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“No, a proof is a proof. What kind of a proof? It’s a proof. A proof

is a proof, and when you have a good proof, it’s because it’s proven.”

Jean Chrétien

ii
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Abstract

A polynomial f in Q[x, y, z] is integer-valued if f(x, y, z) ∈ Z, whenever x, y, z are

integers. This work will look at the case where f is homogeneous and construct

polynomials such that the denominators are divisible by the highest prime power

possible and find bases for the modules of homogeneous integer-valued polynomials

(IVPs). We will present computational methods for constructing such bases and an

algebraic method to construct these. We explain the connection between 3-variable

homogeneous IVPs of degree m and 3-variable IVPs of degree m, as well as with

2-variable IVPs of degree m evaluated at odd values only, then use linear algebra to

calculate bases in both cases. In order to obtain polynomials written as a product

of linear factors, we will look into extending the construction of finite projective

planes to rings and explain a connection between line coverings of those planes and

homogeneous IVPs.
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Chapter 1

Introduction

Rings of the form Int(S,D) “have many remarkable properties, and are a source of

examples and counterexamples in commutative algebra”. W. Narkiewicz

The results we describe below have been obtained over different rings, but they

can be adapted to Z, Fp and Z(p), the rings of interest in this work, as we will explain

for the appropriate cases.

This work is about IVPs on a set S ⊆ Zn. These are polynomials in Q[x1, . . . , xn]

that return an integer when evaluated at any value in S. The set of IVPs on S forms

a ring and a Z-module denoted by

Int(S,Z) = {f ∈ Q[x1, . . . , xn] | f(S) ⊆ Z}.

Since we are considering Z-modules, we are interested in finding bases for Int(S,Z).

For example, when n = 1 and S = Z, we have that f(x) = x(x−1)
2

is integer-valued,

since for any two consecutive integers there is always an even one. Generalizing this

gives the set of polynomials

{(
x

n

)
=

x(x− 1) · · · (x− n+ 1)

n!

}
n≥0

which is, in fact, a Z-basis for Int(Z,Z). This basis contains one polynomial of each

degree, and so it is what will be referred to as a regular basis.

This work will focus mainly on homogeneous IVPs, which, for a given degree m,

1
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are polynomials of the form

f(x1, . . . , xn) =
∑

i1+i2+···+in=m

ci1,i2,...,inx
i1
1 x

i2
2 · · · xin

n ,

where the coefficients ci1,i2,...,in are rational numbers and f satisfies the integrality

condition described above. Note that the polynomial where all coefficients are zero,

will be included in all modules we work with.

In addition to the nice number theoretical results one may obtain, further mo-

tivation to study IVPs in general and the homogeneous case in particular is their

connection to algebraic topology, which will be explained in Chapter 3. Integer-

valued polynomials tend to appear in homotopy theory, as described in [Joh14] and

summarized in the next chapter.

The connection between IVPs and topology has been studied for much longer.

One of the first instances is from 1971 when Adams, Harris and Switzer [AHS71]

explained some of the K-theory of BU through IVPs. Building on these results,

Clarke showed that the complex K-theory homology of the infinite complex pro-

jective space, K0(CP
∞), is isomorphic to Int(Z,Z), and this can be extended to

K0(BT n) � Int(Zn,Z). The connection to homogeneous polynomials was made by

Baker, Clarke, Ray and Schwartz [BCRS89] who identified the primitive elements of

K0(BU(n)) as the symmetric homogeneous IVPs in n-variables.

The goal of this work is to identify homogeneous IVPs, focusing on the 3-variable

case. We start by localizing at a prime. Usually p = 2 since it will allow us to

divide by higher powers of p within computational limits, but our methods extend

to odd primes. When constructing these polynomials, we are interested in how big

a denominator we can get, i.e., we are looking for basis elements of the form fi =
qi
pei

with qi ∈ Z(p)[x]. We are concerned with finding maximal ei such that fi is an IVP.

The 2-variable case was described by Johnson and Patterson’s work [JP11], hence

our results will build on this work. Note that, given the topological correspondence,
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the 3-variable case will not behave like the previous one, so we need to develop new

tools, but we will often refer to the 2-variable case to test our methods.

Our work is done over Z ⊆ Z(p) ⊆ Q, but many of the results in the next chapter

are given in much greater generality. We have explored two different strategies to

obtain homogeneous 3-variable IVPs. The first is through computational methods

and the second is by direct construction.

For the computational part, we used tools from linear algebra to calculate the

polynomials for a restricted range of degrees. We started by using the Smith nor-

mal form of a matrix that writes a homogeneous basis through a known (non-

homogeneous) integer-valued one. This method produced results, but calculating

the necessary Smith normal form becomes computationally impossible beyond de-

gree 22, given the memory required for such calculations. Our next approach was to

use the Hermite normal form, where we focused on finding the intersection of three

submodules of the homogeneous 3-variable IVPs whose regular bases we can compute

completely. This allowed us to calculate a basis up to degree 25 when localized at

p = 2 and even further for other primes.

Even though the two previous methods produced IVPs with largest denominators

possible, the polynomials are irreducible and tend to have many terms, which makes

if difficult to find a general pattern for their construction. This is what the second

part of our explorations addresses. How can we construct such polynomials more

generally? Ideally, we want to write these as a product of linear factors, as is the

case of the polynomials in the basis for Int(Z,Z).

Since we are interested in the 3-variable case and wonder how large k can pk be

in the denominator of an IVP, our approach is to find these using generalized projec-

tive planes. These were first introduced by Klingenberg in [Kli54]. The connection

between evaluating IVPs and finite projective planes is as follows: for f(x, y, z) ho-

mogeneous of degree m we have f(λx, λy, λz) = λmf(x, y, z). Thus when evaluating

at any triple (x′, y′, z′), where p divides all three of x′, y′, z′, f(x′, y′, z′) will always
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be divisible by pm. Similarly when working locally we are interested in dividing by

ph but not in the remaining result, so multiplication by units in Fp will not affect our

results. This corresponds to how finite projective planes are built, and so we have a

correspondence between polynomials with linear factorizations and union of lines in

projective planes. Since we are interested in how large a power of p can be present in

the denominator, we will need to work over the ring Z/(pk), for k ≤ h, instead of the

field Fp which will have us work with projective Hjelmslev planes. The polynomials

constructed from these unfortunately did not admit as large a denominator as the

ones obtained from the computational methods, but are much simpler to understand.

This thesis is structured as follows: in Chapter 2 we will set up the basic defi-

nitions for studying IVPs and motivate why we study these. Then Chapter 3 will

explain how homogeneous IVPs connect to algebraic topology. We then restrict the

situation to the simpler case of looking at polynomials that are integer-valued at odd

values only in Chapter 4. The next two chapters are on the computational data we

have for homogeneous 3-variable polynomials. Lastly, we use projective H-planes to

construct high degree homogeneous 3-variable IVPs in Chapter 7.



Chapter 2

Background and a Survey of Known Results

The goal of research in this area is to develop methods for computing a basis and

the valuative capacity (an invariant) of the ring of IVPs in one or several variables,

in both the homogeneous and general cases.

This is an expository chapter that reviews the work that has been done on integer-

valued polynomials (IVPs) and that is used as a basis of this project. The chapter

starts with general single variable results, then generalizes to the multivariable case

where we look at the existing results on the homogeneous case. The chapter ends by

summarizing results for the 2-variable homogeneous case.

In general, the ring of IVPs on a domain D is a free D-module [CC97, I.1]. In

certain cases, we can not only obtain that our module has a basis but also that the

basis is regular (i.e., that there is one polynomial of each degree in the basis). But

knowing this does not guarantee that we can find the basis, so this work will look

into finding some of these. Since the results from this thesis are over Z, Z/(p) and

Z(p), the results from the background section have been restricted to Z.

2.1 Integer-valued Polynomials

For the rest of this chapter let S ⊆ Z.

Definition 1. [CC97, I.1] For any subset S, the ring of integer-valued polynomials

on S is defined to be

Int(S,Z) = {f(x) ∈ Q[x] | f(S) ⊆ Z}.

5
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Definition 2. [CC97, II.1] The sequence of characteristic ideals of S is given by

(In | n = 0, 1, 2, . . .) where In is the fractional ideal of Q formed by 0 and the leading

coefficients of the elements of Int(S,Z) of degree no more than n. The characteristic

sequence of S with respect to a fixed prime p is the sequence of negatives of the p-adic

valuations of these ideals, denoted by αS,p(n).

In 1997, Bhargava introduced the following definition which is very important when

studying IVPs:

Definition 3. [Bha97, 2] For S ⊆ Z, and p a fixed prime, a p-ordering of S is a

sequence (an)n≥0, such that for each n, an ∈ S is chosen to minimize

νp((an − an−1) · · · (an − a0)).

a0 can be chosen to be any element of S, and νp(m) is the p-adic valuation of m,

that is, the largest k such that pk divides m.

Definition 4. [Bha97] Define

Intm(S,Z) = {f(x) ∈ Q[x] | f(S) ⊆ Z, deg(f) ≤ m},

that is the set of IVPs over Z of degree less than or equal to m.

Bhargava proved the following proposition that links IVPs to p-orderings by using

the characteristic sequence (Definition 2):

Proposition 5. [Bha97, Th. 19] Let (an)n≥0 be a sequence of distinct elements of

S. Then, (an)n≥0 is a p-ordering of S if and only if for all m, (0 ≤ n ≤ m), the

polynomials

fn(X) =
n−1∏
k=0

X − ak
an − ak

form a basis for the Z(p)-module Intm(S,Z(p)) = {f(x) ∈ Q[x] | f(S) ⊆ Z(p), deg(f) ≤
m}. In this case we have that νp

(∏n−1
k=0(an − ak)

)
= αS,p(n) for 0 ≤ n ≤ m.
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2.1.1 Significance of Integer-valued Polynomials

In their monograph [CC97, Introduction] Cahen and Chabert introduce the study of

IVPs, which are beautiful and interesting to study from a number theory perspective.

They give answers to the classic problem of how much can we divide? By writing

a polynomial as a product of linear factors we get more control of the divisibility

after input values, and ideally we obtain high divisibility for all elements in the set

of interest. Below are some interesting algebraic properties of IVPs.

For a domain D, it is worth studying the ring Int(S,D) (denoted Int(D) in the

special case S = D) on its own, since it has nice properties and relates to various

mathematical areas. This subsection shows some interesting known results about

IVPs. These will not be proved in this thesis, but they demonstrate many of the

interesting connections between IVPs and other areas of mathematics. The connec-

tions between topology and IVPs will be explored in Chapter 3.

They study Int(D) and its connection to D itself. Localizations of these rings

have been studied, and IVPs behave well with respect to localization. For example,

if D is Noetherian, given a multiplicative subset S of D we get that S−1 Int(D) and

Int(S−1D) are equal [CC97, Prop I.2.7].

Taking D to be local with unique maximal ideal m, we can consider the m-adic

topology and prove that IVPs are uniformly continuous from D̂ to D̂, where D̂ de-

notes the completion of D with respect to the m-adic topology. Using this, Mahler’s

results on p-adic continuous functions can be extended, proving an m-adic version of

the Stone-Weierstrass approximation theorem. Although Int(Z) is not Noetherian,

thus not a Dedekind domain, it is a two-dimensional Prüfer domain that is not an

intersection of rank one valuation domains [Cha14, §2].
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2.2 Known Results: General Cases

2.2.1 Bhargava’s Work

Manjul Bhargava [Bha00] has contributed to many areas of mathematics. In this

section we introduce some of his work that relates to IVPs, that is, results about

factorials and p-orderings. A good introduction to this topic is [Bha00], where the

author does not aim to prove one main result, but, instead, gives information about

the factorial function from a number theoretic perspective, which is often forgotten

given all the combinatorial attention that the factorial gets. The most well-know

number theoretical result about the factorial is that k! divides the product of any k

consecutive integers. An equivalent statement of this is

Theorem 6. [Bha00, Th. 1] For any non-negative integers k and �, (k + �)! is a

multiple of k!�!.

Proof.
(k + �)!

k!�!
=

(
k + �

k

)
∈ Z.

We now look into less trivial applications of the factorial in number theory, and

discuss the close relationship between the factorial function and the sets of possible

values taken on by a polynomial.

Definition 7. [Bha00, 2] Given an integral non-zero polynomial f , that is a poly-

nomial with integer coefficients, the fixed divisor of f over Z, d(Z, f) is the greatest

common divisor of all the elements in the image of f on Z, that is

d(Z, f) = gcd{f(a) | a ∈ Z}.

Definition 8. For an integral polynomial f , if all of the coefficients of f are relatively

prime, then f is said to be primitive.

Theorem 9. [Bha00, Th. 2] Let f be a primitive polynomial of degree k, and let

d(Z, f) = gcd{f(a) | a ∈ Z}. Then d(Z, f) divides k!. (This is sharp, i.e., there are

cases where d(Z, f) = k!.)
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Theorem 10. [Bha00, Th. 3] Let a0, a1, . . . , an ∈ Z be any n+1 integers. Then the

product of their pairwise differences
∏
i<j

(ai − aj) is a multiple of 0!1!2! · · ·n!. (This

is sharp.)

Bhargava discusses the relationship between the number of functions from Z/nZ to

Z/nZ and the number of functions from Z/nZ to Z/nZ that can be represented by

polynomials, which is equivalent to the number of functions from Z to Z/nZ that

can be represented by polynomials.

Theorem 11. [Bha00, Th. 4] The number of functions from Z to Z/nZ that can

be represented by polynomials is given by

n−1∏
k=0

n

gcd(n, k!)
.

Note that when n is prime there are nn such functions.

Then p-orderings are introduced, as in Definition 3 and following this we define:

Definition 12. [Bha00, 4] Given (an)n≥0 a p-ordering of a subset S of Z, let

αn(S, p) = vp((an − an−1) · · · (an − a0)). Then (αn(S, p)) is the associated p-sequence

of S.

Theorem 13. [Bha00, Th. 5] The associated p-sequence of S is independent of the

choice of p-ordering.

Example 14. Z≥0 in increasing order is a p-ordering of Z at all primes.

Using this we can get a definition of the factorial function for subsets of Z.

Definition 15. [Bha00, Def. 7] Let S be any subset of Z. Then the factorial

function on S, denoted by k!S. is defined by

k!S =
∏
p

pαk(S,p).

This definition allows us to revisit the four previous theorems about the factorial

for any S ⊆ Z.
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Theorem 16. [Bha00, Th. 8] For any non-negative integers k and �, (k + �)!S is

still a multiple of k!S�!S.

Theorem 17. [Bha00, Th. 9] Let f be a primitive polynomial of degree k, and let

d(S, f) = gcd{f(a) | a ∈ S}. Then d(S, f) divides k!S. (This is sharp.)

Theorem 18. [Bha00, Th. 10] Let a0, a1, . . . , an ∈ S be any n + 1 integers. Then

the product of their pairwise differences
∏
i<j

(ai− aj) is a multiple of 0!S1!S2!S · · ·n!S.

(This is sharp.)

Theorem 19. [Bha00, Th. 11] The number of polynomials from S to Z/nZ is given

by
n−1∏
k−0

n

gcd(n, k!S)
.

The author proves these statements, which we will omit here. We next look into

definitions that come into play quite often when studying this topic.

Definition 20. [Bha00, 7] Given an integer n, the falling factorial is x(n) = x(x−
1) · · · (x − n + 1) and if S is a subset of Z, with p-ordering (ai), then x(n)S ,p =

(x− a0)(x− a1) · · · (x− an−1).

The theorem below forms the foundation for this thesis.

Theorem 21. [CC97, Prop. I.1.1] A polynomial is integer-valued on Z if and only

if it can be written as a Z-linear combination of the binomial polynomials

(
x

k

)
=

x(x− 1) · · · (x− k + 1)

k!
,

for k = 0, 1, 2, . . .. The binomial polynomials with
(
x
0

)
= 1 actually form a basis of

Int(Z).

Proof. The polynomials form a Q-basis of Q[x], since there is one of each degree and

one can see that the polynomials are integer-valued. Thus a Z-linear combination of

these polynomials is in Int(Z).
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Conversely, let f ∈ Int(Z), and write f(x) = λ0+λ1x+· · ·+λn

(
x
n

)
, where λ0, λ1, . . . , λn ∈

Q. Then λ0 = f(0) ∈ Z. Suppose by induction on k < n that λi ∈ Z for i ≤ k. Then

gk = f −
k∑

i=0

λi

(
x

i

)
is integer-valued and gk = λk+1

(
x

k+1

)
+ · · · + λn

(
x
n

)
. Therefore

λk+1 = gk(k + 1) ∈ Z, since for all i ≥ k + 1,
(
x
i

)
= 0.

Note that various forms of this result existed before the monograph [CC97], which

describes them in its Historical introduction.

Theorem 22. [Bha00, Th. 23] A polynomial is integer-valued on a subset S of Z

if and only if it can be written as a Z-linear combination of the polynomials

Bk,S

k!S
=

(x− a0,k)(x− a1,k) · · · (x− ak−1,k)

k!S
,

for k = 0, 1, 2, . . ., where (ai,k)
∞
i=0 is a sequence in Z that is term-wise congruent

modulo νk(S, p) to a p-ordering of S, for each prime p dividing k!S.

The author then discusses the multivariable case, but we will review this in a

later section. He then explores other applications of generalized factorial functions,

one of these being p-adic interpolation. Using the previous and generalizing to the

subset of a local field, one can obtain:

Theorem 23. [Bha00, Th. 4] Let S be any compact subset of a local field K. Then

every continuous map f : S → K can be expressed uniquely in the form

f(x) =
∞∑
n=0

cn
Bn,S(x)

n!S
,

where the sequence cn tends to 0 as n → ∞.

2.2.2 Single Variable: Summary of [Cha14]

This paper surveys the research area of IVPs, and presents most approaches that

have been used so far, includng generalizations. One of the goals of this paper is to

identify, for a domain D, when Int(D) has a regular basis, and, when possible to find

that basis. This paper focuses on the additive properties of Int(D) and we will use
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these for Int(Z).

For example, some polynomials in Int(Z) are
(
x
n

)
for n ≥ 2, and Fp(x) =

xp−x
p

for

p a prime by Fermat’s Little Theorem ( [DF04, pg. 96]).

Proposition 24. [CC97, II.2] The set {1, x} ∪ {(xp − x)/p | p ∈ P}, where P is

the set of all primes, is a minimal system of polynomials in which every element of

Int(Z) may be constructed by means of sums, products and compositions, i.e., the

removal of any of these polynomials will not give Int(Z).

Proposition 25. [Cha14, 2.3] For every integer-valued polynomial g of degree n,

n! · g(x) ∈ Z[x].

Proposition 26. [Cha14, 3.2] The subset formed by the leading coefficients of the

integer-valued polynomials of degree ≤ n, that is, the characteristic ideal of Int(Z),

is 1
n!
Z.

For S ⊆ Z we have defined Int(S,Z) and we have the following inclusions:

Z[x] ⊆ Int(Z) ⊆ Int(S,Z) ⊆ Q[x].

Now we consider a Z-algebra B such that Z[x] ⊆ B ⊆ Q[x].

Definition 27. A basis of the Z-module B is said to be a regular basis if it contains

exactly one polynomial of degree n, for all non-negative integers n.

Definition 28. Two subsets E and F of Z are said to be polynomially equivalent if

Int(E,Z) = Int(F,Z).

Similar to the characteristic sequence (see Definition 2), we get:

Definition 29. The characteristic ideal of index n of the Z-module B is the fractional

ideal Jn(B) formed by 0 and the leading coefficients of the polynomials in B of degree

less than or equal to n for all n ≥ 0.

Clearly, (Jn(B))n∈N is an increasing sequence of Z-modules such that: for all

k, � ∈ N, Z ⊆ Jk(B) ⊆ Q and Jk(B) · J�(B) ⊆ Jk+�(B).
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Lemma 30. [Cha14, Prop. II.3.1] Let f be a polynomial in Q[x] with degree n.

Assume that x0, x1, . . . , xn are distinct elements of Q such that f(xi) ∈ Z for 0 ≤
i ≤ n, then df belongs to Z[x] where d =

∏
0≤i<j≤n

(xj − xi).

Proposition 31. [Cha14, Prop. II.1.4] A sequence of polynomials (fn)n≥0, where

deg(fn) = n, is a regular basis of B if and only if, for every n ≥ 0, the ideal generated

by the leading coefficients of the fns is Jn(B). In particular, the Z-algebra Int(B)

admits a regular basis as a Z-module if and only if all the Jn(B)s are principal.

Example 32. When S = Z, Jn(Z) =
1
n!
Z.

The inverse of a nonzero fractional ideal J of Z is the fractional ideal J−1 = {x ∈
Q | xJ ⊆ Z}.

Definition 33. The factorial ideal n!ZS of index n of the subset S with respect to the

domain D is the inverse of the fractional ideal Jn(S,Z), i.e., n!
Z
S = Jn(S,Z)

−1.

The sequence (n!ZS)n∈N is a decreasing sequence of integral ideals of Z.

Proposition 34. [CC97, II.3.7] Given the factorial ideals n!ZS = dnZ, the polyno-

mials 1
dn
gn(x) then form a regular basis of the Z-module Int(S,Z).

Proposition 35. [CC97, II.3.7] The Z-module Int(S,Z) is free.

2.2.3 Multivariable Integer-valued Polynomials

We can now look into the ring of IVPs for the multivariable case as in [Cha14] and

[Evr12] and generalize some of the previous results, which gets us closer to our goal

of studying homogeneous 3-variable polynomials. Let m be a positive integer, let S

be a subset of Zm and let m0,m1, . . . be any ordering of the monomials of Zm[x] ,

and consider the Z-algebra

Int(S,Z) = {f(x1, . . . , xm) ∈ K[x1, . . . , xm] | f(S) ⊆ Z}.
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Let Jn(S,Z) be the Z-module generated by all the coefficients of the polynomials of

total degree less than or equal to n in Int(S,Z) and let

n!DS = Jn(S,Z)
−1 = {x ∈ Z | xf ∈ Z[x1, . . . , xm]∀f ∈ Int(S,Z), deg(f) ≤ n}.

For � ≥ 1 and any sequence (x0, . . . , x�−1) of elements of Zm, let

Δ(x0, . . . , x�−1) = det(mj(xi))0≤i,j<�.

Before looking into bases for the multivariable case, we generalize p-ordering,

and, therefore factorials. In Definition 3 of p-ordering, choosing ak to minimize the

power of p dividing the product of differences is equivalent to choosing ak such that it

minimizes the p-adic valuation of the following Vandermonde determinant [Bha00]:

∣∣∣∣∣∣∣∣∣∣∣

1 a0 a20 · · · ak0

1 a1 a21 · · · ak1
...

...
...

. . .
...

1 ak a2k · · · akk

∣∣∣∣∣∣∣∣∣∣∣
=
∏
i<j

(ai − aj).

Before generalizing p-orderings to many variables, we need to assume that no

non-zero polynomial f ∈ Q[x] is such that f(S) = 0. We will assume that we have

a sequence of monomials (mj)j≥0 that have an order which is compatible with the

total degree, so that for i < j we have deg(mi) ≤ deg(mj).

Definition 36. [Evr12, 4] Let S be a subset of Zn. Then for a fixed ordering

m0,m1, . . . of the monomials of Z[x1, . . . , xn], a p-ordering of S is a sequence a0, a1, . . .

of the elements in S inductively chosen so that ak minimizes νp(Δ(a0, a1, . . . , ak))

where

Δ(a0, a1, . . . , ak) =

∣∣∣∣∣∣∣∣∣∣∣

m0(a0) m1(a0) m2(a0) · · · mk(a0)

m0(a1) m1(a1) m2(a1) · · · mk(a1)
...

...
...

. . .
...

m0(ak) m1(ak) m2(ak) · · · mk(ak)

∣∣∣∣∣∣∣∣∣∣∣
.
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The associated p-sequence of S is then given by

αk(S, p) = νp

(
Δ(a0, a1, . . . , ak)

Δ(a0, a1, . . . , ak−1)

)
,

and the generalized factorial k!S is

k!S =
∏
p

αk(S, p).

When S is a Cartesian product, its factorials are easy to compute, since they can

be obtained as in the single variable case. This is still the case when S is polynomi-

ally equivalent (recall Definition 28) to a Cartesian product. It would be interesting

to compute factorials for subsets that are not polynomially equivalent to a Cartesian

product [Evr12]. This thesis will look at some of these cases.

Below is a proposition found in [Cha14] that summarizes the results from [Evr12]:

Proposition 37. [Cha14][Evr12, 19,20] Let (ak)k≥0 be a sequence of elements of S

such that, for every k ≥ 0, Δ(a0, . . . , ak) = 0. Furthermore, consider the associated

polynomials

Fk(x) =
Δ(a0, . . . , ak−1, x)

Δ(a0, . . . , ak)
.

The following assertions are equivalent:

1. (ak)k≥0 is a p-ordering of S.

2. For every k ≥ 0, Fk ∈ Int(S,Z).

3. {Fk(x)}k≥0 is a basis if the Z-module Int(S,Z).

4. For every f(x) ∈ Q[x], if the indices of the monomials of f are less than k,

then f(x) ∈ Int(S,Z) ⇔ f(a0), . . . , f(ak−1) ∈ Z.

We now look into a case where we can construct a basis:

Proposition 38. The polynomials {(x
r

)(
y
s

) | r, s ∈ Z, r, s ≥ 0} form a basis of the

Z-module Int(Z2,Z).
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Proof.
(
x
r

)(
y
s

)
form a basis of the Q-vector space Q[x, y], since we can obtain all

monomials, i.e.,
(
x
r

)(
y
s

)
has leading term xrys. Since

(
x
r

)
and

(
y
s

)
are integer-valued,

their product is as well, and any Z-linear combination of these polynomials is integer-

valued.

Conversely, let f ∈ Int(Z2,Z) be a polynomial of degree n+m and

f(x, y) =
n+m∑
r,s≥0,

r≤n, s≤m

ar,s

(
x

r

)(
y

s

)
,

with ar,s ∈ Q. It suffices to show ar,s ∈ Z. We first order the terms by increasing

degree of r+s, then for a given r+s = k, we order by increasing degree of r. Suppose

by induction on k ≤ n+m that ar,s ∈ Z for r + s ≤ k. For r + s = k + 1, there can

be up to k + 2 terms of this degree, since the are at most k + 2 distinct pairs such

that r + s = k + 1, so we proceed by induction on these terms. Suppose that for all

j < k + 1, aj,s ∈ Z. When j + s = k + 1, we need to show that aj+1,s ∈ Z. In order

to use our induction hypothesis we work with

gk,j = f −
∑

r+s≤k
r≤j

ar,s

(
x

r

)(
y

s

)

then gk,j = aj+1,s

(
x

j+1

)(
y
s

)
+ · · · + an,m

(
x
n

)(
y
m

)
. Therefore aj+1,s = gk,j(j + 1, s), since

for all i such that i ≥ j + 1 we have
(
x
i

)
= 0.

This result will be used in Chapter 4 to connect the homogenous 3-variable case

to the general 2-variable case. Induction can be used to obtain the following, which

will be proven in the next section:

Corollary 39. The polynomials
{(

x1

r1

)(
x2

r2

) · · · (xn

rn

) | r1, . . . , rn ∈ Z, r1, . . . , rn ≥ 0
}

form a basis of the Z-module Int(Zn,Z).
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2.3 Integer-valued Homogeneous Polynomials

2.3.1 Numerical Forms [Hub97]

In his paper Numerical Forms [Hub97], which is the term the author uses for homo-

geneous IVPs, Hubbuck gives a bound for the coefficients of a numerical form. The

goal of that paper is to show:

Proposition 40. [Hub97, Prop. 1.3] For a fixed prime p, there exist monotonic

increasing polynomials un(z) and vn(z) such that the coefficients ai1,i2,...,in of any

numerical M-form, a form, hence a polynomial, of degree M , in n variables satisfy

ν(ai1,i2,...,in) >
M − un(t)

vn(t)
.

Here t is the integer such that pt+1 − 1 > M − n+ 1 ≥ pt − 1 and ν is the valuation

such that ν( s
r·pu ) = u, where p � r and p � s.

The construction of the single variable polynomials un(z) and vn(z) can be found

at the end of the paper. A consequence of this result is the following:

Proposition 41. [Hub97, Abstract] If I is the graded ring of homogeneous rational

polynomials in n-variables which are numerical over Z, then I is a subring of Γ,

the divided polynomial algebra over Z in n-variables. For any positive integer k, the

image of the induced homomorphism I ⊗ (Z/kZ) → Γ ⊗ (Z/kZ) is a finite graded

ring.

2.3.2 2-Variable Homogeneous IVPs [JP11]

Keith Johnson and Donald Patterson have determined a basis for homogeneous IVP

in degree two. This section will summarize their work and then indicate where the

case of 3-variables differs given the computational results obtained in further chap-

ters. In this paper the idea of p-orderings is extended to Z2 or Z2
(p) in such a way as

to give a construction of a basis for the Z(p)-module of p-local integer-valued homo-

geneous polynomials in 2-variables.
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Definition 42. [JP11, Def. 4] Let S be a subset of Z2
(p). A projective p-ordering

of S is a sequence ((ai, bi) | i = 0, 1, 2, . . .) in S with the property that for each

i > 0 the element (ai, bi) minimizes νp

(∏
j<i

(sbj − taj)

)
over all pairs (s, t) ∈ S.

The sequence (di | i = 0, 1, 2, . . .) with di = νp

(∏
j<i

(aibj − biaj)

)
is the p-sequence

of the p-ordering.

Lemma 43. [JP11, Lem. 5]

1. If ((ai, bi) | i = 0, 1, 2, . . .) is a projective p-ordering of Z2
(p), then for each index

i either νp(ai) = 0 or νp(bi) = 0.

2. If ((ai, bi) | i = 0, 1, 2, . . .) is a projective p-ordering of Z2
(p), then there is

another projective p-ordering ((a′i, b
′
i) | i = 0, 1, 2, . . .) with the property that for

each index i either a′i = 1 and p | b′i, or b′i = 1 and ((a′i, b
′
i) | i = 0, 1, 2, . . .) has

the same p-sequence as ((ai, bi) | i = 0, 1, 2, . . .).

Definition 44. [JP11, Def. 6] Let S denote the subset of Z2
(p) consisting of pairs

(a, b) with either a = 1 and p | b, or b = 1 and let S0 = ((a, 1) | a ∈ Z(p)) and

S1 = ((1, pb) | b ∈ Z(p)).

Lemma 45. [JP11, Lem. 7] The set S is the disjoint union of S0 and S1, and if

(a, b) ∈ S0 and (c, d) ∈ S1, then νp(ad− bc) = 0.

Definition 46. The shuffle S of two sequences Si and Sj is obtained by arranging

the elements ofSi and Sj in non-decreasing order in S such that the elements of each

sequence are in the same order. That is, if you ignore the elements of Sj in S, you

obtain Si and vice versa.

Proposition 47. [JP11, Prop. 8] Any projective p-ordering of S is the shuffle of

projective p-orderings of S0 and S1 into nondecreasing order. The shuffle of any pair
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of p-sequences of S0 and S1 into nondecreasing order gives a p-sequence of S and

the corresponding shuffle of the projective p-orderings of S0 and S1 that gave rise to

these p-sequences gives a projective p-ordering of S.

Proposition 48. [JP11, Prop. 10]

1. A projective p-ordering of Z2
(p) is given by the periodic shuffle of the sequences

((i, 1) | i = 0, 1, 2, . . .) and ((1, pi) | i = 0, 1, 2, . . .) which takes one element of

the second sequence after each block of p elements of the first. The correspond-

ing p-sequence is
(
νp

(
� pi
p+1

�
)

| i = 0, 1, 2, . . .
)
.

2. The p-sequence of Z2
(p) is independent of the choice of projective p-ordering used

to compute it.

Proposition 49. [JP11, Prop. 11] If ((ai, bi) | i = 0, 1, 2, . . .) is a projective p-

ordering of Z2
(p), then the polynomials

fn(x, y) =
n−1∏
i=0

xbi − yai
anbi − bnai

are homogeneous and Z(p)-valued on Z2
(p).

The following will help us actually find a basis for the homogeneous 2-variable

polynomials and will be illustrated with an example.

Definition 50. [JP11, Def. 12] For 0 ≤ n ≤ m and ((ai, bi) | i = 0, 1, 2, . . .), the

projective p-ordering of Z2
(p) constructed in Proposition 48, let

gmn (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ym−n

n−1∏
i=0

xbi − yai
anbi − bnai

if (an, bn) ∈ S0

xm−n

n−1∏
i=0

xbi − yai
anbi − bnai

if (an, bn) ∈ S1.
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Lemma 51. [JP11, Lem. 13] The polynomials gmn (x, y) have the properties

gmn (ai, bi) =

⎧⎨
⎩0 if i < n

1 if i = n.

Proposition 52. [JP11, Prop. 14] The set of polynomials {gmn (x, y) | n = 0, 1, 2, . . . ,m}
form a basis for the Z(p)-module of homogeneous polynomials in Q[x, y] of degree m

which take values in Z(p) when evaluated at points of Z2
(p).

Example 53. [JP11, Ex. 15] Let p = 2 and m = 3. By Proposition 48 the following

is a projective 2-ordering of Z2
(p):

(0, 1), (1, 1), (1, 0),

(2, 1), (3, 1), (1, 2),

(4, 1), (5, 1), . . . .

With this projective 2-ordering we construct g3n(x, y) for n = 0, 1, 2, 3 and obtain the

following basis: {
y3, xy2, x2(x− y),

xy(x− y)

2

}
.

This method will be helpful to obtain basis elements in the 3-variable case by

either using some of these polynomials or multiplying by other homogeneous polyno-

mials to obtain an explicit 3-variable polynomial. More details about the connection

between the 2-variable and 3-variable case can be found in Section 5.2.



Chapter 3

The Connection with Algebraic Topology

The goal of this chapter is to describe the connections between algebraic topology

and IVPs, especially the homogeneous ones. This chapter will assume some familiar-

ity with algebraic topology, since that subject would require more than a chapter of

explanations by itself. This chapter will show how elements of certain groups arising

in topology are isomorphic to IVPs.

One motivation for studying homogeneous IVPs is their application to topology.

This can be established by starting with the Adams-Novikov spectral sequence, more

details about this subject can be found in [Rav86], which gives a tool for computing

homotopy groups of a topological space or spectrum X with the help of generalized

homology or cohomology theory. From a topological perspective this sequence is

useful for calculating stable homotopy groups of spheres. The spectral sequence is

known to converge, in many cases, to πS
∗ (X), the stable homotopy groups of X.

For a space X the Adams spectral sequence [Ada58] is based on H∗(X,Z/(p))

and an important part of this sequence is the E2-term which can be defined and

computed in strictly algebraic terms. The Adams-Novikov [Nov67] sequence, which

is also called the E∗-Adams sequence, is the analogous sequence based on a general

cohomology or homology theory, E∗( ) or E∗( ).

For the study of IVPs the homology theory of interest isK∗( ), complexK-theory.

Recall, from [Rav86, 2.1], that E∗(X) is a comodule over the (mod p) commutative

Hopf algebra A = E∗E.

Theorem 54. [Rav86, Th. 2.1.1] Let X be a topological space. There is a spectral

sequence converging to πS
∗ (X) with E∗∗

∗ (X) and differentials dr : E
s,t
r → Es+r,t+r−1

r

such that

21
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(a) Es,t
2 = Exts,tA (E∗(X,Z/(p)), E∗(X,Z/(p))), with A = E∗E.

(b) If X is of finite type, E∗∗
∞ is the bigraded group associated with a certain filtra-

tion of πS
∗ (X)⊗ Zp, where Zp denotes the ring of p-adic integers.

In this theorem we have that E∗ is a homology theory and Ext is the algebraic

object. The idea behind the Adams spectral sequence is to use our knowledge of

πS
∗ (E) and E∗(X) to get information about πS

∗ (X).

Using this tool to go from topology to algebra, in 1989 Baker, Clarke, Ray and

Schwartz [BCRS89] studied the K-homology of an n-torus BT n, and showed a con-

nection between homology and homogeneous IVPs, (which are referred to as numer-

ical polynomials in that paper). In this case X is the space BU and E is complex

K-theory. Their main focus is on describing the K-homology of CP∞, the infinite

complex projective space, and BT n, which makes the coaction of the cooperation

algebra K∗(K), and hence the primitive submodule, easy to understand.

A previous paper from Adams, Harris and Switzer [AHS71], that had described

K∗(BU) andKO∗(BSp), achieves this by mapping elements ofK0(K) andKO∗(KO)

to K2n(K) ⊗ Q and K4n(K) ⊗ Q respectively, where KO∗ is homology theory for

the BO-spectrum which comes from the real Bott periodicity that is described in

[AGP02]. The main interest for us is that these elements are mapped to homogeneous

2-variable IVPs, which are of the form

p′n(u, v) =
1

n!
v(v − u)(v − 2u) · · · (v − (n− 1))

q′n(u, v) =
2

(2n+ 2)!
(v2 − u2)(v2 − 22u2) · · · (v2 − n2u2).

The paper from Baker et al. uses a similar process to give a description of K∗BT n

and K∗BU . They make use of the result from [Cla81]:

Proposition 55. [Cla81, Th. 11] The ring Int(Z,Z) is isomorphic to K0(CP∞),

where K0(CP∞) has the ring structure induced by the map CP∞ × CP∞ → CP∞

which classifies the tensor product of line bundles.
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Proposition 56. [BCRS89, Prop. 1.6] The ring An = Int(Zn,Z) is isomorphic to

the iterated tensor product A⊗n and hence has a basis consisting of the elements

(
w1

k1

)(
w2

k2

)
· · ·

(
wn

kn

)
, k1, k2, . . . , kn ≥ 0.

Corollary 57. [BCRS89, Cor. 1.7] If BT n = (CP∞)n denotes the classifying space

of an n-torus then K0(BT n) is isomorphic to the ring An. The coaction

ψ : K0(BT n) → K0(K)⊗K0(BT n)

is the ring homomorphism determined by ψ(wi) = wi ⊗ wi.

The following two propositions are of interest to us, since they give us a connection

to homogeneous IVPs and a way to construct these. By primitive elements here we

mean elements x such that ψ(x) = 1⊗ x+ x⊗ 1, under the coaction map ψ defined

in the above corollary.

Proposition 58. [BCRS89, Prop. 1.8] The group of primitive elements PmK0(BT n)

is isomorphic to the Z-module of IVPs in n-variables which are homogeneous of degree

m.

Thus, studying 3-variable homogeneous IVPs, is another way of studying the

primitive elements of the K∗-homology of the 3-torus.

Proposition 59. [BCRS89, Prop. 1.9] Suppose that f(w1, . . . , wn−1) ∈ An−1 has

total degree k and denominator M , so Mf(w1, . . . , wn−1) has integer coefficients.

Then for sufficiently large j,

wk+j
n f(w1w

−1
n , . . . , wn−1w

−1
n )

is a homogeneous IVP of degree k + j.

In fact wk+j
n f(w1w

−1
n , . . . , wn−1w

−1
n ) is integer valued if j is greater than or equal to

the maximum exponent of any prime occurring in M .
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The estimate for j in that proposition, and in general, is not the best, which mo-

tivates our desire to find bases for homogeneous IVPs. The remainder of that section

goes over the non-trivial nature of the ring of homogeneous IVPs by exploring the

2-variable case localized at a prime p, (which was continued in the paper from John-

son and Patterson [JP11]) which fully solves the 2-variable case for homogeneous

2-variable IVPs.

In the second section of [BCRS89], the authors explore further the relationship

between the homotopy of BU and homogeneous IVPs, which is displayed in the next

two statements:

Theorem 60. [BCRS89, Th. 2.1] As a K0(K)-comodule, K0(BU(n)) may be iden-

tified with the submodule of Q[x1, . . . , xn] consisting of those symmetric polynomials

f(x1, . . . , xn) satisfying
n!

n1! · · ·nr!
f(k1, . . . , kn) ∈ Z

where the sequence of integers k1, . . . kn contains r distinct elements repeated n1, . . . , nr

times, respectively. Here Q[x1, . . . , xn] has the multiplicative comodule structure

given by ψ(xi) = ω ⊗ xi. The map An = K0(BT n) → K0(BU(n)) sends an IVP

f(w1, . . . , wn) to the symmetrization

(
1

n!

)∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).

Where Sn is the symmetric group of permutations of n elements.

Proposition 61. [BCRS89, Cor. 2.2] The group of primitive elements PmK0(BU(n))

may be identified with the Z-module of homogeneous symmetric polynomials of degree

m satisfying the integrality condition of the theorem.

Since symmetric homogeneous IVPs give us primitive elements, we will try to

also find the symmetrizations of our IVPs in the next sections.



Chapter 4

Polynomials Integer-valued at Odd Values

We begin this project by focusing on the prime p = 2, since over Z(2) odd numbers

are invertible. By this we mean we will look into taking f(x) ∈ Z[x] and finding

a maximal i such that f(x)
2i

is an IVP. In this chapter we restrict our attention to

evaluating our polynomials at odd values only. We will start by looking into the

2-variable case, and then establish an isomorphism between the 2-variable IVPs at

odd values of degree less than or equal to m and the homogenous 3-variable IVPs at

odd values of degree m.

Lemma 62. Int(1 + 2Z,Z) has as basis
{(

(x−1)/2
n

)}
n≥0

.

Proof. We use the basis for Int(Z) from Theorem 21, the map

μ : Int(Z,Z) → Int(1 + 2Z,Z)

x �→ x− 1

2

produces an isomorphism so maps bases to bases, as illustrated below

Z

u

��

f̃

��
1 + 2Z

f
�� Z.

Proposition 63. Int((1 + 2Z)2,Z) has basis
{(

(x−1)/2
i

)(
(y−1)/2

j

)}
i,j≥0

, where the de-

nominators of the basis elements are 2i+ji!j!.
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Proof. This is Lemma 62 applied to Proposition 38.

This case will allow our polynomials to have bigger denominators and permits us

to draw some important conclusions for the general case. We start with definitions

that will be useful for the remainder of this work:

Definition 64. Intm(Z
k,Z) is the submodule of Int(Zk,Z) of IVPs of degree less

than or equal to m, and Intm((1 + 2Z)k,Z) is the submodule of Intm(Z
k,Z) of IVPs

at odd values.

The above is a multivariable generalization of Definition 4.

Definition 65. Intm(Zk,Z) is the submodule of Int(Zk,Z) consisting of homogeneous

IVPs of degree m and Intm((1 + 2Z)k,Z) is the submodule of Intm(Zk,Z) of IVPs at

odd values.

We connect the 3-variable case to the 2-variable one:

Proposition 66. Intm((1+2Z)2,Z) and Intm((1+2Z)3,Z) both have rank (m+1)(m+2)
2

.

Proof. In the first case we are counting all non-negative pairs (i, j) such that i+j ≤ m

and, in the second, all non-negative triples (i, j, k) such that i + j + k = m. Both

quantities are equal to (m+1)(m+2)
2

.

Proposition 67. We have the isomorphism

Intm((1 + 2Z)2,Z) � Intm((1 + 2Z)3,Z).

The isomorphism is given by the maps:

G : Intm((1 + 2Z)2,Z) → Intm((1 + 2Z)3,Z)

g(x, y) �→ zmg
(x
z
,
y

z

)
,

F : Intm((1 + 2Z)2,Z) ← Intm((1 + 2Z)3,Z)

f(x, y, 1) ←� f(x, y, z).
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Proof. (1) We show that if g ∈ Intm((1 + 2Z)2,Z) then G(g) ∈ Intm((1 + 2Z)3,Z).

First we show that G(g) is homogeneous:

G(g)(x, y, z) = zmg
(x
z
,
y

z

)
G(g)(hx, hy, hz) = (hz)mg

(
hx

hz
,
hy

hz

)

= hm(G(g)(x, y, z))

Thus G(g) is homogeneous. It remains to show that if x, y, z ∈ (1 + 2Z), then

G(g)(x, y, z) ∈ Z. We know that x
z
, y
z
∈ 1 + 2Z(2) and x

z
≡ x′ (mod 2k), y

z
≡ y′

(mod 2k), for some sufficiently large k (larger than m), and x′, y′ ∈ (1 + 2Z). We

then have that

G(g)(x, y, z) = zmg
(x
z
,
y

z

)
≡ zmg(x′, y′) (mod 2k)

and g(x′, y′) ∈ Z(2). Hence G(g)(x, y, z) ∈ Z(2) and G(g)(x, y, z) can be represented

in Z/(2k) for a sufficiently large k.

(2) Lastly, we show that if f ∈ Intm((1 + 2Z)3,Z) then F (f) ∈ Intm((1 + 2Z)2,Z).

We know that for all a, b, c ∈ (1 + 2Z), f(a, b, c) ∈ Z and therefore f(a, b, 1) ∈ Z.

Thus g = f(a, b, 1) ∈ Z for all a, b ∈ (1 + 2Z), and f(x, y, 1) is a polynomial where

each term is of degree at most m.

(3) The homomorphism property holds from standard homogenization. Lastly, we

show that the functions are inverses of each other, i.e. F (G(g)) = g andG(F (f)) = f .

Let g(x, y) =
∑

i+j≤m aijx
iyj, then

G(g) =
∑

i+j≤m

aijz
m
(x
z

)i (y
z

)j

,

F (G(g)) =
∑

i+j≤m

aij1
m
(x
1

)i (y
1

)j

= g(x, y).
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Let f(x, y, z) =
∑

i+j+k=m bijkx
iyjzk, then

F (f) =
∑

i+j+k=m

bijkx
iyj1k =

∑
i+j≤m

bijkx
iyj,

G(F (f)) =
∑

i+j≤m

bijkz
m
(x
z

)i (y
z

)j

=
∑

i+j≤m

bijkz
mxi

zi
yj

zj

=
∑

i+j≤m

bijkz
m−i−jxiyj =

∑
i+j+k=m

bijkz
kxiyj

= f(x, y, z).

Remark 68. Note that in the previous proposition we could just as easily have used

f(x, 1, y) or f(1, x, y) in the definition of F , with appropriate changes to G.

We present some properties of νp(n!) which will be very useful for this chapter.

Lemma 69. [Leg30][Mol12, Th. 2.6.1] (Legendre’s Formula) For p a prime and n

having the p-adic expansion n =
∑

i≥0 nip
i, for ni ∈ Z/(p), we have

νp(n!) =
∑

k∈N, pk≤n

⌊
n

pk

⌋
=

n−∑
ni

p− 1
.

Proof. For p a prime, νp(n!) =
∑

�∈N, p�≤n

⌊
n

p�

⌋
, because the number of integers k in

the range 1 to n for which νp(k) ≥ � is
⌊

n
p�

⌋
.

Write n =
∑

i≥0 nip
i, for i such that 0 ≤ i ≤ �, p� ≤ n and ni ∈ Z/(p). Let k

being the greatest integer such that pk ≤ n. Then for any 0 ≤ r < k we have

⌊
n

pr

⌋
= nkp

k−r + nk−1p
k−1−r + · · ·+ nr.
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Combining this with the first inequality yields

νp(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·+

⌊
n

pk

⌋

= nkp
k−1 + nk−1p

k−2 + · · ·+ n2p+ n1

+ nkp
k−2 + nk−1p

k−3 + · · ·+ n2

...

+ nk

= n1 + n2(p+ 1) + n3(p
2 + p+ 1) + · · ·+ nk(p

k−1 + · · ·+ 1)

=
n1(p− 1) + n2(p

2 − 1) + n3(p
3 − 1) + · · ·+ nk(p

k − 1)

p− 1

=
(n0 + n1p+ n2p

2 + · · ·+ nkp
k)− (n0 + n1 + n2 + · · ·+ nk)

p− 1

=
n−∑

ni

p− 1
.

Lemma 70. For an integer n we have

ν2((2n)!) = n+ ν2(n!) = ν2(2
n(n!)).

Proof. From the definition of the 2-adic valuation we have ν2(2
n(n!)) = n + ν2(n!).

We use Legendre’s Formula, Lemma 69, if

n = ni2
i + ni12

i−1 + · · ·+ n12 + n0,

then ν2(n!) = n−∑
0≤j≤i nj. We also have that

2n = ni2
i+1 + ni12

i + · · ·+ n12
2 + n02,

where the sum of the coefficients of the 2-adic expansion is the same as for n. Using

Legendre’s Formula ν2((2n)!) = 2n−∑
0≤j≤i nj = n+ ν2(n!).
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Lemma 71. Given any integer n with 2-adic expansion n =
∑

ni2
i = 2k+n′, where

n′ < 2k, we have

ν2(n!) = 2k − 1 + ν2(n
′!).

Proof. By Legendre’s Formula, (Lemma 69),

ν2(n!) =
∑
i>0

⌊
2k + n′

2i

⌋

=
k∑

i>0

2k−i +
∑
i>0

⌊
n′

2i

⌋
.

Since the first sum is a geometric series, this becomes

ν2(n!) = 2k − 1 + ν2(n
′!).

We next show how to count the number of basis elements with denominator of

2-adic valuation n, for n < m in Intm((1+2Z)2,Z). From Proposition 5 the sequence

of 2-adic valuations of the denominators of Int(1 + 2Z,Z) is the 2-sequence (recall

Definition 12) of S = (1+2Z). Note that for any n we actually have that αn(1+2Z, 2)

can be calculated using Lemma 70 and is

αn(1 + 2Z, 2) = n+ αn(Z, 2) = n+ ν2(n!) = ν2(2
nn!) = ν2(2n!).

Below we display the 2-sequence of Int(1 + 2Z,Z):

degree n 0 1 2 3 4 5 6 7 8 9 10
αn(1 + 2Z, 2) 0 1 3 4 7 8 10 11 15 16 18

Table 4.1: 2-Sequence for Int(1 + 2Z,Z)

For Intm((1 + 2Z)2,Z) the basis elements are obtained as products of basis ele-

ments for each variable x, y, thus we add exponents in a square array. Each i, j-entry

in the table is

i+ j + αZ(i) + αZ(j) = (i+ j) + ν2(i!j!) = ν2(2i!2j!) = ν2(2
i+ji!j!).
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From here on, the matrix representation of Table 4.2 will be called M .

degree of x
0 1 2 3 4 5 6 7 8 9 10 11 12 13

degree of y

0 0 1 3 4 7 8 10 11 15 16 18 19 22 23
1 1 2 4 5 8 9 11 12 16 17 19 20 23 24
2 3 4 6 7 10 11 13 14 18 19 21 22 25 26
3 4 5 7 8 11 12 14 15 19 20 22 23 26 27
4 7 8 10 11 14 15 17 18 22 23 25 26 29 30
5 8 9 11 12 15 16 18 19 23 24 26 27 30 31
6 10 11 13 14 17 18 20 21 25 26 28 29 32 33
7 11 12 14 15 18 19 21 22 26 27 29 30 33 34
8 15 16 18 19 22 23 25 26 30 31 33 34 37 38
9 16 17 19 20 23 24 26 27 31 32 34 35 38 39
10 18 19 21 22 25 26 28 29 33 34 36 37 40 41
11 19 20 22 23 26 27 29 30 34 35 37 38 41 42
12 22 23 25 26 29 30 32 33 37 38 40 41 44 45
13 23 24 26 26 30 31 33 34 38 39 41 42 45 46

Table 4.2: M [i, j] = ν2(2
i+ji!j!) = ν2((2i)!(2j)!)

In order to get the 2-sequence of Intm((1 + 2Z)2,Z), our goal is to find a formula

for γ(n), where for a given n, γ(n) counts the number of times n appears in M . We

look into the properties of M to construct γ(n).

Definition 72. Given the matrix M , with i, j ≥ 1. The n-th diagonal Dn of M is

Dn = {M [i, j] | i+ j = n}.

Proposition 73. If i+ j = 2k−1 − 1, then M [i, j] = 2k − k − 1.

Proof. Since we are looking at elements on the diagonal Dn we have that these

elements M [i, j] satisfy i+ j = 2k−1 − 1. We want to show that

M [i, j] = i+ j + ν2(i!) + ν2(j!) = 2k − k − 1. (4.1)

We proceed by induction on k. If k = 2, n = 1, and from calculations we get

D2 = {(1, 1)}, with 1 = 22 − 2− 1.
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Suppose equation 4.1 holds for k, that is, for i + j = 2k−1 − 1. Then we have that

i+ j + ν2(i!) + ν2(j!) = 2k − k − 1. That is,

ν2(i!) + ν2(j!) = 2k − k − 1− 2k−1 + 1

= 2k−1(2− 1)− k

= 2k−1 − k.

Hence for i+ j = 2k−1 we are reduced to showing that ν2(i!)+ν2(j!) = 2k− (k+1).

Without loss of generality suppose i > 2k−1 and j ≤ 2k−1. Let i = 2k−1 + i′. Then

by Lemma 71,

ν2(i!) + ν2(j!) = 2k−1 − 1 + ν2(i
′!) + ν2(j!).

Since i′ + j = (i− 2k−1) + j = 2k − 1− 2k−1 = 2k−1, we get by induction hypothesis

that ν2(i
′!) + ν2(j!) = 2k − k − 1 and

ν2(i!) + ν2(j!) = 2k−1 − 1 + 2k − k = 2k − (k + 1).

Corollary 74. When n = 2k−1 − 1, the diagonals Dn act as bounds for the values

in M , in the sense that if i+ j > n then M [i, j] > 2k − k − 1, and if i+ j < n then

M [i, j] < 2k − k − 1.

Proof. Above Dn we have that i+ j < n = 2k−1 − 1. Thus

M [i, j] = i+ j + ν2(i!) + ν2(j!) < n+ 1 + ν2(i!) + ν2(j!)

= 2k−1 − 1 + ν2(i!) + ν2(j!)

≤ 2k−1 − 1 + 2k−1 − k

= 2k − k − 1,

where the last inequality comes from the proof of Proposition 73. Below Dn we have
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that i+ j > n+ 1 = 2k−1 − 1, thus

M [i, j] = i+ j + ν2(i!) + ν2(j!) > n+ 1 + ν2(i!) + ν2(j!)

= 2k−1 − 1 + ν2(i!) + ν2(j!)

≥ 2k−1 − 1 + 2k−1 − k

= 2k − k − 1,

where the last inequality comes from the proof of Proposition 73.

If we look at the section of M represented below:

degree of x
0 1 2 3 4 5 6 7

degree of y

0 0 1 3 4 7 8 10 11
1 1 2 4 5 8 9 11 12
2 3 4 6 7 10 11 13 14
3 4 5 7 8 11 12 14 15
4 7 8 10 11 14 15 17 18
5 8 9 11 12 15 16 18 19
6 10 11 13 14 17 18 20 21
7 11 12 14 15 18 19 21 22

Table 4.3: Symmetry

We notice that if you take a value in red and reflect it about D7, the diagonal

made of 11 = 24 − 4− 1, then adding the reflected value in blue will always yield 22.

This type of pattern will always occur and is demonstrated in Corollary 76.

Definition 75. We define the triangle T(a1,b1,a2,b2) in M , where b1 − a1 = b2 − a2, to

be the following set:

T(a1,b1,a2,b2) = {(i, j) | a1 ≤ i ≤ b1, a2 ≤ j ≤ b2, and i+ j ≤ b1 + a2}.

For example, the following section of M is T(0,7,0,7), the green section is T(0,3,0,3),

the red section is T(4,7,0,3), and the blue section is T(0,3,4,7):
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degree of x
0 1 2 3 4 5 6 7

degree of y

0 0 1 3 4 7 8 10 11
1 1 2 4 5 8 9 11
2 3 4 6 7 10 11
3 4 5 7 8 11
4 7 8 10 11
5 8 9 11
6 10 11
7 11

Table 4.4: Triangular Regions and Translations

You can see that every value in red or blue is 7 plus the value in the same position

in the green triangle. This is demonstrated in Proposition 77.

We look into counting how many basis elements of Intm((1 + 2Z)2,Z) have a

certain 2-adic valuation in their denominator. Corollary 74 shows that for degree m,

where 2k−k−1 ≤ m < 2k+1−k−2, it is enough to search in the region i+j ≤ 2k−1,

where i + j will make up the total degree of a given polynomial. For example, for

m = 3 we would consider the following values:

0 1 2 3
0 0 1 3 4
1 1 2 4
2 3 4
3 4

Table 4.5: Denominators for Int3((1 + 2Z)2,Z)

That is for degree m, we find the diagonal that acts as an upper bound for the

denominators, and count the entries M [i, j] such that i+ j < 2k. We can count that

there is one basis element with a 20 in its denominator, two with a 21, one with a 22,

two with a 23 and four with a 24.

We can recursively use this method, in this case, when know the number of

denominators for Intm−1(((1 + 2Z)2,Z), one only needs to consider M [i, j] such that
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2k−1 ≤ i + j ≤ 2k − 1. Doing this up to m = 10 gives a table where we count the

number of basis elements with a certain denominator of each degree 0 ≤ m ≤ 10.

That is, in the table below the entries (m,n), record the number of entries M [i, j] of

size n for which i + j ≤ m. In this case i + j is the total degree and n is the 2-adic

valuation of the denominators of the basis elements of degree m. This type of table

will be very important for this project.

n, for denominators of size 2n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
ot
al

d
eg
re
e
m

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 2 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 2 1 2 4 2 1 2 0 0 0 0 0 0 0 0 0 0 0
5 1 2 1 2 4 2 1 4 4 0 0 0 0 0 0 0 0 0 0
6 1 2 1 2 4 2 1 4 5 2 4 0 0 0 0 0 0 0 0
7 1 2 1 2 4 2 1 4 5 2 4 8 0 0 0 0 0 0 0
8 1 2 1 2 4 2 1 4 5 2 4 8 4 2 1 0 0 0 0
9 1 2 1 2 4 2 1 4 5 2 4 8 4 2 5 2 4 0 0
10 1 2 1 2 4 2 1 4 5 2 4 8 4 2 5 2 5 4 4

Table 4.6: Number of Basis Elements in Intm((1 + 2Z)2,Z) Having ν2 = n

The column values eventually stabilize because of Corollary 74, since the diago-

nals bound the values n can take on. This matrix has its rows stabilizing to

(γ(n)) = 1, 2, 1, 2, 4, 2, 1, 4, 5, 2, 4, 8, 4, . . .

This sequence stores in each entry n,the number of pairs (i, j) for which ν2(2
i+ji!j!) =

ν2((2i)!(2j)!) = n. We know how to construct a table to get values for this sequence,

but it would be very useful to have a formula for γ(n). We will use the number

theoretical properties of M to derive a recursive way of counting how many times a

value x will appear in M .

Proposition 76. (Reflection.) Consider Dn, for n = 2k−1 − 1. For all M [a, b] and

M [c, d] such that a+ d = n = b+ c, we have

M [a, b] +M [c, d] = 2(2k − k − 1).
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Proof.

M [a, b] +M [c, d] = a+ b+ ν2(a!) + ν2(b!) + c+ d+ ν2(c!) + ν2(d!)

= a+ d+ ν2(a!) + ν2(c!) + b+ c+ ν2(b!) + ν2(d!)

= (2k − k − 1) + (2k − k − 1) by Proposition 73

= 2(2k − k − 1).

Proposition 77. (Translation.) Let n = 2k−1. If (i, j) ∈ T(0,n−1,0,n−1), then

M [i, j] + (2k − 1) = M [i+ n, j] = M [i, j + n].

Proof. For 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1, we have by Lemma 70

M [i, j] = ν2(2
ii!2jj!) = ν2((2i)!(2j)!)

M [i+ n, j] = ν2(2
i+n(i+ n)!2jj!) = ν2((2(i+ n))!(2j)!)

M [i, j + n] = ν2(2
ii!2j+n(j + n)!) = ν2((2i)!(2(j + n))!).

Furthermore,

M [i+ n, j] = ν2((2(i+ n))!) + ν2((2j)!)

= ν2((2(i+ 2k−1))!) + ν2((2j)!)

= ν2((2i+ 2k)!) + ν2((2j)!)

= (2k − 1) + ν2((2i)!) + ν2((2j)!) by Lemma 71

= (2k − 1) +M [i, j].

A similar argument can be used to show that M [i, j + n] = 2k − 1 +M [i, j] and to

prove our claim.

Given a value n, we will calculate γ(n) using the following:

(1) If n = 2k − k − 1, for some k, then n is on the diagonal D2k−1−1, and appears

2k−1 times in M .
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(2) If n is a value that appears between the diagonals D2k−1−1 and D2k−1, thus

2k−1 − k < n < 2k − k − 1, then the number of times n appears in M de-

pends on the values of the smaller triangle below D2k−1−1 that is values in

T(0,2k−1−1,0,2k−1−1).

(i) By symmetry (Corollary 76), for each m ∈ T(0,2k−1,0,2k−1) such that n +

m = 2(2k − k − 1), there will be a corresponding n between D2k−1 and

D2k .

(ii) By translation (Corollary 77), for each m ∈ T(0,2k−1−1,0,2k−1−1) such that

m + 2k−1 − 1 = n, there will be two corresponding n; one from the hor-

izontal translation of T(0,2k−1−1,0,2k−1−1), and the other from the vertical

translation.

Proposition 78. We have the following recursive formula for γ(n): γ(0) = 1, γ(1) =

2, γ(2) = 1, γ(3) = 2, γ(4) = 4 and

γ(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2k−1 if n = 2k − k − 1

γ(2(2k − k − 1)− n) if 2k − k − 1 < n < 2k − 1

γ(2(2k − k − 1)− n) + 2γ(n− 2k + 1) if 2k − 1 ≤ n ≤ 2(2k − k − 1)

2γ(n− 2k + 1) if 2(2k − k − 1) < n < 2k+1 − k − 2

where k is the largest integer such that 2k − k − 1 ≤ n.

Proof. We have γ(0) = 1, γ(1) = 2, γ(2) = 1 and γ(3) = 2 by counting in M , which

is partially represented by Table 4.2.

Let k be such that 2k − k − 1 ≤ n < 2k+1 − k − 2. We proceed by induction on

k. Our base case will be k = 3 and we will calculate γ(n) for

23 − 3− 1 ≤ n < 24 − 3− 2

4 ≤ n < 11

Given the formula in the statement we look at four sections of this interval, and show

that the formula works for k = 3
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Interval γ(n)
n = 2k − k − 1 = 4 γ(4) = 23−1 = 4

2k − k − 1 < n < 2k − 1 γ(5) = γ(2(23 − 3− 1)− 5) = γ(8− 5) = γ(3) = 2
4 < n < 7 γ(6) = γ(8− 6) = γ(2) = 1

2k − 1 ≤ n ≤ 2(2k − k − 1) γ(7) = γ(8− 7) + 2γ(7− 8 + 1) = γ(1) + 2γ(0) = 2 + 2
7 ≤ n ≤ 8 γ(8) = γ(8− 8) + 2γ(8− 8 + 1) = γ(0) + 2γ(1) = 5

2(2k − k − 1) < n < 2k+1 − k − 2 γ(9) = 2γ(9− 8 + 1) = 2γ(2) = 2
8 < n < 11 γ(10) = 2γ(10− 8 + 1) = 2γ(3) = 4

Table 4.7: γ(n) for 4 ≤ n < 11

Now suppose the result holds for all n < 2k − k − 1. To prove the formula is

correct, we also need to show that the bounds of the formula are correct. Given the

values n between the diagonals D2k−1−1 and D2k−1 in M , that is, for

2k − k − 1 ≤ n ≤ 2k+1 − k − 2,

we split these into three disjoint regions:

I This region in M will be T(2k,2(2k−1)+1,0,2k−1), which in Table 4.4 corresponds to

the region in red.

II This region in M will be T(0,2k−1,2k,2(2k−1)+1), which in Table 4.4 corresponds to

the region in blue.

III This region in M will be T(0,2(2k−1)+1,0,2(2k−1)+1)\{I, II}, which in Table 4.4

corresponds to the region in black.

Note that if n = 2k − k − 1, then n is on a diagonal and γ(n) = 2k−1 by Propo-

sition 73. We then divide the interval 2k − k − 1 ≤ n < 2k+1 − k − 2 into three

subintervals where we want to show the following.

The values in the interval 2k − k − 1 < n < 2k − 1 will be in region II only.

The values in the interval 2k−1 ≤ n ≤ 2(2k−k−1) will be in regions I, II and III.



39

The values in the interval 2(2k − k − 1) < n < 2k+1 − k − 2 will be in regions I

and III only.

We proceed to prove this by showing that

(i) The elements in the interval I1 : 2
k − k − 1 < n ≤ 2(2k − k − 1) are the only

ones having the reflection property.

(ii) The elements in the interval I2 : 2
k−1 ≤ n < 2k+1 − k − 2 are the only ones

having the translation property.

(i) For n ∈ I1, we want to show that there exist 0 ≤ � < 2k − k − 1 such that

n+ � = 2(2k − k − 1) as in Proposition 76, which gives that

� = (2k+1 − 2k − 2)− n.

For � to be in the allowed interval we need n ≤ 2k+1 − 2k − 2, which gives � = 0.

Since 2k − k − 1 < n, we have that � < 2k − k − 1, which is positive for k ≥ 3. This

completes the proof of (i).

(ii) For n ∈ I2, we want to show that n has the translation property as in

Proposition 77. That is, we want to show that n− (2k − 1) produces a value in the

triangle T(0,2k−1,0,2k−1). In this case we need

0 ≤ n− (2k − 1) < 2k − k − 1,

2k − 1 ≤ n < 2k+1 − k − 2,

which is exactly I2, and it proves (ii).

Combining these bounds we get that, on the interval 2k −k− 1 < n < 2k − 1, the

values only have the reflection property and by induction γ(n) = γ(2(2k−k−1)−n).

On the interval 2k−1 ≤ n ≤ 2(2k−k−1), the values have both the reflection and

translation property thus, by induction γ(n) = γ(2(2k+1−k−2)−n)+2γ(n−2k+1).
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On the interval 2(2k − k − 1) < n < 2k+1 − k − 2, the values only have the

translation property and by induction γ(n) = 2γ(n− 2k + 1)).

Note: When writing n as n =
∑

ni2
i, k described above is either the largest i in

this expansion, or it is i+ 1, i.e. k = �log2 n� or k = �log2 n�+ 1.

Implementing the recursive formula from Proposition 78 allows us to quickly

calculate γ(n). The first values in the sequence are:

γ(n)
n and column index 0 1 2 3 4 5 6 7 8 9

0 ≤ n < 10 1 2 1 2 4 2 1 4 5 2
10 ≤ n < 20 4 8 4 2 5 6 5 4 8 10
20 ≤ n < 30 5 4 9 10 4 8 16 8 4 10
30 ≤ n < 40 9 6 9 12 12 12 9 8 13 12
40 ≤ n < 50 8 16 20 10 9 14 13 12 12 18
50 ≤ n < 60 21 12 9 18 20 8 16 32 16 8
60 ≤ n < 70 20 18 9 14 25 20 16 20 17 16
70 ≤ n < 80 17 20 24 24 24 20 17 18 21 22
80 ≤ n < 90 20 28 29 16 17 28 24 16 32 40
90 ≤ n < 100 20 18 29 22 17 28 32 28 29 24

Table 4.8: γ(n) for 0 ≤ n < 100

Note the sequence (γ(n)) cannot be found on the On-Line Encyclopedia of Integer

Sequences [OEIS], it will be added to the website and is currently waiting for the

approval of an Editor-in-Chief.

4.1 Why the Seven?

If we multiply γ(n) by 7 we obtain the following sequence

7, 14, 7, 14, 28, 14, 7, 28, 35, 14, 28, 56, 28, . . .

which is a 2-sequence that will appear in Matrix 5.4 in Section 5.2, and will be of ma-

jor interest to us, since it is related to the 2-sequence of homogeneous 3-variable IVPs.
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The columns of Table 5.4 stabilize to 7 times the 2-sequence of Intm((1 + 2Z)2,Z),

showing a connection between Intm((1 + 2Z)2,Z) and Intm(Z3,Z).

The table M is for Intm((1 + 2Z)2,Z) � Intm((1 + 2Z)3,Z), hence evaluated at

triples that have only odd values, i.e., that are congruent to (1, 1, 1) (mod 2). There

are six other triples of interest, namely

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),

since for a homogeneous polynomial of degree m, we can always divide by 2m when

evaluating at (0, 0, 0) (mod 2). The seven basis elements arising from one element in

Intm((1 + 2Z)3,Z) possibly comes from deciding from which triple the IVP is built,

and the inconsistent “diagonal” might be explained by the lack of polynomials with

a certain denominator at a given triple. We will generalize the case of evaluating at

odd variables in Chapter 6.



Chapter 5

Computational Data and the Smith Normal Form

In this chapter we will develop computational methods to use our knowledge of 3-

variable IVPs of degree less than or equal to m, to obtain bases for the homogenous

case. We will use a tool from linear algebra, namely the Smith normal form of a

matrix, which will be a matrix that satisfies a divisibility criterion. This will allow

us, for a given degree m, to count the number of elements with a certain denominator

and to produce basis elements. We end the chapter by discussing these results.

5.1 Algebraic Background: The Smith Normal Form

For different parts of this project we will use the Smith normal form of a matrix.

In this section we recall the basic definitions and theorems, first over Z, then over

general rings, to ensure that the Smith normal form will exist over the rings we are

working with. For the following let R be a commutative ring.

Definition 79. [Bro93, Def. 15.6] Two m × n matrices A and B over R are said

to be equivalent, which we will denote A ≈ B, if B can be obtained by performing

invertible elementary row and column operations, invertible with respect to the ring

R, on A.

Definition 80. [Bro93, Def. 15.7] A commutative ring R is called an elementary

divisor ring if for all m,n ≥ 1 and for every m× n matrix A over R, there exists a

diagonal matrix diag(d1, . . . , dr) of size m× n over R such that

(a) A ≈ diag(d1, . . . , dr), and

(b) di|di+1 for all i = 1, . . . , r − 1. (Here r = min{m,n}.)

Definition 81. [Nor12, Def. 1.6] Let D be an m× n matrix over Z such that

42
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(a) the (i, j)-entries in D are zero for i = j, that is, D is a diagonal matrix,

(b) each (i, i)-entry di in D is non-negative, and

(c) for each i with 1 ≤ i < min{m,n} there is an integer qi with di+1 = qidi, that

is, di|di+1.

Then D is said to be in Smith normal form and we write D = diag(d1, d2, . . . , dmin{m,n}).

In general the Smith normal form for an m× n matrix looks like

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2
. . .

dr

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that d1 is the gcd of the st entries in D. Also d1d2 is the gcd of the

2-minors of D (the determinants of the 2× 2 sub-matrices of D).

Theorem 82. [Nor12, Th. 1.11] (The existence of the Smith normal form over Z)

Every m× n matrix A over Z can be reduced to an s× t matrix D in Smith normal

form using invertible elementary row and column operations over Z. For any matrix

A of size m× n over Z we can obtain A = UDV , where U is of size m×m and V

is of size n×n. Moreover, since U , V are obtained from elementary row operations,

they are unimodular.

The previous theorem guarantees a Smith normal form for matrices over Z. We

need this for other rings, also, since we will be interested, for example, in Z/(p) for

this project.

Definition 83. [Bro93, Def. 15.1] A 1 × 2 matrix
[
a b

]
∈ M1×2(R) admits a

diagonal reduction if
[
a b

]
≈
[
d 0

]
over R, for some d ∈ R.
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Definition 84. [Bro93, 2, page 181] A ring R over which every 1× 2 matrix admits

a diagonal reduction is called a Hermite ring.

Calculations later in this chapter and in further chapters will be over Z/(2k), for

k ≥ 1. Hence it is useful to have that any row matrix [a b], where a = 0, b ∈ Z/(2k),

we can always multiply by the following invertible matrix

[
a b

] [1 b

0 −a

]
=
[
a 0

]

and if a = 0 one can multiply by

[
0 1

1 0

]
. Thus Z/(2k) is a Hermite ring.

Theorem 85. [Bro93, Th. 15.8] Any Noetherian, Hermite ring is an elementary

divisor ring.

Theorem 86. [Bro93, Th. 15.9] Any principal ideal ring (PIR) is an elementary

divisor ring.

Definition 87. [Bro93, Def. 15.10] Let A be an m × n matrix over R. A matrix

in Smith normal form D = diag(d1, . . . , dr) of size m × n over R is called a Smith

normal form of A if A ≈ D and d1|d2| · · · |dr in R.

Recall that two elements a, b of a PIR are said to be associates if a = ub and u

is a unit in the PIR, in which case we write a ∼ b.

Theorem 88. [Bro93, Th. 15.24] (The existence of the Smith normal form.) Let R be

a PIR. Then R is an elementary divisor ring. Furthermore, if D1 = diag(d1, . . . , dr)

and D2 = diag(s1, . . . , sr) are two Smith normal forms of A, then di ∼ si for all

i = 1, . . . , r.

Since the Smith normal form can be obtained through elementary row operations,

we can write for an m×n matrix A, matrix S = UAV where S is also of size m×n,

U is of size m × m and V is of size n × n. Note that both U and V are invertible

over R.
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The results above hold for PIRs hence for Z/(2k), which will be needed for Propo-

sition 126 in Chapter 7. Theorem 89 below is for the stricter case of PIDs, where we

cannot have zero divisors but is sufficient to prove Proposition 90.

Theorem 89. [DF04, 12.1 Th. 4] Let R be a principal ideal domain, let M be a free

R-module of finite rank n and let N be a submodule of M . Then

(1) N is free of rank m, m ≤ n and

(2) there exists a basis y1, y2, . . . , yn of M so that a1y1, a2y2, . . . ., amym is a basis

of N where a1, a2, . . . , am are non-zero elements of R with divisibility relations

a1 | a2 | · · · | am.

Calculating the Smith normal form, will allow us to find the ai’s such that

a1 | a2 | · · · | am, in the previous theorem. Note that since m ≤ n, m = r in

the earlier definitions and theorems.

Proposition 90. For M and N as above, if {zi} is a basis of M , {xi} is a basis

of N , A is the matrix expressing {xi} in terms of {zi}, and S = UAV is the Smith

normal form of A, then UA[z1, . . . , zn]
T is the basis {yi} as in Theorem 89, and the

diagonal elements of S are the ai’s in Theorem 89.

Proof. Suppose we know that M has for basis {z1, z2, . . . , zn} and N has for basis

{x1, x2, . . . , xm}. Since N is a submodule of M , each xj can be written as an R-linear

combination of the zi’s. Let A be an m × n matrix that stores in each row j the

coefficients of the zi’s.

Taking the Smith normal form of A yields S = UAV , where S is diagonal such

that di | di+1 for di = S[i, i]. Since U and V are unimodular matrices, S is unique.

More precisely, we get the following commutative diagram:
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N
A �� M

{xi}
V −1

��

{zi}
U
��

N

V

��

S �� M

{x′
i} {yi}

in which the maps represent matrix multiplication. We have that we can write

the basis elements of N as linear combinations of the ones of M , by doing the matrix

multiplication

A

⎡
⎢⎢⎢⎢⎢⎣
z1

z2
...

zn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∑
a1jzj∑
a2jzj
...∑
amjzj

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
x1

x2

...

xm

⎤
⎥⎥⎥⎥⎥⎦ .

Now if multiply by U as well:

UA

⎡
⎢⎢⎢⎢⎢⎣
z1

z2
...

zn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∑
u1jzj∑
u2jzj
...∑
umjzj

⎤
⎥⎥⎥⎥⎥⎦

we additionally get that the coefficients uij respect the same divisibility properties

as the diagonal of S. Hence we get a representation of the basis elements of N using

the ones of M respecting the desired divisibility criteria from Theorem 89.

Since UA = SV −1, the di’s are the invariant factors.

5.2 Computational Results for p = 2

We will look at the case n = 3 here and present some computational results.

Since the case n = 2 was described in [JP11] we often use it to test our meth-

ods. We will make great use of the fact that a basis for Int(Z3,Z) is given by{(
x
r

)(
y
s

)(
z
t

) ∣∣∣∣ r, s, t ≥ 0

}
as seen in Corollary 39. We will also use the fact that for
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the Z-module of polynomials in Int3(Z
3,Z), that is, the polynomials of degree less

than or equal to 3, we get an upper bound on indices, that is Int3(Z
3,Z), is generated

by

{(
x
r

)(
y
s

)(
z
t

) ∣∣∣∣ 0 ≤ r + s+ t ≤ 3

}
.

We have that the Z-module Intm(Z3,Z) of polynomials in Int(Z3,Z) that are

homogeneous of degree m is a proper submodule, hence is a free Z-module.

Definition 91. Let Zm[x, y, z] denote the Z-module of homogeneous polynomials of

degree m with integer coefficients.

Zm[x, y, z] is a submodule of Intm(Z3,Z), and we have the following inclusions:

Zm[x, y, z] ⊆ Intm(Z3,Z) ⊆ Intm(Z
3,Z) ⊆ Int(Z3,Z).

We have that Zm[x, y, z] has for basis the monomials {xiyjzk | i + j + k = m}.
Furthermore Intm(Z3,Z) is a pure submodule of Int(Z3,Z), i.e. if f ∈ Intm(Z3,Z)

is such that f = kg with k ∈ Z, g ∈ Int(Z3,Z) then g ∈ Intm(Z3,Z) . Thus, the

invariant factors of Zm[x, y, z] in Intm(Z3,Z) are the same as those in Int(Z3,Z).

Proposition 92. [GKP98, 6.1, page 262] For any i the polynomial xi can be ex-

pressed in terms of the polynomials
(
x
r

)
0≤r≤i

by

xi =
i∑

r=0

r!S(i, r)

(
x

r

)
,

where S(i, r) are the Stirling numbers of the second kind. These are defined by

S(i, r) =
1

r!

r∑
j=0

(−1)r−j

(
k

j

)
jn.

By writing each of x, y and z using the above proposition and multiplying them,

we obtain:

Corollary 93. The monomials xiyjzk have the expression

xiyjzk =
∑

r!s!t!S(i, r)S(j, s)S(k, t)

(
x

r

)(
y

s

)(
z

t

)
,
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where the sum ranges over all (r, s, t) such that r + s+ t ≤ m = i+ j + k.

Here is the information about bases we have so far:

Z-modules Basis

Zm[x, y, z] {xiyjzk | i+ j + k = m}

Intm(Z3,Z) ???

Intm(Z
3,Z)

{(
x
r

)(
y
s

)(
z
t

) | r + s+ t ≤ m
}

Table 5.1: What We Know About Bases

We are looking for bases for the middle row. For a given m we want to find d ∈ Z

and {aijk} ⊆ Z such that for f ∈ Intm(Z3,Z), we have

f =
∑

aijkx
iyjzk

and f
d
∈ Int(Z3,Z).

By Theorem 89, we can find a basis for Intm(Z3,Z) written as scalars respecting a

divisibility condition times a basis for Intm(Z
3,Z). With the previous formula using

Stirling numbers we can represent the basis elements of Zm[x, y, z] using the basis

elements of Intm(Z
3,Z), which allows us to go from one basis to another.

This gives a linear system expressing the basis elements of Zm[x, y, z] in terms of

those of Intm(Z3,Z). To do so we will express xiyjzk as a vector of coefficients of(
x
r

)(
y
s

)(
z
t

)
. That is for a given m, we get a matrix of coefficients for each row repre-

sents a triple such that i+ j + k = m. Prior to building these matrix of coefficients

we define the following ordering.

Definition 94. Given all monomials xiyjzk such that i+ j + k = m, the decreasing

lexicographical ordering of these according to the triples (i, j, k) is obtained by first

ordering them by decreasing order of k. Then, for a fixed value of k, the triples
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are ordered by decreasing order of j. Lastly, for a fixed j, the triples are ordered by

decreasing order of i.

For example, in the case m = 3, the monomials in decreasing lexicographical

order are

z3, yz2, xz2, y2z, xyz, x2z, y3, xy2, x2y, x3

1 2 3 4 5 6 7 8 9 10

(003) (012) (102) (021) (111) (201) (030) (120) (210) (300) .

Using decreasing lexicographical order, we can order the triples (r, s, t), such that

r + s + t ≤ m in the following way, first order the triples in increasing order of

m′ such that r + s + t = m′. Then, for a fixed m′ order the triples in decreasing

lexicographical order. For m = 3 the ordered triples (r, s, t) are

(000) (001) (010) (100) (002) (011) (101) (020) (110) (200)

(003) (012) (102) (021) (111) (201) (030) (120) (210) (300) .

For 1 ≤ m ≤ 22 and p = 2, in the case of three variables we have a MAPLE

program which returns information about the denominators, d, of the basis elements

of Intm(Z3,Z).

First we create an (m+1)(m+2)
2

× (m+1)(m+2)(m+3)
6

matrix, where (m+1)(m+2)
2

is the

number of monomials such that i+j+k = m, and is therefore the rank of Zm[x, y, z].

Also (m+1)(m+2)(m+3)
6

is the number of monomials such that r+ s+ t ≤ m, hence the

rank of Intm(Z
3,Z). We order both bases as described above. Our matrix M has for

entries

M [a, b] = i!j!k!S(i, r)S(j, s)S(k, t),

which are the coefficients of the monomials xiyjzk, in the representation above,

(Corollary 93), for all (r, s, t) ≤ (i, j, k), ordered as described above, where S(�, u) are

the Stirling numbers of the second kind. Each row of M represents a triple (i, j, k)

such that i + j + k = m, and these are in decreasing lexicographical order as in

Definition 94. Each column of M represents a triple (r, s, t) such that r+ s+ t ≤ m,



50

where the columns are ordered as described above.

Note that indices (a, b) range through 1 ≤ a ≤ (m+1)(m+2)
2

and 1 ≤ b ≤ (m+1)(m+2)(m+3)
6

,

but there is no direct formula between a and (i, j, k), nor b and (r, s, t). One must

use the above ordering, and example of such can be found after Theorem 95.

The matrix M allows one to write a polynomial f ∈ Zm[x, y, z] in terms of the

basis
{(

x
r

)(
y
s

)(
z
t

)}
, where we want d to divide everything in that vector in order to

obtain a homogeneous IVP.

Theorem 95. For a given degree m, let M be the (m+1)(m+2)
2

× (m+1)(m+2)(m+3)
6

ma-

trix expressing the monomials xiyjzk, for i+ j+ k = m in terms of the multivariable

binomial polynomials. Let S = UMV the Smith normal form of M with diagonal

elements si = S[i, i]. If B the vector of monomials of Zm[x, y, z] in decreasing lexico-

graphical order and {ui} is the set obtained from UB, then the set
{

1
si
ui

}
is a basis

of Intm(Z3,Z).

Proof. The Smith normal form of M will be of the form S = UMV , where S is diag-

onal and U, V have determinant 1 and are therefore invertible over Z. We know we

can calculate the Smith normal form of M by Theorem 88 and given the divisibility

condition that the Smith normal form respects in Definition 81, we can use S, U and

V to obtain a basis as described in Theorem 89 and Proposition 90.

All three matrices S, U and V have integer coefficients. We use the notation

S = [si,i] to denote the diagonal elements. We have U−1S = MV , where the elements

of the i-th column of U−1S are divisible by si,i. We use U−1S = MV to go from one

basis to another as illustrated in the following commutative square:

Zm[x, y, z] M �� Intm(Z
3)

U
��

Zm[x, y, z]

V

��

S �� Intm(Z
3)

and V −1, U map the given bases for Zm[x, y, z], and Intm(Z
3) to bases with respect
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to which the linear transformation represented by M is diagonal. If the image of the

basis for Zm[x, y, z] under the linear transformation represented by V −1 is {fi}, then
fi
si,i

is a homogeneous element of Intm(Z
3) and the polynomials

{
fi
si,i

}
form a basis

for Intm(Z3), with 1 ≤ i ≤ (m+1)(m+2)
2

.

By taking B a vector of monomials that form a basis of Zm[x, y, z] in lexicograph-

ical order, the product UB written as the set {ui}, gives that
{

1
si
ui

}
is a basis for

Intm(Z3,Z).

Before illustrating this method, we look into data from the two-variable case, in

order to compare it to the three variable case. Here is a table returning information

about the denominators of the basis elements of homogeneous IVPs in 2-variables:
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k, for Denominators of size 2k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
eg
re
e
m

1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0
7 3 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0
8 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0
9 3 3 0 3 1 0 0 0 0 0 0 0 0 0 0 0
10 3 3 0 3 2 0 0 0 0 0 0 0 0 0 0 0
11 3 3 0 3 3 0 0 0 0 0 0 0 0 0 0 0
12 3 3 0 3 3 0 0 1 0 0 0 0 0 0 0 0
13 3 3 0 3 3 0 0 2 0 0 0 0 0 0 0 0
14 3 3 0 3 3 0 0 3 0 0 0 0 0 0 0 0
15 3 3 0 3 3 0 0 3 1 0 0 0 0 0 0 0
16 3 3 0 3 3 0 0 3 2 0 0 0 0 0 0 0
17 3 3 0 3 3 0 0 3 3 0 0 0 0 0 0 0
18 3 3 0 3 3 0 0 3 3 0 1 0 0 0 0 0
19 3 3 0 3 3 0 0 3 3 0 2 0 0 0 0 0
20 3 3 0 3 3 0 0 3 3 0 3 0 0 0 0 0
21 3 3 0 3 3 0 0 3 3 0 3 1 0 0 0 0
22 3 3 0 3 3 0 0 3 3 0 3 2 0 0 0 0

Table 5.2: Number of Denominators for Intm(Z2,Z)

We illustrate our method with the example m = 3. First we display for each

entry in MT , the triples (i, j, k) and (r, s, t) that are being represented.
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Triples (i, j, k) corresponding to a certain a
1 2 3 4 5 6 7 8 9 10

T
ri
p
le
s
(r
,s
,t
)
co
rr
es
p
on

d
in
g
to

a
ce
rt
ai
n
b

1 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (000) (000) (000) (000) (000) (000) (000) (000) (000) (000)

2 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001)

3 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (010) (010) (010) (010) (010) (010) (010) (010) (010) (010)

4 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)

5 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (002) (002) (002) (002) (002) (002) (002) (002) (002) (002)

6 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (011) (011) (011) (011) (011) (011) (011) (011) (011) (011)

7 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (101) (101) (101) (101) (101) (101) (101) (101) (101) (101)

8 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (020) (020) (020) (020) (020) (020) (020) (020) (020) (020)

9 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110)

10 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200)

11 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (003) (003) (003) (003) (003) (003) (003) (003) (003) (003)

12 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (012) (012) (012) (012) (012) (012) (012) (012) (012) (012)

13 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (102) (102) (102) (102) (102) (102) (102) (102) (102) (102)

14 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (021) (021) (021) (021) (021) (021) (021) (021) (021) (021)

15 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111)

16 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (201) (201) (201) (201) (201) (201) (201) (201) (201) (201)

17 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (030) (030) (030) (030) (030) (030) (030) (030) (030) (030)

18 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (120) (120) (120) (120) (120) (120) (120) (120) (120) (120)

19 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (210) (210) (210) (210) (210) (210) (210) (210) (210) (210)

20 (i, j, k) (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r, s, t) (300) (300) (300) (300) (300) (300) (300) (300) (300) (300)

Table 5.3: Decreasing Lexicographical Ordering when m = 3
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The matrix of Stirling coefficients M , where the indices (i, j, k) and (r, s, t) are

as in the transpose of Table 5.3, and the Smith normal form S of M are as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 6 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 1 0 0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0

0 0 0 1 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By looking at the diagonal of S we see that the basis for m = 3 will have seven

elements such that 2 is not present in the denominators and three such that 21 is

the highest power of 2 in the denominator. Since the degree is low, we can find the

basis by taking a linearly independent set that satisfies the above:

{
xyz,

xy(x− y)

2
,
xz(x− z)

2
,
yz(y − z)

2
, x2(x− y), x2(x− z), y2(y − x), y2(y − z), z2(z − x), z3

}
.
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This set was obtained by using 2-subsets of {x, y, z} and replacing these in the 2-

variable basis of homogeneous IVP, which has been described in Section 2.3.2. This

method will not be of much use for bigger m, since we will not be capable of using

the case 2-variables only.

Since m = 3, we have the following vector of monomials:

B =
[
z3 yz2 xz2 y2z xyz x2z y3 xy2 x2y x3

]T
,

and the matrix of coefficients is

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1 1 0

0 0 1 0 −2 −1 0 −1 1 0

0 −1 3 1 −4 −3 0 −1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The product U ·B will produce polynomials such that fi
si,i

are a basis for homogeneous

IVPs in the case m = 3 we get:

{
x3, y3, z3, x2y, x2z, xyz,

y(yz + z2)

2
,
x(x2 + xz + yz + y)

2
,
x2y + x2z + xy2 + xz2 + y2z + yz2

2

}

Unfortunately, the polynomials from the bases obtained in this way tend to not

factor. In the next chapters we will try to find a solution to this. Nevertheless, the

matrix S gives us a way of counting the number of elements with a particular de-

nominator in a basis. We conclude this chapter with computational results obtained

this way.
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We tabulate these results as follows. In the next part of the MAPLE program,

we look at the elements on the diagonal of S, take their p-adic valuation, and store

this in a list L. For each m, L is a list of length (m+1)(m+2)
2

which contains the p-adic

norms of the denominator in the basis. Then a list of lists LL is created using all the

L’s we obtained at each iteration. Then a second matrix of dimension n× n is cre-

ated using LL. The entries from this matrix are obtained by comparing the column

index j and the values in LL[i], where i is the row index. We loop through LL[i]

and count how many values are equal to j. Thus the (i, j)-th entry of the matrix is

the number of basis element for Inti(Z3,Z) whose denominator has 2-adic valuation j.

Doing this for the cases 1 ≤ m ≤ 22, we obtain after removing all columns of

zeros the following 22×15 table, where each degree m is represented by the rows, the

entry am,� represents the number of elements with denominator of 2-adic valuation

�, for 0 ≤ �:
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k, for Denominators of Size 2k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
D
eg
re
e
m

1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0
5 7 14 0 0 0 0 0 0 0 0 0 0 0 0 0
6 7 14 4 3 0 0 0 0 0 0 0 0 0 0 0
7 7 14 6 9 0 0 0 0 0 0 0 0 0 0 0
8 7 14 7 14 3 0 0 0 0 0 0 0 0 0 0
9 7 14 7 14 13 0 0 0 0 0 0 0 0 0 0
10 7 14 7 14 21 3 0 0 0 0 0 0 0 0 0
11 7 14 7 14 28 8 0 0 0 0 0 0 0 0 0
12 7 14 7 14 28 14 4 3 0 0 0 0 0 0 0
13 7 14 7 14 28 14 6 15 0 0 0 0 0 0 0
14 7 14 7 14 28 14 7 25 3 1 0 0 0 0 0
15 7 14 7 14 28 14 7 28 14 3 0 0 0 0 0
16 7 14 7 14 28 14 7 28 25 6 3 0 0 0 0
17 7 14 7 14 28 14 7 28 34 9 9 0 0 0 0
18 7 14 7 14 28 14 7 28 35 14 14 8 0 0 0
19 7 14 7 14 28 14 7 28 35 14 21 21 0 0 0
20 7 14 7 14 28 14 7 28 35 14 28 28 7 0 0
21 7 14 7 14 28 14 7 28 35 14 28 42 6 8 1
22 7 14 7 14 28 14 7 28 35 14 28 49 14 14 3

Table 5.4: Number of Denominators for Intm(Z3,Z) at p = 2

Note that 7 = 22 + 21 + 1 seems to divide the limit of every column. This table

will be extended in Table 6.1.

Given a certain column index j and row index i, if ai,j has the same value as the

limit of its column we will refer to the corresponding basis elements as being in the

stable part of the matrix. If not, the basis elements are considered unstable. We use

“diagonal” to refer to the set of first non-zero elements in each column.

Up to degree 7, the 2-variable and the 3-variable case take on the same denomina-

tors in the basis elements. The value 3 on the diagonal of table 5.4 can be interpreted

as coming from the 2-variable case, and we get three elements since we can pick 2-

variables out of three in three different ways. For degree 8, things diverge from the
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2-variable case where we previously had that the highest power of two that one can

get in the denominator is 23 and with 3-variable one can obtain a 24. These basis

elements with larger denominator need to be created using all 3 variables. Another

interesting case to point out from this matrix is degree 14. This is the first instance

where we get a 1 on the diagonal, so once again the case of 2-variables will not be

helpful.

Using Table 5.2 we can calculate how many basis elements from the 3-variable

case are actually obtained from the 2-variable case. This is the previous table with

entries multiplied by three, which is the number subsets of 2 variables from 3 variables

:
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k, for Denominators of Size 2k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
eg
re
e
m

1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 9 9 0 3 0 0 0 0 0 0 0 0 0 0 0 0
7 9 9 0 6 0 0 0 0 0 0 0 0 0 0 0 0
8 9 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0
9 9 9 0 9 3 0 0 0 0 0 0 0 0 0 0 0
10 9 9 0 9 6 0 0 0 0 0 0 0 0 0 0 0
11 9 9 0 9 9 0 0 0 0 0 0 0 0 0 0 0
12 9 9 0 9 9 0 0 3 0 0 0 0 0 0 0 0
13 9 9 0 9 9 0 0 6 0 0 0 0 0 0 0 0
14 9 9 0 9 9 0 0 9 0 0 0 0 0 0 0 0
15 9 9 0 9 9 0 0 9 3 0 0 0 0 0 0 0
16 9 9 0 9 9 0 0 9 6 0 0 0 0 0 0 0
17 9 9 0 9 9 0 0 9 9 0 0 0 0 0 0 0
18 9 9 0 9 9 0 0 9 9 0 3 0 0 0 0 0
19 9 9 0 9 9 0 0 9 9 0 6 0 0 0 0 0
20 9 9 0 9 9 0 0 9 9 0 9 0 0 0 0 0
21 9 9 0 9 9 0 0 9 9 0 9 3 0 0 0 0
22 9 9 0 9 9 0 0 9 9 0 9 6 0 0 0 0

Table 5.5: Number of Denominators in Intm(Z
3,Z) from Intm(Z2,Z)

The following table lets us know how many basis elements from the 3-variable

case are obtained using all three variables :
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k, for Denominators of Size 2k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D
eg
re
e
m

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 5 6 3 0 0 0 0 0 0 0 0 0 0 0 0
8 1 5 7 8 0 0 0 0 0 0 0 0 0 0 0 0
9 1 5 7 5 10 0 0 0 0 0 0 0 0 0 0 0
10 1 5 7 5 15 3 0 0 0 0 0 0 0 0 0 0
11 1 5 7 5 19 8 0 0 0 0 0 0 0 0 0 0
12 1 5 7 5 19 14 4 0 0 0 0 0 0 0 0 0
13 1 5 7 5 19 14 6 9 0 0 0 0 0 0 0 0
14 1 5 7 5 19 14 7 16 3 1 0 0 0 0 0 0
15 1 5 7 5 19 14 7 19 11 3 0 0 0 0 0 0
16 1 5 7 5 19 14 7 19 19 6 3 0 0 0 0 0
17 1 5 7 5 19 14 7 19 25 9 9 0 0 0 0 0
18 1 5 7 5 19 14 7 19 36 14 11 8 0 0 0 0
19 1 5 7 5 19 14 7 19 36 14 15 21 0 0 0 0
20 1 5 7 5 19 14 7 19 36 14 19 28 7 0 0 0
21 1 5 7 5 19 14 7 19 36 14 19 39 6 8 1 0
22 1 5 7 5 19 14 7 19 36 14 19 43 14 14 3 0

Table 5.6: Number of Denominators in Intm(Z3,Z) that Use All 3 Variables
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5.2.1 A Basis When m = 4

Using Corollary 39 we obtain the following basis elements for Int4(Z
3,Z), that

are of degree at least 4 and with denominator at least 2:

{
x(x− 1)(x− 2)(x− 3)

8
,
xy(x− 1)(x− 2)

2
,
xz(x− 1)(x− 2)

2
,
xy(x− 1)(y − 1)

4
,

xyz(x− 1)

2
,
xz(x− 1)(z − 1)

4
,
xy(y − 1)(y − 2)

2
,
xyz(y − 1)

2
,
xyz(z − 1)

2
,

xz(z − 1)(z − 2)

2
,
y(y − 1)(y − 2)(y − 3)

8
,
yz(y − 1)(y − 2)

2
,
xz(y − 1)(z − 1)

4
,

yz(z − 1)(z − 2)

2
,
z(z − 1)(z − 2)(z − 3)

8

}
.

The basis for Z4[x, y, z] is:

{
x4, x3y, x3z, x2y2, x2yz, x2z2, xy3, xy2z, xyz2, xz3, y4, y3z, y2z2, xz3, z4

}
.

By the above Table 5.4, the basis of Int4(Z3,Z(2)) has seven elements for which no

power of two is in the denominator, and eight such that 21 is the highest power of two

present in the denominator. The following is a linearly independent set respecting

the previous, with only homogeneous terms of total degree 4:

{
x2yz,

x2y(x− y)

2
,
xy2(x− y)

2
,
x2z(x− z)

2
,
xz2(x− z)

2
,
y2z(y − z)

2
,
yz2(y − z)

2
,

x3(x− y), x3(x− z), y3(y − x), y3(y − z), z3(z − x),
x2yz − xy2z

2
,
x2yz − xyz2

2
, z4

}
.



Chapter 6

Intersection of Lattices and the Hermite Normal Form

The results from the previous chapter produced homogeneous IVP bases in a re-

stricted range. We would like to have more efficient computations in order to obtain

bases in higher degrees and IVPs with fewer terms, and to better understand them.

The calculations in this chapter will achieve part of this. We use our work from

Chapter 4 and take the intersection of the three cases, where one of the variables

must evaluate at an odd integer. The Hermite normal form of a matrix will be the

tool we use to obtain these intersections.

Since the Int(S,Z), for S ⊆ Z, are Z-modules, we can treat them as lattices and

use existing knowledge about these to find more details for the bases of homogeneous

IVPs.

Definition 96. [Mic16a, Def. 1] A lattice is a discrete additive subgroup of Rm,

i.e., it is a subset Λ ⊆ Rn satisfying the following properties:

(i) Λ is closed under addition and subtraction,

(ii) there is an ε > 0 such that any two distinct lattice points x = y ∈ Λ are at

distance at least ||x− y|| ≥ ε.

Above is the general definition of a lattice Λ, a useful computational definition

of lattices is by using the span to linearly independent vectors, where the notation

L will be used.

Definition 97. [GM02, Ch.1, 1] Let Rm be m-dimensional Euclidean space. A

lattice in Rm is the set

L(b1, . . . ,bn) =

{
n∑

i=1

xibi

∣∣∣∣ xi ∈ Z

}

62
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of all integral combinations of n R-linearly independent vectors b1, . . . ,bn. The

integers n and m are called the rank and dimension, respectively of the lattice.

We can use the above definition to get a definition using matrices, which will

facilitate computations.

Definition 98. [GM02, Ch.1, 1] The sequence of vectors b1, . . . ,bn in Definition 97

is called a lattice basis, which we represent as a matrix

B = [b1, . . . ,bn] ∈ Rm×n

with basis vectors as columns. We will write our lattice as

L(B) = {Bx | x ∈ Zn} .

Definition 99. [Mic16b, Def. 3] The dual of a lattice Λ is the set Λ∗ of all vectors

x ∈ span(Λ) such that 〈x,y〉 is an integer for all y ∈ Λ,where 〈x,y〉 ∈ R is the usual

inner product of x and y in Rm.

Proposition 100. [Mic16b, Th. 2] The dual of a lattice with basis B is a lattice

with basis D = BG−1 where G = BTB is the Gram matrix of B.

Proposition 101. [Sch86, 4.4] If a lattice Λ is generated by the columns of the

invertible matrix B, then Λ∗ is the lattice generated by the rows of B−1.

Proof. The lattice generated by the rows of B−1 is contained in Λ∗ as each row of

B−1 is contained in Λ∗, since B−1B = I. Conversely, if z ∈ Λ∗, then zB is integral.

Hence z = (zB)B−1 is an integral combination of the rows of B−1.

The dual of a basis and the Hermite echelon form defined below will be useful in

finding the intersection of lattices.

Definition 102. [GM02, Def. 8.2] A matrix with linearly independent columns

B = [b1, . . . ,bn] ∈ Rm×n is in Hermite normal form (HNF) if and only if

(i) There exists 1 ≤ i1 ≤ . . . ≤ ih ≤ m such that if bi,j = 0, then j < h and i ≥ ij.
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(ii) For all k > j, 0 ≤ bij ,k < bij ,j, i.e., all elements at rows ij are reduced modulo

bij ,j.

The HNF of a matrix is an analogue of the reduced normal form of a matrix over

Z. We will denote the HNF of a matrix A by HNF (A).

Proposition 103. [GM02, Ch.1, 2.2] If L(B) and L(B′) are lattices with bases B

and B′, then HNF ([B|B′]) is a basis of L(B) ∪ L(B′).

Proof. The matrix [B|B′] generates the lattice L(B) ∪ L(B′), but there might be

linear dependence between the columns of B and of B′. HNF ([B|B′]) produces a

matrix with linearly independent columns with the same span.

Proposition 104. [GM02, Ch.1, 2.2] Given lattices L(B) and L(B′) with respective

duals L(D) and L(D′), the lattice generated by HNF ([D|D′]) is the dual of L(B) ∩
L(B′).

Proof. Take x ∈ span(L(B) ∩ L(B′)); we want to show that 〈x,y〉 ∈ Z for all

y ∈ span(L(HNF [D|D′])).

We know that HNF ([D|D′]) generates the lattice L(D) ∪ L(D′) by Proposi-

tion 103. Hence for all y ∈ span(L(HNF [D|D′])) we have

〈x1,y〉 ∈ Z,

〈x2,y〉 ∈ Z

for all x1 ∈ span(L(D)) and x2 ∈ span(L(D′)), since L(HNF [D|D′]) is the lattice

generated by the union of L(D) and L(D′). Thus 〈x,y〉 ∈ Z for all y ∈ span(L(B)∩
L(B′)).

By using the above, we get the following procedure for finding the basis of the

intersection of two lattices L(B) and L(B′).

1. Calculate D = B(BTB)−1 and D′ = B′(B′TB′)−1.

2. Calculate HNF ([D|D′]).



65

3. Take the dual of HNF ([D|D′]), that is,

H ′ = HNF ([D|D′])(HNF ([D|D′])THNF ([D|D′]))−1.

H ′ is the basis of L(B) ∩ L(B′).

Corollary 105. Given n bases B1, B2, . . . , Bn for the lattices L(B1),L(B2), . . . ,L(Bn)

with corresponding dual lattices L(D1),L(D2), . . . ,L(Dn), then the dual of L(B1) ∩
L(B2) ∩ · · · ∩ L(Bn) is L([D1|D2| · · · |Dn]).

Proof. We prove the claim by induction, the base case being Proposition 104. Sup-

pose the basis of the dual of L(B1) ∩L(B2) ∩ · · · ∩ L(Bk) is L([D1|D2| · · · |Dk]). We

want the dual of

L(B1) ∩ L(B2) ∩ · · · ∩ L(Bk) ∩ L(Bk+1) = (L(B1) ∩ L(B2) ∩ · · · ∩ L(Bk)) ∩ L(Bk+1)

which by Proposition 104 is

L([[D1|D2| · · · |Dk]|Dk+1]) = L([D1|D2| · · · |Dk|Dk+1]).

This means that the above process can be generalized to n lattices.

6.1 The 2-Variable Case

Since we know what to expect in the 2-variable case, we first use this technique for

that case, and verify that we obtain the expected results.

Using the material from the previous section with homogeneous IVPs, we have

the following lattice of modules:
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F

S1

� �

��

S2
��

��

S1 ∩ S2
��

��

� �

		

F = Intm(Z
2,Z)

S1 = Intm(Z× (1 + 2Z),Z) ∼= Intm(Z,Z)

S2 = Intm((1 + 2Z)× Z,Z) ∼= Intm(Z,Z)

We are interested in S1∩S2 = Intm(Z2,Z). For S1 we have the isomorphism from

Proposition 67:

Intm(Z,Z) ∼= Intm(Z× (1 + 2Z),Z)

F : f(x) �→ ymf

(
x

y

)

G : g(x, 1) ← � g(x, y).

We have similar maps for S2. These were explained in Chapter 4.

We know that
{(

x
i

)}
i≤m

and
{(

y
j

)}
j≤m

are bases of Intm(Z,Z), for the variables

x and y respectively. We can homogenize these at y and x respectively and obtain

that

B1 =

{(x
y

i

)
ym
}

i≤m

and B2 =

{
xm

( y
x

j

)}
j≤m

are bases for S1 = Intm(Z× (1+2Z),Z) and S2 = Intm((1+2Z)×Z,Z), respectively.

Let V be an ordered list of basis elements of Zm[x, y]. We do the following to

find a basis for the intersection:

1. Store in A and B the elements of B1 and B2 written in terms of V .
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2. Dualize A and B in order to obtain A′ and B′.

3. Take the HNF (H) of [A′|B′] and the Smith normal form (S) of H.

4. Consider H to be the m×m matrix made from removing the m×m all zero

block from H ′.

5. Remove the zero block from H, and call the result H∗, dualize H∗ to obtain

H ′. For a fixed m, H ′ · V produces a basis.

These polynomials do not admit the same number of elements with certain de-

nominators as the ones obtained by Johnson and Patterson [JP11]. However taking

the Smith normal form of H produces a matrix whose diagonal is the denominators

of the basis, and when counting these for various m, we obtain the same results as

the ones in Table 5.2, which are the values from Johnson and Patterson [JP11]. Thus

one needs to use both the HNF and Smith normal form to obtain comparable bases.

6.2 The 3-Variable Case

We do something similar to the previous section for the 3-variable case. Here we are

interested in Intm(Z3,Z) = S1 ∩ S2 ∩ S3 for:

S1 = Intm(Z× Z× (1 + 2Z),Z) ∼= Intm(Z
2,Z)

S2 = Intm(Z× (1 + 2Z)× Z,Z) ∼= Intm(Z
2,Z)

S3 = Intm((1 + 2Z)× Z× Z,Z) ∼= Intm(Z
2,Z)

For S1, this isomorphism is

Intm(Z
2,Z) ∼= Intm(Z× Z× (1 + 2Z),Z)

F : f(x) �→ zmf
(x
z
,
y

z

)
G : g(x, y, 1) ←� g(x, y, z).
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Similar maps exist for S2 and S3.

We work with the following bases for Intm(Z
2,Z) :

{(
x

i

)(
y

j

)}
i+j≤m

,

{(
x

i

)(
z

j

)}
i+j≤m

and

{(
y

i

)(
z

j

)}
i+j≤m

,

which are bases for the variables (x, y), (x, z) and (y, z) respectively. We homogenize

at the variables z, y and x, and obtain

B1 =

{(
x
z

i

)(y
z

j

)
zm
}

i+j≤m

B2 =

{(x
y

i

)
ym
( z

y

j

)}
i+j≤m

and B3 =

{
xm

( y
x

i

)(
z
x

j

)}
i+j≤m

respectively. Let V be an ordered list of basis elements of Zm[x, y, z].

1. Store in A,B,C the elements of B1,B2,B3 written in terms of V .

2. Dualize A,B,C in order to obtain A′, B′, C ′.

3. Take the HNF (H) of [A′|B′|C ′] and the Smith normal form (S) of H.

4. Remove the zero block from H, and call the result H∗, dualize H∗ to obtain

H ′.

Once again H ′ · V gives IVPs, but differing from those obtained in Chapter 5.

There are usually more elements with bigger denominators than the polynomials

from Table 5.4. This does produce the same largest denominators for degree m as

Theorem 95. Since this process is faster and requires less memory we can find the

next three rows of Table 5.4:

k, for Denominators of Size 2k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
eg
re
e
m 23 7 14 7 14 28 14 7 28 35 14 28 49 14 14 6 0

24 7 14 7 14 28 14 7 28 35 14 28 49 14 14 25 6
25 7 14 7 14 28 14 7 28 35 14 28 49 14 14 34 23

Table 6.1: Number of Denominators in Intm(Z3,Z) at p = 2 Continued from Table 5.4

The faster computations may also be explained by the fact that we are work-

ing with (m+1)(m+2)
2

× 3(m+1)(m+2)
2

matrices for degree m, as opposed to (m+1)(m+2)
2

×
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(m+1)(m+2)(m+3)
6

matrices as needed for the Smith normal form, which will be smaller

for degrees 7 and higher.

6.3 Results at Other Primes

We can use the technique from Section 6.2 and localize at other primes. We repeated

this process for all primes between 3 and 29 (but only display results up to 13). For

p = 29, the degrees that were within calculations, produced bases with no denomi-

nators. As p gets bigger we get fewer basis elements with denominators, which will

allow calculations for higher degrees, since the matrices we work with are simpler.

Note that the size of the matrices we work with are independent of the prime, which

allows us to get the following tables:
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k, for Denominators of Size 3k

0 1 2 3 4 5 6 7 8 9

D
eg
re
e
m

1 3 0 0 0 0 0 0 0 0 0
2 6 0 0 0 0 0 0 0 0 0
3 10 0 0 0 0 0 0 0 0 0
4 12 3 0 0 0 0 0 0 0 0
5 13 8 0 0 0 0 0 0 0 0
6 13 15 0 0 0 0 0 0 0 0
7 13 23 0 0 0 0 0 0 0 0
8 13 26 6 0 0 0 0 0 0 0
9 13 26 16 0 0 0 0 0 0 0
10 13 26 27 0 0 0 0 0 0 0
11 13 26 39 0 0 0 0 0 0 0
12 13 26 39 10 3 0 0 0 0 0
13 13 26 39 18 9 0 0 0 0 0
14 13 26 39 23 19 0 0 0 0 0
15 13 26 39 26 26 6 0 0 0 0
16 13 26 39 26 33 16 0 0 0 0
17 13 26 39 26 36 31 0 0 0 0
18 13 26 39 26 38 41 7 0 0 0
19 13 26 39 26 39 52 15 0 0 0
20 13 26 39 26 39 52 36 0 0 0
21 13 26 39 26 39 52 52 6 0 0
22 13 26 39 26 39 52 65 16 0 0
23 13 26 39 26 39 52 78 27 0 0
24 13 26 39 26 39 52 78 46 6 0
25 13 26 39 26 39 52 78 49 29 0
26 13 26 39 26 39 52 78 51 46 8
27 13 26 39 26 39 52 78 52 62 19

Table 6.2: Number of Denominators in Intm(Z3,Z) at p = 3
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k, for Denominators of Size 5k

0 1 2 3 4

D
eg
re
e
m

1 3 0 0 0 0
2 6 0 0 0 0
3 10 0 0 0 0
4 15 0 0 0 0
5 21 0 0 0 0
6 25 3 0 0 0
7 28 8 0 0 0
8 30 15 0 0 0
9 31 24 0 0 0
10 31 35 0 0 0
11 31 47 0 0 0
12 31 54 6 0 0
13 31 59 15 0 0
14 31 62 27 0 0
15 31 62 43 0 0
16 31 62 60 0 0
17 31 62 78 0 0
18 31 62 87 10 0
19 31 62 93 24 0
20 31 62 93 45 0
21 31 62 93 67 0
22 31 62 93 90 0
23 31 62 93 114 0
24 31 62 93 124 15
25 31 62 93 124 41
26 31 62 93 124 68
27 31 62 93 124 96
28 31 62 93 124 125

Table 6.3: Number of Denominators in Intm(Z3,Z) at p = 5
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k, for Denominators of Size 7k

0 1 2 3

D
eg
re
e
m

1 3 0 0 0
2 6 0 0 0
3 10 0 0 0
4 15 0 0 0
5 21 0 0 0
6 28 0 0 0
7 36 0 0 0
8 42 3 0 0
9 47 8 0 0
10 51 15 0 0
11 54 24 0 0
12 56 35 0 0
13 57 48 0 0
14 57 63 0 0
15 57 79 0 0
16 57 90 6 0
17 57 99 15 0
18 57 106 27 0
19 57 111 42 0
20 57 114 60 0
21 57 114 82 0
22 57 114 105 0
23 57 114 129 0
24 57 114 144 10
25 57 114 156 24
26 57 114 165 42
27 57 114 171 64
28 57 114 171 93

Table 6.4: Number of Denominators in Intm(Z3,Z) at p = 7
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k, for Denominators of Size 11k

0 1 2

D
eg
re
e
m

1 3 0 0
2 6 0 0
3 10 0 0
4 15 0 0
5 21 0 0
6 28 0 0
7 36 0 0
8 45 0 0
9 55 0 0
10 66 0 0
11 78 0 0
12 88 3 0
13 97 8 0
14 105 15 0
15 112 24 0
16 118 35 0
17 123 48 0
18 127 63 0
19 130 80 0
20 132 99 0
21 133 120 0
22 133 143 0
23 133 167 0
24 133 186 6
25 133 203 15
26 133 218 27
27 133 231 42
28 133 242 60

Table 6.5: Number of Denominators in Intm(Z3,Z) at p = 11
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k, for Denominators of Size 13k

0 1

D
eg
re
e
m

1 3 0
2 6 0
3 10 0
4 15 0
5 21 0
6 28 0
7 36 0
8 45 0
9 55 0
10 66 0
11 78 0
12 91 0
13 105 0
14 117 3
15 128 8
16 138 15
17 147 24
18 155 35
19 162 48
20 168 63
21 173 80
22 177 99
23 180 120
24 182 143
25 183 168
26 183 195
27 183 223
28 183 246

Table 6.6: Number of Denominators in Intm(Z3,Z) at p = 13

6.4 Symmetrization

Since symmetric polynomials are of interest in the case of computing the homotopy

of BU , we look into finding homogeneous symmetric IVPs.

Definition 106. A polynomial p(x1, . . . , xn) in n-variables is symmetric if for any
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permutation σ of the subscripts 1, 2, . . . , n one has

p(xσ(1), . . . , xσ(n)) = p(x1, . . . , xn).

Definition 107. Given a 3-variable polynomial f(x, y, z) one can symmetrize f by

taking

fsym = f(x, y, z) + f(y, x, z) + f(z, y, x) + f(x, z, y) + f(y, z, x) + f(z, x, y).

An important matter to notice is that when adding six different permutations of

an IVP, there is a great chance that we will obtain even numerators for the coeffi-

cients which will cancel out with the denominators. Focusing on degree 14 for now,

from Table 5.4 we know we can get a homogeneous IVP with 29 in its denominator

and we wonder if we can obtain the same denominator with a symmetric IVP.

When we let f be the degree 14 homogeneous IVP with a 29 in its denominator,

we obtained fsym with a 28 in its denominator. The main question of interest here

is: can we have a symmetric IVP with 29 in its denominator? We conjecture that

the answer is no.

Amongst other symmetrization attempts we symmetrize polynomials obtained

from the HNF and polynomials obtained from the Fano plane, (the construction of

these will be explained in Chapter 7).

From these attempts the best we managed to obtain is a homogeneous IVP g

with 28 in its denominator that factors as a product of linear factors. Even though

the denominator is smaller by a power of 2 than the best we can obtain for the non-

symmetric case, the factorization is useful to explain how to construct these, and the

polynomials can keep their full denominators once they are made symmetric.

Below is a table showing what happened when symmetrizing the polynomials

from the HNF up to degree 14. The “sym” column counts how many polynomials

were already symmetric, the “null” column counts the number of polynomials that
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went to zero when symmetrizing, and the other columns count the number of basis

elements with each denominator:

sym null 20 21 22 23 24 25 26 27 28

Degree

1 0 0 3 0 0 0 0 0 0 0 0
2 0 0 6 0 0 0 0 0 0 0 0
3 1 3 6 0 0 0 0 0 0 0 0
4 0 5 7 3 0 0 0 0 0 0 0
5 0 5 10 6 0 0 0 0 0 0 0
6 0 8 7 13 0 0 0 0 0 0 0
7 0 3 12 9 6 6 0 0 0 0 0
8 0 10 7 12 3 13 0 0 0 0 0
9 0 4 7 12 3 23 6 0 0 0 0
10 0 10 7 12 2 19 16 0 0 0 0
11 0 5 7 14 2 15 31 4 0 0 0
12 0 6 7 12 2 10 31 20 3 0 0
13 0 0 7 12 2 13 20 27 21 3 0
14 0 0 7 12 2 11 20 9 22 32 5

Table 6.7: Denominators Obtained after Symmetrizing

For degrees 1,2,4,5,7,9,11,13 we did not lose all maximal denominators, but we

do get fewer elements than in Table 5.4.

Another question one may ask is: can we symmetrize each linear factor first,

multiply out and still obtain an IVP with 28 in its denominator? The answer is no

since each linear factor is of the form � = ax+ by + cz and calculating:

�sym = (ax+ by + cz) + (bx+ ay + cz) + (cx+ by + az)

+ (ax+ cy + bz) + (bx+ cy + za) + (cx+ ay + bz)

= (2a+ 2b+ 2c)(x+ y + z)

Hence any linear factor will be divisible by 2 and will cancel out with the denomi-

nator.



Chapter 7

Building 3-Variable Homogeneous Integer-valued

Polynomials Using Projective Planes

The goal of this chapter is to use projective H-planes, which are a generalization of

finite projective planes over rings, to construct a correspondence between lines that

cover H-planes and homogeneous IVPs that are a product of linear factors. We will

illustrate this correspondence starting with the degree 8 case where we produce a

polynomial with largest possible denominator which factors as a product of linear

polynomials.

We then show why the degree 14 case, which has a basis element with a 29 in its

denominator, cannot be written as a product of linear factors. We look into building

polynomials of higher degree where we managed to obtain IVPs. We end the chapter

by using this correspondence with the 2-variable case and obtain the same results as

in Johnson and Patterson [JP11].

7.1 Projective H-Planes

In this section we summarize the literature on Hjelmslev planes, denoted H-planes,

in order to use it to build a correspondence later on. What we are interested in is

finding a extension of the notion of projective planes over the rings Z/(pk). These

were first introduced by Wilhelm Klingenberg [Kli54], who was following the work

of the Danish mathematician Johannes Hjelmslev, whose main results were in non-

Euclidean geometry. Klingenberg altered the axioms of the projective plane to allow

two lines to intersect in several distinct points. These points would be called neigh-

bours. This notion of neighbouring was shown by Klingenberg to be an equivalence

relation for H-planes. Note that the first paper written in English about projective

H-planes is from Erwin Kleinfeld [Kle59].

77
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7.1.1 Projective Planes over Finite Fields

Projective planes arise from wanting a geometry with no parallel lines. This would

more closely resemble the situation when we look at two parallel lines in reality. For

example, when we look at train tracks, these do seem to meet at a vanishing point.

The study of Projective planes arose in the early 1900’s [Veb04], we will present

results from [AS68] and [Ayr67], since their book defines finite projective planes in

the computational way that will be needed for this chapter.

Definition 108. [AS68, 1.3] A projective plane consists of a set of lines L, a set of

points P, and a relationship between the lines and points called incidence I, having
the following properties:

I Given any two distinct points, there is exactly one line incident to both of them.

II Given any two distinct lines there is exactly one point incident with both of

them.

III There exist three non-collinear points.

IV Every line contains at least three points.

We state some general statements about any projective plane and then some more

specific ones about projective planes over finite fields.

Lemma 109. [Ayr67, Th. 7.1] If L1 and L2 are distinct lines, then there is a point

that is on neither of them.

Theorem 110. [Ayr67, Th. 7.5] Every line in the projective plane has the same

number of points.

Over a finite field Fq, where q = pk for p a prime and 0 < k ∈ Z, we look at the

projective n-space.

Definition 111. [AS68, 3.3] The finite projective n-space over Fq, denoted FqP
n,

is defined as the set of points w ∈ Fn+1
q \{0} with the equivalence relation w ∼ λw

for λ non-zero in Fq.
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For example, consider FqP
1, which is called the projective line. FqP

1 can be

represented as a set of equivalence classes (x, y), such that (x, y) ∼ (λx, λy) for all

non zero λ. The pairs (x, y) are the points w in Definition 111. Projective lines will

have q + 1 points. For example F2P
1 � F2

2\(0, 0), and it has three points.

The finite projective space that we will mainly look at for our work is the finite

projective plane FqP
2, when q = p, where we can do arithmetic (mod p).

Definition 112. [AS68, 3.3] A point in FpP
2 is a triple from F3

p\(0, 0, 0), that

satisfies the following equivalence relation: (x, y, z) ∼ (λx, λy, λz) for all non zero λ

in Fp.

Definition 113. [AS68, 3.3] A line L = (a, b, c) in FpP
2 is determined by a linear

polynomial ax + by + cz, with at least one of a, b or c not divisible by p, such that

the points incident to it are

L(a,b,c) = {(x, y, z) | ax+ by + cz ≡ 0 (mod p)}.

Note that the above is a symmetric relation, which gives the important result

below, referred to as the duality of the projective plane.

Proposition 114. [AS68, 1.7 Th. 3] Given the incidence relation in Definition 113,

the point P = (x, y, z) and the line L = (a, b, c) we also have that P1 = (a, b, c) is

incident to L1 = (x, y, z). This is referred to as the duality of projective planes.

F2P
2 is referred to as the Fano plane and is the smallest projective plane, pic-

tured below. It has seven points and seven lines.

Any line in FpP
2 is isomorphic to FpP

1. Any two lines intersect in exactly one

point, and any point has exactly three lines going through it. This holds for p = 2;

in general, p+ 1 lines go through one point.

Proposition 115. [AS68, 2.3 Th. 1(a)] When picking all p+1 lines that go through

a single point P in FpP
2 , these p+ 1 lines cover all of FpP

2.
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Figure 7.1: F2P
2, the Fano Plane

Proof. For any point Q in FpP
2 there is a unique line passing through Q and P .

Proposition 116. [AS68, 2.3 Th. 1(b)] The projective plane FpP
2 has p2 + p + 1

distinct points.

Proof. The set Fp has p points. The set (Fp)
3\(0, 0, 0) has p3 − 1 points. Since there

are p − 1 units in Fp and we get an equivalence class for each of these, we have
p3−1
p−1

= p2 + p+ 1 points.

Corollary 117. [AS68, 2.3 Th. 1(b)] The projective plane FpP
2 has p2 + p + 1

distinct lines.

Proof. This comes from the duality of lines and points in the projective plane.

7.1.2 Projective H-planes over Z/(2k)

When trying to keep the same structure as in Section 7.1.1 but replacing F2 by Z/(4)

or by Z/(2k), we will not have a projective plane anymore. Before looking at the

planes, we will extend the projective line to Z/(pk). The definitions and results from

this section were obtained by adapting [Kle59] to get computational results as as in

Section 7.1.1.
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Definition 118. The line Z/(pk)P1 will be represented as a set of equivalence classes

of pairs (x, y) ∈ (Z/(pk))2, such that at least one of x and y is not divisible by p,

with equivalence relation (x, y) ∼ (λx, λy) for all units λ in Z/(pk).

Lemma 119. The line Z/(pk)P1 will contain p2k−p2(k−1)

pk−pk−1 = pk + pk−1 points.

Proof. We have that (pk−1)2 is the number of pairs in F2
p, where each element is

divisible by p and pk − pk−1 is the number of units in Fp.

For example, F2P
1 has 21 + 20 = 3 points and Z/(4)P1 has 22 + 2 = 6 points.

Now to extend the projective plane, we take all the triples (a, b, c) in Z/(4)3 such

that there is at least one odd value in the triple, and we use the same equivalence

relationship on these. This will give us 43−8
2

= 28 points since there are eight even

triples in Z/(4)3 and two units in Z/(4). There will also be 28 lines by duality which

will be revisited in Proposition 123. More generally, we have the definition below.

Definition 120. The projective H-plane over Z/(pk): Z/(pk)P2 is the set of triples

from Z/(pk)3, such that p does not divide all values in the triple, with the equivalence

relation (x, y, z) ∼ (λx, λy, λz) for all units λ in Z/(pk).

The properties of incidence of lines and points in projective H-planes have been

studied, especially by those interested in coding theory, through arcs in projective

H-planes. These will not be of any help for this work. However, the coding theorist

Michael Kiermaier [Kie] did produce a very useful visual representation of Z/(4)P2.
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Figure 7.2: Z/(4)P2 [Kie]

Given this picture every point of F2P
2 is lifted to a tetrahedron that has four

points, which are the points over Z/(4)P2. Every line from F2P
2 is lifted to four lines,

that are represented by four coloured segments which are the lines over Z/(4)P2.

Each line in Z/(4)P2 on the picture can be found by taking one of the four lines cor-

responding to a line over F2P
2 which is represented by four coloured segments. Then

taking the points that are adjacent to these coloured segments on the tetrahedrons.

Lemma 121. The projective plane Z/(pk)P2 has
p3k − (pk−1)3

pk − pk−1
= p2(k−1)(p2+ p+1)

points.

Proof. We have that (pk−1)3 is the number of triples in F3
p, where each element is

divisible by p and pk − pk−1 is the number of units in Z/(pk).

Incidence of lines and planes is defined in a similar way:

Definition 122. A line L = (a, b, c) in Z/(pk)P2 is determined by a homogeneous

linear polynomial ax+ by + cz, with at least one of a, b or c not divisible by p. The

points incident to L are those such that

L(a,b,c) = {(x, y, z) | ax+ by + cz ≡ 0 (mod pk)}.
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Proposition 123. Given the incidence relation in Definition 122, the point P =

(x, y, z) and the line L = (a, b, c) we also have that P1 = (a, b, c) is incident to

L1 = (x, y, z). This is referred to as the duality of projective H-planes.

We can build an incidence matrix of size |Z/(pk)P2| × |Z/(pk)P2|. Since both

point and lines can be represented by triples, we label the triple of the line with

coordinates Li be the same as the triple of the point with coordinates Pi. A zero

entry in the matrix means that the point is incident to the line.

For F2P
2 we get the following incidence matrix:

L1 L2 L3 L4 L5 L6 L7⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P1 = (0, 0, 1) 1 0 1 0 1 0 1

P2 = (0, 1, 0) 0 1 1 0 0 1 1

P3 = (0, 1, 1) 1 1 0 0 1 1 0

P4 = (1, 0, 0) 0 0 0 1 1 1 1

P5 = (1, 0, 1) 1 0 1 1 0 1 0

P6 = (1, 1, 0) 0 1 1 1 1 0 0

P7 = (1, 1, 1) 1 1 0 1 0 0 1

One can build a similar 28 × 28 matrix for Z/(pk)P2. The duality between points

and lines is equivalent to the incidence matrices being symmetric.

Proposition 124. Each line in Z/(2k)P2 is incident to 2k+1 − 2k−1 points.

Proof. For a line L = (a, b, c) at least one of a, b, c is odd. Without loss of generality,

assume c is odd. Thus for any (x, y) in Z/(2k)P1 there is a z such that (x, y, z) ∈ L,

namely z = c−1(−ax − by). This gives us a one-to-one correspondence between L

and Z/(2k)P1, which has 2k+1 − 2k−1 elements by Lemma 119.

Corollary 125. Each point in Z/(2k)P2 is incident to 2k+1 − 2k−1 lines.

Proof. This follows since the incidence relation is symmetric.
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Proposition 126. Suppose L1 = (a1, b1, c1) and L2 = (a2, b2, c2) are lines in Z/(2k)P2

for some k > 1. If (a1, b1, c1) ≡ (a2, b2, c2) (mod 2h) for some h < k and (a1, b1, c1) ≡
(a2, b2, c2) (mod 2h+1), then |L(a1,b1,c1) ∩ L(a2,b2,c2)| = 2k−h.

Proof. Suppose L = (a1, b1, c1) and L = (a2, b2, c2) are lines over Z/(2k)P2 for some

k > 1. We want to find the number of solutions to the following matrix equation:

AX = 0

[
a1 b1 c1

a2 b2 c2

]⎡⎢⎢⎣
x

y

z

⎤
⎥⎥⎦ ≡

[
0

0

]
(mod 2k).

Replacing A by its Smith normal form gives

USV

⎡
⎢⎢⎣
x

y

z

⎤
⎥⎥⎦ ≡

[
0

0

]
(mod 2k),

where U is a 2×2 matrix and V is a 3×3 matrix, and both are unimodular. Since U

is invertible, we multiply both sides by its inverse, and since V represents a change

of variables on x, y, z, we can write our equation as

S

⎡
⎢⎢⎣
x′

y′

z′

⎤
⎥⎥⎦ ≡

[
0

0

]
(mod 2k).

First we look at when L1 ≡ L2 (mod 2h), for 0 < h < k. Here h is the maximal

exponent such that the lines are congruent. Therefore we have:

a2 ≡ a1 (mod 2h)

b2 ≡ b1 (mod 2h)

c2 ≡ c1 (mod 2h).

Without loss of generality we may assume that a1 is odd, and a2 is also odd since

the lines are congruent (mod 2h), so a1 ≡ a2 (mod 2). Now reduce A in order to
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obtain the Smith normal form over Z(2), which exists by Theorem 88:

[
a1 b1 c1

a2 b2 c2

]
∼
[
1 b1

a1

c1
a1

1 b2
a2

c2
a2

]
.

Since invertible column and row operations will not change the congruences, we have

that

b1
a1

≡ b2
a2

(mod 2h),

c1
a1

≡ c2
a2

(mod 2h),

which gives in Z(2)

b2
a2

=
b1
a1

+m2h,

c2
a2

=
c1
a1

+ n2h.

Note that either m or n is odd since the two equations below have the same set of

solutions

a2x+ b2y + c2z ≡ 0 (mod 2k)

a1x+
a1
a2

b2y +
a1
a2

c2z ≡ 0 (mod 2k)

since the second equation is obtained by multiplying the first by a unit. From there

we get a1 as the coefficient of x in both equations hence h is maximal such that

a1
a2

b2 ≡ b1 (mod 2h)

a1
a2

c2 ≡ c1 (mod 2h),

and

b2 ≡ b1 (mod 2h)

c2 ≡ c1 (mod 2h).
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Returning to our matrix reduction, we get

[
a1 b1 c1

a2 b2 c2

]
∼
[
1 b1

a1

c1
a1

1 b1
a1

+m2h c1
a1

+ n2h

]
∼
[
1 0 0

0 m2h n2h

]

Without loss of generality suppose m is odd

[
a1 b1 c1

a2 b2 c2

]
∼
[
1 0 0

0 2h n
m
2h

]
∼
[
1 0 0

0 2h 0

]

We then have the following matrix equation:

[
1 0 0

0 2h 0

]⎡⎢⎢⎣
x′

y′

z′

⎤
⎥⎥⎦ ≡

[
0

0

]
(mod 2k)

We need to solve x′ ≡ 0 (mod 2k) and 2hy′ ≡ 0 (mod 2k). The first equation

does not affect the number of solutions, and there are 2h−k values for y′ (mod 2k)

such that 2hy′ ≡ 0 (mod 2k).

Corollary 127. Two lines over Z/(4)P2 will intersect either in 2 points, when the

projections of the lines over F2P
2 are equal, or in 1 point when they are not.

Example 128. Proposition 126 has been programmed for the 28 lines over Z/(4)P2

in MAPLE, where all the distinct pairs of lines when put in a matrix and their Smith

normal form was calculated over Z using MAPLE. The following four matrices were

obtained:

[
1 0 0

0 1 0

]
,

[
1 0 0

0 3 0

]
,

[
1 0 0

0 5 0

]
, and

[
1 0 0

0 2 0

]
.

The first three correspond to the cases when the lines only intersect once, and the

last one occurs where the lines intersect in two points. Writing the element S2,2 of

the Smith normal form, S, as 2iu, the lines intersect in 2i points.
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Lemma 129. Given a point P in Z/(4)P2, the 6 lines that are incident to P , reduce

pairwise to three lines in F2P
2.

Proof. Given the point P = (x, y, z), we know that six lines are incident to it, given

the duality of Z/(4)P2. Without loss of generality P = (1, 0, 0). Over Z/(4)P2, P

is on the lines with the following linear representations: z, 2y + z, y, y + 2z, y + z

and y + 3z. Thus the lines reduce to z ≡ 2y + z (mod 2), y ≡ y + 2z (mod 2) and

y + z ≡ y + 3z (mod 2).

Proposition 130. Given a point P in Z/(4)P2 the six lines that are incident to P

cover all of Z/(4)P2.

Proof. By Proposition 126 we have that any two lines intersect in one point, and by

the duality any two points are joined by a line. Thus when taking all the lines that

go through P , we cover all the points.

Proposition 131. Given a point P in Z/(2k)P2, the 3 · 2k−1 lines that are incident

to P cover all of Z/(2k)P2.

Proof. The proof of Proposition 130 does not depend on the number of lines that

cover the plane, so the statement can be generalized.

7.2 Using the Projective Plane to Build a Correspondence

This section will explain how we can use the correspondence between sets of lines in

projective H-planes and homogeneous IVPs that factor completely. Understanding

this correspondence will allow us to better understand both topics and solve prob-

lems on each side using knowledge of the other.

On the projective H-plane side we are interested in the geometry of those planes,

especially in how we can cover all points in the plane using a minimal number of

lines. On the homogeneous IVP side we are interested in our classical problem: how

can we construct a homogeneous IVP of a certain degree with the highest power of

the prime in which we are are interested in its denominator?
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Starting with the Fano plane we have that if we take any three lines that intersect

in one point, we manage to cover all seven points in the plane. If we multiply three

linear factors corresponding to the equations of the lines that all meet in one point,

say f1(x, y, z), f2(x, y, z), f3(x, y, z), we get that f1·f2·f3
2

is an IVP.

Given how the Fano plane was constructed when taking seven linear factors that

correspond to all seven lines of the Fano plane, namely

f1(x, y, z), f2(x, y, z), f3(x, y, z), f4(x, y, z), f5(x, y, z), f6(x, y, z), f7(x, y, z),

then f1·f2·f3·f4·f5·f6·f7
23

is an IVP, since each point will be on three lines, hence those

linear factors will each evaluate to an even value over Z.

We want to expand the previous to Z/(pk)P2, and see if for higher k, we can

obtain bigger denominators when we cover the full plane. We start with the case of

trying to cover Z/(4)P2 with seven lines that would reduce to the lines of the Fano

plane.

In general the number of points covered by a set of lines can be counted using

the inclusion-exclusion principle stated below:

Theorem 132. [vLW01] Given a finite number of finite sets, A1, A2, . . . , An we

have

|A1 ∪ A2 ∪ · · · ∪ An| =
∑
i

|Ai| −
∑
i<j

|Ai ∩ Aj|+
∑
i<j<k

|Ai ∩ Aj ∩ Ak|−

. . .+ (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|.
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Using this to count for seven distinct lines L1, . . . , L7 in Z/(4)P2, we get that

|L1 ∪ · · · ∪ L7| = 7 · 6−
∑
i<j

|Li ∩ Lj|+
∑
i<j<k

|Li ∩ Lj ∩ Lk|

−
∑

i<j<k<�

|Li ∩ Lj ∩ Lk ∩ L�|+
∑

i<j<k<�<m

|Li ∩ Lj ∩ Lk ∩ L� ∩ Lm|

−
∑

i<j<k<�<m<n

|Li ∩ Lj ∩ Lk ∩ L� ∩ Lm ∩ Ln|.

Note that since each point is on at most six lines, there is no point where all

seven lines intersect. The above can simplify to :

|L1 ∪ · · · ∪ L7| = 7 · 6− i2 + i3 − i4 + i5 − i6,

where ij represents that number of points where j lines intersect. If we restrict this

to seven lines over Z/(4)P2 that reduce to the full set of lines of the Fano plane, we

get at most three lines going through a point:

|L1 ∪ · · · ∪ L7| = 7 · 6− i2 + i3.

Each pair of lines intersect in exactly one point since the lines are not congruent

modulo 2. This gives us
(
7
2

)
= 21 = i2 points of intersection. Thus we have

|L1 ∪ · · · ∪ L7| = 7 · 6− 21 + i3 = 21 + i3.

Thus, the number of points we cover depends on i3, the number of points that are

on the intersection of three lines. We can establish that 0 ≤ i3 ≤ 7, since the Fano

plane only has seven lines. When using MAPLE to calculate all options, we get that

i3 ∈ {0, 2, 4, 6}. What is of main interest here is that i3 = 7, which means that we

cannot fully cover Z/(4)P2 with seven lines that reduce to the Fano plane.

Proposition 133. Given i3 defined as above, we have i3 = 7.

Proof. Proposition 126 and an exhaustive combinatorial argument can be used to

prove this. However, we can get the same claim from our results in Chapter 5 where

from Table 5.4, we know that for degree 7 the best denominator we can have is 23. If
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we did obtain a full covering of the H-plane, from seven lines, then we would know

that for each triple of integers (a, b, c), three linear factors would evaluate to an even

value and one of them would be a multiple of 4 which would guarantee a 24 in the

denominator of this polynomial.

This can be used to prove the geometric result below that states that there is no

copy of the Fano plane in Z/(4)P2. By this we mean that we cannot find seven lines

that reduce to the Fano plane when there are seven points that are the intersection

of three lines.

Corollary 134. There is no embedded copy of the Fano plane in Z/(4)P2.

Proof. Suppose we did have seven lines over Z/(4)P2 such that there are seven points

over Z/(4)P2 that reduce to F2P
2 and three lines intersect at these seven points.

The reduction map

π : Z/(4)P2 → F2P
2

which reduces all three coordinates of a point (mod 2) is a surjective homomorphism.

Let

ϕ : F2P
2 → Z/(4)P2

be the map that sends F2P
2 to the seven corresponding points of Z/(4)P2 where the

three lines intersect. Then

π ◦ ϕ = 1F2P2 ,

which is not a possible composition, since the identity should only map F2P
2 to the

points of Z/(4)P2 with the same coordinates, but these do not form an embedded

Fano plane.

The Theorem explain how covering projective planes can help us build homoge-

neous IVPs.

Theorem 135. When building a polynomial f of degree m > k, such that f(x,y,z)
2k
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is an homogeneous IVP, it is sufficient to verify that f(x,y,z)
2k

is integer valued at the

points of Z/(2k)P2.

Proof. We have that f(2x′, 2y′, 2z′) = 2mf(x′, y′, z′) since f is homogeneous. There-

fore, one only needs to focus on the triples (x′, y′, z′), where at least one of x′, y′ or z′

is odd. For λ ∈ Z/(2k)∗, if (x′, y′, z′) = (λx, λy, λz), then f(x′, y′, z′) = λmf(x, y, z).

Hence if 2�|f(x, y, z), then 2�|f(x′, y′, z′). It is sufficient that f only covers one rep-

resentative per equivalence class.

Note that Theorem 135 builds a homogenous IVP with 2k for denominator, the

next result, as well the following sections will demonstrate, that larger denominators

can be obtained.

The result below is a corollary of Proposition 130.

Corollary 136. When picking six lines that intersect in the same point over Z/(4)P2,

one can build the homogeneous IVP f(x,y,z)
23

, where 23 is the greatest possible denom-

inator.

Proof. Given P , the 6 lines going through it will cover all 28 points of Z/(4)P 2 by

Proposition 130. Using Theorem 135 f(x, y, z) the product of these linear factors,

is such that f(x,y,z)
22

is an IVP.

Since the lines will cover twice the Fano plane for each point in Z/(4)P2, there

are two linear factors fi such that fi(x, y, z) ≡ 0 (mod 2) at all points of Z/(2)P2,

which gives an extra power of two in the denominator, and f(x,y,z)
23

is an IVP.

From Chapters 5 and 6 we know that we cannot get the IVP f(x,y,z)
24

, thus 23 is

the biggest possible denominator.

7.2.1 The Degree 8 Case

As mentioned previously, the case m = 8 is of interest, since three basis elements

of Int8(Z3,Z(2)) will have a 24 in their denominator ,which does not happen in the

2-variable degree 8 case, i.e., there is no homogeneous degree 8 polynomial in two
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variables with denominator 24. Using Z/(4)P2, it is possible to construct degree 8

homogeneous polynomials that have a 24 in the denominator. First we start with

the product of seven linear factors, such that they reduce to the seven distinct lines

in F2P
2. No matter which triple from Z3 we take, we always have that at least 3 of

these will evaluate to an even number. The main thing we are interested in here is

how we can pick an extra 8-th factor in a way that we will add an extra factor of 2

when evaluating to a point.

For example, each line L = (a, b, c) can be written as a linear factor ax+ by+ cz.

The 28 lines in Z/(4)P2 are: x, x + 2z, x + 2y, x + 2y + 2z, y, y + 2z, 2x + y,

2x + y + 2z, z, 2y + z, 2x + z, 2x + 2y + z, x + y, x + y + 2x, x + 3y, x + 3y + 2z,

x+ z, x+3z, x+2y+ z, x+2y+3z, y+ z, y+3z, 2x+ y+ z, 2x+ y+3z, x+ y+ z,

x+ y + 3z, x+ 3y + z and x+ 3y + 3z.

Let f be the degree 7 homogeneous polynomial made of a product of the lines in

Z/(4)P2, which cover all the lines in F2P
2, namely

f(x, y, z) = x · y · z · (y + z) · (x+ z) · (x+ y) · (x+ y + z).

Since f modulo 2 consists of all the lines in F2P
2, at any integer triple (a, b, c) three

linear factors will be even. Thus f
23

is an IVP. The points on each line corresponding

to a linear factor are the following:

L Points in Z/(4)P2 on L
x (0,0,1), (0,2,1), (0,1,0), (0,1,2), (0,1,1), (0,1,3)
y (0,0,1), (2,0,1), (1,0,0), (1,0,2), (1,0,1), (1,0,3)
z (0,1,0), (2,1,0), (1,0,0), (1,2,0), (1,1,0), (3,1,0)
y + z (0,1,3), (2,1,3), (1,0,0), (1,2,2), (1,1,3), (1,3,1)
x+ z (0,1,0), (2,1,2), (1,0,3), (1,2,3), (1,1,3), (1,3,3)
x+ y (0,0,1), (2,2,1), (3,1,0), (3,1,2), (1,3,1), (1,3,3)
x+ y + z (0,1,3), (2,1,1), (1,0,3), (1,2,1), (1,1,2), (3,1,0)

Table 7.1: Points on Seven Lines of Z/(4)P2

Theorem 137. The lines listed in Table 7.1 can be used to build a polynomial of
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degree 8, h(x, y, z) ∈ Z[x, y, z], such that h
24

is an IVP.

Proof. By processing Table 7.1 , we get that (1, 1, 1) is the only point that is not

on any of the lines of those seven linear factors. Thus, to complete f to an IVP

with denominator 24, we need only multiply by a linear factor which is even when

evaluated at (1, 1, 1). If we multiply f by g, a linear polynomial such that g(1, 1, 1)

is even, then the result will be an IVP when divided by 24. In that case h = f ·g
24

will

be a homogeneous IVP. Out of the 28 possible linear factors coming from Z/(4)P2,

the following twelve will be even at (1, 1, 1): 2x+ y + 3z, y + z, y + 3z, 2x+ y + z,

x+ 2y+ 3z, x+ z, x+ 3z, x+ y+ 2z, x+ y, x+ 3z, x+ 3y+ 2z and x+ 2y+ z.

7.2.2 Building Higher Degree Homogeneous IVPs that Can Be Written

as a Product of Linear Factors

The degree 14 case is of interest since from Chapter 5, we know we can obtain a

polynomial with a 29 in its denominator. Since the degree 14 case corresponds to

covering twice the Fano plane, we would like to construct an IVP with a 29 in its

denominator from a set of lines in Z/(4)P2 that covers the Fano plane twice. Vari-

ous calculations were implemented in MAPLE, including grouping all 28 lines from

Z/(4)P2 into sets of congruent lines over F2P
2 and picking two lines from each of

the seven sets. Unfortunately, even when looking at all 67possible combinations of

lines, the best we could get is a 28 in the denominator.

Since we cannot find a degree 14 polynomial with a 29 in its denominator, we

turn our attention to the question: what is the biggest power of 2 we can have in a

homogeneous IVP of a certain larger degree? We start with the case degree 28 and

use the lifting from Z/(4)P2 to Z/(8)P2 to construct a degree 28 polynomial that is

a product of homogeneous factors and is divisible by 219.

Z/(8)P2 has 112 points and lines. We got MAPLE to randomly pick 28 lines

from Z/(8)P2 such that each line reduces to a different one over Z/(4)P2. When

these 28 lines cover the 112 points of Z/(8)P2, we get a polynomial that is divisible
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by 219. An example of such a set of 28 lines is:

(0, 0, 1), (4, 1, 0), (0, 1, 5), (1, 0, 1), (1, 1, 4), (1, 0, 4), (1, 1, 1), (0, 2, 1), (0, 1, 2),

(0, 1, 3), (1, 4, 3), (1, 1, 2), (1, 0, 6), (1, 1, 3), (2, 0, 3), (2, 1, 0), (2, 3, 3), (1, 6, 0),

(1, 6, 1), (1, 3, 0), (1, 3, 5), (2, 6, 1), (2, 1, 2), (2, 1, 7), (1, 2, 6), (1, 2, 3), (1, 3, 2),

(1, 7, 7)

If we randomly pick a subset of 14 triples from the 28 above and find the corre-

sponding degree 14 homogeneous polynomial. Some of these polynomials are actually

divisible by 28 and still produce an IVP. Since 29 is not attainable through a product

of linear factors, this is the biggest possible denominator we can get. An example of

this set is:

(0, 1, 5), (1, 1, 4), (1, 1, 1), (0, 1, 3), (1, 4, 3), (1, 0, 6), (1, 1, 3), (2, 0, 3), (2, 1, 0),

(1, 6, 0), (2, 6, 1), (2, 1, 2), (1, 2, 3), (1, 3, 2).

These lines cover twice the Fano plane.

Proposition 138. When taking 28 lines from Z/(8)P2 that cover all 112 points of

Z/(8)P2, one can build homogeneous IVPs with a 219 in their denominators.

Proof. Write each line as a linear factor fi. We can then take f =
∏

fi which gives

a degree 28 homogeneous polynomial.

We consider (a, b, c) ∈ Z3 such that at least one of a, b, c is odd. Otherwise

228|f(a, b, c). Up to multiplication by a unit in Z/(8), (a, b, c) ∈ Z/(8)P2, since we

could pick 28 lines that covered all of Z/(8)P2. Thus f(a, b, c) ≡ 0 (mod 8), and we

get from this a 23 in the denominator that is guaranteed.

(a, b, c) is a point on six lines over Z/(4)P2, since the 28 lines we picked reduce

to Z/(4)P2. Thus fi(a, b, c) ≡ 0 (mod 4) for 6 fis. Since one of these was counted

above, our denominator is now 23 · (22)5.
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(a, b, c) is a point on three lines over F2P
2, and we have four lines that cover all

of these over F2P
2. Six of these were already counted, so our denominator is now

23 · 210 · 26 = 219.

The very useful thing that happened over Z/(8)P2 was that we could find 28 lines

that reduced to all of Z/(4)P2 and covered all 112 points of Z/(8)P2. That was not

possible when picking seven lines over Z/(4)P2 that cover the Fano plane. Therefore

this will affect our denominator when we generalize by a factor of 2. We will assume

that we do not have that property for the remainder of the section.

Suppose we make up a degree 112 polynomial where the factors are made from

lines over Z/(16)P2 that reduce to all lines over Z/(8)P2. Each point (a, b, c) is on

12 lines, so fi(a, b, c) ≡ 0 (mod 8) for 12 values i, which gives us a (23)12 in the

denominator.

Over Z/(4)P2 each point is on six lines and is covered four times. Half of these

were already counted, so multiply by (22)12 in the denominator. Over F2P
2 each

point is on three lines and is covered eight times. Removing those that are counted

already, we can multiply the denominator by 212. Therefore

112∏
i=1

fi

236224212

is a degree 112 homogeneous IVP.

Corollary 139. When taking 7 · 22k−2 lines over Z/(2k+1)P2 that reduce to all the

lines of Z/(2k)P2, one can build homogeneous IVPs with

(2k)3·2
k−1 · (2k−1)3·2

k−1 · · · (2)3·2k−1
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in their denominators.

Proof. This is obtained by generalizing Proposition 138 as described for the degree

112 case.

So we have that

ν2(f(a, b, c)) ≥
(

k+1∑
i=0

3i

)
· 2k = 3 · 2k · (k + 1)(k + 2)

2
.

As k approaches infinity, this expression divided by the degree of the polynomial, is
3(k+1)(k+2)

7·2k−3 , which approaches 0. (Even if we get an extra power of two from covering

all points in the plane, the limit is still 0.) Thus this approach is not optimal.

7.3 Statement of the Correspondence

We can use finite projective H-planes to produce IVPs, but they are dependent

on coverings of those planes, which means we cannot obtain full bases using this

technique. The polynomials we produce do have the nice property of factoring as a

product of linear factors.

Theorem 140. There is a one-to-one correspondence between products of m lines

in Z/(2k)P2 and homogeneous IVPs of degree m that completely factor with denom-

inator 2h, where h depends on the number of coverings of Z/(2k)P2 that the lines

achieve.

Proof. We want to show the duality between

f =
m∏
i=1

(aix+ biy + ciz),

where (ai, bi, ci) ∈ Z/(2k)P2, and

g =
1

2h

m∏
j=1

(ajx+ bjy + cjz),

where (ai, bi, ci) ∈ Z/(2h)
3
. Note that (aj, bj, cj) are not all even; otherwise we would

cancel a 2 in the denominator.
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First, suppose that f comes from a set of lines that fully covers Z/(2k)P2 once,

that is, one that reduces exactly to all lines in Z/(2k−1)P2.

Then by Corollary 139 we have

2h = (2k)3·2
k−1 · (2k−1)3·2

k−1 · · · (2)3·2k−1

.

Now if f comes from a set of lines that fully covers Z/(2k)P2 in such a way that

it reduces to � coverings of Z/(2k−1)P2, then

2h = ((2k)3·2
k−1 · (2k−1)3·2

k−1 · · · (2)3·2k−1

)�.

In the case of f not being a full covering of Z/(2k)P2, proceed in the following

recursive way. Find the largest k1 such that �1 coverings of Z/(2k1−1)P2 can be

obtained. Let the polynomial corresponding to this set be f1. Then

2h1 = ((2k1)3·2
k1−1 · (2k1−1)3·2

k1−1 · · · (2)3·2k1−1

)�1 .

Repeat this process with f
f1

until no coverings of the Fano plane are possible. Then

h =
∑

n=1 hn · �n, that is the resulting h will be the sum of the hn · �n obtained at

each iteration.

Corollary 141. Consider f as in Theorem 140, such that k is the largest integer for

which the linear factors of f fully cover Z/(2k)P2 � times. Then h from Theorem 140

is bounded by

�(2k+1 − 2) ≤ h < m.

Proof. For � coverings of Z/(2k)P2 we know that at any triple in Z/(2k)P2 one of the

linear factors will be congruent to 0 (mod 2k), and that will be the case for i < k.
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Thus

�
k∑

i=1

2i ≤ h < m,

�(2k+1 − 2) ≤ h < m.

7.4 Using the Projective Plane for the 2-Variable Case

Starting over Z(2), we can list the pairs that respect the same rules as the triples of

the projective plane, namely (0, 1), (1, 1), (1, 0). These are all the linear 2-variable

polynomials we can make and the different points at which we can evaluate them.

When taking the dot product of these, we get what happens when evaluating our

linear factors at a given point. The table below displays a 1 if the dot product is

even, and a 0 if it is odd:

(0,1) (1,1) (1,0)
(0,1) 0 0 1
(1,1) 0 1 0
(1,0) 1 0 0

Table 7.2: Parity of Dot Products of F2P
1

In order to introduce a 2 in the denominator of a homogeneous polynomial, we

need to pick a subset of three columns such that we have a 1 in each row. In this

case that is the three columns, which gives a polynomial of degree 3.

When repeating this process over Z/(4), we obtain the table below where a 0

entry indicates that the dot product of the pairs is odd, 1 that it is congruent to 2

(mod 4) and 2 that it is congruent to 0 (mod 4):
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(0,1) (1,1) (1,0) (2,1) (3,1) (1,2)
(0,1) 0 0 2 0 0 1
(1,1) 0 1 0 0 2 0
(1,0) 2 0 0 1 0 0
(2,1) 0 0 1 0 0 2
(3,1) 0 2 0 0 1 0
(1,2) 1 0 0 2 0 0

Table 7.3: 2-Valuation of Dot Products of Z/(4)P1

If we try picking a subset of columns such that we always get a 2 in each row, we

will always get an extra 1. Hence with a degree 6 polynomial we always get a 23 in

the denominator.

When repeating this process over Z/(8), we obtain the table below where a 0

entry indicates that the dot product of the pairs is odd, 1 that it is congruent to 2

(mod 8), 2 that it is congruent to 4 (mod 8) and 3 that it is congruent to 0 (mod 8):

(0,1) (1,1) (1,0) (2,1) (3,1) (1,2) (4,1) (5,1) (1,4) (6,1) (7,1) (1,6)
(0,1) 0 0 3 0 0 1 0 0 2 0 0 1
(1,1) 0 1 0 0 2 0 0 1 0 0 3 0
(1,0) 3 0 0 1 0 0 2 0 0 1 0 0
(2,1) 0 0 1 0 0 2 0 0 1 0 0 3
(3,1) 0 2 0 0 1 0 0 3 0 0 1 0
(1,2) 1 0 0 2 0 0 1 0 0 3 0 0
(4,1) 0 0 2 0 0 1 0 0 3 0 0 1
(5,1) 0 1 0 0 3 0 0 1 0 0 2 0
(1,4) 2 0 0 1 0 0 3 0 0 1 0 0
(6,1) 0 0 1 0 0 3 0 0 1 0 0 2
(7,1) 0 3 0 0 1 0 0 2 0 0 1 0
(1,6) 1 0 0 3 0 0 1 0 0 2 0 0

Table 7.4: 2-Valuation of Dot Products of Z/(8)P1

When wanting to get a 24 in the denominator, we do not need all 12 linear factors

here. We see that a subset of nine columns is sufficient. By picking subsets of 10

or 11 columns, we still get that we can only put a 24 in the denominator. The next

power we get is 27, which corresponds to degree 12, since all the rows (and columns)
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add to 7.

Note that all the above matrices are doubly stochastic.



Chapter 8

Conclusion

In this thesis we explored ways of finding bases for the 3-variable homogeneous

integer-valued polynomials using two different approaches. First we developed com-

putational tools that used linear algebra to generate bases for the polynomials in

Chapters 5 and 6, and second, we studied the correspondence with a covering of

lines in finite H-plane for a constructive approach demonstrated in Chapter 7.

Given the corresponding problem in algebraic topology, described in Chapter 3, it

is not surprising that finding bases for the 3-variable case is a more difficult problem

than the 2-variable case. In this thesis we did find methods that produce 3-variable

homogeneous IVPs, but finding more efficient algorithms would be necessary to ob-

tain bases for degrees greater than 25. These would help when trying to generalize

to more variables, since the matrices we would work with would be much bigger.

A promising approach for this would be to implement local version of the Hermite

normal form and Smith normal form. These would produce the same output we are

looking for here, but, by focusing on a single prime of interest, the calculations would

be faster.

A broader goal is to get the basis elements obtained in Chapter 5 and 6 written

with as few terms as possible and written as almost a product of linear factors to

better understand how these polynomials arise. Ideally, we would have a recursive

construction for constructing homogeneous IVPs of any degree and even any number

of variables.

In Chapters 4, 5, 6 and 7 of this thesis we worked locally, that we were interested

in the highest power of 2 that could be in the denominators of the basis elements.

The results from Chapter 6, were generalized to odd primes. It would be of interest
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to use all the local results to get bases for homogeneous IVPs integrally.

The broader goal of this work is to develop efficient tools for calculating bases

of IVPs on various subsets of Zn in the general and homogeneous cases. There are

various ways of studying these; one of which is through the valuative capacity, which

is an invariant of the set of IVPs. An example of this can be found in [B.L17], where

the valuative capacity of the set of sums of dth powers is calculated.

This thesis displays many results about homogeneous IVPs, yet there is much

more to be found. Hopefully these results can be used as a starting point for the

case homogeneous 3-variables and for more variables.
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Appendix A

Examples of Bases Calculations

Below is a table that displays bases for degrees 1 to 7 using the technique described

in Chapter 6.

For degrees 8 to 14 we only display one of the polynomials with largest denomi-

nator, since the full basis would be too large.
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m Basis
1 x, y, z

2 x2, xy, xz, y2, yz, z2

3 x3, x2y, zx2, −1
2
x2y + 1

2
xy2, zxy, −1

2
zx2 + 1

2
z2x, y3, zy2, −1

2
zy2 + 1

2
z2y, z3

4
x4, x3y, zx3, −1

2
x3y+ 1

2
x2y2, zx2y, −1

2
zx3+ 1

2
z2x2, −1

2
x3y+ 1

2
xy3, −1

2
zx2y+ 1

2
zxy2,

−1
2
zx2y + 1

2
z2xy, −1

2
zx3 + 1

2
z3x, y4, zy3, −1

2
zy3 + 1

2
z2y2, −1

2
zy3 + 1

2
z3y, z4

5

x5, x4y, zx4, −1
2
x4y + 1

2
x3y2, zx3y, −1

2
zx4 + 1

2
z2x3, −1

2
x4y + 1

2
x2y3,

−1
2
zx3y + 1

2
zx2y2, −1

2
zx3y + 1

2
z2x2y, −1

2
zx4 + 1

2
z3x2, −1

2
x4y + 1

2
xy4,

−1
2
zx3y + 1

2
zxy3, −1

2
zx3y + 1

2
z2xy2, −1

2
zx3y + 1

2
z3xy, −1

2
zx4 + 1

2
z4x, y5, zy4,

−1
2
zy4 + 1

2
z2y3, −1

2
zy4 + 1

2
z3y2, −1

2
zy4 + 1

2
z4y, z5

6

x6, x5y, zx5, −1
2
x5y + 1

2
x4y2, zx4y, −1

2
zx5 + 1

2
z2x4, −1

2
x5y + 1

2
x3y3,

−1
2
zx4y + 1

2
zx3y2, −1

2
zx4y + 1

2
z2x3y, −1

2
zx5 + 1

2
z3x3, −1

4
x4y2 + 1

4
x2y4,

−1
2
zx4y + 1

2
zx2y3, 1

4
zx4y − 1

4
zx3y2 − 1

4
z2x3y + 1

4
z2x2y2, −1

2
zx4y + 1

2
z3x2y,

−1
4
z2x4 + 1

4
z4x2, −1

4
x5y + 1

8
x4y2 − 1

8
x2y4 + 1

4
xy5, −1

2
zx4y + 1

2
zxy4,

3
4
zx4y − 1

4
zx3y2 − 1

4
z2x3y − 1

4
zx2y3 − 1

4
zxy4 + 1

4
z2xy3,

1
4
zx4y− 1

4
z3x2y− 1

4
zxy4 + 1

4
z3xy2, 1

2
zx4y− 1

4
zx3y2 − 1

4
z2x3y− 1

4
zxy4 + 1

4
z4xy,

−1
4
zx5 + 1

8
z2x4 − 1

8
z4x2 + 1

4
z5x, y6, zy5, −1

2
zy5 + 1

2
z2y4, −1

2
zy5 + 1

2
z3y3,

−1
4
z2y4 + 1

4
z4y2, −1

4
zy5 + 1

8
z2y4 − 1

8
z4y2 + 1

4
z5y, z6

7

x7, x6y, zx6, −1
2
x6y + 1

2
x5y2, zx5y, −1

2
zx6 + 1

2
z2x5, −1

2
x6y + 1

2
x4y3,

−1
2
zx5y + 1

2
zx4y2, −1

2
zx5y + 1

2
z2x4y, −1

2
zx6 + 1

2
z3x4, −1

2
zx5y + 1

2
zx3y3,

1
4
x6y − 1

8
x5y2 − 1

4
x4y3 + 1

8
x3y4, 1

4
zx5y − 1

4
zx4y2 − 1

4
z2x4y + 1

4
z2x3y2,

−1
2
zx5y + 1

2
z3x3y, 1

4
zx6 − 1

8
z2x5 − 1

4
z3x4 + 1

8
z4x3, −1

4
x4y3 + 1

4
x2y5,

−1
4
zx4y2 + 1

4
zx2y4, 1

4
zx5y − 1

4
z2x4y − 1

4
zx3y3 + 1

4
z2x2y3,

−1
4
z3x4+ 1

4
z5x2, 1

2
zx5y+ 1

8
zx4y2− 1

8
z2x4y− 1

4
zx3y3− 1

4
z3x3y− 1

8
zx2y4+ 1

8
z4x2y,

−1
4
x5y2 + 1

8
x4y3 − 1

8
x2y5 + 1

4
xy6, 1

4
zx5y − 1

4
zx4y2 − 1

4
z3x3y + 1

4
z3x2y2,

1
2
zx5y − 1

8
zx4y2 − 1

4
z2x4y − 1

4
zx3y3 − 1

8
zx2y4 + 1

4
z2xy4,

−1
4
zx5y + 1

8
zx4y2 − 1

8
zx2y4 + 1

4
zxy5, 1

8
zx4y2 − 1

4
z3x3y − 1

8
zx2y4 + 1

4
z3xy3,

1
2
zx5y − 1

4
zx3y3 − 1

4
z3x3y − 1

8
z2xy4 + 1

8
z4xy2, y7, zy6, −1

2
zy6 + 1

2
z3y4,

1
4
zx5y + 1

8
zx4y2 − 1

4
zx3y3 − 1

4
z3x3y − 1

8
zx2y4 + 1

4
z5xy,

−1
4
z2x5+ 1

8
z3x4− 1

8
z5x2+ 1

4
z6x, 1

4
zy6− 1

8
z2y5− 1

4
z3y4+ 1

8
z4y3, −1

4
z3y4+ 1

4
z5y2,

−1
4
z2y5 + 1

8
z3y4 − 1

8
z5y2 + 1

4
z6y, z7
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m Polynomial with Biggest Denominator

8
−1
2
zx6y+ 3

16
zx5y2+ 3

16
z2x5y+ 3

8
zx4y3+ 1

8
z3x4y− 1

16
zx3y4− 1

8
z2x3y3− 1

8
z3x3y2−

1
16
z4x3y − 1

16
z2x2y4 + 1

16
z4x2y2

9
−1
8
zx7y+ 1

16
zx6y2+ 3

8
zx5y3+ 1

16
z2x5y2− 1

4
z3x5y− 1

16
zx4y4− 1

8
z2x4y3− 1

16
z2x3y4+

1
8
z6x2y

10
1
8
zx8y− 3

16
zx7y2− 3

32
zx6y3+ 3

32
z2x6y2+ 1

8
z3x6y+ 3

32
zx5y4+ 3

32
z2x5y3− 1

32
zx4y5−

1
16
z3x4y3 − 1

32
z4x4y2 + 1

32
zx3y6 − 1

32
z2x3y5 − 3

32
z2x2y6 − 1

16
z3x2y5 + 1

32
z4x2y4

11
1
8
z2x8y− 3

32
zx7y3+ 1

32
z2x7y2+ 1

8
z3x7y+ 1

32
zx6y4− 3

32
z2x6y3+ 3

32
zx5y5− 1

8
z3x5y3−

1
32
z4x5y2 − 1

32
zx4y6 − 1

32
z2x4y5 − 1

32
z2x3y6 + 1

32
z4x3y4

12
−3
8
x11y + 3

32
x10y2 + 9

32
x9y3 − 7

128
x8y4 + 1

32
x7y5 − 1

64
x6y6 − 1

32
x5y7 + 1

128
x4y8 −

1
32
x3y9 − 1

32
x2y10 + 1

8
xy11

13 −1
8
zx12 + 1

32
z2x11 + 5

32
z3x10 − 1

128
z4x9 − 3

64
z6x7 − 1

32
z7x6 − 1

128
z8x5 + 1

32
z10x3

14

11
256

x3y5z6− 1
256

x2y6z6+ 23
128

xy8z5− 3
64
xy5z8+ 3

512
x2y8z4+ 1

8
x2y11z− 1

256
x3y6z5−

21
64
x3y2z9− 121

512
x2y4z8+ 1

128
xy4z9− 1

32
xy11z2+ 1

256
x3y3z8− 7

64
x2y9z3+ 1

64
xy7z6−

15
256

x3y8z3− 121
128

x4yz9− 1
512

x4y2z8− 1
256

x4y5z5− 1
512

x4y8z2+ 1
128

x4y9z− 1
128

x5yz8−
1

256
x5y3z6+ 1

256
x5y4z5+ 9

256
x5y5z4+ 3

256
x5y6z3− 19

32
x5y7z2− 11

128
x5y8z− 1

256
x6y2z6−

35
256

x6y3z5+ 11
64
x6y4z4+ 1

256
x6y5z3+ 579

256
x6y6z2+ 1

128
x8yz5+ 27

512
x8y2z4− 1

256
x8y3z3+

3
512

x8y4z2 − 25
128

x8y5z − 23
128

x9yz4 + 1
64
x9y3z2 + 3

128
x9y4z



Appendix B

MAPLE Code

Useful computations for this work and how they were implemented are appended in

the follwoing pages. The following code is present:

1. The code for Chapter 5, calculations using Smith normal form.

2. The code for Chapter 6, calculations using Hermite normal form.

3. Code that generates Z/(2k)P
2, and groups the points given what they are con-

gruent to over F2P
2, for calculations in Chapter 7.

4. Code for Chapter 7 that shows that the degree 14 polynomial with a 29 in its

denominator does not factor as a product of linear factor.
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

#Code that shows that taking the SNF of the matrix of Stirling coefficients, creates IVPs.
#Upload the necessary packages for the computations and allow the display of big matrices.
with combinat : with linalg : with LinearAlgebra : with padic : interface rtablesize = 110  :

  with ListTools : 

 #Given as input a list L and a value a this procedure counts the number of entries in L equal to a
num proc a, L  local i, c; c 0;for i from 1 to nops L  do if L i = a then c c 1 else 

fi; od ; c;end:

# Establish p, the prime we are working at, q the maximum degree we want the calculation to go 
for, and create an empty list LL.

p 2 :
 LL :
 q 14 :
 
 # repeat the process for degress 1 to q 
 for n from 1 to q do 
 
 M Matrix n 1 * n 2 / 2, n 1 * n 2 * n 3 / 6 :
# Builds the matrix M, which will have the coefficients of our monomials, written as a product of 

factorials and Stirling numbers of the second kind,  since we are storing values of triples (i,j,k)
=(r,s,t), in  matrix we need more loops.

 cr 0 : for rs from 0 to n do
 for r from 0 to rs do
 s rs r; t n rs;
 cr cr 1 : cc 0 :
 for ijk from 0 to n do
 for ij from 0 to ijk do
 for i from 0 to ij do
 j ij i; k ijk ij;
 cc cc 1;
 M cr, cc i! j! k! stirling2 r, i * stirling2 s, j * stirling2 t, k :
 M;
 od;od;od;
 od;od;

 # Returns S,U,V, the Smith Normal form of M.
S ismith M, U, V ;
L :
 
 
 # Stores the p-adic norms of the diagonal of S in the list L.

for i from 1 to 
n 1 n 2

2 
 do

 L op L , ordp S i, i , p :od: 
 
 # appends L to LL, which will contain the p-adic norms of the basis elements for degrees 1 to q.
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> > 

(1)(1)

> > 

(2)(2)

> > 

 LL op LL , L ;
od:
 
 #At this point we are done looping from degrees 1 to q.
 
 

# Create a matrix N which is table 5.2 in the thesis, where for degree i, N[i,j], is how many 
basis elements have denominators with 2-adic norm j.

 N Matrix q, q :
 #Note that the second q in the dimension could be smaller since we get columns of zeros.
 for i from 1 to q do for j from 0 to q 1  do
 N i, j 1 num j, LL i ;od;od;
 N;

3 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 3 0 0 0 0 0 0 0 0 0 0 0 0

7 8 0 0 0 0 0 0 0 0 0 0 0 0

7 14 0 0 0 0 0 0 0 0 0 0 0 0

7 14 4 3 0 0 0 0 0 0 0 0 0 0

7 14 6 9 0 0 0 0 0 0 0 0 0 0

7 14 7 14 3 0 0 0 0 0 0 0 0 0

7 14 7 14 13 0 0 0 0 0 0 0 0 0

7 14 7 14 21 3 0 0 0 0 0 0 0 0

7 14 7 14 28 8 0 0 0 0 0 0 0 0

7 14 7 14 28 14 4 3 0 0 0 0 0 0

7 14 7 14 28 14 6 15 0 0 0 0 0 0

7 14 7 14 28 14 7 25 3 1 0 0 0 0

#The next section shows how to extract polynomials, from the Smith normal form by using the 
matrix U above. We will illustrate this for degree 14, and by looking at the last row of N above 
we know we have a basis element with a 29 in its denominator.

#V is a vector of coefficients of the polynomials of degree 14 with a 29 in its denominator.
V Row eval U , 120 ;

V  

 1 .. 120 Vectorrow

Data Type: anything

Storage: rectangular

Order: Fortran_order

#We reduce these coefficient mod 29, to make the polynomial easier to display.
 Vmod :
 for i in V do: Vmod op Vmod ,mod i, 29 :
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 od:
 Vmod;

0, 256, 0, 64, 384, 128, 192, 72, 40, 256, 304, 72, 488, 272, 32, 416, 262, 476, 444, 382, 352,
272, 354, 31, 14, 337, 252, 160, 320, 468, 264, 316, 192, 204, 340, 64, 272, 396, 370, 46,
296, 462, 174, 136, 224, 32, 38, 456, 390, 178, 430, 258, 248, 430, 352, 304, 210, 247, 120,
148, 146, 404, 388, 257, 380, 96, 64, 216, 300, 330, 40, 262, 122, 232, 306, 248, 440, 0,
320, 88, 120, 420, 177, 496, 450, 36, 93, 400, 504, 48, 384, 256, 64, 168, 256, 86, 188, 476,
304, 126, 260, 8, 400, 32, 0, 0, 0, 128, 256, 480, 64, 0, 0, 96, 64, 64, 128, 256, 0, 0

#Divide the coefficients by 29, since we want an IVP with 29 in its denominator.
V ;

 for i in Vmod do: V op V ,
i 1
29 :

 od:
 V;

V  

0,
1
2

, 0,
1
8

,
3
4

,
1
4

,
3
8

,
9

64
,

5
64

,
1
2

,
19
32

,
9

64
,

61
64

,
17
32

,
1

16
,

13
16

,
131
256

,
119
128

,
111
128

,

191
256

,
11
16

,
17
32

,
177
256

,
31

512
,

7
256

,
337
512

,
63

128
,

5
16

,
5
8

,
117
128

,
33
64

,
79

128
,

3
8

,
51

128
,

85
128

,
1
8

,
17
32

,
99

128
,

185
256

,
23

256
,

37
64

,
231
256

,
87

256
,

17
64

,
7

16
,

1
16

,
19

256
,

57
64

,
195
256

,

89
256

,
215
256

,
129
256

,
31
64

,
215
256

,
11
16

,
19
32

,
105
256

,
247
512

,
15
64

,
37

128
,

73
256

,
101
128

,
97

128
,

257
512

,
95
128

,
3

16
,

1
8

,
27
64

,
75

128
,

165
256

,
5

64
,

131
256

,
61

256
,

29
64

,
153
256

,
31
64

,
55
64

, 0,
5
8

,

11
64

,
15
64

,
105
128

,
177
512

,
31
32

,
225
256

,
9

128
,

93
512

,
25
32

,
63
64

,
3

32
,

3
4

,
1
2

,
1
8

,
21
64

,
1
2

,

43
256

,
47
128

,
119
128

,
19
32

,
63

256
,

65
128

,
1

64
,

25
32

,
1

16
, 0, 0, 0,

1
4

,
1
2

,
15
16

,
1
8

, 0, 0,
3

16
,

1
8

,
1
8

,
1
4

,
1
2

, 0, 0

#Produce in lexicographical order, all monomials of degree 14.
m 14; 
 B ;
 for i  from 0 to m do: 
 for j from 0 to m do:
 for k from 0 to m do:
 
 if i j k = m  then: B op B , xi yj zk ;  end if;
  
 od;od;od;   

112



(5)(5)

> > 

> > 

(6)(6)

 #Reversing the list produces the ordering we want.    
  B Reverse B ;  

m  14
B  

B  x14, x13 y, x13 z, x12 y2, x12 y z, x12 z2, x11 y3, x11 y2 z, x11 y z2, x11 z3, x10 y4, x10 y3 z,

x10 y2 z2, x10 y z3, x10 z4, x9 y5, x9 y4 z, x9 y3 z2, x9 y2 z3, x9 y z4, x9 z5, x8 y6, x8 y5 z,

x8 y4 z2, x8 y3 z3, x8 y2 z4, x8 y z5, x8 z6, x7 y7, x7 y6 z, x7 y5 z2, x7 y4 z3, x7 y3 z4, x7 y2 z5,

x7 y z6, x7 z7, x6 y8, x6 y7 z, x6 y6 z2, x6 y5 z3, x6 y4 z4, x6 y3 z5, x6 y2 z6, x6 y z7, x6 z8, x5 y9,

x5 y8 z, x5 y7 z2, x5 y6 z3, x5 y5 z4, x5 y4 z5, x5 y3 z6, x5 y2 z7, x5 y z8, x5 z9, x4 y10, x4 y9 z,

x4 y8 z2, x4 y7 z3, x4 y6 z4, x4 y5 z5, x4 y4 z6, x4 y3 z7, x4 y2 z8, x4 y z9, x4 z10, x3 y11, x3 y10 z,

x3 y9 z2, x3 y8 z3, x3 y7 z4, x3 y6 z5, x3 y5 z6, x3 y4 z7, x3 y3 z8, x3 y2 z9, x3 y z10, x3 z11,

x2 y12, x2 y11 z, x2 y10 z2, x2 y9 z3, x2 y8 z4, x2 y7 z5, x2 y6 z6, x2 y5 z7, x2 y4 z8, x2 y3 z9,

x2 y2 z10, x2 y z11, x2 z12, x y13, x y12 z, x y11 z2, x y10 z3, x y9 z4, x y8 z5, x y7 z6, x y6 z7,

x y5 z8, x y4 z9, x y3 z10, x y2 z11, x y z12, x z13, y14, y13 z, y12 z2, y11 z3, y10 z4, y9 z5, y8 z6,

y7 z7, y6 z8, y5 z9, y4 z10, y3 z11, y2 z12, y z13, z14

#Change V to a list instead of a vector, to be capable of using the dot product procedure.
Vlist :
 for i in V do: Vlist op Vlist , i : od:
 Vlist :
#Taking the dot product of B the monomials and Vlist the coefficients produces the IVP f.
f DotProduct B, Vlist ;

f  
1
2

 y2 z12 1
64

 x y3 z10 1
8

 y5 z9 65
128

 x y4 z9 63
256

 x y5 z8 19
32

 x y6 z7

119
128

 x y7 z6 47
128

 x y8 z5 43
256

 x y9 z4 1
2

 x y10 z3 21
64

 x y11 z2 1
8

 x y12 z

1
2

 x y13 3
4

 x2 z12 3
32

 x2 y z11 63
64

 x2 y2 z10 25
32

 x2 y3 z9 93
512

 x2 y4 z8

9
128

 x2 y5 z7 225
256

 x2 y6 z6 31
32

 x2 y7 z5 177
512

 x2 y8 z4 105
128

 x2 y9 z3

15
64

 x2 y10 z2 11
64

 x2 y11 z
5
8

 x2 y12 55
64

 x3 y z10 31
64

 x3 y2 z9

153
256

 x3 y3 z8 29
64

 x3 y4 z7 61
256

 x3 y5 z6 131
256

 x3 y6 z5 5
64

 x3 y7 z4

165
256

 x3 y8 z3 75
128

 x3 y9 z2 27
64

 x3 y10 z
1
8

 x3 y11 3
16

 x4 z10 95
128

 x4 y z9

257
512

 x4 y2 z8 97
128

 x4 y3 z7 101
128

 x4 y4 z6 73
256

 x4 y5 z5 37
128

 x4 y6 z4
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15
64

 x4 y7 z3 247
512

 x4 y8 z2 105
256

 x4 y9 z
19
32

 x4 y10 11
16

 x5 z9 215
256

 x5 y z8

31
64

 x5 y2 z7 129
256

 x5 y3 z6 215
256

 x5 y4 z5 89
256

 x5 y5 z4 195
256

 x5 y6 z3

57
64

 x5 y7 z2 19
256

 x5 y8 z
1

16
 x5 y9 7

16
 x6 z8 17

64
 x6 y z7 87

256
 x6 y2 z6

231
256

 x6 y3 z5 37
64

 x6 y4 z4 23
256

 x6 y5 z3 185
256

 x6 y6 z2 99
128

 x6 y7 z

17
32

 x6 y8 1
8

 x7 z7 85
128

 x7 y z6 51
128

 x7 y2 z5 3
8

 x7 y3 z4 79
128

 x7 y4 z3

33
64

 x7 y5 z2 117
128

 x7 y6 z
5
8

 x7 y7 5
16

 x8 z6 63
128

 x8 y z5 337
512

 x8 y2 z4

7
256

 x8 y3 z3 31
512

 x8 y4 z2 177
256

 x8 y5 z
17
32

 x8 y6 11
16

 x9 z5 191
256

 x9 y z4

111
128

 x9 y2 z3 119
128

 x9 y3 z2 131
256

 x9 y4 z
13
16

 x9 y5 1
16

 x10 z4 17
32

 x10 y z3

61
64

 x10 y2 z2 9
64

 x10 y3 z
19
32

 x10 y4 1
2

 x11 z3 5
64

 x11 y z2 9
64

 x11 y2 z

3
8

 x11 y3 1
4

 x12 z2 3
4

 x12 y z
1
8

 x12 y2 1
2

 x13 y
1
8

 y4 z10 3
16

 y6 z8

1
2

 y11 z3 15
16

 y10 z4 1
4

 y3 z11 25
32

 x y2 z11 1
16

 x y z12 1
4

 y12 z2

1
8

 y9 z5

#Unapplying f will allow us to evaluate at given triples (i,j,k).
f unapply f, x, y, z :

#Show that f is an IVP, by evaluating it at all triples (i,j,k) of positive integers less than 29.
for i from 0 to 511 do:
for j from 0 to 511 do:
for k from 0 to 511 do:
 
 a f i, j, k ;
 if type a, integer = false then: print "error" ; end if:
 od:od:od:
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#  Code that shows that taking the dual of the HNF of the dual of the bases of IVPs where one 
variable is restricted to evaluate at odd values only produces a basis for homogeneous IVPs. 
Taking the SNF of the HNF will produce a basis equivalent to the one in the previous code.

#Upload necessary procedures.
 with ListTools : with linalg : with LinearAlgebra : with padic : with PolynomialTools :

 with combinat : interface rtablesize = 110  : 
#create binomial polynomial of degree n.
binompoly proc x, n
 local f, i, v;
 v ordp n! , 2 ;

 f
1
2v ;

 for i from 0 to n 1 do:
 f f x i ;
 od:
 return f;
 end:

#find basis of 2-variable IVPs of degree less than n, for all subsets of two variables from (x,y,z).
binomxy proc n
 local i, j, Lxy;
 Lxy :
 for i from 0 to n do:
 for j from 0 to n do:
 if i j n then Lxy op Lxy , binompoly x, i binompoly y, j : fi:
 od:od: 
 return Lxy;
end:
binomxz proc n
 local i, j, Lxz;
 Lxz :
 for i from 0 to n do:
 for j from 0 to n do:
 if i j n then Lxz op Lxz , binompoly x, i binompoly z, j : fi:
 od:od: 
 return Lxz;
end:
binomyz proc n
 local i, j, Lyz;
 Lyz :
 for i from 0 to n do:
 for j from 0 to n do:
 if i j n then Lyz op Lyz , binompoly y, i binompoly z, j : fi:
 od:od: 
 return Lyz;
end:
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#Homogenize these at the third variable.
homogz proc LB, n
 local f, LH, g;
 LH :
 for f in LB do:
 f unapply f, x, y :

 g zn f
x
z

,
y
z

:

 LH op LH , expand g :
 od:
 return  LH;
 end:
homogy proc LB, n
 local f, LH, g;
 LH :
 for f in LB do:
 f unapply f, x, z :

 g yn f
x
y

,
z
y

:

 LH op LH , expand g :
 od:
 return  LH;
 end:
homogx proc LB, n
 local f, LH, g;
 LH :
 for f in LB do:
 f unapply f, y, z :

 g xn f
y
x

,
z
x

:

 LH op LH , expand g :
 od:
 return  LH;
 end:

#Create a list in lexicographical order of all monomials of degree n.
monomials proc n
 local LM, i, j, k;
 LM :
for i from 0 to n do:
for j from 0 to n do:
for k from 0 to n do:
 if i j k = n  then LM op LM , xi yj zk :fi:
 od:od:od:
 return  Reverse LM ;
 end:
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#Given a polynomial f and a variable return the coefficent of the variable in f.
co proc f, x
    local c, i, k;
    c coeffs f, indets x , k ;
    if member x, k , i  then c i  else 0 fi
 end:
#Given a homogeneous polynomial f of degree n return a list of coefficients of f, given the 

lexicographical ordering.
listofcoeffs proc f, n
 local fn, i, v, u, gn, L, k, w, LM;
 gn expand f :
 L :
 LM monomials n :
 for i  in LM do:
  v co gn, i :
 L op L , v :
 od:
 return L;
 end:

# Finding bases using intersection of lattices, create three empty lists Lpolys for the polynomials 
from the HNF, Lotherpolys for the polynomials from SNF and LLL to count denominators.

Lpolys :
 Lotherpolys :
 LLL :
 
 #Repeat the process for degrees 1 to 14.
 for m from 1 to 14 do:
 

#Create a list of two binomial variable polynomials of degree m, the variable in the name of 
the list is the one not present in the polynomials.

 LBz binomxy m :
 LBy binomxz m :
 LBx binomyz m :
 
 

#Homogenize the list at the third variable, which is the one restricted to be odd only. The 
varaible in the name of the list is the one the polynomials were homogenized at.

LHz homogz LBz, m :
LHy homogy LBy, m :
LHx homogx LBx, m :
 
 

#For each of these store in a list of list the coefficients of the homogeneous monomials from the
two variable binomial polynomials that were homogenized.  

  LL0 :
 for i in LHz do:
 LL0 op LL0 , listofcoeffs i, m :
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 LL :
 for i in LHy do:
 LL op LL , listofcoeffs i, m :
 od:
 LL1 :
 for i in LHx do:
 LL1 op LL1 , listofcoeffs i, m :
 od:
 
 

#Create matrices from the list of list and take their dual, DA, DB, DC are the dual basis for 
each homogeneous basis where one varaible evalautes at only odd values.

 C Matrix LL0 :
 C Transpose C :
 A Matrix LL :
 A Transpose A :
B Matrix LL1 :
B Transpose B :
DC C.MatrixInverse Transpose C .C :
DB B.MatrixInverse Transpose B .B :
DA A.MatrixInverse Transpose A .A :
 
 #Join these matrices and take the HNF of the result
DC Matrix DC, DA, DB :
HDC HermiteForm Transpose DC :
 
 #Remove all rows of zeros from the HNF and dualize
 n Dimension HDC 2 :
HDC HDC 1 ..n, 1 ..n :
H HDC.MatrixInverse Transpose HDC .HDC :
 
#The the SNF of the HNF to obtain bases similar as the ones on the previous code.
 S SmithForm HDC :
 
 

#Using the dual of the HNF creat a list of homogeneous integer valued polynomial by taking 
the dot product of the coefficients from the rows of H and the lexicographical ordering.

  LP :
 for i from 1 to Dimension H 1  do:
 f Vector Row H, i .Vector monomials m :
 LP op LP , f :
 od:
 
 #Lpolys a list of IVPs of degree m for each m up to degree 14.
 Lpolys op Lpolys , LP :
 
 #count the 2-adic norm of the diagonal of the SNF, and store it in LLL the list of list.
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 L :
 for i from 1 to n do
 L op L , ordp S i, i , 2 :od: 
 LLL op LLL , L ;

 od:

#Look at the polynomials from the Hermite normal form and find the denomianator with greatest 2
-adic norm.

L2 :
 for i in Lpolys do: 
L0 :
 for j in i do:
 L1 coeffs j :
 c 0 :
 for k in L1 do:
 d ordp k, 2 :
 if d c then c d :fi:
 od:
 L0 op L0 , c :
 od: 
 L2 op L2 , L0 :
od:

#necessary procedure used to count how many of the polynomials have a certain 2-adic norm
 num proc a, L  local i, c; c 0;for i from 1 to nops L  do if L i = a then c c 1 else 

fi; od ; c;end:
 N Matrix nops L2 , nops L2 1 :
 
 

# builds the table with ij-entry the number of basis elementsin degree i whose denominator is 
of 2-norm j, from the polynomials obtained by the HNF. 

 for i from 1 to nops L2  do for j from 0 to nops L2 2  do
 N i, j 1 num j, L2 i ;od;od;
N;
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3 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 3 0 0 0 0 0 0 0 0 0 0 0

7 8 0 0 0 0 0 0 0 0 0 0 0

7 14 0 0 0 0 0 0 0 0 0 0 0

7 11 7 3 0 0 0 0 0 0 0 0 0

7 10 7 12 0 0 0 0 0 0 0 0 0

7 10 8 17 3 0 0 0 0 0 0 0 0

7 10 4 14 20 0 0 0 0 0 0 0 0

7 10 4 14 28 3 0 0 0 0 0 0 0

7 10 4 14 35 8 0 0 0 0 0 0 0

7 10 4 10 22 23 12 3 0 0 0 0 0

7 10 4 10 18 6 27 23 0 0 0 0 0

7 10 4 10 18 7 18 34 7 5 0 0 0

#Note that this matrix is different from the one of the SNF technique.
#We count the 2-adic norm of the diagonal elements of the Smith normal form of the Hermite 

normal form
N1 Matrix nops L2 , nops L2 1 :
 
 

# builds the table with ij-entry the number of basis elements of degree i whose denominator is 
of 2-norm j 

 for i from 1 to nops L2   do for j from 0 to nops L2 2  do
 N1 i, j 1 num j, LLL i ;od;od;
N1;
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3 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 3 0 0 0 0 0 0 0 0 0 0 0

7 8 0 0 0 0 0 0 0 0 0 0 0

7 14 0 0 0 0 0 0 0 0 0 0 0

7 14 4 3 0 0 0 0 0 0 0 0 0

7 14 6 9 0 0 0 0 0 0 0 0 0

7 14 7 14 3 0 0 0 0 0 0 0 0

7 14 7 14 13 0 0 0 0 0 0 0 0

7 14 7 14 21 3 0 0 0 0 0 0 0

7 14 7 14 28 8 0 0 0 0 0 0 0

7 14 7 14 28 14 4 3 0 0 0 0 0

7 14 7 14 28 14 6 15 0 0 0 0 0

7 14 7 14 28 14 7 25 3 1 0 0 0

#this produced the same matrix as the SNF code
#L2 contains the 2-adic norm of the denomianators of the IVPs obtained by the hermite normal 

form, find the indices of the degree 14 polynomials with a 29 in their denomiantor
 for i from 1 to 120 do: if L2 14 i = 9 then print i ;fi:od:

100
101
102
103
104

#Take f obtained from the dual of the Hermite normal form, which is an IVP of degree 14 with 29 
in its denomiantor

 f0 Lpolys 14 100 ;

f0  
9

128
 z4 x7 y3 1

32
 z3 x7 y4 1

64
 z x3 y10 1

256
 z6 x3 y5 1

256
 z5 x3 y6

9
256

 z2 x6 y6 1
128

 z x6 y7 1
128

 z2 x5 y7 3
512

 z2 x4 y8 3
128

 z3 x4 y7

3
128

 z4 x3 y7 1
256

 z3 x3 y8 11
128

 z4 x9 y
9

64
 z3 x9 y2 1

128
 z5 x2 y7

3
512

 z4 x2 y8 1
64

 z x5 y8 3
256

 z5 x5 y4 1
256

 z4 x5 y5 1
64

 z9 x3 y2

1
256

 z8 x3 y3 15
256

 z x4 y9 1
128

 z4 x6 y4 1
256

 z5 x4 y5 1
128

 z4 x4 y6

1
256

 z8 x y5 1
128

 z6 x y7 1
64

 z5 x y8 3
256

 z4 x y9 1
64

 z3 x y10

121



> > 

(6)(6)

(5)(5)

> > 

1
64

 z2 x y11 1
256

 z3 x5 y6
23

256
 z3 x8 y3

1
128

 z9 x2 y3
1

512
 z8 x2 y4

1
256

 z6 x2 y6
1

128
 z8 x5 y

1
256

 z6 x5 y3
9

256
 z3 x6 y5

1
64

 z x7 y6

1
64

 z2 x3 y9
1

256
 z6 x6 y2

13
256

 z5 x6 y3
1

64
 z x2 y11 1

128
 z9 x4 y

1
512

 z8 x4 y2
11

512
 z2 x8 y4

25
256

 z x8 y5
5

128
 z5 x8 y

5
512

 z4 x8 y2

1
32

 z3 x10 y
1

16
 z2 x10 y2

3
64

 z5 x7 y2
7

128
 z2 x7 y5

3
32

 z2 x9 y3

11
64

 z x9 y4
5

16
 z x12 y

5
32

 z2 x11 y
5

16
 z x11 y2

23
64

 z x10 y3

 f1 Lpolys 14 101 ;

f1  
5

128
 z4 x7 y3

1
16

 z3 x7 y4
1

128
 z3 x2 y9

1
256

 z6 x3 y5
1

256
 z5 x3 y6

9
256

 z2 x6 y6
1

32
 z2 x5 y7

13
512

 z2 x4 y8
3

128
 z3 x4 y7

1
64

 z4 x3 y7

3
256

 z3 x3 y8
19

256
 z4 x9 y

17
128

 z3 x9 y2
1

128
 z5 x2 y7

1
512

 z4 x2 y8

1
256

 z x5 y8
1

256
 z5 x5 y4

1
256

 z4 x5 y5
1

128
 z9 x3 y2

1
256

 z8 x3 y3

1
64

 z2 x2 y10 1
32

 z x4 y9
1

128
 z4 x6 y4

1
256

 z5 x4 y5
1

128
 z4 x4 y6

1
128

 z9 x y4
3

128
 z5 x y8

3
64

 z3 x y10 1
16

 z2 x y11 5
256

 z3 x5 y6

71
256

 z3 x8 y3
1

512
 z8 x2 y4

1
256

 z6 x2 y6
3

256
 z8 x5 y

1
256

 z6 x5 y3

5
256

 z3 x6 y5
9

128
 z x7 y6

3
128

 z2 x3 y9
1

256
 z6 x6 y2

11
256

 z5 x6 y3

1
16

 z x2 y11 1
64

 z9 x4 y
1

512
 z8 x4 y2

1
512

 z2 x8 y4
7

64
 z x8 y5

5
64

 z5 x8 y
9

512
 z4 x8 y2

1
16

 z3 x10 y
3

64
 z2 x10 y2

3
128

 z6 x7 y

1
32

 z5 x7 y2
3

128
 z2 x7 y5

1
8

 z2 x9 y3
35

256
 z x9 y4

3
8

 z x12 y
15
64

 z2 x11 y

5
64

 z x11 y2
9

64
 z x10 y3

 f2 Lpolys 14 102 ;

f2  
9

128
 z4 x7 y3

3
32

 z3 x7 y4
1

128
 z3 x2 y9

1
256

 z6 x3 y5
3

256
 z5 x3 y6
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5
256

 z2 x6 y6
1

32
 z x6 y7

3
64

 z2 x5 y7
1

512
 z2 x4 y8

7
128

 z3 x4 y7

1
32

 z4 x3 y7
1

256
 z3 x3 y8

21
256

 z4 x9 y
9

64
 z3 x9 y2

1
128

 z5 x2 y7

3
512

 z4 x2 y8
1

256
 z x5 y8

1
256

 z5 x5 y4
3

256
 z4 x5 y5

1
64

 z10 x3 y

1
64

 z9 x3 y2
1

256
 z8 x3 y3

1
64

 z2 x2 y10 3
64

 z x4 y9
1

64
 z4 x6 y4

1
256

 z5 x4 y5
1

64
 z4 x4 y6

1
64

 z10 x y3
1

64
 z5 x y8

1
64

 z4 x y9
3

64
 z3 x y10

1
16

 z2 x y11 1
256

 z3 x5 y6
93

256
 z3 x8 y3

1
128

 z9 x2 y3
1

512
 z8 x2 y4

1
128

 z7 x2 y5
1

256
 z6 x2 y6

1
256

 z8 x5 y
1

256
 z6 x5 y3

17
256

 z3 x6 y5

1
128

 z x7 y6
1

128
 z2 x3 y9

1
64

 z7 x6 y
1

256
 z6 x6 y2

5
256

 z5 x6 y3

1
16

 z x2 y11 1
128

 z9 x4 y
1

512
 z8 x4 y2

1
128

 z7 x4 y3
3

512
 z2 x8 y4

3
32

 z x8 y5
1

128
 z5 x8 y

13
512

 z4 x8 y2
15
64

 z3 x10 y
1

128
 z6 x7 y

3
64

 z5 x7 y2
1

128
 z2 x7 y5

19
64

 z2 x9 y3
3

256
 z x9 y4

3
4

 z x12 y
9

64
 z2 x11 y

9
64

 z x11 y2
53
64

 z x10 y3

 f3 Lpolys 14 103 ;

f3  
3

64
 z4 x7 y3

1
128

 z3 x7 y4
1

128
 z3 x2 y9

1
256

 z6 x3 y5
3

256
 z5 x3 y6

1
256

 z2 x6 y6
1

64
 z x6 y7

1
64

 z2 x5 y7
5

512
 z2 x4 y8

1
32

 z3 x4 y7

1
64

 z4 x3 y7
3

256
 z3 x3 y8

19
256

 z4 x9 y
21

128
 z3 x9 y2

1
512

 z4 x2 y8

3
256

 z x5 y8
3

256
 z5 x5 y4

1
256

 z4 x5 y5
1

64
 z9 x3 y2

1
256

 z8 x3 y3

7
128

 z x4 y9
1

256
 z5 x4 y5

1
64

 z11 x y2
1

256
 z9 x y4

1
128

 z7 x y6

1
256

 z5 x y8
1

64
 z11 x2 y

1
256

 z3 x5 y6
37

256
 z3 x8 y3

1
128

 z9 x2 y3

1
512

 z8 x2 y4
1

256
 z6 x2 y6

3
256

 z8 x5 y
1

64
 z7 x5 y2

1
256

 z6 x5 y3
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> > 

> > 

(8)(8)

> > 

9
256

 z3 x6 y5 3
128

 z x7 y6 1
128

 z2 x3 y9 5
128

 z7 x6 y
3

256
 z6 x6 y2

1
256

 z5 x6 y3 1
32

 z x2 y11 3
256

 z9 x4 y
5

512
 z8 x4 y2 1

64
 z7 x4 y3

11
512

 z2 x8 y4 21
128

 z x8 y5 11
256

 z5 x8 y
5

512
 z4 x8 y2 15

64
 z3 x10 y

3
64

 z2 x10 y2 3
128

 z6 x7 y
13

128
 z5 x7 y2 1

64
 z2 x7 y5 17

128
 z2 x9 y3

35
256

 z x9 y4 1
4

 z x12 y
5

64
 z2 x11 y

27
64

 z x11 y2 1
2

 z x10 y3

 f4 Lpolys 14 104 ;

f4  
5

128
 z4 x7 y3 11

128
 z3 x7 y4 1

256
 z6 x3 y5 1

256
 z5 x3 y6 1

256
 z2 x6 y6

1
32

 z2 x5 y7 3
512

 z2 x4 y8 1
128

 z3 x4 y7 1
64

 z4 x3 y7 5
256

 z3 x3 y8

27
256

 z4 x9 y
21

128
 z3 x9 y2 1

128
 z5 x2 y7 1

512
 z4 x2 y8 5

256
 z x5 y8

1
256

 z5 x5 y4 1
256

 z4 x5 y5 1
64

 z10 x3 y
1

64
 z9 x3 y2 1

256
 z8 x3 y3

1
64

 z2 x2 y10 3
64

 z x4 y9 1
128

 z4 x6 y4 1
256

 z5 x4 y5 1
128

 z4 x4 y6

1
16

 z x y12 1
16

 z12 x y
1

256
 z3 x5 y6 41

256
 z3 x8 y3 1

512
 z8 x2 y4

1
128

 z7 x2 y5 1
256

 z6 x2 y6 3
256

 z8 x5 y
1

256
 z6 x5 y3 1

256
 z3 x6 y5

3
128

 z x7 y6 1
128

 z2 x3 y9 1
256

 z6 x6 y2 11
256

 z5 x6 y3 1
32

 z x2 y11

1
64

 z9 x4 y
1

512
 z8 x4 y2 1

128
 z7 x4 y3 1

512
 z2 x8 y4 1

16
 z x8 y5

1
64

 z5 x8 y
9

512
 z4 x8 y2 1

64
 z2 x10 y2 5

128
 z6 x7 y

7
128

 z5 x7 y2

5
128

 z2 x7 y5 3
16

 z2 x9 y3 15
256

 z x9 y4 3
8

 z x12 y
9

64
 z2 x11 y

13
64

 z x11 y2

19
64

 z x10 y3

#Show that these are IVPs, by evaluating these at all triples (i,j,k) where the indices range through 
all values less than 512.

 f0 unapply f0, x, y, z : f1 unapply f1, x, y, z : f2 unapply f2, x, y, z : f3
unapply f3, x, y, z : f4 unapply f4, x, y, z :

 for i from 0 to 511 do:
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> > 

> > 

> > 

for j from 0 to 511 do:
for k from 0 to 511 do:
 c0 0 :
 a0 f0 i, j, k ; if type a0, integer = false then: c0 c0 1; end if: 
  c1 0 :
 a1 f1 i, j, k ; if type a1, integer = false then: c1 c1 1; end if:  
 c2 0 :
 a2 f2 i, j, k ; if type a0, integer = false then: c2 c2 1; end if: 
  c3 0 :
 a3 f3 i, j, k ; if type a3, integer = false then: c3 c3 1; end if: 
  c4 0 :
 a4 f4 i, j, k ; if type a4, integer = false then: c4 c4 1; end if: 
 od:od:od:
c0, c1, c2, c3, c4;
i;
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

#Code that for a given m that is a power of 2, will generate all points (and lines) in ZmP2.
#Upload necessary procedures.
with padic :
#For a given m, find all triples over Zm, where at least one entry is odd, store these in L.
 m 4 :
 L :
 for i from 0 to m 1 do:
 for j from 0 to m 1 do:
 for k from 0 to m 1 do:
 

 if type
i
2

, integer and type
j
2

, integer  and type
k
2

, integer then c 0 : 

else L op L , i, j, k :fi:
 
 od:od:od:

#Find all units in Zm, store these in U.
U :
 for i from 1 to m 1 do:
 if gcd i, m = 1 then U op U , i :fi:
 od:

#Given all triples in L, find those who are equivalent when multiplied by a unit and only keep one 
representative per equivalence class.

P :
 
 for a in L do:
 a1 a 1 : 
 a2 a 2 : 
 a3 a 3 : 
 
 Q  a1, a2, a3 :
 for u in U do:
 for b in L do:
 
  b1 mod u b 1 , m :
 b2 mod u b 2 , m :
 b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
 od:

#Convert the set into a list, which will be the list of points and lines in ZmP2.
Q :
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> > 

> > 

> > 

> > 

> > 

(1)(1)

(2)(2)

> > 

 for i in P do:
 Q op Q , i 1 :
 od:
#Display Q, which in this case represents all points in Z4P2

Q;
0, 0, 1 , 0, 1, 0 , 0, 1, 1 , 0, 1, 2 , 0, 1, 3 , 0, 2, 1 , 1, 0, 0 , 1, 0, 1 , 1, 0, 2 , 1, 0,

3 , 1, 1, 0 , 1, 1, 1 , 1, 1, 2 , 1, 1, 3 , 1, 2, 0 , 1, 2, 1 , 1, 2, 2 , 1, 2, 3 , 1, 3, 0 ,
1, 3, 1 , 1, 3, 2 , 1, 3, 3 , 2, 0, 1 , 2, 1, 0 , 2, 1, 1 , 2, 1, 2 , 2, 1, 3 , 2, 2, 1

#Group the points according to what they are congruent over Z2P2

S :
  for a in Q do:
 a1 mod a 1 , 2 :
 a2 mod a 2 , 2 :
 a3 mod a 3 , 2 :
 
 T  a 1 , a 2 , a 3 :

 for b in Q do:
 b1 mod b 1 , 2 :
 b2 mod b 2 , 2 :
 b3 mod b 3 , 2 :
 

 if a1 = b1  and a2 = b2  and a3 = b3   then  T T b 1 , b 2 , b 3 :  fi:

od:

 S S T :

 od:

for i in S do: print i : od:
0, 0, 1 , 0, 2, 1 , 2, 0, 1 , 2, 2, 1
0, 1, 0 , 0, 1, 2 , 2, 1, 0 , 2, 1, 2
0, 1, 1 , 0, 1, 3 , 2, 1, 1 , 2, 1, 3
1, 0, 0 , 1, 0, 2 , 1, 2, 0 , 1, 2, 2
1, 0, 1 , 1, 0, 3 , 1, 2, 1 , 1, 2, 3
1, 1, 0 , 1, 1, 2 , 1, 3, 0 , 1, 3, 2
1, 1, 1 , 1, 1, 3 , 1, 3, 1 , 1, 3, 3

#Each set is 4 lines over Z4P2 that are congruent over Z2P2
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> > 

> > 

> > 

> > 

> > 

kernelopts printbytes = false :
#this file shows that the polynomial we are interested in is not made of a product of 14 linear 

factors that correspont to a product of seven pair of lines that are congruent in the fano plane.

#the polynomial obtained from the Smith normal form and the matrix of Sterling coefficients

f :=
7
16

 x6 z8 17
64

 x6 y z7 87
256

 x6 y2 z6 231
256

 x6 y3 z5 37
64

 x6 y4 z4 23
256

 x6 y5 z3

185
256

 x6 y6 z2 99
128

 x6 y7 z
17
32

 x6 y8 1
8

 x7 z7 85
128

 x7 y z6 51
128

 x7 y2 z5

3
8

 x7 y3 z4 79
128

 x7 y4 z3 33
64

 x7 y5 z2 117
128

 x7 y6 z
5
8

 x7 y7 5
16

 x8 z6

63
128

 x8 y z5 337
512

 x8 y2 z4 7
256

 x8 y3 z3 31
512

 x8 y4 z2 177
256

 x8 y5 z

17
32

 x8 y6 11
16

 x9 z5 191
256

 x9 y z4 111
128

 x9 y2 z3 119
128

 x9 y3 z2 131
256

 x9 y4 z

13
16

 x9 y5 1
16

 x10 z4 17
32

 x10 y z3 61
64

 x10 y2 z2 9
64

 x10 y3 z
19
32

 x10 y4

1
2

 x11 z3 5
64

 x11 y z2 9
64

 x11 y2 z
3
8

 x11 y3 1
4

 x12 z2 3
4

 x12 y z

1
8

 x12 y2 1
2

 x13 y
1
2

 y2 z12 1
4

 y12 z2 1
64

 x y3 z10 65
128

 x y4 z9

63
256

 x y5 z8 19
32

 x y6 z7 119
128

 x y7 z6 47
128

 x y8 z5 43
256

 x y9 z4 1
2

 x y10 z3

21
64

 x y11 z2 1
8

 x y12 z
1
2

 x y13 3
4

 x2 z12 3
32

 x2 y z11 63
64

 x2 y2 z10

25
32

 x2 y3 z9 93
512

 x2 y4 z8 9
128

 x2 y5 z7 225
256

 x2 y6 z6 31
32

 x2 y7 z5

177
512

 x2 y8 z4 105
128

 x2 y9 z3 15
64

 x2 y10 z2 11
64

 x2 y11 z
5
8

 x2 y12

55
64

 x3 y z10 31
64

 x3 y2 z9 153
256

 x3 y3 z8 29
64

 x3 y4 z7 61
256

 x3 y5 z6

131
256

 x3 y6 z5 5
64

 x3 y7 z4 165
256

 x3 y8 z3 75
128

 x3 y9 z2 27
64

 x3 y10 z

1
8

 x3 y11 3
16

 x4 z10 95
128

 x4 y z9 257
512

 x4 y2 z8 97
128

 x4 y3 z7 101
128

 x4 y4 z6

73
256

 x4 y5 z5 37
128

 x4 y6 z4 15
64

 x4 y7 z3 247
512

 x4 y8 z2 105
256

 x4 y9 z

19
32

 x4 y10 11
16

 x5 z9 215
256

 x5 y z8 31
64

 x5 y2 z7 129
256

 x5 y3 z6 215
256

 x5 y4 z5

89
256

 x5 y5 z4 195
256

 x5 y6 z3 57
64

 x5 y7 z2 19
256

 x5 y8 z
1

16
 x5 y9 25

32
 x y2 z11

1
4

 y3 z11 3
16

 y6 z8 1
2

 y11 z3 1
8

 y4 z10 1
8

 y5 z9 1
16

 x y z12 15
16

 y10 z4

1
8

 y9 z5 :

128



> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 

(2)(2)

> > 

> > 

> > 

#clear out denominators
f 512 f;

f  256 x13 y 64 x12 y2 384 x12 y z 128 x12 z2 192 x11 y3 72 x11 y2 z 40 x11 y z2

256 x11 z3 304 x10 y4 72 x10 y3 z 488 x10 y2 z2 272 x10 y z3 32 x10 z4

416 x9 y5 262 x9 y4 z 476 x9 y3 z2 444 x9 y2 z3 382 x9 y z4 352 x9 z5

272 x8 y6 354 x8 y5 z 31 x8 y4 z2 14 x8 y3 z3 337 x8 y2 z4 252 x8 y z5

160 x8 z6 320 x7 y7 468 x7 y6 z 264 x7 y5 z2 316 x7 y4 z3 192 x7 y3 z4

204 x7 y2 z5 340 x7 y z6 64 x7 z7 272 x6 y8 396 x6 y7 z 370 x6 y6 z2

46 x6 y5 z3 296 x6 y4 z4 462 x6 y3 z5 174 x6 y2 z6 136 x6 y z7 224 x6 z8

32 x5 y9 38 x5 y8 z 456 x5 y7 z2 390 x5 y6 z3 178 x5 y5 z4 430 x5 y4 z5

258 x5 y3 z6 248 x5 y2 z7 430 x5 y z8 352 x5 z9 304 x4 y10 210 x4 y9 z

247 x4 y8 z2 120 x4 y7 z3 148 x4 y6 z4 146 x4 y5 z5 404 x4 y4 z6 388 x4 y3 z7

257 x4 y2 z8 380 x4 y z9 96 x4 z10 64 x3 y11 216 x3 y10 z 300 x3 y9 z2

330 x3 y8 z3 40 x3 y7 z4 262 x3 y6 z5 122 x3 y5 z6 232 x3 y4 z7 306 x3 y3 z8

248 x3 y2 z9 440 x3 y z10 320 x2 y12 88 x2 y11 z 120 x2 y10 z2 420 x2 y9 z3

177 x2 y8 z4 496 x2 y7 z5 450 x2 y6 z6 36 x2 y5 z7 93 x2 y4 z8 400 x2 y3 z9

504 x2 y2 z10 48 x2 y z11 384 x2 z12 256 x y13 64 x y12 z 168 x y11 z2

256 x y10 z3 86 x y9 z4 188 x y8 z5 476 x y7 z6 304 x y6 z7 126 x y5 z8

260 x y4 z9 8 x y3 z10 400 x y2 z11 32 x y z12 128 y12 z2 256 y11 z3

480 y10 z4 64 y9 z5 96 y6 z8 64 y5 z9 64 y4 z10 128 y3 z11 256 y2 z12

#reduce this polynomial mod 8
f mod f, 8 ;

f  6 x9 y4 z 4 x9 y3 z2 4 x9 y2 z3 6 x9 y z4 2 x8 y5 z 7 x8 y4 z2 6 x8 y3 z3

x8 y2 z4 4 x8 y z5 4 x7 y6 z 4 x7 y4 z3 4 x7 y2 z5 4 x7 y z6 4 x6 y7 z

2 x6 y6 z2 6 x6 y5 z3 6 x6 y3 z5 6 x6 y2 z6 6 x5 y8 z 6 x5 y6 z3 2 x5 y5 z4

6 x5 y4 z5 2 x5 y3 z6 6 x5 y z8 2 x4 y9 z 7 x4 y8 z2 4 x4 y6 z4 2 x4 y5 z5

4 x4 y4 z6 4 x4 y3 z7 x4 y2 z8 4 x4 y z9 4 x3 y9 z2 2 x3 y8 z3 6 x3 y6 z5

2 x3 y5 z6 2 x3 y3 z8 4 x2 y9 z3 x2 y8 z4 2 x2 y6 z6 4 x2 y5 z7 5 x2 y4 z8

6 x y9 z4 4 x y8 z5 4 x y7 z6 6 x y5 z8 4 x y4 z9

#multiply f by all the other units mod 8
f1 mod 3 f, 8 :
f2 mod 5 f, 8 :
f3 mod 7 f, 8 :

#find all 4 linear factors mod 8 that are congruent to a factor coming from a line over Z4P2

129



> > 

> > 

> > 

> > 

#lines congruent in Z2P2 have been grouped
#store the coefficients of each line

L 0, 1, 2, 3, 4, 5, 6, 7 :
 M1 : M2 : M3 : M4 :

 h1 x : 
 h2 x 2 y :
 h3 x 2 z :
 h4 x 2 y 2 z :

 for i in L do:
 for j in L do:
 for k in L do:
 g i x j y k z :
 g1 mod g, 4 :
 if g1 = h1 then M1 op M1 , i, j, k : fi:
  if g1 = h2 then M2 op M2 , i, j, k : fi:
  if g1 = h3 then M3 op M3 , i, j, k : fi:
  if g1 = h4 then M4 op M4 , i, j, k : fi:
 od:od:od:
 
 PP :
U 1, 3, 5, 7 :
 m 8 :
 
 M M1, M2, M3, M4 :

 for Mi in M do:
 P :
 for a in Mi do:
 
 a1 a 1 : a2 a 2 : a3 a 3 : 

 Q a1, a2, a3 :
 for u in U do:
  for b in Mi do:
 b1 mod u b 1 , m : b2 mod u b 2 , m : b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
 od:
 PP op PP , P :
 od:
 
 Q0 : for i in PP 1  do: Q0 op Q0 , i 1 : od: Q0;
 Q1 :for i in PP 2  do: Q1 op Q1 , i 1 :od: Q1;
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> > 

> > 

(4)(4)

(3)(3)

> > 

> > 

> > 

 Q2 :for i in PP 3  do: Q2 op Q2 , i 1 :od: Q2; 
 Q3 : for i in PP 4  do: Q3 op Q3 , i 1 :od: Q3;  
 QQ1 op Q0 , op Q1 , op Q2 , op Q3 :

1, 0, 0 , 1, 0, 4 , 1, 4, 0 , 1, 4, 4
1, 2, 0 , 1, 2, 4 , 1, 6, 0 , 1, 6, 4
1, 0, 2 , 1, 0, 6 , 1, 4, 2 , 1, 4, 6
1, 2, 2 , 1, 2, 6 , 1, 6, 2 , 1, 6, 6

#then with the 16 factors all congruent mod 2, find all the possible quadratics that are a product of
two of these, store these in Ri

R1 :
 
 for i in QQ1 do:
 for j in QQ1 do:
 
 i1 i 1 x i 2 y i 3 z :
  j1 j 1 x j 2 y j 3 z :
  g mod expand i1 j1 , 8 :

 R1 R1 g :

 od:od:

R1;
x2, x2 4 y2, x2 2 x y, x2 4 x y, x2 6 x y, x2 4 z2, x2 2 x z, x2 4 x z, x2 6 x z, x2

4 x y 4 y2, x2 4 x z 4 z2, x2 4 y2 4 z2, x2 4 x z 4 y2, x2 4 x y 4 z2, x2

2 x y 2 x z, x2 2 x y 4 x z, x2 2 x y 6 x z, x2 4 x y 2 x z, x2 4 x y

4 x z, x2 4 x y 6 x z, x2 6 x y 2 x z, x2 6 x y 4 x z, x2 6 x y 6 x z, x2

4 x z 4 y2 4 z2, x2 2 x z 4 y2 4 y z, x2 6 x z 4 y2 4 y z, x2 2 x y

4 y z 4 z2, x2 6 x y 4 y z 4 z2, x2 4 x y 4 y2 4 z2, x2 4 x y 4 x z

4 z2, x2 2 x y 2 x z 4 y z, x2 2 x y 6 x z 4 y z, x2 6 x y 2 x z 4 y z, x2

6 x y 6 x z 4 y z, x2 4 x y 4 x z 4 y2, x2 2 x y 4 x z 4 y z 4 z2, x2

6 x y 4 x z 4 y z 4 z2, x2 4 x y 4 x z 4 y2 4 z2, x2 4 x y 2 x z 4 y2

4 y z, x2 4 x y 6 x z 4 y2 4 y z

L 0, 1, 2, 3, 4, 5, 6, 7 :
 M1 : M2 : M3 : M4 :

 h1 y : 
 h2 2  x y :
 h3 y 2 z :
 h4 2  x  y 2 z :
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> > 

(5)(5)

 for i in L do:
 for j in L do:
 for k in L do:
 g i x j y k z :
 g1 mod g, 4 :
 if g1 = h1 then M1 op M1 , i, j, k : fi:
  if g1 = h2 then M2 op M2 , i, j, k : fi:
  if g1 = h3 then M3 op M3 , i, j, k : fi:
  if g1 = h4 then M4 op M4 , i, j, k : fi:
 od:od:od:
 
 PP :
U 1, 3, 5, 7 :
 m 8 :
 
 M M1, M2, M3, M4 :

 for Mi in M do:
 P :
 for a in Mi do:
 
 a1 a 1 : a2 a 2 : a3 a 3 : 

 Q a1, a2, a3 :
 for u in U do:
  for b in Mi do:
 b1 mod u b 1 , m : b2 mod u b 2 , m : b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
 od:
 PP op PP , P :
 od:
 
 Q4 :for i in PP 1  do: Q4 op Q4 , i 1 :od: Q4;
 Q5 :for i in PP 2  do: Q5 op Q5 , i 1 :od: Q5;
 Q6 :for i in PP 3  do: Q6 op Q6 , i 1 :od: Q6; 
 Q7 :for i in PP 4  do: Q7 op Q7 , i 1 :od: Q7;
 QQ2 op Q4 , op Q5 , op Q6 , op Q7 :

0, 1, 0 , 0, 1, 4 , 4, 1, 0 , 4, 1, 4
2, 1, 0 , 2, 1, 4 , 6, 1, 0 , 6, 1, 4
0, 1, 2 , 0, 1, 6 , 4, 1, 2 , 4, 1, 6
2, 1, 2 , 2, 1, 6 , 6, 1, 2 , 6, 1, 6

R2 :
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(6)(6)

> > 

> > 

> > 

> > 
(7)(7)

 for i in QQ2 do:
 for j in QQ2 do:
 
 i1 i 1 x i 2 y i 3 z :
  j1 j 1 x j 2 y j 3 z :
  g mod expand i1 j1 , 8 :

 R2 R2 g :

 od:od:

R2;
y2, 2 x y y2, 4 x y y2, 6 x y y2, 4 x2 y2, y2 4 z2, y2 2 y z, y2 4 y z, y2 6 y z,

4 x2 4 x y y2, y2 4 y z 4 z2, 4 x y y2 4 z2, 2 x y y2 2 y z, 2 x y y2

4 y z, 2 x y y2 6 y z, 4 x y y2 2 y z, 4 x y y2 4 y z, 4 x y y2 6 y z, 6 x y

y2 2 y z, 6 x y y2 4 y z, 6 x y y2 6 y z, 4 x2 y2 4 z2, 4 x2 y2 4 y z,

4 x y y2 4 y z 4 z2, 2 x y 4 x z y2 4 z2, 6 x y 4 x z y2 4 z2, 2 x y 4 x z

y2 2 y z, 2 x y 4 x z y2 6 y z, 6 x y 4 x z y2 2 y z, 6 x y 4 x z y2

6 y z, 4 x2 y2 4 y z 4 z2, 4 x2 4 x z y2 2 y z, 4 x2 4 x z y2 6 y z, 4 x2

4 x y y2 4 z2, 4 x2 4 x y y2 4 y z, 2 x y 4 x z y2 4 y z 4 z2, 6 x y

4 x z y2 4 y z 4 z2, 4 x2 4 x y y2 4 y z 4 z2, 4 x2 4 x y 4 x z y2

2 y z, 4 x2 4 x y 4 x z y2 6 y z

nops R2 ;
40

L 0, 1, 2, 3, 4, 5, 6, 7 :
 M1 :M2 :M3 :M4 :

 h1 z : 
 h2 2  x 2  y z :
 h3 2 x  z :
 h4 2  y  z :

 for i in L do:
 for j in L do:
 for k in L do:
 g i x j y k z :
 g1 mod g, 4 :
 if g1 = h1 then M1 op M1 , i, j, k : fi:
  if g1 = h2 then M2 op M2 , i, j, k : fi:
  if g1 = h3 then M3 op M3 , i, j, k : fi:
  if g1 = h4 then M4 op M4 , i, j, k : fi:
 od:od:od:
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> > 

(9)(9)

> > 

(8)(8)

 PP :
U 1, 3, 5, 7 :
 m 8 :
 
 M M1, M2, M3, M4 :

 for Mi in M do:
 P :
 for a in Mi do:
 
 a1 a 1 : a2 a 2 : a3 a 3 : 

 Q a1, a2, a3 :
 for u in U do:
  for b in Mi do:
 b1 mod u b 1 , m : b2 mod u b 2 , m : b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
 od:
 PP op PP , P :
 od:
 
 Q8 :for i in PP 1  do: Q8 op Q8 , i 1 :od: Q8;
 Q9 :for i in PP 2  do: Q9 op Q9 , i 1 :od: Q9;
 Q10 :for i in PP 3  do: Q10 op Q10 , i 1 :od: Q10; 
 Q11 :for i in PP 4  do: Q11 op Q11 , i 1 :od: Q11;
 QQ3 op Q8 , op Q9 , op Q10 , op Q11 :

0, 0, 1 , 0, 4, 1 , 4, 0, 1 , 4, 4, 1
2, 2, 1 , 2, 6, 1 , 6, 2, 1 , 6, 6, 1
2, 0, 1 , 2, 4, 1 , 6, 0, 1 , 6, 4, 1
0, 2, 1 , 0, 6, 1 , 4, 2, 1 , 4, 6, 1

R3 :
 
 for i in QQ3 do:
 for j in QQ3 do:
 
 i1 i 1 x i 2 y i 3 z :
  j1 j 1 x j 2 y j 3 z :
  g mod expand i1 j1 , 8 :

 R3 R3 g :

 od:od:
R3;
z2, 2 x z z2, 4 x z z2, 6 x z z2, 4 x2 z2, 2 y z z2, 4 y z z2, 6 y z z2, 4 y2 z2,
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> > 

(10)(10)

4 x2 4 x z z2, 4 y2 4 y z z2, 2 x z 2 y z z2, 2 x z 4 y z z2, 2 x z 6 y z

z2, 4 x z 2 y z z2, 4 x z 4 y z z2, 4 x z 6 y z z2, 6 x z 2 y z z2, 6 x z

4 y z z2, 6 x z 6 y z z2, 4 x z 4 y2 z2, 4 x2 4 y z z2, 4 x2 4 y2 z2,

4 x z 4 y2 4 y z z2, 4 x y 2 x z 2 y z z2, 4 x y 2 x z 6 y z z2, 4 x y

6 x z 2 y z z2, 4 x y 6 x z 6 y z z2, 4 x y 2 x z 4 y2 z2, 4 x y 6 x z

4 y2 z2, 4 x2 4 y2 4 y z z2, 4 x2 4 x z 4 y z z2, 4 x2 4 x z 4 y2 z2,

4 x2 4 x y 2 y z z2, 4 x2 4 x y 6 y z z2, 4 x y 2 x z 4 y2 4 y z z2, 4 x y

6 x z 4 y2 4 y z z2, 4 x2 4 x z 4 y2 4 y z z2, 4 x2 4 x y 4 x z 2 y z

z2, 4 x2 4 x y 4 x z 6 y z z2

nops R3 ;
40

L 0, 1, 2, 3, 4, 5, 6, 7 :
 M1 :M2 :M3 :M4 :

 h1 x z : 
 h2  x 2  y 3  z :
 h3  x 2 y  z :
 h4 x 3  z :

 for i in L do:
 for j in L do:
 for k in L do:
 g i x j y k z :
 g1 mod g, 4 :
 if g1 = h1 then M1 op M1 , i, j, k : fi:
  if g1 = h2 then M2 op M2 , i, j, k : fi:
  if g1 = h3 then M3 op M3 , i, j, k : fi:
  if g1 = h4 then M4 op M4 , i, j, k : fi:
 od:od:od:
 
 PP :
U 1, 3, 5, 7 :
 m 8 :
 
 M M1, M2, M3, M4 :

 for Mi in M do:
 P :
 for a in Mi do:
 
 a1 a 1 : a2 a 2 : a3 a 3 : 

 Q a1, a2, a3 :
 for u in U do:
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> > 

(11)(11)

> > 

(12)(12)

  for b in Mi do:
 b1 mod u b 1 , m : b2 mod u b 2 , m : b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
 od:
 PP op PP , P :
 od:
 
 Q12 :for i in PP 1  do: Q12 op Q12 , i 1 :od: Q12;
 Q13 :for i in PP 2  do: Q13 op Q13 , i 1 :od: Q13;
 Q14 :for i in PP 3  do: Q14 op Q14 , i 1 :od: Q14; 
 Q15 :for i in PP 4  do: Q15 op Q15 , i 1 :od: Q15;
 QQ4 op Q12 , op Q13 , op Q14 , op Q15 :

1, 0, 1 , 1, 0, 5 , 1, 4, 1 , 1, 4, 5
1, 2, 3 , 1, 2, 7 , 1, 6, 3 , 1, 6, 7
1, 2, 1 , 1, 2, 5 , 1, 6, 1 , 1, 6, 5
1, 0, 3 , 1, 0, 7 , 1, 4, 3 , 1, 4, 7

R4 :
 
 for i in QQ4 do:
 for j in QQ4 do:
 
 i1 i 1 x i 2 y i 3 z :
  j1 j 1 x j 2 y j 3 z :
  g mod expand i1 j1 , 8 :

 R4 R4 g :

 od:od:

 
R4;
x2 7 z2, x2 2 x z z2, x2 2 x z 5 z2, x2 4 x z 3 z2, x2 6 x z z2, x2 6 x z

5 z2, x2 4 y2 4 y z 7 z2, x2 2 x z 4 y2 z2, x2 2 x z 4 y2 5 z2, x2

6 x z 4 y2 z2, x2 6 x z 4 y2 5 z2, x2 2 x y 2 y z 7 z2, x2 2 x y 6 y z

7 z2, x2 4 x y 4 y z 7 z2, x2 6 x y 2 y z 7 z2, x2 6 x y 6 y z 7 z2, x2

4 x y 4 y2 7 z2, x2 4 x z 4 y2 4 y z 3 z2, x2 2 x y 2 x z 2 y z z2, x2

2 x y 2 x z 6 y z 5 z2, x2 2 x y 4 x z 2 y z 3 z2, x2 2 x y 4 x z 6 y z

3 z2, x2 2 x y 6 x z 2 y z 5 z2, x2 2 x y 6 x z 6 y z z2, x2 4 x y

2 x z 4 y z z2, x2 4 x y 2 x z 4 y z 5 z2, x2 4 x y 4 x z 4 y z 3 z2,

x2 4 x y 6 x z 4 y z z2, x2 4 x y 6 x z 4 y z 5 z2, x2 6 x y 2 x z 2 y z
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(13)(13)
> > 

> > 

5 z2, x2 6 x y 2 x z 6 y z z2, x2 6 x y 4 x z 2 y z 3 z2, x2 6 x y

4 x z 6 y z 3 z2, x2 6 x y 6 x z 2 y z z2, x2 6 x y 6 x z 6 y z 5 z2,

x2 4 x y 4 x z 4 y2 3 z2, x2 4 x y 2 x z 4 y2 4 y z z2, x2 4 x y 2 x z

4 y2 4 y z 5 z2, x2 4 x y 6 x z 4 y2 4 y z z2, x2 4 x y 6 x z 4 y2

4 y z 5 z2

nops R4 ;
40

L 0, 1, 2, 3, 4, 5, 6, 7 :
 M1 :M2 :M3 :M4 :

 h1 x y z : 
 h2  x  y 3  z :
 h3  x 3 y  3  z :
 h4 x 3  y z :

 for i in L do:
 for j in L do:
 for k in L do:
 g i x j y k z :
 g1 mod g, 4 :
 if g1 = h1 then M1 op M1 , i, j, k : fi:
  if g1 = h2 then M2 op M2 , i, j, k : fi:
  if g1 = h3 then M3 op M3 , i, j, k : fi:
  if g1 = h4 then M4 op M4 , i, j, k : fi:
 od:od:od:
 
 PP :
U 1, 3, 5, 7 :
 m 8 :
 
 M M1, M2, M3, M4 :

 for Mi in M do:
 P :
 for a in Mi do:
 
 a1 a 1 : a2 a 2 : a3 a 3 : 

 Q a1, a2, a3 :
 for u in U do:
  for b in Mi do:
 b1 mod u b 1 , m : b2 mod u b 2 , m : b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
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(15)(15)

(14)(14)

> > 

> > 

 od:
 PP op PP , P :
 od:
 
 Q16 :for i in PP 1  do: Q16 op Q16 , i 1 :od: Q16;
 Q17 :for i in PP 2  do: Q17 op Q17 , i 1 :od: Q17;
 Q18 :for i in PP 3  do: Q18 op Q18 , i 1 :od: Q18; 
 Q19 :for i in PP 4  do: Q19 op Q19 , i 1 :od: Q19;
 QQ5 op Q16 , op Q17 , op Q18 , op Q19 :

1, 1, 1 , 1, 1, 5 , 1, 5, 1 , 1, 5, 5
1, 1, 3 , 1, 1, 7 , 1, 5, 3 , 1, 5, 7
1, 3, 3 , 1, 3, 7 , 1, 7, 3 , 1, 7, 7
1, 3, 1 , 1, 3, 5 , 1, 7, 1 , 1, 7, 5

R5 :
 
 for i in QQ5 do:
 for j in QQ5 do:
 
 i1 i 1 x i 2 y i 3 z :
  j1 j 1 x j 2 y j 3 z :
  g mod expand i1 j1 , 8 :

 R5 R5 g :

 od:od:
R5;
x2 7 y2 2 y z 7 z2, x2 7 y2 6 y z 7 z2, x2 2 x z 7 y2 z2, x2 6 x z 7 y2

z2, x2 2 x y y2 7 z2, x2 6 x y y2 7 z2, x2 2 x z 7 y2 4 y z 5 z2, x2

4 x z 7 y2 2 y z 3 z2, x2 4 x z 7 y2 6 y z 3 z2, x2 6 x z 7 y2 4 y z

5 z2, x2 2 x y 5 y2 4 y z 7 z2, x2 4 x y 3 y2 2 y z 7 z2, x2 4 x y

3 y2 6 y z 7 z2, x2 6 x y 5 y2 4 y z 7 z2, x2 2 x y 4 x z 5 y2 3 z2,

x2 4 x y 2 x z 3 y2 5 z2, x2 4 x y 6 x z 3 y2 5 z2, x2 6 x y 4 x z 5 y2

3 z2, x2 2 x y 2 x z y2 2 y z z2, x2 2 x y 2 x z y2 2 y z 5 z2, x2

2 x y 2 x z 5 y2 2 y z z2, x2 2 x y 2 x z 5 y2 2 y z 5 z2, x2 2 x y

4 x z y2 4 y z 3 z2, x2 2 x y 6 x z y2 6 y z z2, x2 2 x y 6 x z y2

6 y z 5 z2, x2 2 x y 6 x z 5 y2 6 y z z2, x2 2 x y 6 x z 5 y2 6 y z

5 z2, x2 4 x y 2 x z 3 y2 4 y z z2, x2 4 x y 4 x z 3 y2 2 y z 3 z2, x2

4 x y 4 x z 3 y2 6 y z 3 z2, x2 4 x y 6 x z 3 y2 4 y z z2, x2 6 x y

2 x z y2 6 y z z2, x2 6 x y 2 x z y2 6 y z 5 z2, x2 6 x y 2 x z 5 y2

6 y z z2, x2 6 x y 2 x z 5 y2 6 y z 5 z2, x2 6 x y 4 x z y2 4 y z
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(16)(16)
> > 

> > 

3 z2, x2 6 x y 6 x z y2 2 y z z2, x2 6 x y 6 x z y2 2 y z 5 z2, x2

6 x y 6 x z 5 y2 2 y z z2, x2 6 x y 6 x z 5 y2 2 y z 5 z2

nops R5 ;
40

L 0, 1, 2, 3, 4, 5, 6, 7 :
 M1 :M2 :M3 :M4 :

 h1 y z : 
 h2 2  x  y 3  z :
 h3  2  x  y   z :
 h4  y 3  z :

 for i in L do:
 for j in L do:
 for k in L do:
 g i x j y k z :
 g1 mod g, 4 :
 if g1 = h1 then M1 op M1 , i, j, k : fi:
  if g1 = h2 then M2 op M2 , i, j, k : fi:
  if g1 = h3 then M3 op M3 , i, j, k : fi:
  if g1 = h4 then M4 op M4 , i, j, k : fi:
 od:od:od:
 
 PP :
U 1, 3, 5, 7 :
 m 8 :
 
 M M1, M2, M3, M4 :

 for Mi in M do:
 P :
 for a in Mi do:
 
 a1 a 1 : a2 a 2 : a3 a 3 : 

 Q a1, a2, a3 :
 for u in U do:
  for b in Mi do:
 b1 mod u b 1 , m : b2 mod u b 2 , m : b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
 od:
 PP op PP , P :
 od:
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> > 

> > 

(19)(19)

(18)(18)

(17)(17)

 Q20 :for i in PP 1  do: Q20 op Q20 , i 1 :od: Q20;
 Q21 :for i in PP 2  do: Q21 op Q21 , i 1 :od: Q21;
 Q22 :for i in PP 3  do: Q22 op Q22 , i 1 :od: Q22; 
 Q23 :for i in PP 4  do: Q23 op Q23 , i 1 :od: Q23;
 QQ6 op Q20 , op Q21 , op Q22 , op Q23 :

0, 1, 1 , 0, 1, 5 , 4, 1, 1 , 4, 1, 5
2, 1, 3 , 2, 1, 7 , 6, 1, 3 , 6, 1, 7
2, 1, 1 , 2, 1, 5 , 6, 1, 1 , 6, 1, 5
0, 1, 3 , 0, 1, 7 , 4, 1, 3 , 4, 1, 7

R6 :
 
 for i in QQ6 do:
 for j in QQ6 do:
 
 i1 i 1 x i 2 y i 3 z :
  j1 j 1 x j 2 y j 3 z :
  g mod expand i1 j1 , 8 :

 R6 R6 g :

 od:od:

 
R6;
y2 7 z2, y2 2 y z z2, y2 2 y z 5 z2, y2 4 y z 3 z2, y2 6 y z z2, y2 6 y z

5 z2, 2 x y 2 x z y2 7 z2, 2 x y 6 x z y2 7 z2, 4 x y 4 x z y2 7 z2, 6 x y

2 x z y2 7 z2, 6 x y 6 x z y2 7 z2, 4 x2 y2 2 y z z2, 4 x2 y2 2 y z

5 z2, 4 x2 y2 6 y z z2, 4 x2 y2 6 y z 5 z2, 4 x2 4 x z y2 7 z2, 4 x2

4 x y y2 7 z2, 2 x y 2 x z y2 2 y z z2, 2 x y 2 x z y2 4 y z 3 z2,

2 x y 2 x z y2 6 y z 5 z2, 2 x y 6 x z y2 2 y z 5 z2, 2 x y 6 x z y2

4 y z 3 z2, 2 x y 6 x z y2 6 y z z2, 4 x y 4 x z y2 2 y z z2, 4 x y

4 x z y2 2 y z 5 z2, 4 x y 4 x z y2 4 y z 3 z2, 4 x y 4 x z y2 6 y z

z2, 4 x y 4 x z y2 6 y z 5 z2, 6 x y 2 x z y2 2 y z 5 z2, 6 x y 2 x z

y2 4 y z 3 z2, 6 x y 2 x z y2 6 y z z2, 6 x y 6 x z y2 2 y z z2, 6 x y

6 x z y2 4 y z 3 z2, 6 x y 6 x z y2 6 y z 5 z2, 4 x2 4 x z y2 4 y z

3 z2, 4 x2 4 x y y2 4 y z 3 z2, 4 x2 4 x y 4 x z y2 2 y z z2, 4 x2

4 x y 4 x z y2 2 y z 5 z2, 4 x2 4 x y 4 x z y2 6 y z z2, 4 x2 4 x y

4 x z y2 6 y z 5 z2

nops R6 ;
40

140



> > L 0, 1, 2, 3, 4, 5, 6, 7 :
 M1 :M2 :M3 :M4 :

 h1 x y : 
 h2  x  y 2  z :
 h3  x  3  y :
 h4  x 3 y 2 z :

 for i in L do:
 for j in L do:
 for k in L do:
 g i x j y k z :
 g1 mod g, 4 :
 if g1 = h1 then M1 op M1 , i, j, k : fi:
  if g1 = h2 then M2 op M2 , i, j, k : fi:
  if g1 = h3 then M3 op M3 , i, j, k : fi:
  if g1 = h4 then M4 op M4 , i, j, k : fi:
 od:od:od:
 
 PP :
U 1, 3, 5, 7 :
 m 8 :
 
 M M1, M2, M3, M4 :

 for Mi in M do:
 P :
 for a in Mi do:
 
 a1 a 1 : a2 a 2 : a3 a 3 : 

 Q a1, a2, a3 :
 for u in U do:
  for b in Mi do:
 b1 mod u b 1 , m : b2 mod u b 2 , m : b3 mod u b 3 , m :

 if a1 = b1  and a2 = b2  and a3 = b3   then  Q Q b 1 , b 2 , b 3 :  fi:

 od:od:
 P P Q :
 od:
 PP op PP , P :
 od:
 
 Q24 :for i in PP 1  do: Q24 op Q24 , i 1 :od: Q24;
 Q25 :for i in PP 2  do: Q25 op Q25 , i 1 :od: Q25;
 Q26 :for i in PP 3  do: Q26 op Q26 , i 1 :od: Q26; 
 Q27 :for i in PP 4  do: Q27 op Q27 , i 1 :od: Q27;
 QQ7 op Q24 , op Q25 , op Q26 , op Q27 :
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> > 

> > 

> > 

> > 

> > 

(22)(22)

(21)(21)
> > 

(20)(20)

1, 1, 0 , 1, 1, 4 , 1, 5, 0 , 1, 5, 4
1, 1, 2 , 1, 1, 6 , 1, 5, 2 , 1, 5, 6
1, 3, 0 , 1, 3, 4 , 1, 7, 0 , 1, 7, 4
1, 3, 2 , 1, 3, 6 , 1, 7, 2 , 1, 7, 6

R7 :
 
 for i in QQ7 do:
 for j in QQ7 do:
 
 i1 i 1 x i 2 y i 3 z :
  j1 j 1 x j 2 y j 3 z :
  g mod expand i1 j1 , 8 :

 R7 R7 g :

 od:od:

R7;
x2 7 y2, x2 2 x y y2, x2 2 x y 5 y2, x2 4 x y 3 y2, x2 6 x y y2, x2 6 x y

5 y2, x2 7 y2 4 y z 4 z2, x2 4 x z 7 y2 4 z2, x2 2 x z 7 y2 2 y z, x2

2 x z 7 y2 6 y z, x2 4 x z 7 y2 4 y z, x2 6 x z 7 y2 2 y z, x2 6 x z

7 y2 6 y z, x2 2 x y y2 4 z2, x2 2 x y 5 y2 4 z2, x2 6 x y y2 4 z2, x2

6 x y 5 y2 4 z2, x2 4 x y 3 y2 4 y z 4 z2, x2 4 x y 4 x z 3 y2 4 z2,

x2 2 x y 2 x z y2 2 y z, x2 2 x y 2 x z 5 y2 6 y z, x2 2 x y 4 x z y2

4 y z, x2 2 x y 4 x z 5 y2 4 y z, x2 2 x y 6 x z y2 6 y z, x2 2 x y

6 x z 5 y2 2 y z, x2 4 x y 2 x z 3 y2 2 y z, x2 4 x y 2 x z 3 y2

6 y z, x2 4 x y 4 x z 3 y2 4 y z, x2 4 x y 6 x z 3 y2 2 y z, x2 4 x y

6 x z 3 y2 6 y z, x2 6 x y 2 x z y2 6 y z, x2 6 x y 2 x z 5 y2 2 y z,

x2 6 x y 4 x z y2 4 y z, x2 6 x y 4 x z 5 y2 4 y z, x2 6 x y 6 x z y2

2 y z, x2 6 x y 6 x z 5 y2 6 y z, x2 2 x y 4 x z y2 4 y z 4 z2, x2

2 x y 4 x z 5 y2 4 y z 4 z2, x2 6 x y 4 x z y2 4 y z 4 z2, x2 6 x y

4 x z 5 y2 4 y z 4 z2

nops R7 ;
40

#take a quadratic from each set and multiply these to get a degree 14 polynomial, and check if it is 
congruent to f and f times a unit mod 8

h 0 :
 
for i in R1 do:
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> > 

 for j in R2  do :
 for k in R3 do:
for l in R4 do:
for m in R5 do:
for n in R6 do:
for p in R7 do:
 
  g mod expand i j k l m n p , 8 :

 if g = f  then print g, i, j, k, l, m, n, p : h g : fi:
 if g = f1 then print g, i, j, k, l, m, n, p : h g : print "Times 3" : fi:
 if g = f2 then print g, i, j, k, l, m, n, p : h g : print "Times 5" : fi:
 if g = f3 then print g, i, j, k, l, m, n, p : h g : print "Times 7" : fi:
    od:od:od:od:od:od:od:
#did not print, those do not exist
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