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Abstract 

Understanding the time-use activity patterns of population cohorts in the region will 

contribute greatly to modeling spatio-temporal urban transportation demand models. The 

research detailed in this dissertation focuses on the development of the Scheduler for 

Activities, Locations, and Travel (SALT) disaggregated travel demand microsimulation 

model. The SALT modeling framework comprises a series of micro-behavioral modules 

that employ behaviorally realistic econometric, advanced machine learning, and data 

mining techniques to construct the 24-hour activity schedule and the corresponding travel 

linked with activities accomplished by individuals. A state-of-art three-dimensional, four-

stage pattern recognition model is developed to identify population clusters with 

homogeneous time-use daily activity patterns, and to derive a representative set of activity 

patterns in each cluster. Each identified population cluster provides essential information 

related to temporal, spatial, and socio-demographic characteristics of individuals and 

activities, which are crucial for modeling the successive micro-behavioral modules of the 

SALT model. The representative behavior within each cluster is then used as an 

information guide for agent-based modeling. 

A new agent-based inference model is developed to predict various facets of the daily 

activity agenda, such as stop number, activity type, and activity sequential arrangement. 

In the next phase, temporal attributes of each activity in the agenda are predicted and the 

24-hour activity schedule of all individuals is formed through a heuristic decision rule-

based algorithm. Finally, a population synthesizer procedure is developed in order to 

implement the SALT system for the entire region. In addition, this study models the daily 

time-use activity patterns and estimated emission factors for university commuters, 

considered as a special trip generator in regional travel demand models. The data used for 

the analysis is from the large Halifax Space-Time Activity Research (STAR) household 

survey, which provides GPS-validated time-diary data for 2,778 person-days. Results 

show that the SALT scheduling model is able to assemble the traveler’s schedule with an 

average 82% accuracy in the 24-hour period. The proposed simulation modeling 

framework is useful for urban and transport modelers to advance transportation demand 

management for different segments of the urban population, as well as to analyze 

environmental mitigation and transport policy scenarios.  
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Chapter 1 Introduction 

1.1 Background 

Transportation can be considered as one of the main and essential human activities, that 

involves nearly everyone on a daily basis. Complexities in individual travel behavior have 

increased with continued urban development and rapid technological progress. Trip 

chaining and multimode transport, flexible working hours, self-employment, and online 

shopping have become far more common in recent years (Goran 2001). As travel behavior 

becomes more complex, travel demand forecasting requires more detailed information. 

From a disaggregated modeling point of view, there are significant associations between 

trips and the activity participation of travelers (Kitamura et al. 1997). Furthermore, 

travelers with varying socio-demographic and socio-economic characteristics in the region 

have divergent time-use activity patterns. This dissertation presents a new disaggregated 

travel demand microsimulation model framework that is sensitive to the mix of variables 

connected to travelers’ decisions. A new pattern recognition model is developed to identify 

population clusters with homogeneous time-use daily activity patterns, and to derive a 

representative set of activity patterns in each cluster. The representative behavior within 

each cluster is then used as an information guide for innovative agent-based modeling of 

the 24-hour activity schedule and the travel linked to it. 

To date, numerous travel demand models have been developed, using both aggregated and 

disaggregated approaches, for modeling short-term and long-term choices of travelers, 

such as activity participation, timing, transport mode, activity location, route choice, 
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work/residential location, and vehicle ownership (Oppenheim 1995; Ortuzar and 

Willumsen 2011).  

The first generation of travel demand models, commonly known as four-stage models, 

were developed to evaluate the short-term and long-term effects of transport-related 

infrastructure investments in the late 1950s (Weiner 1999). The conventional four-stage 

models, which were later improved and known as trip-based models, have been employed 

widely to forecast traffic flows and volumes at the aggregated spatial level, such as traffic 

analysis zones (Goran 2001; McNally 2007). Trip productions and attractions are 

predicted at the aggregated level based on the attributes of the zone. Subsequently, trips 

are distributed among origin-destination pairs of traffic zones (Ortuzar and Willumsen 

2011). Further, features of the four-stage models were to forecast the mode choice and trip 

assignment of predicted trips in the network. 

Despite the pervasive application of these models in transportation planning, these models 

also have some major limitations (Boyce and Williams 2015). For instance, 

interdependencies between trips during the day or trips belonging to the same trip chain 

are not captured. Furthermore, joint trips of individuals belonging to the same household, 

and how household interaction impact trip scheduling, are not taken into account. Another 

limitation is the higher temporal and spatial aggregation level. Centroids of zones are 

considered as single points for trip origins and destinations and modeling tends to 

differentiate only peak traffic times versus off-peak traffic times. Physical and institutional 

constraints, as well as the traveler’s imperfect knowledge of their environment, are not 

considered in scheduling (Clarke 1986; Ettema, Borgers and Timmermans 1993; Jang, 

Chiu and Zheng 2013). 
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To overcome some of the major limitations of trip-based models, and to provide more 

precise forecasting models, in the late 1970s transport modelers developed the second 

generation of travel demand models, commonly known as disaggregated trip-based models 

(Marcotte and Nguyen 2013). The disaggregated trip-based models are more sensitive to 

the sociodemographic characteristic of the population and land use attributes (Garling, 

Kwan and Golledge 1994). Disaggregated travel demand models can precisely capture the 

effects of factors that impact travel behavior, such as socio-demographic attributes and 

time allocation (Boyce and Williams 2015). Time allocation patterns have noteworthy 

implications for traffic congestion, demand estimation, and air quality. 

Comparison between disaggregated trip-based models and actual daily life decision- 

making processes of individuals revealed that there are connections between trips and the 

activity participation of individuals (Kitamura, Chen and Pendyala 1997; Ben-Akiva and 

Bowman 1998b). Furthermore, due to the rapid growth in auto usage, the increased level 

of air pollution, noise pollution, and road congestion became more important policy issues 

for transport planners (Stopher, Hartgen and Li 1996; Bhat and Koppelman 1999). Finding 

a solution and policy for such complex transportation and environmental issues motivated 

transport modelers to develop the third generation of travel demand models, commonly 

known as activity-based travel demand models (Clarke 1986; Recker, McNally and Root 

1986a; Recker, McNally and Root 1986b). Activity-based approaches focus on predicting 

traveler activity patterns. This includes modeling activity time-use patterns, activity 

episodes scheduling with associated attributes, and corresponding linked travel 

accomplished by travelers. 
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1.2 Activity-Based Travel Demand Modeling  

Activity-based travel demand modeling is a recently emerged advanced disaggregated 

travel demand forecasting approach primarily introduced by Hagerstrand in the 1970s. The 

activity-based travel demand models take into consideration space-time constraints and 

the associations among activities and travel at the individual or household level 

(Hagerstrand 1970; Ellegard 1999). These considerations allow the travel demand models 

to more realistically incorporate the effects of travel circumstances on activity and travel 

selections (Goulias 1999). In comparison to the conventional four-stage models, activity-

based travel demand models generate activities first; then, the destinations for the activities 

are determined, followed by transportation modes being identified, and, finally, the exact 

transportation routes used for each trip are forecast (Arentze and Timmermans 2000; 

Bowman and Ben-Akiva 2001; Fosgerau 2002). Incorporating space-time constraints and 

the effect of detailed individual and household level attributes into the modeling process 

substantially increases the model’s ability to offer better forecasts of future travel patterns 

(Scott and Kanaroglou 2002; Arentze and Timmermans 2009; Timmermans and Zhang 

2009; Liao, Arentze and Timmermans 2013). 

Figure 1.1 demonstrates a typical activity-based model structure used in practice in North 

America. Activity generation and scheduling, tour and trip destination choice, tour and trip 

time of day, tour and trip mode decision, and network assignment are universal modules 

for most activity-based travel demand models (Recker 2001; Li, Lam and Wong 2014). 

These models are able to predict both long-term decisions (e.g. work/residential location 

and vehicle ownership) and short-term decisions (e.g. activity purposes, timing, transport 

mode, and locations) of a given synthetic population (Ben-Akiva and Bowman 1998a; 
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Hildebrand 2003). Different alternative policy scenarios on transport, land use, 

environmental impacts, and economic development can be assessed using the outcomes of 

activity-based travel demand models (Kitamura 1988). 

To date, researchers and practitioners have employed different approaches, such as 

computational process-based and econometric-based methods for the development of 

activity-based models. A number of important specifications which measure the 

performance of such models are prediction accuracy, reproducibility, computational time, 

large scale operation capability, and performance at the household level (Kitamura 1988; 

Jovicic 2001; Rasouli and Timmermans 2014). 

 

Figure 1.1 Typical activity-based model structures (Castiglione et al. 2015, p.107) 

Population Synthesizer 

Stop Generation 

Longer Term & Mobility Models 

Tour Primary Destination, Mode & Schedule 

Individual Daily Activity Pattern 

Stop Location 
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Household Day & Pattern Types 

Joint Travel 

Basic Activity-Based Model Structure With Household Interactions 
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1.3 Motivations and Context of This Study 

The primary motivation of this contribution is to model and micro-simulate various aspects 

of activity-travel decisions, including activity selection and scheduling behavior of 

population cohorts within an activity-based travel demand modeling system. To this end, 

this study presents the development of the Scheduler for Activities, Locations, and Travel 

(SALT) disaggregated travel demand micro-simulation model. The SALT model system, 

as an ongoing research program in the Department of Civil and Resource Engineering of 

Dalhousie University, is a new generation of travel demand model system that attempts to 

micro-simulate the formation of 24-hour activity schedules of individuals with varying 

characteristics and behavior for each population cohort, and model short-term and long-

term travel and mobility decisions. The SALT model is comprised of five main 

components: population synthesizer, time-use activity pattern recognition, tour mode 

choice, activity destination choice, and activity/trip scheduling (Daisy 2018a). 

The SALT model system is designed based on the multi-layer hybrid machine learning 

techniques. A series of behaviorally realistic advanced econometric and ensemble learning 

modules are incorporated in the SALT model system for modeling behavioral mechanisms 

and time-use activity patterns of populations. Particularly, this dissertation addresses the 

development of the state-of-art machine learning and pattern recognition models to 

identify representative time-use activity patterns, infer the scheduling behavior of 

individuals, and enable the generation of a synthetic population for the region. In addition, 

this study offers the modeling of the daily time-use activity patterns and estimates emission 

factors for university commuters, considered as a special trip generator in regional travel 

demand models. The ensemble learning micro-behavioral modules introduced in this study 
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are developed using advanced machine learning techniques that are novel in travel 

behavior analysis. 

1.4 Objectives and Scope 

The overall objective of this dissertation is to develop the Scheduler for Activities, 

Locations, and Travel (SALT) disaggregated travel demand micro-simulation model. 

Numerous advanced machine learning based micro-behavioral modules, including new 

pattern recognition and inference models within the SALT modeling framework, are 

developed to model and micro-simulate various aspects of activity selections and 

scheduling behavior of travelers. It is also hypothesized that people’s daily activity 

patterns are strongly influenced by their socio-demographic attributes, such as age, 

household size, income, etc. The identification of homogeneous population clusters can 

also improve the accuracy in the estimation of activity-based travel demand models. To 

accomplish these goals, the following major objectives were carried out during the 

development of the SALT model system and the advancement of its machine learning 

micro-behavioral modules: 

• To develop an inclusive pattern recognition modeling framework that can identify 

individuals with homogeneous daily activity patterns and group them into clusters; 

• To establish a representative set of model individuals, who represent homogeneous 

cohorts in each identified cluster, and to develop a decision tree that can infer 

cluster membership for the selected traveler; 
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• To develop an inference model to learn and replicate activity engagement patterns 

of the population groups for daily agenda formation, including stop number, 

activity type, and activity sequential arrangement; 

• To develop a scheduler model to predict temporal information associated with the 

traveler’s daily activity schedule and build up the 24-hour activity schedule of 

individuals with varying characteristics and behavior for each cluster; 

• To produce a baseline synthetic population for the study area at the dissemination 

area and regional levels by matching the distribution of household and individual 

sociodemographic characteristics with census data; and 

• To investigate and model time-use activity patterns and estimate emission factors 

of a synthetic baseline population for university commuters, considered as a special 

trip generator in regional travel demand models. 

1.5 Thesis Structure 

To address the objectives discussed above, this dissertation is divided into nine chapters. 

Chapter two and chapters four to nine are organized as independent journal paper 

publications towards the development of the SALT model system. A summary of the 

content of each chapter is outlined below: 

Chapter 1 provides an introduction on the research subject, outlines the objectives, and the 

organization of the dissertation. Chapter 2 provides a comprehensive review relevant to 

the activity-based travel demand models. Chapter 3 provides an overall description of the 

data and methods used in this study. Chapter 4 describes a comprehensive pattern 

recognition modeling technique for identifying individuals with homogeneous daily 
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activity patterns. Chapter 5 presents details of inference modeling technique for learning 

and replicating activity engagement patterns of different population groups. Chapter 6 

describes a scheduling model to build up the 24-hour activity schedule. Chapter 7 focuses 

on the development of a population synthesizer model. Chapter 8 presents the modeling 

and finding of the daily time-use activity patterns and estimates emissions factors for 

university commuters. Finally, chapter 9 summarizes the findings of this research and key 

conclusions stemming from this research, along with recommendations for future work.  
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Chapter 2 Activity-Based Travel Demand Modeling: Progress and 

Possibilities1 

2.1 Introduction 

The goal for transportation models is to depict reality as precisely as possible. These 

models can be employed to investigate and find solutions for different transportation 

problems such as traffic congestion, transport-related GHG emissions, impacts on the 

economy, and traffic accidents. Transportation models are usually used to make forecasts 

in uncertain conditions, support management decision making, and inform policies to 

develop infrastructure and change travel behavior patterns of people (De Palma et al. 2011; 

Daisy et al. 2018a; Hafezi et al. 2018). The conventional four stage models, trip-based 

travel demand models, and activity-based travel demand models represent three major 

generations of travel demand models (Bates 2007). All three of them are able to provide 

travel demand forecasts with a suitable level of accuracy for the circumstances in which 

they were developed. Based on the model’s characteristics, they are adequate to predict 

short-term decisions (e.g. activity purposes, timing, transport mode, and locations) and 

long-term decisions (e.g. work/residential location and vehicle ownership) related to 

transport problems (Nakamura, Hayashi and Miyamoto 1983; Hunt, Kriger and Miller 

2005; Bates 2007).  

The conventional four stage models belonged to the first generation of travel demand 

models. These models are able to provide travel demand forecasts, including traffic flows 

                                                           
1 A version of this chapter has been published:  

Hafezi, M. H., Millward, H., and L. Liu. (2018). “Activity-based travel demand modeling: Progress 

and possibilities”. Peer reviewed ASCE proceedings of the International Conference on 

Transportation and Development (ICTD). Pittsburgh, Pennsylvania, USA. 
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and volumes at the scale of the aggregated traffic analysis zone (Goldner 1971). 

Commonly, the overall four stage modeling framework comprises four components: trip 

generation, trip distribution, mode choice, and traffic assignment. In this modeling 

approach, trip productions and trip attractions are estimated based on the attributes of 

respective zones (Shan, Zhong and Lu 2013). Over the past 50 years, the limitations of 

these models are becoming more challenging and questionable for transport modelers, due 

in part to a shifting emphasis on policy planning rather than regional planning (such as 

assessing long-term investment strategies). Some of the major shortcoming of these 

models are that they fail to consider interdependencies between trips during the day 

belonging to the same trip chain, lack modeling for joint trips of individuals belonging to 

the same household, and operate at coarse levels of temporal and spatial aggregation 

(Rasouli and Timmermans 2014; Boyce and Williams 2015; Hafezi, Liu and Millward 

2018a). 

These limitations of conventional four stage models, and the need for more sensitive 

forecasting models with better implementation capability for policy analysis, motivated 

transport planners to develop a second generation of travel demand models known as 

disaggregate trip-based models. Generally, disaggregate trip-based models, unlike four 

stage models, analyze each individual trip as independent and isolated (Boyce and 

Williams 2015). Aggregated and disaggregated trip-based models are two major types of 

the second generation of travel demand models. Although this type of modeling approach 

could overcome some major limitations of conventional four stage models, however, they 

were still insufficiently integrated for more sensitive forecasting needs (Dong et al. 2006). 

Some of the trip-based travel demand models’ limitations are as follows. First, the time 
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component is not taken into account: the focus is on individual trips and/or tours without 

considering the temporal-spatial constraints between all trips and activities conducted in a 

given day. The sequential information is missing in the modeling process. Secondly, 

individuals within the same household are considered as isolated decision-makers. Third, 

and perhaps most importantly, they neglected the fact that the demand for travel is derived 

from the demand for activity engagement (Krizek 2003). Further analyses on the outcomes 

of disaggregate trip-based models and comparison with actual daily life decisions of 

individuals revealed that there are relations between trips and the activity participation of 

individuals. Consequently, the third generation of travel demand models, known as 

activity-based travel demand models, was developed (Dong et al. 2006). This study 

presents a comprehensive overview of computational based activity scheduling models. In 

addition, this study adds to the current literature by reviewing and assessing recent and 

ongoing rule-based machine learning models. 

2.2 Activity-Based Modeling 

Activity-based models of travel demand represent the third generation of travel demand 

models and are based on the concept that travel is a derived demand, initiating from the 

need of individuals to engage in out-of-home activities. The basic concept is that activities 

take place in both time and space, Hagerstrand formalized the notion of space-time in the 

1970’s, and developed the preliminary activity-based model (Hagerstrand 1970). In his 

time-geography theory, individuals are considered as living in a space-time prism in which 

their participation in activities is impacted by three constraints, as follows. Firstly, there 

are capability constraints that emphasize biological needs and existing resources that can 

necessitate or bound an individual’s participation in an activity. Secondly, there are 



13 

coupling constraints that emphasize both the spatial and temporal requirements for an 

individual who joins with other individuals to perform a certain activity. Lastly, there are 

authority constraints that limit the individual’s entry to certain activity locations or times. 

The theory posited that a decision to participate in a certain activity at a certain time and 

place is a joint outcome of numerous conditions and constraints (Ellegard 1999; Ellegard 

and Vilhelmson 2004; Ellegard and Svedin 2012; Widen, Molin and Ellegard 2012). 

Activity-based travel demand models are able to better replicate travel decisions at the 

individual or disaggregated level, and may therefore yield better predictions of future 

travel patterns (Dong et al. 2006). In recent years, activity-based modeling has received 

much consideration and seen significant progress. A wide variety of modeling methods 

has been developed to model various components of activity-based models, such as 

activity type, activity sequence, activity frequency, sequential activity location, activity 

duration, and transport mode for the next trip (Auld et al. 2016; Bao et al. 2016; Jiang, 

Ferreira and Gonzalez 2017). Two of the most widely used approaches in activity-based 

travel demand models (Arentze and Timmermans 2000) are discussed in the following 

section. 

2.2.1 Econometric Activity-Based Modeling 

Econometric activity-based models are developed based on the random utility theory 

(McFadden 1980). This theory argued that individuals constantly desire to maximize the 

utility of their activity schedule. DAYSIM (2001), CEMDAP (2004), and MORPC (2002) 

are some well-known econometric activity-based travel demand models. The decision-

making processes in econometric models are executed by employing a logit or nested logit 
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model. Furthermore, daily activity and travel patterns are considered as a set of tours in 

the modeling process (Bowman and Ben-Akiva 2001). In this respect, the home-based tour 

is formed by adding a series of travel and activity episodes that started and ended at the 

home-location. Based on the specific model characteristics, tour type is defined. Broadly, 

the primary tour contains activity episodes that have highest priority in the individual’s 

daily activity agenda, such as work or school. Secondary tours comprise non-mandatory 

activity episodes such as shopping or leisure activities (Wen and Koppelman 2000). In 

most of the econometrics models, the activity priority sequences are specified as follows: 

work or school, personal maintenance (e.g., food shopping), and discretionary activities 

(Vovsha, Petersen and Donnelly 2004). Nevertheless, this priority sequence might be 

amended by activity duration or joint activity with others. The complexity of choice set 

within the nested-logit formation is controlled by predefining tour sequences such as 

home-work-home or home-shopping-school-home. These models also estimate the 

number of tours, number of stops, and vehicle allocation within the household context 

(Ettema, Borgers and Timmermans 1996). 

Despite pervasive use of the econometric type of model in activity-based travel demand 

models, this modeling type has been criticized for requiring a heavy computationally 

rigorous scheduling system, when it employs a structurally high sequential logit model 

(Garling, Kwan and Golledge 1994). In addition, the predefined choice set for selection of 

daily activity patterns in the modeling process may not represent all possible alternatives 

for individuals’ daily activity patterns. Furthermore, since this modeling approach uses 

only a restricted number of time periods for analysis (e.g. morning peak, noon, afternoon 
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peak), the models have also been criticized for how they capture time-of-day properties 

(Ettema, Borgers and Timmermans 1996). 

2.2.2 Computational Based Activity Scheduling Models 

More recently, the computational process modeling approach was developed following the 

context-dependent choice preferences theory (Arentze and Timmermans 2000). The 

advanced models contain the decision-making process as an internal loop in the modeling 

framework that is designed using a set of straightforward heuristic rules (e.g. if-then 

statements). The cognitive model (Hayes-Roth and Hayes-Roth 1979), is one of the 

earliest activity-based model developed using the computational process modeling 

framework. Potential choices for forming individual’s agenda at various stages of 

abstraction are produced through the application of a series of heuristic rules for activity 

planning processes. In the following section several models classified as computational 

process models (CPMs) are overviewed. 

Combinatorial Algorithm for Rescheduling Lists and Activities (CARLA) 

The CARLA model attempts to simulate activity-travel patterns at the household level. It 

incorporates spatio-temporal constraints in the process of activity scheduling. Activities 

are selected and added to the schedule if they satisfy the constraints and set-up rules (Jones 

et al. 1983). Four rules categories are defined in the model: logical rules presume one 

unique activity at a time at one location, environmental rules denote authority constraints 

(access time restrictions to different places) and travel times between locations, inter-

personal rules indicate coupling constraints (joint activities with other household 

members), and personal rules refer to personal preferences. 
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Simulation of Travel/Activity Responses to Complex Household Interactive Logistic 

Decisions (STARCHILD) 

The STARCHILD model was one of the first attempts at developing a CPM. The activity 

generation module in STARCHILD is comprised of three steps. First, all feasible 

household travel activity patterns that are within defined temporal-spatial constraints are 

identified. Next, similar activity-travel patterns are identified using a pattern recognition 

technique and grouped in three to ten different groups. Lastly, a representative pattern 

engagement utility function in each group is recognized through the logit choice model. 

The scheduler module in STARCHILD is customized through a series of heuristic rules. 

These rules insert possible activities into individual daily agenda, with scheduling 

conforming to all constraints (Recker, McNally and Root 1986a; Recker, McNally and 

Root 1986b). The model’s assumption that individuals conduct a comprehensive 

exploration for feasible patterns is questionable, and its integration with the population 

synthesizer module appear to be unclear.   

SCHEDULER 

The SCHEDULER model attempts to model activity choices, location, and travel in the 

individual’s daily activity agenda. Activities in SCHEDULER are selected with the long-

term calendar module and scheduling is carried out through a cognitive map. Activity 

attributes such as timing and utility are regularized in the long-term calendar. The 
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cognitive map comprises a set of heuristic rules that control for temporal-spatial 

constraints. Activities with the highest priority and duration are assumed to have more 

precedence compared to other activities in the scheduling process (Garling, Kwan and 

Golledge 1994). This model has been criticized because the assumption of activity 

priorities in the scheduling process may result in overestimating the occurrence of high 

priority activities. 

Simulation Model of Activity Scheduling Heuristics (SMASH) 

The SMASH model incorporates features of both discrete-choice modeling and CPMs in 

the activity scheduling process. Primarily, the pretip planning stage is explored, including 

activity selections, activity locations, activity start times, activity sequences, and travel 

modes to the various activity sites. The subjects' activity schedules are predicted based on 

their activity agenda and information about their spatio-temporal situations. The model 

estimates the utility functions for the choice rules, associated to inserting, deleting, or 

replacing activities. The model is tested under different settings with the activity schedules 

considered by the subjects themselves (Ettema, Borgers and Timmermans 1996). Further 

test should be performed in order to examine the computational efficiency of the SMASH 

model. 

GIS-Interfaced Computational process model for Activity Scheduling (GISICAS) 

The GISICAS model is an advanced version of the SCHEDULER model with two main 

improvements. Spatial data of home and work locations of population and potential 

destinations for non-mandatory activities are added to the model. Moreover, a set of spatial 

search heuristics are merged in the model in order to advance the neighborhood searching 
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process (Kwan 1997; Kwan and Golledge 1997). The fundamental goal of development 

of the GISCAS was to be a decision support system for advanced travel system 

information. Therefore, prediction of the individuals’ daily activity-travel behavior is 

limited in the model context.   

Activity Mobility Simulator (AMOS) 

The AMOS model includes a policy sensitive loop that enables the model to modify 

existing activity-travel patterns according to the new situation. Alternative activities are 

generated from simulation, neural network, and time allocation models. Activity purposes, 

time budget, frequencies, location, and priority list are inter-connected in AMOS 

(Kitamura et al. 1996). The strength of this model is to forecast short-term responses to 

particular policy changes. On the other hand, the model requires detailed survey data 

comparable to a travel diary survey, which limits its application to a specific data set and 

problem. 

A Learning-BAsed TRansportation Oriented Simulation System (ALBATROSS) 

ALBATROSS may be regarded as the most comprehensive CPM model developed to date. 

The core of the model comprises of a decision-making heuristic procedure with learning 

systems. Fixed and flexible activities are defined. Initially, fixed activities are added into 

the scheduling model, along with their temporal and spatial information, into the agenda. 

Next, flexible activities are added into the agenda with respect to their order of preference 

and choice of time-of-day (Arentze and Timmermans 2000). ALBATROSS utilizes a 

machine learning technique known as a CHAID decision tree to predict temporal attributes 

of activities including start time and duration. The model relies on cross-sectional diary 



19 

data. Therefore, this model has been criticized for how to implement learning and 

adaptation attributes on the short-term basis. 

Travel and Activity Scheduler for Household Agents (TASHA) 

The TASHA model was developed with similar concepts to those used in SCHEDULER. 

Initially, activities with similar socio-demographic and temporal features are identified 

and grouped into different classes. This process is done using a series of empirical data 

analyses. Next, probability distribution functions for activity start time and duration in 

each class are computed. Several heuristic rules are defined in TASHA, and used for 

inserting, adjusting, and producing a completed schedule. Rules relating to activity 

priorities are used for conflict resolution in the model (Miller and Roorda 2003). TASHA 

also employs an econometric modeling technique for tour formation in the model.  

Adopting various sets of explanatory variables outcomes in various groupings and 

produces different probability distributions. Finding the best set of explanatory variables 

that have the best fit for classifying the population in the dataset is a challenging and time-

consuming issue within TASHA. 

Agent-Based Dynamic Activity Planning and Travel Scheduling Model (ADAPTS) 

Both econometric modeling and rule-based techniques are incorporated in the ADAPTS 

model. A hazard-based formulation is employed for identifying activities with similar 

characteristics and producing activity temporal information for the scheduling engine. 

ADAPTS extends the conflict resolution rules in TASHA by considering more potential 

situations for conflicts between activities (Auld and Mohammadian 2009). Furthermore, 

ADAPTS is integrated with a dynamic traffic assignment procedure that allows for 
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rescheduling activities based on the new situations. The various computational based 

models have brought new insight into activity-based travel demand modeling, with 

substantial improvements in model structure and computational efficiency. However, 

these models have been criticized for incorporating the activity pattern generation module 

as an exogenous component in the modeling process (Ettema, Borgers and Timmermans 

1996), which may impact the reproducibility of the model. An additional concern with 

models of this type is that they do not fully incorporate decision processes and behavioral 

mechanisms that lead to observed activity-travel decisions in the modeling process (De 

Palma et al. 2011). 

2.2.3 Rule-Based Machine Learning Approaches 

Over the last two decades or so, the use of emerging machine learning techniques in 

activity-based travel demand models has received much consideration and seen significant 

progress (Joh et al. 2002; Allahviranloo and Recker 2013; Hafezi, Liu and Millward 

2017b; Hafezi, Liu and Millward 2017c). Machine learning employs algorithms that, 

without being explicitly programmed, mimic natural learning behavior to identify and 

differentiate complex patterns in data, and make a seemingly intelligent resolution (Bishop 

2007). Machine learning techniques may be used to competently handle the various 

challenges in modeling different components of activity-based travel demand models, with 

the objective of boosting model accuracy by distinguishing complex data patterns. While 

these techniques are well known in the statistics fields and computer science, there have 

been only a few applications in activity-based travel demand modeling. 
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A recent application by Allahviranloo et al. in 2016 proposed a clustering technique called 

k-mean to group populations with similar daily activity patterns (Allahviranloo, Regue and 

Recker 2016). Their new technique is an alternative approach to traditional activity 

generation modules (using explanatory variables for grouping the population) in the 

overall Household Activity Pattern Problem (HAPP) modeling framework that was 

initially developed by Recker et al. in 1986 (Recker, McNally and Root 1986a; Recker, 

McNally and Root 1986b). As another example, Li and Lee (2017) employed a context-

free grammars technique to generate a set of activities in individuals’ daily agenda. Their 

approach was an alternative for replacing the predefined choice set for selection of daily 

activity patterns originally developed by Bowman and Ben-Akiva in 2001.  

Other examples of machine learning application techniques in activity-based models 

include incorporating the AdaBoost algorithm in predicting temporal information of 

activities, and utilizing the support vector machine (SVM) in a daily activity sequence 

recognition process (Allahviranloo and Recker 2013). Missing values are automatically 

handled in the AdaBoost algorithm. Furthermore, variables do not require transformation, 

very few parameters need to be tweaked, and the algorithm doesn’t overfit easily. On the 

other hand, the algorithm is sensitive to noisy data and outliers. The SVM algorithm is 

able to approximate complex nonlinear functions and automatically create nonlinear 

features. In contrast, interpretation is difficult when applying nonlinear kernels, and it 

takes a longer time to train compared to other algorithms. 
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2.3 Discussion and Conclusions 

Urban development and rapid technological progress continue to increase the complexities 

in individual travel behavior. The latest generation of travel demand models, known as 

activity-based travel demand models, aim to more accurately forecast future travel patterns 

in a transportation system. To do so, they take as their starting point the fact that travel is 

derived from activity engagement, and then model activity engagement schedules for 

proxy individuals representing distinct population groups. Travel and location selections 

are restricted by certain time and space constraints. Activities for a continuous 24-hour 

period are estimated/predicted from socio-demographic characteristics of the proxy 

individual, including the household context, and from relevant land use and locational 

information.  

In this study, we have overviewed the model structures of several computational based 

activity scheduling models. In addition, we have reviewed recent modeling developments 

employing machine learning techniques. Although various activity-based travel demand 

models have been developed and some of them are being implemented in practice 

(Vovsha, Petersen and Donnelly 2002; Outwater and Charlton 2006; VDOT 2009), there 

is undoubtedly substantial room for model improvement in terms of prediction accuracy, 

reproducibility, computational time, model structure, large scale operation capability, and 

performance at the household level. The discussion in this study confirms that during the 

last two decades significant progress has been made in improving many aspects of activity-

based travel demand models by incorporating machine learning techniques in the modeling 

process. One fruitful avenue for future study may be to produce a more detailed overview 
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of machine learning based models. Based on a review of the models identified in this study, 

potential directions for future work are recommended as follows: 

• Most of the current computational based activity scheduling models assume a 

priority order of activities in the scheduling process, that may result in 

overestimating the occurrence of high priority activities. Extra effort will be 

required in future work to modify this assumption in order to better replicate travel 

decisions processes.  

• Many current models extract input information for modeling from the entire 

sample data without considering any segmentation of the population. This could 

potentially fail to capture important latent parameters operating on activity types 

and duration. Segmenting the input data into a number of homogeneous population 

groups is recommended for further investigations in order to gain a better capture 

these latent parameters. 

• In most current models information about work activities is taken as the main or 

only input to the model. This may impact the dynamic activity planning aspect of 

activity-based models. Therefore, producing non-work activity in the agenda, and 

its specification as part of the inference procedure, is recommended for future 

work. 

• The analysis unit in most previous models was the weekday. Modeling a weeklong 

scheduling period can help transport modelers to better understand variation in 

activity travel patterns of the population and result in improved scheduling 

prediction. Therefore, development of an integrated time-use data technique that 



24 

can efficiently, and without being intrusive to respondents, collect traveler 

information over a week is recommended. 

• The use of many machine learning techniques, such as the random forest, fuzzy c-

means clustering and the CART classifier algorithms, are still not explored for use 

in travel behavior analysis. 

• Previous studies revealed the need for establishing sub-models for considerable 

sub-populations or special trip generators, such as large hospitals or large 

universities. Therefore, development of such sub-models in regional travel demand 

models is recommended for future work.  
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Chapter 3 Data and Methods 

3.1 Scheduler for Activities, Locations, and Travel (SALT) 

The overall goal of this study focuses on the development of the Scheduler for Activities, 

Locations, and Travel (SALT) disaggregated travel demand microsimulation model. The 

SALT modeling framework adopts the concept of activity-based travel demand modeling 

approaches and theories. In the initial stage, the SALT model system utilizes a pattern 

recognition approach that identifies population clusters with homogeneous time-use 

activity patterns. Later, a series of behaviorally realistic advanced econometric and rule-

based models were developed for modeling behavioral mechanisms and time-use activity 

patterns for each identified cluster. As shown in Figure 3.1, the SALT conceptual 

framework consists of the following five major modules: 

• Population synthesizer: This generates duplicates of sample households 

concerning the marginal data on individual and household attributes. These 

synthesized households are geographically located and spatially determined to 

represent the entire population of the study area. 

• Time-use activity pattern recognition: At the core of the SALT modeling 

framework, this module identifies population groups with homogeneous daily 

activity patterns and mobility decisions. Each identified population cluster contains 

crucial information on people’s activity patterns, such as activity type, timing, 

sequential arrangement of activities, and duration probability distribution. 

• Tour mode choice: This module estimates primary tour destinations, number of 

tours per day, number of intermediate stops, and mode choices for shaping 
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individual daily activity patterns. Socio-demographic attributes, trip attributes, and 

land use characteristics are incorporated into the modeling process to understand 

daily tour better, stops generation and mode choice behavior. 

• Activity destination choice: This module generates the daily activity agenda. It 

determines of the type of activities in the agenda, activities frequency, and their 

priority order in the sequence of activities. 

• Activity/trip scheduling: This module estimates the timing and duration for every 

activity type in the agenda. Predicted activities are inserted into the skeleton 

schedule, and activities are scheduled according to their priority importance and 

empirical guide information gained from the representative activity pattern in each 

cluster. 

Specifically, this study focuses on developing state-of-the-art machine learning and pattern 

recognition models to identify the representative time-use activity patterns, infer the 

scheduling behavior of individuals, enable the generation of a synthetic population for the 

region, and model the daily time-use activity patterns along with the estimation of emission 

factors for university commuters, considered as a special trip generator in regional travel 

demand models. Figure 3.2 illustrates the advanced ensemble learning modules 

incorporated in the SALT model system. In the following section, main sub-models 

developed in this study are overviewed. 
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Figure 3.1 A conceptual framework of the Scheduler for Activities, Locations, and 

Travel (SALT) 
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3.2 Pattern Recognition 

In this stage, a new and efficient pattern recognition modeling framework consisting of 

four sequential phases is developed, with the goal of producing population clusters with 

homogeneous activity patterns. Initially, a dynamic subtractive clustering algorithm is 

employed to initialize both cluster number and cluster centroids. Next, pattern complexity 

of activity sequences in the dataset is recognized using the Fuzzy C-Means (FCM) 

clustering technique. The clustering algorithm identifies individuals with homogeneous 

daily activity patterns and groups them into clusters. Next, a set of representative activity 

patterns are identified using the Multiple Sequence Alignment (MSA) technique. Finally, 

the cluster memberships are characterized through their socio-demographic attributes 

using the classification and regression tree (CART) classifier algorithm. The decision tree 

is able to properly recognize which cluster travelers belong to, based on the socio-

demographic attributes of travelers. To implement the pattern recognition model, the 24-

hour activity patterns are allocated into 288 three dimensional five minute intervals. The 

first dimension contains temporal information on activities, the second dimension contains 

socio-demographic characteristics associated to activities, and the third dimension 

comprises spatial information related with activities. Each interval comprises information 

on activity types, timing, location, and travel mode if relevant. Aggregated statistical 

assessment and Kolmogorov-Smirnov tests are utilized to assess and analyze clusters in 

terms of heterogeneous diversity of temporal distribution, and differences in a variety of 

socio-demographic variables. A time-use activity pattern recognition model produces 

crucial information such as activity type, activity start time, activity duration probability 

distribution, and sequential arrangement of activities, all of which are necessary for 
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modeling succeeding micro-behavioral modules in the SALT model. A detailed 

explanation of the pattern recognition model along with respective results are presented in 

Chapter 4. 

3.3 Agenda Formation 

The choice of daily activity sequences differs between individuals based on their socio-

demographic characteristics and their health and/or mobility status. The aim of this stage 

is to provide an improved methodology for learning and modeling the daily activity 

engagement patterns of individuals using a state-of-the-art machine learning algorithm. 

The dependencies between activity type, activity frequency, activity sequence, and socio-

demographic characteristics of individuals are taken into account by employing a Random 

Forest model. In order to capture the heterogeneity and diversity among the predictor 

variables, two different methods for split selection in the Random Forest algorithm are 

employed: CART and Curvature Search. These two methods are examined under two 

different layer settings. In the first setting, the algorithm grows trees using all alternative 

predictor variables, whereas in the second setting, the predictor variable’s importance is 

estimated and then the algorithm grows trees using only high-score predictor variables. 

The estimation accuracy of the proposed models is evaluated using confusion matrix, 

transition matrix, and sequential alignment techniques. Ultimately, the inference model is 

able to learn and predict various aspects of the daily activity agenda, such as stop number, 

activity type, and activity sequential arrangement. A detailed explanation of the inference 

model along with respective results are presented in Chapter 5. 
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3.4 Scheduling 

The aim of this stage is to develop a new modeling framework that is able to model and 

produce temporal information associated with the traveler’s daily activity schedule for use 

in the SALT model. A scheduling model is developed using a precise and efficient 

machine learning technique known as Random Forest (RF). The RF model is formulated 

based on the socio-demographic characteristics of travelers and temporal features of their 

activities. Start time and activity duration for every activity type are allocated to a set of 

bins. Eight different bin structures, varying in their time interval, are designed as response 

variables. In addition, a heuristic decision rule-based algorithm is developed to build up 

the 24-hour activity schedule of population groups. Using a rule-based algorithm, the 

predicted activities are inserted into the traveler’s skeleton schedule. An algorithm is then 

employed to schedule travelers’ activities based on activity importance level and empirical 

guide information gained from the population cluster’s representative pattern. A detailed 

explanation of the scheduling model along with respective results are presented in Chapter 

6. 

3.5 Population Synthesis 

In this stage, a population synthesizer model is developed in order to generate a synthetic 

populations for the different geographical units in the study region. The population 

synthesizer model is used to replicate a sample of households with respect to data on their 

individual and household attributes. Individual and household sample data are drawn from 

the Public Use Microdata File (PUMF) and respective marginal data are drawn from the 

Canadian Census data. The synthetic algorithm is employed using three sub models: first, 
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using household level control tables (HL model); second, using individual and household 

level control tables (HPL model); and third, weighting individual and household level 

control tables (WHPL model). Error percentages and goodness-of-fit are used for 

validation of the model. The population synthesis model generates synthetic populations 

both at the regional and dissemination area (DA) levels. Furthermore, the model produces 

100% synthetic populations for all four commuter groups at Dalhousie city campuses. A 

detailed explanation of the population synthesis model along with respective results are 

presented in Chapters 7 and 8. 

3.6 Daily Activity Patterns and Pollution Estimation 

The purpose of this stage is twofold. Firstly, it attempts to examine the activity 

engagement, and the sequencing and timing of activities, for student, faculty, and staff 

commuter groups at the largest university in the Maritime Provinces of Canada. Secondly, 

transport-related Greenhouse Gas (GHG) emissions based on the population 

characteristics and living zone in relation to campus areas are estimated. The daily activity 

patterns (DAP) of all university community groups is modeled using the CART classifier 

algorithm. In general, five zones are designated for emission estimation: on-campus zone 

(ONC), inner-city (INC), suburban-area (SUB), inner-commuter belt (IUB) and outer-

commuter belt (OCB). Two emission scenarios in respect to changes in transit ridership 

and auto driving are investigated in order to demonstrate how changing the primary travel 

mode can impact emissions volume. The Motor Vehicle Emission Simulator (MOVES) 

2014a is utilized as a simulation platform for estimating the major air pollutants, including 

carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxide (NOx), particulate matter 

(PM10 and PM2.5), total hydrocarbon (THC) and volatile organic compounds (VOC) for a 
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typical weekday. A detailed explanation of the modeling of university daily activity 

patterns, along with respective results and pollution estimation, are presented in Chapter 

9. 

 

Figure 3.2 Ensemble learning modules incorporated in the SALT model system 
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screening and data processing in this study. Detailed data processing and data preparation 

steps are discussed in each relevant chapter. 

3.7.1 Space-Time Activity Research (STAR) 

This study utilizes time-diary and GPS geo-coordinate data as the primary data source, 

from the Space-Time Activity Research (STAR) survey undertaken in Halifax, Canada. 

The STAR survey represented the world’s first large-scale application of global 

positioning system (GPS) technology for a household activity survey. The unique and rich 

Halifax STAR project produced a wide variety of data, including: (1) household roster 

data, (2) main file, (3) vehicle data, (4) time diary (episode and summary data file), (5) 

activity diary (episode data file), (6) land use database, (7) business hours survey data, (8) 

places and locations (PAL) directory data, and (9) global positioning systems (GPS) data. 

Full descriptions of the survey design and the socio-demographic features of respondents 

can be found in (TURP 2008; Millward and Spinney 2011). 

The Halifax STAR project produced survey data from 1,971 randomly designated 

households in Halifax Regional Municipality (HRM) between April 2007 and May 2008. 

A primary respondent over age 15 was randomly selected in each household, completed a 

2-day time diary, and carried a GPS unit (Hewlett Packard iPAQ hw6955) during all out-

of-home activity. The respondent then completed a “day-after” de-briefing through at 

Computer-Assisted Telephone Interview (CATI), to verify activities, times, and locations, 

supplemented and verified through GPS tracking. The original STAR dataset comprised 

188 activity sub categories defined under ten major activity classes. The activity codes 

employed were similar to those utilized in Statistics Canada’s General Social Survey 
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(GSS) time-use surveys, and relate to the prime purpose of the activity. Among the 

available travel diary data in the study region, the Halifax STAR household survey 

provides the most accurate and GPS-validated time-use data for use in development of any 

disaggregated travel demand models, as of today. 

3.7.2 Environmentally Aware Commuter Travel Diary (EnACT) Survey 

In order to better understand and explore the travel behavior characteristics of university 

commuters in the SALT model, a unique web-based travel survey known as the 

Environmentally Aware Commuter Travel Diary (EnACT) survey was designed and 

implemented. The EnACT represents the first university-based travel diary survey in 

Canada. The questions and activity log were designed to be consistent with the Halifax 

Space-Time Activity Research survey (STAR) and Canadian General Social Survey (GSS) 

instruments. The EnACT survey was conducted in Spring 2016 at Dalhousie University, 

Nova Scotia. Dalhousie University is the largest university in the Maritime Provinces of 

Canada, with three urban campuses in the city of Halifax and one campus in the town of 

Truro. 

All university populations groups, comprising undergraduate students, graduate students, 

faculty members, and staff were asked to complete a 24-hour travel log and also to provide 

detailed individual and household information. The EnACT survey includes six sections: 

(1) household information, (2) individual information, (3) environmental attitudes and 

behavior, (4) attitudes toward transportation, (5) information and communications 

technology (ICT) related information, and (6) a 24-hour travel log. 
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The survey was dynamically designed (including branching and piping options) in order 

to reduce response burden. For example, the vehicle type properties question was asked 

only to people who reported at least one vehicle. The EnACT survey collected detailed 

information on each respondent’s home and work location; make, model and year of 

motorized vehicles used in their last commute to Dalhousie; travel mode; and average 

commuting travel time, which are all useful for transportation emissions calculations. 

Several survey recruitment methods were used, including sending e-mails through 

university administration to Dalhousie commuters containing login information to access 

the survey online, promoting the survey in social media (Facebook and Twitter), and 

distributing survey posters across campuses. From a total of 840 respondents, 570 

respondents completed all the sections except the 24-hour travel log, and a total of 364 

respondents completed all six sections of the survey. Of these responses, 40.1% are 

undergraduate students, 34.4% are graduate students, 6.4% are faculty members, and 

19.1% are staff. A comprehensive descriptive analysis of all six sections of the EnACT 

survey can be found in Liu et al. 2016 and Hafezi et al. 2018a. 

3.7.3 Other Data Sources 

Secondary data sources used in this study were: the 2006 and 2011 Census and Public Use 

Microdata File (PUMF) derived from Statistic Canada, Halifax Regional Municipality 

(HRM) database 2012, Environment Canada archive, the 2015 Canadian Vehicle Survey 

and GeoBase - National Road Network and Environment Canada archive.  
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Table 3.1 Data sources used in the development of the SALT model system 

Data Objects 
Data 

Sources 

Data 

Descriptions 
Unit 

SALT’s Micro-

Module(s) 

Representative time-use 

microdata sample at the 

household level 

STAR1 Time-diary and 

GPS geo-

coordinate 

microdata sample 

data 

Land use and built 

environment data 

Three 

dimensions 

(temporal, socio-

demographic and 

spatial) data with 

five minutes 

intervals 

Parcel level 

Pattern 

recognition 

Ensemble 

learning 

Activity 

participation 

Trip Chaining 

Tour mode choice 

Representative time-use 

microdata sample of 

university population 

(undergraduate student, 

graduate student, staff 

and faculty) 

EnACT2 Time-diary 

microdata sample 

Three 

dimensions 

(temporal, socio-

demographic and 

spatial) 

Travel behavior 

characteristics of 

university 

community 

Transport-related 

GHG emissions 

Time-use microdata 

sample at the individual 

level 

GSS3 Time-diary 

microdata sample 

Activity duration 

Episode duration 

Synthetic pseudo 

panel 

Microdata sample of the 

population at the 

individual and 

household levels 

PUMF4 Socio-

demographic 

characteristics of 

a random 

microdata sample 

Dissemination 

area (DA) level 

Regional level 

Population 

synthesis 

Marginal population 

data at the DA and 

regional level 

CCS5 Distribution of the 

socio-

demographic 

characteristics of 

the marginal 

population data 

Dissemination 

area (DA) level 

Regional level 

Population 

synthesis 

Road network NRN6 National road 

network layer in 

the ArcGIS 

platform 

Street level 

Highway level 

Network building 

Transport-related 

GHG emissions 

Vehicle characteristic 

data 

CRV7 Vehicular age 

distribution and 

fuel characteristics 

Vehicle type Transport-related 

GHG emissions 

Meteorological data ECA8 Humidity and 

temperature data 

Regional level Transport-related 

GHG emissions 

Transport 

service location and road 

network 

HRM9 Transit stop 

locations, Transit 

and road networks 

Street level Network building 

Transport-related 

GHG emissions 
1Space-Time Activity Research, 2Environmentally Aware Commuter Travel Diary Survey, 

3General Social Survey, 4Public Use Microdata File, 5Canada's Census, 6National Road Network 

and Environment Canada archive, 7Canadian Vehicle Survey, 8Environment Canada Archive, 

9Halifax Regional Municipality Geodatabase  
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Chapter 4 A Time-Use Activity-Pattern Recognition Model for 

Activity-Based Travel Demand Modeling2 

4.1 Introduction 

In recent years, disaggregate travel demand models have begun to be employed for travel 

demand forecasting purposes. These models improve upon the traditional four stage 

modeling method, since they are able to more accurately capture the effects of elements 

that influence travel behavior and time allocation, such as socio-demographic attributes. 

Latterly, the activity-based modeling approach, along with other disaggregate travel 

demand modeling methods such as trip-based modeling, has become more popular and 

commonly used in both the academic and practitioner sectors. To date, numerous activity-

based models have been developed, such as STARCHILD (1986), and SCHEDULER 

(1989), ALBATROSS (2000), DAYSIM (2001), MORPC (2002), TASHA (2003), and 

CEMDAP (2004). Activity-based models emphasize that travel is a derived demand, 

originating from the need of an individual to participate in activities. Activity-based 

models work on constructing the 24-hour activity schedule and the associated travel linked 

with activities performed by individuals. Most activity-based models comprise the 

following universal modules: activity generator and scheduler, tour and trip time of day, 

tour and trip mode choice, tour and trip destination choice, and network assignment. 

For many years, researchers and practitioner have employed different approaches for 

development of activity-based models. Rasouli and Timmermans reviewed recent work on 

                                                           
2 A version of this chapter has been published:  

Hafezi, M. H., L. Liu., and H. Millward. (2017). “A time-use activity-pattern recognition model 

for activity-based travel demand modeling”. Transportation. 1-26. DOI: 10.1007/s11116-017-

9840-9. 
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activity-based models of travel demand (Rasouli and Timmermans 2014), and argued that 

these models can be classified into three main concept categories: (1) constraint-based 

models, (2), discrete choice models, and, (3) computational process models. The 

constraint-based models consider possible travel patterns with respect to a set of space-

time constraints. PESASP (1977), GISICAS (1977), and CARLA (1985) are some 

examples of activity-based models developed through the constraint-based modeling 

approach. The second category, discrete choice models (also known as econometric 

models), consider activity pattern consequences from utility maximizing decisions. 

DAYSIM (2001), MORPC (2002), and CEMDEP (2004) are some examples of activity-

based models developed through the econometric approach. Finally, the computational 

process models (also known as rule-based models) simulate and model activity patterns 

through computational processes. SCHEDULER (1989), ALBATROSS (2000), and 

TASHA (2003) are some examples of activity-based models developed through the rule-

based modeling approach.  

Some researchers have incorporated both econometric and rule-based modeling 

approaches in the activity-based modeling framework. The reason was to increase the 

model computational efficiency and degree of accuracy of outputs. In particular, Auld and 

Mohammadian (2009) employed a rule-based technique to resolve conflicts in the activity 

scheduling phase in the ADAPTS econometric activity-based model. Another example is 

the TASHA model, where Miller and Roorda (2003) for tour formation of their rule-based 

model by utilizing an econometric modeling approach. In very recent research, borrowing 

from the computer science field, researchers have used machine learning techniques to 

develop different components of activity-based models. However, there have been very 
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limited applications of such techniques in activity-based modeling. For instance, the K-

means clustering technique has been used in a pattern-recognition modeling framework 

(Jiang, Ferreira and Gonzalez 2012; Allahviranloo, Regue and Recker 2016) and support 

vector machine (SVM) has been used in a daily activity sequence recognition process 

(Allahviranloo and Recker 2013). 

In this study we develop a new solution method for the activity generation module in 

activity-based travel demand models. We build on progress in activity generation modules 

by developing a new comprehensive pattern recognition modeling framework which 

leverages activity data to derive clusters of homogeneous daily activity patterns. Each 

cluster produces vital information such as activity type, start time, end time, duration 

probability distribution, and sequential arrangement of activities. Our prime contention is 

that generating more accurate activity patterns is a significant step in decreasing 

uncertainty in forecasting the individual’s activity engagement decisions and moving 

current activity-based models closer to replication of reality. Three-dimensional five-

minute intervals are used as the basic analysis unit in this study. Several machine learning 

techniques not previously employed in travel behavior analysis (fuzzy c-means (FCM) 

clustering algorithm and the CART classifier) are employed in the pattern recognition 

framework. This study contributes by providing additional insights to the linkage between 

activity generation and activity scheduling modules in the overall activity-based travel 

demand modeling framework. Furthermore, the proposed modeling framework in this 

study may be applied to any applications that contain a group of linked sequences, such as 

day-to-day variations in transit ridership or station demand at the individual level. Finally, 

the results of this study are expected to be incorporated within the activity-based travel 
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demand model, Scheduler for Activities, Locations, and Travel (SALT) for Halifax 

Regional Municipality (HRM), Nova Scotia, which is currently under development.  

The remainder of the study is structured as follows: first, we provide a review of relevant 

past research concerning activity generation modules in activity-based modeling 

framework. Secondly we discuss the data used and data transformation necessary for 

pattern recognition, followed by presentation of the pattern recognition methods and 

discussion of model results. The study concludes by providing a summary of contributions 

and future research directions. 

4.2 Literature Review 

Activity generation modules can play an important role in every activity-based modeling 

framework. Prediction accuracy of individual travel behavior depends on actual 

information drawn from activity generation modules. Thus, producing more accurate and 

homogeneous information from this module will result in increasing prediction accuracy 

in activity-based travel demand modeling. Since 1970, when Hagerstrand developed the 

preliminary activity-based model (Hagerstrand 1970), researchers have used several 

different approaches for the activity generation modules of activity-based models, such as 

empirical data analysis, decision trees, and hazard functions (Recker, McNally and Root 

1986a; Recker, McNally and Root 1986b; Arentze and Timmermans 2000; Miller and 

Roorda 2003; Auld and Mohammadian 2009). 

The activity generation module in the ALBATROSS (A Learning-BAsed TRansportation 

Oriented Simulation System) model consists of an integrated decision-making heuristic 

with learning mechanisms (Arentze and Timmermans 2000). Initially, activities are 
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classed into two sets: fixed and flexible activities. The model then produces the fixed 

activities and relocates them along with their temporal and spatial information to the 

scheduler module of the algorithm. The flexible activities are added to schedules based on 

their order of priority and choice of time-of-day. A hazard-based formulation is employed 

in the activity generation module in the ADAPTS (Agent-Based Dynamic Activity 

Planning and Travel Scheduling) model (Auld and Mohammadian 2009). Activities with 

similar features are recognized and essential information such as activity start times and 

durations are generated. The activity generation module in the STARCHILD (Simulation 

of Travel/Activity Responses to Complex Household Interactive Logistic Decisions) 

model comprises three successive phases (Recker, McNally and Root 1986a; Recker, 

McNally and Root 1986b). At the beginning, the algorithm generates all the feasible travel 

activity patterns. Next, all possible activity-travel patterns are found and grouped. Lastly, 

representative patterns in each group are identified using the logit choice model. A series 

of empirical data analyses are employed in the activity generation module of the TASHA 

(Travel and Activity Scheduler for Household Agents) model (Miller and Roorda 2003). 

Populations are groups with similar distributions of start time, activity type, and frequency, 

based on different sets of explanatory variables such as age, gender, income, and 

occupation. 

One limitation of using explanatory variables for grouping the population is that using 

different sets of explanatory variables results in different groupings and generates different 

probability distributions. Therefore, it is challenging and time consuming to find which set 

of explanatory variables have the best fit for grouping the population in the dataset. As 

activity generation modules have a direct effect on prediction accuracy, it is important that 
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populations are grouped with the most similar characteristics. In recent years, machine 

learning techniques have brought new insight into the modeling process of different 

components of activity-based modeling. For instance, Jiang et al. 2012 and Allahviranloo 

et al. 2016 employed the K-means clustering technique for activity pattern recognition. 

Another example is the application of the SVM technique in activity scheduling process 

(Allahviranloo and Recker 2013). Machine learning is a computationally fast and 

straightforward reproducible technique that without being deliberately programmed is able 

to naturally learn to recognize complex patterns, and make an intelligent resolution based 

on the trained data (Bishop 2007; Kubat 2015). While machine learning is well known in 

the computer science field, nevertheless there have been only limited applications of the 

technique in activity-based travel demand modeling, and mainly in the activity generation 

process. For instance, machine learning techniques can be used to solve a sequence 

alignment problem (Joh et al. 2002). In the following section some of these research efforts 

are overviewed. 

Through aggregation of statistical learning methods and data mining, Jiang et al. (2012) 

proposed a new modeling framework for clustering daily patterns of individual activities. 

Numerous machine learning techniques such as the K-means clustering algorithm and the 

principal component analysis (PCA) were employed to explore the inherent daily activity 

structure, and populations were clustered based on the similarity of their activities. The 

modeling framework was implemented for both weekday and weekend data. Their 

research findings enhance the traditional population divisions into workers, students, and 

non-workers. In their proposed modeling framework, individuals are clustered based on 

their activity similarity rather than by explanatory variables such as age or occupation.  
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Liu et al. (2015) employed profile Hidden Markov Models (HMM) to augment the 

sequence alignment method (SAM). Their argument is that the SAM alone cannot capture 

infrequent activities and their related travel episodes. Consequently, they added a 

supplementary phase to the SAM by converting multiple alignments into a position-

specific counting system to capture the probability of all infrequent and frequent activities 

in the data. A two-stage clustering technique to infer activity time windows was developed 

by Allahviranloo et al. (2016). Activity pattern recognition is accomplished using 

aggregation of K-means clustering and affinity propagation methods, in order to capture 

both frequent and infrequent activities. They extended their work to discover differences 

between activity patterns by employing the SAM and agenda dissimilarity distance 

measurement methods. They found that the scheduler executed better when it used the 

clustered data compare to un-clustered data. Their proposed method clustered populations 

into eight clusters. In another study, Li and Lee (2017) utilized probabilistic context-free 

grammars in the modeling and learning of daily activity patterns. Saneinejad and Roorda 

(2009) measured similarities between routine weekly activity sequences by utilizing the 

multiple sequence alignment methods.  

This study addresses the above-mentioned limitations of activity generation modules by 

using explanatory variables for grouping the population and by recognizing infrequent 

activities in the overall activity-based modeling framework. In this study, we tackle the 

problem from a new standpoint, through development of a new comprehensive pattern-

recognition modeling framework that leverages activity data to derive clusters of 

homogeneous daily activity patterns. Each particular cluster produces essential 

information such as activity type, start time, end time, duration probability distribution, 
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and sequential arrangement of activities. Application of this new framework to activity-

based modeling not only reveals the strength of machine learning to identify homogeneous 

clusters, but also yields additional insights into the linkage between two critical activity-

based model modules namely activity generation and activity scheduling. 

4.3 Data 

In this section, an overall description of the Space-Time Activity Research (STAR) survey 

data and data processing steps is presented. This study uses time-diary and GPS geo-

coordinate data, from the STAR survey accomplished in Halifax, Canada. The STAR 

survey was a combined household activity survey and travel survey, and the world’s first 

large-scale employment of global positioning system (GPS) technology for tracking and 

verification of out-of-home activities. A brief description follows, and full descriptions of 

the survey design and the socio-demographic characteristics of respondents can be found 

in (TURP 2008; Millward and Spinney 2011). 

The Halifax STAR project collected survey data from 1,971 randomly selected households 

in Halifax Regional Municipality (HRM) between April 2007 and May 2008. The survey 

collected fully geo-referenced 2-day (i.e. 48-h) time diary data from a randomly selected 

primary respondent aged 15 years or older within each household. Primary respondents 

carried a GPS data logger (Hewlett Packard iPAQ hw6955) for a 48-hours reporting 

period, maintained a daily ‘‘activity log’’ during that period, and completed a computer-

assisted telephone interview (CATI) time-diary survey the day after the two-day reporting 

period had ended. The respondents’ descriptions of their out-of-home activities were 

prompted and validated by the GPS data. 
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The original STAR dataset included 188 activity sub categories defined under ten main 

activity categories. The activity codes utilized were those employed in Statistics Canada’s 

time-use surveys, and relate to the prime purpose of the activity. In addition, entertainment 

activities were defined by passive attendance, whereas both sports and hobbies were 

identified by active participation in the activity. 

4.3.1 Data Processing 

The data processing consisted of three steps. The first step was to identify and eliminate 

data for non-working days from the STAR survey data. The second step was to clean the 

database of any missing values to ensure validity, uniformity, and consistency. The 

resulting data set comprised 2,778 working person-days (1,389 individuals, two days 

each). Note that the current research did not consider the possible temporal correlation of 

activity sequences between two continuous days, and treated all person-days as 

independent samples. As mentioned earlier, a five minutes interval was used as the basic 

time unit in this study. Therefore, we rounded all time values up/down in the way so that 

they were evenly divisible by five. Lastly, the final step was to re-categorize the original 

188 activity categories. To align with the transportation planning literature and urban 

studies (Ben-Akiva and Bowman 1998b; Bhat et al. 2004), and based on similarities 

between some of the primary activities, the original activities were aggregated into 9 

activity categories, as shown in Table 4.1. Travel episodes are categorized as a separate 

time-use category in this study. This feature allows the model to be updated with new data 

on congested travel times. The new travel times may be measured by operating the 

activity-based travel demand model in aggregation with a congestion index. In addition, 

for the purpose of this study, we categorized in-home activities into three major categories. 
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Table 4.1 Proposed cluster-based codification for activity episodes 

Activity 

code 

In-home/ 

Out-of-

home 

Aggregated activity 

categories 
Code Descriptions 

1 

In
-h

o
m

e 

ac
ti

v
it

ie
s 

Home chores H Working at home, eating/meal preparation, 

indoor or outdoor cleaning, interior or 

exterior home maintenance, child care, 

other in home activities. 

2 Home leisure L Watching TV/listening to radio, reading 

books/newspapers, etc. 

3 Night sleep N Night sleep 

4 

O
u

t-
o

f-
h
o

m
e 

 

ac
ti

v
it

ie
s 

Workplace W Work/job, all other activities at work, work 

related (conferences, meetings, etc.).  

5 Shopping & services P Shopping for goods and services, routine 

shopping. 

6 School/college S Class participation, all other activities at 

school. 

7 Organizational/hobbies G Organizational, voluntary, religious 

activities. Hobbies done mainly for 

pleasure, cards, board games, all other 

hobbies activities. 

8 Entertainment 

 

E Eat meal outside of home, all other 

entertainment activities. 

9 Sports T Walking, jogging, bicycling, all sports 

related activities. 

 

4.3.2 Data Transformation 

Prior to implementing pattern recognition techniques, it was essential to transform the 

activity survey data. The data transformation process is illustrated in Figure 4.1. The 

twenty-four hours were split into 288 five minute intervals, and each interval has 3 

dimensions. The first dimension comprises temporal information on activities: each of the 

288 cells was coded with one of the 9 major categories as defined in Table 4.1. The second 

dimension comprises socio-demographic characteristics related to activities, and the third 

dimension contains spatial information associated with activities. In the current study, we 

have utilized only the temporal dimension in the modeling framework. However, the other 

dimensions can also be used for cluster analysis. For example, the spatial information 
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dimension can be used to identify if there are differences in clusters in terms of daily spatial 

dynamics (e.g. home-work distance). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Database schema transformation 

Consequently, the preliminary transformed matrix dimensions would be 288 x 2,778 x 

2,778. The ultimate step in data transformation process was to transform activity survey 

data to the binary format. Each of the 9 major activity categories were transformed to a 

“1” or “0” binary code such that if the individual participated in the activity in the 

particular time interval a code of “1” was recorded, and otherwise “0”. 

4.3.3 Individual and Aggregated Daily Activity Dissimilarities 

Figure 4.2 shows the aggregated daily temporal pattern of 2,778 person-days (1,389 

individuals, two days each) with their activities categorized in 9 groups at the aggregated 

level. The 288 five-minute intervals started at 4:00 am and finished at 3:55 am on the next 

day. The temporal distribution of in-home and out-of-home activities in Figure 4.2 show 

very interesting and informative information about household daily activity pattern. In 

particular, we see that household chores have morning and early evening peaks (breakfast 

and supper), and household leisure is high in the later evening. Workplace and household 

chores dominate during the daytime, and are inversely related.  

Activity code 

Socio-demographics 

| 1 | 2 | 3 |…….…….| 288 

| 

Temporal info 
Temporal info of 

Activity category #1 

| 1 | 2 | …….…….| 288 | | 1 | 2 | …….…….| 288 | | 1 | 2 | …….…….| 288 | …….…

…. 

Socio-demographics 

Binary code 

Temporal info of 
Activity category #2 

Temporal info of 

Activity category #j 

S
p
at
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in
fo

 

S
p
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l 

in
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Figure 4.2 Aggregated temporal pattern of person-day activities 

Figure 4.3 visualizes sparsity patterns of person-day activities. The spots in Figure 4.3 

show the transformed data using 5 minutes intervals. For each activity type, the darker 

area indicates that the individual participated in the activity (code “1”), and conversely the 

brighter area indicates that the individual did not participate in the activity (code “0). The 

horizontal axis denotes time of day starting from 4:00 a.m. and ending at 3:59 a.m. 
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Figure 4.3 Sparsity pattern visualization of person-day activities  

4.4 Methods 

The pattern recognition modeling framework in this study comprises four modules, as 

follows. First, we employed a subtractive clustering algorithm for initializing the total 

cluster number and cluster centroids. Previous studies (Pena, Lozano and Larranaga 1999; 

Erisoglu, Calis and Sakallioglu 2011) suggested initializing these two values before 

implementing any clustering algorithm such as K-means or C-means, in order to increase 

the performance of the main clustering algorithm. We used Dunn’s index to measure 

cluster validity. Next, individuals with similar activity patterns were identified and 

clustered using the FCM clustering algorithm. Using the multiple sequence alignment 

method (M-SAM), the sets of representative patterns were achieved. We incorporated the 

progressive method to calculate the number of steps needed to align multiple sequences. 
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Finally, the CART classifier algorithm was used to explore inter-dependencies among the 

attributes in each identified cluster, and to relate the membership of cluster individuals to 

their socio-demographic characteristics. Broadly, we group the activity sequences into 

different clusters using FCM and analyze the relationship between demographic features 

of persons and identified clusters using CART, with an assumption that activity sequence 

clusters are dependent on demographic features. Although the SAM is commonly used in 

activity sequence analysis, to the best of our knowledge the FCM clustering has not been 

explored in activity pattern or travel behavior studies (Hafezi, Liu and Millward 2017b). 

Further study will include extending the current modeling framework to produce detailed 

information on activities, such as start time, duration, activity type, travel distance, and 

location, that are crucial for the scheduling stage of activity-based travel demand 

modeling. 

4.4.1 Initialization of Cluster Number and Cluster Centroids 

The first step in the proposed pattern recognition modeling framework is to initialize both 

cluster number and cluster centroids. For this purpose, a dynamic subtractive clustering 

algorithm is implemented. The algorithm searches for cluster centers based on the density 

of neighboring data points. Overall, the subtractive clustering algorithm consists of five 

phases. In this study, we present only a concise overview of the algorithm, and interested 

readers are referred to (John Lu 2010; Ngo and Pham 2012; Shieh 2014) for more 

explanation. The transformed temporal information on activities achieved in section 3.2 is 

used as input of the subtractive clustering algorithm. The parameter 𝑧 is defined as the 

sample size of person-days in the dataset, 2778. For each individual in the population  𝑖 ∈

{1,2,3, … , 𝑧} there are 2,592 (9 activity categories x 288 time-intervals) data points 𝑃 =
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 {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑧} ∈ {0,1}
𝑧 such that each 𝑝𝑖 has 2,592 dimensions. Each data point 

represents a transformed person-day activity pattern. The subtractive clustering algorithm 

begins by initializing the accept ratio (𝜕̅), reject ratio (𝜕), cluster radius (𝑢𝑟) and squash 

factor (𝜗) parameters. These parameters have important effects on finding cluster centers 

and total cluster number in the database. The 𝑢𝑟 is defined as a positive value 

demonstrating a neighborhood radius. A larger value of 𝑢𝑟 results in finding fewer cluster 

numbers whereas a smaller value of 𝑢𝑟 can results in model overfitting. The suggested 

value for 𝜗 is 1.25 ≤ 𝜗 ≤ 1.0 and for 𝑢𝑟 is 0.15 ≤ 𝑢𝑟 ≤ 0.30 (Ngo and Pham 2012). The 

next step in the subtractive clustering algorithm is to calculate density for all data points.  

𝑇𝑖 = ∑ 𝑒
−
4

𝑢𝑟
2‖𝑝𝑖−𝑝𝑗‖

2

𝑚
𝑗=1               (1) 

Using the Euclidean distance method, the distance between two data points is computed. 

In other words, the distance indicates the extent of differences between two person-day 

activity sequences. The algorithm continues by searching among computed densities for 

all data points, and the data point (𝑝∗) with highest density (𝑇∗) is designated as the initial 

cluster center. Next, the algorithm recalculates the density of all data points using the 

difference between the highest selected density in the last step and the new computed 

density. 

𝑇𝑖 = 𝑇𝑖 − 𝑇ℎ
∗𝑒
−

4

𝜗∗𝑢𝑟
‖𝑝𝑖−𝑝𝑗

∗‖
2

; 𝑖 = 1,… , 𝑧            (2) 

If 𝑇 > 𝜕̅𝑇𝑟𝑒𝑓 then 𝑝∗ is nominated as a new cluster center. Otherwise, 𝐸𝑚𝑖𝑛 is computed 

as the shortest distance between 𝑝∗ and all previously found cluster centers. The process 
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of finding a new cluster center is continued if  
𝐸𝑚𝑖𝑛

𝑢𝑟
+

𝑇∗

𝑇𝑟𝑒𝑓
≥ 1. If not, then 𝑇(𝑝∗) = 0 and 

𝑤∗ is designated with the following maximum density. The algorithm is terminated when 

𝑇∗ < 𝜕𝑇𝑟𝑒𝑓. Considering the set of cluster centers, the membership degree of data points 

in each cluster is computed as follows: 

𝛽𝑖ℎ = 𝑒
−
4

𝑢𝑟
2‖𝑝𝑖−𝑝ℎ‖

2

               (3) 

The cluster number and cluster centroids identified through the subtractive clustering 

algorithm are used as inputs for the Fuzzy C-means (FCM) algorithm in the next step of 

the pattern recognition modeling framework. The FCM algorithm determines the final 

memberships in each cluster through a fuzzy process. 

4.4.2 Identification of Individuals with Homogeneous Activity Patterns 

The second step in the proposed pattern recognition modeling framework is to identify 

individuals with homogeneous activity patterns and group them into clusters. For this 

purpose, the Fuzzy C-Means (FCM) unsupervised machine learning algorithm is 

employed. In the FCM each data point that represent a person-day activity has the 

likelihood to belong to several clusters. This aspect of the algorithm boosts the cluster 

quality by selecting the best fitted data points. The FCM algorithm uses an iterative process 

in which the degree of membership for each data point in the cluster is computed at each 

iteration, and subsequently this information is utilized in updating the cluster membership 

and cluster centroids in the following iterations. The FCM algorithm is terminated when a 

termination condition is met. The FCM algorithm employs the following steps: 
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Initialize membership 𝑅(0) = [𝑘𝑖ℎ] for data point 𝑝𝑖 (person-day activity) of cluster 𝑔∗ by 

randomly choosing membership of all clusters. At the 𝑡-th phase, calculate the fuzzy 

centroid 𝐹(𝑡) = [𝑓𝑙] for 𝑙 = 1,… , 𝑔, where 𝑔 is the number of clusters obtained from the 

previous step. 

𝑓𝑙 =
∑ (ℎ𝑖𝑙)

𝜏𝑝𝑖
𝑧
𝑖=1

∑ (ℎ𝑖𝑙)
𝜏𝑧

𝑖=1

               (4) 

where ℎ𝑖𝑙 is the degree of membership of data point 𝑝𝑖 in the 𝑙∗ cluster, 𝜏 is the fuzzy 

parameter and 𝑧 is the number of data points (2778 person-days). The fuzzy membership 

ℎ𝑙 is updated as follows: 

ℎ𝑙 =
1

∑ (
‖𝑝𝑖−ℎ𝑙‖

‖𝑝𝑖−ℎ𝑘‖
)

2
(𝜏−1)𝑔

𝑘=1

                                                 (5) 

Minimize the following objective function: 

𝑁𝜏 = ∑ ∑ ℎ𝑖𝑙
𝜏 ‖𝑝𝑖 − ℎ𝑙‖

2𝑔
ℎ=1

𝑧
𝑖=1              (6) 

The updating algorithm is terminated when ‖𝑁(𝜏) − 𝑁(𝜏−1)‖ < 𝜑. The parameter 𝜑 is 

specified as the minimum threshold in the algorithm. The final membership of cluster 𝑓𝑙 

is obtained as follow: 

𝑝𝑖 ∈ 𝑓𝑙  ↔ ℎ𝑙
𝑁(𝜏) > 𝛽                                            (7) 

For each data point 𝑝𝑖, assign 𝑝𝑖 to cluster 𝑓𝑙 if fuzzy membership ℎ𝑙 of 𝑁(𝜏) is greater than 

threshold value 𝛽. Activity sequences belonging to members in each identified cluster are 

used as input for the sequence alignment method (SAM) in the next step of the pattern 
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recognition modeling framework in this study. The SAM algorithm measures distance 

between activity sequences based on the number of stages needed to align two sequences 

of activities. 

4.4.3 Identification of Sets of Representative Activity Patterns 

The third step in the proposed pattern recognition modeling framework is to identify the 

sets of representative activity patterns. For this purpose, the Multiple Sequence Alignment 

(MSA) method is employed. The sequence alignment method is commonly used in the 

biological sciences to compare strings of chromosomes. One of the main challenges of the 

sequence alignment problem is to compute the required number of stages in order to align 

two strings (Chenna et al. 2003). This problem can be solved using various methods such 

as heuristic methods, approximation algorithms, probabilistic methods, and global 

optimization. In this study, a new heuristic method is used for solving the sequence 

alignment problem. This method, named the progressive alignment technique, is 

composed of three phases. At the beginning, for all existing pairs of sequences in each 

cluster, pairwise distance scores are computed. Next, a guide tree based on the calculated 

similarity sequences is produced and similar sequences are assigned close together in the 

guide tree. Finally, the sequences are aligned according to training collated by the guide 

tree. Supposing that cluster 𝑔 has 𝑙 membership: 𝑔𝑙 ∈ {𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑙}, the objective is 

to calculate the optimal alignment for every member of cluster 𝑔. The optimal alignment 

is accomplished through the distance score matrix. The distance score between two 

members of cluster 𝑔 is computed as follows: 

𝑆𝐶 = 1 −
𝑟

𝑠
                                      (8) 
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Where 𝑟 is the number of corresponding strings 𝑔𝑖 and 𝑔𝑗 in a bit string, and 𝑠 is the 

number of corresponding lengths of 𝑑𝑔𝑖 and 𝑑𝑔𝑗 in a bit string. 

The score for two matched strings is equivalent to +1, the penalty for two mismatched 

strings is – 𝜌 and the gap penalty is –𝜎. The guide tree is constructed according to the 

distance score matrix. Finally, the representative pattern will be achieved through 

execution of several alignments, including insertion, deletion, and substitution of the entire 

cluster membership. The edit-distance between two strings 𝑔𝑖 and 𝑔𝑗 with lengths of 𝑑𝑒𝑖 

and 𝑑𝑒𝑗 is computed as follows: 

𝑇𝑖,𝑗 = 𝑚𝑎𝑥

{
 
 

 
 𝑇𝑖−1,𝑗−1 + 1                   𝑖𝑓 𝑔𝑖 = 𝑔𝑗
𝑇𝑖−1,𝑗−1 − 𝜌                   𝑖𝑓 𝑔𝑖 ≠ 𝑔𝑗
𝑇𝑖−1,𝑗 − 𝜎                                           

𝑇𝑖,𝑗−1 − 𝜎                                           

           (9) 

The 𝑇𝑖,𝑗 is an alignment with maximum score. In order to understand the relationship 

between demographic features of persons and identified clusters, we then analyzed each 

cluster using a CART classifier is used as input in the CART classifier. 

4.4.4 Investigation of Inter-Dependencies among the Attributes 

The last step in the proposed pattern recognition modeling framework is to discover the 

inter-dependencies among the socio-demographic attributes of persons in each identified 

cluster, with an assumption that cluster membership is dependent on demographic features. 

In doing so, our approach is comparable to recent work by (Jiang, Ferreira and Gonzalez 

2012). For this purpose, the CART classifier is performed, to construct the best-fitting 

decision tree that contains the highest amount of information. Consistent with other 
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decision tree algorithms such as C4.5, CHAID, and ID3, in the CART algorithm the 

impurity measure is a decision maker for seeking leaf nodes (Tan, Steinbach and Kumar 

2005). The CART algorithm utilizes the Gini index to measure the impurity. The Gini 

index is calculated for every predictor variable at each node, and the variable that has the 

minimum value is chosen. In addition, the CART algorithm employs cross-validation as a 

complementary measurement to choose the optimal decision tree. The Gini index is 

calculated as follows: 

𝐼(𝐺) = 1 − ∑ 𝑓𝑗
2𝑛

j=1                    (10) 

Where: 

𝑛 is the number of activity categories (9 activity categories as defined in Table 4.1), 

𝑓𝑖 is the relative frequency of activity 𝑗 in the cluster 𝑔. 

4.5 Discussion of Results 

We applied the proposed pattern recognition modeling framework to data associated with 

2,778 person-day (1,389 individuals, two days each) drawn from the 2008 Space-Time 

Activity Research (STAR) travel survey (TURP 2008) in Halifax, Nova Scotia, Canada. 

The FCM clustering method bundled individual activity patterns into twelve discrete 

clusters. The Dunn’s index showed 12 to be the best number of clusters. The temporal 

pattern of individual activities for the twelve identified clusters is shown in Figure 4.4, and 

Table 4.2 presents an analysis of clustered data. In the following section, a discussion for 

each of the twelve clusters and their socio-demographic attributes is presented.
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Figure 4.4 Temporal pattern of person-day activities for twelve identified clusters 
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Table 4.2 Analysis of clustered data: Share of different socio-demographic variables, membership analysis and representative patterns 

Social demographic 

variables 
Sample mean (%) 

Mean of cluster (%) 

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 #9 #10 #11 #12 

Gender Female 0.53 0.53 0.53 0.44 0.59 0.56 0.52 0.47 0.54 0.59 0.51 0.53 0.60 

Age 

Young adults (ages 15-35 

years) 
0.10 0.12 0.05 0.10 0.10 0.11 0.10 0.05 0.09 0.07 0.15 0.09 0.60 

Middle-aged adults (ages 

36-55 years) 
0.49 0.67 0.29 0.66 0.38 0.32 0.71 0.72 0.29 0.32 0.66 0.70 0.31 

Older adults (aged older 

than 55 years) 
0.41 0.20 0.66 0.24 0.53 0.57 0.19 0.23 0.63 0.61 0.19 0.22 0.08 

Education 
Diploma or university 

certificate 
0.67 0.76 0.58 0.76 0.62 0.66 0.85 0.53 0.57 0.65 0.64 0.80 0.38 

Occupation 

Regular shift 0.53 0.73 0.22 0.93 0.26 0.24 0.87 0.93 0.19 0.24 0.43 0.89 0.13 

Irregular schedule 0.10 0.22 0.10 0.03 0.10 0.11 0.09 0.07 0.07 0.07 0.47 0.08 0.02 

Student 0.03 0.01 0.00 0.00 0.04 0.01 0.01 0.00 0.03 0.02 0.04 0.01 0.67 

Retired 0.23 0.02 0.52 0.02 0.39 0.41 0.01 0.00 0.53 0.41 0.00 0.00 0.08 

Work at home 0.15 0.23 0.10 0.13 0.15 0.16 0.30 0.06 0.11 0.09 0.09 0.26 0.02 

Flexible schedule 
Have no flexibility in a work 

schedule 
0.50 0.55 0.48 0.54 0.46 0.43 0.44 0.63 0.48 0.51 0.75 0.40 0.43 

Job number Have more than one job 0.07 0.09 0.04 0.04 0.16 0.08 0.05 0.07 0.11 0.05 0.08 0.08 0.00 

Income 

Low-income (<= $ 40,000) 0.39 0.28 0.44 0.22 0.48 0.49 0.32 0.29 0.53 0.48 0.47 0.26 0.78 

Middle-income ($ 40,000 - $ 

100,000) 
0.53 0.60 0.46 0.68 0.45 0.45 0.55 0.64 0.42 0.46 0.49 0.59 0.19 

High-income (> $ 100,000) 0.09 0.12 0.10 0.10 0.07 0.07 0.13 0.08 0.05 0.06 0.04 0.15 0.03 

Total cluster membership 137 225 401 238 419 171 229 247 262 53 348 48 

Percentage in total (number of person-days) 4.9 8.1 14 8.5 15 6.1 8.2 8.8 9.4 1.9 12. 1.7 

Home chores (%) 25.0 34.7 27.8 41.3 43.1 33.7 30.1 40.5 40.1 35.0 29.4 35.5 

Home leisure (%) 12.0 20.2 16.5 14.4 19.1 16.2 17.7 19.9 19.1 13.6 15.3 13.8 

Night sleep (%) 62.8 45.0 55.6 44.1 37.7 50.0 52.1 39.5 40.7 51.3 55.2 50.6 

Total in-home (%) 100 100 100 100 100 100 100 100 100 100 100 100 

Workplace (%) 89.2 4.76 82.6 6.41 8.16 79.5 89.3 10.5 13.1 90.9 86.5 5.77 

Shopping & services (%) 1.61 27.2 3.16 15.3 30.1 5.56 2.41 32.2 38.2 2.90 2.98 3.38 

School/college (%) 0.00 1.00 0.14 1.20 0.42 0.40 0.29 3.16 1.28 0.66 0.15 69.2 

Organizational/hobbies (%) 2.34 29.5 3.24 31.2 19.9 5.11 1.76 21.1 21.9 1.57 2.62 11.1 

Entertainment (%) 4.67 17.4 6.92 33.7 10.3 6.48 3.73 8.75 11.6 1.93 4.30 4.53 

Sports (%) 2.12 19.9 3.93 12.0 30.9 2.93 2.50 24.2 13.7 2.04 3.40 5.89 

Total out-of-home (%) 100 100 100 100 100 100 100 100 100 100 100 100 
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Cluster #1: extended work-day workers, comprised a group of workers who engaged in 

work activity for a longer duration, starting from 8:00 a.m. to around 8:00 p.m. A large 

portion of workers in this cluster were middle-aged females aged between 36 and 55 years 

old (67.0%), while 76.0% of them had education levels higher than high school. 

Furthermore, 73.0% of people in this cluster were full-time workers, and they commonly 

had middle income (60.0%). The major percentage of the workers in this cluster (55.0%) 

indicated they had no flexibility in their work schedule. 

Cluster #2: non-worker, midday activities, consisted of a group of people who participated 

in organizational/hobbies or entertainment activities mostly in the midday, starting from 

10:00 a.m. to around 5:00 p.m. A large proportion of people in this cluster were female 

(53.0%) and also aged older than 55 years (66.0%). The majority of people in this cluster 

were educated and belonged to the middle or low income level. A minor proportion of the 

people in this cluster had work at home (10.0%) while 52.0% of them indicated that they 

had some flexibility in a work schedule. 

Cluster #3: 8-4 workers, was a group of workers who engaged in work activity in a 

consistent manner, starting from 8:00 a.m. to around 4:00 p.m. The major proportion of 

workers in this cluster consisted of middle-aged males with education level higher than 

high school. A major proportion of workers in this cluster were full time workers (93.0%), 

and they typically had middle income level. Additionally, the workers in this cluster 

engaged in entertainment activities typically in the evening, starting around 6:00 p.m. for 

a duration around two hours. 
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Cluster #4: non-worker, evening activity, involved a group of people who participated in 

organizational/hobbies or entertainment activities mostly in the evening, starting from 6:00 

p.m. to around 10:00 p.m. Similar to cluster 2, most people in this cluster were older 

females with education level higher than high school. A large proportion of people in this 

cluster (48.0%) belonged to the low income partition. Furthermore, a minor group of them 

had work at home (15.0%), while 54.0% of them indicated that they had some flexibility 

in a work schedule. 

Cluster #5: stay-at-homes, comprised a group of people who mostly spent their time at 

home. The greater number of people in this cluster belonged to the low-income partition. 

Similar to clusters 2, 4, 8 and 9, a large proportion of people in this cluster consisted of 

old-aged females. Furthermore, a minor proportion of people in this cluster (4.64%) went 

out of home in the day for recreational activities. Compared to other activities, sports and 

shopping activities after in-home activity was most typical. In addition, cluster 5 had the 

largest membership (15.08%) in comparison with other identified clusters in this study. 

Cluster #6: shorter work-day workers, involved a group of workers having work duration 

typically less than 5 hours in a day, and who finished their work in the early afternoon 

before 2:00 p.m. A large proportion of workers in this cluster were middle-aged females 

between 36 and 55 years old (71.0%). Furthermore, a large proportion of workers in this 

cluster (85.0%) had education level higher than high school. In total, 56.0% of them 

indicated that they had some flexibility in their work schedule. The workers in this cluster 

participated in more recreation activities than those in other identified worker clusters. 
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Cluster #7: 7-3 workers, comprised a group of workers who started work in the early 

morning around 7:00 a.m. and finished their work in the early afternoon around 3:00 p.m. 

A large proportion of workers in this cluster were middle-aged males between 36 and 55 

years old (47.0%), and the majority had middle-income (64.0%). Furthermore, the 

majority of workers in this cluster were full time workers (93.0%), while 63.0% of them 

indicated that they had no flexibility in a work schedule. A minor portion of workers in 

this cluster (7.0%) have more than one job. It is interesting to note that workers in this 

cluster typically start and end at the workplace ahead of peak traffic periods both in the 

morning and afternoon.  

Cluster #8: non-worker, morning shopping, involved a group of people who did shopping 

activities mostly in the morning, starting from 9:30 a.m. to around 12:00 p.m. Similar to 

clusters 2 and 4, a major proportion of people in this cluster consisted of females and also 

were aged older than 55 years. Moreover, similar to cluster 4, a large proportion of people 

in this cluster were educated and belonged to the low income level (53.0%). Furthermore, 

a minor group of them had work at home (11.0%). In total, 52.0% of them specified that 

they had some flexibility in a work schedule. 

Cluster #9: non-worker, afternoon shopping, consisted of people who did shopping 

activities mostly in the afternoon. Consistent with other non-worker clusters, a large 

proportion of people in this cluster were female (59.0%) and also aged older than 55 years. 

Furthermore, a large proportion of people in this cluster (48.0%) belonged to the low 

income partition, with education level higher than high school. Compared to other 

identified non-worker clusters, only a small portion of them had work at home (9.0%), 

while 51.0% of them indicated that they had no flexibility in a work schedule 
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Cluster #10: evening workers, was a group of workers who mostly started to work in the 

evening around 4:00 p.m. and finished their work around midnight. In contrast to cluster 

7, a large proportion of workers in this cluster were females (51.0%). Similar to cluster 3, 

6 and 7, a large proportion of people in this cluster were middle-aged with education level 

higher than high school. Moreover, 47.0% of people in this cluster had an irregular 

working schedule, and they typically had middle or low income level. 

Cluster #11: 9-5 workers, involved a group of workers who unlike workers in cluster 7, 

typically tend to travel to and from work during peak traffic periods both in the morning 

and afternoon. The majority of workers in this cluster consisted of middle-aged females 

between 36 and 55 years old (53.0%) with middle-income (59.0%) level. Similar to cluster 

6, a large proportion of workers in this cluster had education level higher than high school. 

Interestingly, around 60.0% of them indicated that they had some flexibility in a work 

schedule. 

Cluster #12: students, involved a group of students who engaged in school activity in a 

consistent manner. A large proportion of students in this cluster were young adults aged 

between 15 and 35 years old (60.0%). The majority of students in this cluster (78.0%) 

belonged to the low income partition. Furthermore, students typically engaged in 

recreation activities after school time, starting from 4:00 p.m. to around 11:30 p.m. We 

performed an examination of start time and duration probability distributions of different 

activities. The purpose of this analysis is to explore the cluster aspects from a temporal 

point of view. The probability distributions of start time and duration for work activity are 

shown in Figure 4.5 and  Figure 4.6, respectively. It should be noted that we do not show 

the details of probability distributions of all activities for the sake of brevity.  
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Figure 4.5 Probability distribution of being at the workplace activity in clusters  
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 Figure 4.6 Probability distribution of workplace activity duration in clusters
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Results of the cluster distribution analysis reveal that start time and duration distributions 

of work activity in most of the clusters are clearly dissimilar. Also, these results reveal that 

the number of clusters significantly influences cluster features. 

We employed the Kolmogorov-Smirnov (KS) test on the activity start time distributions 

between pairs of clusters, to test for significant differences. Result of KS tests for twelve 

different clusters and all activity categories are shown in Table 4.3. The KS test is built as 

a statistical hypothesis test. The null hypothesis (𝐻0) is that the two samples were drawn 

from the same population. Values of 1 in Table 4.3 indicate rejection of 𝐻0 at the 𝑝 = 0.05 

level. As can be seen, in most of the tests the null hypothesis is rejected and start time 

distributions may be regarded as significantly different between the two clusters. 

Figure 4.7 depicts a set of representative activity patterns that correspond to the centroids 

of each cluster. It should be noted that members within specific clusters can have activities 

that due to their lower share or short duration compared to other activities are absent from 

the representative patterns. Our results show that, by using the FCM clustering algorithm, 

each activity type is embodied in at least one of the representative patterns, which make it 

comparable with other clustering algorithm such as k-means (Jiang, Ferreira and Gonzalez 

2012; Allahviranloo, Regue and Recker 2016). 
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Table 4.3 Kolmogorov-Smirnov test on activity start time distribution 

W
o

rk
p

la
ce

 

Cluster number 1 2 3 4 5 6 7 8 9 10 11 12 

O
rg

a
n

iz
a

ti
o

n
a
l/

h
o

b
b

ie
s 

Cluster number 1 2 3 4 5 6 7 8 9 10 11 12 

1  0 1 1 1 1 0 0 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 

2   0 1 1 0 1 0 1 1 1 1 2   1 1 1 1 1 0 1 1 1 1 

3    1 1 1 1 1 1 1 1 1 3    0 0 0 1 1 1 1 0 1 

4     1 0 1 0 1 1 0 1 4     1 0 1 1 0 1 0 1 

5      0 0 1 1 1 0 1 5      1 1 0 1 1 1 1 

6       1 1 1 1 1 1 6       0 1 0 1 1 1 

7        1 1 1 1 1 7        1 1 1 1 1 

8         1 1 1 1 8         1 1 1 1 

9          1 1 1 9          1 1 1 

10           1 1 10           1 1 

11            0 11            0 

12             12             
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p
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1  1 1 1 1 1 1 0 1 1 1 1 
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1  0 0 1 0 0 0 0 1 1 0 0 

2   1 1 1 1 1 1 1 1 1 1 2   1 1 1 1 1 1 1 1 1 1 

3    0 0 0 1 1 1 1 0 1 3    1 0 1 1 1 1 1 0 0 

4     1 1 1 1 1 1 1 1 4     0 0 1 1 0 1 0 0 

5      1 1 1 1 1 1 1 5      1 1 1 1 1 1 0 

6       1 1 1 1 1 1 6       0 0 0 1 0 0 

7        0 0 0 1 1 7        1 1 1 1 1 

8         1 1 1 1 8         1 1 1 1 

9          1 1 1 9          1 1 1 

10           1 1 10           0 0 

11            0 11            0 

12             12             
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1  1 1 1 1 1 1 1 1 1 1 1 

S
p

o
rt
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1  1 1 1 1 1 1 1 1 1 1 1 

2   1 1 1 1 0 1 1 0 1 0 2   1 1 1 1 1 0 1 1 1 1 

3    0 0 0 1 1 0 0 0 0 3    1 0 1 1 1 0 1 0 0 

4     1 1 1 1 1 1 1 0 4     0 0 1 0 0 1 0 1 

5      1 1 0 0 0 1 0 5      1 1 0 1 1 1 1 

6       0 0 0 0 0 0 6       1 1 1 1 1 1 

7        1 1 1 1 0 7        0 0 1 1 1 

8         1 1 1 1 8         1 1 1 1 

9          0 1 0 9          1 1 1 

10           1 0 10           1 1 

11            0 11            0 

12             12             
*Values of 1 indicate significant differences at the p=0.05 significance level
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Figure 4.7 Twelve identified representative activity patterns 
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Figure 4.8 depicts the inter-dependencies among the attributes in each twelve identified 

clusters. Circles in Figure 4.8 designate leaves and triangles designates branches. The 

CART algorithm utilized the Gini index for leaf splitting and it fitted a tree with 16 leaves 

and 15 branches in total. Individuals are classified in the first root of the fitted tree based 

on their attendance at school or not. From branch 3, branches grow based on non-worker 

or works in-home versus out-of-home worker. Individuals are then classified as members 

of clusters 2, 5, 6, 8 or 9 based on income, age, and education level. Note that these clusters 

have a major non-mandatory activity (i.e., entertainment, sport, shopping) in their daily 

activities. In contrast, clusters 1, 3, 7, 10 and 11 have a main work activity in the pattern, 

and are based on income, age, education, and gender criteria.  

The CART algorithm found specific clusters for particular leaf nodes based on the high 

probability that an individual belongs to it. However, it should be noted that, in each 

particular leaf node, there is a probability that an individual might belong to any of the 

other clusters. For instance, cluster 4 does not appear in any of the leaf nodes, as can be 

seen in Figure 4.8. Accordingly, we calculated the probability distributions of each cluster 

at each leaf node, and these are shown in Table 4.4. This allows us to infer cluster 

membership of individuals based on random number generation and cumulative 

probability functions. This CART classifier feature is important for use in future 

forecasting phases in activity-based travel demand modeling. 
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Figure 4.8 Decision tree results: Exploring attribute interdependencies in members of cluster 
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Figure 4.8 Decision tree results: Exploring attribute interdependencies in members of cluster 
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Table 4.4 Probability of different clusters in the decision tree 
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As an example, assume a non-worker or works in-home individual in the test set with the 

following socio-demographic characteristics: 32 years old and average income of 65K. 

According to Figure 4.8, the individual is allocated to leaf 11 in the decision tree. 

Subsequently, with respect to the probability distribution calculated in Table 4.4, the 

individual has a 52% likelihood to belong to cluster 9. However, as mentioned before, 

there is a 48% chance that the individual might belong to the other clusters. Suppose that 

the random generated number is 0.8. According to Table 4.4 and the cumulative 

probability functions, this value falls within the range of [0.72, 1.00] and indicates that the 

individual will be assigned to cluster 11. 

4.6 Conclusions 

Due to lack of full data on all individuals of the population, transport modelers are not able 

to predict or model the travel behavior of all individuals in the territory. Consequently, the 

best policy is to predict or model travel behavior for a representative set of model 

individuals, who represent homogeneous cohorts. Accordingly, aggregation is both 

inescapable and essential in travel demand modeling. The significant original contribution 

of this study is to develop a new inclusive pattern recognition modeling framework that 

leverages activity data to derive clusters of homogeneous daily activity patterns for use in 

activity-based travel demand modeling. We modeled the 2-day in-home and out-of-home 

time-use activity patterns of individuals drawn from the large Halifax STAR travel diary 

survey, the world’s largest deployment of global positioning system (GPS) technology for 

a household activity survey. Each individual’s daily pattern of activity was segmented into 

288 three dimensional five-minute intervals, and information on activities, socio-

demographics of the individual, and spatial information related to activities were coded to 
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the three interval dimensions. The clustering algorithm rapidly converged and resulted in 

twelve clusters of person-days, each with homogeneous activity patterns.  

The proposed pattern recognition modeling framework in this study comprises four 

modules. The first module, subtractive clustering algorithm, initialized the cluster 

centroids and total number of clusters. The initial number of clusters found in this phase 

was validated through utilizing Dunn’s index. The subtractive clustering algorithm is an 

alternative method to deal with problems including high resolution. The algorithm 

considers data points as potential sources which resulted in finding cluster centroids with 

higher accuracy. In the next module, person-days in the dataset were bundled into 

dissimilar clusters based on comparable routine activity sequences using the novel and 

efficient Fuzzy C-Means (FCM) clustering algorithm. When compared to other potential 

clustering algorithms such as K-means, FCM yields better convergence of the local 

minima of the squared error principle. This is directly associated to the choice of cluster 

centroids and to cluster membership. In the 3rd module twelve representative activity 

patterns were recognized, corresponding to cluster centroids. The progressive alignment 

method yields more accurate results by improving SAM through iterative profile-

alignment of tree portions to maximize sum of pairs score. Finally, in the last module inter-

dependencies among the attributes of each identified cluster were investigated using the 

CART algorithm. Compared to other potential classifiers such as C4.5, CART classifier 

improves decision tree performance by adding additional cross-validation step. The 

heterogeneous diversity among clusters in terms of their distributions of activity type, start 

time, activity duration, and end time, were confirmed by use of the non-parametric KS 

test. 
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In this study, we demonstrated how cluster analysis can be used to detect differences in 

the socio-demographic characteristics of population groups with different daily activity 

patterns. Our results show that individuals belonging to the non-worker or student clusters 

have different income, age, gender, and education level. Individuals with a stay-at-home 

pattern seem to be identified primarily by age, gender, and income level, while workers 

are found to have statistically dissimilar education, income, and flexible schedules. Lastly, 

and not surprisingly, students are found to have remarkably dissimilar marital status, age, 

and education level.  

Numerous detailed information on activities, such as start time, activity duration, activity 

type, location, and travel distance can be extracted from each identified cluster. Such 

precise information is crucial for the scheduling step of activity-based travel demand 

modeling. The proposed method enriches the traditional methods such as using socio-

demographic variables for classifying the population, and provides clusters based on the 

powerful computerized pattern recognition technique. For instance, discovering activity 

patterns over longer time periods, such as weekly, monthly, and seasonally, can be 

accomplished in a short period of time using the proposed algorithm in this study. Another 

advantage of the developed new method is that unlike previous approaches, the algorithm 

has the ability to recognize people who typically tend to avoid travel in peak traffic periods. 

Our model particularly recognized cluster #7 and cluster #11 of workers who commonly 

travel to and from work before and after peak traffic periods both in morning and afternoon 

peaks, respectively.  

Compared to previous studies that used complex methods to capture frequent and 

infrequent activities in a dataset (Liu et al. 2015), the proposed FCM clustering algorithm 
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in this study is more straightforward and easy to implement in practical activity-based 

travel demand models. Furthermore, the cluster memberships selection in the FCM is 

comparable to the k-means clustering algorithm proposed by Jiang et al. (2012) and 

Allahviranloo et al. (2016). In the FCM each data point has the likelihood of belonging to 

several clusters, and this results in producing more homogeneous activity patterns in each 

cluster. For instance, we identified two different workers in cluster#7 and cluster#11 that, 

regardless of their similarity in activity sequences, are distinguished by start time and end 

time at the workplace. The application of this study is not restricted only to the 

transportation area: the presented new modeling framework can be harmonized for any 

applications that contain a set of connected sequences, such as recognition of functionally 

significant regions, or day-to-day variations in transit ridership and station demand at the 

individual level. 

To build on this study and further demonstrate the potential of our proposed method, we 

are proposing several avenues of research. Firstly, it is possible to explore seasonal activity 

patterns by taking advantage of the wealth of data in the large-scale Halifax household 

travel diary survey (STAR). Secondly, and in line with growing worldwide interest in 

employing GPS locational data, we aim to investigate additional linkages between the 

STAR GPS data and travel diary data, and incorporating them in the proposed modeling 

framework in this study. Thirdly, we intend to extend our work to study the interaction 

between individual and household activity patterns, using data from the STAR survey. The 

latest generation of activity-based travel demand models includes interactions between 

household members, as these have a significant impact on others' travel. In addition, a 

conceivable further step of this work is to establish a hybrid framework employing discrete 
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choice models in combination with the output from pattern recognition to recognize 

likelihoods of activity participation and predict activity patterns of individuals with greater 

accuracy.  

In summary, the modeling framework presented in this study provides a straightforward 

and easy-to-implement tool for urban and transport modelers to understand time-use 

activity patterns for different kinds of individuals. The results of this study are expected to 

be implemented within the activity-based travel demand model, Scheduler for Activities, 

Locations, and Travel (SALT) for Halifax, Nova Scotia.   
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Chapter 5 Learning Daily Activity Sequences of Population Groups 

Using Random Forest Theory3 

5.1 Introduction 

In recent years the activity-based modeling approach has received much attention from 

transport modelers and policy makers. Complexities in individual travel behavior such as 

flexible working hours, self-employment, and online shopping have increased 

considerably due to rapid technological progress. Moreover, policies related to road 

congestion and air pollution are having greater impacts on travel behavior. Clearly, we 

need more complex and disaggregated models that address the above-mentioned changes. 

Integrity, interdependencies, higher temporal and spatial aggregation, and behavioral basis 

are the four main reasons argued by Rasouli and Timmermans (2014) to change from the 

traditional four stage travel demand models to activity-based travel demand models. 

Numerous modeling approaches have been developed for activity-based travel demand 

models. The constraints-based modeling approach was one of the earliest techniques 

developed, based on the theory that travel is a derived demand, originating from the need 

of an individual to engage in activities (Hagerstrand 1970). With the concept that 

individuals desire to maximize the utility of their activity schedule, the random utility 

theory was then used in the development of activity-based models (McFadden 1980). More 

recently, the computational process modeling approach was developed using the theory of 

context-dependent choice preferences and emphasizing their scheduling aspect (Arentze 

                                                           
3 A version of this chapter has been published:  

Hafezi, M. H., L. Liu., and H. Millward. (2018). “Learning daily activity sequences of population 

groups using random forest theory”. Transportation Research Record: Journal of the 

Transportation Research Board. 
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and Timmermans 2000). PCATS (2000), ALBATROSS (2000) and ADAPTS (2009) are 

some examples of activity-based travel demand models developed through the above-

mentioned approaches. The broad modules for most activity-based travel demand models 

are: activity generator and scheduler, activity engagement, tour and trip destination, and 

mode choice and network assignment, among others.  

The activity engagement patterns component provides explicit details on activity type, and 

the frequency and sequence of engaged activities. Daily activity engagement patterns of 

individuals are crucial components in any activity-based travel demand model, as 

individual’s travel demand originates from their need to engage in particular activities. 

Many empirical and theoretical approaches have been employed for the activity 

engagement module, such as multinomial logit model, probabilistic grammars, decision 

tree, etc. (Bowman and Ben-Akiva 2001; Arentze and Timmermans 2007; Auld and 

Mohammadian 2009; Li and Lee 2017; Daisy et al. 2018a). 

Despite all of the progress made in activity engagement modules through rule-based or 

econometric techniques, there have been few attempts to utilize the capability of machine 

learning to derive daily activity engagement patterns. In this study, we developed a new 

model that is able to learn and replicate individual’s daily activity engagement patterns. 

Inspired by Random Forest (RF) theory, decision trees were grown using both CART and 

Curvature Search techniques. The resulting models were trained from observed activity 

sequences. A previous study reveals that ensemble methods performed better when they 

were applied to clustered data (Allahviranloo and Recker 2013). Therefore, in this study, 

we applied the models to twelve unique population clusters derived using a novel pattern 

recognition model, and compared the results to each other. We used confusion matrix, 
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transition matrix, and sequential alignment methods to compare the estimation accuracy 

for replication of activity type, activity position, and activity sequences. The remainder of 

this study is organized as follows: first, we review relevant past research concerning daily 

activity engagement patterns of travelers. Secondly, we discuss the data used for the 

activity pattern recognition. The modeling approach and the planned layer settings are 

explained in the next section, followed by a discussion of model results. The study 

concludes with a summary of contributions and a brief discussion of future research 

directions. 

5.2 Literature Review 

Daily activity engagement patterns differ between individuals based on their socio-

demographic characteristics and their health and/or mobility status. In a seminal early 

work on time geography, Hagerstrand (1970) proposed three types of constraints that 

shape individual activity sequences. The first type are capability constraints, which focus 

on biological needs and available resources that can require or limit an individual’s 

participation in an activity (e.g., eating meals, drinking, and sleeping). The second type 

are coupling constraints, which refer to the spatial and temporal necessities for an 

individual who joins with other individuals to conduct a certain activity. The third type are 

authority constraints, which limit the individual’s access to certain activity locations or 

times. Thus, a decision to participate in a particular activity is a combined result of several 

decisions and constraints (e.g. household interaction, choices on activity type, location, 

timing, duration, destination, etc.).  



 

79 

Following Hagerstrand’s time-space constraints, a wide variety of modeling approaches 

has been employed to model various aspects of daily activity sequences, such as activity 

type, activity sequence, activity frequency, sequential activity location, duration, and 

transport mode for the next trip. A three-level structural model was proposed by Bowman 

and Ben-Akiva (2001) for modeling daily activity pattern. In the first phase, the daily 

activity sequences choice set is established. In the next two phases, tour and trip decisions 

with regard to the choice of daily activity pattern are modeled. Following this concept, 

Bhat et al. (2004) modeled daily activity sequences in a more disaggregate manner and 

considered separate models for non-workers and workers. In other studies, Bhat et al. 

(2013) and Leszczyc and Timmermans (2002) estimated activity durations using the 

multiple discrete continuous extreme value (MDCEMV) and hazard models, respectively. 

Daily activity sequences can be modeled within tour formulation. Initially, the primary 

activity and its associated tour type (i.e. activity destination, sequence, and number of 

stops) is modeled, and in the next phase the number and purpose of secondary tours are 

estimated (Ben-Akiva and Bowman 1998b; Ho and Mulley 2013).  

In addition to inclusive developed econometric and rule-based models, in recent years 

there has been growing interest in applying machine learning practices to activity-based 

modeling (Allahviranloo and Recker 2013; Li and Lee 2017; Hafezi, Liu and Millward 

2018b). A wide range of applications have been developed using machine learning 

techniques, mostly in the computer science and statistics fields, but to date there have been 

very limited applications of the technique in activity-based modeling, and especially in 

modeling of activity engagement patterns. Li and Lee 2017 modeled individual’s activity 

sequences by employing probabilistic context-free grammars. They adopted language 
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concepts to the daily activity sequences and estimated activity sequences. In another recent 

study by Allahviranloo and Recker 2013, daily traveler activity engagement patterns were 

modeled using Support Vector Machines (SVM). They employed several machine 

learning techniques in their proposed model. Using conditional random fields, the 

dependencies between activity sequence, activity type, and socio-demographic data were 

identified, and then the sequential choice of activities was captured by employing the 

markov chain model.  

In this study we propose an algorithm inspired by Random Forest theory to model the 

activity engagement patterns of individuals. The existing applications of Random Forest 

in transportation fields are limited to transport mode recognition and traffic incident 

detection (Shafique and Hato 2015; You, Wang and Guo 2017). The proposed conceptual 

model in this study is able to learn and replicate individual’s daily activity engagement 

patterns with regard to heterogeneity characteristics. The application of this framework to 

activity-based modeling not only discloses the efficiency of machine learning to model 

daily traveler activity engagement patterns, but also contributes additional insights to the 

linkage between activity agenda formation and activity scheduling modules. 

5.3 Data 

The data used in this study are drawn from the Space-Time Activity Research (STAR) 

survey undertaken in Halifax, Canada. The STAR survey was a joint household activity 

survey and travel survey, and the world’s first large-scale employment of global 

positioning system (GPS) technology for tracking and confirmation of out-of-home 

activities. A brief description follows, and full descriptions of the survey design and the 
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socio-demographic features of respondents can be found in (TURP 2008; Millward and 

Spinney 2011; Spinney and Millward 2011). The survey period was between April 2007 

and May 2008, equally spaced through days of the week and months of the year. It yielded 

fully geo-referenced two-day (i.e. 48-h) time diary data from 1,971 randomly designated 

primary respondents, aged 15 years or older. Respondents carried a GPS data logger, 

maintained a daily ‘‘activity log’’ during that period, and completed a day-after computer-

assisted telephone interview (CATI) time-diary survey. The respondents’ descriptions of 

their out-of-home activities were prompted and confirmed by the GPS data. 

In this study, we use data from twelve identified unique clusters of respondents as a result 

of applying a novel pattern recognition modeling framework to the STAR data. Interested 

readers are referred to previous research by the authors (Hafezi, Liu and Millward 2017b; 

Hafezi, Liu and Millward 2017c) for more details on clustering methods and execution of 

the pattern recognition framework. In general, the pattern recognition model identified six 

clusters for workers (cluster#1: extended worker, cluster#3: 8-4 worker, cluster#6: shorter 

worker, cluster#7: 7-3 worker, cluster#10: evening worker and cluster#11: 9-5 worker), 

one cluster for students (cluster#12: students), four clusters for non-worker and non-

student (cluster#2: non-worker midday activities, cluster#4: non-worker evening 

activities, cluster#8: non-worker morning shopping and cluster#9: non-worker afternoon 

shopping), and one cluster for individuals who mostly spend their time at home (cluster#5: 

stay-at-home). Individuals in each cluster differ notably from individuals in other clusters 

in terms of their socio-demographic characteristics. Moreover, individuals within each 

cluster have homogenous activity sequences whereas there is a heterogeneous diversity 
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between clusters in terms of their distributions of start time, activity duration, activity type, 

and socio-demographic characteristics.   

5.4 Methods 

Random Forest (RF) theory is based on the use of many decision trees that have been 

grown using the bagging method (Breiman 2001; Suthaharan 2015). Each tree plays as a 

weak learner in the algorithm and the combination of these weak inputs builds up a robust 

ensemble learning model. Results obtained from the RF model are based on the majority 

votes in the ensemble models. One of the main challenges in most decision tree models is 

to select the best split predictor method (Breiman 2001; Biau and Scornet 2016). In this 

study, we introduced two new techniques: CART and Curvature Search, each with two-

layer settings for split predictor selection. Although the RF method is used in other 

transportation fields such as transport mode recognition and traffic incident detection, to 

the best of our knowledge establishing RF models using the CART and Curvature Search 

have not been explored in activity engagement pattern modeling or travel behavior studies. 

5.4.1 The Random Forest (RF) Model 

The Random Forest (RF) structure for predicting a set of activity type in individual’s 

agenda is shown in Figure 5.1. Practically, the RF model take the following steps. Initially, 

cross validation partition for train data (𝐷𝑟) and test data (𝑇𝑒) are performed. Prior to the 

growing of each tree, 𝑟𝑛 observations are randomly drawn from the sampled data points 

𝑟𝑛 ∈ {1,… , 𝑛}. Next, at each node in the decision tree a number of predictor variables are 

randomly selected from all the available predictor variables (𝑄). The default number of 

selected predictor variables is the square of the total number of existing predictor variables 
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(√𝑄). Best split at each node (𝐵𝑙𝑖𝑡) is accomplished using the split predictor selection 

search over 𝑏𝑙𝑖𝑡 directions. As the tree grows, this process is repeated and continues until 

the information is saturated. In RF model, trees are not required for cost complexity 

pruning. The new arrival data at the testing stage 𝑡𝑛 ∈ {1, … , 𝑒} is propagated down to all 

of the trees grown (𝑚 trees) in the RF model, and a set of prediction results from all trees 

is obtained {𝑃̂1, 𝑃̂2, 𝑃̂3, ⋯ , 𝑃̂𝑀}. The final prediction result gained is based on majority votes 

𝑃̂. 
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Figure 5.1 Random forest model structure for activity pattern sequence  
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5.4.2 Decision Splits: CART and Curvature Search 

In this section, we describe how the CART and Curvature Search methods are operated in 

the RF models. We provide here only a brief overview of the algorithm, and interested 

readers are referred to (Breiman 2001; Biau and Scornet 2016) for more details. We define 

a training sample 𝐷𝑟 = ((𝑋𝑖, 𝑌1),… , (𝑋𝑖, 𝑌𝑛)) where 𝑋𝑖 represents the response variable 𝑋 

= [home chores, home leisure, night sleep, workplace, shopping & services, 

school/college, organizational/hobbies, entertainment, sports] and 𝑌𝑛 represents the set of 

predictor variables (selected from Table 5.1). In this respect, we assume 𝐸𝑛(𝐶) as a subset 

of training data 𝐷𝑟 where 𝐶 is a pair of (𝑢, 𝑤). 𝑢 is the randomly selected predictor 

variable, and 𝑤 is the place of the split along the 𝑢-th correspondent, within the limits of 

𝐶. We postulate the set of all such feasible cuts in 𝐶 as 𝑇𝐶. The split criterion 𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤) 

is calculated as follows: 

𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤) = 
1

𝐸𝑛(𝐶)
∑ (𝑌𝑖 − 𝑌̅𝐶)

2𝑛
𝑖=1 ∃𝑋𝑖∈𝐶 −

1

𝐸𝑛(𝐶)
∑ (𝑌𝑖 − 𝑌̅𝐶𝐿∃𝑋𝑖

(𝑢)
<𝑤

−𝑛
𝑖=1

𝑌̅𝐶𝑅∃𝑋𝑖
(𝑢)
≥𝑤
)2∃𝑋𝑖∈𝐶                (1) 

𝑋𝑖 = (𝑋𝑖
(1)
, … , 𝑋𝑖

(𝑝)
) ∀ (𝑢, 𝑤) ∈  𝑇𝐶               (2) 

𝐶𝐿 = {𝑥 ∈ 𝐶 ∶  𝑥(𝑢) <  𝑤}                                    (3) 

𝐶𝑅 = {𝑥 ∈ 𝐶 ∶  𝑥(𝑢) ≥  𝑤}              (4) 

𝑌̅𝐶 is the average of the 𝑌𝑖 such that 𝑋𝑖 belongs to 𝐶.  

In the CART, the best cut (𝑢𝑛
∗ , 𝑤𝑛

∗) is computed as follows: 
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Table 5.1 Proposed predictor variables for learning daily activity engagement patterns 

Predictor Subcategories 

Gender Male, female 

Age 15 to 19, 20 to 24, 25 to 29, 30 to 34, 35 to 39, 40 to 44, 45 to 49, 50 to 

54, 55 to 59, 60 to 64, 65 to 69, 70 to 74, 75 to 79, 80 to 84, 85+ 

Marital status Married, living common-law, widowed, separated, divorced, single-

never married, 

Household size 1,2,3,4,5,6 

Highest education level Masters or earned doctorate, bachelor or undergraduate degree, diploma 

or certificate, some university, some community college, trade, technical 

or business college, high school/secondary, other 

Full/part-time student Full-time student, part-time student 

Paid/self employed A paid worker, self-employed, an unpaid family worker 

Flexible work schedule No, yes 

Work at home No, yes 

Total personal income Under $20,000, $20,000–$39,999, $40,000–$59,999, $60,000–$79,999, 

$80,000–$99,999, $100,000 or more 

Total household 

income 

Under $20,000, $20,000 - $39,999, $40,000 - $59,999, $60,000 - 

$79,999, $80,000 - $99,999, $100,000 or more 

Dwelling type Single unit residential, duplex or semi-detached, townhouse, multi-unit 

residential-less than 6 stories, multi-unit residential-6 or more stories, 

mobile dwelling, other-specify 

Dwelling owned/rented Owned, rented 

Valid driver’s license No, yes 

Buss pass No, yes 

Number HH vehicles 0,1,2,3,4,5,6 

Number HH 

motorcycles 

0,1,2,3,4,5,6,7,8,9,10 

Number HH bicycles 0,1,2,3,4,5,6,7,8,9,10 

Usually mode to work Car, truck or van - as driver, car, truck or van - as passenger, public 

transit, walk to work, bicycle, motorcycle, taxicab, other method 

Usually mode to school Car, truck or van - as driver, car, truck or van - as passenger, public 

transit, walk to work, bicycle, motorcycle, taxicab, other method 

State of health Excellent, very good, good, fair, poor 

Prior activities Home chores (working at home, eating/meal preparation, indoor or 

outdoor cleaning, interior or exterior home maintenance, child care, 

other in home activities), Home leisure (watching tv/listening to radio, 

reading books/newspapers, etc.), Night sleep, Workplace (work/job, all 

other activities at work, work related, etc.), Shopping & services 

(shopping for goods and services, routine shopping), School/college 

(class participation, all other activities at school), 

Organizational/hobbies (organizational, voluntary, religious activities. 

hobbies done mainly for pleasure, cards, board games, all other hobbies 

activities), Entertainment (eat meal outside of home, all other 

entertainment activities), Sports (walking, jogging, bicycling, all sports 

related activities). 
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(𝑢𝑛
∗ , 𝑤𝑛

∗) ∈ 
𝑎𝑟𝑔𝑚𝑎𝑥 
𝑢∈𝐵𝑙𝑖𝑡
(𝑢,𝑤)∈𝑇𝐶

𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤)                        (5)           

𝑎𝑟𝑔𝑚𝑎𝑥 represents the maximization 𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤) over 𝐵𝑙𝑖𝑡 and 𝑇𝐶. In the Curvature 

Search, the ideal split is computed where the density curves intersect, extracted from the 

roots (𝑅1,𝑅2). 

5.4.3 Variable Importance Measures: Mean Decrease Accuracy (MDA) 

RF models have the capability to measure the importance of variables and rank them in 

order to use in the algorithm. Mean Decrease Accuracy (MDA) and Mean Decrease 

Impurity (MDI) are the two well known measures of variables significance (Breiman 2001; 

Biau and Scornet 2016). In this study, we used the MDA technique that relies on the out-

of-bag (OOB) error estimate. The MDA of the variable 𝑋(𝑢) is calculated by balancing the 

difference in OOB error (𝑂𝑛) prior and subsequent to the permutation over all trees. The 

prior OOB error of each tree is computed by testing the RF model using OOB data. The 

later OOB error of each tree is calculated by adding noise to the sample data of the feature 

randomly and retesting the OOB error. The MDA for randomly selected variable 𝑋(𝑢) is 

calculated as follows: 

MDA(𝑋(𝑢)) =
1

𝑚
∑ [𝑂𝑛[𝑑𝑛(. ; Θ𝑚), 𝐼𝑚,𝑛

𝑢 ] − 𝑂𝑛[𝑑𝑛(. ; Θ𝑚), 𝐼𝑚,𝑛]]
𝑚
𝑙=1                     (4) 

𝑂𝑛[𝑚𝑛(. ; Θ𝑙), 𝐼] =
1

|𝐼|
∑ (𝑌𝑖 −𝑚𝑛(𝑋𝑖; Θ𝑙))

2
𝑖:(𝑋𝑖,𝑌𝑖)∈𝐼

                         (5) 

Where 𝐼𝑚,𝑛 is the out-of-bag data set of the 𝑚-tree, 𝐼 =  𝐼𝑚,𝑛
𝑢  is the permuted data for 

variable 𝑢 and 𝑂𝑛(. ; Θ𝑚) is the estimation for the 𝑚-th tree. 
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5.4.4 Model Calibration and Validation 

Compared to other machine learning algorithms such as support vector machine (SVM) 

and back propagation neural network (BPNN), in the RF algorithm few parameters need 

to be initialized and calibrated. The initial value of 𝑚 (number of trees) is set to 1000. 

However, it needs to be validated and adjusted if the model cannot be converged within 

this value. 𝐵𝑙𝑖𝑡 (best split at each node) needs to be calibrated. In this study we used CART 

and Curvature Search techniques to determine the best split at each node. 𝑇𝐶 (cutoff) is a 

vector of length equal to the number of classes. 𝑇𝐶 comprises three sub-parameters (𝑐1, 

𝑐2, 𝑐3) that are initially each randomly selected in the range between [0,1] with the 

condition of total sum equal to 1. For all above parameters, we used the OOB error rate to 

cross-validate and obtain the best parameter values for the RF models. 

5.5 Discussion of Results 

In order to analyze the impacts of decision splits on the RF model, we trained RF with two 

different layer settings. In the first layer, we grew trees where predictor variables were 

randomly selected from all nominated variables. For simplicity’s sake in this study, we 

refer to this setting’s layer as RF_CART_I and RF_CURV_I for CART and Curvature 

Search techniques, respectively. In the second layer, we estimated the variable importance 

and included only those variables in the RF model that had more than 70% importance 

compared to others. For simplicity’s sake in this study, we refer to this setting’s layer as 

RF_CART_II and RF_CURV_II for CART and Curvature Search techniques, 

respectively. The response variables are defined as nine main activities, as described in 

Table 5.1. Previous studies reveal that choice of activities in the schedule not only depends 
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on an individual’s socio-demographic characteristics but also is impacted by prior 

activities (Kitamura, Chen and Pendyala 1997). Recent empirical work by Allahviranloo 

and Recker (2013) also shows that SVM as a robust unsupervised machine learning 

technique has better performance when response variables are associated to both socio-

demographic characteristics and previous activities. In this respect, we set up predictor 

variables in the RF models to choose from a set of socio-demographic variables and prior 

activities conducted by individuals in a given day. Hence, depending on an activity’s 

position in the agenda, the number of predictor variables varies. Furthermore, additional 

predictor variables such as flexibility level of work schedule and health state of individuals 

enter into the analysis. The list of nominated response variables is shown in Table 5.1. 

The OOB rate error cross-validation indicates that after 𝑚 > 850 (𝑚 is the number of 

trees), the OBB error rate tends to be stable. Therefore, it is realistic to accept 𝑚 as 1000 

at first. On that basis, we obtain the best optimal parameters for RF models as follows: 𝑐1 

= 0.25, 𝑐2 = 0.35 and 𝑐3 = 0.40. Figure 5.2 illustrates the distribution of daily activity 

engagement for all twelve clusters. As can be seen, most individuals in the worker clusters 

(#1, #3, #6, #7, #10, #11), in addition to in-home activities, only participate in the out-of-

home work activity. A similar result is achieved for the student cluster (#12), where most 

students only participate in out-of-home school activity in addition to in-home activities. 

Individuals in other clusters (non-worker and non-school goer) were found to have 

different out-of-home activity participation patterns (mostly engaging in entertainment 

or/and recreation activities).  
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*Vertical axis: Probability in empirical data; Horizontal axis: Activity type (H = home chores, L = home leisure, N = night sleep, W = workplace, P = shopping 

& services, S = school/college, G = organizational/hobbies, E = entertainment, T = sports).  
Figure 5.2 Distribution of daily activity engagement for all twelve clusters 
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Distribution patterns of number of daily activity episodes for individuals in all twelve 

clusters are shown in Figure 5.3. Our intent is to relate modeling to the most typical 

member in each cluster. In this respect, we assume the median number of episodes in each 

cluster as the alternative state number for daily activity participation in the modeling. 

Moreover, we assume the ultimate activity state for the day as the night sleep. Among 

twelve clusters, cluster #2 (non-worker midday activity) has the most complex activity 

pattern and cluster #12 (students) has the least complex activity pattern.  

We performed a cross validation partition to our dataset which resulted in 70% for training 

and 30% for testing model performance. Comparison of the estimation accuracy between 

four proposed RF models for test dataset and training dataset is shown in Figure 5.4. Based 

on the estimated accuracy, we can conclude that RF_CART_I provides the best results for 

most states, followed by RF_CURV_I. 

Explicitly, estimation accuracy of RF_CART_I for the test and training sets exceeds 69% 

for all clusters, and is particularly high for clusters 5 (stay-at-homes) and 12 (students) 

(74% each). The lowest accuracy is for cluster #2 (non-worker midday activities, at 69%). 

The average for reproducing activity types using the RF_CART_I model is 71.4% for the 

entire population. Allahviranloo and Recker (2013) modeled daily activity engagement 

using the SVM technique with 84% accuracy in the replicating agenda. In their study, five 

activity types for modeling nine states were used, and the modeling period was between 

5:00 a.m. and 23:00 p.m. Given that we are modeling so many more activity types (three 

in-home and six out-of-home activities) for a period of 24 hours, we can conclude that our 

model is capable of replicating agenda within a reasonable accuracy range.  
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A comparison of estimation accuracy between the twelve clusters in Figure 5.4 

demonstrates that prediction percentages decline from first state to successive states for all 

clusters. The decline is most noticeable in more complex activity sequences, suggesting 

that for these patterns the algorithm needs more sophisticated structure. Further work will 

include improving the estimation accuracy of the RF models by adding an optimization 

tool such as Bayesian optimization to tune the hyperparameters in the split selection phase.  
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*Horizontal axis: No. of separate activity episodes (of t minutes or more); Dashed column represents 

cluster median 

Figure 5.3 Number of respondents against number of activity episodes, for all twelve 

clusters 
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Figure 5.4 Comparing the estimation precision between four RF models for test and training dataset 
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The confusion matrix for the best-performing RF model, RF_CART_I, is shown in Table 

5.2. The confusion matrix determines the ability of the RF model to replicate the existence 

of each activity type in the dataset. We computed the confusion matrix for all twelve 

clusters. At each state, the observed activity of the individual is compared with the 

individual’s activity in the estimation, regardless of whether the individual’s prior or 

following activity was replicated properly. The estimation accuracy in each cluster is 

calculated by the sum of crosswise cells of the confusion matrixes. According to the results 

presented in Table 5.2, the highest estimation accuracy is obtained for clusters 12 and 5 

(80%) and the lowest estimation accuracy obtained is for cluster 2 (76%).Overall, the 

RF_CART_I model estimation accuracy is 77.7% for the entire population. 

For each cluster, the agenda episodes and frequency of the observed data and the results 

of the best-performing RF models (RF_CART_I), including both in-home and out-of-

home activity episodes, was examined by constructing a transition matrix. A transition 

matrix between successive activity episodes illustrates the likelihood that a consecutive 

episode of a certain class will happen, given an episode of a current class (Lockwood, 

Srinivasan and Bhat 2005). Furthermore, it presents detailed information on trip chaining 

patterns of different market sections in a compact way. Table 5.3 provides the comparison 

results between observed and replicated patterns through activity episode transitions 

matrixes for all twelve clusters. The columns in Table 5.3 signify the class of the 

subsequent activity episode (difference between observed and replicated patterns), while 

the rows in transition matrix signify the class of the current activity episode (difference 

between observed and simulated patterns). According to the results presented in Table 5.3, 
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the mean absolute error (MAE) for all twelve clusters is 7.26%, signifying that RF models 

could successfully replicate episodes and position in agenda. 

In order to test for similarity of activity sequence between observed and replicated patterns, 

the order of activities was compared using sequential alignment methods (Needleman and 

Wunsch 1970). In this comparison, the activities are assumed to be independent of start 

times or activity duration. The distance between activity sequences is computed as the 

number of phases needed to align two orders of activities. The smaller distance between 

strings designates higher similarity. Figure 5.5 illustrates the distribution patterns of edit 

distance between observed and replicated activity sequences (outcomes of the 

RF_CART_I) for all twelve clusters, where the dashed line indicates the mean distance. 

In general, RF_CART_I successfully replicated activity sequences of more than 70% of 

the population in each cluster, with the mean distance equal to 0.47. In Table 5.2 and Table 

5.3: H = Home chores, L = Home leisure, N = Night sleep, W = Workplace, P = Shopping 

& services, S = School/college, G = Organizational/hobbies, E = Entertainment, T = 

Sports.
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Table 5.2 Confusion matrixes for random forest model (RF_CART_I)  

#1 H* L N W P S G E T 

A
c
c
u

ra
cy

 #
1

 =
 7

7
.3

 

 #2 H L N W P S G E T 

A
c
c
u

ra
cy

 #
2

 =
 7

6
.0

 

 #3 H L N W P S G E T 

A
c
cu

ra
cy

 #
3
 =

 7
7

.8
 H .267 .009 .008 .022 .002 .000 .002 .002 .000  H .309 .018 .004 .000 .016 .000 .004 .000 .002  H .278 .014 .004 .018 .003 .000 .001 .001 .000 

L .016 .065 .002 .014 .000 .000 .002 .002 .000  L .037 .113 .001 .000 .007 .000 .003 .000 .001  L .028 .087 .001 .008 .001 .000 .001 .001 .001 

N .010 .002 .145 .006 .001 .000 .000 .000 .001  N .010 .004 .103 .000 .001 .000 .000 .000 .000  N .013 .004 .122 .001 .000 .000 .000 .000 .000 

W .025 .005 .001 .166 .003 .000 .007 .000 .000  W .003 .001 .000 .009 .001 .000 .000 .000 .000  W .022 .003 .000 .150 .002 .000 .002 .003 .001 

P .011 .001 .002 .007 .040 .000 .000 .002 .000  P .033 .011 .000 .000 .112 .000 .004 .002 .001  P .013 .004 .000 .009 .045 .000 .001 .000 .000 

S .000 .000 .000 .000 .000 .000 .000 .000 .000  S .001 .000 .000 .000 .001 .000 .000 .000 .000  S .000 .000 .000 .001 .000 .000 .000 .000 .000 

G .010 .000 .002 .012 .002 .000 .048 .000 .000  G .019 .007 .000 .000 .008 .000 .059 .000 .000  G .010 .003 .000 .008 .001 .000 .040 .001 .000 

E .012 .000 .000 .006 .002 .000 .002 .030 .000  E .014 .002 .000 .000 .005 .000 .001 .028 .000  E .012 .003 .001 .005 .001 .000 .000 .034 .001 

T .006 .001 .001 .006 .001 .000 .000 .001 .011  T .010 .004 .000 .000 .002 .000 .001 .000 .025  T .007 .003 .000 .004 .000 .000 .001 .000 .022 
                                   

#4 H L N W P S G E T 

A
c
c
u

ra
cy

 #
4

 =
 7

7
.6

 

 #5 H L N W P S G E T 

A
c
c
u

ra
cy

 #
5

 =
 7

9
.5

 

 #6 H L N W P S G E T 

A
c
cu

ra
cy

 #
6
 =

 7
7

.4
 H .342 .011 .002 .001 .011 .000 .003 .002 .001  H .390 .027 .003 .000 .003 .000 .001 .000 .001  H .311 .019 .003 .013 .004 .000 .001 .000 .001 

L .032 .112 .001 .000 .006 .000 .003 .002 .001  L .059 .167 .002 .000 .005 .000 .001 .000 .001  L .035 .100 .001 .007 .001 .000 .001 .000 .000 

N .008 .002 .108 .000 .001 .000 .001 .002 .000  N .015 .006 .123 .000 .000 .000 .000 .000 .000  N .013 .003 .118 .000 .000 .000 .000 .000 .000 

W .005 .001 .000 .013 .001 .000 .000 .000 .000  W .002 .001 .001 .005 .000 .000 .000 .000 .000  W .021 .004 .000 .111 .001 .000 .002 .002 .000 

P .031 .007 .001 .000 .082 .000 .002 .001 .000  P .024 .008 .001 .000 .055 .000 .001 .000 .000  P .021 .003 .000 .007 .057 .000 .000 .000 .000 

S .002 .001 .000 .000 .000 .001 .000 .000 .000  S .001 .000 .000 .000 .000 .000 .000 .000 .000  S .000 .000 .000 .000 .000 .000 .000 .000 .000 

G .024 .006 .000 .000 .002 .000 .059 .000 .001  G .010 .005 .001 .000 .000 .000 .024 .000 .000  G .012 .001 .000 .010 .001 .000 .041 .000 .000 

E .021 .002 .000 .000 .004 .000 .000 .039 .000  E .004 .002 .000 .000 .000 .000 .000 .006 .000  E .011 .002 .000 .003 .001 .000 .001 .021 .000 

T .009 .004 .000 .000 .002 .000 .000 .001 .021  T .009 .007 .000 .000 .001 .000 .000 .000 .024  T .008 .001 .000 .000 .000 .000 .000 .000 .013 
                                   

#7 H L N W P S G E T 

A
c
c
u

ra
cy

 #
7

 =
 7

7
.9

 

 #8 H L N W P S G E T 

A
c
c
u

ra
cy

 #
8

 =
 7

7
.6

 

 #9 H L N W P S G E T 

A
c
cu

ra
cy

 #
9
 =

 7
6

.8
 H .289 .023 .006 .017 .002 .000 .001 .000 .000  H .339 .027 .001 .001 .011 .000 .003 .000 .002  H .320 .024 .003 .001 .019 .000 .001 .000 .001 

L .032 .106 .002 .010 .002 .000 .000 .000 .001  L .049 .143 .002 .000 .007 .000 .001 .000 .001  L .044 .144 .001 .000 .010 .000 .001 .000 .000 

N .014 .003 .124 .001 .001 .000 .000 .000 .000  N .010 .004 .105 .000 .001 .000 .000 .000 .000  N .014 .005 .109 .000 .001 .000 .000 .000 .000 

W .023 .005 .001 .143 .001 .000 .003 .003 .000  W .005 .001 .000 .011 .001 .000 .000 .000 .000  W .003 .002 .000 .013 .002 .000 .000 .000 .000 

P .009 .006 .000 .003 .040 .000 .000 .000 .000  P .028 .010 .000 .000 .092 .000 .002 .001 .001  P .034 .012 .000 .000 .111 .000 .001 .000 .000 

S .000 .000 .000 .001 .000 .000 .000 .000 .000  S .001 .000 .000 .000 .000 .003 .000 .000 .000  S .001 .000 .000 .000 .000 .001 .000 .000 .000 

G .007 .002 .000 .009 .001 .000 .033 .000 .000  G .015 .007 .000 .000 .003 .000 .047 .000 .000  G .012 .007 .001 .000 .006 .000 .040 .000 .000 

E .009 .002 .000 .006 .000 .000 .000 .028 .000  E .007 .002 .000 .000 .001 .000 .000 .010 .000  E .005 .002 .000 .000 .004 .000 .000 .014 .000 

T .007 .001 .000 .003 .000 .000 .000 .000 .013  T .009 .005 .000 .000 .002 .000 .001 .000 .026  T .008 .003 .000 .000 .003 .000 .000 .000 .017 
                                   

#10 H L N W P S G E T 

A
c
c
u

ra
cy

 #
1
0

 =
 7

6
.6

 

 #11 H L N W P S G E T 

A
c
c
u

ra
cy

 #
1
1

 =
7
8

.1
 

 #12 H L N W P S G E T 

A
c
cu

ra
cy

 #
1
2

 =
 7

9
.4

 

H .307 .017 .002 .021 .002 .000 .000 .000 .000  H .290 .012 .002 .019 .003 .000 .001 .000 .001  H .318 .014 .002 .000 .004 .016 .002 .005 .004 

L .023 .117 .002 .002 .006 .000 .000 .000 .000  L .029 .086 .000 .008 .002 .000 .001 .000 .001  L .016 .095 .002 .000 .000 .004 .002 .002 .000 

N .004 .010 .134 .006 .000 .000 .000 .000 .002  N .013 .004 .125 .002 .000 .000 .000 .000 .000  N .009 .009 .113 .000 .000 .000 .000 .000 .000 

W .025 .004 .006 .096 .004 .000 .000 .002 .000  W .023 .006 .001 .146 .002 .000 .002 .001 .000  W .004 .002 .000 .011 .000 .004 .004 .000 .000 

P .013 .006 .002 .006 .056 .000 .000 .002 .000  P .016 .003 .001 .006 .046 .000 .001 .001 .000  P .011 .005 .000 .000 .034 .004 .002 .000 .000 

S .000 .002 .000 .002 .000 .000 .000 .000 .000  S .001 .000 .000 .000 .000 .000 .000 .000 .000  S .018 .000 .000 .000 .000 .122 .002 .000 .005 

G .008 .006 .000 .010 .000 .000 .029 .000 .000  G .012 .002 .001 .008 .000 .000 .039 .000 .001  G .016 .004 .000 .000 .000 .007 .050 .000 .004 

E .006 .002 .000 .008 .002 .000 .000 .015 .000  E .009 .002 .000 .006 .001 .000 .001 .027 .000  E .002 .002 .000 .000 .000 .005 .004 .023 .000 

T .008 .002 .000 .004 .002 .000 .000 .000 .013  T .006 .002 .000 .004 .001 .000 .001 .000 .022  T .005 .000 .000 .000 .000 .005 .002 .002 .029 
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Table 5.3 Activity episode transitions matrix: Comparison between observed and replicated patterns (in %) 

#1 H* L N W P S G E T 

M
A

E
 c

lu
st

e
r 

1
 =

 7
.8

 

#2 H L N W P S G E T 

M
A

E
 c

lu
st

e
r 

2
 =

 6
.6

 

#3 H L N W P S G E T 

M
A

E
 c

lu
st

e
r 

3
 =

 6
.8

 

H 0.0 4.0 7.8 35.2 4.6 0.0 4.2 2.1 4.6 H 0.0 5.3 2.8 0.2 23.4 0.0 5.1 3.8 0.0 H 0.0 23.4 4.8 1.8 21.2 0.1 5.1 4.5 0.9 

L 26.6 0.0 7.8 11.7 9.0 0.0 7.0 5.3 1.3 L 25.3 0.0 4.1 1.0 16.0 0.3 8.4 3.6 0.1 L 18.4 0.0 9.8 1.0 10.6 0.0 9.9 5.2 1.4 

N 11.5 0.5 0.0 5.8 1.6 0.0 2.1 1.6 0.1 N 0.1 3.1 0.0 0.0 2.4 0.0 0.4 0.0 0.4 N 1.2 2.3 0.0 0.0 1.5 0.0 1.4 0.4 0.3 

W 22.1 4.6 13.7 0.0 2.7 0.0 7.2 23.2 7.4 W 33.3 20.8 20.8 0.0 16.7 0.0 13.9 11.1 0.0 W 8.1 7.6 17.5 0.0 1.6 0.0 14.6 10.0 2.1 

P 15.7 12.3 16.2 35.5 0.0 0.0 1.3 7.4 0.0 P 8.0 5.3 8.3 16.7 0.0 2.9 11.1 21.3 0.4 P 18.1 3.1 11.8 16.8 0.0 0.0 10.6 3.7 1.9 

S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S 5.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 

G 11.2 0.6 18.2 22.3 7.0 0.0 0.0 0.4 0.2 G 8.7 2.4 3.2 0.4 14.0 0.0 0.0 1.6 8.0 G 20.8 5.6 20.2 1.1 5.0 1.4 0.0 3.6 4.0 

E 24.4 11.1 17.4 52.7 1.4 0.0 1.0 0.0 2.6 E 30.1 11.3 3.8 4.9 9.5 0.0 0.2 0.0 30.8 E 20.9 12.4 17.7 7.0 4.7 0.0 8.9 0.0 30.3 

T 7.4 7.4 13.3 18.5 0.0 0.0 9.6 13.3 0.0 T 8.4 10.8 0.0 0.0 18.3 0.0 6.7 7.4 0.0 T 18.1 1.8 7.6 1.5 16.5 0.0 4.8 10.6 0.0 
                                 

#4 H L N W P S G E T 

M
A

E
 c
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st

e
r 

4
 =

 8
.2

 

#5 H L N W P S G E T 

M
A

E
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st

e
r 

5
 =

 5
.7

 

#6 H L N W P S G E T 

M
A

E
 c
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st

e
r 

6
 =

 6
.4

 

H 0.0 8.9 7.6 32.6 6.5 0.0 5.7 3.5 1.9 H 0.0 18.4 4.6 0.6 11.4 0.0 3.3 1.3 2.0 H 0.0 5.2 1.2 24.4 7.4 0.0 5.6 2.3 3.3 

L 25.4 0.0 1.1 8.9 7.6 0.0 3.5 4.5 0.2 L 14.9 0.0 4.2 0.3 7.9 0.0 1.7 0.6 0.2 L 21.9 0.0 1.0 6.4 6.3 0.0 5.8 3.4 1.0 

N 7.6 3.9 0.0 0.6 1.8 0.0 0.0 0.8 0.5 N 3.0 1.7 0.0 0.9 1.3 0.0 0.2 0.0 0.7 N 7.5 3.3 0.0 1.0 1.5 0.0 2.0 0.0 0.3 

W 29.3 10.9 5.4 0.0 2.6 0.0 7.8 25.1 10.0 W 17.6 7.3 19.2 0.0 2.0 0.0 5.4 2.7 3.8 W 11.3 7.1 2.4 0.0 1.3 0.0 2.3 18.4 3.4 

P 30.1 8.3 16.7 28.0 0.0 4.7 8.4 12.1 1.9 P 9.3 20.0 12.1 17.2 0.0 0.0 3.7 14.9 5.6 P 24.4 5.3 12.4 19.3 0.0 0.0 16.6 0.6 6.8 

S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

G 9.4 2.7 9.9 34.3 5.2 0.0 0.0 4.4 2.7 G 5.8 1.5 3.6 2.8 5.2 0.0 0.0 0.8 0.5 G 14.1 5.1 11.3 4.8 12.4 2.9 0.0 6.3 0.7 

E 29.9 14.7 6.1 56.1 5.3 0.6 4.6 0.0 5.2 E 25.9 20.0 10.0 15.4 31.8 0.0 6.7 0.0 15.4 E 26.2 12.6 0.0 53.9 5.1 0.0 8.0 0.0 2.0 

T 21.5 6.1 13.0 11.7 4.0 0.0 8.0 2.1 0.0 T 22.9 3.7 12.8 0.8 5.4 0.0 0.7 0.5 0.0 T 9.9 0.3 22.2 5.7 4.8 0.0 3.7 3.7 0.0 
                                 

#7 H L N W P S G E T 

M
A

E
 c
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st

e
r 

7
 =

 7
.6

 

#8 H L N W P S G E T 

M
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8
 =

 8
.0

 

#9 H L N W P S G E T 

M
A

E
 c
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st

e
r 

9
 =

 7
.2

 

H 0.0 4.9 1.6 26.7 5.3 0.0 4.2 3.1 0.6 H 0.0 32.1 3.4 1.6 20.8 0.4 4.6 2.0 0.6 H 0.0 31.4 1.4 0.2 29.4 0.2 4.8 1.6 3.0 

L 21.8 0.0 0.2 10.0 5.4 0.0 4.0 2.7 0.0 L 21.3 0.0 2.7 0.1 12.4 0.2 5.6 1.8 1.3 L 20.3 0.0 0.8 1.0 15.1 0.0 3.2 1.3 0.4 

N 9.2 5.0 0.0 1.9 0.7 0.0 0.9 0.4 0.3 N 3.1 0.0 0.0 0.7 0.7 0.0 0.7 0.4 0.6 N 0.3 3.0 0.0 0.4 2.7 0.0 0.4 0.7 0.0 

W 21.0 7.0 6.6 0.0 2.8 0.7 2.0 26.0 8.7 W 8.5 0.9 2.8 0.0 14.8 0.0 7.5 5.3 2.8 W 9.7 4.2 4.4 0.0 6.5 0.0 3.8 0.8 0.8 

P 6.4 27.2 9.7 21.0 0.0 1.0 2.8 0.9 6.7 P 29.6 19.7 6.3 20.4 0.0 0.0 11.7 20.1 3.4 P 34.9 15.3 10.6 17.2 0.0 2.1 21.6 11.3 8.7 

S 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 S 20.8 12.5 0.0 0.0 41.7 0.0 0.0 33.3 0.0 S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

G 8.3 7.5 7.9 24.6 1.6 0.0 0.0 2.5 3.1 G 17.6 3.9 6.3 7.4 11.8 1.2 0.0 1.2 5.3 G 19.8 3.6 13.8 0.7 9.2 0.0 0.0 2.3 3.8 

E 26.4 22.0 12.5 9.9 6.9 0.0 0.9 0.0 1.2 E 23.9 7.6 0.0 18.5 10.9 0.0 5.5 0.0 18.5 E 34.4 10.0 13.3 3.3 3.3 0.0 28.9 0.0 22.2 

T 6.7 4.2 9.1 13.5 4.6 0.0 0.8 9.9 0.0 T 5.0 7.1 9.7 3.2 17.3 1.1 10.8 0.0 0.0 T 29.0 7.9 7.5 2.2 29.4 0.0 0.2 2.4 0.0 
                                 

#10 H L N W P S G E T 

M
A

E
 c
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st

e
r 

1
0
 =

 9
.1

 #11 H L N W P S G E T 

M
A

E
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e
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1
1
 =

 6
.9

 #12 H L N W P S G E T 

M
A

E
 c
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st

e
r 

1
2
 =

 6
.8

 

H 0.0 3.9 8.9 32.3 5.5 0.0 3.3 3.1 3.6 H 0.0 6.4 4.8 31.2 5.5 0.1 4.9 3.2 3.5 H 0.0 3.5 8.7 2.1 3.1 26.7 6.9 5.5 2.0 

L 22.3 0.0 5.3 19.7 8.1 0.0 4.3 1.3 3.1 L 20.1 0.0 1.3 11.4 5.9 0.0 2.2 2.5 0.5 L 18.6 0.0 5.7 1.9 3.8 0.8 11.3 1.9 4.6 

N 8.0 3.0 0.0 7.6 1.3 0.0 0.6 2.5 1.1 N 10.0 3.8 0.0 1.6 2.1 0.0 1.1 0.7 0.7 N 4.9 1.3 0.0 0.0 0.0 0.0 3.6 0.0 0.0 

W 31.3 2.3 7.2 0.0 5.5 0.0 5.0 19.7 0.5 W 24.8 7.1 7.1 0.0 0.2 0.0 3.1 26.9 9.1 W 16.7 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 

P 4.8 0.9 21.7 20.1 0.0 0.0 6.7 19.2 9.6 P 6.5 13.3 17.6 31.2 0.0 0.0 5.0 3.5 2.3 P 5.0 10.0 10.0 25.0 0.0 10.0 0.0 5.0 5.0 

S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S 1.5 6.6 1.6 4.3 9.7 0.0 1.8 25.1 5.0 

G 17.9 13.0 23.9 42.9 6.0 12.5 0.0 6.5 0.0 G 1.6 10.2 11.2 27.7 2.8 0.0 0.0 3.9 1.9 G 5.6 7.5 1.4 4.7 9.1 23.3 0.0 1.6 6.1 

E 19.1 0.2 19.4 67.3 22.6 0.0 6.5 0.0 0.0 E 24.6 14.2 5.6 57.7 3.5 0.0 8.2 0.0 1.5 E 3.3 11.1 11.1 5.6 5.6 2.2 20.0 0.0 14.4 

T 26.3 20.0 12.5 15.0 0.0 0.0 18.8 0.0 0.0 T 4.2 5.7 10.1 8.2 9.5 0.0 1.8 1.1 0.0 T 7.3 13.6 18.2 0.0 9.1 13.9 9.1 6.7 0.0 
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Figure 5.5 Edit distance comparison between observed and replicated activity sequences 

in 12 clusters 
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Our empirical evidence from modeling twelve unique clusters shows that performance of 

the RF models is meaningfully correlated with the sample size used in training model. This 

is most evident in cases comprising complex patterns. Further studies to overcome this 

limitation associated with the cluster data with small sample size are planned, in particular 

employing the population synthesis technique. 

5.6 Conclusions 

Daily activity pattern models play an essential role in many activity-based travel demand 

models. Individuals’ travel demands originate from the need to participate in certain 

activities, and accordingly they plan their daily activity sequences based on these needs. 

The choice of daily activity sequences differs between population groups with varying 

socio-demographic characteristics. In this study, we developed a new model using 

Random Forest (RF) theory to learn and replicate activity engagement patterns of 

population groups. The RF models were trained with two different decision split 

techniques, CART and Curvature Search. Each of the proposed method was tested under 

two different layer settings. In the first setting, RF_CART_I and RF_CURV_I, the 

algorithm randomly selects predictor variables from all nominated variables and grows 

trees, whereas in the second setting, RF_CART_II and RF_CURV_II, the algorithm 

selects only predictor variables with high importance and grows trees. Various predictor 

variables, such as socio-demographic characteristics (age, gender, education level, income 

level, number of vehicles, etc.), health and/or mobility status of the individual, and 

preceding activities are employed in the training of RF models. 
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We applied the proposed RF models to twelve unique population clusters. Individuals in 

each cluster differ significantly from individuals in other clusters in terms of socio-

demographic characteristics and daily activity sequences. Our results demonstrate that the 

RF model with the CART split selection method (RF_CART_I) can replicate activity 

sequences and agenda of the entire population with 70.0% and 77.7% accuracy, 

respectively. We considered nine activity categories (three in-home and six out-of-home) 

and modeled for a 24-hour period. Comparison of estimated activity sequences for twelve 

unique clusters demonstrated that RF model performance is associated with level of 

complexity patterns. In situations involving complex patterns, the algorithm requires more 

sophisticated structure in terms of predictor and split selections. Relative to other 

alternative machine learning algorithms such as SVM and BPNN, the RF model is less 

likely to overfit. This is due to the generalization error that converges to a particular 

amount when the forest size gradually increases. It can be used to assess the importance 

of attributes, which is suitable to analyze the features of the studied system. Furthermore, 

fewer parameters require calibration in the model, and the algorithm may be applied to 

datasets containing a large number of hidden attributes (Breiman 2001). 

This study illustrates the utility of the RF machine learning technique to modeling of 

sequential activity selection, an application not previously employed in travel behavior 

analysis. The developed RF models can yield the type and frequency of activities in the 

schedule, and their sequential order, for use in activity-based travel demand modeling. 

Compared to multinomial logit regression modeling, which yields interpretable 

coefficients, the RF model is designed as a black box. It is trained to evaluate the labels of 

the data and its result is a set of support data-points and their respective weights. In 
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addition, compared to other artificial intelligence methods such as the support vector 

machine, the proposed method in this study is able to automatically handle missing values 

in the algorithm. Furthermore, variables do not need to be transformed, very few 

parameters need adjustment, and the algorithm doesn’t overfit easily. The proposed RF 

model is also very efficient in computational time.  

The empirical results from modeling twelve population clusters show that although 

RF_CART_I provides superior results than other proposed models, its performance is 

correlated with the sample size used in the training model, and also to heterogeneity and 

diversity among the predictor variables. Moreover, model with random selection of 

predictor variables performed better than including only high importance predictor 

variables. Further behavioral investigation can be made for interpretation of such a result. 

Further improvement involves adding an optimization tool to tune the hyperparameters in 

the split selection step of RF models. In this study we only addressed the activity type and 

activity sequencing. Various other aspects of daily activity sequences, such as sequential 

activity location, duration, and mode can be synthesized using the RF models. Moreover, 

incorporating a probabilistic model such as a hidden Markov model into the RF model 

structure can be explored in future extensions of this study. Several studies have illustrated 

the importance of intra-household interaction, in which decisions of activity participation 

by one household member are often constrained or correlated to the decisions of other 

household members. Extensions to our modeling procedure are required to account for 

such correlations. Finally, the results of this study are expected to be implemented within 

the activity-based travel demand model, Scheduler for Activities, Locations, and Travel 

(SALT) for Halifax, Nova Scotia.  
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Chapter 6 Modeling Activity Scheduling Behavior of Travelers for 

Activity-Based Travel Demand Models4 

6.1 Introduction 

In the late 1950s, investments in new road infrastructure increased considerably due to the 

substantial increase in vehicle ownership and usage for daily trips. To evaluate the short 

term and long term impacts of investments, transport planners developed the first 

generation of travel demand models known as four stage models (Goran 2001). The four 

stage models comprise four components (i.e. trip generation, trip distribution, mode 

choice, and traffic assignment) to forecast traffic flows and volumes among traffic zones 

(McNally 2007). However, with continued urban development there was increased need 

for more sensitive forecasting models with better implementation capability for policy 

analysis and decisions. Transport planners established a new generation of travel demand 

models that can capture the complex behavior of travelers at the disaggregate level (Goran 

2001; Bhat et al. 2004). From 1977, second generation models known as disaggregate trip 

based models and third generation models known as activity-based travel demand models 

were developed. Broadly, disaggregate trip based models, unlike four stage models, 

analyze each individual trip as independent. Disaggregate trip based models were utilized 

widely in the assessment of many large-scale projects world-wide during the 1980’s and 

1990’s (Goran 2001). Further analyses on the results of disaggregate trip based models 

and comparison with actual daily life decisions of travelers revealed that there are 

                                                           
4 An earlier version of this chapter has been published:  

Hafezi, M. H., L. Liu., and H. Millward. (2018). “Modeling activity scheduling behavior of 

travelers for activity-based travel demand models”. Peer reviewed proceedings of the 97th Annual 

Meeting of Transportation Research Board (TRB), Washington, D.C., USA. 
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associations between trips and the activity participation of individuals (Ettema, Borgers 

and Timmermans 1993; Garling, Kwan and Golledge 1994; Kitamura, Chen and Pendyala 

1997; Ben-Akiva and Bowman 1998b). Concurrently, due to a fast growth of car usage, 

policy issues associated with complexities in individual travel behavior (i.e. flexible 

working hours, self-employment, e-shopping, etc.), road congestion, and air pollution 

became more important to analyze for transport planners and policy makers (Stopher, 

Hartgen and Li 1996; Ben-Akiva and Bowman 1998b; Fosgerau 2002; De Palma et al. 

2011; Daisy, Liu and Millward 2017a). 

During past 30 years, interest in employing activity-based travel demand models has 

increased considerably due to the growing importance of testing complex policy measures. 

Activity-based models focus on the 24-hour activity schedule, and travel episodes are 

linked with activities performed by individuals (Kitamura et al. 2000; Bhat et al. 2004; 

Auld, Mohammadian and Doherty 2009; Hafezi, Millward and Liu 2018b). Generating 

more accurate activity patterns decreases uncertainty in generating temporal information 

for the scheduling engine in activity-based models (Rasouli and Timmermans 2012; 

Hafezi, Liu and Millward 2017a; Daisy, Liu and Millward 2017b). As of today, researchers 

employ various techniques for producing temporal information associated with 

individual’s daily activity schedules, such as probability distribution function, hazard 

function, and decision tree. 

Over the past fifteen years, machine learning techniques have become more popular, and 

computers are more efficient at storing and processing large amounts of data. However, 

there have been only limited efforts to incorporate such techniques into activity-based 

travel demand models. The current study presents a new modeling framework utilizing a 
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well-known machine learning technique, the Random Forest algorithm. The goal is to 

learn and predict temporal information associated with travelers’ activities in their daily 

agenda. The results of this study are expected to be implemented within the activity-based 

travel demand model, Scheduler for Activities, Locations, and Travel (SALT). The SALT 

model is comprised of five main components: population synthesizer, time-use activity 

pattern recognition, tour mode choice, activity destination choice, and activity/trip 

scheduling. The model adopts a pattern recognition approach which identifies population 

clusters with homogeneous time-use activity patterns. A series of behaviorally realistic 

econometric models and rule-based models are then developed for modeling time-use 

activity patterns in each identified cluster. Finally, this study contributes by providing 

additional insights to the scheduling modules in the overall activity-based modeling 

framework. The remainder of the study is structured as follows: following the literature 

review, a discussion of the data used in the modeling is presented. The methods for 

modeling activity-travel scheduling behaviors are described in the next section, followed 

by a discussion of model results. The study concludes by providing a summary of 

contributions and future research directions. 

6.2 Literature Review 

Over the last half century, many theoretical and practical activity-based travel demand 

models have been developed. Broadly, these models can be classified into three major 

groups based on their structure and purpose (De Palma et al. 2011): constraints-based 

models, random utility models, and computational process models. In constraints-based 

models, individual’s activity patterns are shaped based on Hagerstrand’s time-geography 

theory (Hagerstrand 1970). In random utility models the time component is modelled as a 
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discrete component (Bhat et al. 2004), while in computational process models it is modeled 

as a continuous component (Arentze and Timmermans 2000).  

These models include a series of universal components such as activity generator and 

scheduler, tour mode choice, tour and trip time of day, tour and trip destination, and 

network assignment. One way to capture the uncertainty of departure time and start time 

in the modeling of individual’s scheduling of travel behavior is to generate more accurate 

and homogeneous activity patterns (Oberkampf et al. 2002; Rasouli and Timmermans 

2012). A wide array of theory and methods have been developed to produce information 

for the scheduling module in activity-based travel demand models. For instance, In 

CARLA (Combinatorial Algorithm for Rescheduling Lists and Activities), activities are 

generated and added to the individual’s schedule using four rules: logical rules that refer 

to the presumption of one unique activity at a time at one location, environmental rules 

that refer to authority constraints (access time restrictions to different places), and travel 

times between locations, inter-personal rules that refer to coupling constraints (joint 

activities with other household members), and personal rules that refer to personal 

preferences (Jones et al. 1983). In STARCHILD (Simulation of Travel/Activity Responses 

to Complex Household Interactive Logistic Decisions), activities are generated in three 

steps. First, all possible alternatives to participating in different activities with respect to 

all constraints are explored. Next, through a series of statistical tests, similar alternatives 

are clustered in three to ten groups. Finally, a representative activity travel pattern is 

chosen for each group. The ultimate activity choices are estimated by the multinomial logit 

model and activities are scheduled through employing a series of rules (Recker, McNally 

and Root 1986a; Recker, McNally and Root 1986b).  
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In the cognitive model, alternative decisions for shaping individual’s agenda at various 

levels of abstraction are generated through the application of a series of rules for activity 

planning processes. The cognitive model of planning can be accounted as the first rule-

based simulation activity-based model (Hayes-Roth and Hayes-Roth 1979). In AMOS 

(Activity Mobility Simulator), the choice of different potential activities for the individual 

is generated from alternative activity travel patterns. Activities are ordered in agenda 

through a rule-based scheduling engine, and an activity adjuster is used for conflict 

resolution. Activity purposes, frequencies, time budget, duration, location, and priority list 

are inter-connected in AMOS (Kitamura et al. 1996). In SMASH (Simulation Model of 

Activity Scheduling Heuristics), a set of alternative activity travel patterns along with type, 

timing, travel mode, travel time, and location for each activity are generated at the first 

step. Next, the searching process considers ties in activity time and adds the activities that 

have been prioritized as high in the schedule. Decisions for adding or rescheduling 

activities in SMASH are made based on the choice of activities, sequencing, travel mode, 

travel time, location, and choice of joint activity (Ettema, Borgers and Timmermans 1993). 

Some researchers have used explanatory data analysis and statistical methods to generate 

activities. For instance, in TASHA (Travel and Activity Scheduler for Household Agents), 

activities with similar socio-demographic and temporal characteristics (e.g. start time) are 

grouped into classes through a series of empirical data analysis. Start time and activity 

duration are generated through a probability distribution function. A series of heuristic 

rules (e.g. add, delete, shift or truncating activities) are used to schedule individual’s 

agenda (Miller and Roorda 2003). In ADAPTS (Agent-Based Dynamic Activity Planning 

and Travel Scheduling Model), activities with similar characteristics are identified through 
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a hazard function, and essential information for the scheduling engine, such as activity 

start times and durations, are generated. Activities are added to individual’s agenda using 

a set of heuristic rules based on the TASHA model (Auld and Mohammadian 2009). In 

ALBATROSS (A Learning-Based Transportation Oriented Simulation System), activities 

are generated and added to individual’s agenda based on their flexibility level and spatial-

temporal constraints. These constraints include location, travel mode, and time budget 

availability. Start time and activity duration are predicted using the CHAID decision tree. 

The scheduling engine in ALBATROSS uses these constrains to order activities. Fixed 

activities are added to individual’s agenda at first and flexible activities are then scheduled 

with respect to prior fixed activities (Arentze and Timmermans 2004). 

In recent years there has been growing interest in incorporating machine learning 

techniques in the modeling of activity generation and activity scheduling steps in activity-

based travel demand models (Liao et al. 2007; Allahviranloo 2016; Hafezi et al. 2017; Li 

and Lee 2017). For instance, Allahviranloo (2016) used a k-mean clustering algorithm to 

identify unique clusters and utilized the AdaBoost algorithm to predict start time and 

activity duration based on the socio-demographic characteristics of individuals. In another 

study, a probabilistic context-free grammars technique is adopted to produce a set of 

activities in individual’s daily agenda (Li and Lee 2017). Also, hierarchical markov models 

have been used for predicting individual’s activity choices (Liao et al. 2007). 

Despite all of the progress made in generating temporal information for the scheduling 

engine in activity-based travel demand models, there is undeniably considerable room for 

improving models’ performance in terms of estimation accuracy, computational 

efficiency, and their practical application. In this study, we introduce a new modeling 
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framework for predicting temporal information associated with the traveler’s daily 

activity. The framework may also be adapted for modeling other activity-based model 

components, such as transport mode, and work and residential location choice models. 

6.3 Data 

This study uses time-diary and GPS geo-coordinate data, from the Space-Time Activity 

Research (STAR) survey undertaken in Halifax, Canada. The STAR survey represents the 

world’s first large-scale employment of global positioning system (GPS) technology for a 

household activity survey. The unique and rich Halifax STAR project produced a wide 

variety of data, including the household roster data, main file, vehicle data, time diary 

(episode and summary data file), activity diary (episode data file), land use database, 

business hours survey data, places and locations (PAL) directory data, and global 

positioning systems (GPS) data. Full descriptions of the survey design and the socio-

demographic features of respondents can be found in (TURP 2008; Millward and Spinney 

2011). The Halifax STAR project produced survey data from 1,971 randomly designated 

households in Halifax Regional Municipality (HRM) between April 2007 and May 2008. 

A primary respondent over age 15 was randomly selected in each household, and 

completed a 2-day time diary, supplemented and verified through GPS tracking. In this 

study, nine aggregated classes of activities were included in the proposed model: home 

chores, home leisure, night sleep, workplace, shopping & services, school/college, 

organizational/hobbies, entertainment, and sports activities. The final data set after data 

cleaning comprised 2,778 person-days (1,389 individuals, two days each). 
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In this study, we use data from twelve clusters of respondents previously-established 

through application of a novel pattern recognition modeling framework to the STAR data. 

Table 6.1 and Table 6.2 presents an analysis of the cluster data, showing socio-

demographic characteristics and cluster membership, while Figure 6.1 and Figure 6.2 

illustrates the observed temporal pattern of individual activities for identified worker and 

non-worker clusters, respectively. Interested readers are referred to previous research by 

the authors (Hafezi, Liu and Millward 2017b; Hafezi, Liu and Millward 2017c) for more 

details on clustering methods and execution of the pattern recognition framework.  

Overall, the pattern recognition model recognized six clusters for out-of-home workers 

(cluster#1: extended worker, cluster#3: 8-4 worker, cluster#6: shorter worker, cluster#7: 

7-3 worker, cluster#10: evening worker and cluster#11: 9-5 worker), four clusters for non-

worker and non-student (cluster#2: non-worker midday activities, cluster#4: non-worker 

evening activities, cluster#8: non-worker morning shopping and cluster#9: non-worker 

afternoon shopping), one cluster for students (cluster#12: students), and one cluster for 

individuals who mostly spend their time at home (cluster#5: stay-at-home). Each cluster 

carries various information associated to the travelers’ daily activity patterns such as 

activity type, activity sequencing, probability of start time, and activity duration. 

Individuals in each cluster differ considerably from individuals in other clusters with 

regards to their socio-demographic characteristics. Moreover, individuals within each 

cluster have homogeneous activity sequences, whereas there is a heterogeneous diversity 

between clusters in terms of their distributions of activity type, activity start time, activity 

duration, and socio-demographic features. 
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Table 6.1 Share of various socio-demographic variables for twelve respondent clusters 

Social demographic variables 

Sample 

mean 

(%) 

Mean of cluster (%) 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Gender Female 0.53 0.53 0.53 0.44 0.59 0.56 0.52 0.47 0.54 0.59 0.51 0.53 0.60 

Age 

Young adults (ages 

15-35 years) 
0.10 0.12 0.05 0.10 0.10 0.11 0.10 0.05 0.09 0.07 0.15 0.09 0.60 

Middle-aged adults 

(ages 36-55 years) 
0.49 0.67 0.29 0.66 0.38 0.32 0.71 0.72 0.29 0.32 0.66 0.70 0.31 

Older adults (aged 

older than 55 years) 
0.41 0.20 0.66 0.24 0.53 0.57 0.19 0.23 0.63 0.61 0.19 0.22 0.08 

Education 
Diploma or university 

certificate 
0.67 0.76 0.58 0.76 0.62 0.66 0.85 0.53 0.57 0.65 0.64 0.80 0.38 

Occupation 

Regular shift 0.53 0.73 0.22 0.93 0.26 0.24 0.87 0.93 0.19 0.24 0.43 0.89 0.13 

Irregular schedule 0.10 0.22 0.10 0.03 0.10 0.11 0.09 0.07 0.07 0.07 0.47 0.08 0.02 

Student 0.03 0.01 0.00 0.00 0.04 0.01 0.01 0.00 0.03 0.02 0.04 0.01 0.67 

Retired 0.23 0.02 0.52 0.02 0.39 0.41 0.01 0.00 0.53 0.41 0.00 0.00 0.08 

Work at home 0.15 0.23 0.10 0.13 0.15 0.16 0.30 0.06 0.11 0.09 0.09 0.26 0.02 

Flexible 

schedule 

Have no flexibility in 

a work schedule 
0.50 0.55 0.48 0.54 0.46 0.43 0.44 0.63 0.48 0.51 0.75 0.40 0.43 

Job number 
Have more than one 

job 
0.07 0.09 0.04 0.04 0.16 0.08 0.05 0.07 0.11 0.05 0.08 0.08 0.00 

Income 

Low-income (<= $ 

40,000) 
0.39 0.28 0.44 0.22 0.48 0.49 0.32 0.29 0.53 0.48 0.47 0.26 0.78 

Middle-income ($ 

40,000 - $ 100,000) 
0.53 0.60 0.46 0.68 0.45 0.45 0.55 0.64 0.42 0.46 0.49 0.59 0.19 

High-income (> $ 

100,000) 
0.09 0.12 0.10 0.10 0.07 0.07 0.13 0.08 0.05 0.06 0.04 0.15 0.03 

 

Table 6.2 Summary statistics for twelve respondent clusters: membership analysis 

 
Cluster number 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Total cluster membership 137 225 401 238 419 171 229 247 262 53 348 48 

Percentage in total (number 

of person-days) 
4.93 8.10 14.43 8.57 15.08 6.16 8.24 8.89 9.43 1.91 12.53 1.73 

Home chores (%) 25.09 34.73 27.81 41.39 43.10 33.78 30.14 40.54 40.12 35.01 29.47 35.52 

Home leisure (%) 12.04 20.26 16.57 14.42 19.17 16.22 17.73 19.96 19.18 13.61 15.32 13.81 

Night sleep (%) 62.88 45.01 55.62 44.19 37.73 50.00 52.13 39.50 40.70 51.38 55.21 50.67 

Total in-home (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Workplace (%) 89.26 4.76 82.61 6.41 8.16 79.53 89.31 10.53 13.12 90.90 86.56 5.77 

Shopping & services (%) 1.61 27.27 3.16 15.31 30.19 5.56 2.41 32.26 38.27 2.90 2.98 3.38 

School/college (%) 0.00 1.00 0.14 1.20 0.42 0.40 0.29 3.16 1.28 0.66 0.15 69.29 

Organizational/hobbies (%) 2.34 29.57 3.24 31.28 19.90 5.11 1.76 21.11 21.94 1.57 2.62 11.14 

Entertainment (%) 4.67 17.49 6.92 33.73 10.35 6.48 3.73 8.75 11.66 1.93 4.30 4.53 

Sports (%) 2.12 19.90 3.93 12.06 30.98 2.93 2.50 24.20 13.74 2.04 3.40 5.89 

Total out-of-home (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Cluster #1, N = 137, Extended work-day workers Cluster #3, N = 401, 8-4 workers 

  
Cluster #6, N = 171, Shorter work-day workers Cluster #7, N = 229, 7-3 workers 

  
Cluster #10, N = 53, Evening workers Cluster #11, N = 348, 9-5 workers 

 

 

Figure 6.1 Observed temporal pattern of individual activities for six identified worker clusters 
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Cluster #2, N = 225, Non-worker, midday activities Cluster #4, N = 238, Non-worker, evening activity 

  
Cluster #5, N = 419, Stay-at-homes Cluster #8, N = 247, Non-worker, morning shopping 

  
Cluster #9, N = 262, Non-worker, afternoon shopping Cluster #12, N = 48, Students 

 

 

Figure 6.2 Observed temporal pattern of individual activities for six identified non-worker clusters
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6.4 Methods 

The proposed modeling framework for scheduling travelers’ activities in this study 

consists of two steps, as follows. First, temporal information for the set of activities in the 

agenda is predicted using the Random Forest (RF) model. Details of the methodology for 

inferring activity types and undertaking rigorous validation can be found in (Hafezi, Liu 

and Millward 2018a). Given a predicted set of activities in the traveler’s agenda, in the 

next phase we predict start time and activity duration of each activity in the agenda, and 

schedule them. Predicted activities are inserted into a skeleton schedule through a heuristic 

decision rule-based technique, and are scheduled with respect to two-tier constraints. 

Random Forest theory is based on the use of numerous decision trees that have been grown 

using the bagging technique (Breiman 2001; Suthaharan 2015). Each tree acts as a weak 

learner in the algorithm and the aggregation of these weak inputs provides a powerful 

ensemble learning model. Outcomes achieved from the RF model are based on the 

majority votes in the ensemble models. Although the RF method is used in other 

transportation fields such as traffic incident detection and transport mode recognition, to 

the best of our knowledge RF models using the CART classifier have not previously been 

employed for predicting start time and activity duration in travel behavior analysis. 

6.4.1 The Random Forest (RF) Model 

The Random Forest (RF) structure for predicting start time and activity duration is shown 

in Figure 6.3. The RF theory is based on an ensemble of many decision trees (Breiman 

2001; Suthaharan 2015). Each tree acts as a weak learner and makes a prediction 

{𝑃̂1, 𝑃̂2, 𝑃̂3, ⋯ , 𝑃̂𝑀}. The eventual prediction outcome gained is based on the majority votes 
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for 𝑃̂. The start time and activity duration for each activity type based on their duration 

interval are transformed to a set of bins and shown in Table 6.3. The predictor variables 

𝑌𝑛 are socio-demographic characteristics of travelers and the corresponding start time or 

duration bin numbers for each activity type in the agenda (selected from Table 6.4). The 

response variables 𝑋𝑖 are defined as one of the activity start time /activity duration bin 

numbers in the model (selected from Table 6.4).  

Generally, the RF model takes the following steps. First, test dataset (𝑇𝑒) and training 

dataset 𝐷𝑟 = ((𝑋𝑖, 𝑌1),… , (𝑋𝑖, 𝑌𝑁)) are drawn from the primary dataset using a cross-

validation partition process. At each node in the decision tree a square number of total 

existing predictor variables (√𝑄) are randomly selected from all the standing predictor 

variables (𝑄). Next, 𝐸𝑛(𝐶) observations are randomly drawn from the sampled data points 

and used for building each decision tree 𝑚 in the RF model. We undertake 𝐸𝑛(𝐶) as a 

subset of training data 𝐷𝑟 where 𝐶 cut in 𝐶 is as pair (𝑢, 𝑤). 𝑢 is the randomly nominated 

predictor variables. 𝑤 is the place of the split along the 𝑢-th correspondent, within the 

limits of 𝐶. We hypothesize the set of all such possible cuts in 𝐶 as 𝑇𝐶. The split condition 

𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤) is computed as follows (Breiman 2001; Biau and Scornet 2016): 

𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤) = 
1

𝐸𝑛(𝐶)
∑ (𝑌𝑖 − 𝑌̅𝐶)

2𝑛
𝑖=1 ∃𝑋𝑖∈𝐶 −

1

𝐸𝑛(𝐶)
∑ (𝑌𝑖 − 𝑌̅𝐶𝐿∃𝑋𝑖

(𝑢)
<𝑤

−𝑛
𝑖=1

𝑌̅𝐶𝑅∃𝑋𝑖
(𝑢)
≥𝑤
)2∃𝑋𝑖∈𝐶                (1) 

𝑋𝑖 = (𝑋𝑖
(1), … , 𝑋𝑖

(𝑝)) ∀ (𝑢, 𝑤) ∈  𝑇𝐶                         (2) 

𝐶𝐿 = {𝑥 ∈ 𝐶 ∶  𝑥(𝑢) <  𝑤}                          (3) 
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Figure 6.3 Random forest structure for predicting temporal information associated with the traveler’s daily activity

Tree 1 Tree 2 Tree 3 Tree 𝑚 ⋯ 

.. .. .. .. 
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𝐶𝑅 = {𝑥 ∈ 𝐶 ∶  𝑥(𝑢) ≥  𝑤}                          (4) 

where 𝑌̅𝐶 is the average of the 𝑌𝑖 such that 𝑋𝑖 belongs to 𝐶. 

Table 6.3 Activity start time and activity duration bin structure 

 
Setting 

type 

No. of 

bins 

Interval 

duration 
Pattern 

S
ta

r
t 

ti
m

e 

I 144 10 
Bin 1: [4:00-4:10], bin 2: [4:10-4:20], bin 3: [4:20-4:30], 

…, bin 48: [3:50-4:00]. 

II 96 15 
Bin 1: [4:00-4:15], bin 2: [4:15-4:30], bin 3: [4:30-4:45], 

…, bin 48: [3:45-4:00]. 

III 48 30 
Bin 1: [4:00-4:30], bin 2: [4:30-5:00], bin 3: [5:00-5:30], 

…, bin 48: [3:30-4:00]. 

IV 8 180 
Bin 1: [4:00-7:00], bin 2: [7:00-10:00], bin 3: [10:00-

13:00], …, bin 8: [1:00-4:00]. 

A
ct

iv
it

y
 d

u
ra

ti
o
n

 

Î 96 15 

Bin 1: [less than 15 min], bin 2: [between 15 and 30 min], 

bin 3: [between 30 and 45 min], …, bin 24: [more than 

1425 min]. 

IÎ 48 30 

Bin 1: [less than 30 min], bin 2: [between 30 min and 1 

hour], bin 3: [between 1 and 1.5 hours], …, bin 24: [more 

than 1410 min]. 

IIÎ 24 60 

Bin 1: [less than 1 hour], bin 2: [between 1 and 2 hours], 

bin 3: [between 2 and 3 hours], …, bin 24: [more than 

1380 min]. 

IV̂ 4 360 

Bin 1: [less than 6 hours], bin 2: [between 6 and 12 

hours], bin 3: [between 12 and 18 hours], bin 4: [more 

than 1080 min]. 

*Modeling period is from 4 a.m. until 3:55 a.m. next day  
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Table 6.4 Proposed predictor variables for predicting temporal information associated 

with the traveler’s daily activity 

Predictor Subcategories 

Gender Male, female 

Age 15 to 19, 20 to 24, 25 to 29, 30 to 34, 35 to 39, 40 to 44, 45 

to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74, 75 to 

79, 80 to 84, 85+ 

Marital status Married, living common-law, widowed, separated, 

divorced, single-never married, 

Household size 1,2,3,4,5,6 

Highest education level Masters or earned doctorate, bachelor or undergraduate 

degree, diploma or certificate, some university, some 

community college, trade, technical or business college, 

high school/secondary, other 

Full/part-time student Full-time student, part-time student 

Paid/self employed A paid worker, self-employed, an unpaid family worker 

Flexible work schedule No, yes 

Work at home No, yes 

Total personal income Under $20,000, $20,000–$39,999, $40,000–$59,999, 

$60,000–$79,999, $80,000–$99,999, $100,000 or more 

Total household income Under $20,000, $20,000 - $39,999, $40,000 - $59,999, 

$60,000 - $79,999, $80,000 - $99,999, $100,000 or more 

Dwelling type Single unit residential, duplex or semi-detached, 

townhouse, multi-unit residential-less than 6 stories, multi-

unit residential-6 or more stories, mobile dwelling, other-

specify 

Dwelling owned/rented Owned, rented 

Valid driver’s license No, yes 

Buss pass No, yes 

Number household 

vehicles 

0,1,2,3,4,5,6 

Number household 

motorcycles 

0,1,2,3,4,5,6,7,8,9,10 

Number household 

bicycles 

0,1,2,3,4,5,6,7,8,9,10 

Usually mode to work Car, truck or van - as driver, car, truck or van - as 

passenger, public transit, walk to work, bicycle, 

motorcycle, taxicab, other method 

Usual mode to school Car, truck or van - as driver, car, truck or van - as 

passenger, public transit, walk to work, bicycle, 

motorcycle, taxicab, other method 

State of health Excellent, very good, good, fair, poor 

Activity start time Corresponding duration bin number for each activity type 

in the agenda 

Activity duration Corresponding start time bin number for each activity type 

in the agenda 
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One of the main challenges in most decision tree models is to select the best split predictor 

method (Breiman 2001; Biau and Scornet 2016). In this study, we used the CART 

algorithm for decision splits in the RF model. The best cut (𝑢𝑛
∗ , 𝑤𝑛

∗) is computed by 

maximizing 𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤) over 𝐵𝑙𝑖𝑡 and 𝑇𝐶.: 

(𝑢𝑛
∗ , 𝑤𝑛

∗) ∈ 
𝑎𝑟𝑔𝑚𝑎𝑥 
𝑢∈𝐵𝑙𝑖𝑡
(𝑢,𝑤)∈𝑇𝐶

𝑆𝑐𝑙𝑎𝑠,𝑛(𝑢, 𝑤)                        (5)           

This process is terminated when all the information is saturated. The new input data at the 

testing stage 𝑡𝑛 ∈ {1, … , 𝑒} is propagated down to all of the trees in the RF model and each 

tree makes a prediction. The ultimate prediction result gained is based on the majority 

votes for 𝑃̂.  

6.4.2 Variable Importance Measures: Mean Decrease Accuracy (MDA) 

One of the advantages of the RF model is its ability to measure the importance of variables 

and subsequently rank them in order to guide a decision split algorithm for finding the best 

cut points. This process in the RF model can be performed through Mean Decrease 

Accuracy (MDA) or Mean Decrease Impurity (MDI) computations. In this study, we 

measured the importance level of predictor variables using the Mean Decrease Accuracy 

(MDA) method that builds on the out-of-bag (OBB) error estimate (Breiman 2001; Biau 

and Scornet 2016). The MDA of the variable 𝑋(𝑢) is computed by balancing the difference 

in OOB error (𝑂𝑛) prior and subsequent to the permutation over all trees. The primary 

OOB error of each tree is calculated by testing the RF model using OOB data. The later 

OOB error of each tree is computed by adding noise to the sample data of the feature 
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randomly and retesting the OOB error. The MDA for randomly nominated variable 𝑋(𝑢) 

is computed as follows: 

MDA(𝑋(𝑢)) =
1

𝑚
∑ [𝑂𝑛[𝑑𝑛(. ; Θ𝑚), 𝐼𝑚,𝑛

𝑢 ] − 𝑂𝑛[𝑑𝑛(. ; Θ𝑚), 𝐼𝑚,𝑛]]
𝑚
𝑙=1                     (6) 

𝑂𝑛[𝑚𝑛(. ; Θ𝑙), 𝐼] =
1

|𝐼|
∑ (𝑌𝑖 −𝑚𝑛(𝑋𝑖; Θ𝑙))

2
𝑖:(𝑋𝑖,𝑌𝑖)∈𝐼

                      (7) 

𝐼𝑚,𝑛 is the out-of-bag data set of the 𝑚-tree, 𝐼 =  𝐼𝑚,𝑛
𝑢  is the permutated data for variable 

𝑢 and 𝑂𝑛(. ; Θ𝑚) is the estimation for the 𝑚-th tree. In total 70% of the dataset was used 

for training the model and 30% for testing model performance. 

6.4.3 Model Calibration and Validation 

In the RF algorithm several parameters need to be initialized and calibrated. These are the 

initial number of trees, the node split principle, and the cutoff vector. The initial number 

of trees 𝑚 is set to 1000, and was calibrated by out-of-bag error estimation to verify if the 

model can be converged within this value. In this study, the best split at each node 𝐵𝑙𝑖𝑡 is 

determined with the CART algorithm. Another alternative approach to find the best split 

in the RF model is the Curvature Search technique. The cutoff vector 𝑇𝐶 is a vector of 

length equivalent to the number of classes. 𝑇𝐶 includes three sub-parameters (𝑐1, 𝑐2, 𝑐3) 

that are originally each randomly set in the range between [0,1] with the requirement that 

the total sum is equal to 1. These parameters were cross-validated through the OOB error 

rate in order to achieve the best parameter values for the proposed RF model. 
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6.4.4 Decision Rule-Based Algorithm 

Having predicted activity agendas and activity sequences of the traveler along with 

predicted start time and activity duration bin numbers for each activity type in the 

traveler’s agenda for a 24-hour period, in this step activities are inserted into the skeleton 

schedule through a rule-based algorithm, and a 24 hours schedule is constructed. A 

conceptual framework of the scheduling model is shown in Figure 6.4.  

The algorithm is started by predicting cluster membership for the selected individual. This 

process is done through a Classification and Regression Tree (CART) developed based on 

the socio-demographic characteristics of individuals in each cluster. Based on the random 

generated number and cumulative probability functions, the CART algorithm can find 

specific clusters for particular leaf nodes based on the high probability that an individual 

belongs to it. Interested readers can refer to earlier work by the authors (Hafezi, Liu and 

Millward 2017b; Hafezi, Liu and Millward 2017c) for more details on this step. Next, 

activity agendas and activity sequences of the traveler are predicted using the advanced 

RF model (Hafezi, Liu and Millward 2018a). For each activity type, start time and activity 

duration are generated from a uniform distribution within their interval time range as 

defined in Table 6.3. For instance, if bin number 1 from setting type III is predicted for 

start time, the algorithm will generate a random start time from its interval [4:00-4:30]. 

Then, a rule-based algorithm is used to insert activities into the skeleton schedule based 

on two conditions. First, the importance level of the activity is determined based on the 

cluster’s representative pattern characteristics. For example, work activity has the highest 

priority compared to other activities for individuals in the worker clusters. Second, longer 
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non-mandatory activities (i.e. shopping and hobbies) have the higher rank compared to 

shorter activities.  

A major difficulty with most activity-based models is that travel times are unknown since 

the activity location, transport modes, and trip-chaining characteristics are not yet 

determined. Thus, travel times are crucial for determining whether an activity fits in a 

given time slot or not. In this study, we used the median value for travel times. A 

conceivable further step of this work is to determine the above-mentioned characteristics 

and update more realistic travel times in the scheduling process. When there is a 

discrepancy between start time and activity duration of inserted activities, the rule-based 

algorithm makes a decision based on the prediction results of activity durations and correct 

activity start times.  

Ultimately, a heuristic advance adjustment algorithm will be applied to predicted start 

times and durations made in the scheduling step where the activities are inserted in the 

schedule. At present, however, this phase of the scheduling process is limited to resolving 

time conflicts and making the schedule consistent. For this purpose, the representative 

pattern in each cluster is targeted as a benchmark and subsequently, the heuristic algorithm 

will rearrange the conflicted episodes by adding, removing, or truncating them in a way 

that the time-use aggregation of all travelers in the cluster is as close as possible to the 

cluster’s representative pattern benchmark. The algorithm is terminated when there are no 

time overlaps between activities and travel episodes, and the episodes sum to 1440 minutes 

(24 hours). 

 



 

123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Conceptual framework for the scheduling model 

6.5 Discussion of Results 

In order to analyze the efficiency and performance of RF model under different conditions 

and complex activity patterns, we applied the models to twelve clusters drawn from the 

Space-Time Activity Research (STAR) survey. In total, six clusters were recognized for 
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out-of-home workers (cluster #1: extended work-day workers; cluster #3: 8-4 workers; 

cluster #6: shorter work-day workers; cluster #7: 7-3 workers; cluster #10: evening 

workers; cluster #11: 9-5 workers), four clusters for non-worker non-student (cluster #2: 

non-worker, midday activities; cluster #4: non-worker, evening activity; cluster #8: non-

worker, morning shopping; cluster #9: non-worker, afternoon shopping), and separate 

clusters for students (cluster #12: students) and individuals who mostly spend their time at 

home (cluster #5: stay-at-homes). The size of cluster varied in the range of 48 to 419. 

Further cluster analysis and statistical tests showed that there is heterogeneous diversity 

among clusters in terms of their distributions of start time, activity duration, activity type, 

and socio-demographic characteristics. Interested readers can refer to earlier work by the 

authors (Hafezi, Liu and Millward 2017b; Hafezi, Liu and Millward 2017c) for detailed 

description of each cluster.  

In the next step, a set of activity types in travelers’ agenda was predicted using the 

advanced RF model (Hafezi, Liu and Millward 2018a). The number of predicted activities 

in the cluster was assumed to be equal to the median stop number in the observed cluster. 

Figure 6.5 and Figure 6.6 illustrates the distribution of the ten most frequent combinations 

of agenda in the travelers’ daily activity patterns for identified worker and non-worker 

clusters, respectively. As can be seen, the dominant activities for worker and student 

clusters are work and school activity, respectively. For non-worker non-student groups, 

non-mandatory activities such as shopping, entertainment, and organizational activities are 

highly important in travelers’ out of home daily activity patterns.  

The RF model for predicting start time and activity duration was run under eight different 

bin settings for a twofold purpose: to test the efficiency level of the model and to compare 
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results with other alternative techniques. The OOB rate error cross-validation specifies 

that after 𝑚 > 850 (𝑚 is the number of trees), the OBB error rate tends to be constant. 

Therefore, it is reasonable to accept 𝑚 as 1000 at first. In view of this, we achieve the best 

optimal parameters for RF models as follows: 𝑐1 = 0.25, 𝑐2 = 0.35 and 𝑐3 = 0.40. For each 

cluster, the activity start time and activity duration (bin numbers) for all activity types in 

travelers’ agenda are predicted. The model results for start time and activity duration 

prediction are presented in Table 6.5 and Table 6.6, respectively. The prediction accuracy 

is obtained from comparison of observed and predicted bin numbers for every activity 

type. The best result for predicting start time was obtained by setting IV (8 bins, each of 

duration 180 minutes), at 60.10% accuracy, followed by setting III (48 bins, each of 

duration 30 minutes), at 36.28%. Similarly, the best prediction result for activity duration 

was found under setting IV̂ (4 bins, each of duration 360 minutes), at 98.65%, followed by 

setting IIÎ (24 bins, each of duration 60 minutes), at 67.32%. The empirical results show 

that with increases in the time interval (increasing bin numbers), the RF efficiency also 

increased. The lowest model result was reported for predicting start time with 144 bins, 

each of duration 10 minutes (setting I), at only 32.95% accuracy. 
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Cluster #1, Extended work-day workers Cluster #3, 8-4 workers 

  
Cluster #6, Shorter work-day workers Cluster #7, 7-3 workers 

  
Cluster #10, Evening workers Cluster #11, 9-5 workers 

  
*Horizontal axis: Occasions (H=Home chores, L=Home leisure, N=Night sleep, W=Workplace, P=Shopping & services, S=School/college, 

G=Organizational/hobbies, E=Entertainment, T=Sports). **Agenda combinations shown in Figure 4 are regardless activity sequences 

 

Figure 6.5 Distribution of 10 most frequent combinations of agenda in the 24-hour day for six identified worker clusters
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Cluster #2, Non-worker, midday activities Cluster #4, Non-worker, evening activity 

  
Cluster #5, Stay-at-homes Cluster #8, Non-worker, morning shopping 

  
Cluster #9, Non-worker, afternoon shopping Cluster #12, Students 

  
*Horizontal axis: Occasions (H=Home chores, L=Home leisure, N=Night sleep, W=Workplace, P=Shopping & services, S=School/college, 

G=Organizational/hobbies, E=Entertainment, T=Sports). **Agenda combinations shown in Figure 4 are regardless activity sequences 

 

Figure 6.6 Distribution of 10 most frequent combinations of agenda in the 24-hour day for six identified non-worker clusters

0

0.1

0.2

P
ro

b
ab

il
it

y
 i

n
 

em
p

ir
ic

al
 d

at
a

0

0.1

0.2

P
ro

b
ab

il
it

y
 i

n
 

em
p

ir
ic

al
 d

at
a

0

0.1

0.2

0.3

P
ro

b
ab

il
it

y
 i

n
 

em
p

ir
ic

al
 d

at
a

0

0.1

0.2

P
ro

b
ab

il
it

y
 i

n
 

em
p

ir
ic

al
 d

at
a

0

0.1

0.2

P
ro

b
ab

il
it

y
 i

n
 

em
p

ir
ic

al
 d

at
a

0

0.1

0.2

P
ro

b
ab

il
it

y
 i

n
 

em
p

ir
ic

al
 d

at
a

 

1
2

7
 



 

128 

Table 6.5 Accuracy of activity start time estimation for test dataset 

Activity type 
Estimation accuracy for setting I (144 bins, each of duration 10 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 7.98 27.40 25.01 7.53 7.94 10.77 30.46 7.65 26.00 37.96 12.26 33.78 

M
ea

n
 a

cc
u

ra
cy

 3
2

.9
5
%

 Home leisure 14.81 16.91 12.01 5.56 53.57 16.47 41.92 9.62 27.19 - 7.42 - 

Night sleep 48.41 39.70 36.69 56.25 55.00 44.91 37.67 40.74 36.21 85.00 33.08 34.30 

Workplace 10.21 - 16.67 - - 13.75 35.92 - - 66.67 16.55 82.00 

Shopping & 

services 
- 16.67 32.00 13.35 - 22.86 25.00 9.30 13.69 - 10.00 33.33 

School/college - - - - - - - - - - - 31.25 

Organizational

/Hobbies 
- 19.64 24.07 60.00 50.00 21.59 35.00 25.00 14.29 - 43.06 - 

Entertainment - - 22.26 - - - 27.78 - 62.50 - 31.25 50.00 

Sports 60.00 33.33 50.00 52.70 - 50.00 - - - 86.00 46.73 - 

Activity type 
Estimation accuracy for setting II (96 bins, each of duration 15 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 9.71 28.09 23.78 6.63 6.57 9.72 22.64 7.16 26.42 37.96 12.63 26.14 

M
ea

n
 a

cc
u

ra
cy

 3
3

.2
5
%

 Home leisure 24.07 18.44 62.50 19.44 36.88 17.43 38.47 12.23 19.62 - 12.70 - 

Night sleep 43.65 38.29 38.35 48.61 40.83 49.07 35.29 51.85 33.60 46.80 30.90 37.90 

Workplace 8.27 - 26.67 - - 18.75 35.67 - - 66.67 21.04 46.30 

Shopping & 

services 
- 16.24 42.56 12.34 50.00 21.52 - 12.34 8.12 - - 66.67 

School/college - - - - - - - - - - - 30.00 

Organizational

/Hobbies 
14.29 18.65 21.30 60.00 50.00 27.27 27.50 11.11 19.64 - 66.67 33.33 

Entertainment 16.67 11.11 20.03 25.00 65.70 49.80 33.33 - 62.50 - 37.50 50.00 

Sports 78.60 23.81 66.67 85.60 - - 33.33 33.33 - 67.30 47.86 50.00 

Activity type 
Estimation accuracy for setting III (48 bins, each of duration 30 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 19.96 21.91 25.16 10.90 9.99 11.73 25.70 12.99 19.82 37.96 20.39 40.13 

M
ea

n
 a

cc
u

ra
cy

 3
6

.2
8
%

 Home leisure 25.00 16.78 30.80 14.33 25.62 19.91 28.50 17.90 25.62 62.50 26.39 - 

Night sleep 47.02 39.55 56.25 62.50 41.88 51.39 45.29 41.67 50.30 88.00 35.30 76.00 

Workplace 16.40 - 30.67 - - 20.85 34.15 - - 55.56 23.42 69.90 

Shopping & 

services 
25.00 20.89 34.46 15.99 27.04 18.05 25.00 16.47 19.18 - 14.29 66.67 

School/college - - - - - - - - - - - 42.50 

Organizational

/Hobbies 
14.48 20.55 25.00 44.76 50.00 45.96 42.50 27.04 29.76 - 36.50 - 

Entertainment 16.67 33.33 17.55 17.14 - 57.14 27.78 - 58.33 - 43.75 50.00 

Sports 72.50 32.14 50.00 52.78 - 41.67 66.67 26.11 - 79.60 49.32 50.00 

Activity type 
Estimation accuracy for setting IV (8 bins, each of duration 180 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 43.90 43.39 51.53 37.73 36.27 41.52 52.04 38.03 47.72 45.12 55.33 62.05 
M

ea
n

 a
cc

u
ra

cy
 6

0
.1

0
%

 Home leisure 43.33 33.73 56.14 36.14 39.28 48.21 59.67 49.15 46.02 43.75 44.68 77.78 

Night sleep 68.06 67.64 48.10 43.75 42.76 57.78 49.66 63.89 64.48 76.67 44.83 80.00 

Workplace 35.12 100.0 51.02 90.00 83.33 59.49 47.36 90.00 75.00 71.67 47.02 100.0 

Shopping & 

services 
44.58 40.86 53.35 35.30 33.75 49.98 51.19 54.49 49.46 52.38 54.56 86.11 

School/college - - - - - 100.0 - 100.0 100.0 - 100.0 57.92 

Organizational

/Hobbies 
48.15 50.78 59.03 50.63 43.60 56.43 57.60 54.49 50.64 83.33 63.33 63.33 

Entertainment 37.04 50.83 52.64 45.15 77.78 55.36 53.33 55.21 71.90 50.00 51.48 66.67 

Sports 53.81 48.21 46.39 59.26 50.00 59.52 56.67 57.78 78.33 100.0 57.14 80.00 

‘-‘ indicates that algorithm didn’t predict start time due to missing the particular activity type in model’s 

input.  
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Table 6.6 Accuracy of activity duration estimation for test dataset 

Activity type 
Estimation accuracy for setting I (96 bins, each of duration 15 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 28.60 16.65 29.70 13.06 13.31 20.54 26.54 16.48 16.85 27.94 33.64 31.22 

M
ea

n
 a

cc
u

ra
cy

 4
2

.8
6
%

 Home leisure 29.05 19.47 20.58 15.92 11.15 31.30 38.36 16.29 15.71 41.67 20.85 61.11 

Night sleep 19.40 15.03 24.25 11.91 13.93 18.29 24.74 15.43 10.03 10.53 18.76 66.45 

Workplace 9.59 - 12.50 75.00 50.00 31.56 31.06 83.33 67.60 - 19.86 79.60 

Shopping & 

services 
87.22 36.52 43.74 30.93 48.47 49.07 63.89 44.91 39.65 58.33 48.57 77.78 

School/college - 85.00 - 75.00 - - - 57.60 - - - 12.50 

Organizational

/Hobbies 
39.32 43.23 51.04 45.32 35.60 55.12 52.74 48.62 36.35 50.00 58.61 61.11 

Entertainment 28.70 37.22 43.95 41.44 59.00 32.54 29.17 62.50 52.33 65.30 55.28 50.00 

Sports 58.89 49.40 77.78 58.33 79.17 - 88.89 75.00 30.67 75.90 42.86 76.80 

Activity type 
Estimation accuracy for setting II (48 bins, each of duration 30 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 35.57 33.70 45.18 28.98 21.97 36.16 39.16 32.45 33.21 35.87 46.80 41.84 

M
ea

n
 a

cc
u

ra
cy

 5
2

.3
3
%

 Home leisure 35.83 36.13 32.65 29.36 29.52 32.94 41.29 35.57 27.82 52.08 42.65 73.96 

Night sleep 22.49 17.55 35.43 17.53 21.90 25.77 29.22 44.44 12.91 26.32 27.55 69.08 

Workplace 12.55 49.60 17.30 75.00 97.60 35.87 41.88 87.50 75.00 33.33 17.37 79.60 

Shopping & 

services 
80.71 58.67 66.00 55.08 70.02 65.73 70.83 61.01 61.23 66.67 72.17 83.33 

School/college - 68.70 76.60 - - 76.80 - 72.30 - - - 12.50 

Organizational

/Hobbies 
49.79 53.37 55.56 48.07 68.27 65.76 76.02 69.77 53.05 83.33 74.69 64.29 

Entertainment 36.57 26.48 43.81 38.70 80.56 49.05 61.90 61.11 57.71 84.60 66.46 75.00 

Sports 72.78 40.48 68.33 47.92 80.00 68.75 66.67 48.67 55.74 75.60 60.54 89.60 

Activity type 
Estimation accuracy for setting III (24 bins, each of duration 60 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 59.05 50.12 68.60 50.33 42.55 53.40 63.89 49.65 50.96 57.47 64.19 50.56 

M
ea

n
 a

cc
u

ra
cy

 6
7

.3
2
%

 Home leisure 68.64 56.03 64.91 54.43 62.38 54.64 62.27 51.95 58.07 56.25 54.33 77.27 

Night sleep 20.19 23.73 39.83 21.93 35.75 32.41 46.42 43.67 52.82 35.53 39.23 69.08 

Workplace 17.47 90.00 22.91 95.83 76.80 42.58 40.02 79.00 88.89 66.67 22.15 96.00 

Shopping & 

services 
85.00 83.53 82.29 86.53 87.79 76.82 96.88 76.04 89.29 79.17 84.05 94.44 

School/college - 89.60 75.60 97.60 - 73.60 88.30 76.80 - - 94.00 25.00 

Organizational

/Hobbies 
65.19 63.76 62.04 65.08 77.46 84.48 93.00 85.88 67.96 92.86 93.00 75.00 

Entertainment 68.65 76.11 67.42 65.55 79.30 63.69 70.37 72.22 77.22 90.00 80.00 66.67 

Sports 89.52 64.29 68.70 58.33 80.56 80.00 90.48 75.83 80.19 87.60 71.31 87.50 

Activity type 
Estimation accuracy for setting IV (4 bins, each of duration 360 minutes)  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12  

Home chores 99.15 100.0 100.0 97.75 95.60 99.26 96.15 100.0 100.0 100.0 100.0 100.0 
M

ea
n

 a
cc

u
ra

cy
 9

8
.6

5
%

 Home leisure 98.77 100.0 98.70 99.57 100.0 98.38 99.29 100.0 100.0 100.0 100.0 100.0 

Night sleep 89.65 100.0 87.90 96.47 91.42 92.53 68.38 100.0 100.0 100.0 100.0 100.0 

Workplace 76.11 100.0 91.85 100.0 100.0 93.40 90.71 100.0 100.0 100.0 100.0 100.0 

Shopping & 

services 
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

School/college - 100.0 100.0 100.0 - 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Organizational

/Hobbies 
96.88 100.0 100.0 99.04 100.0 100.0 97.50 100.0 100.0 100.0 100.0 100.0 

Entertainment 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Sports 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

‘-‘ indicates that algorithm didn’t predict activity duration due to missing the particular activity type in 

model’s input. 
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For comparison, using the AdaBoost algorithm (Allahviranloo 2016), accuracy of 

prediction for the start time in the out-of-sample observations with durations of 30 and 180 

minutes was obtained as 14.41% and 47.13% (compared to 36.28% and 60.1% in the RF 

model). Furthermore, the model accuracy for activity duration with durations of 60 and 

180 minutes was obtained as 61.03% and 92.45% (compared to 67.32% and 98.65% in the 

RF model). The prediction results for start time in the ALBATROSS model (Arentze and 

Timmermans 2004) using the CHAID algorithm with duration of 180 minutes was 35.4% 

(compared to 60.1% in the RF model) and activity duration with duration of 360 minutes 

was 38.8% (compared to 98.8% in the RF model). Although the data conditions and other 

settings of the models are different, a proper comparison can be made on the level of the 

algorithm/method used where the CHAID and AdaBoost algorithms are used instead of 

the RF algorithm on the same dataset. A conceivable further step of this work is to evaluate 

the performance of the RF model in such a comparison. 

As was discussed earlier, in total 70% of the dataset was used for training the model and 

30% for testing model performance. In order to evaluate the performance of the heuristic 

rule-based algorithm, the estimation errors in minutes on a continuous scale and in 

percentage were computed to show the duration of misclassification, and are shown in 

Table 6.7. For every activity type in each cluster, the error is estimated by calculating the 

edit-distance between the observed activity pattern and projected temporal pattern in the 

test set. Results show that the highest misclassification error in each cluster is for those 

activities with a shorter duration in the traveler’s daily activity patterns. For example, in 

extended work-day workers cluster, entertainment activity has the highest misclassified 

error by 32.74 minutes. Further studies to overcome this limitation associated with activity 
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types with shorter duration are recommended. The total error in each cluster was estimated 

based on the summation of all misclassification errors over 24-hours of projected traveler’s 

activity. The highest error percentage was found for the students cluster, at 36.71%, 

followed by the evening worker cluster, at 25.50%. Compared to other clusters, students 

and evening worker clusters had the lowest sample size in our model. Empirical results 

therefore reveal that the RF model can predict response variables with more precision 

when trained with a larger dataset. The mean estimation error for all twelve clusters in our 

model is 18.38% in the 24-hour period. 

Figure 6.7 and Figure 6.8 shows the scheduled temporal pattern of traveler activities at the 

aggregate level obtained from the rule-based algorithm for identified worker and non-

worker clusters, respectively. Compared to the observed temporal patterns (Figure 6.1 and 

Figure 6.2), the algorithm could mostly re-assemble different activities of travelers in each 

cluster. However, in cases where the dominant activity (e.g. work) occupied a large portion 

of the traveler’s daily activity pattern, the accuracy level for scheduling activities with 

smaller durations decreased. Improving the performance of the heuristic rule-based 

algorithm with more insertion and adjustment constraints for scheduling activities with 

shorter durations is recommended for future studies. 
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Table 6.7 Mean scheduling error for test dataset (duration of misclassification*) 

Activity type 

Mean estimation error (minutes) 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

Cluster 

8 

Cluster 

9 

Cluster 

10 

Cluster 

11 

Cluster 

12 

Home chores 24.44 56.30 48.02 86.96 105.79 32.03 4.69 86.36 61.81 61.50 32.91 45.64 

Home leisure 118.24 31.15 29.09 15.57 69.49 70.54 53.38 2.48 52.30 15.20 50.81 231.62 

Night sleep 49.31 54.92 20.76 14.93 30.02 44.04 55.30 28.28 31.18 174.83 28.22 186.85 

Workplace 18.08 2.09 164.05 10.43 0.36 58.99 134.91 3.38 1.21 101.59 60.35 8.47 

Shopping & services 11.29 48.63 12.28 8.46 2.21 0.35 7.60 20.01 3.44 4.11 0.40 10.02 

School/college - 0.61 1.13 0.52 0.04 4.16 1.69 4.61 5.60 3.81 0.56 13.71 

Organizational/hobbies 16.40 26.55 7.85 36.26 2.44 3.71 2.39 9.30 7.77 0.87 2.24 13.31 

Entertainment 32.72 1.69 28.10 54.13 2.28 3.65 7.19 5.50 6.39 1.21 3.89 18.51 

Sports 14.89 3.28 19.08 7.65 0.24 4.21 12.05 12.79 2.74 4.12 10.03 0.46 

Total error in 24-h 285.38 225.22 330.37 234.91 212.86 221.69 279.20 172.71 172.43 367.23 189.43 528.60 

Mean estimation error 

(%) 
19.82 15.64 22.94 16.31 14.78 15.40 19.39 11.99 11.97 25.50 13.15 36.71 

*Each cell with the length of 5 minutes  

 

1
3

2
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Cluster #1, Extended work-day workers Cluster #3, 8-4 workers 

  
Cluster #6, Shorter work-day workers Cluster #7, 7-3 workers 

  
Cluster #10, Evening workers Cluster #11, 9-5 workers 

 

 

Figure 6.7 Scheduled temporal pattern of individual activities for six identified worker clusters 
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Cluster #2, Non-worker, midday activities Cluster #4, Non-worker, evening activity 

  
Cluster #5, Stay-at-homes Cluster #8, Non-worker, morning shopping 

  
Cluster #9, Non-worker, afternoon shopping Cluster #12, Students 

 

 

Figure 6.8 Scheduled temporal pattern of individual activities for six identified non-worker clusters
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6.6 Conclusions 

Complexities in activity-travel behavior of population groups in the study region vary 

according to their socio-demographic and socio-economic characteristics. For instance, 

homemakers and retirees have lower variances in time expenditure choices compared to 

worker and student groups. Accordingly, the best policy is to predict or model travel 

behavior for a representative set of model individuals, who represent homogeneous 

cohorts. The significant original contribution of this study is to develop a new modeling 

framework that is able to learn and predict temporal attributes of activities for use in 

activity-based travel demand models. We modeled the in-home and out-of-home activity 

temporal features of twelve clusters containing individuals with homogeneous activity 

patterns drawn from the large Halifax STAR travel diary survey. Activity start time and 

activity duration for every activity type were allocated to a set of bins. With respect to the 

pattern complexity of activity sequences and sample size of person-days in the clusters, 

eight different bin structures, varying in the time interval, were designed. The model was 

trained with 70% of the dataset and the remaining 30% was used for testing the model 

performance. 

The modeling framework proposed in this study comprises numerous prediction decision 

trees developed using the Random Forest (RF) algorithm. Each tree plays as a weak learner 

in the algorithm and is able to make a prediction. The aggregation of these weak inputs 

provides a powerful ensemble learning model. A final prediction result is obtained from 

the majority votes obtained from each ensemble tree. Independent variables were selected 

from the socio-demographic characteristics of travelers and the corresponding start times 

or duration bin numbers for each activity type in the agenda. Bin numbers were defined as 
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the response variable in the RF model. Activity agendas and activity sequences of travelers 

are predicted using an advanced Random Forest (RF) algorithm. Consequently, for each 

activity type, activity start time and activity duration were generated from a uniform 

distribution within their interval time range of predicted bin numbers. In the next step, 

activities were inserted into the skeleton schedule using a heuristic decision rule-based 

algorithm, and a 24 hours schedule was constructed with respect to two-tier constraints: 

the importance level of the activity established from the cluster’s representative pattern 

characteristics, and the duration of non-mandatory activities.  

In this study, we demonstrated the utility of the RF machine learning technique for 

modeling the temporal attributes of activities, an application not previously employed in 

travel behavior analysis. The estimation accuracy of the proposed RF model was examined 

under different bin settings. The best estimation results for predicting activity start time 

were found for setting IV (8 bins, each of duration 180 minutes), 60.10%, followed by 

setting III (48 bins, each of duration 30 minutes), 36.28%. Similarly, the best model 

estimation results for predicting activity durations were found for setting IV̂ (4 bins, each 

of duration 360 minutes), 98.65%, followed by setting IIÎ (24 bins, each of duration 60 

minutes), 67.32%. Results show that the proposed model is able to assemble the traveler’s 

schedule with an average 81.62% accuracy in the 24-hour period. By comparison of Figure 

6.7 and Figure 6.8 (predicted temporal patterns) and Figure 6.1 and Figure 6.2 (observed 

temporal patterns) a visual impression of the goodness-of-fit can be obtained. The 

empirical results from comparison of prediction accuracy among twelve different clusters 

reveal that with increases in the time interval (decreasing number of bins), the RF 
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efficiency also increased. When the RF model is trained with a larger dataset, it is expected 

to predict response variables with more precision. 

Numerous aspects of temporal information on activities, such as activity start time, activity 

duration, and activity end time, can be predicted for various population groups with 

various activity sequence patterns. Such precise information is essential for the scheduling 

phase of activity-based travel demand modeling. The proposed method improves on 

previous methods, and provides more accurate temporal information especially for 

individuals with high pattern complexity of activity sequences. For instance, predicted 

changes in travel over time compared to actual changes in travel over time can be 

accomplished in a short period of time using the proposed algorithm in this study. 

Compared to other decision tree techniques such as boosted decision trees, the proposed 

RF model in this study is able to automatically handle missing values in the algorithm. 

Furthermore, variables do not need to be transformed, very few parameters need to be 

adjusted, and the algorithm does not overfit easily. However, compared to conventional 

hypothesis driven approaches used in transportation such as multinomial logit regression, 

which yields interpretable coefficients, most machine learning based approaches are 

designed as a black box. The model is trained to evaluate the labels of the data and its 

results are a set of support data-points and their respective weights. This is potentially 

problematic if the intention is to understand how elements of the activity-travel system 

interact, but it is not an issue if the purpose is simply accurate prediction. In addition, 

machine learning based approaches are very efficient in computational time with high 

degree of reproducibility. The methods employed in this study can also be adapted for 
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modeling other components of activity-based travel demand models, such as transport 

mode, and work and residential location choice models. 

To build on this study and further demonstrate the potential of our proposed method, we 

are proposing several avenues of research. Firstly, it is possible to integrate the proposed 

model with a dynamic traffic assignment model and increase the model’s ability for use in 

rescheduling activities. This will require updating the algorithm with new data on 

congested travel times. Secondly, and in line with growing worldwide interest in 

developing activity-based travel demand model at the household level, we aim to explicitly 

model intra-household interactions using the proposed modeling framework in this study. 

Thirdly, the large STAR survey data that has been used for building the RF model in this 

study includes business hours survey data. Therefore, one potential extension would be to 

include operations hours in the modeling process. The RF model presented in this study 

predicted activities with smaller durations with lower estimation accuracy compared to 

activities with larger durations. Therefore, improvement in the model structure for 

predicting and scheduling activities with smaller durations remains an area of future 

investigation. 

In summary, the modeling framework presented in this study yields a straightforward and 

easy-to-implement tool for urban and transport modelers to predict and model activity 

temporal information of various population groups within a region. The results of this 

study are expected to be implemented within the activity-based travel demand model for 

Halifax, Nova Scotia, Scheduler for Activities, Locations, and Travel (SALT). 
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Chapter 7 Population Synthesis for Activity-Based Travel Demand 

Model Systems5 

7.1 Introduction 

In the past decade, interest has grown significantly to utilize disaggregate data in response 

to the need for complex systems modeling and policy analysis that require a higher level 

of disaggregate representation, spatially, temporally and socio-economically (Long and 

Shen 2013; Jordan, Birkin and Evans 2014). Numerous studies are available that use 

microsimulation platforms including activity generation and scheduling models such as 

ALBATROSS (2004) and TASHA (2008), and, network models such as MATSIM (2008) 

and Open Traffic (2014), and, integrated urban system models such as METROSIM 

(1994), TRESIS (2002) and ILUTE (2005). 

One of the most important components of developing an integrated urban system model is 

the extensive amount of detailed information during the model building process. The initial 

step of most of the agent-based microsimulation models is to produce micro-data that 

includes details of the household and individual attributes (Wu, Birkin and Rees 2011). 

Typically, this step is known as population synthesis. Micro-data are usually a sample of 

thematically disaggregate data at individual or household level which could be spatially 

aggregated to a certain extent. Due to the lack of completeness and availability of the 

micro-data, population synthesis is an imperative step of the modeling process to generate 

synthetic virtual population data for the base year of the simulation. This study focuses on 

                                                           
5 A condensed portion of this chapter has been published: 

Hafezi, M. H., N. S. Daisy., L. Liu., and H. Millward. (2018). “Emissions analysis for the synthetic 

baseline population of a large Canadian university”. Peer reviewed proceedings of the 97th Annual 

Meeting of Transportation Research Board (TRB), Washington, D.C., USA. 
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developing a methodology that is able to produce a set of synthesized population at both 

individual and household levels. It is expected that the synthesized population will be for 

microsimulation travel behavior. 

The aim of population synthesis is to use the public random sample data (such as Public-

Use Microdata Samples of the U.S. and Anonymized Records of the U.K.) and expand it 

to mirror known aggregate information (such as Summary Files of the U.S. and the Small 

Area Statistics file of the U.K.). Essentially, population synthesis requires two types of 

data: disaggregate sample data and spatial unit level aggregate totals. The first set of input 

data, called the seed data, is generated by the joint distribution of household and individual 

micro-sample data. The second set of input data is called the control tables or the marginal 

tables, for distributions of single variables in smaller spatial units (Ye et al. 2009). In this 

study, we present a new functional form for a fitness based synthesis algorithm (Ma 2011) 

that resulted in improved computational efficiency and model accuracy. The performance 

of the algorithm for each proposed model is validated using error-percentages and 

goodness-of-fit. In addition, to measure dispersion, results for 5% and 10% samples are 

compared.  

The remainder of the study is structured as follows; first, the study provides a review of 

relevant past research concerning population synthesis and techniques. Following the 

literature review, a discussion of the data used in the generation of the synthetic population 

for Halifax is presented. The proposed population synthesizer approach used is described 

in the next section, followed by a discussion of model results. The study concludes by 

providing a summary of contributions and future research directions. 
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7.2 Literature Review 

Synthesizing population at different spatial unit levels is a long-standing problem in 

numerous disciplines, including: transportation, industrial engineering, applied and survey 

statistics (Estevao and Särndal 2006). Several statistical techniques such as survey 

sampling, weighting method and maximum entropy modeling are developed to synthesize 

population at different spatial unit levels for microsimulation modeling (Lemaître and 

Dufour 1987; Deville, Sarndal and Sautory 1993; Malouf 2002; Estevao and Särndal 

2006). An overview of literature on existing population synthesis approaches is presented 

in this section. Maximum Entropy (ME) models are constructed based on a set of 

probability distributions and leads to a sort of statistical conjecture. They use different 

types of algorithms such as conjugate gradient, iterative scaling, quasi-newton and 

gradient ascent for estimating the parameters (Malouf 2002; Bar-Gera et al. 2009). Lee 

and Fu (2011) proposed a cross-entropy optimization model utilizing a quasi-newton 

algorithm to synthesize a desired amount of completely identified individual activity 

patterns. Results of the model show that the proposed cross-entropy optimization can 

generate a realistic synthetic population in different geographic areas.  

Nagle et al. (2013) introduced the Penalized Maximum Entropy Dasymetric model (P-

MEDM) that is able to produce spatial micro-data at the household level. Christakos in 

2000 studied the Bayesian Maximum Entropy (BME) method for examining 

spatiotemporal distributions of natural variables. In another study, Kyriakidis (2004) 

developed a geostatistical framework for the spatial estimation of point values from areal 

data. The suggested framework predicted each point with high reliability. Moreover, 

several current methods for area-to-point interpolation can be embedded within the 
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suggested framework by Kyriakidis. Wu and Murray (2005) developed the Co-kriging 

method to interpolate residential population density at the Thematic Mapper (TM) level 

(30 by 30 meters) of an urban region. They modeled the spatial interrelationship and cross-

correlation of population using census count data. In comparison with other interpolation 

methods, their proposed model provides estimation variance that allows the assessment of 

estimated population at TM level without the need of aggregation to the census reporting 

zone. 

Numerous methods have also been developed in the transportation literature to synthesize 

population at different spatial unit levels. Common approaches include fitness-based 

methods (such as iterative proportional fitting and fitness based synthesis) and 

combinatorial optimization. One of the main differences in the population synthesizer 

method is the capability to simultaneously control both the household and individual 

characteristics (Hermes and Poulsen 2012). With the exception of the traditional Iterative 

Proportional Fitting (IPF), other methods namely Combinatorial Optimization (CO), 

Iterative Proportional Updating (IPU) and Fitness-Based Synthesis (FBS) are capable of 

controlling both the household and individual characteristics in the process. IPF was one 

of the earliest population synthesis methods developed by Beckman et al. (1996) that used 

an iterative fitting process. IPF utilized sample and census aggregate data of the U.S. The 

standard IPF method comprises two phases: fitting un-adjusted cell data (i.e. seed data), 

and generating the synthesized households. The seed data should be adjusted to a known 

margin for both the horizontal and vertical dimensions of the table (i.e. control tables). 

This approach uses a Monte Carlo Simulation (MCS) method, generating the synthesized 

households by drawing household and individual records from the seed data. Some 
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limitations of the original IPF method are: discrete control for individual and household 

level attributes, zero cell problem, high-dimensional (memory) problems and rounding cell 

values. These limitations cause a reduction in the accuracy and validity of the synthesized 

population. Subsequently, several studies have improved and expanded the original IPF 

method, such as Pritchard and Miller (2009); Guo and Bhat (2007); Ye et al. (2009); Auld 

and Mohammadian (2009), and Arentze and Timmermans (2004). The majority of the 

aforementioned research has focused on improving the efficiency of the original IPF 

method, and on issues such as the limitation of memory and joint distributions of the 

control variables at both household and individual levels. 

Pritchard and Miller (2009) explored the synthesis of large-scale attributes per agent by 

using a list-based method, in which household and individual level attributes were fitted 

simultaneously. The use of sparse matrices increased the capability of controls and 

categories resulting in decreased memory use and computational time. Guo and Bhat 

(2007) studied the ‘zero cell’ issue and controlling individual level attributes. They defined 

a certain tolerance for individual attribute levels in the initial steps involving the seed data 

from which household data ensured that individual level restrictions were not disrupted. 

This method also allows manipulation of data from different data set sources, which solves 

another limitation of the original IPF method. Arentze and Timmermans (2004) used a 

two-step model on the relevant attributes between the household and individual levels. The 

individual level attributes were aggregated to the household level, then the results of the 

marginal table from the first phase were used to synthesize the population. Additionally, 

this study addressed the differences in populations relating to locational characteristics 

using sample segmentation technique.  
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Muller et al. (2010) studied the issue of synthetic reconstruction, that reweights the 

household and individual attribute levels to allow the algorithm to efficiently permit for 

simultaneous controls at numerous levels. This new method is called Hierarchical Iterative 

Proportional Fitting (HIPF). An entropy-optimizing fitting step was added to simulate the 

individual attribute levels into the household level, based on situational specific 

constraints. The synthetic population is drawn from the individual/household group data 

(Muller and Axhausen 2011). Generally, this heuristic method is similar to the 

combinatorial optimization (CO) method. Lovelace et al. (2015) evaluated the 

performance of IPF for spatial microsimulation with the objective of generating spatial 

micro-data. Barthelemy et al. (2015) introduced the Multidimensional Iterative 

Proportional Fitting Procedure (MIPFP). MIPFP addressed the zero‐ cell and non‐ integer 

weight problems of the original IPF method. Furthermore, several alternative estimation 

methods such as minimum chi-squared (CHI2), maximum likelihood (ML) and weighted 

least squares (WLSQ) are included in the MIPFP with the goal of updating the N-

dimensional array with respect to certain control tables. 

The combinatorial optimization (CO) method is structured differently, and addresses some 

of the restrictions of the previous approaches. Seed data and control tables similar to the 

previous method are also required in the CO method. The CO method utilizes the integer 

reweighting technique. The CO method uses optimization techniques including genetic 

algorithm, hill-climbing, or simulated annealing to optimize the weighting process. The 

CO method minimizes the difference between the synthesized population and marginal 

tables. Additionally, variance values and memory usage in the CO method are lower than 

in the IPF method. However, the optimization process of the CO method has more 
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attributes, which is computationally time consuming. An exhaustive review of the 

combinatorial optimization (CO) method can be found in Voas and Williamson (2000, 

2001), and Huang and Williamson (2001). 

Similar to the CO method, Iterative Population Updating (IPU) is another population 

synthesis method that is able to control both household and individual level attributes. IPU, 

introduced by Ye et al. (2009) matches household and individual level attribute 

distributions with high precision. The IPU method comprises three main steps. The first 

step is to obtain household and person level constraints by selecting 5% of individual and 

household level attributes from PUMS seed data. There is a pre-treatment procedure in the 

first step which corresponds to correcting the zero-cell problem in the seed data and the 

zero-marginal problem in the marginal tables. The second step is to estimate weights of 

the individual and household level joint distributions in the way that both individual and 

household distributions can be closely matched. The last step consists of drawing 

household data from the procedure in the prior phase in order to generate the synthetic 

population for the region. Generally speaking, matching household and individual level 

attributes using the IPU method is better than the IPF method. However, there are still 

some issues of discrepancy observed in matching seed data to marginal tables (Ye et al. 

2009; Lim and Gargett 2013). Table 7.1 shows a summary of several population 

synthesizer methods with selective advantages and limitations. 

Most population synthesizer methods use a joint multi-way distribution. Ma (2011) 

presented a Fitness-Based Synthesis (FBS) algorithm that sequentially matches multilevel 

marginal tables. The Fitness measure for each sample household is calculated during the 

process to verify the match for both individual and household level distributions. In each 
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iteration, the highest fitness value will be chosen and the resulting households including 

all of their individual members will be added to the synthetic population list. The 

termination criterion of the iterative method is an absence of positive fitness values. The 

FBS algorithm performs well in terms of simultaneously controlling both individual and 

household attributes of interest. Several studies suggest that despite improvements in 

population synthesizer methods, there are still unresolved issues, such as high-

dimensionality problems (i.e. association structure of the households and individuals), 

memory use and processing time, discrepancies in matching the seed level data to marginal 

data, and generation of similar fitness values in the case of few control tables. 

A common challenge among most of the population synthesizer methods is how to 

evaluate the validity of the synthesized population. Accuracy and precision of  the 

synthesis often are validated by comparing the true and synthetic populations (Oketch and 

Carrick 2005). However, difficulties in obtaining the true population creates a critical 

challenge in the validation of any population synthesis procedure (Edwards and Clarke 

2009). Apart from Anderson et al. (2014), who had access to spatially-referenced 

disaggregated micro-data in Switzerland, other researchers proposed different approaches 

for the validation of the synthetic population. The validation procedures are still evolving 

in the existing literature. Huang and Williamson (2001) used the total absolute error, the 

Z score, and the standardized absolute error to validate the synthetic population. Schroeder 

(2007) attempted to validate spatial allocation of micro-data by utilizing the finest 

resolution US census data. The proposed method involves hypothesized absolute bounds 

on interpolation inaccuracy that enable calculation of upper and lower prediction bounds 

for the population.  
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Table 7.1 Advantages and limitations of four population synthesizer methods 

Population 

synthesizer 

method 

Advantages Limitations 

Traditional 

Iterative 

Proportional 

Fitting (IPF) 

- Combination of probability table 

- Zone-by-zone versus multi-zone 

- The format of the seed is 

remembered 

- High-dimensional problems 

- Zero cell problems 

- Rounding of the cell values in joint 

distribution 

- Variance value is high 

- Association structure for 

household and individuals 

- The method is unable to control for 

individual attributes. 

- The method ignores differences in 

household type among households 

grouped within a cell 

- Only observed and simulated 

control variables are matched 

- Long running time 

Combinatorial 

Optimization 

(CO) 

- Variance value is small 

- Continuous/discrete characteristics 

- Proficient memory 

- Changing the number of layers is 

insignificant 

- PUMA level data is required to be 

applied to the procedure due to 

correlation structure within the zonal 

population 

Iterative 

Proportional 

Updating 

(IPU) 

- Controls for both household and 

individual attributes simultaneously 

- Matches seed level data and 

marginal control characteristics on 

several analysis levels 

- Less running time  

- Extra corrections to match individual 

and household level data are not 

required 

- Discrepancies in matching of seed 

level data to marginal data 

- Rounding of values 

Fitness-Based 

Synthesis 

(FBS) 

- Generates a list of households to 

match numerous multilevel controls 

- Determining a joint multi-way 

distribution is not required 

- Creates the same fitness value 

iteration in the case of few-control-

tables 

 

Ruther et al. (2013) proposed a validation method that examines spatial allocation of 

census micro-data to census tracts. The allocation is determined by a series of known 

aggregate census tract population distributions. The evaluation of the model is performed 

with an assessment of the estimation error utilizing maximum entropy imputation and a 

spatial allocation model. The study showed that the addition of constraining variables can 
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improve model fit for both constraining variables and correlated variables to the 

constraining variables. Furthermore, Ballas et al. (2007) used a regression analysis and an 

R-square measure to validate synthetic population. Reflecting on all those challenges in 

the existing literature, in this study we propose a population synthesizer approach that can 

address most of the above-mentioned limitations. Population is synthesized for individuals 

and households at the regional and dissemination area levels using the proposed approach. 

To illustrate the accuracy of the synthesized population using different levels of control 

tables and spatial unit levels, the proposed algorithm is examined by three sub models: 

using only the household level control tables (HL model); using both individual and 

household level control tables (HPL model); and, with weights added to both individual 

and household level control tables (WHPL model). Note that WHPL is a new weighted 

model proposed in this study to improve the efficiency of the synthesizer. 

7.3 Data Used in the Generating a Synthetic Population 

The generation of a synthetic population requires two major datasets: 1) micro sample data 

(i.e. a sample of thematically disaggregate data at individual and household level) and 2) 

aggregate totals of individuals and households at the spatial level of interest for the study 

area. The first data source employed in this study is the 2006 Hierarchical Public Use 

Microdata File (PUMF) obtained from the Statistics Canada. The second data source is the 

2006 Canadian Census, which is used to synthesize population for the base year of the 

proposed integrated urban model of Halifax. At first, this study aimed to synthesize 

population for the Halifax region directly. However, it appears that the 2006 PUMF 

hierarchical file (i.e. both individual and household information) is available for large 

Census Metropolitan Areas (CMAs) only (i.e. Montreal, Toronto, Calgary, Edmonton, and 
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Vancouver). Information for the Halifax CMA is only available in the 2006 PUMF 

individual file. The individual PUMF is not adequate to generate household-level 

information. Therefore, this study uses the Atlantic Canada region (which comprises New 

Brunswick, Newfoundland and Labrador, Nova Scotia, and Prince Edward Island) for this 

empirical application. Control tables for synthesizing population at the regional level (RL) 

are extracted from four regions of Atlantic Canada and synthesized population for Atlantic 

Canada is used as seed data.  

The spatial unit considered for synthesizing the Halifax population is the Dissemination 

Area (DA). Control tables for Halifax DAs are extracted from Census tabulations. Initially, 

synthesizing the population at the regional level reproduces the appropriate amounts of 

different types of household, which are represented in both the control table and seed data 

from the corresponding DA. In other words, the 5% PUMF data might not contain all types 

of households that are present in the DAs for the specific census tract. The process this 

study took essentially waives a requirement for zero cell treatment. 

Reviewing the PUMF data source revealed that the individual, household, and family 

levels were not linked together until the 2006 census. Essentially, there was a separate 

PUMF for the individual file, household file, and families file. For this reason, researchers 

used several variables to obtain the household composition and linked separate PUMFs 

together in synthesizing the population (Beckman, Baggerly and McKay 1996; Pritchard 

and Miller 2009). However, since 2006, fortunately PUMF data for the aforementioned 

levels are linked together (Statistic Canada 2011). Each individual’s record includes their 

household and family identification. Hence, a complete set of information for each 

individual in each household offers an advantage to explore essential details of the 
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composition of households during the population synthesis process. Furthermore, the 

micro-sample of Nova Scotia is available in the 2011 PUMF data source. However, 

reviewing the 2011 census at dissemination area level indicated several missing 

information that are required for synthesizing population. This issue is known as zero cell 

problems in population synthesis studies. Therefore, prior to use the 2011 data source in 

population synthesis, it is highly recommended to solve zero cell issue first in order to 

obtain valid synthetic population results. Moreover, due to lack of data availability 

particularly for Nova Scotia, the most appropriate geographical level for synthesizing 

population in Halifax and Nova Scotia are Census Tract (CT) and Dissemination Area 

(DA). 

7.3.1 Attributes Considered for Synthesizing Population 

In this study, six household attributes and five individual attributes are considered for 

population synthesis. The household attributes are: household size, type of household, 

tenure, household income, structural type of dwelling, and labor force activity. Household 

size is categorized as 1, 2, 3, 4, 5 and 6+ residents. The type of household is categorized 

into four groups: married, single parent, parents with children, and single occupant. Tenure 

is classified by owned and rented properties. Household income is divided as follows: 

under $19,999; between $ 20,000 and $ 24,999; between $ 25,000 and $ 29,999; between 

$ 30,000 and $ 34,999; between $ 35,000 and $ 39,999; between $ 40,000 and $ 44,999; 

between $ 45,000 and $ 49,999; between $ 50,000 and $ 59,999; and $ 60,000+. Dwelling 

type has eight classifications: single-detached house, semi-detached or double house, row 

house, apartment/flat in a duplex, apartment in a building that has five or more stories, 

apartment in a building that has fewer than five stories, other single-attached house and 
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mobile home, and other movable dwelling. Labor force activity is classified as employed 

and un-employed. 

Variables associated with individual attributes are: age, education level, ethnicity, legal 

marital status and gender. Age was defined in the following 11 categories: ≤19, 20-24, 25-

29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-64, 65-74 and 75+. Education level is defined 

as: high school graduation diploma or equivalent certificate, apprenticeship or trades 

certificate or diploma, college, CEGEP or other non-university certificate or diploma, 

university certificate or diploma below bachelor level, bachelor's degree, university 

certificate or diploma above bachelor level, degree in medicine, dentistry, veterinary 

medicine or optometry, master's degree, and, earned doctorate degree. Ethnicity has seven 

classifications: British Isles origins, French origins, Aboriginal origins, Canadian, 

European origins, Asian origins and other origins. Legal marital status is defined by 

divorced; legally married; single; and widowed. Gender is identified by either female or 

male. 

7.3.2 Data Preparation for Synthetic Population 

The data preparation for a synthetic population involved multiple stages. First, a database 

with all explanatory variables was created. These data were derived from the hierarchical 

and individual PUMF and the Canadian Census. The second step is cleaning the data set 

of any missing values for validity, consistency, and uniformity. An example of 10 

households for the seed data for variables of interest (under control tables) is demonstrated 

in Table 7.2.  
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Table 7.2 Sample seed data used in the empirical application 

HH_ID*  PP_ID  AGEG  MARS  GEN  HDGR LFAC TOTIN DTYP TENU ETHDE CFST 

12 121101 7 1 1 1 1 10 6 2 1 6 

28 281101 5 2 1 3 1 6 1 1 4 1 

28 281102 4 2 2 1 1 10 1 1 4 1 

32 321101 10 2 1 5 2 9 1 1 7 1 

32 321102 10 2 2 1 2 13 1 1 7 1 

37 371101 2 4 1 1 1 7 6 2 7 3 

48 481101 11 4 1 4 2 9 6 2 7 6 

72 721101 10 2 1 2 2 4 1 1 4 1 

72 721102 10 2 2 3 1 10 1 1 7 1 

73 731101 1 4 1 1 2 3 1 1 4 4 

73 731102 6 2 1 4 1 13 1 1 4 1 

73 731103 7 2 2 2 1 14 1 1 4 1 

97 971101 6 4 2 3 1 8 1 2 1 6 

100 1001101 4 4 1 6 1 12 1 1 7 3 

100 1001102 9 2 2 4 2 13 1 1 7 1 

100 1001203 9 2 1 3 2 15 1 1 7 1 

107 1071101 7 1 1 3 1 11 1 1 4 2 

107 1071102 8 1 2 3 1 11 1 1 4 2 
*HH_ID = household identifier, PP_ID = person identifier, AGEG = age groups, MARS = legal 

marital status, GEN = gender, HDGR = highest certificate, diploma or degree, LFAC = labor 

force activity, TOTIN = total income of individual, DTYP = structural type of dwelling, TENU = 

tenure, ETHDE = ethnicity, and, CFST = household type, detailed census family status and 

household living arrangements 

The next step is to create the count table in which all values are initialized to zero as a 

default. The count tables are structured similarly to the control table. During the 

computational procedure, count tables are updated. Cross tabulations are derived from the 

corresponding variables of interest. Table 7.3 shows an example of a control table (age 

and gender) used in the empirical application. 

Table 7.3 Sample control table used in the empirical application 

                Age group* 

Gender 
1 2 3 4 5 6 7 8 9 10 11 

Male 88 19 19 19 34 29 24 34 39 24 19 

Female 93 15 15 26 21 46 31 31 46 10 15 

*1 = ≤19, 2 = 20-24, 3 = 25-29, 4 = 30-34, 5 = 35-39, 6 = 40-44, 7 = 45-49, 8 = 50-54, 9 = 55-

64, 10 = 65-74 and, 11 = 75+ 
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The last step is to create the MH-table. The MH-table includes values of 0 and 1. If a 

household does not exhibit the cell classification value in the seed data then the value will 

be zero. If cell classification is evident there is an initial value of one. This study 

synthesizes 5%, 10% and 100% samples of the population for the regional and 

dissemination area levels, respectively. 

7.4 Methodology 

In this study, we present a new functional form for a fitness based synthesis algorithm (Ma 

2011) that resulted in improved computational efficiency and model accuracy. According 

to the calculated fitness value, a set of households in each iteration are selected and added 

to the count table. For each control table in the algorithm, there is a unique count table that 

is given an initial value of zero. As the procedure progresses, households are added or 

removed to this table. Adding or removing households from the count tables is decided 

based on the fitness value. The algorithm procedure works in an iterative fashion that 

continues until the count table reproduces the control tables as closely as possible. 

However, the values may not be an exact match for all count tables. Therefore, the iterative 

process is terminated when there is an absence of positive fitness values.  

In this study, two types of the fitness measures for determination of adding or removing 

the selected households are considered. Briefly, only those households that have a positive 

fitness value are selected as potential candidates to be added into the synthesized list. The 

first fitness measures (type 1) corresponds to the error if the selected household is added 

to the count table in the current iteration. The second fitness measures (type 2) corresponds 

with the error if the selected household is eliminated from the count table in the current 
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iteration. In each iteration, only one type of fitness value can be positive; both fitness 

values cannot be positive at the same time. The average distribution of the control table in 

the seed data is used as a new weight to calculate the fitness values. These measures ensure 

that the performance and precision of the synthetic population created has been enhanced. 

The optimized type one and type two fitness values are given by the following: 

𝐹1𝑄
𝑥𝑦
= 𝑛𝑞 ∗ [(𝐺𝑞𝑤

𝑦−1
)
2
− (𝐺𝑞𝑤

𝑦−1
−𝑀𝐻𝑞𝑤

𝑥 )
2
]             (1) 

𝐹2𝑄
𝑥𝑦
= 𝑛𝑞 ∗ [(𝐺𝑞𝑤

𝑦−1
)
2
− (𝐺𝑞𝑤

𝑦−1
+𝑀𝐻𝑞𝑤

𝑥 )
2
]               (2) 

𝐺𝑞𝑤
𝑦−1

= 𝐻𝑞𝑤 − 𝐴𝐻𝑞𝑤
𝑦−1

              (3) 

𝑚𝑞 ∈ {𝐹1𝑄
𝑥𝑦
> 0}                (4) 

⌐А 𝑚𝑞 = ( )                 (5) 

𝑚𝑞 ∈ {𝐹2𝑄
𝑥𝑦
> 0}               (6) 

⌐А 𝑚𝑞 = ( )                (7) 

𝑟𝑚𝑦
1 ∈ {𝑚1(: , : , 𝑦) >= 0}                         (8) 

𝑟𝑚𝑦
2 ∈ {𝑚2(: , : , 𝑦) >= 0} 

𝑟𝑚𝑦
3 ∈ {𝑚3(: , : , 𝑦) >= 0} 

⋮ 

𝑟𝑚𝑦
𝑞𝑤 ∈ {𝑚𝑞𝑤(: , : , 𝑦) >= 0} 
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𝑚𝑚𝑦 ∈ {𝑟𝑚𝑦
1  ∩  𝑟𝑚𝑦

2 ∩ 𝑟𝑚𝑦
3 ∩⋯∩ 𝑟𝑚𝑦

𝑞𝑤}                                   (9) 

⌐А 𝑚𝑚𝑦 = ( )                         (10) 

𝑚𝑚𝑦 ∈  {𝑟𝑚𝑦
1  ∩  𝑟𝑚𝑦

2 ∩ 𝑟𝑚𝑦
3 ∩⋯∩ 𝑟𝑚𝑦

𝑞𝑤−1}                              (11) 

⌐А 𝑚𝑚𝑦 = ( )                         (12) 

Where 𝐹1𝑄
𝑥𝑦

 is the fitness value type 1 for control table Q, 𝐹2𝑄
𝑥𝑦

 is the fitness value type 2 

for control table Q, 𝑥 is the selected household, 𝑦 is the iteration number, 𝑞 is the index 

representing for the both count and control tables, 𝑄 is the total number of both 

count/control tables, 𝑤 is the index representing the various cells in the count table, 𝑊 is 

the index representing the various cells in the control table, 𝐻𝑞𝑤 represents the amount of 

cell 𝑤 in control table 𝑞, 𝑛𝑞 represents the average distribution of control table 𝑞 in the 

seed data, 𝐴𝐻𝑞𝑤
𝑦−1

 represents the value of cell 𝑤 in the count table 𝑞, 𝐺𝑞𝑤
𝑦−1

 is the difference 

value between control and count tables for cell 𝑤 in control table 𝑞, 𝑀𝐻𝑞𝑤
𝑥  is the 

contribution of the 𝑥𝑡ℎ household in the seed data to the 𝑤𝑡ℎ cell in control table 𝑞, 𝑚𝑞 is 

the selected household type 1 or 2 according to the fitness value, 𝑟𝑚𝑦
𝑞𝑤

 is the selected 

household for the cell 𝑤 in the count table 𝑞 in the iteration 𝑦,  𝑚𝑚𝑦 is a set of selected 

households for adding into the count tables and synthesized population list. Moreover, 

𝐺𝑞𝑤
𝑦−1

−𝑀𝐻𝑞𝑤
𝑥  and 𝐺𝑞𝑤

𝑦−1
+𝑀𝐻𝑞𝑤

𝑥  are the number of households which need to be added 

or removed, respectively for the cell 𝑤 in the count table 𝑞 in the iteration 𝑦.  

Fitness value for each household are calculated according to formula 1 and 2. Positive type 

1 or 2 fitness values are examined as the candidates for addition or removal from the list 
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of updated synthetic population. The traditional FBS algorithm utilized a random selection 

of one of the households from the candidate sets of households. In contrast, this study 

proposes a new selection approach that improves computational time and increases 

algorithm efficiency. Instead of one selection per iteration, the proposed algorithm selects 

all of the positive fitness values for each of the variables, with some conditions. First, all 

of the positive fitness values for cell 𝑤 in count table 𝑞 in iteration 𝑦 are selected. Then, 

the same household that is repeated in all of the selected sets, will be considered as a set 

of households for adding into the count tables and synthesized population list. Note here 

that with increase in the number of iterations, subsequently the number of selected 

households is decreased. This practice is defended by reason that the algorithm is trying 

to expand the seed data according to the defined control tables, and the sequence of 

household selection is not important in the procedure. Hence, adding all of the potentially 

repeated households at once is reasonable and logical. For example, if household id 

number 𝑧 is selected 𝑢 times in 𝑦 iterations, the new selection method allows household 

id number 𝑧 to be added 𝑢 times in one iteration to the final synthesized population list 

and count table. Following the selection process, all values of all dimensions in the count 

tables are updated. Again, all of the prior steps are repeated in the next iteration. Algorithm 

is terminated when all of the fitness values are negative.  

The population synthesis approach described in this study is comparable to work done by 

Ma (2011) in that it produces a list of potential households to match numerous multilevel 

marginal tables. The fitness-based synthesis (FBS) algorithm solves several problems of 

previous population synthesizer approaches, including zero cell problems and 

computational resources (memory). Furthermore, the Monte Carlo Simulation (MCS) step 
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in the household selection procedure is skipped in the FBS algorithm through generation 

of integer fitness values. The population synthesis approach proposed in this study has 

some notable advantages in comparison with the FBS algorithm. The proposed approach 

can address most of the limitations of previous population synthesizer methods mentioned 

in the literature, and improves the efficiency of the algorithm, both in computational time 

and distribution of seed data presented in the final synthesized population list. One of the 

strength aspects of the proposed approach is in the household selection step. The new 

selection procedure of the population synthesizer approach creates a synthesis of the 

complete set of potential individual and households members in a sole iteration, and 

thereby greatly improves the efficiency of the algorithm. 

7.5 Discussion of Results 

The performance of the proposed population synthesis approach is examined by three sub 

models. First, only using the household level control tables (HL model) and no control for 

individual level attributes. Second, using both individual and household level control 

tables (HPL model), and third, with weights added to both individual and household level 

control tables (WHPL model). The 𝑛𝑞 value in fitness calculation formula is considered 

as 1 for the HL and HPL models, based on the distribution of household attributes in the 

seed data from the corresponding control table in the WHPL model. Then, 𝑛𝑞 is calculated 

by the average of all household attributes in one control table category. These measures 

ensure that the performance and precision of the synthetic population produced through 

the WHPL model has been improved in comparison with the HL and HPL models. 

Numerous techniques are available for calculating the precision level of synthetic 

populations (Ballas et al. 2007; Schroeder 2007; Edwards and Clarke 2009; Ruther et al. 
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2013; Anderson et al. 2014). In this study, the error-percentage and goodness-of-fit are 

computed to measure the accuracy of synthesized populations. Error-percentage measures 

are calculated as follows: 

𝐸𝑃𝑞 = 
∑ |𝐻𝑞𝑤−𝐴𝐻𝑞𝑤|
𝑄
𝑞=1

∑ 𝐻𝑞𝑤
𝑄
𝑞=1

                        (13) 

Where: 

𝐸𝑃𝑞  represents the error-percentage for control table 𝑞, 

𝐻𝑞𝑤  represents the amount of cell 𝑤 in control table 𝑞, 

𝐴𝐻𝑞𝑤 represents the amount of cell 𝑤 in the count table 𝑞. 

7.5.1 Synthetic Baseline Population at the Regional Level 

For each of the control tables, in each of the three models, error percentages are 

summarized in Table 7.4. Error percentages represent the differences between target 

population (control table from census data) and synthesized population. 
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Table 7.4 Error percentages of three models (regional level) 

Explanatory variables HL model HPL model WHPL model 

Individual level 

Age 6.4% 0.9% 0.3% 

Education level 8.3% 1.4% 1.1% 

Ethnicity 18.9% 0.8% 0.1% 

Legal marital status 7.9% 0.2% 0.1% 

Gender 8.8% 0.1% 0.1% 

Household level 

Household size 0.9% 1.1% 1.1% 

Type of household 0.5% 0.8% 0.8% 

Tenure 0.9% 1.9% 1.4% 

Household income 0.4% 0.0% 0.9% 

Dwelling type 0.9% 1.6% 1.3% 

Labor force activity 2.4% 1.2% 1.1% 

 

Two major differences exist in the error percentages of the three sub models in Table 7.4. 

In the case of individual level control tables, error percentages in the HPL and WHPL 

models are significantly smaller than that of the HL model. This difference demonstrates 

that use of both individual and household level control tables increases the precision of the 

resulting synthetic population. Possibly, this is due to the improved precision of the fitness 

value when additional control tables are included in each iteration. Secondly, in the case 

of household level control tables, error percentages in the HPL and WHPL models are 

slightly larger than those of the HL model. This is likely due to a growth in the total number 

of marginal tables in the model. When the number of control tables is increased the 

capability to replicate each count table is decreased.  

Additionally, goodness-of-fit comparison is performed to compare the multivariate joint 

distributions. The synthesized population has a good fit with the control table when a 

trend-line slope is close to 1 and there is a high R-square value. Figure 7.1, Figure 7.2 and 

Figure 7.3 show a comparison of the goodness-of-fit of individual (age x gender) and 
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household (household size x tenure, household type x tenure) level attributes for the 

regional model, with three sub models consisting of the HL, HPL and WHPL methods (for 

three samples of results).  

Figure 7.1 demonstrates that a synthesized population produced by the HL method does 

not provide a close match to the real population (control table). Figure 7.2 and Figure 7.3 

demonstrate that the goodness-of-fit of the synthesized population produced by the HPL 

and WHPL methods is better than the synthesized population produced by the HL method. 

All three sub models for the household level attributes produced synthesized populations 

with a close match to the actual population (control table). However, the results of the 

comparison between different models show that the goodness-of-fit for populations 

synthesized by fewer control tables (Figure 7.1) produce a slightly better result than those 

produced using more control tables (Figure 7.2 and Figure 7.3) in terms of household level 

attributes. Model overfitting could be another reason for this conclusion. This result is 

consistent with the result of the percentage error calculation. The goodness-of-fit outcomes 

also demonstrate that the attributes with fewer categorizations display better fitting 

outcomes.  

Additionally, through comparison of the results of the synthesized population between the 

HPL and WHPL models, the WHPL model’s repetition of larger household selections has 

declined. Smaller households in the WHPL model are more prone to accidental selection 

and addition to the population synthesis list in comparison to those of the HPL model. 

Presumably, this might be due to using additional weight in the calculation of the fitness 

value in the WHPL model. Smaller household size has bigger weight in comparison with 
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larger household size. This prevents the selection of larger households in the early stage 

of the iteration so that the synthesized population better matches the target population.  

In general, the proposed population synthesizer approach better preserves attributes in the 

control tables in comparison with non-controlled attributes. Future research should 

evaluate the performance of the proposed approach for attributes of non-controlled tables. 

Generally, the total number of iterations in the WHPL model has marginally increased. 

Synthesizing population at both individual and household level attributes is essential for 

microsimulation that will incorporate intra-household interactions. For instance, joint 

activities such as drop-off/pick-up or joint discretionary activities among all household 

members can be simulated within agent-based activity travel models. 
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Figure 7.1 HL model: individual and household level’s goodness-of-fit comparison 
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Figure 7.2 HPL model: individual and household level’s goodness-of-fit comparison 
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Figure 7.3 WHPL model: individual and household level’s goodness-of-fit comparison 
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To measure the model dispersion, results for 5% and 10% sample of the synthesized 

population are compared. These results are examined at the regional level (RL) with the 

best fit sub-model (WHPL) and are shown in Figure 7.4. It is clear that the fit between the 

target population and the synthesized population in the 10% sample is better than in the 

5% sample. 

 
 

5% sample 

 
 

10% sample 
 

Figure 7.4 Dispersion comparison between 5% and 10% sample of RL model 

Comparison between number of households’ selection in the RL model for both the 

proposed population synthesis model and FBS algorithm are shown in Figure 7.5 and 

Figure 7.6. To better illustrate the difference in the two households’ selection modes, 

Figure 7.6 shows only the first 100 iterations in the procedure. Comparison between the 

two models shows that in the first 100 iterations of the procedure, in the population 

synthesizer procedure approximately 582,839 individuals and 380,658 households are 

selected and added to the final synthesized population list while the FBS algorithm selects 

just 100 individuals and 39 households during first 100 iterations. The direct effect on the 

improvement in computation time is over 99.98%. Moreover, Figure 7.5 highlights that 
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the population synthesizer model is terminated after 4,794 iterations, while the FBS 

algorithm has not completed the computational process. 

 
 

Figure 7.5 Comparison between numbers of households’ selection in the RL model 

 
 

Figure 7.6 Comparison between numbers of households’ selection in the RL model (first 

100 iterations) 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000

N
u

m
b

er
 o

f 
se

le
ct

ed
 h

o
u

se
h

o
ld

s

Iteration

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100

N
u

m
b

er
 o

f 
se

le
ct

ed
 h

o
u

se
h

o
ld

s

Iteration

Population synthesizer algorithm 

FBS algorithm 

Population synthesizer algorithm 

FBS algorithm 



 

167 

7.5.2 Synthetic Baseline Population at the Dissemination Area (DA) Level 

Additionally, error percentages were calculated for the dissemination area (DA) model 

with the WHPL model that has the highest accuracy in comparison with other models. 

Table 7.5 presents the error percentages for the randomly selected 10 DAs. 

Table 7.5 Error percentages of base year synthesized population (DA level) 

Explanatory 

variables 

DA ID 

1
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8
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5
 

1
2
0

9
0

8
7

4
 

Individual level 

Age 0.2% 0.3% 0.3% 0.4% 0.4% 0.2% 0.4% 0.2% 0.3% 0.2% 

Legal marital 

status 
0.2% 0.3% 0.3% 0.4% 0.4% 0.2% 0.4% 0.2% 0.3% 0.2% 

Gender 0.1% 0.2% 0.4% 0.5% 0.3% 0.0% 0.0% 0.2% 0.4% 0.3% 

Household level 

Household 

size 
0.2% 0.1% 0.3% 0.3% 0.3% 0.2% 0.1% 0.2% 0.4% 0.2% 

Type of 

household 
0.1% 0.3% 0.2% 0.2% 0.3% 0.1% 0.3% 0.1% 0.1% 0.2% 

Tenure 0.2% 0.3% 0.2% 0.2% 0.2% 0.3% 0.1% 0.1% 0.2% 0.2% 

Dwelling type 0.2% 0.3% 0.2% 0.2% 0.2% 0.3% 0.1% 0.1% 0.2% 0.2% 

Labor force 

activity 
0.0% 0.1% 0.2% 0.3% 0.3% 0.1% 0.4% 0.1% 0.2% 0.2% 

 

Figure 7.7 demonstrates summary statistics of absolute difference by DA size for the age 

attribute only (for illustration purposes). Based on the DA size (measured in terms of total 

population), absolute discrepancy between synthesized and target population for nine 

groups with respect to age attribute is calculated that yields min, max, median, quartile 

one, and quartile three. The resulting box-plot charts shows that the proposed population 

synthesizer approach produced better results for smaller sized DAs in comparison to larger 

sized DAs. It is interesting to note that with the increase in the size of DA, there is an 

increase in the absolute discrepancy. In contrast, due to the higher number of larger DAs 
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and their relatively smaller absolute discrepancies, error percentage is small among larger 

size DAs. 

 
 

Figure 7.7 Summary statistics of absolute difference for age attribute by DA size 

7.5.3 Synthetic Baseline Population for the University Community 

A population synthesis technique was employed to match the survey sample size with the 

actual university population and produce a 100% synthetic population for all four 

commuter groups of Dalhousie city campuses. We used EnACT survey sample data as 

seed data and control tables were obtained from the specific Dalhousie population 

characteristics derived from the 2016 Dalhousie Analytics Data. The 100% synthetic 

population of the base year for all Dalhousie university groups (undergraduate students, 

graduate students, faculty members, and staff) was generated. The comparison between 

observed population and synthetic population, based on the population characteristics 

(gender, age and household income), is shown in Figure 7.8. The population synthesis 
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algorithm represents the seed data (observed population) for most of the count and 

corresponding control tables within an error percentage of -1.0% to +1.0%.  

The statistical measurement of goodness-of-fit suggests an overall r-squared value of 

0.978, indicating a very close level of fit. Figure 7.9 illustrates the distribution of transport 

mode, vehicle availability, and living arrangement between the observed population and 

synthetic population. As can be seen, in most cases the population synthesis algorithm 

accurately replicated attribute distributions in the sample population with respect to the 

observed attributes. Furthermore, the slight differences between synthetic and observed 

population can be handled through applying the normalization factors to the synthetic trips 

in the quantification of emission reduction benefits (Mitloehner 2016).
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Figure 7.8 Comparison of gender, age and household income attributes between observed population and synthetic population  
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Figure 7.9 Distribution of transport mode, vehicle availability and living arrangement between observed population and synthetic 

population
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7.6 Conclusions 

In this study, we proposed a population synthesizer approach to synthesize population for 

activity-based travel demand model systems. This technique is able to synthesize 

population at both the regional level (RL) and the dissemination area (DA) level. 

Population is synthesized first at the regional level. Different types of households which 

are represented in the control table and seed data from the corresponding DA are 

reproduced. Additionally, utilizing larger scale empirical testing under different sets of 

control tables achieved the best set of control tables for synthesis of population at the 

smaller spatial unit. Moreover, results at this stage of modeling show that due to model 

overfitting, more control tables cannot increase the goodness-of-fit of synthesized 

population. Likewise, three different sub models, the HL model (only using the household 

level control tables), the HPL model (using both individual and household level control 

tables), and the WHPL model (weighted individual and household level control tables) 

were tested to assess the performance of the algorithm. This test is accomplished to show 

the performance and accuracy of the algorithm under different control tables.  

The new selection procedure of the population synthesizer approach caused a synthesis of 

the complete set of potential individual and households members in a fewer run. 

Traditionally, one individual or household was selected and synthesized per one iteration. 

The new approach resulted in improved efficiency of the algorithm, both in computational 

time and distribution of seed data presented in the final synthesized population list. 

However, it is observed that absolute discrepancy increases with increase in the size of the 

DA. Future studies will further evaluate the performance of the proposed approach for 

other attributes and population sizes. As demonstrated, the proposed approach can 
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efficiently achieve an acceptable outcome using both individual and household level 

control tables. To measure the model dispersion, results for 5% and 10% samples are 

compared.  

Future work includes examining the performance of the proposed approach for target year 

population synthesis, evaluating the performance of the algorithm in the case of 

uncontrolled attributes, and further tests of homogeneity. The results of this study are 

expected to be implemented within the activity-based travel demand model for Halifax, 

Nova Scotia, Scheduler for Activities, Locations, and Travel (SALT). 

 

  



 

174 

Chapter 8 Daily Activity and Travel Sequences of Students, Faculty, 

and Staff at a Large Canadian University6 

8.1 Introduction 

Recent transportation planning research suggests that commuters to large universities 

should be considered as a sizeable sub-population that needs special consideration in 

regional travel demand models. This is partly due to this sub-group’s unique accessibility, 

mixed-use, higher density, and alternative mode friendly environment. In addition, this 

sub-group is typically under-represented in regional travel surveys: survey are not well 

able to target this sub group’s student members for a variety of reasons, such as using 

random-digit dialing of landlines to reach individuals. Previous studies show that a high 

proportion of university populations are mobile-phone-only users (Wang, Khattak and Son 

2012; Hafezi et al. 2017). As a result, the travel behavior of this sub-group is not suitably 

modeled or well understood in regional travel demand models. The few regional travel 

demand models that have modeled university travel behavior consider this sub-group as a 

special generator attractor that employed external trip rates (Eom, Stone and Ghosh 2009; 

Hafezi, Liu and Millward 2018b). 

Many universities in the United States and Canada use university-based travel demand 

management strategies to find alternative solutions for parking and fleet management, car 

sharing, and to promote active transportation, etc. (Axhausen 1996; Black, Mason and 

Stanley 1999; Daisy et al. 2018a). However, there are few studies (mostly in the United 

                                                           
6 A version of this chapter has been published:  

Hafezi, M. H., N. S. Daisy., L. Liu., and H. Millward. (2018). “Daily activity and travel sequences 

of students, faculty, and staff at a large Canadian university”. Transportation Planning and 

Technology. 
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States) that conducted a university-based travel diary survey and modeled the travel 

behavior of a university population (Eom, Stone and Ghosh 2009; Wang, Khattak and Son 

2012; Volosin et al. 2014). The current study is also unique in terms of collecting the first 

university-based travel diary survey across Canada. The student sample population for 

Nova Scotia in the 2010 Canadian General Social Survey (GSS) is only 26 individuals 

(Statistics Canada 2010, Hafezi et al. 2017b), which is not representative. Also, the student 

cluster identified in the Halifax Space-Time Activity Research survey (STAR) has small 

sample size and is not specific to a university population (Hafezi, Liu and Millward 

2017c).  

To this end, this study aims to fill the gap by exploring the travel behavior of the university 

population at Dalhousie University by modeling daily activity patterns (DAP) of 

undergraduate students, graduate students, faculty, and staff. The data used in this study 

were obtained through a unique online travel diary survey conducted at Dalhousie 

University campuses in spring 2016. The results of this study are expected to be 

incorporated within the activity-based travel demand model, Scheduler for Activities, 

Locations, and Travel (SALT) for Halifax Regional Municipality (HRM), Nova Scotia 

(Daisy et al. 2017; Hafezi, Liu and Millward 2017c). The findings of this study also 

provide deeper insights for modeling the travel behavior of North American university 

populations in general.  

The remainder of this study is structured as follows: first, the study provides a review of 

relevant past research concerning university population segments and student travel. 

Secondly, we discuss the travel diary survey methods. Then, we present methods to 

explore and predict the daily activity travel patterns of the four university population 
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segments, followed by presentation and discussion of survey and modeling results. The 

study concludes with a summary of contributions and brief discussion of future research 

directions. 

8.2 Literature Review 

Transportation engineers and metropolitan planning organizations suggest that large 

university populations should be considered as a sub-population with special travel 

behavioral characteristics in the regional travel demand models (Daisy et al. 2018b). 

Nevertheless, previous studies reveal that university population samples are under-

represented in regional travel surveys. As a result, the travel behavior characteristics of 

this group are not well recognized in regional travel demand models. In the latest public 

use micro data of GSS for Nova Scotia, only 26 individuals with full-time student status 

are recorded. This sample size is not representative of student groups and it does not 

include other university populations such as faculty and staff. Balsas (2003) compared 

eight pre-selected commuting surveys among different American universities. Balsas 

concluded that the travel behavior of university communities needs special attention, since 

there are distinguishable differences between the travel behavior of university populations 

and general populations. Balsas argued that these differences exist for a variety of reasons, 

such as mixed land-use, livable environments, higher density, and the university’s friendly 

setting for alternative travel modes.  

In the past decade, transportation engineers and metropolitan planning organizations have 

begun to model the travel behavior of university communities as a special trip generator 

in regional travel demand models. Given the importance of studying the university 
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population, there exist only a limited number of peer-reviewed literature on university 

travel behavior. Table 8.1 presents a summary of these existing studies.  

There is considerable variety in case studies by both location (urban to sub-urban 

universities) and survey period (travel diary recording from one-day to one-week). The 

Institute of Transportation Studies at University of California at Davis conducted a yearly 

travel survey which provides a longitudinal perspective for university travel demand 

(Popovich 2014). In most cases, university campus based travel surveys considered the 

travel behavior of student populations only, and excluded faculty and staff. There have 

been a variety of research focuses related to these surveys, such as commuting mode 

choices, the effect of built environment on travel behavior, commuting patterns, and active 

transportation. Rodriguez and Joo (2004) investigated the linkage between built 

environment characteristics and mode choice using activity travel data from the University 

of North Carolina-Chapel Hill campus. Shannon et al. (2006) explored commuting patterns 

of student and staff groups using one-week travel survey data from the University of 

Western Australia (UWA). They found that the percentage of transit usage was greater in 

home locations farther from campuses, whereas walking and bicycling percentages were 

higher in areas close to campus.  

In another study, Kamruzzaman et al. (2011) investigated the university students’ out-of-

home travel and activities characteristics. They conducted a two-days trip diary survey at 

the University of Ulster and Queen’s University, Belfast. They found that female students 

visited more unique locations in comparison to male students. They reported that students 

traveled to 3.59 unique locations, on average. Eom et al. (2009) used one-day activity 

travel survey data of North Carolina State University (NCSU) to explore the activity-travel 
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characteristics of university students. In comparison with other studies, they developed a 

temporal and spatial activity-based model for university commuters. They found that 

undergraduate students and students living on campus participate in higher number of 

activities compared to graduate students. Also, they compared survey results with the 

Triangle Regional Model household travel survey in order to examine the differences of 

travel behavior between university students and the general population. Consistent with 

previous studies, survey results revealed that student trip rate is notably higher than the 

trip rate used in the regional model.  

In another study, Khattak et al. (2011) conducted a one-day travel survey of university 

students at Old Dominion University (ODU) and Virginia Tech (VT). Similar to Eom et 

al. (2009), they found that undergraduate and on-campus students made more trips per day 

than graduate and off-campus students. Chen (2012) developed a statistical and activity-

based model of university students by using a one-day travel survey at Virginia 

Commonwealth University (VCU). Consistent with previous studies, he found that mode 

choice, trip frequency, and activity participation of university students are different from 

those of the general population. 
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Table 8.1 Summary of existing university and student travel studies 

Study Case study Target population Study duration Motivations/goals 

Balsas, 2003  - - - 
Develop a sustainable transport for US 

university campuses 

Rodriguez and Joo, 2004 
University of North Carolina-

Chapel Hill (UNC) 
Students and staff One-day 

Investigation of linkage between built 

environment characteristics and mode choice 

Ubillos and Sainz, 2004 
University of Bilbao 

(UPV/EHU) 
Students One-day 

Investigation of the effect of quality and price 

on the demand for urban transport 

Heung et al., 2006 Hong Kong University (HKU) Students One-day 
Investigation of the travel behavior of 

university students 

Shannon et al., 2006 
University of Western Australia 

(UWA) 
Students and staff One-week 

Investigation of the commuting patterns of 

students and staff 

Villanueva et al., 2008 
University of Western Australia 

(UWA) 
Students One-week 

Investigation of the linkage between active 

transportation and university students 

Eom et al., 2009 
North Carolina State University 

(NCSU) 
Students One-day 

Investigation of the activity/travel 

characteristics of university students 

Kamruzzaman et al., 2011 
University of Ulster (UU) - 

Queen’s University 
Students Two-days 

Investigation of university students’ out-of-

home travel and activities characteristics 

Limanond et al., 2011 University of Thailand (SUT) Students One-week 
Investigation the travel patterns of on-campus 

students 

Khattak et al., 2011 

University of Virginia (UVA) - 

Virginia Tech (VT) - ODU - 

VCU 

Students One-day 
Investigation of the travel behavior of 

university students 

Akar et al., 2012 Ohio State University (OSU) 
Students, faculty and 

staff 
One-day 

Investigation of the mode choice for university 

commuting 

Chen, 2012 
Virginia Commonwealth 

University (VCU) 
Students One-day 

Investigation of the travel behavior of 

university students 

Rissel et al., 2013 Sydney University (USYD) Students and staff One-day 
Investigation of the travel mode and physical 

activity of university populations 

Popovich, N., 2014 
University of California at 

Davis (UCD) 

Students, faculty and 

staff 

One-day (annual 

travel survey) 

Investigation of a longitudinal perspective for 

university travel demand 

Volosin et al., 2014 Arizona State University (ASU) 
Students, faculty and 

staff 
One-day 

Investigation of the activity travel 

characteristics of university populations 

 

1
7
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Our literature review suggests that modeling of university travel behavior needs special 

attention in regional travel demand models. To the best of our knowledge, the activity 

travel behavior in the context of Canadian universities has not yet been explored. This 

study aims to fill the gap by exploring and evaluating empirical data on travel behavior for 

a large university community. The results of this study are expected to be implemented 

within the activity-based travel demand model, Scheduler for Activities, Locations, and 

Travel (SALT). 

8.3 Survey and Data Description 

The data used for this study are derived from the Environmentally Aware Commuter 

Travel Diary (EnACT) Survey, an online web-based survey conducted by Dalhousie 

Transportation and Environmental Simulation Studies (TESS) group in spring 2016 at 

Dalhousie University, Nova Scotia. Dalhousie University is the largest university in the 

Maritime Provinces of Canada, with four campuses spread across Nova Scotia province 

(three urban campuses in the city of Halifax and one in the town of Truro). In this study, 

we focused on the city campuses only. The entire university community, including 

undergraduate students, graduate students, faculty, and staff, were considered as the target 

population of the survey. After a pilot study, through the cooperation of the university 

administration the survey link was sent to the entire university community. Respondents 

were asked to complete a 24-hour travel log (using 5-minute time segments) and also 

provide detailed individual and household information. The survey was dynamically 

designed (include branching and piping options) in order to reduce response burden. 

Respondents who completed the survey were entered into a random draw for $300 and 

$250 gift cards. The EnACT survey includes six sections: (1) household information, (2) 
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individual information, (3) environmental attitudes and behavior, (4) attitudes toward 

transportation, (5) information and communications technology (ICT) related information, 

and (6) a 24-hour travel log. Previous studies reveal that appropriate representation of 

university communities as a large sub-population is essential in regional travel demand 

models (Black, Mason and Stanley 1999; Eom, Stone and Ghosh 2009; Wang, Khattak 

and Son 2012). Therefore, the questions and activity log were designed to be consistent 

with the Canadian GSS instrument and the Halifax Space-Time Activity Research survey 

(STAR) which represented the world’s largest deployment of global positioning system 

(GPS) technology for a household activity survey (TURP 2008; Millward and Spinney 

2011), so that the sub-models of this survey can be utilized to improve the accuracy of 

regional travel demand models. However, sections 3, 4 and 5 were not included in the 

traditional GSS. Moreover, the traditional GSS cannot entirely capture trip generation of 

university community. Therefore, the EnACT survey was redesigned and adjusted to 

ensure that the survey was able to efficiently capture university community travel 

behavior. In comparison with other similar university travel diary surveys, the EnACT 

survey is unique in many aspects, including the consideration of simultaneous activities, 

ICT usage for trip purpose, and environmental attitudes. 

Following survey data collection, and after rigorous error-checking, cleaning, and geo-

coding, the survey yielded a sample of 346 entirely completed 24-hour travel logs for the 

city campuses. Descriptive statistics of respondents’ individual and socio-demographic 

characteristics are presented in Table 8.2. 
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Table 8.2 Descriptive statistics of respondents characteristics 

Variable Description Coding Statistics 

Gender Male, Female Male: 0 130 (37.58%) 

Female: 1 216 (62.42%) 

Age Average age Continuous 30.96 

License Having a valid 

driver license 

Have: 0 307 (88.73%) 

Don’t have: 1 39 (11.27%) 

Vehicle Average number of 

vehicle available in 

household 

Discrete 1.02 

Bicycle Average number of 

bicycle available in 

household 

Discrete 0.96 

Respondent 

status 

Student, non-

student 

Undergraduate Student: 1 129 (37.28%) 

Graduate Student: 2 126 (36.42%) 

Faculty member: 3 24 (6.94%) 

Staff: 4 67 (19.36%) 

Employmen

t/student 

status 

Full-time, not-full-

time  

Full-time (+30 hours per week): 1 111 (32.09%) 

Part-time (<30 hours per week): 2 31 (8.96%) 

Student full-time: 3 180 (52.02%) 

Student part-time: 4 16 (4.62%) 

Volunteer work: 5 8 (2.31%) 

Vehicle 

(person/veh) 

Number of person 

per vehicle 

Discrete 1.48/veh 

Mode Travelling mode Car (driver): 1 23.7% 20.00 (min)* 

Car (passenger): 2 3.7% 27.50 (min)* 

Walk: 3 36.35% 15.00 (min)* 

Bus: 4 25.9% 25.00 (min)* 

Bike: 5 10.0% 15.00 (min)* 

Boat/Ferry: 6 0.35% 22.5 (min)* 
*Travel time (median) 

Consistent with other university travel diary surveys, the proportion of full-time 

students/workers is higher than part-time students/workers. The average age of 

respondents is around 30.96 years. Furthermore, around 88.73% of respondents have a 

valid driving license. Average number of vehicles available per household is 1.02, while 

the average number of bicycles is around 0.96. Across all travelling modes, the walk mode 

has the highest percentage of 36.35% trips, followed by auto drive and transit. Respondents 

who walk or bike have the smallest median time per trip (15 min). On the other hand, the 

auto passenger mode has the highest travel time (27.5 min). 
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A comparison of the sample distribution of EnACT respondents’ key characteristics 

compared to those of the Dalhousie University population (using Dalhousie Analytics Data 

and Dalhousie Commuter Survey) showed that the sample is roughly representative with 

respect to gender, age, and employment status, commute time and travel mode. However, 

female individuals are slightly over-represented and older age individuals are slightly 

under-represented. As it was out of the scope of the current study, the samples used in this 

study were used directly from the survey without considering sample weighting or 

population synthesis techniques to match the sample distribution. A comprehensive 

descriptive analysis of all six sections of the EnACT survey can be found in Liu et al. 

2016. 

8.4 Methods 

8.4.1 Daily Activity Travel Patterns 

In In this study, we employed a series of statistical and rule based methods to explore and 

model the daily activity travel patterns of a university population. The frequency and time 

allocations of daily activities, the overall sequencing of activity episodes (through 

implementation of a transition matrix) and the daily activity patterns (both at the 

aggregated and disaggregated levels) by university community groups were investigated. 

Furthermore, the Kolmogorov-Smirnov statistical test was performed in order to examine 

the similarities and dissimilarities of temporal distributions associated with the aggregated 

activity categories for each of the university groups. The summary statistics presented in 

this study provide detailed guidelines for developing a statistical/econometric model 

capable of predicting the activity travel behavior of the university population.  



 

184 

In order to predict daily activity patterns (DAP), the rule-based decision tree clustering 

analysis method was utilized by employing the classification and regression tree (CART) 

classifier algorithm. The CART algorithm is an accurate decision tree algorithm that can 

construct the best tree that comprises the most information. The decision tree discerns the 

association between predictor (DAP) and response variables and classifies those predictor 

values that have the most notable associations to the response value. The response values 

used in the proposed model include socio-demographic characteristics such as age, gender, 

income level, education level, and car ownership, and travel attributes such as travel mode 

and travel distance. Consistent with other decision tree algorithms such as CHAID, C4.5, 

and ID3, in the CART algorithm the impurity measure is a decision maker for searching 

leaf nodes, and subsequently building the best fitting decision tree (Tan, Steinbach and 

Kumar 2005). Each leaf node includes all the identified predictor values that have high 

associations to the response values. The impurity measure in the CART algorithm is 

completed by estimating the Gini index. The Gini index is computed for every predictor 

variable at each node and the one that has the lowest value is chosen. Furthermore, the 

CART algorithm utilizes cross-validation as an additional measurement to choose the 

optimal decision tree. The Gini index is calculated as follows: 

𝐺(𝑆) = 1 − ∑ 𝑝𝑖
2𝑚

𝑖=1                (1) 

Where: 

𝑚 is the number of classes, 

𝑝𝑖 is the relative frequency of class 𝑖 in the data set 𝑆. 
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The dataset was divided into two sub-datasets. The first part provided training samples 

that comprised 75 percent of the observations of the travel diary survey data. Trees were 

built using the training samples. The second part provided testing samples that comprised 

the remaining 25 percent of observations and were used to check the precision level of 

proposed prediction models. An exception was made for the faculty group, where training 

and testing samples size were set to 60 and 40 percent due to their small share in the 

dataset. The class label (DAP) was predicted using the following method (Hand, Mannila 

and Smyth 2001): 

𝑑̂ =
𝑎𝑟𝑔

𝑑 = 1,…𝑛𝑚𝑖𝑛
∑ 𝑑̂(𝑛|𝑚)𝑛
𝑛=1 𝑇(𝑑|𝑛)            (2) 

Where: 

𝑑̂ is the predicted classification, 

𝑛 is the number of classes, 

𝑑̂(𝑛|𝑚) is the posterior probability of class 𝑛 for observation 𝑚, 

𝑇(𝑑|𝑛) is the classification cost of an observation as 𝑑 when its true class is 𝑛. 

8.4.2 Transport-related GHS Emissions 

Transport-related GHG emissions in this study are estimated based on the emission 

estimation framework developed in MOVES 2014a (Koupal et al. 2002; Hafezi et al. 

2018b). The major air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), 

nitrogen oxide (NOx), particulate matter under 10 micron diameter (PM10), particulate 

matter under 2.5 microns diameter (PM2.5), total-hydrocarbon (THC) and volatile-organic-
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compounds (VOC), were derived from the MOVES model, and adjusted with input data 

representing the Halifax city context. The project scale analysis in MOVES 2014a is used 

for estimating the transport-related GHG emissions. Vehicular age distribution and fuel 

characteristics are drawn from the EnACT survey data and Canadian Vehicle Survey 

(Statistics Canada 2015). Using the information derived from the Halifax Regional 

Municipality database (HRM 2016), transit passenger kilometer estimates were calculated 

(total transit kilometers divided by the average transit occupancy) and vehicle speed 

information was obtained. The road network database was developed in ArcGIS 10.2.2 

using GeoBase - National Road Network (NRN) - Nova Scotia, available at the Natural 

Resources Canada database (NRN 2016).  

In this study, auto trips were all assumed to take the shortest distance. Transit routes are 

modeled based on the existing Halifax transit network map and transit distances were 

estimated on the street network. Meteorological input data such as humidity and 

temperature data for the study area were derived from the historical climate data at the 

Environment Canada archive (ENR 2016). Other required information (e.g. fuel supply 

specifications, fuel formulations, etc.) are drawn from the data of Cumberland county in 

Maine, United States, as a representation of the Halifax study area. Emission factors were 

estimated for each travel mode and university group, in grams per person per day. Home 

postal code and work (destination) postal code of all the respondents were geocoded in 

ArcGIS 10.2.2 and network commuting distances were computed using the network 

analyst tool.  

In order to understand and explore the feasible emission reduction scenarios, five zones 

were utilized in this study (Millward and Spinney 2011). The on-campus zone (ONC) is 
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defined as the area within 1 km travel distance from centroids of any of the three Dalhousie 

city campuses. The inner city (INC) is defined as the area between 1 and 5 km from the 

campuses, and the suburban area (SUB) is defined as the area between 5 and 10 km from 

Dalhousie city campuses. The inner commuter belt (ICB) is defined as the area between 

10 and 25 km from Dalhousie city campuses, and the outer commuter belt (OCB) is 

defined as the area between 25 and 50 km from Dalhousie city campuses.  

Proportions of rural restricted, rural unrestricted, urban restricted, and urban unrestricted 

road types (as defined in MOVES) were fitted to these zones according to information 

obtained from the Halifax Regional Municipality. Respondents who usually choose walk 

or bike modes for commuting to campuses mostly fall in the ONC and INC zones. 

Respondents who choose the transit mode for commute trips mostly fall in the ONC, INC 

and SUB zones. Finally, respondents who usually choose motorized vehicles for commute 

trips are distributed in the ONC, INC, SUB and ICB zones, with a few in the OCB zone. 

In this study, two alternative scenarios were examined, based on the spatial distribution of 

respondents, distance zone, and available travel mode. Respondents from the ONC zone 

were excluded in testing of both scenarios since the majority of respondents stated walk 

or bike modes as primary traveling modes for commuting to and from Dalhousie 

campuses.  

Scenario 1 represents the total amount of emissions produced if 25%, 50%, 75% or all 

commuters living within INC and SUB zones use transit for commuting to Dalhousie city 

campuses. Respondents from the ICB and OCB zones were excluded due to the lack of 

availability of transit service in these areas (HRM 2016).  
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Scenario 2 represents the total amount of emissions produced if 25%, 50%, 75% or all 

commuters use a motorized vehicle for commuting to Dalhousie city campuses, and there 

is no ride sharing. In this scenario, we assumed car mode for all zones except the ONC 

zone, and mode as reported for the ONC zone. Adequate transit service and parking 

capacity were assumed to be available in both scenarios and new traveling distances are 

recalculated according to the changes in travel mode. The purpose of scenario testing is to 

exemplify how changing the primary travel mode can impact emissions volume. 

8.5 Discussion of Results 

This section focuses on exploring how the overall university community group organized 

their weekday activities, followed by an examination of how each sub-group sequenced 

the numerous activities in their daily activity schedule. Activity profiles for each 

population group are drawn in order to understand the daily activity sequencing, timing, 

and activity types. Next, results of Kolmogorov-Smirnov tests on activity start time 

distributions are presented, testing the similarity of activity profiles by respondent group. 

Finally, the results of the model prediction for the daily activity pattern (DAP) by 

university community groups are presented. 

We first present the results of frequency and time allocations for daily activities. It should 

be noted that in this study, for the sake of brevity, we don’t provide analysis for mode 

share and trip frequency. The main purpose of this study is to explore the similarity and 

dissimilarity in daily activity patterns of different university groups. 
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8.5.1 Frequency and Time Allocations for Daily Activities 

Activities are classified into nine groups as follow: household related works, school/work, 

entertainment related activities, media and communication, organizational, voluntary and 

religious activity, personal care related activities (including sleep), shopping activities, 

care giving activities, and sports and hobbies. Table 8.3 presents frequency of activity 

types by trip purpose for all respondents. 

In total there are 2,969 activity episodes undertaken by 346 individuals during the day. As 

expected, school/work related episodes were the most frequent activities in the day, with 

a proportion of 38.9%. Other high frequencies were personal care related activities, 

household related activities, and shopping. In contrast, organizational, voluntary and 

religious activity, and care giving activities had the smallest frequencies. Table 8.4 outlines 

activities by average episodes per day, median time allocations by different university 

groups and median travel time dedicated to the activity. 
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Table 8.3 Frequencies of major activities 

Activity Descriptions 
Frequency 

of Episodes 

Percent (%) 

of Episodes 

Household 

related works 

Cooking, cleaning, laundry, gardening, care for 

plants, other household related activities. 

521 17.5 

School/work Full-time classes/research, work for pay at main job, 

other school/work related activities. 

1154 38.9 

Entertainment 

related 

activities 

Socializing with friends/relatives at bars, clubs, 

movies/films at a theatre/cinema, art films, art 

exhibition, other entertainment related activities. 

102 3.4 

Media and 

Communication 

Communicating over e-mail, Facebook, skype, 

twitter, Instagram etc., reading 

books/magazines/newspapers, other media and 

communication related activities. 

87 2.9 

Organizational, 

voluntary and 

religious 

activity 

Organizational, voluntary & religious activity 

political, civic activities, other related activities. 

45 1.5 

Personal care 

related 

activities 

Meals/snacks/coffee at home, private prayer, 

mediation, other spiritual activity, night 

sleep/essential sleep, other personal care related 

activities 

721 24.3 

Shopping 

activities 

Shopping for goods & services, other related 

shopping activities 

161 5.4 

Care giving 

activities 

Child care, personal care/help/medical care for 

household adults, other related care giving activities 

44 1.5 

Sports and 

hobbies 

Other outdoor activities, walking, hiking, jogging, 

running etc., other related sports and hobbies 

activities 

134 4.5 

 

As expected, the most frequent out-of-home activity episodes are school and education 

related activities (1.85) and paid work (1.33), demonstrating that university community 

members typically participated in school/work activity (related to the university context) 

more than once a day. In terms of out-of-home daily time allocation percentages, school 

and work have the highest proportions. In general, faculty members allocated more time 

to in-home activities in comparison with staff. Also, undergraduate students allocated 

more time to in-home activities in comparison with graduate students. Interestingly, the 

results show that faculty members spent least time for shopping activities while 

undergraduate students spent the highest time for shopping activities among the four 
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groups. Finally, graduate students allocated more time to organizational and voluntary 

activities in comparison with undergraduate students, graduate students, and staff. 

Table 8.4 Time allocations for daily activities 

Activity 
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n
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Household related 

works 
1.44 262.31 230.50 279.62 268.58 18.22 16.01 19.42 18.65 20.0 

Paid work 1.33 90.19 22.91 424.04 525.68 6.26 1.59 29.45 36.51 22.5 

Entertainment 

related activities 
0.28 37.05 33.06 32.88 10.95 2.57 2.30 2.28 0.76 20.0 

Media & 

Communication 
0.24 23.81 33.76 20.96 37.91 1.65 2.34 1.46 2.63 30.0 

Organizational, 

voluntary and 

religious activity 

0.12 8.36 10.43 7.50 8.51 0.58 0.72 0.52 0.59 18.8 

Personal care 

related activities 
1.99 571.31 569.30 572.12 505.20 39.67 39.53 39.73 35.08 30.0 

School & 

education related 

activities 

1.85 392.91 475.62 27.12 3.18 27.29 33.03 1.88 0.22 20.0 

Shopping 

activities 
0.44 33.73 22.91 6.73 24.39 2.34 1.59 0.47 1.69 20.0 

Care giving 

activities 
0.12 0.45 11.16 25.77 20.61 0.03 0.78 1.79 1.43 15.0 

Sports and 

hobbies 
0.37 19.89 30.35 43.27 35.00 1.38 2.11 3.00 2.43 25.0 

All Trips 8.18* 114** 93.4** 94.8** 76.7** 9.1** 8.8** 8.9** 7.1** 22.1* 

1Number of activities per individual per day 

2Average duration per activity (∑ activity time / ∑ frequency of activity) 

3Undergraduate students 

4Graduate students 

5Median minutes consumed on travel for each activity per day; *Average values, **Median values 

8.5.2 Overall Sequencing of Activity Episodes by University Community 

Groups 

The sequencing of episodes for each university community sub-group, including both in-

home and out-of-home activity episodes, was examined to better understand the 
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differences between activity profiles of each group. A transition matrix between 

consecutive activity episodes was created, to show the likelihood that a successive episode 

of a certain category will occur, given an episode of a current category (Lockwood, 

Srinivasan and Bhat 2005). Table 8.5 presents a transition matrix of all surveyed 2,969 

activity episodes. 

It presents detailed information on trip chaining patterns of different market segments in a 

more compact yet compelling way. The rows in Table 8.5 represent the category of the 

current activity episode, while the columns represent the category of the subsequent 

activity episode. The value calculated in each cell indicates the percentage of occurrence 

of a subsequent activity episode of a certain category after the current episode; the values 

in each row sum to 100. Many interesting findings from the transition matrix can be 

observed. 
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Table 8.5 Activity episode transitions (in percentage) matrix 
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School/class 0.0 5.4 10.5 25.9 6.7 13.1 4.1 5.4 6.7 22.0 

Work/paid job 2.7 0.0 12.3 26.5 7.5 2.7 12.2 2.7 12.1 21.7 

Household work 8.8 3.4 0.0 9.0 3.4 3.4 14.5 8.9 3.4 45.0 

Meals 40.9 17.5 0.3 0.0 0.3 6.6 1.9 5.0 5.0 22.2 

Organizational/volunteer 0.0 0.0 42.8 28.6 0.0 0.0 14.3 0.0 0.0 14.3 

Shopping 9.3 0.5 26.6 4.8 9.1 0.0 4.8 4.8 9.2 30.9 

Sports/hobbies 9.5 4.8 19.0 19.0 0.0 9.5 0.0 4.8 9.5 23.8 

Entertainment 7.7 1.4 26.4 20.2 1.4 7.7 7.7 0.0 13.9 13.9 

Media/communication 14.8 5.3 14.8 19.5 5.3 10.0 10.0 0.5 0.0 19.5 

Personal care 17.5 2.2 10.5 32.7 0.8 7.7 11.9 7.7 9.1 0.0 

G
ra

d
u

at
e 

School/class 0.0 2.1 26.1 16.5 3.0 13.7 13.5 5.9 5.9 13.6 

Work/paid job 10.0 0.0 33.3 0.0 35.7 0.0 15.0 0.0 0.0 6.0 

Household work 23.9 0.5 0.0 14.6 3.6 5.2 2.1 6.8 20.8 22.4 

Meals 39.2 0.2 8.7 0.0 3.6 3.6 5.3 1.9 8.7 29.0 

Organizational/volunteer 15.4 7.7 30.8 23.1 0.0 7.6 0.0 7.7 0.0 7.7 

Shopping 32.0 0.0 24.0 12.0 11.0 0.0 0.0 4.0 4.0 13.0 

Sports/hobbies 42.3 0.4 16.5 23.0 0.4 3.6 0.0 3.6 3.6 6.9 

Entertainment 29.6 1.8 12.9 7.4 1.8 7.4 18.5 0.0 7.4 12.9 

Media/communication 15.0 3.2 9.1 15.0 0.3 3.2 6.2 3.2 0.0 44.4 

Personal care 31.9 1.2 13.2 19.9 3.9 5.2 11.9 2.5 10.5 0.0 

F
ac

u
lt

y
 

School/class 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Work/paid job 0.0 0.0 38.7 9.3 5.3 8.3 21.3 5.3 1.3 10.3 

Household work 0.0 40.0 0.0 15.3 0.0 0.0 20.0 0.0 11.3 13.3 

Meals 0.0 47.0 8.5 0.0 1.6 0.8 16.2 9.5 7.5 8.5 

Organizational/volunteer 0.0 47.7 23.0 0.0 0.0 14.3 0.0 0.0 0.0 15.0 

Shopping 0.0 33.3 30.0 33.3 0.0 0.0 0.0 3.3 0.0 0.0 

Sports/hobbies 0.0 70.0 10.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 

Entertainment 0.0 0.0 33.3 33.3 0.0 33.3 0.0 0.0 0.0 0.0 

Media/communication 0.0 0.0 0.0 20.0 0.0 0.0 0.0 20.0 0.0 60.0 

Personal care 0.0 12.5 25.0 62.5 0.0 0.0 0.0 0.0 0.0 0.0 

S
ta

ff
 

School/class 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Work/paid job 0.0 0.0 29.9 18.9 7.0 11.0 17.6 3.1 5.7 7.0 

Household work 0.0 22.7 0.0 11.6 7.2 12.6 9.4 0.5 25.4 10.6 

Meals 0.0 51.7 20.7 0.0 0.0 3.4 3.4 0.0 13.8 6.9 

Organizational/volunteer 0.0 49.9 0.0 14.7 0.0 0.0 18.7 0.0 0.0 16.7 

Shopping 0.0 38.4 23.1 7.7 0.0 0.0 15.4 7.7 7.7 0.0 

Sports/hobbies 0.0 53.4 24.3 14.8 0.5 0.5 0.0 0.5 0.5 5.3 

Entertainment 0.0 0.0 0.0 20.0 0.0 0.0 50.0 0.0 0.0 30.0 

Media/communication 0.0 16.7 27.8 27.7 0.0 5.6 0.0 0.0 0.0 22.2 

Personal care 0.0 43.3 32.8 11.7 1.2 2.3 1.2 6.5 1.2 0.0 
*Meals category in this Table include meals/snacks/coffee break at home or school/work 
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In general, across all four sub-groups, the most frequent subsequent activity episodes 

following the current activity episode are meals, personal care, and household work. For 

school/work activities, the most frequent subsequent activities are meals, personal care, 

and household work. Maintenance shopping episodes for undergraduate students and 

graduate students are very likely to be succeeded by an in-home activity episode. In 

contrast, maintenance shopping episodes for faculty and staff are very likely to be 

succeeded by work/paid job activity episodes. Presumably, this might be due to 

accompanying the spouse or children in shopping activities in case of faculty or staff, while 

students need to transport the purchased food/goods items back home and store/fridge 

them. Another interesting finding is that faculty and staff frequently have a sport activity 

episode preceded by a work activity episode. Finally, recreation activity episodes for 

undergraduate students and graduate students are very likely to be succeeded by an in-

home activity episode. In contrast, recreation activity episodes for faculty and staff are 

very likely to be succeeded by an out-of-home activity episode (shopping or another 

recreation). 

8.5.3 Daily Activity Patterns by University Community Groups 

In order to understand and compare the daily temporal activity patterns of different 

university groups, an analysis on the sequence of activities, embedding the type of 

activities and their timing is performed. Figure 8.1 and Figure 8.2 shows the aggregated 

and disaggregated activity profile by different university groups. The horizontal axis 

covers a 24-hour time period beginning at 12:00 a.m. (midnight) and ending at 11:59 p.m. 

on the following day. The vertical axis indicates the proportion of individuals’ engagement 

in each activity type according to time of day. 
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Figure 8.1 Aggregated activity profile by different university groups  
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Figure 8.2 Disaggregated activity profile by different university groups 
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For illustration purposes, all activities are aggregated into five major activities: 

school/work (all school/work related activities), recreation (all eating out and leisure 

related activities), shopping (all shopping for goods and services related activities), other 

out-of-home activities, and in-home (all in-home related activities). One can clearly see 

the times of day when a large proportion of different university groups are at university 

between 8:30 a.m. to 4:30 p.m., though it appears that a small proportion of staff work the 

night shift until midnight. Moreover, staff seem to start their work earlier than other 

university groups, and their working hours of staffs are higher than those of faculty 

members. 

Compared to students and staff, faculty members are found to engage in other non-work 

activities in between their regular working hours. This might be motivated by flexible 

working hours of faculty in comparison with other university groups. Graduate students 

spend more time in the school in comparison with undergraduate students. On the other 

hand, undergraduate students engaged more in recreational and shopping activities after 

school compared to graduate students. Most of the students undertake recreational and 

shopping activities in the evening. A small number of graduate students and undergraduate 

students participate in recreational and shopping activities, respectively, during the day. 

Presumably, students with flexible daytime schedules participate in discretionary activities 

during the day. This result is similar for other out-of-home activities conducted by both 

graduate and undergraduate students. Whereas faculty members are found to engage in 

fewer recreational and shopping activities than staff members, but with longer duration. 

Overall, in comparison to student groups, faculty and staff are found to engage in fewer 

in-home activities between 8:30 a.m. to 4:30 p.m. (working time at school). In part, this 
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reflects less discretionary time for these two groups, with their work requiring their 

presence on campus. These groups also tend to live further from campus, and thus tend to 

minimize trips to and from home. 

8.5.4 Daily Time-Use Activity Patterns by University Community Groups 

The best-fit decision tree model for the 10 most frequent daily activity patterns by 

university community groups is depicted in Figure 8.3. The identified daily activity 

patterns for each population group in every node of the tree model are drawn in order to 

better understand differences in daily activity patterns between different university 

community groups. Consistent with previous studies, tree model results revealed that the 

daily activity patterns with sequencing of home-school-home activities (H-S-H) and 

home-work-home activities (H-W-H) are the most frequent DAPs in the university travel 

behavior pattern. This result is highlighted in the first node of the tree model in Figure 8.3. 

The decision tree splits the daily activity pattern by employment status and results in 

classifying the data into two classes: students and non-students (faculty and staff).  

The activity pattern with sequencing of home-school/work-shopping-home activities (H-

S/W-G-H) is identified as the second most frequent DAP for both student and faculty/staff 

groups. Additionally, the activity pattern with sequencing of home-work-home activities 

(H-W-H), home-school-home-school-home activities (H-S-H-S-H), and home-school-

home-shopping-home activities (H-S-H-G-H) are identified as the next most frequent 

activity patterns for students. In contrast, for faculty and staff groups the next most 

frequent DAPs include sport activity prior to or after work activity with one or two stops 

at home.   



 

199 

Daily Activity Pattern (DAP)  
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Figure 8.3 Predicted percentage of the most frequent daily activity patterns (DAP) by university community groups 
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In the next branch of the tree model, the decision tree splits the daily activity patterns by 

university community groups into four classes. The first identified class consists of 

undergraduate students’ DAPs. Home-school/work-home activities with one or two stops 

at home (H-S-H, H-S-H-S-H, H-W-H, and H-W-S-W-H) are identified as the first four 

most frequent DAPs for undergraduate students. Additionally, activity patterns which 

include shopping, entertainment, and sports activities after school activity are identified as 

other frequent DAPs for this population group. The second identified class consists of 

graduate students’ DAPs. The algorithm identified home-school-home activities sequence 

(H-S-H) as the most frequent DAP for graduate students, followed by home-school-home-

shopping-home activities (H-S-H-G-H). The next most frequent DAPs for this group 

include shopping, sports, and organizational/voluntary activities after main activity 

(school/work activity). The third identified class consists of faculty DAPs. The most 

frequent DAPs for this group are sequences of home-work-home activities with one or two 

stops at home (H-W-H, H-W-H-W-H). The next most frequent activity sequences for this 

group include shopping and entertainment activities after main activity (work). Consistent 

with the findings of the previous section, an activity pattern with sequencing of home-

sports-work-home activities (H-P-W-H) is also one of the most frequent DAPs for the 

faculty group. Lastly, the fourth identified class consists of staff DAPs. Similar to faculty 

DAPs, the most frequent sequence for this group is identified as home-work-home 

activities (H-W-H). In addition, the next most frequent activity patterns for staff members 

include shopping, organizational/voluntary, and sports activities after work activities. 

As illustrated in Figure 8.3 predicted DAPs are closely similar to the observed DAPs in 

the travel diary dataset, particularly for the student and staff groups. However, the tree 
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model fails to predict faculty DAPs with high accuracy, due to their small share in dataset. 

Overall, however, the tree model is well able to predict the daily activity patterns of 

university community groups. It should be noted, too, that the decision tree model is 

expected to predict with higher accuracy when trained with a larger training sample.  

8.5.5 Similarity Test of Activity Profiles by University Community Groups 

In this subsection, the start time distributions for all aggregated activity categories for 

different university groups are examined using the Kolmogorov-Smirnov statistical test. 

The Kolmogorov-Smirnov statistical test can determine whether or not two non-

parametric datasets are drawn from similar distributions (Sheskin 2003). In this study, we 

utilized the Kolmogorov-Smirnov statistical test in order to understand the differences 

between start time, duration, and end time distributions associated with all aggregated 

activity categories for each university group. For the sake of brevity, we state only results 

related to activity start times (though the same statistical test can be performed for duration 

and end time distributions). The Kolmogorov-Smirnov test is defined by:  

𝑇 =  𝑚𝑎𝑥
1≤𝑖≤𝐷

(𝐶𝐷𝐹(𝑌𝑘) −
𝑖−1

𝑆
,
𝑖

𝑆
− 𝐹(𝑌𝑘))            (3) 

Where: 

𝐶𝐷𝐹 is the cumulative distribution function,  

𝑖 is the start time,  

𝑆 is sample size. 



 

202 

As shown in Table 8.6, the null hypothesis associated with school/work activity for staff 

is rejected, indicating that this group has a significantly different start time of work activity 

in comparison with other university groups. Furthermore, graduate students, faculty, and 

staff have distinct start times in terms of recreation activity. Interestingly, it is found that 

different university groups have different start times for shopping activity. This difference 

might be motivated by varying levels of flexibility in study/work hours, specific needs of 

each group, and presence of accompanying persons. 

Table 8.6 Summary of Kolmogorov-Smirnov test on activity start time distribution by 

different university groups (5% significance level)* 
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Group 

ID UnderG Grads Faculty Staff 

UnderG 0 1 1 1 UnderG 0 1 1 1 

Graduate  0 1 0 Graduate  0 1 0 

Faculty   0 1 Faculty   0 0 

Staff    0 Staff    0 

*Values of 1 indicate the null hypothesis (𝐻1) 

1Undergraduate students 

2Graduate students 

8.5.6 Estimation of Emission Factors by Population Groups and Distance 

Zone 

This section focuses on exploring who contributes the most vehicular emissions among 

the four specified groups commuting to Dalhousie city campuses, followed by exploring 
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the share of emissions attributable to each travel mode. In addition, the total amounts of 

emissions estimated for the defined geographic zones are presented. These estimations and 

analysis may help in generating feasible scenarios for university administrators that can be 

used for the emission reduction goal in short and long terms.  

Table 8.7 outlines estimation results of emission factors by sample groups and distance 

zones. As can be seen, the staff group emitted the most (3707.23 CO2 grams per person 

per day) among different commuter groups on Dalhousie city campuses, followed by the 

faculty group (3036.16 CO2 grams per person per day). Furthermore, undergraduate 

students emitted more than graduate students. Staff members, who tend to live farther from 

Dalhousie city campuses, emitted nearly two and one-half times more than the graduate 

students, who live closer to Dalhousie city campuses. This result is consistent with the 

findings of previous university population based emission studies, which found that staff 

members emit more than three times as much as students (Mathez et al. 2013).  

Table 8.7 Estimation of emission factors by population groups and distance zone 

 Emission Factor (gram per person per day) 
Commuting 

Distance (km) 

Sample group CO2 CO NOx PM10 PM2.5 THC VOC Average Median 

Undergraduate 

students 
2406.43 32.68 8.23 0.10 0.09 1.69 1.63 5.14 1.89 

Graduate 

students 
1512.69 20.54 5.17 0.06 0.05 1.06 1.03 8.27 2.36 

Faculty 3036.16 41.24 10.38 0.12 0.11 2.13 2.06 7.67 3.18 

Staff 3707.23 50.35 12.67 0.15 0.13 2.60 2.51 10.98 5.63 

All groups 1953.38 26.53 6.68 0.08 0.07 1.37 1.32 8.02 2.77 

Zone  Primary Mode 

INC 139.39 1.89 0.48 0.01 0.00 0.10 0.09 Walk 

SUB 1021.82 13.88 3.49 0.04 0.04 0.72 0.69 Transit 

ICB 2464.26 33.47 8.42 0.10 0.09 1.73 1.67 Auto Drive 

OCB 5397.24 73.30 18.45 0.22 0.19 3.79 3.66 Auto Drive 
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Given that commuting distance and mode type directly influence vehicular emissions, 

results show that respondents commuting from the OCB to Dalhousie city campuses have 

the highest emissions, and those commuting from the ONC and INC have the lowest 

vehicle emissions. The estimated emission rates for all major air pollutants for respondents 

who live in the ICB (2464.26 CO2 grams per person per day) zone (farther than 10 km 

from Dalhousie city campuses) is around 17 times greater than for those who live in the 

INC (139.39 CO2 grams per person per day) zone (equal or less than 5 km from Dalhousie 

city campuses). Clearly, this reflects mode choices, since the great majority of OCB and 

ICB respondents have auto-drive as their primary mode, whereas active transportation 

(walk and bike) and transit are preferred modes in the ONC and SUB zone for students. 

8.5.7 Estimation of Emission Factors by Scenario 

Table 8.8 presents a summary of estimated emission factors for two defined scenarios. In 

Table 8.8 the base case represents the total amount of emissions that Dalhousie commuters 

produce on a typical weekday. All proposed scenarios are compared against the base 

scenario. Base case emission is estimated as 1953.38 CO2 grams per person per day.  

The emission factor variations by scenario are shown in Figure 8.4 and Figure 8.5.Scenario 

1 (which assumes commuters switch their commuting mode into transit, where available) 

reduces the emissions of CO2 for the minimum of 59.9% (assuming 25% switch to transit) 

and for the maximum of 71.4% (assuming all switch to transit). Scenario 1 emits around 

784.23 and 668.98 CO2 grams per person per day for 25% and 100% increase in transit 

ridership. Scenario 2, where we assume that commuters switch to auto-drive for campus 

commuting, has the worst outcome, increasing CO2 emission factor by around 65.3% 
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(assuming all switch to auto drive) and 8.5% (assuming 25% switch to auto drive). 

Scenario 2 has an emission level of 3229.58 and 2118.81 CO2 grams per person per day 

for 100% and 25% increases in auto drive. 

Table 8.8 Estimation of emission factors by scenario 

 Emission Factor (gram per person per day) 

 CO2 CO NOx PM10 PM2.5 THC VOC 

Base case 1953.38 26.53 6.68 0.08 0.07 1.37 1.32 

Scenario 1        

25% increase in transit 

ridership 
784.23 10.65 2.68 0.04 0.04 0.55 0.53 

50% increase in transit 

ridership 
745.82 10.13 2.55 0.03 0.03 0.52 0.51 

75% increase in transit 

ridership 
707.40 9.61 2.42 0.02 0.03 0.50 0.48 

100% increase in transit 

ridership 
668.98 9.09 2.29 0.02 0.02 0.47 0.45 

Scenario 2        

25% increase in auto drive 2118.81 28.78 7.24 0.09 0.08 1.49 1.44 

50% increase in auto drive 2759.51 37.48 9.43 0.11 0.10 1.94 1.87 

75% increase in auto drive 2951.89 40.09 10.09 0.12 0.11 2.07 2.00 

100% increase in auto drive 3229.58 43.86 11.04 0.13 0.11 2.27 2.19 

 

 
 

Figure 8.4 Emissions reduction (percentage) in scenario 1 from base case 
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Figure 8.5 Emissions increase (percentage) in scenario 2 from base case 

8.6 Conclusions 
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needs special consideration in regional travel demand models. This study contributes by 
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Environmentally Aware Commuter Travel Diary (EnACT) Survey undertaken in 
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Results show that university travel behavior deviates from the typical time-of-day 

distributions of travel. The empirical results from comparison of daily activity patterns 

among four different university populations reveal significant differences in activity travel 

behavior between student groups and workers (staff and faculty). For instance, 

undergraduate students were found to spend more time for shopping activity compared to 

other university groups. Workers often have an episode of physical activity (e.g. sport 

activity) before the start of work activity. Staff members are found to spend more time at 

school in their daily activity patterns in comparison with other university groups, usually 

starting work activity earlier than other university groups. Faculty members are found to 

participate in fewer leisure activities, whereas undergraduate students participate in higher 

numbers of recreation activities.  

Consistent with previous studies, results reveal that the sequencing of home-school-home 

activities (H-S-H) and home-work-home activities (H-W-H) are the most frequent DAPs. 

Also, the sequence home-school/work-shopping-home activities is identified as the second 

most frequent DAP for all university community groups. However, each of the four sub-

groups shows distinct differences when the probabilities of other sequences are 

considered. 

This study provides valuable insights for policy discussions and transportation planning 

for university settings. The findings of commuting time and travel frequency patterns of 

university populations may help university and municipal authorities to develop practical 

policies to improve the traffic conditions on and near campuses, and to plan transit 

corridors to provide accessibility to university campuses. The pattern of student activity 

sequencing and travel timing is particularly important in this regard, since students 
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typically live close to campus and tend to make multiple trips to campus per day. This can 

have a substantial localized impact on the transit system, which is not well captured 

elsewhere. Furthermore, as our results revealed that the walking mode is the primary mode 

for student commuting to the university, the findings of this study may assist university 

administrators to improve sustainability through provision of a more pedestrian and 

bicycle friendly environment on and near campus. Details information of transit usage 

related to different university segments, including ridership frequency and travel time can 

be extracted from the DAP. Such these information can be used to improve transit level of 

service specially during morning and afternoon peak hours around university campuses.     

To build on this study, we are proposing several avenues of research. Firstly, it is possible 

to investigate the association between land-use, built environment, and mode choice across 

the different university groups. Secondly, a population synthesis technique will be utilized 

as an alternative method to match the sample distribution to the overall university 

population, and to expand the sample size. Thirdly, the rich EnACT survey data that has 

been used for modeling in this study includes spatial information on residence locations 

and activity locations. Therefore, one potential extension would be development of a 

location choice model, to investigate the influence of spatial-temporal factors on locational 

choices for activities, by different university groups. 

Finally, the approach and techniques employed in this study are transferable to study of 

DAPs and trip patterns at other large universities in North America, to develop sub-models 

for travel demand modeling.  The approach may be applied more broadly, too, to other 

major sub-populations or special trip generators, such as those for large hospitals or large 

port areas.  
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Chapter 9 Conclusion 

9.1 Summary 

The research work presented in this dissertation focused on the development of the 

Scheduler for Activities, Locations, and Travel (SALT) disaggregated travel demand 

microsimulation model. The SALT modeling framework follows the concept of activity-

based travel demand modeling techniques and theories. The work particularly 

concentrated on the development of the state-of-art machine learning micro-behavioral 

modules for modeling various aspects of activity-travel decisions, including activity 

selections and scheduling behaviors of population cohorts within the SALT modeling 

framework.  

The SALT model system is designed based on the multi-layer hybrid machine learning 

techniques and is comprised of a series of behaviorally realistic advanced econometric, 

pattern recognition, and inference modules. Machine learning techniques provide the 

opportunity for more precise modeling and learning of preferences and behaviors in 

complex circumstances. These techniques incorporate an inter-related series of models 

with the aim to automatically learn to distinguish complicated patterns and make a creative 

decision based on the trained data. 

The first stage of this research developed a novel pattern recognition model that identifies 

population clusters with homogeneous time-use activity patterns within the SALT model. 

Time-use activity patterns in each identified cluster can be modeled using a series of 

behaviorally realistic advanced econometric and machine learning micro-behavioral 

modules. The next stage of the research developed an agent-based ensemble model, which 
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infers type and frequency of activities in the schedule and their sequential arrangement, 

for modeling agenda formation within the SALT model. The next stage of research 

entailed the development of new agent-based inference model, which predicts temporal 

information associated with the traveler’s daily activity schedule. Furthermore, a rule-

based heuristic algorithm is developed to schedule the activities of individuals with 

varying characteristics and behavior for each cluster based on their priority importance 

and empirical guide information gained from the representative activity pattern in each 

cluster of the SALT model. The last stage of research entailed the development of a 

population synthesizer procedure to implement the SALT model for the entire region. The 

model is tested using a unique GPS-validated time-diary data set drawn from the large 

Halifax Space-Time Activity Research (STAR) household survey. In addition, this study 

modeled the daily time-use activity patterns and estimated emission factors for university 

commuters, considered as a special trip generator in regional travel demand models.  

The advanced machine learning based micro-behavioral models utilized in the SALT 

model system are novel, time-efficient, and of practical use. A unique feature of the 

developed model that makes it different from other existing techniques is its degree of 

efficiency both in computational time and in minimizing exogenous errors. Furthermore, 

the proposed pattern recognition model enriches the traditional models, since it uses socio-

demographic variables to classify the population and provide clusters based on identified 

time-use mobility patterns. Another advantage of the new proposed model is that, unlike 

previous approaches, the algorithm can recognize groups of people who typically tend to 

avoid travel in peak traffic periods. Furthermore, the inference model predicts both 

frequent and infrequent activities in the traveler’s agenda. The implementation of the 
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scheduling model shows that the proposed model can accurately assemble the traveler’s 

schedule with an average 82% accuracy in the 24-hour period. 

In summary, the new micro-simulation modeling framework proposed in this study offers 

a straightforward and easy-to-implement tool for transport modelers to model time-use 

activity patterns for different population cohorts in the region. Moreover, the proposed 

modeling framework can be used to advance transportation demand management for 

different cohorts of the urban population as well as to analyze environmental mitigation 

and transport policy scenarios. The SALT modeling framework is being established for a 

medium-sized Canadian city and its travel-to-work area, but it can be modified and adapted 

to the modeling of urban transportation demands for major urban centers in North 

America. 

9.2 Conclusions of Research Findings 

The findings of this study provide deeper insights for modeling the travel behavior of 

population cohorts in transportation planning and management of urban transportation 

systems. Conclusions drawn from the outcomes of this study are summarized in the 

following. 

9.2.1 Population Clusters with Homogeneous Time-Use Activity Patterns 

• The Fuzzy C-Means (FCM) algorithm recognized pattern complexity of activity 

sequences in the dataset that resulted in the identification of distinct clusters for 

out-of-home workers, non-workers and non-students, students, and individuals 

who mostly spend their time at home.  
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• Each cluster contained homogeneous daily activity patterns and generated crucial 

information of activities, such as type, sequential arrangement, start time, and 

duration probability distributions. 

• Both in-home and out-of-home time-use activity patterns of individuals were 

modeled. Each individual’s daily pattern of activity was transformed into 288 three 

dimensional five-minute intervals. The first dimension contains temporal 

information on activities, the second dimension contains socio-demographic 

characteristics associated to activities, and the third dimension comprises spatial 

information related with activities. 

• Using the subtractive clustering algorithm instead of randomized cluster number 

and cluster centroids can increase the accuracy of cluster identification. 

• The FCM algorithm, unlike previous methods, can recognize and derive clusters 

of people who typically tend to avoid travel in peak traffic periods. 

• The FCM clustering algorithm resulted in a superior convergence of the local 

minima of the squared error principle, compared to other potential clustering 

algorithms. 

9.2.2 Representative Set of Activity Patterns 

• Using the progressive alignment method instead of the sequence alignment method 

can increase the accuracy of identification of representative activity patterns. 

• The progressive alignment method improved the model accuracy through iterative 

profile-alignment of tree portions to maximize the sum of pairs score. 
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• The Classification and Regression Tree (CART) classifier algorithm characterizes 

the cluster memberships through inter-dependencies among their socio-

demographic attributes. 

• Using the CART classifier algorithm, compared to other decision tree algorithms, 

can increase the performance of the decision tree by adding an additional cross-

validation step in the model structure. 

• Cluster memberships can be identified with better accuracy by developing a CART 

prediction tree based on the socio-demographic features of individuals. 

9.2.3 Activity Engagement Patterns of Population Groups 

• The Random Forest (RF) model predicted activity sequences and agenda of the 

entire population with 70% and 78% accuracy, respectively. Furthermore, the 

inference model predicts both frequent and infrequent activities in the traveler’s 

agenda. 

• Comparison between the observed and replicated patterns through activity episode 

transitions matrixes showed a mean absolute error of only 7.3%, and revealed that 

the RF models could successfully replicate episodes and position in agenda. 

• The RF model replicated activity sequences of more than 70% of the population, 

with the mean distance equal to 0.47. Additionally, both in-home and out-of-home 

activity patterns of population were modeled. 

• Using the RF model, compared to other alternative machine learning algorithms 

such as support vector machine and back-propagation neural network, can decrease 

the generalization error. Furthermore, the RF model is less likely to overfit. 
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9.2.4 Activity Timing and Building The 24-Hour Activity Schedule 

• The activity start time is predicted with 60.1% accuracy for eight bins with 180 

minutes duration, and 36.3% accuracy for 48 bins with 30 minutes duration. 

• The activity duration is predicted with 98.6% accuracy for four bins with 360 

minutes duration, and 67.3% accuracy for 24 bins with 60 minutes duration. 

• Using the RF model, compared to alternative algorithms such as AdaBoost and 

CHAID, can increase the prediction accuracy of the activity temporal attributes 

with a smaller duration interval. 

• The scheduling model was able to assemble the traveler’s schedule with an average 

82% accuracy in the 24-hour period. 

9.2.5 Baseline Synthetic Population for the Region 

• A baseline synthetic population was generated for Halifax, Nova Scotia, and for 

the university community groups. 

• The population synthesizer algorithm performed well in terms of the computational 

time and distribution of seed data presented in the final synthesized population list. 

• Synthetic populations were generated both at the regional and dissemination area 

(DA) levels with reasonable computational time and accuracy. 

• The population synthesizer accurately represented the seed data (observed 

population) in the 100% synthetic population within the acceptable range of error 

for the designated study area 
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9.2.6 Travel Behavior of University Commuters as a Special Trip Generator in 

Regional Travel Demand Models 

• Results showed that there are noteworthy differences in activity travel behavior 

between different university population segments, and that these in general deviate 

from the typical time-of-day distributions of travel. 

• Shopping activity was found to be the most frequent out-of-home activity after 

school/work activity for all four university segments. 

• The most used transport mode for commuting to and from university campuses 

was found to be the walking mode. 

• The results of emission analysis revealed that the staff group emitted the highest 

pollutants compared to other university segments. Furthermore, on average, 

respondents who live farther than 10 km from university campuses emitted around 

17 times more than those who live equal or less than 5 km from their 

campus/workplace. 

9.3 Model Implementation 

The prototype version of the SALT system enables component-based modeling and 

modular design for travel demand modelers. It offers the opportunity to fragment the 

model into innovative modules, and then model, simulate, and validate each module 

independently. Each of these can be developed and saved independently in the overall 

SALT modeling framework (Daisy 2018b). The SALT system outcome, at each time-stem 

of the simulation, can be stored at the individual-agent or object-level. This feature of the 
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SALT system allows multiple transport modelers to work in parallel on different 

components. 

Before the implementation of the SALT system in real transportation planning policy 

analysis, a prototype model need to go through several phases. Model monitoring and 

validation should be integrated into all phases of the model cycle. Further disaggregate 

and aggregate spatio-temporal model verification and validation are essential for key 

system elements, including activity engagement and trip making. While the SALT system 

can be integrated with dynamic traffic assignment and network topology, and applied to 

infer regional activity patterns of individuals, additional assessment of the population 

synthesizer module, related to aspects such as the homogeneity issue and network 

topology, should be taken into account. Lastly, further analysis should be performed to 

assess the capability of the SALT system to forecast future year circumstances. This can 

be done by employing the backcasting technique to model for a period for which accurate 

empirical data at both start and finish years are available. 

9.4 Recommendations for Future Work 

The following recommendations provide suggestions for further research that would 

complement the work presented herein and gain a better understanding of the effect of 

machine learning techniques on activity-based travel demand forecasting models. 

• The large Halifax STAR household survey data that has been used for constructing 

the SALT model in this study includes business hours survey data. Accordingly, 

future extension of the research would seek to incorporate operations hours in the 

modeling process. 
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• Newer activity-based models include interaction between household members, as 

these have a significant impact on others' travel. Therefore, another potential 

extension would be to incorporate joint activities and the interactions between 

activity schedules of household members into the SALT model. 

• A more robust effort should be taken to determine how well the predicted changes 

in travel over time in the scheduling engine of the SALT model compare to actual 

changes in travel over time. 

• For some of the population clusters that include more complex activity sequences, 

an alternative approach for tuning hyperparameters in the random forest, such as 

Bayesian optimization, might provide better outcomes. 

• A straightforward mixed-integer linear programming approach can be incorporated 

into the decision rule-based algorithm to improve the conflict resolution between 

inserted activities. 

• As explained, several new machine learning techniques, not previously explored 

in travel behavior analysis, are employed in the development of the different 

modules in the SALT model system. Therefore, one avenue to extend this research 

is to compare the corresponding reproducibility and computational time between 

alternative techniques and proposed approaches in this study for the same task. 

• The advanced machine learning based techniques developed in this dissertation can 

also be adapted for modeling other components of activity-based travel demand 

models, such as work and residential location choice models, and transport mode. 

Future work could examine the application of such techniques in modeling the 

above-mentioned elements of activity-based travel demand models.      
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• The concept of self-driving and/or autonomous vehicles and ride-sharing services 

such as Uber and Lyft can be added into the SALT model. Given their potentially 

rapid adoption, the impact of these new technologies and ride-sharing services on 

daily activity travel patterns should be considered in further extensions of the 

current study.   
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