𝑢, 𝑣) 

  

Gaussian kernel with 2D point spread function is smoothing convolution operator used to 

blur and reduce noise in the images. For 𝜎 = 1 with mean (0, 0), the Gaussian 

distribution is shown in the Figure 3.8. 

 

 

Figure 3.8 2D Gaussian distribution 

 

Equation (3.15) gives us the pseudo flat field image which is generated for every frame. 

The pseudo flat field corrected image 𝐼𝑓 is obtained by taking ratio of noisy image to the 

pseudo flat field image and multiplying it by mean value of pixels of the pseudo flat field 

image.  

 

(3.12) 

(3.13) 

(3.14) 
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𝐼𝑓 = 
𝐼

1
𝑁𝑀

∑ ∑ 𝐻(𝑢, 𝑣)𝑒2𝜋𝑖(
𝑢𝑥
𝑁

+
𝑣𝑦
𝑀

)𝑀−1
𝑦=0

𝑁−1
𝑥=0

×
∑ ∑ 𝐼(𝑥, 𝑦)𝑛

𝑦=0
𝑚
𝑥=0

𝑀𝑁
 

 

Equation 3.5 is our modified equation is processed to find the motion estimation. 𝑀 and 

𝑁 are length and breadth of matrix respectively. Optical flow equation is modified in the 

following form: 

 

[
 
 
 
𝐼𝑓𝑥(𝑝1) 𝐼𝑓𝑦(𝑝1)

𝐼𝑓𝑥(𝑝2)

⋮
𝐼𝑓𝑥(𝑝𝑛)

𝐼𝑓𝑦(𝑝2)

⋮
𝐼𝑓𝑦(𝑝𝑛)]

 
 
 
 [
𝑢
𝑣
] =  −

[
 
 
 
𝐼𝑓𝑡(𝑝1)

𝐼𝑓𝑡(𝑝2)

⋮
𝐼𝑓𝑡(𝑝𝑛)]

 
 
 
 

where, 𝐼𝑓𝑥 = 
𝜕𝐼𝑓

𝜕𝑥
 , 𝐼𝑓𝑦 = 

𝜕𝐼𝑓

𝜕𝑦
 and 𝐼𝑓𝑡 = 

𝜕𝐼𝑓

𝜕𝑡
 

 

 
(a) RAW image, optical flow method fails to 

work for this image. 

 

 
(b) Pseudo Flat Field image 

 

 
(c) Corrected image 

 

Figure 3.9 PFFC correction 

 

For experimental images, processing full scale image can be computationally time 

expensive. As there is global translation, we work with a small block with the same size 

and same location for each frame. The size of the block chosen is 200 × 200 pixels at 

center of the frame.  

(3.15) 

(3.16) 



 

 32 

 

3.4 Performance Analysis 

The performance of Pseudo Flat Field correction is compared with the original method 

and variation in the results are seen. Results obtained using our method provides better 

reconstruction because it takes varying pixel intensities into account. 

 

 

 
(a) Without PFFC 

 

 
(b) With PFFC 

 

 
(c) Edges not visible 

 
(d) Sharp edges 

 

 

Figure 3.10 Reconstruction results and edge details 
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Figure 3.12 Graph showing estimated shifts without flat field (Lower the better); Frame 11 is 

reference; Abnormal shift as high as 100 pixels is undesirable 

 

 

 
Figure 3.13 Graph showing estimated shifts with pseudo flat field (Lower the better); Frame 11 is 

reference 

 

 

 

 

-80

-60

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sh
if

t 
in

 p
ix

e
ls

 

Frame number 

x

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sh
if

t 
in

 p
ix

e
ls

 

Frame number 

x

y



 

 34 

 

Chapter 4 Super Resolution Method 

 

4.1 Introduction 

In this chapter, the method of super resolution yielding in less amount of time is 

discussed with different applications. With the main application in microscopy, this 

method produces excellent results for doing red blood cells and white blood cells 

analysis.  

 

The low resolution images are captured from the same scene with different 

subpixel shifts. These low resolution images contain noise, camera blur effect; camera 

point spread function, downsampling effect and atmospheric blur effect. For estimating 

the high resolution model, it necessary to assume the noise model of low resolution 

image. If it doesn’t meet the criteria of low resolution model then the system performance 

is affected considerably. The fast super resolution method used in this thesis is robust and 

applies to any low resolution image sets as long as there is preconditioning of subpixel 

shift between these images. 

 

The main objective is to produce super resolved image in least amount of time 

with more details which has high pixel values. The algorithm presented deals with 

displacement values which are, two dimension motion shifts for all the LR corrupted 

images with respect to the reference LR image. If we have set of n images and first image 

is considered as reference image, then 𝑛 − 1 horizontal and vertical shifts should have 

real floating values.  

 

The motion estimation algorithm which is the optical flow algorithm is applied to 

green channel of the image. It is assumed that the subpixel shift is same for all the 

channels which are necessary because if the shift is different for different channel then 

the result will be a blurry image with incorrect pixel values in the high resolution image. 

 

 

 



 

 35 

 

Scene formation 

 
(a)  High Resolution image (Lena) 

 

 
(b)  Geometric Transformation 𝐹𝑘 

 
(c)  Optical Blur 𝐻𝑘 
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(d)  Sampling 𝐷𝑘 

 
(e) Low resolution image with noise  

 

Figure 4.1 Scene formation with degradation of original scene [3] 

 

High resolution image can be written as linear operators through the following equation 

𝐻𝑅 =  𝐷𝑘𝐻𝑘𝐹𝑘. 𝐿𝑅 

 

4.2 Approach 

 

4.2.1 Observation Model 

Reconstructing super resolved image not only depends upon low resolution images but 

also on some assumptions and the model chosen. There are several super resolution 

models have been proposed which are for series of images, single image or a video 

sequence [3-5][10][23][63]. In this thesis, the model is taken for images with subpixel 

motion between LR images and which are taken from the same source. Consider LR 

images of size, 𝑁1 × 𝑁2 .Consider HR image of size 𝐿1𝑁1  ×  𝐿2𝑁2 

(4.1) 
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Also, let series of ideal images which is sampled equal to or more than Nyquist 

rate, be represented by:  

𝑥 = [𝑥1, 𝑥2 … . . 𝑥𝑁]𝑇 

The downsampling parameters are 𝐿1 for vertical direction and 𝐿2 for horizontal 

direction.  It is assumed that the downsampling parameter remains constant during 

acquisition of multiple LR images. The motion between them is random which is 

estimated by optical flow method mentioned in the previous chapter. These observed LR 

images are result of translation or rotation in the images, blur which corresponds to 

optical blur; motion blur and sensor point spread function, which are the limitations of 

economic imaging system. These images are assumed to subsample of HR image which 

are further corrupted by additive noise.   

For simplified version the blur, decimation are assumed equal or with minute 

difference between the frames respectively. Our goal is to recover the HR image 𝑋 from 

corrupted low resolution images 𝑌1 …𝑌𝑛.  

 

 
Figure 4.2 Super resolution model 

 

𝑌𝑘 = {𝐷𝑘𝐻𝑘𝐹𝑘𝑋 + 𝑉𝑘~𝑁{0, 𝜎𝑛
2}}𝑘=1

𝑁  

 

There are several solutions proposed for this problem [3][15] but they suffer from 

the time complexity which our algorithm fixes with similar to better results. Some of the 

solutions require the blur operation in order to process these LR images. 

 

(4.3) 

(4.2) 
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The basic idea to obtain a super resolved image is the availability of multiple LR 

images. These LR images are aliased and there is movement of subpixel precision which 

is important because if there is integer shift then there is no new information present and 

the reconstruction would not be possible.  

 

 
Figure 4.3 Observation Model [7] 

 

4.2.2 Shift Fusion 

For preconditioning, we have sequence of low resolution image, displacement vector for 

each frame {𝑑1,2…𝑘}, registered and PFFC corrected LR frames {𝑟1,2…𝑘} and initial 

resolution factor set to two which is the size by the amount HR image will be 

reconstructed. 

Motion estimation is completed through optical flow method which gives a vector 

of displacement values. This vector contains horizontal and vertical shifts. For each 

frame, if displacement exists in the form of subpixel motion, the algorithm scans through 

each pixel position for values in horizontal and vertical direction respectively. The 

displacement vector 𝑉 has values defined from integer 𝑑 = 2 to 𝑑 = 𝑟 − 1 where r is the 

resolution factor. Following table shows the logical displacement vector. 

 

Table 4.1 Displacement estimated shown for frames 1-8 in 𝑥 and 𝑦 direction for a sample image, 

with 𝐼1 as the reference frame. 

Frame x y 
𝐼1 0 0 
𝐼2 2 3 
𝐼3 3 3 
𝐼4 3 2 
𝐼5 3 3 
𝐼6 2 3 
𝐼7 3 3 
𝐼8 2 3 
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Table 4.2 Displacement vector showing logical values for 𝑥 = 2 and 𝑦 = 3. Only displacement 

found in the images are accounted for computation. In this particular case, Frames 𝐼2, 𝐼6, 𝐼8 are 

used to calculate the actual pixel value in high resolution image. 

Frame number V 

𝑰𝟏 False 

𝑰𝟐 True 

𝑰𝟑 False 

𝑰𝟒 False 

𝑰𝟓 False 

𝑰𝟔 True 

𝑰𝟕 False 

𝑰𝟖 True 

 

Array 𝑉 contains displacement values which are determined by motion estimation 

method. LR frames containing true values are used computation. High resolution grid 

gets filled by calculating the mean of all the shifts of LR frames with true values in the 

displacement vector. Instead of taking mean of all the LR frames, we fill pixel position in 

the high resolution grid with the mean of only those LR frames for which the 

displacement is true, which in this case would be 𝑥 = 2,4,6… . .𝑀 and 𝑦 = 3,5,7,9… . . 𝑁. 

In Table 4.2, only 2𝑛𝑑 , 6𝑡ℎ 𝑎𝑛𝑑 8𝑡ℎ frames are considered and rest are discarded. Let 𝐼𝑚 

be true pixel value, which is calculated by,  

𝐼𝑚 = 
𝐼2 + 𝐼6 + 𝐼8

3
 

 

This is considerably improved method in time and memory which still provides 

very good result. This is an efficient and robust approach to find the super resolution 

image by determining correct pixel value in current channel being computed upon. This 

fusion is done for red, green and blue channels which are combined to form a color RGB 

image. Motion estimation is crucial because it ultimately depends upon the correct shifts 

calculated from the optical flow method for proper formation of high resolution image.  

For 𝑛 relevant LR frames having the same displacement value {𝐼1,2…𝑛}, are fused 

together onto HR grid with increasing value of , 𝑦 = 1,2… 𝑟 − 1 , where 𝑟 is final 

(4.4) 



 

 40 

 

resolution factor. Following figures 4.4 − 4.8 shows an example of working of our 

method. 

 

0 0 0 0 0 0 0 0 

0 133.5754 0 114.9767 0 123.0461 0 114.9512 

0 0 0 0 0 0 0 0 

0 114.8466 0 90.54543 0 75.97675 0 80.39474 

0 0 0 0 0 0 0 0 

0 106.7424 0 77.08707 0 82.71059 0 100.3523 

0 0 0 0 0 0 0 0 

0 78.64569 0 81.61424 0 86.47587 0 91.58139 

Figure 4.4 HR image matrix showing pixel values (Image size is 8x8 pixels) and every 2𝑛𝑑 pixel 

corresponds to correct pixel value calculated from mean of relevant LR frames with same 

displacement value. 

Figure 4.5 Every 2𝑛𝑑 pixel value in y-direction after calculations 

 

 

 

 

 

 

0 0 0 0 0 0 0 0 

0 133.5754 0 114.9767 0 123.0461 0 114.9512 

0 112.4535 0 122.7317 0 78.75675 0 71.20492 

0 114.8466 0 90.54543 0 75.97675 0 80.39474 

0 72.84331 0 89.99882 0 84.36152 0 76.05898 

0 106.7424 0 77.08707 0 82.71059 0 100.3523 

0 89.99882 0 108.1296 0 109.1509 0 120.6093 

0 78.64569 0 81.61424 0 86.47587 0 91.58139 
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0 0 0 0 0 0 0 0 

0 133.5754 68.6665 114.9767 58.97914 123.0461 61.9503 114.9512 

0 112.4535 0 122.7317 0 78.75675 0 71.20492 

0 114.8466 80.38284 90.54543 55.27473 75.97675 54.10828 80.39474 

0 72.84331 0 89.99882 0 84.36152 0 76.05898 

0 106.7424 71.06532 77.08707 80.60895 82.71059 75.84409 100.3523 

0 89.99882 0 108.1296 0 109.1509 0 120.6093 

0 78.64569 68.37851 81.61424 101.1639 86.47587 99.05487 91.58139 
 

Figure 4.6 Every 3𝑟𝑑 pixel value in x-direction after calculations 

 

 

0 0 0 0 0 0 0 0 

0 133.5754 68.6665 114.9767 58.97914 123.0461 61.9503 114.9512 

0 112.4535 120.5076 122.7317 94.86072 78.75675 76.9139 71.20492 

0 114.8466 80.38284 90.54543 55.27473 75.97675 54.10828 80.39474 

0 72.84331 133.6093 89.99882 95.02873 84.36152 79.4232 76.05898 

0 106.7424 71.06532 77.08707 80.60895 82.71059 75.84409 100.3523 

0 89.99882 122.6585 108.1296 107.8071 109.1509 92.80192 120.6093 

0 78.64569 68.37851 81.61424 101.1639 86.47587 99.05487 91.58139 
 

Figure 4.7 Every 3𝑟𝑑 pixel value in y-direction after calculations. First row and columns are 

undetermined values.  
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(a) HR frame, first round evaluation (256x256 pixels) 

 
(b) HR frame, second round evaluation 

(256x256 pixels) 

 
(c) HR frame, third round evaluation (256x256 

pixels) 

 
(d) Estimation of HR frame, final round 

evaluation (256x256 pixels) 
 

 

Figure 4.8 Estimation of HR frame 

 

 

Table 4.3 Area, and Intensity values for the images generated by filling of pixel values 

Image Area (pixels) Minimum intensity Maximum intensity 

4.8 (a) 65536 45.224 0 

4.8 (b) 65536 89.910 0 

4.8 (c) 65536 135.138 0 

4.8 (d) 65536 180.193 95 

 

After completing the previous step, we arrive at the first estimation of super 

resolved image 𝑍 through these low sequences frame. For undetermined shifts where the 
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pixel values are not filled, have a current value equal to zero. In order to find these 

values, a separate empty HR grid  𝑍𝑚𝑒𝑑 is created. Kernel size of median filter is initial 

resolution factor which is computed for image 𝑍 as shown in the following equation. 

𝑍𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑓𝑖𝑙𝑡2(𝑍[ 𝐿1𝑁1  ×  𝐿2𝑁2]) 

 

The undetermined pixel values calculated in 𝑍𝑚𝑒𝑑 are inserted into image 𝑍. All 

the values in high resolution grid are determined which gives the super resolved image. 

After obtaining all the pixel values, the image is resampled with Lanczos or bicubic filter 

of size 𝑠 from (4.5) which doesn’t lose much detail in order to further analyze the image, 

for example, doing segmentation and classification of blood cell types. Here, the time 

process is greatly reduced compared to other methods [3-4][56][57] as our method takes 

advantange initial reconstruction which is twice the size of LR.  

𝑠 =
√𝑁1 × 𝑁2

2
⁄  

The noise reduction is done through a median filter which is excellent in 

preserving edges. We found that, the results using regularization compared with our 

result are comparatively same with huge amount of time calculation, our method saves 

time and provides reconstructed image which on which segmentation can be analyzed.  

This is found useful in determining the edges and nucleus of blood cells in the images 

which is crucial for classification of white blood cells. The kernel size ranges from 2 to 5. 

It is important to note that if the size of kernel is very high then the resultant image will 

be blurred.  

 

4.3 Conclusion 

This chapter, we described an efficient method to process low resolution images. We 

discussed the observational model used and solved equation built upon assumptions of 

noise and blur factor in the low resolution frames. Looping over the entire high resolution 

grid and generating the super resolution image was also shown with an example of how 

pixel value is calculated from the low resolution frames which accounts for correct 

intensity value in the high resolution grid.  

 

(4.6) 

(4.5) 
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Chapter 5 Results and Analysis 

 

In this chapter, we show the results obtained by implementing our super resolution 

method on images captured in various environments. Firstly, synthetic images from 

popular datasets processed to reconstruct high resolution image. Real world images taken 

from the lens-less devices are also processed upon and results are shown. Time and detail 

comparison with different super resolution methods is made. Qualitative analysis of 

images is done through visual inspection comparing to ground truth image if it is 

available or comparing with low resolution image and quantitative analysis is employed 

through visual perception, SSIM index and intensity profile plot. 

 

Details of images are seen through image edge detection through Sobel method 

comparing with image edges of low resolution image and other super resolution methods. 

 

 

 

5.1 Qualitative Analysis of Images 

 

A set of 6 grayscale images and  3 colour images are taken from dataset [48][58]. Our 

algorithm is implemented on these images and results are shown. These real world 

images are captured from a camera and are chosen from wide variety of environment to 

robustness of our super resolution method. There is significant improvement of resolution 

noticed with more than resolution factor of 2.  
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a.)  Text sequence 

 
b.) Car sequence 

 

 

 
c.) Alpaca sequence 

 
d.) EIA sequence 

 

 

 
e.) Grayscale face sequence 

 

 

 

 
f.) Color face 

 
g.) Bookcase 

 
h.) Adyoron 

 

Figure 5.1 Image datasets for super resolution reconstruction 
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(a) 

 
(b) 

Figure 5.2 Low resolution frame (1/30) of Text image compared to our reconstructed result (b) 

with resolution improvement by factor of 4. The text clearly reads “High quality HP LaserJet 

printing requires high quality transparency film”. There is huge amount of noise reduction and 

improvement in resolution. Initial size of image is 49x57 pixels and reconstructed image size is 

195 × 223 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 5.3 Low resolution frame of moving car sequence (1/10). Only 10 frames out of 64 were 

processed in the region of license plate to reconstruct super resolved image. Improvement of 

resolution is visible where an unreadable license plate reads “3PLK273”, as well as the car model 

reads “SUBARU” proving improvement of resolution. This is one of the powerful applications of 

super resolution shown by our fast working algorithm where it is useful. This image was 

computed in 0.51 seconds. The LR images are of size 72 × 121 pixels and reconstructed image 

is of size 216 × 363. 
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(a) 

 
(b) 

Figure 5.4 Low resolution Alpaca sequence shown in (a) which is (1/55) frame and reconstructed 

result shown in (b). The LR sequence is of size 128 × 96 pixels and super resolved image is of 

size 514 × 386 pixels. The text shown can be read clearly: “University Food Service”. From 

pixelated image to fine defined prints seen in text, numbers and shape of alpaca, our method 

works in this scenario as well. 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 5.5 (a) showing EIA low resolution frame (1/16) and reconstructed image is shown in (b). 

The improvement in formation of circle, triangle lines and readable text is crystal clear. 

Resolution improvement is a factor of 4. The input image size is 90 × 90 and output image size is 

363 × 363. The image is shrunken to fit the page. 
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(a) 

 

 
(b) 

Figure 5.6 Grayscale face low resolution frame (1/60) shown in (a) and reconstructed result is 

shown in (b). This is also one of the popular applications by super resolution for security. Glasses 

are clearly visible and improvement in resolution is seen in structure of face. The input image is 

of size 34 × 38 pixels and resultant image is of size  138 × 154 pixels. 

 

 

Following images are results for color images. Motion between the low resolution 

frames is estimated only through one channel which is green channel instead of three 

color channels which saves considerable amount of time and gives better results as shifts 

are assumed same for all channels. 

 

 
(a) 

 
(b) 

Figure 5.7 Low resolution colour frame of books (1/30) shown in (a) and reconstruction result 

shown in (b). The gain in resolution is visible through readable titles of the textbook. Some of 

unreadable texts such as Kalman Filtering, Robust Statistics and the book on the right “Digital 

Signal Processing” with subtitle “Computer Based Approach”. This result shows that our 

algorithm works great with colour images as well. The input image is of size 121 × 91 pixels and 

output image is of size 484 × 364 pixels with resolution improvement of factor of 4. 
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(a) (b) 

Figure 5.8 Low resolution Adyoron image (1/40) shown in (a) of size 138 × 115 pixels and 

super resolved image obtained by our method shown in (b). The resultant image is of size 

414 × 345 pixels. 

 

 

 

 
(a) 

 
(b) 

Figure 5.9 An application of color CCTV camera capturing frame (1/40) shown in (a) and result 

shown in (b). The face is clearly visible with distinguishable facial features. The input image is of 

size 32 × 31 pixels and resultant image is of size 130 × 126 pixels. 
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5.2 Assessment using Synthetic Images 

 

In this section the quantitative analysis of images is done through plotting Intensity 

Profile and calculating Structural Similarity Index (SSIM) for each image. A set of 12 

images is chosen [48][49] as shown in Figure 5.11 which are downsampled to generate 

10 low resolution frames with random motion in each of them. We apply our method to 

reconstruct the image and compare SSIM index value with the original image. Higher 

SSIM indicates good result which is displayed in Table 5.1. Improvement of SSIM is 

more than 1.5 times is seen than the low resolution image. Compared with [3], our 

method out performed index performance as seen in Table 5.1. The comparison data is 

shown graphically in Figure 5.14. 

 

Intensity profile is set of intensity values for a particular region in an image. It is 

useful entity to see the sharpness and peaks of the region under consideration. Image 

having high resolution have set of different peaks without discrete quantities. Low 

resolution images suffer from discrete intensities and random peaks in the profile. This 

method is useful to distinguish between a low resolution image and high resolution image 

[58-60]. 

 

 

 
(a) Lena (512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠) 

 
(b) Mandrill (512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠) 
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(c) Peppers (512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠) 

 
(d) Ruler (512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠) 

 
(c) Aerial (512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠) 

 
(d) Barbara (512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠) 

 
 

 

(e) Boat (512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠) (f) Cat (490 × 733𝑝𝑖𝑥𝑒𝑙𝑠) 

 
(g) Watch (1024 × 768 𝑝𝑖𝑥𝑒𝑙𝑠) 

 

Figure 5.10 Images chosen for generation of low resolution frames. 16 frames were generated 

with unknown motion parameters and processed through or super resolution algorithm. 
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Figure 5.11 Low resolution frames generated with random shifts. Above are the frames 1,3,6,8 

respectively out of 16 frames for Lena image. The original image was downsampled by a factor 

of 4 and random shifts in horizontal and vertical direction were introduced. Our algorithm works 

and produce excellent result in reproducing fast and improved resultant image. The original 

image is 512 × 512 pixels which was downsampled to 128 × 128 pixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 53 

 

 

 

 

 
(a) Low resolution 

 
(b) Original Image 

 
(c) Our result 

Figure 5.12 LR image is magnified (original size is 128x128 pixels). Reconstructed size if 

512x512 pixels. SSIM for the result is 0.6737  
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(a) Low resolution 

 
(b) Original Image 

 

 
(c) Result using 10 frames 

 
(d) Result using 20 frames 

 

Figure 5.13 An example of number of availability of LR frames affecting the result. More 

number of frames gives better results as there is more information captured until a convergence is 

obtained. Here result through 20 frames (d) is better than 10 frames (c) as the numbers can be 

clearly seen in Figure (d) compared to result with Figure (c)  
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Table 5.1 SSIM Index values; Perfect SSIM is 1. 

Image LR image 

magnified 

Our method Farsiu et al. [3] 

Lena 0.6083 0.7600 0.7573 

Mandrill 0.2700 0.4452 0.4373 

Peppers 0.5902 0.6737 0.6654 

Ruler (20 frames) 0.1948 0.3001 0.2928 

Aerial 0.3675 0.5600 0.5545 

Barbara 0.4976 0.6222 0.6200 

Boat 0.4690 0.6678 0.6614 

Cat 0.4043 0.5865 0.5276 

Watch 0.5623 0.7299 0.6969 

 

 

 

 

Figure 5.14 SSIM comparison chart 

 

 

5.3 Analysis of Experimental Data 

Collection of 18 patients was processed through our algorithm each containing 14 colour 

microscopic frames. Each low resolution image size is 3280 × 2464 pixels and final 
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result generated is of size 13122 × 9858 pixels showing improvement of resolution 

factor of 4. Here we show the time taken to compute our PFFC program, motion 

estimation and registration method and fusion method. Combining all these gives us the 

package of overall super resolution program. 

           The average time taken for each patient set was 36.24 seconds. Analysis of cellular 

structures is done through intensity profiling showing the intensity values for selected 

components of the image. We also introduce edge detection technique using Sobel 

method to demonstrate the improvement of resolution by showing sharp edges and 

visibility of nucleus inside the cells.  

 

 

5.3.1 Analysis of cellular structures 

Here, we show the improvement in resolution in red blood cells, white blood cells, 

platelets, reticulocytes and reduction in background noise. Intensity profile is generated 

for each of them and compared with the low resolution image. These can be further 

analyzed for counting, segmentation and volume purposes which is part of future study.  

 

 

 
(a) LR image patch, magnified by factor of 4 

10𝝁𝒎 



 

 57 

 

 
(b) 

Figure 5.15 Top: Block size of 187 × 136 pixels of Frame (1/14); Image is zoomed by factor of 

4.  Bottom: Our result, the size of the image is 747 × 553 pixels. 1 pixel = 1.1 µm 

 

 

 

 

 

 

Red Blood Cells: Following figures shows the analysis of one red blood cell in the captured 

image and reconstructed result. 

 
(a) LR frame 

 
(b) SR result 

 
(c) Intensity profile for LR frame 
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(d) Intensity profile for LR frame 

Figure 5.16 Plot comparison between zoomed LR image and Super resolution result for a red 

blood cell 

 

 

 

White Blood Cells:  

  

  
Figure 5.17 Plot comparison between zoomed LR image and Super resolution result for a white 

blood cell 
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Reticulocytes: 

  

(a) LR frame (b) SR result 

 
(c) Intensity profile for LR frame 

 
(d) Intensity profile for SR result 

 

Figure 5.18 Plot comparison between zoomed LR image and Super resolution result for a 

reticulocyte. 
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Platelets: 

 

(a) LR frame 

 

(b) SR result 

 

(c) Intensity profile for LR frame 

 

(d) Intensity profile for SR result 

 

Figure 5.19 Plot comparison between zoomed LR image and Super resolution result for a platelet 
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Edge details: 

 
(a) Low resolution image 

 
(b) Reconstruction result 

    
(c) Poor edge details 

    
(d) Fine edge details 

 

Figure 5.20 Sharper edges are seen for white blood cells compared to LR image acquired by the 

device.  

 

 

5.3.2 Time complexity for Pseudo Flat Field Correction 

The following figure shows time taken to compute full scale flat field correction for the 

whole set of experimental data. In this case, there is a set of 14 images for each patient. 

The size of input image is 3280 × 2464 pixels and it took 3.62 seconds to compute the 

whole dataset. This is preprocessing step before motion estimation method. 
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Figure 5.21 Time vs pixels for PFFC to process 14 images. Default image size is 3280 x 2464 

pixels for which PFFC time is 3.62 seconds 

 

 

5.3.3 Time Complexity for Super resolution method 

To process the whole data set and reconstruct super resolved image, it took 36.24 seconds 

to do PFFC, motion estimation, registration and fusion altogether. This is incredibly fast 

algorithm which was processed in i5 processor with 8GB RAM. Our algorithm not only 

is robust but also computationally efficient. Here, x-axis ranges from 0.25𝑠 to 𝑠, where s 

is the size of reconstructed result (13120 × 9856 𝑝𝑖𝑥𝑒𝑙𝑠). Time was computed for 

0.25𝑠, 0.5𝑠, 0.75𝑠 𝑎𝑛𝑑 𝑠 size of the result.  
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Figure 5.22 Graph showing time taken to compute super resolution method vs Total number of 

pixels in the reconstructed image. 

 

 

 

 

Figure 5.23 Graph showing comparison between well known super resolution method vs Our 

algorithm  
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5.4 Quantifying Resolution 

For finding out true resolution improvement, we carried out tests to quantify the 

improvement in resolution through our reconstruction method. Resolution is measured in 

cycles/mm or line pairs/mm (lp/mm). At a certain point, the imaging system is limited 

and unable to distuinguish between the black and white line pairs. Our method breaks this 

limit and is able to improve and exceed the limits of the resolution. Resolution 

improvement of three fold was achieved.  

 

5.5.1 Reconstruction through Simulation 

Image was taken from [62] with highest resolvibility power of 3.6 lp/mm. Gaussian noise 

with mean zero and standard deviation of 30 was added. Downsampling by factor of 4 

with a blur with random translational subpixel shifts were introduced which gave rise to 

30 low resolution frames of which one of the frames is shown in figure 5.24 (a). The 

highest lp/mm which could be resolved in this image is below 0.79 lp/mm which can be 

seen from the line profile in figure 5.23 (b). At 0.89 lp/mm the lines are 

indistuinguishable.    

 

 
(a) LR frame  

 
(b) Line Profile for LR frame across 0.79 

 
(c) Line Profile for LR frame across 0.89 

 

Figure 5.24 Resolution limit for LR image 
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Reconstruction through our method is shown in Figure 5.25 with line pairs across 

1.6 lp/mm and 1.8 lp/mm. Highest resolution is obtained above 1.8lp/mm and below 

2.0lp/mm. Through this analysis we see that the improvement in resolution is more than 

2.5 times compared to the low resolution frames which prove working of our method. For 

visual representation of how resolution is decreasing with increase in lp/mm, a vertical 

line profile has been plotted in Figure 6 for both low resolution and super resolved image 

respectively.  

 

After a certain point which is disability to resolve two lines in the image is seen in 

the line profile which becomes constant showing same pixel value in the neighbouring 

area of consideration. 

 

 

 
(a) Reconstruction result 

 

 
(b) Line Profile for line pairs across 1.8 

 
(c) Line Profile line pairs across 1.6 

 

 

 

Figure 5.25 Resolution limit for reconstructed result 
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a. Vertical Line Profile for Super resolution reconstruction 

 

 
 

 

 

 
b. Vertical Line Profile for Low resolution image 

 

Figure 5.26 True resolution improvement after reconstruction 

 

 

 

5.5.2 Reconstruction through a mobile phone camera 

To test robustness of the algorithm, an iPhone camera was used to take multiple frames of 

same scene with handheld position. As the movement of hands is not steady while taking 

photos, even a small amount of movement generates subpixel shift. The image was taken 

of resolution chart QA-71-P-RM by Applied Image Inc. which is a standard IEEE video 

resolution chart for testing the resolution of cameras [61]. It contains TVL (Television 
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Lines) as measure of resolution. Highest resolution is 1000 TVL/6inch which is 3.21 line 

pairs / mm. The following figure 5.27 shows the full scale image taken from an IPhone 

camera. A burst of 40 images were captured from the same scene. We found that our 

method increased the resolution from 2x100 TVL to 5x100 TVL. This result enables one 

to obtain a better understanding of the measurements and proof-of-performance of 

proposed method. 

 

 
a. Full scale image of resolution chart 

   
b. Zoomed (4x) region of interest 

 

 
c. Line profile for zoomed region of interest 

 
Figure 5.27 Captured image a mobile camera and it’s intensity profile 
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a. Super resolution image obtained by our algorithm 

 
b. Line profile for super resolution image 

 
Figure 5.28 Super resolution result by our method 

 

 

5.5.3 Reconstruction through a microscopic device 

To quantify the results achieved from the device, we look at the features in the image to 

see observable minimum distance. WBC contains minute features such as nucleus which 

is important for classification. Intensity profiles of different cells are examined. In order 

to distinguish between noise and feature, mean of background noise is calculated. If 

observed peak is above two standard deviations of mean of noise then it is considered as 

a feature. The mean of background noise was calculated to be 170.38 and 2 standard 

deviations corresponded to 4.76. We compared same region of white blood cell by 

interpolating the low resolution image four times by bicubic interpolation with our result 

observed a phenomenal improvement of more than twice the minimum distance 

observable.  
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(a) Super resolution result for neutrophil WBC region 

 
(b) Intensity profile for SR with observed peak with height of more than two standard deviations 

of mean of noise.  

 
(c) Zoomed in region for the above peak; Height of the peak is 5.24µm 

 

Figure 5.29 Minimum resolvable distance for SR 
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Figure 5.30 Plot comparisons between SR and LR for the same region showing minimum 

resolvability. Red line indicates bicubic interpolated image (4x) and blue line is our 

reconstruction result. Minimum distance for LR is 2.21 µm and 1.09µm for our result. Improved 

resolution of more than twice is observed. 
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Chapter 6 Conclusion and Future Work 

 

6.1 Conclusion 

 

We have presented a robust, computationally inexpensive super resolution algorithm that 

provided excellent results. Firstly, the algorithm was tested on LR dataset generated from 

a known ground truth image. Different images were used and combined to generate super 

resolved image which was compared with the original image. The images were tested 

with different noisy environments ranging from images captures from security cameras, 

to show the efficiency of our method. The results were satisfactory. Tests were carried 

out to generate pseudo flat field image from the on-chip system to correct the captured 

images and our algorithm was tested.  

 

We improved a fast motion estimation method that searches the best location for 

finding subpixel shifts which is independent of the hardware configuration of the device 

from which microscopic images are obtained. The results were examined based on edge 

details, SSIM values, spatial frequency and minimum resolvable distance between 

features. 

 

Sharp edges were obtained in WBC, RBC, platelets and reticulocytes which were 

tested by edge detection method and intensity profile. Our results were compared to other 

popular methods and proved to be superior with respect to details and computation time 

through qualitative and quantitative analysis. 

 

 Tests were carried with different experimental low resolution datasets to show the 

robustness of our algorithm. The improvement was measured not only through qualitative 

examination but also by measuring resolution in the super resolution reconstructed 

results. It’s interesting to note that part of this work was published in [63] entitled 

“Measurement of Super Resolution Performance”. 
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6.2 Suggestions for future work 

 

This research emphasize on effectiveness of computation time in implementing the super 

resolution algorithm. There is always a trade-off between the higher details in 

reconstruction and time taken to process the whole program. Although, the achievement 

of quality of image is high in less time, there is still scope of improvement in the 

algorithm with additional consideration of some factors. Some of them are as follows: 

 

 Incorporating sensor blur and rotation estimation within the algorithm will be 

useful as we concentrated on transitions which are horizontal and vertical shifts 

only. This would improve the accuracy of motion estimation further. 

 Blur identification based on microscopic LR dataset which is challenging and 

computationally expensive problem. 

 Modifying the algorithm for region based super resolution on different cellular 

structures.  

 Modified median filter or advanced post processing filter which can reduce noise 

adapted to certain area regions in the image. 

 Addition of fast deconvolution algorithm for to deblur the output image which 

would further enhance reconstruction result. 

 Optimized method to consider best frames for super resolution. 
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Appendix 

 

A.1 Derivation of Structural Similarity Index 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)𝛼 ∙ 𝑐(𝑥, 𝑦)𝛽 ∙ 𝑠(𝑥, 𝑦)𝛾 

By setting parameters, 𝛼 = 1, 𝛽 = 1, and 𝛾 = 1 and 𝐶3 = 
𝐶2

2⁄  

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
∙

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
∙

𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

= 
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
∙

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
∙

𝜎𝑥𝑦 + 𝐶2/2

𝜎𝑥𝜎𝑦 + 𝐶2/2
 

= 
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
∙

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
∙

2𝜎𝑥𝑦 + 𝐶2

2𝜎𝑥𝜎𝑦 + 𝐶2
 

= 
(2𝜇𝑥𝜇𝑦 + 𝐶1)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)

(2𝜎𝑥𝑦 + 𝐶2)

(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

For, 𝐶1 = 𝐶2 = 0, 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦)

(𝜇𝑥
2 + 𝜇𝑦

2)

(2𝜎𝑥𝑦)

(𝜎𝑥
2 + 𝜎𝑦

2)
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