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ABSTRACT 

State convergence scheme was proposed in 2004 to overcome the modeling issues and 

the difficulty in assigning the desired dynamic behavior to the tele-operation systems. It 

was originally proposed for linear master/slave devices which communicate over a 

communication channel offering a fixed small time delay. Later, the scheme was 

extended to cover the cases of non-linear tele-operation systems with a variable time 

delay in the communication channel using the adaptive control theory, Lyapunov 

functions and the feedback linearization techniques. However, the use of this scheme for 

the control of non-linear tele-operation systems which can be approximated by a class of 

Takagi-Sugeno fuzzy (TS) models has not yet been explored. Also, the scheme is only 

applicable to teleoperation systems where single master can control a single slave device 

which limits its usage in situations where more than one master and/or slave devices are 

involved to perform a task. Thus the objective of the present study is to first employ the 

state convergence scheme to control a nonlinear teleoperation system represented by TS 

fuzzy models and then to extend this scheme for the case of teleoperation systems having 

more than one master and/or slave devices. To achieve the first objective, a parallel 

distributed compensation (PDC) type control law is introduced to close the feedback loop 

around the master and slave devices and method of state convergence is applied to solve 

for the control gains. The second objective is achieved by proposing an alpha modified 

version of the standard state convergence scheme which provides a framework to 

combine the commands from all the master units to affect the slave units. The proposed 

works are validated afterwards in MATLAB/Simulink environment using single and 

multi-degree-of-freedom (DoF) manipulators.   
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CHAPTER 1: INTRODUCTION 

A teleoperation system is comprised of master and slave subsystems which are separated 

by either wired or wireless communication link, as shown in Fig. 1.1. Consisting of a 

human operator and master manipulation device, master subsystem generates motion 

signals to perform a certain task at slave site. The slave subsystem receives the master 

actions through the channel and drives a slave manipulator which interacts with the 

environment to perform the intended task. The teleoperation system in this setting is said 

to be unilaterally controlled. However, if the slave subsystem is able to transmit some 

sort of task-related information back to the master subsystem, then teleoperation system 

is said to be bilaterally controlled [1].  

 

 
Figure 1.1 Components of a tele-operation system 

 

Contrary to unilateral systems, bilaterally controlled tele-operation systems provide a 

sense of tele-presence which by far has been the source of increasing number of diverse 

tele-robotic applications. These include the handling of radioactive materials in nuclear 

plants [2]-[6], exploring the underwater environments [7]-[17], executing the space 
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missions [18]-[26], performing the surgical procedures [27]-[37] and monitoring other 

industrial tasks [38]-[46]. Some of the tele-operation systems in use are shown in Fig. 

1.2. 

           
                  (a)                 (b) 

          
           (c)               (d) 

Figure 1.2 Tele-operation systems for different applications 
 

Both the aforementioned unilateral and bilateral control schemes fall under the broad 

class of direct control. More recently, multilateral teleoperation systems have emerged 

which can be treated as the extension of bilateral teleoperation systems having more than 

two robotic devices. The other broad classes for the tele-operation systems in order of 

increasing level of autonomy are shared and supervisory control. However, in the present 

study, we will focus on the direct bilateral control scheme. Specifically, the method of 

state convergence will be explored for bilaterally controlling a non-linear tele-operation 
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based on its TS fuzzy model description. Later the method will be extended to cover the 

case of multilateral teleoperation systems. 

1.1. CONTRIBUTIONS 

The thesis addresses the design of bilateral and multilateral control of teleoperation 

systems based on the method of state convergence. Summarized below are the 

contributions which will further be elaborated in the subsequent chapters: 

1. State convergence method is used to bilaterally control a nonlinear teleoperation 

system which has been approximated by a class of TS fuzzy models. Through the 

introduction of a suitable PDC type control law, design conditions are derived to 

determine the control gains. The proposed bilateral controller is validated in 

MATLAB/Simulink environment using one DoF manipulators. 

2. State convergence method is extended to cover the case of multilateral 

teleoperation systems. An alpha modification is first introduced into the state 

convergence scheme which is then used to develop the extended state 

convergence architecture. This architecture then allows any number of master 

devices to affect the motion of any number of slave devices. The proposed 

extended framework is validated in MATLAB/Simulink environment using one 

DoF manipulators. 

3. The extended version of the state convergence architecture is used to control a 

multi DoF nonlinear teleoperation system based on Lyapunov Krasovskii theory. 

The feasibility of the proposed scheme is verified through MATLAB simulations 

on a two DoF multilateral nonlinear teleoperation system. 

In addition to the above contribution related to the state convergence theory, the other 

major contributions made by the author during PhD studies are the followings: 

4. The design of a computationally fast neo-fuzzy based brain emotional neural 

network is proposed and its applicability is demonstrated for online time series 

prediction problems.  
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5. The design of a neo-fuzzy supported brain emotional learning based pattern 

recognizer is proposed and its effectiveness is evaluated on a number of 

benchmark data sets from UCI Machine Repository.  

Besides the above five major contributions, several other contributions are made by the 

author in the form of various papers. These contributions are summarized below: 

6. The design of fuzzy-logic-based parameter-adjustment model to use with the 

brain emotional learning network; the design of TS fuzzy model and knowledge 

based nonlinear controllers for electromechanical plants such as uncertain single 

link manipulator, magnetic levitation system, DC series motor, aero pendulum, 

ball and beam system, automotive suspension system, rotary inverted pendulum 

and mobile robots. Please refer to the ‘List of Publications’ section for details.  

1.2. THESIS OUTLINE 

The thesis is organized into eight chapters. The current chapter presents the overview of 

teleoperation systems and the contributions. The remainder of the thesis is organized as 

follows: 

Chapter 2: Literature Review 

This chapter briefly presents various techniques available to control the teleoperation 

systems. State convergence method is presented in detail as the rest of thesis is based on 

this method. 

Chapter 3: Fuzzy State Convergence Methodology 

This chapter presents the detailed control design procedure for the bilateral control of a 

nonlinear teleoperation system based on its TS fuzzy description. A fuzzy PDC control 

law is employed that allows using the method of state convergence to derive the design 

conditions necessary for assuring desired dynamic behavior of the teleoperation system. 

MATLAB simulations are included to verify the proposed methodology. 
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Chapter 4: Fuzzy State Convergence Methodology with Transparency Condition 

This chapter introduces a transparency condition to the fuzzy state convergence 

procedure developed in Chapter 3 resulting into a transparency optimized fuzzy state 

convergence method. With this modification, the force feedback gain can be set to unity 

and the desired dynamic behavior of the teleoperation system can also be achieved at the 

same time.  MATLAB simulations are performed on a one DoF time-delayed 

teleoperation system to show the validity of the transparency optimized fuzzy state 

convergence methodology. 

Chapter 5: Fuzzy State Convergence Methodology for Unknown Environments 

This chapter discusses the application of fuzzy state convergence methodology developed 

in Chapter 3 to the case when the model of the slave environment is not known. An extra 

design condition is introduced which ensures that the slave follows the master system in a 

desired dynamic way. The proposed methodology is evaluated through simulations in 

MATLAB environment using a one DoF master/slave system. 

Chapter 6: Extension of State Convergence Method for Multi-Systems 

This chapter describes the extension of state convergence scheme from a single-master-

single-slave system to a multi-master-multi-slave system. The proposed extension is 

applicable to individual systems which can be described by linear models. Simulations 

are carried out in MATLAB environment which show the satisfactory performance of the 

extended state convergence scheme. 

Chapter 7: Extended State Convergence Method Considering Nonlinear Dynamics 

The extended state convergence architecture is modified and used along with Lyapunov-

Krasovskii control theory to design a controller for nonlinear multi DoF teleoperation 

system. A two DoF multi-master-single-slave teleoperation system is simulated in 

MATLAB environment to validate the proposed scheme.  
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Chapter 8: Conclusions and Future Work 

This chapter includes the summary of the work presented in Chapters 3 through 7. In 

addition, suggestions for future directions are also provided. 
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CHAPTER 2: LITERATURE REVIEW 

The advancement in technology has led to the development of autonomous robotic 

systems which are capable of performing a wide variety of tasks in an industrial setting. 

However, the performance of such systems degrades as the environment becomes richer. 

Thus the autonomous systems cannot be relied upon in such circumstances and the 

human intervention becomes necessary to perform the required task. Such human-in-the-

loop systems form an important class of robotics known as teleoperation and have found 

diverse applications ranging from miniaturized surgical procedures to large-scale 

industrial processes. The basic building blocks of the teleoperation systems are the 

human operators, master robotic systems, communication channel, slave robotic systems 

and the remote environments. Depending upon the number of robotic systems involved to 

perform the desired task, teleoperation systems can be classified as either bilateral or 

multilateral systems. In a bilateral teleoperation system, a single master robotic system is 

operated by a human to conduct the task in the remote environment through the use of a 

single slave robotic system whereas more than one master/slave robotic systems are 

involved in the case of a multilateral teleoperation system. In either case, the master and 

slave systems are physically separated and this results in a delayed communication to 

occur between them which can easily destabilize the whole teleoperation system when 

the kinesthetic links are also present. Thus, in order to ensure the successful completion 

of the intended tasks, the stability and performance of the teleoperation systems need to 

be guaranteed under the force feedback from the environments [47]. 

The classical control schemes for the bilateral control are position-position (PP) and 

force-position/velocity (FP/FV). In case of PP scheme, position signals are exchanged 

between the master and slave systems while if the contact force information is delivered 

to the master system in response of received position/velocity signals, then scheme is 

called FP/FV control. These control schemes fall within the broad class of two-channel 

controllers [47]. If both subsystems (master and slave) exchange force and 

position/velocity signals, then the resulting class is known as four-channel controller 

[53]. The selection of a particular control scheme is application-dependant with attention 

to important features like stability, transparency and task performance of which the 
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former two are conflicting objectives [51]. A number of control schemes [47]-[49], using 

either two-channel or four-channel architectures as baseline, have emerged after the 

pioneer work of channel passification to nullify the time delay effects based upon the 

concepts of transmission line theory [50],[52]. These include time domain passivity 

control to make teleoperation system work in a wide variety of environments [54], 

adaptive control to estimate operator or environment models and teleoperation system 

uncertainties [55]-[60], sliding mode control for robustness against disturbances during 

task execution [61]-[70], model-mediated control to reconstruct the slave environment at 

master site [55]-[57], gain scheduling to cope with uncertainties [71],[72], model 

predictive control for constrained teleoperation with poorly known time delays [73]-[80], 

H∞ control for multi-objective optimization [81],[82], frequency domain techniques to 

analyze stability of teleoperation system [83],[84], disturbance observes to lessen 

measurements [85], [86]. Although the aforementioned control schemes are successful in 

the control of teleoperation systems, the design procedure is complex and cannot ensure 

the desired dynamic behavior of the tele-operation system. On the other hand, SC method 

[87]-[90] presents a simple and easy-to-follow way of designing the tele-controllers 

which can also achieve the desired dynamic behavior. However, in its original form, the 

scheme can only be used for linear systems and when there is no time delay in the 

channel or the time delay lies in the small range [87]. In spite of these limitations, 

elegancy of the SC method in terms of simplicity, modeling easiness and achieving 

desired dynamic behavior of teleoperation system, has attracted us to investigate its usage 

for control of nonlinear teleoperation systems represented by TS fuzzy models as these 

models are obtained through the time varying weighted combination of linear subsystems 

as well as to extend its usage for multi-systems. It is worthy to mention here that SC 

method (originally proposed for linear systems) has also been shown to control the 

nonlinear teleoperation system through the use of Lyapunov theory [91],[94] adaptive 

control theory [95] and feedback linearization techniques [92]. Further, SC architecture 

has also been used in other studies to design tele-controllers [99],[101]. The use of fuzzy 

logic and neuro-fuzzy techniques [100],[102]-[112] in control of teleoperation systems 

has also been reported in literature. Classical fuzzy controllers have been designed in 

[102],[103] to control the manipulator and vehicle over the internet. The approximation 
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capability of the fuzzy logic systems has been utilized in [109]-[111] to design the 

adaptive controllers for teleoperation systems. Recently, the use of TS fuzzy models in 

designing the tele-controllers is presented in [112] by employing linear matrix inequality 

(LMI) techniques. However, the use of SC method in conjunction with TS fuzzy models 

has not been investigated yet which forms the first objective of the present study. 

As evident from the previous discussion, bilateral teleoperation systems have been 

extensively studied and several algorithms are available to address the stability, 

transparency and performance issues related to such systems. These bilateral control 

approaches are being extended by the researchers to cover the case of multilateral 

teleoperation systems. For instance, the passivity control based on wave variables was 

proposed in [52] to stabilize the bilateral teleoperation systems against any constant time 

delay. This algorithm has been used in a dual-master/single-slave system [132] to 

perform a therapeutic task where a common virtual object is manipulated by the therapist 

and the patient from distant locations. Another application of the wave variables in 

multilateral teleoperation systems can be found in [133] where the concept of a wave 

node is introduced which helps to connect a number of wave-variables based 

transmission lines originating from multi-master/multi-slave systems and the insensitivity 

of such a multilateral teleoperation framework to arbitrary constant time delays is shown 

through passivity tools. Besides passivity control, time domain passivity approach was 

introduced for the bilateral teleoperation systems [54]. The method helped in reducing the 

conservatism associated with the passivity controller through the introduction of a 

passivity observer which triggered the passivity controller upon the detection of active 

energy and as a result the performance of the bilateral teleoperation system was 

improved. The same technique has been extended to the case of multi-master/single-slave 

teleoperation system in [134], dual-master/dual-slave teleoperation system in [136] and a 

multi-master/multi-slave teleoperation system in [135]. The bilateral control based on the 

estimation of the environmental force through the use of a disturbance observer was 

proposed in [137]. The concept of a dual space was introduced where the position and 

force controls were achieved in the differential and common spaces respectively. The 

extension of this bilateral control scheme is discussed in [138],[139] and a multilateral 

controller is derived in the same dual space. The design of a four channel bilateral 



 10 

controller to achieve transparency was presented in [53]. It has been modified in [140] to 

yield a passive four channel bilateral controller which is then applied to dual-

master/single-slave and single-master/dual-slave teleoperation systems. The application 

of other algorithms including H-∞ optimization [81], adaptive control [60], sliding mode 

control [61] and intelligent control [109] to multilateral teleoperation systems have also 

appeared [141]-[144]. However, the use of state convergence scheme for a multi-

master/multi-slave teleoperation system has not yet been discussed in the literature which 

forms the second objective of the present study. 

2.1. STATE CONVERGENCE METHOD 

The standard state convergence methodology for control of teleoperation systems 

represented by linear models (the subscript ‘m’ in the models represents the master while 

‘s’ represents the slave) is shown in Fig. 2.1. Human operator exerts a force 
m

F on the 

master manipulator. The influence of this exerted force and the resulting master motions 

(states) are transmitted to the slave manipulator through the matrices 2G  and 
s

R  

respectively, which are unknown control parameters. At the same time, the slave tries to 

follow the master motions while interacting with the environment. The environment is 

modeled by a force 
s

F consisting of stiffness 
e

k and viscous friction 
e

b . Thus the reaction 

force 
s

F  of the slave with the environment is transmitted to the master through the matrix 

m
R . A force feedback gain factor 

f
k  is also included in 

m
R . It is assumed that 

environment, in which slave system is operating, is known a priori and thus matrix 
m

R is 

known. The control gains 
m

K and 
s

K are used to stabilize the master and slave systems 

respectively which are unknown. The 3n+1 unknowns including the elements of 
m

K ,
s

K , 

s
R and 2G are found through solution of a set of following equations [87] which establish 

the desired convergence behavior between the master and slave systems as well as the 

desired slave behavior: 
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( ) ( )

1 2

11 21 12 22

11 12 22 12
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A A A A
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                               (2.1) 

where the matrices P and Q contain the desired slave and error poles while other entries 

are: 
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=
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=
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Figure 2.1 State convergence control architecture Figure 2.13State convergence control architecture 
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11

12

21

22

1 2

2

s s s

s s

m m

m m m

s

m

A A B K

A B R

A B R

A A B K

B B G

B B

= +

=

=

= +

=

=

             (2.2) 

In case of constant small delay in the communication channel, the matrix entries in (2.2) 

are replaced as: 

( )

( )( )
( )( )

( )

( )

( )

11

12

21

22

1 2

2 2

s s s s s m m

s s s s m m m

m m m m s s s

m m m m m s s

s s s m

m m m s

A S A B K TB R B R

A S B R TB R A B K

A M B R TB R A B K

A M A B K TB R B R

B S B G TB R B

B M B TB R B G

= + −

= − +

= − +

= + −

= −

= −

                                           (2.3) 

where matrices S and M are computed as: 

( )

( )

12

12

m m s s

s s m m

S I T B R B R

M I T B R B R

−

−

= −

= −
                       (2.4) 

2.2. VARIANTS OF STATE CONVERGENCE METHOD 

2.2.1 TRANSPARENCY OPTIMIZED STATE CONVERGENCE METHOD 

Transparency optimized state convergence scheme is proposed for the bilateral 

teleoperation systems with time delay in the communication channel [96],[97]. It is a 

modified form of the original state convergence scheme where the objectives of reflecting 

the full environmental force to the operator and the desired dynamic behavior of the 

closed loop teleoperation could not be achieved at the same time. This restriction is 

resolved to some extent in the modified version at the expense of limiting the allowable 

time delay in the communication channel and constraining the achievable closed loop 

behavior. Similar to the standard state convergence scheme, transparency optimized state 

convergence scheme also considers the master and slave systems modeled on state space. 
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The block diagram of the transparency optimized state convergence scheme is shown in 

Fig. 2.2 and various parameters forming the architecture are described below: 

 
 

 

T: This scalar parameter represents the time delay offered by the communication channel.  

Fm: This scalar parameter represents the force applied by the human operator onto the 

master system. 
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=
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Figure 2.24Transparency-optimized standard state convergence control architecture 
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G2: This scalar parameter measures the influence of the operator’s force into the slave 

system 

Ze = [ze1,ze2,…,zen]: This vector parameter is the model of the remote slave environment. 

When the environment is modeled by a spring-damper system, then this vector will 

contain two non-zero elements and rest of the elements will be zero. 

G1: This scalar parameter represents the influence of the environmental force when 

reflected onto the master system. 

Rs = [rs1,rs2,…,rsn]: This vector parameter represents the influence of the master’s motion 

signals in the slave system. 

Rm = [rm1,rm2,…,rmn]: This vector parameter represents the influence of the slave’s motion 

signals in the master system. 

Km = [km1,km2,…,kmn]: This vector parameter is the state feedback controller for the master 

system. 

Ks = [ks1,ks2,…,ksn]: This vector parameter is the state feedback controller for the slave 

system. 

Of these, G1, G2, Rs, Rm, Km and Ks form 4n+2 unknown parameters. The parameter G1 

can be freely chosen and is taken as unity when perfect transparency of the teleoperation 

system is desirable. 

2.3.1 STATE CONVERGENCE METHOD FOR UNKNOWN ENVIRONMENTS 

The method of state convergence provides an effective modeling and control design 

framework for bilaterally controlling a tele-robotic system. The modeling of the tele-

robotic system is carried out in state space by representing the master and slave 

manipulators in phase variable form. The control system is then designed to establish a 

state convergence behavior between the slave and the master manipulators with a 

guaranteed transient performance. Original version of the state convergence method 

employs a known model of the environment to compute the control gains for the tele-

robotic system. This limits the use of the scheme in situations when the model or 

parameters of the environment are not known. To deal with the case of unknown 

environments, a modification to the standard state convergence architecture is proposed 

in [98], which requires an extra sensor to measure the environmental force. This modified 
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architecture is depicted in Fig. 2.3. Various parameters defining the modified state 

convergence architecture are listed in Table 2.1. As can be observed from this Table, 

3n+2 control gains need to be determined for a tele-robotic system which has been 

modeled by a pair of n
th order linear differential equations. The interested readers are 

referred to [87],[98] for the detailed design procedure to compute these gains. 

 

 

TABLE 1 TABLE 2.1. PARAMETERS DEFINING THE STATE CONVERGENCE SCHEME 

Parameter Definition Status 

Fm 

Force applied by the human 

operator on the master 

manipulator 

Scalar/Known 

G2 

Influence of the operator’s 

force in the slave 

manipulator 

Scalar/Unknown 

fs 
Measured environmental 

force 
Scalar/Known 

G1 

Influence of the remote 

environmental force in the 

master manipulator 

Scalar/Unknown 

T 
Time delay in the 

communication channel 
Scalar/Known 

Rs 

[rs1,rs2,…,rsn] 
Master-slave interaction n-Vector/Unknown 

Km 

[km1,km2,…,kmn] 

State feedback control gain 

for the master manipulator 
n-Vector/Unknown 

Ks 

[ks1,ks2,…,ksn] 

State feedback control gain 

for the slave manipulator 
n-Vector/Unknown 
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Figure 2.35State convergence control architecture for unknown environments 
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CHAPTER 3: FUZZY STATE CONVERGENCE METHODOLOGY  

This chapter presents the design of a state convergence (SC) based bilateral controller for 

a nonlinear teleoperation system which has been approximated by a Takagi-Sugeno (TS) 

fuzzy model. The selection of SC is made due to the advantages offered by this scheme 

both in the modeling and control design stages. The modeling stage considers 

master/slave systems which can be represented by nth order differential equations while 

the control design stage offers an easy way to determine the control gains required for 

assigning desired closed loop dynamics to teleoperation system. After the master/slave 

systems are represented by TS fuzzy models, a stabilizing fuzzy law is adopted which 

allows deploying the SC scheme with all its benefits to design the fuzzy bilateral 

controller. In this way, not only the simplicity of the design scheme is ensured but also 

the existing SC scheme is able to control a nonlinear teleoperation system based on its TS 

fuzzy model description. As an additional advantage, the SC based existing linear 

bilateral controller can be easily derived from the SC based proposed fuzzy bilateral 

controller. Various cases of master/slave systems originally reported in terms of their 

linear model representation and communication in the absence/presence of time delay are 

all discussed in the corresponding fuzzy framework. MATLAB simulations considering a 

one-degree-of-freedom (DoF) teleoperation system are performed to validate the 

proposed methodology for controlling a nonlinear teleoperation system. 

3.1. PROPOSED FUZZY STATE CONVERGENCE CONTROLLER 

In order to use SC methodology for designing controllers for nonlinear teleoperation 

systems, we assume that the master/slave devices can be approximated by a class of TS 

fuzzy models (3.1) for the case having no zeros in their differential equations [145],[146]: 

( )

1 2

2 3

1
1 1

1

z z

z z

r n

zn i z zij zj z z

i j

z z

x x

x x

x h x a x b u

y x

= =

=

=

= − +

=

∑ ∑

i

i

i

�            (3.1) 
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where ‘n’ represents the number of plant states, ‘r’ represents the number of plant rules 

and  ( )i zh x is the normalized degree of belongingness of the ith fuzzy plant model which 

satisfies the following properties: 

( ) ( )
1

0, 1
r

i z i z

i

h x h x
=

≥ =∑             (3.2) 

In the case of master/slave devices having zeros in their differential equations, the 

considered class of TS fuzzy models with the membership functions ( )i zh x  is given as: 

( )

1 2

2 3

1 1

1

z z

z z

r n

zn i z zij zj z

i j

n

z zj zj

j

x x

x x

x h x a x u

y b x

= =

=

=

=

= − +

=

∑ ∑

∑

i

i

i

�                                   (3.3) 

These TS fuzzy models can be stabilized through a family of fuzzy control laws [113]-

[131]. In this study, a control law proposed in [131] is adopted for master/slave devices 

which will allow us to use existing SC methodology to determine the control gains for 

bilateral tele-operation. The resulting scheme is depicted in Fig. 3.1 and design equations 

are derived in Theorems 3.1-3.4 for different cases, following the lines of [89].  

Theorem 3.1: Given the TS fuzzy model description (3.1) of the master and slave devices 

comprising the nonlinear tele-operation system, the slave device will be able to follow the 

master device in the absence of communication time delay, if the 3n+1 control gains for 

the nonlinear teleoperation system are obtained as a solution of the design equations 

(3.4)-(3.10): 

1
2

1

m

s

b
g

b
=               (3.4)  

( ) ( )1 1 1 1 1 1 0s m m m s sc b r c b r− − − =            (3.5) 

� 

( ) ( )1 1 0sn m mn mn s snc b r c b r− − − =            (3.6)  
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1 1 1 1s s s
c b r p+ = −                         (3.7) 

� 

1sn s sn n
c b r p+ = −              (3.8) 

1 1 1 1m s s
c b r q− = −               (3.9) 

� 

1mn s sn n
c b r q− = −            (3.10) 
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Figure 3.16Scheme for bilateral control of a nonlinear teleoperation system using TS fuzzy models 
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Proof: Consider the nonlinear teleoperation system represented by TS fuzzy model in 

(3.1). By using Fig. 3.1, we can write the i
th rule of fuzzy control law for the master 

device as: 

1 11

n n
mij

m mj mj sj m

j jm

d
u x r x F

b= =

= + +∑ ∑                     (3.11) 

Using the same membership functions as defined for the fuzzy plant model, the net fuzzy 

control law for the master device can be given as: 

( )
1 1 11

1 r n n

m i m mij mj mj sj m

i j jm

u h x d x r x F
b = = =

= + +∑ ∑ ∑          (3.12) 

The master control law in (3.12) yields the closed loop master system as: 

( ) ( ) 1 1
1 1 1

r n n

mn i m mij mij mj m mj sj m m

i j j

x h x d a x b r x b F
= = =

= − + +∑ ∑ ∑
i

        (3.13) 

Note that we will consider n
th part of the system dynamics onwards unless specified 

otherwise. Let us define the time invariant coefficients for closed loop master system as: 

mj mij mij
c d a= −                 (3.14) 

The closed loop master system dynamics in (3.13) can now be given as: 

1 1
1 1

n n

mn mj mj m mj sj m m

j j

x c x b r x b F
= =

= + +∑ ∑
i

                    (3.15) 

Similarly, we can derive the closed loop dynamics for the slave system. From Fig. 3.1, 

the net fuzzy control law for the slave device can be written as: 

( ) 2
1 1 11

1 r n n

s i s sij sj sj mj m

i j js

u h x d x r x g F
b = = =

= + +∑ ∑ ∑          (3.16) 

By plugging (3.16) in (3.1), the closed loop dynamics of the slave device can be given as: 

( ) ( ) 1 1 2
1 1 1

r n n

sn i s sij sij sj s sj mj s m

i j j

x h x d a x b r x b g F
= = =

= − + +∑ ∑ ∑
i

         (3.17) 

We now define the time invariant coefficients for closed loop slave system as: 

sj sij sij
c d a= −                                    (3.18) 

With the help of these coefficients, closed loop slave system is simplified as: 

1 1 2
1 1

n n

sn sj sj s sj mj s m

j j

x c x b r x b g F
= =

= + +∑ ∑
i

              (3.19) 
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Let us define the state convergence error between the slave and master devices as: 

, 1, 2,...,
ej sj mj

x x x j n= − =                      (3.20) 

The closed loop slave dynamics in (3.19) can be written in terms of state convergence 

error as: 

( )1 1 1 2
1 1

n n

sn sj s sj sj s sj ej s m

j j

x c b r x b r x b g F
= =

= + − +∑ ∑
i

        (3.21) 

Using knowledge of (3.15), (3.19) and (3.20), the n
th-error dynamics describing state 

convergence behavior can be given as: 

( ) ( )( ) ( ) ( )1 1 1 1 2 1
1 1

n n

en sj m mj mj s sj sj mj s sj ej s m m

j j

x c b r c b r x c b r x b g b F
= =

= − − − + − + −∑ ∑
i

        (3.22) 

Using (3.21) and (3.22), we can write the augmented slave-error dynamics as: 

11 12 1

1 21 22 2

n
sn sj

m

j ej
en

xa a bx
F

xa a b
x =

        = +           

∑
i

i
            (3.23) 

where, 

( ) ( )

11 1

12 1

21 1 1

22 1

1 1 2

2 1 2 1

sj s sj

s sj

sj m mj mj s sj

mj s sj

s

s m

a c b r

a b r

a c b r c b r

a c b r

b b g

b b g b

= +

= −

= − − −

= −

=

= −

                               (3.24) 

In SC method, it is desired that error evolves as an autonomous system. This is possible if 

the matrix entries 21a and 2b in (3.23) are zero. By setting 2b equal to zero, the following 

condition is obtained: 

1
2

1

m

s

b
g

b
=                         (3.25) 

Also, the following conditions are obtained after zeroing the matrix entry 21a : 

( ) ( )1 1 0, 1,2,...,
sj m mj mj s sj

c b r c b r j n− − − = =                               (3.26) 

If conditions (3.25)-(3.26) are satisfied, then the desired dynamic behavior can be 

assigned to the slave and error systems. The characteristic polynomial of (3.23) will be 
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compared in this case to the desired slave-error polynomial to yield: 

( ) ( )
( ) ( )

11

22

j

j

s a s p

s a s q

− = +

− = +
             (3.27) 

where, the coefficients 
j

p and 
j

q form the desired slave and error polynomials 

respectively: 

1
2 1

1
2 1

... 0

... 0

n n

n

n n

n

s p s p s p

s q s q s q

−

−

+ + + + =

+ + + + =
                              (3.28) 

From (3.27), the following conditions are obtained: 

1 , 1,2,...,
sj s sj j

c b r p j n+ = − =             (3.29) 

1 , 1,2,...,
mj s sj j

c b r q j n− = − =                                 (3.30) 

The resulting condition (3.25) is the same as design condition (3.4) while evaluating 

(3.26), (3.29) and (3.30) for all values of ‘j’, we obtain the design conditions (3.5)-(3.6), 

(3.7)-(3.8) and (3.9)-(3.10) respectively. This completes the proof■ 

Remark 3.1: The development of SC method is shown here for a class of TS fuzzy 

models with common input and common output matrices. The extension of SC method to 

a more general class of TS fuzzy models will require the modification of the fuzzy 

control law to handle the time-varying coupling terms in that case. 

Remark 3.2: Since the slave device is interacting with the environment, the control gains 

found through SC scheme for fuzzy slave law will be adjusted to handle the 

environmental impact. The implemental fuzzy control law for slave device will be: 

( ) ( )1 2
1 1 11

1 r n n

s i s sij s sj sj sj mj m

i j js

u h x d b x r x g F
b

λ
= = =

= + + +∑ ∑ ∑           (3.31) 

where, 
sj

λ  are the coefficients of reaction force. It should be noted that inclusion of a 

compensation term in (3.31) will not affect the design procedure. 

Remark 3.3: SC method of Theorem 3.1 provides the gains, 
mj

c and
sj

c , for the master and 

slave devices. These gains along with the system’s parameters (3.1) are used to determine 

the fuzzy control gains, 
mij

d and
sij

d , for stabilizing the master and slave devices through 

the application of (3.14) and (3.18) respectively. Further, these gains will also provide the 
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stabilizing control gains, 
mj

k and
sj

k , for master and slave devices comprising the linear 

tele-operation system using the following relations: 

( )

( )

1

1

1
, 1, 2,...,

1
, 1, 2,...,

mj mj mj

m

sj sj sj

s

k a c j n
b

k a c j n
b

= + =

= + =

                     (3.32) 

where 
mj

a and 
sj

a are system parameters for linear teleoperation system. Thus the design 

method of Theorem 3.1 is a more general case as the control gains for linear bilateral 

controller of [87]-[89] can be derived from it.    

Remark 3.4: The information about membership functions is not used here for designing 

the fuzzy bilateral controller. Therefore any type of membership functions can be 

employed to implement the fuzzy controllers. However, we will use triangular 

membership functions in this study due to their lower complexity. 

Remark 3.5: The modification to the fuzzy slave control law and the computation of 

control gains, as described above in remarks 2 and 3 respectively, will also hold for the 

cases of tele-operation systems in Theorem 3.2-3.4.   

Theorem 3.2: Given the TS fuzzy model description (3.3) of the master and slave devices 

comprising the nonlinear tele-operation system, the slave device will be able to follow the 

master device in the absence of communication time delay, if the 3n+1 control gains for 

the nonlinear teleoperation system are obtained as a solution of the design equations 

(3.33)-(3.39) and condition (3.40) is also satisfied: 

2
mn

sn

b
g

b
=                         (3.33) 

( ) ( )1 1 1 1 1 1 1 1 0sn m s s s mn m m s mb b c b r b b r b c+ − + =                               (3.34) 

� 

( ) ( ) 0sn mn sn sn sn mn mn mn sn mnb b c b r b b r b c+ − + =          (3.35) 

1 1 1 1 1 1m s s s m
b c b r p b+ = −                       (3.36) 

� 

mn sn sn sn n mn
b c b r p b+ = −           (3.37) 
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1 1 1sn s mn m mn
b r b c b q− =                       (3.38) 

� 

sn sn mn mn mn n
b r b c b q− =                                  (3.39) 

2
1 1 1 1

2

,...,s sn
s m sn mn

m mn

b b
b b b b

b b
− −= =                     (3.40) 

Proof: Consider the teleoperation system represented by TS fuzzy models (3.3). The 

development for computing the closed loop master and slave systems follows from 

Theorem 3.1 and will not be included here. By using the control laws (3.11) and (3.16) 

after setting the corresponding input matrix entries as unity and through the introduction 

of time invariant coefficients as defined in (3.14) and (3.18), the closed loop master and 

slave system for this case can be given as: 

1 1

n n

mn mj mj mj sj m

j j

x c x r x F
= =

= + +∑ ∑
i

         (3.41) 

2
1 1

n n

sn sj sj sj mj m

j j

x c x r x g F
= =

= + +∑ ∑
i

         (3.42) 

Different from Theorem 3.1, we define the state convergence error for teleoperation 

system having zeros (3.3) as: 

, 1,2,...,
ej sj sj mj mj

x b x b x j n= − =                     (3.43) 

The closed loop slave dynamics can be written in terms of this state error as: 

2
1 1

n n
sj sj

sn sj sj sj ej m

j jmj mj

b r
x c r x x g F

b b= =

 
= + − +  

 
∑ ∑

i

                 (3.44) 

The error dynamics for the first 1n − components of the state convergence error can be 

given as: 

1 1, 1,2,..., 1ej sj sj mj mjx b x b x j n+ += − = −
i

                               (3.45) 

We can write (3.45) in terms of slave and error states as: 

1
1 1

1 1

, 1, 2,..., 1sj mj
ej sj mj sj ej

mj mj

b b
x b b x x j n

b b

+

+ +

+ +

 
= − + ∀ = −  
 

i

         (3.46) 

By using (3.41) and (3.42) with (3.43), the nth part of error dynamics can be found as: 
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( ) ( ) ( )2
1 1

n n

en sn sj mn mj sj sn sj mn mj mj sn mn m

j j

x b c b r x b r b c x b g b F
= =

= − + − + −∑ ∑
i

             (3.47) 

The nth error dynamics (3.47) can be written in terms of slave and error states as: 

( )2
1 1

n n
sj sj sn sj mn mj

en sn sj mn mj sn sj mn mj sj ej sn mn m

j jmj mj mj

b b b r b c
x b c b r b r b c x x b g b F

b b b= =

   −
= − + − − + −      

   
∑ ∑

i

 

                                              (3.48) 

Using knowledge of (3.44), (3.46) and (3.48), the augmented slave-error dynamics for 

teleoperation system (3.3) can be given as: 

11 12 1

21 22 2

s s

m

e
e

xA A Bx
F

xA A B
x

 
      = +          

 

i

i
         (3.49) 

where, 

( ) 11 1

1,2,...,
11

1

0        
nn

j n

sj

sj sj

mj n

I

A b
c r

b

−− ×

=

×

 
 
 =  
 +     

                     (3.50) 

( )1

1,2,...,
12

1

0
n n

j n

sj

mj n

A r

b

− ×

=

×

 
 
 =  
 −     

          (3.51) 

( )

( ) ( )1 1

1,2,..., 1

1
1 1

1

21
1,2,...,

1

0              

n n

j n

sj

sj mjn

mj

j n

sj sj

sn sj mn mj sn sj mn mj

mj mj n

b
diag b b

b

A

b b
b c b r b r b c

b b

− × −

= −

+

− ×

+

=

×

  
 −    
 =
 
  − + −   
  

                    (3.52) 

( )

( ) ( )1 1

1,2,..., 1

1 1
1

22
1,2,...,

1

0   

      

n n

j n

mj

n

mj

j n

sn sj mn mj

mj n

b
diag

b

A

b r b c

b

− × −

= −

− ×

+

=

×

  
     
 =
 

 −    
  

                   (3.53) 

( ) ( )1 11 1

1 2

22

00
,

nn

sn mn

B B
b g bg

− ×− ×   
= =      −   

                             (3.54) 
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For the error to evolve as an autonomous system, we must set 21A and 2B equal to zero. 

By doing so, we have the following conditions: 

1

1

0, 1,2,..., 1sj

sj mj

mj

b
b b j n

b

+

+

− = = −                                (3.55) 

0, 1, 2,...,sj sj

sn sj mn mj sn sj mn mj

mj mj

b b
b c b r b r b c j n

b b
− + − = =                       (3.56) 

2 0
sn mn

b g b− =                                              (3.57) 

After the condition for the error to evolve as an autonomous system is met, desired 

dynamics can be assigned to both slave and error systems as: 

11

22

sI A sI P

sI A sI Q

− = −

− = −
             (3.58) 

where, P and Q are the matrices representing the desired slave and error dynamics 

respectively as: 

( )

( )
( )

( )

1 11 1 1 1

1,2,..., 1,2,...,

1 1

0 0
,

n nn n

j n j n

j jn n

I I

P Q
p q

− −− × − ×

= =

× ×

   
   = =
   − −   

                 (3.59) 

By solving (3.58), we obtain the following conditions: 

, 1,2,...,
mj sj sj sj mj j

b c b r b p j n+ = − =                     (3.60) 

, 1,2,...,
sn sj mn mj mn j

b r b c b q j n− = =          (3.61) 

It can be observed that condition (3.57) is the same as the design condition (3.33). Also, 

by evaluating (3.56), (3.60) and (3.61) for all values of ‘j’, the conditions (3.34)-(3.35), 

(3.36)-(3.37) and (3.38)-(3.39) are obtained respectively. Further, the condition (3.55) 

establishes the condition (3.40). This completes the proof■ 

Remark 3.6: The extra condition to be satisfied, in the case of control design for 

teleoperation system (8) as presented in Theorem 3.2, will prevent the steady state error 

between the master and slave states. 

Theorem 3.3: Given the TS fuzzy model description (3.1) of the master and slave devices 

comprising the nonlinear tele-operation system, the slave device will be able to follow the 

master device in the presence of sufficiently small communication time delay, if the 3n+1 

control gains for the nonlinear teleoperation system are obtained as a solution of the 
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design equations (3.62)-(3.68): 

( ) ( )1 1 2 1 11 1 0m mn s s sn mTb r b g Tb r b+ − + =                    (3.62) 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 11 1 1 1 0m mn s s s sn m m m mn s s sn mTb r b r Tb r b r Tb r c Tb r c+ − + + + − + =                  (3.63) 

� 

( ) ( ) ( ) ( ) ( )

( )
1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1

1 0

m mn s sn s sn m mn m mn sn s sn mn m mn s sn

s sn m mn

Tb r b r Tb r b r Tb r c Tb r c Tb r Tb r

Tb r Tb r

−

−

+ − + + + − + − + +

+ =

                                                           (3.64) 

( )2
1 1 1 1 1 1 1 1 1 1 11

s s s sn m m s s sn m m mn s sn
b r Tb r b r c Tb r c p T b r b r− + − = − −       (3.65) 

� 

( )2 2
1 1 1 1 1 1 1 1 1 1 11

s sn s sn m mn sn s sn mn s sn s sn m mn n m mn s sn
b r Tb r b r c Tb r c Tb r T b r b r p T b r b r− −− + − − + = − −  

                      (3.66) 

( ) ( ) ( )2
1 1 1 1 1 1 11 1 1

m mn s s s sn m m mn s sn
Tb r b r Tb r c q T b r b r+ − + = −                  (3.67) 

� 

( ) ( ) ( ) ( )2
1 1 1 1 1 1 11 1 1 1

m mn s sn s sn mn m mn s sn n m mn s sn
Tb r b r Tb r c Tb r Tb r q T b r b r−+ − + − + = −    (3.68) 

Proof: Consider the TS fuzzy model representation of master/slave systems in (3.1). The 

net fuzzy control law for the master side by considering time delay in the communication 

channel is given as: 

( ) ( )
1 1 11

1 r n n

m i m mij mj mj sj m

i j jm

u h x d x r x t T F
b = = =

= + − +∑ ∑ ∑             (3.69) 

The closed loop TS fuzzy master system with the control law in (3.69) and using the 

definition of time invariant coefficients, can be given as: 

( )1 1
1 1

n n

mn mj mj m mj sj m m

j j

x c x b r x t T b F
= =

= + − +∑ ∑
i

                              (3.70) 

The fuzzy control law for the slave system with the inclusion of time delay in the channel 

can be given as: 

( ) ( ) ( )2
1 1 11

1 r n n

s i s sij sj sj mj m

i j js

u h x d x r x t T g F t T
b = = =

= + − + −∑ ∑ ∑                  (3.71) 

The closed loop fuzzy slave system can now be obtained as: 
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( ) ( )1 1 2
1 1

n n

sn sj sj s sj mj s m

j j

x c x b r x t T b g F t T
= =

= + − + −∑ ∑
i

            (3.72) 

The time delay in the communication channel is assumed to be small and applied force is 

assumed to be constant. Thus the delayed signals in (3.70) and (3.72) will be replaced 

with their first order approximation based on Taylor series as: 

( )

( )

( )

mjmj mj

sjsj sj

mm m m

x t T x T x

x t T x T x

F t T F T F F

− −

− −

− − =

i

i

i

�

�

�

                     (3.73) 

By using (3.73), the closed loop master and slave systems in (3.70) and (3.72) can be 

given as: 

1

1 1 1
1 1 1

n n n

mn sj snmj mj m mj sj m mj mn m m

j j j

x c x b r x b T r x r x b F
−

= = =

 
= + − + + 

 
∑ ∑ ∑

i i i

      (3.74) 

1

1 1 1 2
1 1 1

n n n

sn mj mnsj sj s sj mj s sj sn s m

j j j

x c x b r x b T r x r x b g F
−

= = =

 
= + − + + 

 
∑ ∑ ∑

i i i

      (3.75) 

By plugging (3.75) in (3.74) and considering the phase variable representation of the TS 

fuzzy system in (3.1), the closed loop master system in (3.74) can be evaluated as: 

( )

( ) ( )

( )

1 1 1
1 1

2 1 1
21 1

1 1 1 1 1 1 1 1 2
1 1

1

1

n n

mj m mn s sj mj m mj m mn sj sj

j j

mn
n n

m mn s sn
m mj sj m mn s sj mj m m mn s m

j j

c Tb r b r x b r Tb r c x

x
T b r b r

Tb r x T b r b r x b Tb r b g F

= =

− −

+ +
= =

 
− + − − 

 =
 −

+ + − 
 

∑ ∑

∑ ∑

i

 

                          (3.76) 

Similarly, after eliminating master side dynamics from the closed loop slave system in 

(3.75), we obtain the following representation of the closed loop slave system: 

( )

( ) ( )

( )

1 1 1 1
1 1

2 1 1
21 1

1 1 1 1 1 1 2 1 1
1 1

1

1

n n

s sj s sn mj mj sj s sn m mj sj

j j

sn
n n

m mn s sn
s sn m mj sj s sj mj s s sn m m

j j

b r Tb r c x c Tb r b r x

x
T b r b r

T b r b r x Tb r x b g Tb r b F

= =

− −

+ +
= =

 
− + − + 

 =
 −

− + − 
 

∑ ∑

∑ ∑

i

   

                                                                                                         (3.77) 

The closed loop slave dynamics in (3.77) are further processed to include the error term 

(3.20) as: 
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( )

( ) ( )

( ) ( )

1 1 1 1 1 1
1 1

2 1 1
21 1

1 1 1 1 1 1 1 2 1 1
1 1

1

1

n n

sj s sn m mj s sj s sn mj sj s sj s sn mj ej

j j

sn
n n

m mn s sn
s sn m mj s sj sj s sj ej s s sn m m

j j

c Tb r b r b r Tb r c x b r Tb r c x

x
T b r b r

T b r b r Tb r x Tb r x b g Tb r b F

= =

− −

+ +
= =

 
− + − − − + 

 =
 −

− + + − 
 

∑ ∑

∑ ∑

i  

               (3.78) 

Using (3.20), (3.76) and (3.77); the error dynamics for master-slave system under 

communication channel delay can be determined as: 

( )

1 1
1 1

1 1 1 1
1 1 1 1

1 1

2
1 1 1 12

1 1
2

1

1

1

s sj s sn mj mj
n n

s sj s sn mj mj

m mn s sj sj s sn m mj sj ej

j j m mn s sj

m mj m mn sj

en
s sn m mj m mj s sj

m mn s sn

m

b r Tb r c c
b r Tb r c c

Tb r b r c Tb r b r x x
Tb r b r

b r Tb r c

x T b r b r Tb r Tb r
T b r b r

T b

= =

 − − +
− −  

+ − − +    +   
− + 

= + −
−

−

∑ ∑

i

( )

( )

1 1
2

1 1 1 1 1
1 11

1 2 1 1 1 1 2

n n

sj s sj m mn s sj ej

j jmn s sj

s s sn m m m mn s m

x Tb r T b r b r x
r b r

b g Tb r b b Tb r b g F

− −

+ +
= =

 
 
 
 
 
 

    + + +  
  

 − − +
 
 
 

∑ ∑

               (3.79) 

The augmented slave-error system dynamics can now be given as: 

( ) ( )

( ) ( )

11 11 12 12
1 1
1 1 1

1 2
21 21 22 22

1 1
1 1

j j
j jn

sn j j sj

m

j ej
en

j j
j j
j j

a a a a
x bx

F
x b

x a a a a

∗ ∗

− −
≠ ≠

∗ ∗
=

− −
≠ ≠

    
+ +                = +             + +     

    
 

∑
i

i
                (3.80) 

where matrix entries imply the evaluation at a particular value. Again for the error to 

evolve as an autonomous system, the following conditions must be satisfied: 

( )

2

21 21
1
1

0

0, 1,2,...,
j

j
j

b

a a j n
∗

−
≠

=

 
+ = = 
 

          (3.81) 

Expanding (3.81) yields: 

1 2 1 1 1 1 2 0
s s sn m m m mn s

b g Tb r b b Tb r b g− − + =                    (3.82) 

1 1 2
1 1 1 1

1 1 1 1 2
11 1
11 1

0, 1, 2,...,

s sj s sn mj mj

s sn m mj m mj s sj

m mn s sj sj s sn m mj

jm mn s sj
jm mj m mn sj j

b r Tb r c c
T b r b r Tb r Tb r

Tb r b r c Tb r b r j n
T b r b r

b r Tb r c
−
≠

 − − +
 + − 
 + − + = =   −   − + 

     

               (3.83) 
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Now we can compare the characteristics polynomial of (3.80) to the desired polynomial 

to assign the desired dynamics to slave and error systems as: 

( ) ( )

( ) ( )

11 11
1
1

22 22
1
1

, 1,2,...,

, 1,2,...,

jj
j
j

jj
j
j

s a a s p j n

s a a s q j n

∗

−
≠

∗

−
≠

  
   − + = + = 

   
  

  
   − + = + =    

  

                      (3.84) 

Evaluation of (3.84) yields the following equations: 

( ) ( )

( )

2
11 1 1 1 1 1 1
1

2
1 11 , 1,2,...,

jsj s sn m mj s sj s sn mj s sn m mj s sjj
j

j m mn s sn

c Tb r b r b r Tb r c T b r b r Tb r

p T b r b r j n

−
≠

− + − + − =

− − =

     (3.85) 

( ) ( )

( )

1
1

2
1 1 1 1 1 1 1

2
1 11 , 1, 2,...,

j
j

s sj s sn mj mj m mn s sj s sj m mn s sjj

j m mn s sn

b r Tb r c c Tb r b r Tb r T b r b r

q T b r b r j n

−
≠

− − + + + =

− − =

                (3.90) 

The condition (3.82) corresponds to the design condition (3.62) while the design 

conditions (3.63)-(3.64), (3.65)-(3.66) and (3.67)-(3.68) are obtained as a result of 

evaluating (3.83), (3.85) and (3.86) respectively. This completes the proof■ 

Remark 3.7: The assumption of constant time delay is valid if the master/slave devices 

communicate over a dedicated link instead of computer networks where time delay is 

variable. Further, time delay is assumed to lie in small range which is also desired to 

avoid significant steady error between master and slave states due to the assumption of 

constant applied force by the operator. 

Remark 3.8: The method of Theorem 3.3 provides the design conditions in analytic form 

for controlling the nonlinear time-delayed tele-operation system having no zeros in its 

differential equation representation as opposed to [87]-[89] where analytic expressions 

are not provided due to the involved matrix inverse operations. The same remark will 

also hold for the design conditions in Theorem 3.4 for the time-delayed tele-operation 

system containing zeros in its differential equation representation.   

Theorem 3.4: Given the TS fuzzy model description (3.3) of the master and slave devices 

comprising the nonlinear tele-operation system, the slave device will be able to follow the 

master device in the presence of communication time delay, if the 3n+1 control gains for 
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the nonlinear teleoperation system are obtained as a solution of the design equations 

(3.87)-(3.93) and condition (3.40) is also satisfied: 

( ) ( )2 2 1 0sn sn mn mng Tr b Tr g b− + − =               (3.87) 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 0sn mn mn m s mn sn sn s m mn sn sn m m sn mn mn s sb Tb r b c b Tb r b c b Tb r b r b Tb r b r+ − + − + + + =  

                    (3.88) 

� 

( ) ( ) ( ) ( )

( ) ( )2 2
1 1 0

sn mn mn mn sn mn sn sn sn mn mn sn sn mn mn sn mn mn sn sn

mn sn sn mn mn sn mn mn sn sn

b Tb r b c b Tb r b c b Tb r b r b Tb r b r

Tb T b r b r Tb T b r b r− −

+ − + − + + + +

+ − + =
   

                          (3.89) 

( )2
1 1 1 1 1 1 1 1 1 1 1

m s sn s m sn m m s s m sn mn
b c Tr b c Tr b r b r p b T r r− − + = − −                  (3.90) 

� 

( )2 2
1 1 1

mn sn sn sn mn sn mn mn sn sn sn mn mn sn sn n mn sn mn
b c Tr b c Tr b r b r T r b r Tb r p b T r r− −− − + + − = − −    (3.91) 

( ) ( ) ( )2
1 1 1 1

mn sn sn m sn mn mn s mn sn mn
b Tb r c b Tb r r q b T r r− + + + = −                  (3.92) 

� 

( ) ( ) ( ) ( )2 2
1 1

mn sn sn mn sn mn mn sn sn mn mn sn n mn sn mn
b Tb r c b Tb r r Tb T b r r q b T r r−− + + + − + = −    (3.93) 

Proof: Consider the TS fuzzy model representation of master/slave systems in (3.3). 

Using the TS fuzzy control laws for the master and slave sides with time delay in the 

channel, the corresponding closed loop systems are obtained as: 

( )
1 1

n n

mn mj mj mj sj m

j j

x c x r x t T F
= =

= + − +∑ ∑
i

          (3.94) 

( ) ( )2
1 1

n n

sn sj sj sj mj m

j j

x c x r x t T g F t T
= =

= + − + −∑ ∑
i

          (3.95) 

Using the approximations in (3.73), closed loop master (3.94) and slave (3.95) systems 

can be given as: 

1

1 1 1

n n n

mn sj snmj mj mj sj mj mn m

j j j

x c x r x T r x r x F
−

= = =

 
= + − + + 

 
∑ ∑ ∑

i i i

           (3.96) 



 32 

1

2
1 1 1

n n n

sn mj mnsj sj sj mj sj sn m

j j j

x c x r x T r x r x g F
−

= = =

 
= + − + + 

 
∑ ∑ ∑

i i i

         (3.97) 

By eliminating slave dynamics from (3.96) and master dynamics from (3.97), the 

following closed loop systems are obtained: 

( )

( ) ( )

( )

1 1

2 1 1
2

1 1 2
1 1

1

1
1

n n

mj mn sj mj mj mn sj sj

j j

mn
n n

mn sn
mj sj mn sj mj mn m

j j

c Tr r x r Tr c x

x
T r r

T r x T r r x Tr g F

= =

− −

+ +
= =

 
− + − − 

 =
 −

+ + − 
 

∑ ∑

∑ ∑

i

       (3.98) 

( )

( ) ( )

( )

1 1

2 1 1
2

1 1 2
1 1

1

1

n n

sj sn mj mj sj sn mj sj

j j

sn
n n

mn sn
sn mj sj sj mj sn m

j j

r Tr c x c Tr r x

x
T r r

T r r x T r x g Tr F

= =

− −

+ +
= =

 
− + − + 

 =
 −

− + − 
 

∑ ∑

∑ ∑

i

         (3.99) 

Using the definition of error state introduced in (3.43), the closed loop slave system in 

(3.99) can be expressed as: 

( )

( )

( )

1 1

2
1 1

12
1 1 2

1 11 1

1

1

n n
sj sn mjsj sj

sj sn mj sj sn mj sj ej

j jmj mj mj

sn

n n
mn sn sj sj

sn mj sj sj ej sn m

j jmj mj

r Tr cb b
c Tr r r Tr c x x

b b b
x

T r r b r
T r r Tr x T x g Tr F

b b

= =

− −
+

+ +
= =+ +

 − 
 − + − − +    

=  
−   

− + + −   
  

∑ ∑

∑ ∑

i

       

             (3.100) 

The error dynamics of a master-slave system in the presence of zeros as well as time 

delay in the channel can be determined using (3.43), (3.98) and (3.99), and expressed in 

terms of slave-error states as: 

( )

1 1

2

2

1

1

sn sj sn sn mj mn mj

sn sj sn sn mj mn mj
n n

mn mn sj

sn sj sn sn mj sj ejsj
j j mjmn mn sj

mn mj mn mn sj mj

sn sn mj mn mj snen

mn sn

b r Tb r c b c
b c Tb r r b r

Tb r r
b r Tb r c x xb

bTb r c
b c Tb r r b

T b r r Tb r Tb rx
T r r

= =

− − + 
− − +       − − −  

+    +  

+ −=
−

+

∑ ∑

i

( )
( )

( )

21 1

1 112
1 1 1

1

2 2

sj
n n

sn sj mn mn sj

sj ejsj
j j mjsn sj mn mn sj

mj

sn sn sn mn mn mn m

Tb r T b r r
x xb

bTb r T b r r
b

b g Tb r b Tb r g F
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 
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 
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                                                                    (3.101) 

Slave-error dynamics in (3.100) and (3.101) can be combined with the model definition 

in (3.3) and conditions (3.46) to give the augmented dynamics in (3.49) with the 

following n n× system matrix and 1n× input matrix entries: 

( )

( )

11 1

11 1, 1

12

1

2

         0                         

1

nn

j

sj sj

sj sn mj sj sn mj

mj mj

j j

sj

sn mj sj

mj

mn sn

I

b b
c Tr r r Tr c

b b
A

b
T r r Tr

b

T r r

−− ×

− ≠

+

+

 
 
   
  − + − +     

=   
   

−        
  − 

                       (3.102) 

( )

( )

1, 1

1

12

1

2

0

1

j j

n n

j

sj sn mj sj

mj mj

mn sn

r Tr c Tr
A

b b

T r r

− ≠

− ×

+

 
 
    −

=  − +          
 
 − 

      (3.103) 

( )

( ) ( )1 1

1,2,..., 1

1

1 1
1

21

            0                                                    

n n

j n

sj

sj mjn

mj

sn sj sn sn mj mn mj

sn sj sn sn mj

mn mn sj

mn mj mn mn sj

b
diag b b

b

b c Tb r r b r
A

b r Tb r c
Tb r c

b c Tb r r

− × −

= −

+

− ×

+

 
−  

 

− − +
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− − 
+   + 

( )
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1, 12
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1
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j j j
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 
 
 
 
     + −       +    − +          
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                        (3.104) 
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1 1
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                      0                                          
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mj
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j jj

sn sj mn mn sjsn sj sn sn mj mn mj mn mn sj

mj mj

b
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b b
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= −

− ×
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− ≠
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 
  
 

=    +− − +
  − +

   
   

( )

1

21 mn snT r r

 
 
 
 
  
  
  
  
  − 

  

            (3.105) 
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( ) ( )1 1 1 1

1 22 2 2
2 2

0 0

,

1 1

n n

sn sn sn sn mn mn mn

mn sn mn sn

B Bg Tr b g Tb r b Tb r g

T r r T r r

− × − ×   
   

= =− − − +   
   − −   

                          (3.106) 

The error will evolve as an autonomous system in the absence of 21A and 2B . By setting 

them equal to zero, we obtain condition (3.40) and the following conditions: 

( )

1, 12

12

1

0, 1,2,...,

j j j

sn sj sn sn mj mn mj sn sn mj mn mj sn sj

sn sj sn sn mj sjsj

sn sj mn mn sjmn mn sj

mn mj mn mn sj mjmj

b c Tb r r b r T b r r Tb r Tb r

b r Tb r c j nbb
Tb r T b r rTb r c

b c Tb r r bb

− ≠

+

+

− − +   + −
   

− − + = =    
− ++      +    

              (3.107) 

2 2 0
sn sn sn mn mn mn

b g Tb r b Tb r g− − + =                   (3.108) 

When the error evolves as an autonomous system, desired dynamics can be posed on a 

slave-error augmented system through the application of (3.58) which yields the 

following conditions: 

( )

1, 1

12

1

21 , 1,2,...,

j j j

sj sj sj

sj sn mj sj sn mj sn mj sj

mj mj mj

j mn sn

b b b
c Tr r r Tr c T r r Tr

b b b

p T r r j n

− ≠

+

+

   
− + − + − =      

   

− − =

                 (3.109) 

( ) ( )
( )

1, 12

21 , 1,2,...,

j jj

sn sj sn sn mj mn mj mn mn sj sn sj mn mn sj

j mn mn sn

b r Tb r c b c Tb r r Tb r T b r r

q b T r r j n

− ≠

− − + − + =

− =
             (3.110) 

Equation (3.108) gives the design condition (3.87). Evaluation of equations (3.107), 

(3.109) and (3.110) for all values of ‘j’ gives the design conditions (3.88)-(3.89), (3.90)-

(3.91) and (3.92)-(3.93) respectively. This completes the proof■ 

3.2. SIMULATION RESULTS 

In order to validate the SC methodology for the control of nonlinear teleoperation system 

represented by TS fuzzy models, MATLAB simulations are performed using one DoF 

nonlinear teleoperation system in Simulink environment. The considered teleoperation 

system has the following form: 

sin
z z z z z z z z

J b m gl uθ θ θ+ + =
ii i

                              (3.111) 

where, subscript z can be either m or s representing master or slave devices respectively. 
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The definition of various parameters of teleoperation system (3.111) along with their 

numerical values is included in Table 3.1. 

To apply the presented approach, we will first construct the TS fuzzy model of 

teleoperation system (3.111) using sector nonlinearity method. To this end, we first write 

the teleoperation system in state space form as: 

1 2

2 1 2

1

z z

z z z
z z z z z

z z z

x x

m gl b
x x x u

J J J
η

=

= − − +

i

i                              (3.112) 

where 1z z
x θ= , 2z z

x θ=
i

represent the position and velocity signals of the teleoperation 

system while ( )
( )

( )
1

1

sin
z

z

z

x t
t

x t
η = is defined to be the scheduling variable. Let the operating 

region for the teleoperation position signal be restricted in the range[ ]/ 3 / 3π π− . The 

extreme values for the scheduling variable over this range are found to be z min 0.827η =  

and z max 1.0η = . With knowledge of these values, the following fuzzy sets are 

constructed: 

( )

( ) ( )

1

1 zmin
1

max z min

2 1

1                  , 0

, 0

1

z

z z
z

z

z z

x

x
µ η η η

η η

µ η µ η

=


= −
≠ −

= −

                  (3.113) 

Note that only two fuzzy sets are used to approximate the nonlinear teleoperation system 

and therefore ( ) ( ) , 1, 2i z i zh iη µ η= = . The approximation accuracy can be increased 

further by considering more fuzzy sets in the region of interest. The fuzzy sets in (3.113) 

now allow us to define the TS fuzzy model of teleoperation system through the following 

plant rules: 

Model Rule 1: IF 
z

η is 1µ  THEN 

1 2

2 11 1 12 2 11

z z

z z z z z z z

x x

x a x a x b u

=

= − − +

i

i
                   (3.114) 

Model Rule 2: IF 
z

η is 2µ  THEN 
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1 2

2 21 1 22 2 21

z z

z z z z z z z

x x

x a x a x b u

=

= − − +

i

i
                  (3.115) 

The master/slave system coefficients in (3.114)-(3.115) for the case of smaller 

master/bigger slave (Table 3.1) are found to be: 

11 12 11

21 22 21

58.86, 30.0, 6.0

48.67, 30.0, 6.0
m m m

m m m

a a b

a a b

= = =

= = =
                             (3.116) 

11 12 11

21 22 21

29.43, 3.75, 0.38

24.34, 3.75, 0.38
s s s

s s s

a a b

a a b

= = =

= = =
                  (3.117) 

Assume that the slave is interacting with the soft environment for which the stiffness and 

viscous friction are given to be 5 /
e

k Nm rad= and 0.1 /
e

b Nmrad s= . Further, let the 

force feedback gain be 0.1, the force feedback matrix from the slave to master is then 

given as: 

( )0.5 0.01mR =                     (3.118) 

Now, let the desired poles of error and slave dynamics be placed at 1,2 10s = − . Also, 

assume that no time delay exists on the communication link between master and slave 

systems. To determine the control gains for teleoperation system (3.112) in such a case 

we will use the design conditions from Theorem 3.1 as the system under study has no 

zeros. Through the design equations (3.25), (3.26), (3.28)-(3.30) and system parameters 

(3.116)-(3.118), we obtain the control gains as: 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

2

103.00 20.06

97.00 19.94

8.00 0.16

16

m m m

s s s

s s s

C c c

C c c

R r r

g

= = − −

= = − −

= = − −

=

                 (3.119) 

For the implementation of the fuzzy control laws on master and slave sides, the following 

gains are obtained using (3.14), (3.18), (3.116), (3.117), (3.119): 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 11 12

2 21 22

1 11 12

2 21 22

44.14 9.94

54.32 9.94

67.57 16.19

72.66 16.19

m m m

m m m

s s s

s s s

D d d

D d d

D d d

D d d

= = −

= = −

= = − −

= = − −

                 (3.120) 
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TABLE 3.1 

TABLE 2 SYSTEM PARAMETERS FOR SMALLER MASTER/BIGGER SLAVE 

Definition Value 

Mass of the master, mm(Kg) 2.0 

Length of the master, lm(m) 0.5 

Inertia of the master, Jm(Kg-m
2
) 0.17 

Viscous friction coefficient of master, 

bm(Nms/rad) 
5.0 

Acceleration due to gravity, g(m/s
2
) 9.81 

Mass of the slave, ms(Kg) 8.0 

Length of the slave, ls(m) 1.0 

Inertia of the slave, Js(Kg-m
2
) 2.67 

Viscous friction coefficient of slave, bs(Nms/rad) 10.0 

 

The simulation results of applying the fuzzy laws (3.12) and (3.31) when the operator 

exerts a force of 0.5N are shown in Fig. 3.2. It can be readily observed that the slave is 

following the master as the position and velocity signals for both the master and slave are 

the same. Further, it is also evident from this figure that the desired dynamic behavior of 

teleoperation is achieved. The control signals for master and slave systems are shown in 

Fig. 3.3. 

The teleoperation system is also tested in a hard environment for which the stiffness and 

viscous friction are given to be 50 /
e

k Nm rad=  and 5 /
e

b Nmrad s= . The force 

feedback gain is taken to be 10 in this case and thus the force feedback matrix from slave 

to master is given as: 

( )500 50mR =                                                      (3.121) 

For this case, the role of master and slaves are also reversed i.e., bigger master and 

smaller slave are considered with the system parameters in (3.116)-(3.117) reversed. 



 38 

Considering zero delay in the communication channel, the following control gains are 

obtained through the design procedure outlined in Theorem 3.1: 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

2

287.50 38.75

87.0 1.25

31.25 3.125

0.0625

m m m

s s s

s s s

C c c

C c c

R r r

g

= = − −

= = −

= = − −

=

                            (3.122) 

Using (3.14), (3.18), (3.116), (3.117) and (3.122), the implemental fuzzy control gains for 

master and slave sides are found to be: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 11 12

2 21 22

1 11 12

2 21 22

258.07 35.00

263.16 35.00

146.36 28.75

136.17 28.75

m m m

m m m

s s s

s s s

D d d

D d d

D d d

D d d

= = − −

= = − −

= =

= =

                 (3.123) 

Figure 3.4 depicts the simulation results when the operator applies a force of 0.5N. Again 

the slave position and velocity states are following the master position and velocity states 

respectively. The control inputs for the master and slave systems are shown in Fig. 3.5. 
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Figure 3.27Position and velocity signals of smaller master and bigger slave systems in soft environment 

with no communication delay 
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Figure 3.38Control signals of smaller master and bigger slave systems in soft environment with no 

communication delay 
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Figure 3.49 Position and velocity signals of bigger master and smaller slave systems in a hard environment 

with no communication delay 
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Figure 3.510Control signals of bigger master and smaller slave systems in a hard environment with no 

communication delay 

 

The stated simulation results in Figs. 3.2-3.5 are obtained under the influence of constant 

applied force. However, in real situations, operator force approximately varies in a linear 

fashion. To see the performance of SC scheme in this case, simulations are run 

considering the hard environment with the control gains in (3.122)-(3.123) and results are 

shown in Fig. 3.6. It can be seen that the slave system is tracking the master system and 

master/slave states are hard to distinguish. The control inputs to teleoperation system in 

this case are also displayed in Fig. 3.7. 

We now consider the case of teleoperation system with time delay in the communication 

link. Assume that the slave is interacting with a soft environment which can be modeled 

by a stiffness, 5 /
e

k Nm rad= . With a force feedback gain of 0.1, the force feedback 

matrix is obtained as: 

( )0.5 0mR =                             (3.124) 

Considering a time delay of 0.1 sec in the communication link and the parameters of 

teleoperation system listed in Table 1 along with desired dynamic behavior of 

teleoperation system as reported in previous simulation results, the following control 



 41 

gains are obtained through the application of design equations (3.62)-(68) provided by 

Theorem 3.3: 
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Figure 3.611Position and velocity signals of bigger master and smaller slave systems in a hard environment 

with no communication delay under realistic operator force 
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Figure 3.712Control signals of bigger master and smaller slave systems in a hard environment with no 

communication delay under realistic operator force 
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( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

2

103.00 19.70

97.0 20.30

8 0

16

m m m

s s s
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R r r

g

= = − −

= = − −

= = −

=

                 (3.125) 

Using (3.14), (3.18), (3.116), (3.117) and (3.125), the implemental fuzzy control gains 

can now be obtained as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 11 12

2 21 22

1 11 12

2 21 22

44.14 10.30

54.32 10.30

67.57 16.55

72.66 16.55

m m m

m m m

s s s

s s s

D d d

D d d

D d d

D d d

= = −

= = −

= = − −

= = − −

                 (3.126) 

The simulation results when the operator is applying a constant force of 1N are displayed 

in Fig. 3.8. It can be seen that slave states are following the master states with time delay 

and the desired dynamic behavior is also achieved. The control efforts by master and 

slave devices are shown in the accompanying Fig. 3.9. 
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Figure 3.813Position and velocity signals of smaller master and bigger slave systems in a soft environment 

with communication delay 
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Figure 3.914Control signals of smaller master and bigger slave systems in a soft environment with 

communication delay 

 
SC scheme is shown to be robust against parameter variations and time delay in the 

communication link [88]. To validate the proposition in the case of the teleoperation 

system represented by TS fuzzy models, we simulate the nonlinear teleoperation system 

with the fuzzy control gains in (3.126) while considering 50% uncertainty in the viscous 

friction coefficients of the teleoperation system (3.111) and 400% uncertainty in the time 

delay i.e., T=0.5 sec. The results for this case are shown in Fig. 3.10. It can be seen that 

despite the uncertainty, the slave is able to follow the master and deviates only slightly 

from the desired dynamic behavior. If the teleoperation system was designed by 

incorporating these uncertainties, a better response is exhibited by the master device but 

the slave response remains almost unaltered as shown in Fig. 3.11. The variation in the 

response of the master device is due to the fact that no desired dynamic behavior has been 

assigned to it in the SC scheme while the slave device offers the desired dynamic 

behavior in spite of the parametric uncertainties.   

SC scheme for the delayed nonlinear teleoperation system represented by TS fuzzy 

models is also compared with its linear counterpart considering the large range operation 

of the teleoperation system. For this purpose, the system’s gains of (3.125) are used for 

simulating the response of both fuzzy and linear bilateral controllers. Using these gains 
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and the system’s parameters, the implemental stabilizing fuzzy control gains are reported 

in (3.126) while the implemental stabilizing linear control gains are found from (3.32), 

(3.116), (3.117) and (3.125) as: 

( )

( )

7.356 1.716

175.18 44.13

m

s

K

K

= −

= − −
                              (3.127) 

Note that the system parameters of linear tele-operation system are the same as the 

parameters of the model rule 1 (3.114) of the TS fuzzy system. With the gains in (3.125), 

(3.126) and (3.127), the simulations are run considering the nonlinear model of the 

teleoperation system and the results are depicted in Fig. 3.12. It can be observed that the 

slave is able to track the master in both cases as the error in states tends towards zero. 

However, a steady state position error is observed in the case of a teleoperation system 

employing linear controller (3.127) while a teleoperation system using TS fuzzy 

controller (3.126) has shown better tracking performance. 

Based on the simulation results, it can be concluded that the presented fuzzy SC scheme 

can be used to control the nonlinear teleoperation system and it offers better performance 

as compared to linear SC scheme when large range operation is desired.    
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Figure 3.1015Position and velocity signals of smaller master and bigger slave systems in a soft 

environment under uncertain design parameters 
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Figure 3.1116Comparison of SC under uncertain and exact design parameters in a soft environment 
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Figure 3.1217Comparison of SC based linear and fuzzy controllers for time delayed nonlinear teleoperation 

system in a soft environment 

3.3. CONCLUSIONS 

The control design of the nonlinear teleoperation system represented by TS fuzzy models 

is discussed in the framework offered by SC methodology. Through the introduction of a 
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suitable fuzzy control law, design conditions to impose the desired dynamic behavior of 

teleoperation system are derived for different teleoperation models in the absence and 

presence of communication delay using the method of SC. Further, the existing linear 

bilateral controller based on SC is found to be the special case of the proposed SC based 

fuzzy bilateral controller. The effectiveness of the proposed scheme in controlling the 

nonlinear teleoperation system is proven through MATLAB simulations where it is also 

compared with the existing linear scheme. Contrary to other complex teleoperation 

control schemes based on TS fuzzy systems, the presented method is simple to apply with 

guaranteed dynamic behavior of teleoperation system and no Lyapunov function is 

required to prove the stability of the system. 
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CHAPTER 4: FUZZY STATE CONVERGENCE METHODOLOGY 

WITH TRANSPERENCY CONDITION 

 

This chapter proposes to employ transparency optimized state convergence method in 

controlling a nonlinear teleoperation system which can be approximated by a class of TS 

fuzzy systems having common input and output matrices. A suitable form of PDC type 

fuzzy control law is selected to close the feedback loops around master and slave 

systems. The beauty of the selected control law lies in its capability to fully utilize the 

method of state convergence while providing large range operation. In the previous 

chapter, we have proved that this control law can successfully establish the state 

convergence behavior in a nonlinear teleoperation system. Following the same lines, we 

show that the fuzzy transparent bilateral controller can indeed be designed for the 

transparency optimized state convergence architecture with a nonlinear plant model. The 

validity of the proposed controller is confirmed through MATLAB simulations on a one 

DoF nonlinear teleoperation system. 

4.1. TRANSPERENT TS FUZZY LOGIC CONTROLLER 

In this section, we will show the development of a transparent TS fuzzy logic controller 

for a class of nonlinear teleoperation systems which can be approximated by TS fuzzy 

models in phase variable form with common input and output matrices [147]-[148]. Such 

a nonlinear teleoperation system can be given as: 

( )z z z z z

z z z

x f x g u

y h x

= +

=

i

                                                   (4.1) 

The TS fuzzy description of (4.1) with ‘r’ plant rules can be given as: 
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( )

1 2

2 3

1
1 1

1

z z

z z

r n

zn i z zij zj z z

i j

z z

x x

x x

x h x a x b u

y x

= =

=

=

= − +

=

∑ ∑

i

i

i

�                         (4.2) 

where ( )i zh x is the normalized firing strength of i
th fuzzy plant rule and satisfies the 

following properties: 

( ) ( )
1

0,  1
r

i z i z

i

h x h x
=

≥ =∑                          (4.3) 

The block diagram of the proposed fuzzy transparent state convergence scheme is shown 

in Fig. 4.1. From the block diagram, we can write the TS fuzzy control law for the master 

system as: 

( ) ( ) ( )1
1 1 11

1 r n n

m i m mij mj ej mj sj m

i j jm

u h x d x g z r x t T F
b = = =

= + + − +∑ ∑ ∑                      (4.4) 

By plugging (4.4) in (4.1), the closed loop master system dynamics can be obtained as: 

 

( ) ( ) ( ) ( )1 1 1
1 1 1

r n n

mn i m mij mij mj m ej mj sj m m

i j j

x h x d a x b g z r x t T b F
= = =

= − + + − +∑ ∑ ∑
i

                        (4.5) 

Note that we will consider nth component of the system dynamics throughout the rest of 

the paper as in (4.5). Let us now introduce the time invariant coefficients for the master 

system as: 

mj mij mij
c d a= −                         (4.6) 

With the coefficients in (4.6), the closed loop master system in (4.5) can be simplified as: 

( ) ( )1 1 1
1 1

n n

mn mj mj m ej mj sj m m

j j

x c x b g z r x t T b F
= =

= + + − +∑ ∑
i

                               (4.7) 
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Now, to close the loop around slave system, the following TS fuzzy control law is 

introduced (see Fig. 4.1): 

( ) ( ) ( )2
1 1 11

r n n
sij

s i s ej sj sj mj m

i j js

d
u h x z x r x t T g F t T

b= = =

 
= + + − + − 

 
∑ ∑ ∑                   (4.8) 

The closed loop slave system can now be computed using (4.1) and (4.8) as: 

( ) ( ) ( ) ( )1 1 1 2
1 1 1

r n n

sn i s sij sij s ej sj s sj mj s m

i j j

x h x d a b z x b r x t T b g F t T
= = =

= − + + − + −∑ ∑ ∑
i

                  (4.9) 

( ) ( )

( )

m m m m m m

m m m
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= +

=
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Figure 4.118Proposed fuzzy transparent state convergence method 
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Similar to the master system, we define the time invariant coefficients for the slave 

system as: 

sj sij sij
c d a= −                                              (4.10) 

With the definition in (4.10), the closed loop slave system in (4.9) can be written as: 

( ) ( ) ( )1 1 1 2
1 1

n n

sn sj s ej sj s sj mj s m

j j

x c b z x b r x t T b g F t T
= =

= + + − + −∑ ∑
i

                            (4.11) 

As a part of the design procedure, state convergence method assumes the time delay in 

the communication channel to be small and the operator’s force as constant. Thus, Taylor 

expansion of first order can be used to approximate the time delayed terms as: 

( )

( )

( )

mjmj mj

sjsj sj

mm m m

x t T x T x

x t T x T x

F t T F T F F

− −

− −

− − =

i

i

i

�

�

�

                                                (4.12) 

With the approximation in (4.12), closed loop master dynamics of (4.7) can be written as: 

( ) ( )

( )

1

1 1 1 1
1 1 1

1 1 1        

n n n

mn sjmj mj m ej mj sj m ej mj

j j j

snm en mn m m

x c x b g z r x b T g z r x

b T g z r x b F

−

= = =

= + + − + −

+ +

∑ ∑ ∑
i i

i

                           (4.13) 

Similarly, closed loop dynamics of the slave system in (4.11) can be approximated as: 

( )
1

1 1 1 1 1 2
1 1 1

n n n

sn mj mnsj s ej sj s sj mj s sj s sn s m

j j j

x c b z x b r x b T r x b Tr x b g F
−

= = =

= + + − − +∑ ∑ ∑
i i i

                     (4.14) 

By plugging (4.14) in (4.13) and using the phase variable representation of the slave 

system, closed loop master system dynamics of (4.13) can be written as: 

( )( )

( )( )

( ) ( )( )( )

( ) ( )

( )( )

1 1 1
1

1 1 1 1 1
1

2
1 11 1 1

2
1 1 1 1 1 1 1

1 1

1 1 1 2 1

1

1

n

mj m s en mn sj mj

j

n

m ej mj m en mn sj s ej sj

jmn

n nm s sn en mn

m ej mj sj m s en mn sj mj

j j

m m s en mn m

c Tb b g z r r x

b g z r Tb g z r c b z x
x

T b b r g z r

Tb g z r x T b b g z r r x

b Tb b g g z r F

=

=

− −

+ +
= =


− + +




+ − + + −
= 

− + 
 + + + +

 − +

∑

∑

∑ ∑

i













 

                                   (4.15) 
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Similarly, by plugging (4.13) in (4.14) and using the phase variable representation of the 

master system, the closed loop slave system dynamics of (4.14) can be written as: 

( )( )

( )

( )( )

( )

( )

1 1
1

1 1 1 1
1

2
1 1 1 1 1

2
1 1 1 1 1 1

1 1

1 2 1 1

1

1

n

s sj s sn mj mj

j

n

sj s ej s m sn ej mj sj

jsn

m s sn en mn n n

s sj mj s m sn ej mj sj

j j

s s m sn m

b r Tb r c x

c b z Tb b r g z r x
x

T b b r g z r

Tb r x T b b r g z r x

b g Tb b r F

=

=

− −

+ +
= =

 
− + 

 
 

+ − + − 
=  

− +  
 + + −
 
 

− 

∑

∑

∑ ∑

i

  

                                                 (4.16) 

Let us now define the state convergence error between master and slave systems as: 

, 1, 2,...,
ej mj sj

x x x j n= − =                                 (4.17) 

We now write the closed loop master system dynamics of (4.15) in terms of state 

convergence error as: 

( )( )

( ) ( )
( )( )

( ) ( )( )( )

( ) ( )( )

1 1 1 1 1

1 1 1 1

1 1 1 1 1
1

2
11 1 1

2
1 1 1 1 1 1

1

1

1

n
mj m s en mn sj m ej mj

mj

j
m en mn sj s ej

n

m ej mj m en mn sj s ej ej

jmn

nm s sn en mn

m s en mn sj m ej mj mj

j

m

c Tb b g z r r b g z r
x

Tb g z r c b z

b g z r Tb g z r c b z x
x

T b b r g z r
T b b g z r r Tb g z r x

Tb

=

=

−

+
=

 − + + + −
  −
 + + 

+ − + + +
=

− +
+ − + +

∑

∑

∑

i

( ) ( )( )
1

1 1 1 1 1 1 2 1
1

n

ej mj ej m m s en mn m

j

g z r x b Tb b g g z r F
−

+
=

 
 
 
 
 
 
 
 
 
 
 
 + + − + 
 

∑

 

                                   (4.18) 

Similarly, the closed loop slave system dynamics of (4.16) is also written in terms of state 

convergence error as: 

( )( )

( )

( )( )

( )( )

( )

1 1 1 1

1 1 1

1 1 1 1
1

2
11 1 1 2

1 1 1 1 1
1

2
1 1 1 1

1

1

n
sj s ej s m sn ej mj

mj

j s sj s sn mj

n

sj s ej s m sn ej mj ej

j
sn

n
m s sn en mn

s m sn ej mj s sj mj

j

s m sn ej mj ej

j

c b z Tb b r g z r
x

b r Tb r c

c b z Tb b r g z r x

x
T b b r g z r

T b b r g z r Tb r x

T b b r g z r x

=

=

−

+
=

+
=

 + − + +
  +
 − 

+ − + +
=

− +
+ − −

+

∑

∑

∑

i

( )
1

1 2 1 1
1

n

s s m sn mb g Tb b r F
−

 
 
 
 
 
 
 
 
 
 
 

− −  
 

∑
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                                   (4.19) 

By taking the time derivative of (4.17) and using (4.18)-(4.19), we find the closed loop 

error dynamics of the teleoperation system as: 

( )( )

( ) ( )
( ) ( )

( )

( )

1 1 1 1 1

1 1 1 1
1

1 1 1 1 1

1 1 1 1

2 1 1
1 1 1

1

1

mj m s en mn sj m ej mj

n

m en mn sj s ej sj s ej mj

j

s m sn ej mj s sj s sn mj

sj s ej s m sn ej mj

en
m ej m

m s sn en mn

c Tb b g z r r b g z r

Tb g z r c b z c b z x

Tb b r g z r b r Tb r c

c b z Tb b r g z r

x b g z r
T b b r g z r

=

 − + + + −
 
 + + − − + −
 
 + − + 

+ − + −

= +
− +

∑

i

( ) ( ) ( )

( ) ( )
( )

( ) ( )( )

( )

1 1 1 1

2
1 1 1 1 1 1

12
1 1 1 1 1

1
2

1 1 1 1 1 1
1

1 1 1 2 1 1

n

ej

j
j m en mn sj s ej

n
m s en mn sj m ej mj

mj

j
s m sn ej mj s sj

n

m ej mj s m sn ej mj ej

j

m m s en mn s

x
Tb g z r c b z

T b b g z r r Tb g z r
x

T b b r g z r Tb r

Tb g z r T b b r g z r x

b Tb b g g z r b g

=

−

+
=

−

+
=

 
  +
 + + + 

 + − + −
  +
 + + 

+ + + +

− + −

∑

∑

∑

( )2 1 1s m sn mTb b r F

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + 

 

                                   (4.20) 

We now form an augmented system of the closed loop master-error systems’ dynamics 

using (4.18) and (4.20) as: 

( ) ( )

( ) ( )
11 12 1

1 221 22

1 1n
mn j j mj

m

j ejj jen

a a x bx
F

x bD Da a
x =

         = +           

∑
i

i
                             (4.21) 

where the entry ( )xy j
a implies evaluation at jth state and all the entries in (4.21) are given 

as (with the zeroth index values being zero: 0 0 00, 0, 0
m s e

r r z= = = ): 

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )

11 1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1

21 1 1 1

               

mj m s en mn sj m ej mj m en mn sj s ej

m s en mn sj m ej mj

m ej mj m en mn sj s ej m ej mj

mj m s en

a c Tb b g z r r b g z r Tb g z r c b z

T b b g z r r Tb g z r

a b g z r Tb g z r c b z Tb g z r

a c Tb b g z r

− − −

− −

= − + + + − + + +

+ − +

= + − + + + +

= − +( ) ( ) ( )( )
( ) ( )

( ) ( )

1 1 1 1 1

2
1 1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1 1 1

22 1 1

       

       

mn sj m ej mj m en mn sj s ej

sj s ej s m sn ej mj s sj s sn mj m s en mn sj

m ej mj s m sn ej mj s sj

sj s ej s

r b g z r Tb g z r c b z

c b z Tb b r g z r b r Tb r c T b b g z r r

Tb g z r T b b r g z r Tb r

a c b z Tb

−

− − − − −

+ + − + + −

− + + − + + + −

+ − + +

= + − ( ) ( ) ( ) ( )
( ) ( )

1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1       

m sn ej mj m ej mj m en mn sj s ej

m ej mj s m sn ej mj

b r g z r b g z r Tb g z r c b z

Tb g z r T b b r g z r− − − −

+ − + + + + +

+ + +
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                        (4.22) 

( )

( )

( )

1 1 1 1 2 1

2 1 1 1 2 1 1 2 1 1

2
1 1 11

m m s en mn

m m s en mn s s m sn

m s sn en mn

b b Tb b g g z r

b b Tb b g g z r b g Tb b r

D T b b r g z r

= − +

= − + − +

= − +

                  (4.23) 

According to the method of state convergence, error should evolve as an autonomous 

system. This will happen upon the satisfaction of the following conditions: 

( )21 0, 1,2,...,
j

a j n= =                      (4.24) 

2 0b =                         (4.25) 

Once the error will behave like an autonomous system, augmented system of (4.21) can 

be assigned the desired dynamic behavior. This leads to the following conditions: 

( )( ) ( )

( )( ) ( )

11

22

, 1,2,...,

, 1,2,...,

jj

jj

s a s p j n

s a s q j n

− = + =

− = + =
                     (4.26) 

where the coefficients 
j

p and 
j

q form the desired polynomials for master and error 

systems respectively: 

1
2 1

1
2 1

... 0

... 0

n n

n

n n

n

s p s p s p

s q s q s q

−

−

+ + + + =

+ + + + =
                    (4.27) 

The design conditions (4.24)-(4.26) ensure that the states’ error converges to zero and the 

master system exhibits the desired behavior. However, the convergence of force error is 

not guaranteed. To achieve that the operator force matches with the environmental force 

in steady state, we first compute the transfer function of the closed loop augmented 

system of (4.21) under the effect of autonomous error system: 

( )
( )

( )

( )

( )
( )

( ) ( ) ( ) ( ) ( )

1 1
1

1
1

1 2
11 11 11 111 2 1

, 1, 2,...,

1 , 2, 1, 2,...,

, 2

...

mj j

m j

n j

j j

n n n

j n n

numx s
j n

F s den

s b n j n
num

s b n

den s a s a s a s a

+ −

−

− −

−

= =

 − > =
= 

=

= − − − − −

                 (4.28) 

The transfer function in (4.28) can now be evaluated at steady state and compared against 

the stiffness of the environment as: 
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( )
( )

1 1

11 11

0 1m

m e

x b

F a z
= = −

−
                     (4.29) 

The design condition (4.29) ensures that the force error will converge to zero in steady 

state. Now, we have 4n+2 design variables: 1 2, , , , , , 1,2,...,
mj sj mj sj

g g c c r r j n= while the 

number of design equations (4.24)-(26), (4.29) are 3n+2. To create a balance, we let: 

, 1,2,...,
mj mj

r c j n= − = which will reduce the number of design variables to 3n+2. 

However, to achieve that the environmental force is fully reflected to the operator, 1g has 

to be unity which will again create an imbalance between the number of design variables 

and the design equations. To overcome this, DC coefficient of the desired master system 

polynomial is constrained by the other teleoperation system’s variables and now the 

design procedure is balanced. 

4.2. SIMULATION RESULTS 

In order to validate the proposed fuzzy model based transparent controller, MATLAB 

simulations are carried out using a one DoF nonlinear teleoperation system which can be 

described in state space form as: 

1 1

1 2 2 1
2

0 1 0z z

z

z z z z z
z

xx
u

a a x b
x

ξ

 
      = +      − −    

 

i

i
                   (4.30) 

where 1z
x and 2z

x are the state variables representing the position and velocity of the 

master/slave systems, 1
z z

z

z

m gl
a

J
= , 2

z
z

z

b
a

J
= , 1

1
z

z

b
J

=  and ( )
( )

( )
1

1

sin
z

z

z

x t
t

x t
ξ =  is the 

corresponding scheduling variable. The description of the parameters contained in (4.30) 

along with their numerical values is given in Table 4.1. To construct the TS fuzzy model 

of the teleoperation system, we determine the extreme values of the scheduling variable 

over the range of its operation, which is assumed to be [ ]/ 3 / 3π π−  in this study. The 

extreme values are found to be min 0.827ξ = and max 1.0ξ =  which further help in 

constructing the following fuzzy sets: 
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( )

( ) ( )

1

1 min
1

max min

2 1

1               , 0

, 0

1

z

z z z
z

z z

x

x
ρ ξ ξ ξ

ξ ξ

ρ ξ ρ ξ

=


= −
≠ −

= −

                     (4.31) 

TABLE 4.1 

SYSTEM PARAMETERS FOR MASTER AND SLAVE SYSTEMS 

Definition Value 

Mass of the master, mm(Kg) 0.5 

Length of the master, lm(m) 0.5 

Inertia of the master, Jm(Kg-m
2
) 0.0417 

Viscous friction coefficient of master, 

bm(Nms/rad) 
0.5 

Acceleration due to gravity, g(m/s
2
) 9.81 

Mass of the slave, ms(Kg) 2.0 

Length of the slave, ls(m) 1.0 

Inertia of the slave, Js(Kg-m
2
) 0.67 

Viscous friction coefficient of slave, 

bs(Nms/rad) 
1.0 

 

Based on (4.31), the two rule TS fuzzy model of (4.30) can now be given as: 

Model Rule 1: IF 
z

ξ is 1ρ THEN 
1 1

11 12 2 11
2

0 1 0z z

z

z z z z
z

xx
u

a a x b
x

 
      = +      − −    

 

i

i
          (4.32) 

Model Rule 2: IF 
z

ξ is 2ρ THEN 
1 1

21 22 2 21
2

0 1 0z z

z

z z z z
z

xx
u

a a x b
x

 
      = +      − −    

 

i

i
         (4.33) 

The parameters in (4.32) and (4.33) for master and slave systems are computed using the 

entries of Table 4.1 and are given as: 
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11 12 11

21 22 21

58.86, 12.0, 24.0

48.67, 12.0, 24.0
m m m

m m m

a a b

a a b

= = =

= = =
                           (4.34) 

11 12 11

21 22 21

29.43, 1.50, 1.50

24.34, 1.50, 1.50
s s s

s s s

a a b

a a b

= = =

= = =
                               (4.35) 

Besides system parameters, we need environmental model and the desired polynomials 

for master and error systems to obtain the control gains. The environment is assumed to 

behave like a spring-damper system with the following parameters: 

( )0.8 0.02eZ = −                                          (4.36) 

Also, the desired polynomials for master and error systems are selected as: 

( )

( )

2
1

2

: 10 0

: 10 25 0

p s s s p

q s s s

+ + =

+ + =
                     (4.37) 

Note that the last coefficient 1p of the desired master polynomial cannot be chosen freely 

as it is constrained by other parameters and will be determined as a part of the solution. It 

is pertinent to mention that the selection of the desired polynomials in (4.37) is vital to 

ensure the stability and performance of the time delayed closed loop teleoperation 

system. Now, by considering the time delay in the communication channel to be 

0.01T s= and 1g as unity, we obtain the following solution to the design equations (4.24)-

(4.26),(4.29) through MATLAB symbolic toolbox: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

2

1 2

1 2

1 2

1 2

21.2416

19.8151

0 0.3805

50.5539 22.8256

0 0.3805

18.6505 7.9608

m m m

s s s

m m m

s s s

p

g

C c c

C c c

R r r

R r r

=

=

= =

= = − −

= = −

= =

                       (4.38)  

In order to implement the fuzzy logic controllers on master and slave systems, we 

determine the control gains based on the solution in (4.38), system parameters in (4.34)-

(4.35) and the time invariant parameters in (4.6),(4.10) as: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 11 12

2 21 22

1 11 12

2 21 22

58.86 12.38

48.6768 12.38

21.1239 21.3256

26.2155 21.3256

m m m

m m m

s s s

s s s

D d d

D d d

D d d

D d d

= =

= =

= = − −

= = − −

                         (4.39) 

We now simulate the nonlinear teleoperation system of (4.30) by using the system 

parameters in Table 4.1 and the control gains in (4.38)-(4.39). The behavior of the 

teleoperation system as the operator applies a constant force of 0.1N is depicted in Fig. 

4.2. It can be observed that slave system is following the trajectory of the master system 

starting from the same initial conditions. Also, observe that the master system exhibits 

the desired dynamic behavior as assigned through the polynomial ( )p s . The control 

inputs for both the master and slave systems in this  case are also recorded and displayed 

in Fig. 4.3. It should be noted that the transparency optimized state convergence scheme 

is found to be sensitive to actuator saturation phenomenon and can easily be driven to 

instability. Thus, poles of the closed loop teleoperation system should be selected 

carefully to avoid the actuator saturation problem. We also analyze the environmental 

force which is reflected onto the master system. Figure 4.4 shows the operator’s applied 

force as well as the force reflected from the slave system as it interacts with the 

environment. It can be observed that the operator is able to fully perceive the 

environment during the steady state. This result coincides with the design condition 

(4.29) which only ensures the force tracking in steady state. The behavior of the closed 

loop teleoperation is also analyzed under the application of more realistic time varying 

operator’s force. The position and force tracking results for this case are shown in Fig. 

4.5. It can be observed that the slave system is at different initial position than the master 

system and is able to catch the master system after a transient. However, a constant force 

reflection error is observed during the ramp period which is disappeared when the force 

becomes constant.  
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Figure 4.219Master and slave systems’ states under an operator’s force of 0.1N (a) Position signals (b) 

Zoomed position signals (c) Velocity signals 
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Figure 4.320Control inputs for master and slave systems 
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Figure 4.421Operator and environmental forces                                                                   
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Figure 4.522Performance of teleoperation system with time varying operator’s force (a) Master-slave 

position signals (b) Operator-environment forces 

 
We also analyze the effect of uncertainties on the performance of the closed loop 

teleoperation system. To this end, we first consider 100% uncertainty in the time delay. 

With the same control gains as in (4.38)-(39) and considering 0.02T s= , we simulate the 

teleoperation system under the application of a constant applied force measuring 0.1N 

and the results are shown in Fig. 4.6. It can be seen that although the state convergence 

between master and slave systems is achieved, a deviation from the desired dynamic 

behavior is evident. Further, this deviation increases as the uncertainty in the time delay 

increases which can be observed from Fig. 4.7 where a 200% uncertainty in the time 

delay ( 0.03T s= ) is considered. However, the transparency of the teleoperation system is 

achieved in steady state as both the slave position signal and the environmental force 

match with the master position signal and the operator’s applied force after the transient 

period.   
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Figure 4.623Effect of 100% uncertainty in time delay on the performance of teleoperation system (a) 

Master-slave position signals (b) Operator-environment forces 
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Figure 4.724Effect of 200% uncertainty in time delay on the performance of teleoperation system (a) 

Master-slave position signals (b) Operator-environment forces 

                   

Besides the uncertainty in the time delay, we also study the effect of uncertainty in 

coefficient of viscous friction on the performance of teleoperation system. The result of 

this analysis is shown in Fig. 4.8 where a 50% uncertainty is considered in the coefficient 
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of viscous friction of both master and slave systems. It can be seen that the teleoperation 

system is exhibiting a sluggish response. The effect of adding the uncertainty in the time 

delay and the coefficient of viscous friction at the same time is shown in Fig. 4.9. It is 

evident that the uncertainty in the coefficient of viscous friction has a greater impact in 

degrading the system’s performance. 

Finally, we compare the performance of the proposed fuzzy logic controller with the 

existing linear controller in achieving the transparency during large range operation. The 

linear controller is derived from the proposed controller using (4.40) and is given in 

(4.41). 

( )

( )

1

1

1
, 1, 2,...,

1
, 1, 2,...,

mj mj mj

m

sj sj sj

s

k a c j n
b

k a c j n
b

= + =

= + =

                               (4.40) 

( ) ( )

( ) ( )
1 2

1 2

2.4525 0.5159

14.0826 14.2171

m m m

s s s

K k k

K k k

= =

= = − −
                              (4.41) 
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Figure 4.825Effect of 50% uncertainty in the coefficient of viscous friction on the performance of 

teleoperation system (a) Master-slave position signals (b) Operator-environment forces 
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Figure 4.926Effect of 50% uncertainty in the coefficient of viscous friction and time delay on the 

performance of teleoperation system (a) Master-slave position signals (b) Operator-environment forces 

 

By considering the final position to be reached as 1 rad, the nonlinear teleoperation 

system is simulated and the performance of the two controllers is recorded. The errors in 

the position and the force signals for the two cases are then computed and are displayed 

in Fig. 4.10. It can be observed that the proposed fuzzy logic controller has shown 

superior performance as the error in position and force signals has converged to zero 

while a constant position and force error is seen in case of the linear controller. Thus, 

perfect transparency is achieved by the proposed fuzzy logic controller in steady state 

under the presence of sufficiently small communication time delay. 
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Figure 4.1027Comparison of proposed fuzzy logic controller and existing linear controller (a) Master-slave 

position error (b) Operator-environment force error 

4.3. CONCLUSIONS 

This chapter has presented the design of a fuzzy model based transparent controller for a 

nonlinear teleoperation system based on its TS fuzzy description. The proposed TS fuzzy 
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logic control laws for the master and slave systems allow using the method of state 

convergence in its true sense. The feasibility of the presented approach is evaluated 

through simulations in MATLAB environment on a one DoF tele-manipulator. It is 

concluded that the proposed approach can control a nonlinear teleoperation system with a 

small time delay in the communication channel. Future work involves enabling the 

scheme to work in the presence of time varying delays. The robustness of the scheme to 

parameter uncertainties need to be improved as well. 
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CHAPTER 5: FUZZY STATE CONVERGENCE METHDOLOGY 

FOR UNKNOWN ENVIORNMENT  

This chapter employs the fuzzy state convergence approach developed earlier in chapter 3 

to the case where the slave’s environment in not known. A variant of the standard state 

convergence architecture, proposed in [98], is used to handle the case of unknown 

environments. A PDC type fuzzy control law is employed to derive the design conditions 

for the state convergence between master and slave systems. MATLAB simulations 

confirm the validity of the presented approach for controlling the nonlinear tele-robotic 

system in unknown environments. 

5.1. PROPOSED FUZZY BILATERRAL CONTROLLER FOR UNKNOWN 

ENVIORNMENTS 

The design of state convergence based fuzzy bilateral controller for unknown 

environments in the presence of time delays is presented here by considering two classes 

of tele-robotic systems following the lines of [149],[150] i.e., the tele-robotic systems 

which do not contain zeros and which contain zeros in their differential equations. 

Consider a nonlinear tele-robotic system which can be approximated by the following 

class of TS fuzzy models: 

( )

1 2

2 3

1
1 1

1

z z

z z

r n

zn i z zij zj z z

i j

z z

x x

x x

x h x a x b u

y x

= =

=

=

= − +

=

∑ ∑

i

i

i

�                  (5.1) 
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( )

1 2

2 3

1 1

1

z z

z z

r n

zn i z zij zj z

i j

n

z zj zj

j

x x

x x

x h x a x u

y b x

= =

=

=

=

= − +

=

∑ ∑

∑

i

i

i

�                   (5.2) 

where ( )i zh x is the normalized firing strength of the ith TS fuzzy plant rule and subscript 

‘z’ represents either master (z=m) or slave (z=s) devices. Note that the model definition 

(5.1) represents the tele-robotic systems which do not have zeros in their differential 

equations while the model definition (5.2) corresponds to the tele-robotic systems which 

have zeros in their differential equations. Both of these systems fall under the class of TS 

fuzzy models with common input and common output matrices. To stabilize these 

systems, a fuzzy control law proposed in [131] is employed in this study which will also 

allow us to use the state convergence method to establish the design conditions in 

Theorems 5.1 and 5.2 for controlling the nonlinear tele-robotic system in the presence of 

communication time delays. The block diagram of the proposed extended scheme is 

shown in Fig. 5.1. 

Theorem 5.1: Fuzzy state convergence is established between master and slave 

manipulators modeled by (5.1) and communicating over a dedicated link with constant 

sufficiently small time delay, if 3n+2 control gains are found as a solution of the design 

conditions (5.3)-(5.10): 

( )1 2 1 11 0s s sn mb g Tb r b− + =                                (5.3) 

( )1 1 1 11 0s s sn mb Tb r b g+ + =                                (5.4) 

( )1 1 1 1 11 0s s s s sn mc b r Tb r c+ − + =                               (5.5) 

� 

( )1 1 1 11 0sn s sn s sn mn s snc b r Tb r c Tb r −+ − + − =                 (5.6) 

1 1 1 1 1 1s s s s sn m
c b r Tb r c p+ − = −                                (5.7) 
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� 

( )1 1 1 1 1s s s s sn mn sn nc b r Tb r c r p−+ − + = −                             (5.8) 

( )1 1 1 1 11s s s sn mb r Tb r c q− + =                   (5.9) 

� 

( )1 1 1 11s sn s sn mn s sn nb r Tb r c Tb r q−− + − =                         (5.10) 
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Figure 5.128Fuzzy state convergence scheme for unknown environments 
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Proof: Consider the TS fuzzy control law for the master manipulator as: 

( ) ( )1
1 11

1 r n

m i m mij mj m s

i jm

u h x d x F g f t T
b = =

= + + −∑ ∑                       (5.11) 

Note that the TS fuzzy plant models and control laws share the same membership 

functions in this study. The closed loop dynamics of the master manipulator can now be 

given as: 

( ) ( ) ( )1 1 1
1 1

r n

mn i m mij mij mj m m m s

i j

x h x d a x b F b g f t T
= =

= − + + −∑ ∑
i

              (5.12) 

Let us define the time-invariant coefficients for the closed loop master manipulator as: 

mj mij mij
c d a= −                           (5.13) 

Using knowledge of the coefficients in (5.13), the closed loop master manipulator in 

(5.12) becomes: 

( )1 1 1
1

n

mn mj mj m m m s

j

x c x b F b g f t T
=

= + + −∑
i

            (5.14) 

Now, we define the TS fuzzy control law for the slave manipulator as: 

( ) ( ) ( )2
1 1 11

1 r n n

s i s sij sj sj mj m s

i j js

u h x d x r x t T g F t T f
b = = =

= + − + − −∑ ∑ ∑                             (5.15) 

The control law in (5.15) gives rise to the following closed loop slave manipulator 

dynamics: 

( ) ( ) ( ) ( )1 1 2 1
1 1 1

r n n

sn i s sij sij sj s sj mj s m s s

i j j

x h x d a x b r x t T b g F t T b f
= = =

= − + − + − −∑ ∑ ∑
i

      (5.16) 

Similar to the case of master manipulator, we define the time-invariant coefficients for 

the slave manipulator as: 

sj sij sij
c d a= −                 (5.17) 

Using (5.17), the closed loop slave manipulator dynamics in (5.16) can be simplified as: 

( ) ( )1 1 2 1
1 1

 
n n

sn sj sj s sj mj s m s s

j j

x c x b r x t T b g F t T b f
= =

= + − + − −∑ ∑
i

        (5.18) 

The time delay terms in the closed loop master (5.14) and slave (5.18) systems can be 

replaced by their Taylor expansion. Since the time delay is assumed to be small, the 

higher order terms in the expansions are neglected and assumptions of constant operator 
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and environmental forces are used. This leads to: 

( )

( )

( )

mjmj mj

mm m m

s s ss

x t T x T x

F t T F T F F

f t T f T f f

− −

− − =

− − =

i

i

i

�

�

�

              (5.19) 

Using (5.19), the closed loop master and slave robotic systems can be given as: 

1 1 1
1

n

mn mj mj m m m s

j

x c x b F b g f
=

= + +∑
i

             (5.20) 

1 1 1 2 1
1 1 1

n n n

sn mjsj sj s sj mj s sj s m s s

j j j

x c x b r x Tb r x b g F b f
= = =

= + − + −∑ ∑ ∑
i i

      (5.21) 

The closed loop slave dynamics (5.21) can be further simplified by considering the phase 

variable representation of the master manipulator (5.1) and its nth dynamics (5.20) as: 

( ) ( )

( )

1

1 1 1 1 2 1
1 1 1

1 1 1        1

n n n

sn sj sj s sj sn mj mj s sj mj s m sn m

j j j

s m sn s

x c x b r Tr c x Tb r x b g Tb r F

b Tg b r f

−

+
= = =

= + − − + −

− +

∑ ∑ ∑
i

    (5.22) 

Let us now define the state convergence error for the tele-robotic system as: 

, 1, 2,...,
ej sj mj

x x x j n= − =               (5.23) 

The closed loop slave manipulator dynamics in (5.22) can be modified to include the 

state convergence error as: 

( ) ( )

( ) ( )

1

1 1 1 1 1
1 1 1

1

1 1 1 2 1 1 1 1
1

        1

n n n

sn sj s sj s sn mj sj s sj sn mj ej s sj sj

j j j

n

s sj ej s m sn m s m sn s

j

x c b r Tb r c x b r Tr c x Tb r x

Tb r x b g Tb r F b Tg b r f

−

+
= = =

−

+
=

= + − − − −

+ + − − +

∑ ∑ ∑

∑

i

                    (5.24) 

Taking the time derivative of (5.23) for j n=  and using (5.20), (5.22) and (5.23), we 

obtain the error dynamics of the tele-robotic system as: 

( ) ( )

( ) ( )

1

1 1 1 1 1 1
1 1 1

1

1 1 1 2 1 1 1 1 1 1 1 1 1
1

 

        

n n n
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                                                                                            (5.25) 

The slave (5.24) and error (5.25) dynamics can be grouped to form the augmented 
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dynamics of the tele-robotic system as: 

( ) ( )

( ) ( )
11 12 11 12

1 21 2221 22

n
sn j j sj m

j ej sj jen

a a x Fb bx

x fb ba a
x =

          = +             

∑
i

i
         (5.26) 

where, the entries ( )
j

• in the state matrix imply evaluation at a particular value of j . 

These entries, with the initial condition of 0 0
s

r = , are: 

11 1 1 1 1

12 1 1 1 1

21 1 1 1 1

22 1 1 1 1

sj s sj s sn mj s sj

s sj s sn mj s sj

sj s sj s sn mj mj s sj

s sj s sn mj mj s sj

a c b r Tb r c Tb r

a b r Tb r c Tb r

a c b r Tb r c c Tb r

a b r Tb r c c Tb r

−

−

−

−

= + − −

= − + +

= + − − −

= − + + +

                          (5.27)  

Also, the entries in the input matrix of the augmented system are: 

11 1 2 1 1

12 1 1 1 1

21 1 2 1 1 1

22 1 1 1 1 1 1

s s m sn

s s m sn

s s m sn m

s s m sn m

b b g Tb b r

b b Tg b b r

b b g Tb b r b

b b Tg b b r b g

= −

= − −

= − −

= + +

                           (5.28) 

According to the method of state convergence, error should evolve as an autonomous 

system which requires that the matrix entries 21 22,b b (5.28) and ( )21 j
a  (5.27) are zero. 

This leads to the following conditions: 

1 2 1 1 1 0
s s m sn m

b g Tb b r b− − =                            (5.29) 

1 1 1 1 1 1 0
s s m sn m

b Tg b b r b g+ + =               (5.30) 

1 1 1 1 0, 1,2,...,
sj s sj s sn mj mj s sj

c b r Tb r c c Tb r j n−+ − − − = =                   (5.31) 

After the error will evolve as an autonomous system, desired dynamic behavior can be 

assigned to the tele-robotic system (5.26) by comparing the system’s characteristic 

polynomial with the desired one as: 

( )( ) ( )

( )( ) ( )

11

22

, 1,2,...,

, 1,2,...,

jj

jj

s a s p j n

s a s q j n

− = + =

− = + =
                      (5.32)     

where, 
j

p and 
j

q  are coefficients forming the desired slave and error polynomials 

respectively: 
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1
2 1

1
2 1

... 0

... 0

n n

n

n n

n

s p s p s p

s q s q s q

−

−

+ + + + =

+ + + + =
              (5.33) 

Pole assignment (5.32) for slave and error systems yields the following conditions: 

1 1 1 1 , 1,2,...,
sj s sj s sn mj s sj j

c b r Tb r c Tb r p j n−+ − − = − =              (5.34) 

1 1 1 1 , 1, 2,...,
s sj s sn mj mj s sj j

b r Tb r c c Tb r q j n−− − − = =            (5.35) 

Proof follows from (5.29)-(5.32), (5.34) and (5.35)■ 

Remark 5.1: The design method provided by Theorem 5.1 will yield the coefficients 

mj
c and 

sj
c for stabilizing the master and slave manipulators. Note that these coefficients 

are not the actual control gains to be implemented. Rather, they act like a bridge between 

the state convergence based linear bilateral controller [87] and the proposed state 

convergence based fuzzy bilateral controller for the tele-robotic system, as the control 

gains in both cases can be determined from knowledge of these coefficients. Based on 

these coefficients along with the time-varying system’s coefficients, the implemental 

fuzzy control gains for master and slave manipulators can be determined from (5.13) and 

(5.17), respectively. For the case of linear tele-robotic system [87], these coefficients can 

be used to find the implemental control gains for the master and slave devices as:     

( )

( )

1

1

1
, 1, 2,...,

1
, 1, 2,...,

mj mj mj

m

sj sj sj

s

k a c j n
b

k a c j n
b

= + =

= + =

              (5.36) 

Where 
mj

a  and 
sj

a  are the time invariant system’s coefficients for master and slave 

devices respectively. Thus the design method of Case 1 in [89] has become a special case 

of Theorem 5.1 as the control gains for linear bilateral controller of [89] can be derived 

from it. 

Theorem 5.2: Fuzzy state convergence is established for the time-delayed tele-robotic 

system given by (5.2), if 3n+2 control gains are found as a solution of the design 

conditions (5.37)-(5.44), and (5.45) is also satisfied: 

2 0
sn mn sn sn

b g b Tb r− − =                                             (5.37) 

( ) 1 0sn mn sn snb b Tb r g+ + =                            (5.38) 
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( ) ( )1 1 1 1 1 1 0sn m s s s mn sn sn s mb b c b r b Tb r b c+ − + =                        (5.39) 

� 

( ) ( )1 0sn mn sn sn sn mn sn mn sn sn sn mnb b c b r Tb r b Tb r b c−+ − − + =           (5.40) 

( )1 1 1 1 1 1 1m s s s sn m mb c b r Tr c p b+ − = −                           (5.41) 

� 

( )1mn sn sn sn sn mn sn n mnb c b r Tr c Tr p b−+ − − = −                          (5.42) 

( )1 1 1sn s mn sn sn m mnb r b Tb r c q b− + =                           (5.43) 

� 

( ) ( )1sn sn sn mn sn sn mn n mnb r Tr b Tb r c q b−− − + =                        (5.44) 

2 3
1 1 2 2 1 1

2 3

, ,...,s s sn
s m s m sn mn

m m mn

b b b
b b b b b b

b b b
− −= = =             (5.45) 

Proof: Consider the tele-robotic system which can be modeled by (5.2). Using the control 

laws for master (5.11) and slave (5.15) manipulators with 1 1
z

b = and the corresponding 

time varying coefficients (5.13), (5.15), we obtain the closed loop dynamics for master 

and slave manipulators as: 

( )1
1

n

mn mj mj m s

j

x c x F g f t T
=

= + + −∑
i

                                     (5.46) 

( ) ( )2
1 1

n n

sn sj sj sj mj m s

j j

x c x r x t T g F t T f
= =

= + − + − −∑ ∑
i

           (5.47) 

We now define the more general form of the state convergence error as: 

, 1,2,...,
ej sj sj mj mj

x b x b x j n= − ∀ =              (5.48) 

The closed loop slave dynamics (5.47) can be written in terms of the state convergence 

error (5.48) as: 

( )

( ) ( )

1 1
1

1 1
1 1 1 11 1

2 1       1

n n n n
sj sn mjsj sj sj sj

sn sj sj sn mj sj ej sj sj ej

j j j jmj mj mj mj mj

sn m sn s

r Tr cb b b r
x c r Tr c x x T r x T x

b b b b b

g Tr F Tg r f

− −
+

+ +
= = = =+ +

− 
= + − − − +  

 

+ − − +

∑ ∑ ∑ ∑
i

                 (5.49) 

In case of the tele-robotic system modeled by (5.1), we have only considered the nth-error 
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dynamics. However, in the present case, we will consider all the states of error dynamics 

due to the presence of zeros. Using (5.48) and (5.2), the first n-1 components of the error 

dynamics can be given as: 

1
1 1

1 1

, 1, 2,..., 1sj mj
ej sj mj sj ej

mj mj

b b
x b b x x j n

b b

+

+ +

+ +

 
= − + = −  
 

i

                  (5.50) 

The nth part of the error dynamics can be obtained from (5.48), (5.46) and (5.47) as: 

( )

( ) ( )

1 1

1 1

1 1 2 1 1
1 1 1

 

        

n n
sn sj sn sn mj mn mjsj sj sj

en sn sj sn sj sn sn mj mn mj sj ej

j jmj mj mj mj

n n
sj

sn sj sj sn ej sn sn sn mn m sn sn sn mn

j j mj

b r Tb r c b cb b b
x b c b r Tb r c b c x x

b b b b

r
Tb r x Tb x b g Tb r b F b Tg b r b g

b

= =

− −

+ +
= = +

− − 
= + − − −  

 

− + + − − − + +

∑ ∑

∑ ∑

i

sf

                                         (5.51) 

From the knowledge of (5.2), (5.49), (5.50) and (5.51), the augmented slave-error 

dynamics for the tele-robotic system containing zeros can be written in matrix form as: 

11 12 11 12

21 22 21 22

s s m

e s
e

x FA A B Bx

x fA A B B
x

 
        = +              

 

i

i
            (5.52) 

where 
s

x and 
e

x are n-state vectors while the entries of the system matrix with initial 

condition being 0 0
s

r = are: 

( ) 11 1

11
1

1

0                              
nn

sj sj sj

sj sj sn mj sj

mj mj mj n

I

b b bA
c r Tr c Tr

b b b

−− ×

−

×

 
 
  =

+ − −      

                 (5.53) 

( )

( )

1

12
1 1

0

1

n n

sj sn mj sj n
mj

A
r Tr c Tr

b

− ×

− ×

 
 

=  − + +
 
 

             (5.54) 

( )
1

1 1
1 1

21

1

1

 0           sj

sj mjn

mj n

sj sj

sn sj sn sj sn sn mj

mj mj

sj

mn mj sn sj

mj n

b
diag b b

b

b b
b c b r Tb r cA

b b

b
b c Tb r

b

+

− ×

+ −

−

×

  
−     

 
  

+ −=   
  
  
 − −     

            (5.55) 
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( )

( )

1 1
1 1

22

1 1

 0                

1

mj

n

mj n

sn sj sn sn mj mn mj sn sj n
mj

b
diag

b
A

b r Tb r c b c Tb r
b

− ×

+ −

− ×

  
     

=  
 − + + +
 
 

        (5.56) 

Also, the entries in the input matrix of (5.52) can be given as: 

( ) ( )1 1 1 1

11 12
2 1

0 0
,

1

n n

sn sn

B B
g Tr Tg r

− × − ×   
= =   
   − − −   

                          (5.57) 

( )

( )

1 1

21
2

1 1

22
1 1

0

0

n

sn sn sn mn

n

sn sn sn mn

B
b g Tb r b

B
b Tg b r b g

− ×

− ×

 
=  
 − − 

 
=  
 − − − 

                          (5.58) 

Now, in order for the state convergence error to evolve as an autonomous system, we 

must set 21 22,B B and 21A as zero. This leads to the following conditions:  

2 0
sn sn sn mn

b g Tb r b− − =               (5.60) 

1 1 0
sn sn sn mn

b Tg b r b g− − − =               (5.61) 

1

1

0, 1,2,..., 1sj

sj mj

mj

b
b b j n

b

+

+

− = = −              (5.62) 

1 0, 1,2,..., 1sj sj sj

sn sj sn sj sn sn mj mn mj sn sj

mj mj mj

b b b
b c b r Tb r c b c Tb r j n

b b b
−+ − − − = = −         (5.63) 

Once the master-slave state error evolves as an autonomous system, the desired dynamic 

behavior can be assigned to the tele-robotic system (5.52). This is achieved as: 

11

22

sI A sI P

sI A sI Q

− = +

− = +
                 (5.64) 

where matrices P and Q contain the coefficients of the desired slave and error 

polynomials (5.33) respectively: 

( )

( )
( )

( )
1 11 1 1 1

1 1

0 0
,

n nn n

j jn n

I I

P Q
p q

− −− × − ×

× ×

− −   
   = =
   
   

                       (5.65) 
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The following conditions can be obtained after operating on (5.64): 

1 , 1, 2,...,sj sj sj

sj sj sn mj sj j

mj mj mj

b b b
c r Tr c Tr p j n

b b b
−+ − − = − =           (5.66) 

( )1

1
, 1,2,...,

sn sj sn sn mj mn mj sn sj j

mn

b r Tb r c b c Tb r q j n
b

−− − − = =           (5.67) 

Equations (5.60)-(5.63), (5.66) and (5.67) complete the proof ■ 

Remark 5.2: The tele-robotic system modeled by (5.2) needs extra conditions (5.45) to be 

satisfied. This is to ensure that steady state error does not exist between the master and 

slave states [89]. 

Remark 5.3: The design conditions of Theorem 5.2 are likely to be used when the master 

and slave manipulators in tele-robotic system have different orders. The extra pole-zero 

pairs are inserted to equalize the orders in which case Theorem 5.2 is required to design 

the bilateral controller. 

5.2. SIMULATION RESULTS 

To validate the proposed fuzzy bilateral controller based on the state convergence 

scheme, simulations are conducted in MATLAB/Simulink environment on a tele-robotic 

system which is comprised of single link master and slave manipulators moving in the 

vertical plane with the following differential equation description: 

sin
z z z z z z z z

J b m gl uθ θ θ+ + =
ii i

                           (5.68) 

The parameters of the tele-robotic system (5.68) are defined in Table 5.1 along with their 

numerical values. Since the state convergence method uses state space to model the tele-

robotic system, we transform (5.68) in state space form by selecting the position 1z z
x θ=  

and velocity 2 zz
x θ=

i

 signals as state variables: 

1 2

2 1 2

1

z z

z z z
z z z z z

z z z

x x

m gl b
x x x u

J J J
ξ

=

= − − +

i

i              (5.69) 

where ( )
( )

( )
1

1

sin
z

z

z

x t
t

x t
ξ =  will serve as the scheduling variable for the TS fuzzy models 
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and controllers of master/slave manipulators. Let the universe of discourse for the angular 

position of these manipulators be confined to the range[ ]3 3π π− . This will allow to 

compute the extreme values of the scheduling variable to be z min 0.827ξ = and z max 1.0ξ = . 

The following fuzzy sets can now be defined to form the TS fuzzy model of master/slave 

manipulators as: 

( )

( ) ( )

1

1 z min
1

max z min

2 1

1                  , 0

, 0

1

z

z z
z

z

z z

x

x
ρ ξ ξ ξ

ξ ξ

ρ ξ ρ ξ

=


= −
≠ −

= −

             (5.70) 

Note that only two fuzzy sets ( ) , 1,2i z iρ ξ = are used here to construct the TS fuzzy 

model and therefore the normalized degree of memberships, ( ) , 1,2i zh iξ = will be the 

same as (5.70). Using the fuzzy sets in (5.70), the fuzzy plant rules for master/slave 

manipulators can be defined as: 

 

                                      Table 3 Table 5.1 Tele-Robotic System Parameters 

Parameter Value 

Mass of the master, mm(Kg) 1.0 

Length of the master, lm(m) 0.5 

Inertia of the master, Jm(Kg-m
2
) 0.083 

Viscous friction coefficient of master, 

bm(Nms/rad) 
2.0 

Acceleration due to gravity, g(m/s
2
) 9.81 

Mass of the slave, ms(Kg) 5.0 

Length of the slave, ls(m) 1.0 

Inertia of the slave, Js(Kg-m
2
) 1.67 

Viscous friction coefficient of slave, 

bs(Nms/rad) 
2.0 
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Model Rule 1: IF 
z

ξ is 1ρ  THEN 

1 2

2 11 1 12 2 11

z z

z z z z z z z

x x

x a x a x b u

=

= − − +

i

i
                   (5.71)          

Model Rule 2: IF 
z

ξ is 2ρ  THEN 

1 2

2 21 1 22 2 21

z z

z z z z z z z

x x

x a x a x b u

=

= − − +

i

i
                  (5.72) 

Using Table 5.1, the numerical values of the model parameters in (5.71) and (5.72) for 

the master and slave manipulators are found as: 

11 12 11

21 22 21

58.86, 24.0, 12.0

48.67, 24.0, 12.0
m m m

m m m

a a b

a a b

= = =

= = =
             (5.73) 

11 12 11

21 22 21

29.43, 1.20, 0.60

24.34, 1.20, 0.60
s s s

s s s

a a b

a a b

= = =

= = =
             (5.74) 

Note that the tele-robotic system in (5.68) does not contain zeros. Therefore, we will use 

the design conditions provided by Theorem 5.1 to find the control gains. Let us first 

consider that there is no time delay in the channel [19]. By placing the desired slave and 

error poles at 1,2 4s = −  and 1,2 5s = − respectively, we obtain the following control gains as 

a solution of design conditions (5.3)-(5.10) with 0T = : 

( ) ( )

( ) ( )

( ) ( )

1

2

1 2

1 2

1 2

0.05

20

16 8

25 10

15.0 3.33

m m m

s s s

s s s

g

g

C c c

C c c

R r r

= −

=

= = − −

= = − −

= =

              (5.75) 

The fuzzy control gains which will actually be implemented on the tele-robotic system 

can be found using (5.13), (5.17), (5.73) and (5.74) as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 11 12

2 21 22

1 11 12

2 21 22

42.86 16.0

32.67 16.0

4.43 8.80

0.66 8.80

m m m

m m m

s s s

s s s

D d d

D d d

D d d

D d d

= =

= =

= = −

= = − −

             (5.76) 
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For the purpose of comparison, we also compute the gains for the linear bilateral 

controller using (5.36), (5.73) and (5.74) as: 

( )

( )

3.57 1.33

7.38 14.67

m

s

K

K

=

= −
                            (5.77) 

Although, the design conditions in Theorems 5.1, 5.2 are derived for an unknown but 

constant environment, we also consider the dynamic environments in simulations. Figure 

5.2 depicts three different types of environments with which the slave is interacting while 

the performance of the fuzzy bilateral controller (5.76) in all these cases, when the 

operator applies a constant force of 0.1N, is shown in Fig. 5.3. It can be seen that, in spite 

of the unknown environment, the slave manipulator is able to track the master 

manipulator and the desired dynamic behavior is also achieved. A more realistic case is 

also considered when the operator’s force varies linearly with time. Such a force profile 

is shown in Fig. 5.4 and the performance of the teleoperation system, under the 

application of this force is shown in Fig. 5.5. It can be observed that master and slave 

position states start to increase after a sufficient operator force is available to overcome 

the environmental force. However, the motion of master and slave manipulators remains 

synchronized.  

It should be noted that the constant or slowly varying unknown environmental force in 

Fig. 5.2 is bounded by a known value. If the bound is no longer satisfied, the master 

manipulator will be influenced by the reflected environmental force as depicted in Fig. 

5.6 [98]. In this case, operator can apply more force onto the master manipulator to 

overcome the effect of bound. An evidence for this has already been provided in Fig. 5.5 

and can also be observed from Fig. 5.6(a) where the environmental force is suddenly 

increased to a higher value thereby violating the bound on the environmental force. This 

results in a corresponding decrease in the position states which are later restored to their 

previous values by the controller as the environmental force is decreased to its original 

value. 
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Figure 5.229Different types of unknown environments 
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Figure 5.330Fuzzy bilateral controller in unknown environments (T=0) (a) Master and slave states (b) 
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Figure 5.431Operator’s force profile 
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Figure 5.532Master and slave states under varying operator’s force (T=0) 
 

The proposed fuzzy bilateral controller is also compared with the existing linear bilateral 

controller under the influence of constant applied force measuring 0.5N. The simulation 

is run by assigning an initial position of 0.1 radians to the slave manipulator and the final 

position to be achieved is 0.33 radians. The state convergence error achieved in both 

cases is plotted in Fig. 5.7. It is clear that fuzzy bilateral controller provides better 

performance during the steady state as compared to its linear counterpart. It should be 

noted that final position in this case is within the range where the linearization is valid. 

Also, if more force is applied by the operator, more steady state error will be offered by 

the linear bilateral controller. 

Now, consider the case of time delay in the communication channel between the master 

and slave manipulators. By placing the poles of slave and error dynamics at the same 

location 1,2 4s = −  and considering 0.5T = , we obtain the control gains through the 

design conditions (5.3)-(5.10) as (
s

R is found to be null): 

( ) ( )

( ) ( )

1

2

1 2

1 2

0.05

20

16 8

16 8

m m m

s s s

g

g

C c c

C c c

= −

=

= = − −

= = − −

                           (5.78) 
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Figure 5.633Fuzzy bilateral controller in case of increased environmental force (T=0) (a) Constant type (b) 

Ramp type (c) Sinusoidal type 
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Figure 5.734Comparison of Fuzzy and linear bilateral controllers (T=0) 
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The implemental fuzzy gains for the tele-robotic system can be obtained using (5.13), 

(5.17), (5.73) and (5.78) as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 11 12

2 21 22

1 11 12

2 21 22

42.86 16.0

32.67 16.0

13.43 6.8

8.34 6.8

m m m

m m m

s s s

s s s

D d d

D d d

D d d

D d d

= =

= =

= = −

= = −

             (5.79) 

Also, the control gains for the linear bilateral tele-robotic system are obtained using 

(5.36), (5.73) and (5.78) as: 

( )

( )

3.57 1.33

22.38 11.33

m

s

K

K

=

= −
                                         (5.80) 

Under the influence of unknown environmental force and the constant applied force of 

0.1N, the performance of fuzzy bilateral controller for the time-delayed tele-robotic 

system is shown in Fig. 5.8. It can be seen that state convergence between the master and 

slave manipulator is established and the desired dynamic behavior is also achieved. 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0

0.1

0.2

Time(sec)

P
o
s
it
io

n
(r

a
d
)

 

 

Master

Slave

Desired

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0

0.1

0.2

0.3

Time(sec)

V
e
lo

c
it
y
(r

a
d
/s

e
c
)

 

 

Master

Slave

 
(a) 



 89 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Time(sec)
M

a
s
te

r 
C

o
n
tr

o
l 
E

ff
o
rt

 (
N

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

Time(sec)

S
la

v
e
 C

o
n
tr

o
l 
E

ff
o
rt

 (
N

)

 

(b) 

Figure 5.835Fuzzy bilateral controller under the influence of constant applied force (T=0.5s) (a) Master and 

slave states (b) Master and slave control signals 
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Figure 5.936Robustness of the fuzzy bilateral controller to time delay (T=1s) (a) Master and slave states (b) 

Master and slave control signals 
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Figure 5.1037Comparison of Fuzzy and linear bilateral controllers (T=0.5s) 
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The robustness of the fuzzy state convergence controller to uncertainty in communication 

time delay is also evaluated. Using the controller parameters designed for a time delay of 

0.5sec as in (5.79), time delay in the channel is increased by 100%. The results of the 

simulations are shown in Fig. 5.9. It is evident that despite the large uncertainty in time 

delay, state convergence is successfully established along with the desired dynamic 

behavior. Thus even if the time delay in the communication channel is not exactly 

known, the state convergence controller will perform satisfactorily. 

The comparison of the fuzzy and linear bilateral controllers for the time-delayed tele-

robotic system under a constant applied force of 0.5N is shown in Fig. 5.10. It can be 

seen that the position tracking error converges to zero in case of fuzzy bilateral controller 

while the linear bilateral controller suffers from steady state error which will further 

increase with the increase in applied force. 

5.3. CONCLUSIONS 

This chapter has presented the design of fuzzy logic based bilateral controller for a tele-

robotic system operating in unknown environments using the method of state 

convergence. First, the nonlinear tele-robotic system is approximated by a TS fuzzy 

model. A fuzzy control law to cancel the double summation and coefficient varying 

properties of the TS fuzzy model is then employed to establish the design conditions for 

the bilateral operation of the tele-robotic system. The resulting design conditions can also 

be used to derive the existing linear bilateral state convergence controller. MATLAB 

simulations have proved the superiority of the proposed fuzzy bilateral controller in 

providing better state convergence performance.  
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CHAPTER 6: EXTENSION OF STATE CONVERGENC METHOD 

FOR MULTI-SYSTEMS 

This chapter presents the design of a state convergence based control of multi-master-

multi-slave systems. As pointed out in previous chapters, state convergence is a novel 

scheme to control a teleoperation system in a bilateral mode. Starting from modeling an 

n
th order teleoperation system on state space, the scheme offers a simple and elegant 

procedure which requires 3n+1 design conditions to be solved in order to synchronize the 

master and slave systems, and to achieve the desired dynamic behavior of the 

teleoperation system. However, in its current form, the scheme cannot be applied in 

situations where more than one master and/or slave systems are involved to perform a 

certain task. To overcome this limitation, we first present an alpha-modified version of 

the standard state convergence architecture for a single-master/single-slave teleoperation 

system. This alpha-modified architecture is then used to develop extended state 

convergence architecture for a multi-master/multi-slave teleoperation system. The 

resulting extended state convergence architecture requires solving a set of n(k+l)+(n+1)kl 

design equations to determine the control gains for synchronizing k-master and l-slave 

systems in a desired dynamic way. MATLAB simulations considering a one-degree-of-

freedom (DoF) dual-master/tri-slave teleoperation system are presented to show the 

efficacy of the proposed extended state convergence architecture for multilateral 

teleoperation systems [151]. 

6.1. ALPHA MODIFIED STATE CONVERGENCE METHOD 

State convergence is a novel scheme for the bilateral control of a teleoperation system. It 

offers advantages including the modeling of an n
th order teleoperation system on state 

space and the simplicity of the design procedure to determine the control gains based on a 

solution of 3n+1 design equations which are formed considering the autonomous 

behavior of the error system along with desired dynamic behavior of the closed loop 

teleoperation system. The standard state convergence architecture is depicted in Fig. 6.1 

which considers the following state space model for the master and slave systems: 
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z z z z z

z z z

x A x B u

y C x

= +

=

i

                                     (6.1) 

where, the subscript z can be either m or s representing either master or slave systems 

respectively. The input and output matrices in (6.1) are different for different models of 

the teleoperation system which further result in different design conditions for the 

bilateral teleoperation and will be elaborated in the subsequent discussion. Various 

parameters defining the architecture are as follows:  

Fm: It is a known scalar parameter describing the force applied by the human operator 

over the master manipulator. 

G2: It is an unknown scalar parameter and models the influence of the force applied by 

the human operator over the slave manipulator. 

T: It is a known scalar parameter and describes the time delay in the communication 

channel between the master and slave systems 

Rs: It is an unknown n-vector and helps in transferring the motion of the master 

manipulator to the slave manipulator 

Rm: It is a known n-vector which transfers the motion of the slave manipulator as it 

interacts with the environment to the master manipulator. The entries of this n-vector are 

dependent upon the modeling of the teleoperation system as well as the modeling of the 

slave’s environment. As an example, for an environment modeled by a stiffness 
e

k , it can 

be computed as 
m f e s

R k k C= where 
f

k is the force feedback gain. 

Km: It is an unknown n-vector and describes the stabilizing gain for the master 

manipulator. 

Ks
*: It is an unknown n-vector and represents the stabilizing gain for the slave 

manipulator. It also contains the model of the environment which makes the implemental 

stabilizing gain to be 
s s s

K K F
∗ = + where 

s
K will now act as the parameter to be 

determined while 
s

F is the vector which contains the model of the environment.    

Thus, amongst different parameters of the state convergence architecture, Km, Ks, Rs and 

G2 form 3n+1 parameters which need to be determined for the bilateral control of a 

teleoperation system. To find these unknown parameters, we need the same number of 

design equations which can be obtained by using the method of state convergence. 
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However, alpha-modification to the standard state convergence architecture results in 

design conditions which are different from the existing ones. We, therefore, now present 

these design conditions for the alpha-modified state convergence architecture considering 

different models of the teleoperation system as was originally done by the authors of the 

state convergence scheme.    

6.1.1 TELEOPERATION SYSTEM MODEL WITHOUT ZEROS 

Let us consider the teleoperation system where the master and slave manipulators can be 

described by the following differential equation: 

( ) ( ) ( )
( ) ( )

1

1 1 0 01
...

n n

z z z

zn z z z z zn n

d y t d y t dy t
a a a y t b u t

dt dt dt

−

− −
+ + + + =                   (6.2) 

By taking the position signal ( )zy t and its first n-1  derivatives as state variables, master 

and slave manipulators in (6.2) can represented in state space form as given by (6.1) with 

the following matrices: 

[ ]
0 1 2 1 0

0 1 0 ... 0 0

0 0 1 ... 0 0

... , ...

0 0 0 ... 1 0

...

1 0 ... 0 0

z z

z z z zn z

z

A B

a a a a b

C

−

   
   
   
   = =
   
   
   − − − −   

=

            (6.3) 

We can write the control laws for the master and slave systems using Fig. 6.1 as: 

( ) ( ) ( ) ( )m m m m s mu t K x t R x t T F t= + − +                         (6.4) 

( ) ( ) ( ) ( )2s s s s m mu t K x t R x t T G F t T= + − + −                  (6.5) 

The closed loop master and slave systems can be computed using (6.1), (6.4) and (6.5) as: 

( ) ( ) ( ) ( ) ( )m m m m m m m s m mx t A B K x t B R x t T B F t= + + − +
i

          (6.6) 

( ) ( ) ( ) ( ) ( )2s s s s s s s m s mx t A B K x t B R x t T B G F t T= + + − + −
i

        (6.7) 

By assuming the time delay in the communication channel to be small, the time delayed 

terms in (6.6) and (6.7) can be replaced with their first order Taylor expansion as: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ss s

mm m

mm m

x t T x t T x t

x t T x t T x t

F t T F t T F t

− −

− −

− −

i

i

i

�

�

�

                          (6.8) 

It is further assumed that operator applies a constant force onto the master system and 

thus the time derivative of the applied force (6.8) vanishes. Under these assumptions, the 

closed loop master and slave systems in (6.6)-(6.7) can be written as: 

( ) ( ) ( ) ( ) ( ) ( )m sm m m m m m s m m m mx t A B K x t B R x t TB R x t B F t= + + − +
i i

       (6.9)   

( ) ( ) ( ) ( ) ( ) ( )*
2s ms s s s s s m s s s mx t A B K x t B R x t TB R x t B G F t= + + − +

i i

                (6.10) 

By eliminating ( )sx t
i

from (5.9) and ( )mx t
i

from (6.10), we can write the resultant master 

and slave systems in an augmented form as: 

( )

( )

( )
( )

( )11 12 1

21 22 2

m m

m

s
s

x t x tA A B
F t

x tA A B
x t

 
      = +            

i

i
                 (6.11) 

where different entries in the closed loop augmented system of (6.11) are given as: 

 

 

Figure 6.138State convergence architecture for single-master/single-slave teleoperation system 
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( )

( )( )
( )( )

( )

( )

( )

11

12

21

22

1 2

2 2

m m m m m s s

m m m m s s s

s s s s m m m

s s s s s m m

m m m s

s s s m

A M A B K TB R B R

A M B R TB R A B K

A S B R TB R A B K

A S A B K TB R B R

B M B TB R B G

B S B G TB R B

= + −

= − +

= − +

= + −

= −

= −

                        (6.12) 

where the matrices M and S are given as: 

( )

( )

12

12

m m s s

s s m m

M I T B R B R

S I T B R B R

−

−

= −

= −
                                         (6.13) 

Different from the standard state convergence scheme, we introduce the following alpha-

based linear transformation: 

( )
( )

( )
( )

0m m

e s

x t x tI

x t x tI Iα

    
=    −    

          (6.14) 

where 
e

x is defined as the error between the master and slave states. This error will be 

made to evolve as a stable autonomous system through the design procedure of the state 

convergence scheme. Thus, master manipulator will only be able to alpha-influence the 

slave manipulator as 
s

x will approach 
m

xα  in steady state. In other words, alpha-scaled 

master’s states will serve as a reference for the slave’s states. By taking the time-

derivative of (6.14) and using (6.11)-(6.14), we obtain the following transformed 

augmented system:    

( )

( )

( )
( )

( )11 12 1

21 22 2

m m

m

e
e

x t x tA A B
F t

x t
x t A A B

           = +             

i ∼ ∼ ∼

i ∼ ∼ ∼
             (6.15) 

where the entries forming the transformed augmented system of (6.15) are: 
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( ) ( )

11 11 12

12 12

21 21 11 22 12

22 22 12

1 1

2 2 1

A A A

A A

A A A A A

A A A

B B

B B B

α

α α α

α

α

= +

=

= − + −

= −

=

= −

∼

∼

∼

∼

∼

∼

                               (6.16) 

The design guidelines of the state convergence scheme can now be employed to ensure 

that the slave system follows the reference set by the master system and the desired 

dynamic behavior of the teleoperation system is also achieved. To this end, the error 

between the master and slave states is first made to evolve as an autonomous system by 

zeroing the matrix entries 2B
∼

and 21A
∼

in (6.15). This yields the following design 

conditions: 

2 1 0B Bα− =                                                         (6.17) 

( ) ( )21 11 22 12 0A A A Aα α α− + − =                     (6.18) 

The satisfaction of (6.17) yields a single design condition while n-number of design 

conditions are obtained through (6.18). Now, if somehow a stable dynamics is assigned to 

the error system, the motion of the slave manipulator will be synchronized with the 

alpha-scaled motion of the master manipulator. Fortunately, after the conditions (6.17) 

and (6.18) are satisfied, computing the characteristic equation of the transformed 

augmented system (6.15) paves the way to achieve the objective of assigning stable 

dynamics to the error system. This step also helps in imposing the desired dynamic 

behavior to the master system and thus yields an additional 2n-number of design 

conditions as:   

( )

( )

11 12

22 12

sI A A sI P

sI A A sI Q

α

α

− + = −

− − = −
                       (6.19) 

where the matrices P and Q contain the desired dynamics for master and error systems 

respectively: 
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0 1 2 1 0 1 2 1

0 1 0 ... 0 0 1 0 ... 0

0 0 1 ... 0 0 0 1 ... 0

... , ...

0 0 0 ... 1 0 0 0 ... 1

... ...
n n

P Q

p p p p q q q q− −

   
   
   
   = =
   
   
   − − − − − − − −   

                                  (6.20) 

The equations (6.17)-(6.19) can now be solved simultaneously to determine the control 

gains (Km, Ks
*, Rs, G2) for the bilateral teleoperation. 

Remark 6.1: Alpha-modified state convergence scheme is more general as compared to 

its standard counterpart as slave system can be influenced to a desired degree by the 

master system. This can be useful in applications where hand movements need to be 

scaled down to perform a sensitive task e.g., minimally invasive surgical procedures. 

Besides this, alpha-modified state convergence method provides the grounds for the 

design of a state convergence based multi-master/multi-slave teleoperation system as 

alpha-scaled master motions can be combined to affect the slaves’ motions.    

Remark 6.2: In the alpha-modified state convergence method presented here, the desired 

dynamic behavior is imposed on the master system in addition to the error system. 

Equivalently, the desired dynamic behavior can also be assigned to the slave system 

along with the error system for which the design procedure is given in Appendix ‘A’. 

However, with regards to the multi-master/multi-slave teleoperation system, the latter 

procedure can only be used when equal numbers of master and slave systems are 

involved while the former procedure is always applicable irrespective of the number of 

master and slave systems. As will be seen later in the manuscript, this is primarily due to 

the imbalance between the number of unknown variables and the design conditions 

resulting from the proposed extended state convergence architecture.   

6.1.2 TELEOPERATION SYSTEM MODEL WITH ZEROS 

Let us consider the class of linear teleoperation systems where master and slave systems 

can be represented by the following differential equation: 

( ) ( ) ( )
( )

( ) ( )
( )

1 1

1 1 0 1 1 01 1
... ...

n n n

z z z z z

zn z z z zn z z zn n n

d y t d y t dy t d u t du t
a a a y t b b b u t

dt dt dt dt dt

− −

− −− −
+ + + + = + + +

               (6.21) 

Using the controller canonical approach, the teleoperation system of (6.21) can be 
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converted into the state space format of (6.1) with the following matrices: 

[ ]
0 1 2 1

0 1 2 1

0 1 0 ... 0 0

0 0 1 ... 0 0

,

0 0 0 ... 1 0

... 1

...

z z

z z z zn

z z z zn zn

A B

a a a a

C b b b b

−

− −

   
   
   
   = =
   
   
   − − − −   

=

� �
                  (6.22) 

The control laws for the master and slave systems remain the same and thus the closed 

loop augmented system of (6.11) holds. However, a different linear transformation is 

introduced as:  

( )
( )

( )
( )

0m m

e m s s

x t I x t

x t E E x tα

    
=    −    

                         (6.23) 

where Ez (z=m/s) is a diagonal matrix which contains the entries of the output matrix in 

(6.22) as: 

0

1

1

0 ... 0

0 ... 0

0 0 ...

z

z

z

zn

b

b
E

b −

 
 
 =
 
 
 

�
                   (6.24) 

The time derivative of (6.23) along with (6.11)-(6.13) yields a transformed system which 

can be written in the form of (6.15) with the following matrix entries: 

( ) ( )

( )

11 11 12

1
12 12

21 21 11 22 12

1
22 22 12

1 1

2 2 1

ms

s

s m s m ms

s m s

s m

A A A E

A A E

A E A E A E A E A E

A E A E A E

B B

B E B E B

α

α α α

α

α

−

−

= +

=

= − + −

= −

=

= −

∼

∼

∼

∼

∼

∼

                (6.25) 

where, the matrix Ems is computed as 1
ms s m

E E E
−= . The application of state convergence 

procedure on (6.15), (6.25) yields the following design conditions: 

2 1 0
s m

E B E Bα− =                                                        (6.26) 
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( ) ( ) 1
21 11 22 12 0s m s m s msE A E A E A E A E Eα α α −− + − =              (6.27) 

( )

( )

11 12

1
22 12

ms

s m s

sI A A E sI P

sI E A E A E sI Q

α

α −

− + = −

− − = −
               (6.28) 

where, the matrices P and Q are given by (6.20). Please note that the equations (6.26)-

(6.28) form 3n+1 design conditions which can be solved to find the unknown parameters 

of alpha-modified state convergence architecture. In addition to this, some extra 

conditions also need to be satisfied which arise from (6.27) as: 

0 2
0 1 2 1

1 1

,...,m mn
s s sn sn

m mn

b b
b b b b

b b

−
− −

−

= =                     (6.29) 

The failure of satisfying (6.29) will lead to a constant error between the alpha-scaled 

master and slave states. 

6.1.3 SIMULATION RESULTS 

To show the validity of alpha-modified state convergence scheme, simulations are carried 

out in MATLAB/Simulink environment on a one DoF teleoperation system. The 

following master and slave systems’ models have been adopted from [89]: 

( ) ( ) ( )

( ) [ ] ( )

0 1 0

0 7.1429 0.2656

1 0

m m m

m m

x t x t u t

y t x t

   
= +   −   

=

i

            (6.30) 

( ) ( ) ( )

( ) [ ] ( )

0 1 0

0 6.25 0.2729

1 0

s s s

s s

x t x t u t

y t x t

   
= +   −   

=

i

             (6.31) 

In addition, the following parameters are considered to determine the control gains: 

• Model of the environment: 20 /
e

k Nm rad=  

• Time delay in the communication channel: 0.5T s=  

• Force feedback gain: 0.1
f

k =  

• Desired dynamics for master and error systems: ( ) ( ) 2 10 25p s q s s s= = + +  

Since the selected master/slave system’s models do not contain zeros in their differential 

equation representation, the design conditions in (6.17)-(6.19) will be used to determine 

the control gains. By selecting the influencing-factor to be 0.8α =  and solving the design 
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conditions (6.17)-(6.19) using the MATLAB symbolic toolbox, we have found the 

following control gains:   

[ ]

[ ]

[ ]

2

95.7265 9.9572

90.0514 14.5199

1.2458 0

0.7786

m

s

s

K

K

R

G

= − −

= − −

= −

=

                     (6.32) 

Simulations are now run under the control of system’s parameters while considering the 

operator’s force to be 0.5N and the results are depicted in Fig. 6.2. It can be observed that 

the slave system is able to follow the reference which in this case is the alpha-scaled 

master system’s motion. It can also be seen that the master system is exhibiting the 

desired dynamic response which was considered during the design phase. If the desired 

dynamic response is to be imposed on the slave system, the design conditions in 

Appendix ‘A’ can be used to determine the 3n+1 control gains. As an example, 

considering the same system parameters with a scaling factor of 0.5α = , the following 

control gains are obtained through the solution of (A6)-(A8): 

[ ]

[ ]

[ ]

2

95.1265 10.2572

90.6354 14.2279

0.4866 0

0.4866

m

s

s

K

K

R

G

= − −

= − −

= −

=

                                           (6.33) 
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Figure 6.239Alpha-modified state convergence with desired master and error dynamic behaviors (a) Master 

and slaves’ states (b) Master and slaves’ control signals 

 

The teleoperation system is now simulated under the control of new gains (6.33) and the 

results are shown in Fig. 6.3. It can be observed that the slave system is able to 

synchronize itself with the alpha-scaled master system’s motion while achieving the 

desired dynamic response at the same time.  
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Figure 6.340Alpha-modified state convergence with desired slave and error dynamic behaviors (a) Master 

and slaves’ states (b) Master and slaves’ control signals 

6.2 EXTENDED STATE CONVERGENCE ARCHITECTURE 

Consider a linear teleoperation system consisting of k-master and l-slave systems. It is 

desired that the slave systems should follow the combined reference motion of the master 

systems and the desired dynamic behavior of the teleoperation system should also be 

achieved. To accomplish these tasks, we present extended state convergence architecture 

in this section which borrows its functionality from the alpha-modified state convergence 

method, i.e., it will allow that the slave systems can be influenced to a desired extent by 

the master systems. The proposed extended state convergence architecture is shown in 

Fig. 6.4. It can be observed that the extended architecture considers all the possible 

interactions between the master and slave systems, i.e., force and motion signals from all 

the master systems are transmitted over the communication channel to all the slave 

systems and the feedback from all the slave systems are provided to all the master 

systems. However, the master-master and slave-slave interactions are not considered in 

the proposed architecture. The definition of the various parameters of the proposed 

extended architecture is as follows:   
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Figure 6.441Proposed extended state convergence architecture for k-master/l-slave systems 
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Fmj: It represents the force exerted by the jth human operator onto the jth master system. 

Since k-master systems are involved, the number of such known scalar parameters will be 

k. 

Gij: It models the influence of the force in the ith slave system which is being exerted by 

the j
th human operator onto the j

th master system. Since each slave system is being 

influenced by every master system, the number of such unknown scalar parameters will 

be l k× . 

Rsij: It models the impact of motion signals of the jth master system in the ith slave system. 

It is an unknown n-vector and due to the full coupling present between the master and 

slave systems, the number of such unknown n-vectors will be l k× which give rise to a 

total of n l k× × scalar parameters. 

Rmij: It models the force feedback from the jth slave system to the ith master system and is 

given as: 
ijmij f ej sj

R k k C= where 
ijf

k and 
ej

k are the corresponding force feedback gains and 

environment stiffness respectively. It is a known n-vector and the total number of such 

known vectors in a k-master/l-slave teleoperation system will be k l× .         

Kmj: It represents the stabilizing gain of the jth master system and is an unknown n-vector. 

Since we are considering k-master systems, the number of such unknown n-vectors will 

be k and thus there will be a total of n k× unknown scalar parameters contributed by the 

master systems’ stabilizers.  

Ksj: It represents the stabilizing gain of the jth slave system and is an unknown n-vector. 

Since there are l-numbers of slave systems involved, the number of unknown scalar 

parameters will be n l× as contributed by the slave systems’ stabilizers.      

Thus, amongst different parameters of the proposed extended state convergence 

architecture;
ij

G ,
sij

R ,
mj

K and 
sj

K  form ( ) ( )1n k l n kl× + + + ×  unknown scalar parameters 

which need to be determined in order to achieve the desired state convergence behavior 

between the k-master and l-slave systems. Indeed, the number of unknown parameters 

reduces to 3 1n + when 1k l= = which is the case of single-master/single-slave 

teleoperation system. Thus, the proposed extended state convergence architecture can be 

considered as a more general form of the standard state convergence architecture for 

SISO systems. We now present the method to compute the unknown parameters of the 



 106 

extended state convergence architecture for the two classes of linear teleoperation 

systems following the lines of alpha-modified state convergence method. 

6.2.1 TELEOPERATION SYSTEM MODEL WITHOUT ZEROS 

Consider the family of master/slave systems where each member can be represented by 

the differential equation of the form (6.2) with the corresponding state space 

representation of the form (6.1). We will compactly represent such a family as: 

z z z z z

z z z

x = A x + B u

y = C x

i

                                            (6.34) 

where, the subscript z either represents master (z=m) or slave (z=s) systems and various 

matrix entries in (6.34) are given as: 

( )

( )

( )

1 2

1 2

1 2

1 2

1 2

1 2

...

...

...

, ,...,

, ,...,

, ,...,

T
T T T

z z zt

T
T T T

z z zt

T
T T T

z z zt

z z zt

z z zt

z z zt

x x x

u u u

y y y

diag A A A

diag B B B

diag C C C

 =  

 =  

 =  

=

=

=

z

z

z

z

z

z

x

u

y

A

B

C

                              (6.35) 

Note that the subscript t in (6.35) represents the total number of master (t=k) or slave (t=l) 

systems. The control input for the ith master device in a multilateral teleoperation system 

can be written using Fig. 6.4 as:  

( ) ( ) ( ) ( )
1

l

mi mi mi mij sj mi

j

u t K x t R x t T F t
=

= + − +∑         (6.36) 

The family of such k-master control laws can be compactly written as: 

( ) ( ) ( ) ( )t t t T t−m m m m s mu = K x + R x + F              (6.37) 

where the matrix entries in (6.37) are given as: 
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( )1 2

11 12 1

21 22 2

1 2

1 2

, ,...,

...

...

...

...

...

m m mk

m m m l

m m m l

mk mk mkl

T
T T T

m m mk

diag K K K

R R R

R R R

R R R

F F F

=

 
 
 =
 
 
 

 =  

m

m

m

K

R

F

                    (6.38) 

We can now write the control input for the ith slave system using Fig. 6.4 as: 

( ) ( ) ( ) ( )
1 1

k k

si si si sij mj ij mj

j j

u t K x t R x t T G F t T
= =

= + − + −∑ ∑        (6.39) 

The family of such l-slave control laws can be compactly given as: 

( ) ( ) ( ) ( )t t t T t T= + − + −s s s s m mu K x R x GF              (6.40) 

where the matrix entries in (6.40) are given as: 

( )1 2

11 12 1

21 22 2

1 2

11 12 1

21 22 2

1 2

, ,...,

...

...

...

...

...

...

...

...

s s sl

s s s k

s s s k

sl sl slk

k

k

l l lk

diag K K K

R R R

R R R

R R R

G G G

G G G

G G G

=

 
 
 =
 
 
 

 
 
 =
 
 
 

s

s

K

R

G

                     (6.41) 

Note that the purpose of using the bold notations in the case of multi-master/multi-slave 

teleoperation system is to differentiate it from the case of single-master/single-slave 

teleoperation system. Further, the representation of multi-master/multi-slave 

teleoperation system’s entries in compact form allows using the earlier gain-computing 

framework provided by the state convergence methodology. We now compute the closed 

loop master and slave systems using the knowledge of (6.34), (6.37) and (6.40) as: 

( ) ( ) ( ) ( ) ( )t t t T t= + − +m m m m m m m s m mx A + B K x B R x B F
i

                                 (6.42) 

( ) ( ) ( ) ( ) ( )t t t T t T= + − + −s s s s s s s m s mx A + B K x B R x B GF
i

       (6.43) 
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Using the Taylor expansion with the assumption of small time delay and the constant 

applied force (6.8), the closed loop systems in (6.42), (6.43) can be written as: 

( )

( )

( )
( )

( )

( )
( )

t tt T
t

t T
t t

   
−         = + +         −            

m mm m m m m m m m m

m

s s s s s s s s s
s s

x xA + B K B R x 0 B R B
F

B R A + B K x B R 0 B G
x x

i i

i i

                                                                   (6.44) 

The closed loop augmented system of (6.44) can be simplified in a form similar to (6.11) 

as: 

( )

( )

( )
( )

( )
t t

t
t

t

 
      = +            

m m11 12 1

m

s21 22 2
s

x xA A B
F

xA A B
x

i

i
                (6.45) 

Various matrix entries in (6.45) are given below: 

( )

( )

( )

( )

11 11 m m m 12 s s

12 11 m m 12 s s s

21 21 m m m 22 s s

22 21 m m 22 s s s

1 11 m 12 s

2 21 m 22 s

A = V A + B K + V B R

A = V B R + V A + B K

A = V A + B K + V B R

A = V B R + V A + B K

B = V B + V B G

B = V B + V B G

                    (6.46) 

Here
ij

V represents the matrix entry located at the i
th row and j

th column of the block 

matrix V : 

( )

( )

( )

( )

T

T T

T T

T

-1
2

11 nk m m s s

-1
2

12 m m nl s s m m

-1
2

21 s s nk m m s s

-1
2

22 nl s s m m

V = I - B R B R

V = - B R I - B R B R

V = - B R I - B R B R

V = I - B R B R

                  (6.47) 

To guarantee that the l-slave systems can be alpha-influenced by the k-master systems, 

we introduce the following linear transformation: 

( )
( )

( )
( )

t t

t t

    
=    −    

m mnk nl

e snl

x xI 0

x xΑ I
                                (6.48) 

where the capital alpha (A) matrix contains l k× alpha factors and is given as: 
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11 12 1

21 22 2

1 2

...

...

...

...

n n k n

n n k n

l n l n lk n

I I I

I I I

I I I

α α α

α α α

α α α

 
 
 =
 
 
 

Α                   (6.49) 

Note that the linear transformation of (6.48) is inspired from the alpha-modified state 

convergence method which guarantees that the slave system tracks the alpha-scaled states 

of the master system. Here, a linear combination of the alpha-scaled k-master systems’ 

states will act as a reference for the ith slave system. To ensure that the l-slave systems 

track these references in a desired dynamic way, control gains will be determined 

following the guidelines of alpha-modified state convergence method. By taking the time 

derivative of (6.48) and using (6.45)-(6.49), we obtain a transformed augmented system 

which can be written is a form similar to (6.15) as:      

( )

( )

( )
( )

( )
t t

t
t

t

           = +             

m 11 12 1m

m

e
e 21 22 2

x xA A B
F

x
x A A B

i ∼ ∼ ∼

i ∼ ∼ ∼
            (6.50) 

where the matrix entries in (6.50) are given as: 

( ) ( )

11 11 12

12 12

21 21 11 22 12

22 22 12

1 1

2 2 1

A = A + A Α

A = A

A = A -ΑA + A -ΑA Α

A = A -ΑA

B = B

B = B -ΑB

∼

∼

∼

∼

∼

∼

                             (6.51) 

The transformed system of (6.50) will now be used to obtain the design conditions for 

multi-master/multi-slave teleoperation system through the application of state 

convergence method. To this end, we first allow the error in (6.50) to evolve as an 

autonomous system which results in the following conditions to be satisfied: 

=
2 1

B -ΑB 0                  (6.52) 

( ) ( ) =21 11 22 12A -ΑA + A -ΑA Α 0               (6.53) 
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From (6.52), we obtain k l× design conditions while matrix equation (6.53) yields 

n k l× × design conditions. After the behavior of error system is made autonomous, 

characteristic equation of (6.50) is computed and is compared against the desired 

dynamic behavior of master-error systems. This results in the following matrix equation 

to be satisfied: 

( )

( ) =

11 12

22 12

sI - A + A Α = sI - P

sI - A -ΑA sI - Q
                         (6.54) 

where the desired dynamic behaviors of k-master and l-error systems in (6.54) are 

computed as: 

1

1

...

...

n n k

n n l

sI P sI P

sI Q sI Q

= − × × −

= − × × −

sI - P

sI - Q
                     (6.55) 

where the matrices 
i

P and 
j

Q contain the desired dynamic behaviors for the ith master and 

j
th error systems respectively and are given by (6.20). Note that the expansion of (6.54) 

results in ( )n k l× + design conditions. Thus, a total of ( ) ( )1n k l n kl× + + + × design 

conditions are obtained from the expressions (6.52)-(6.54) which match with the number 

of unknown variables required to achieve the desired state convergence behavior in k-

master/l-slave teleoperation system. 

Remark 6.3: Extended state convergence method for multi-master/multi-slave 

teleoperation system considers assigning the desired dynamic behavior to the master and 

error systems as opposed to the standard state convergence method for single-

master/single-slave teleoperation system which imposes the desired dynamic behavior to 

the slave and error systems. This is done to overcome the mismatch between the number 

of unknown variables resulting from the proposed extended state convergence 

architecture and the number of design equations obtained through the standard state 

convergence procedure. For instance, if the standard state convergence method is used 

with the proposed k-master/l-slave teleoperation system architecture, the number of 

resulting design conditions becomes ( )2kl l nl+ + × which are different from the number 

of unknown variables in general. However, as a special case, if the number of master and 

slave systems in a multilateral teleoperation system is equal, it is not difficult to show that 
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the same numbers of design conditions are obtained by considering either the master-

error or slave-error augmented systems. In case when the number of master systems is 

less than the slave systems, greater number of design conditions than desired are yielded 

by the standard state convergence method while lesser than the desired design conditions 

are obtained when numbers of master systems are greater than the slave systems. To 

determine the solution in such cases, some parameters either need to be constrained or 

chosen freely. In contrast, state convergence method considering the master-error 

augmented system is equally valid irrespective of the number of master and slave 

systems. 

Remark 6.4: In the proposed alpha-modified and the extended state convergence 

methods, alpha influencing factors cannot be changed during the operation of the 

teleoperation system. The values to these parameters can only be assigned during the 

design phase. 

6.2.2 TELEOPERATION SYSTEM MODEL WITH ZEROS 

We now consider the case of multi-master/multi-slave teleoperation system where each 

member of the teleoperation system can be represented by the differential equation of the 

form (6.21). Such a family of the master/slave systems can then be represented in state 

space form of (6.34)-(6.35) with the corresponding matrix entries given by (6.22). The 

control laws for the master and slave systems will remain the same as in (6.37) and (6.40) 

respectively. Thus the closed loop system of (6.45) also holds. However, a different 

linear transformation is introduced for such a class of teleoperation system as:   

( )
( )

( )
( )

t t

t t

    
=    −    

m nk nl m

e m s s

x I 0 x

x E Α E x
                    (6.56) 

where the matrix entries 
z

E (z=m/s, t=k/l) in (6.56) are given as: 

( )

( )
1 2

0 1 1

, ,...,

, ,...,

z z zt

zi z i z i zn i

diag

diag b b b −

= Θ Θ Θ

Θ =

z
E

                   (6.57) 

By taking the time derivative of (6.56) and substituting the closed loop system of (6.45) 

in the resulting dynamics, we obtain the transformed system of (6.50) with the following 

matrix entries: 
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( ) ( )

( )

−11 11 12 ms

12 12 s

21 s 21 m 11 s 22 m 12 ms

22 s 22 m 12 s

1 1

2 s 2 m 1

A = A A E Α

A = A E

A = E A - E ΑA + E A - E ΑA E Α

A = E A - E ΑA E

B = B

B = E B - E ΑB

∼

∼

∼

∼

∼

∼

             (6.58) 

where 
ms

E is given to be -1

ms s m
E = E E . The application of state convergence method to 

(6.58) yields the following design conditions: 

=
s 2 m 1

E B - E ΑB 0                                             (6.59) 

( ) ( ) =s 21 m 11 s 22 m 12 msE A - E ΑA + E A - E ΑA E Α 0         (6.60) 

( )

( )

−

=

11 12 ms

s 22 m 12 s

sI - A A E Α = sI - P

sI - E A - E ΑA E sI - Q
                 (6.61) 

The right hand side of (6.61) is computed in the same way as (6.55). By expanding 

(6.59)-(6.61), we obtain a total of ( ) ( )1n k l n kl× + + + × design equations which can be 

solved to determine the required control gains. In addition, the expansion of (6.60) yields 

additional conditions (6.62) which should be satisfied for the elimination of steady state 

error between slave and alpha-scaled master systems’ states.  

0 2
0 1 2 1

1 1

,..., , 1, 2..., , 1,2,...,m j mn j

s i s i sn i sn i

m j mn j

b b
b b b b i l j k

b b

−

− −

−

= = ∀ = =      (6.62) 

6.2.3 SIMULATION RESULTS 

In order to validate the proposed extended state convergence method, we perform 

simulations considering a dual-master/tri-slave teleoperation system where each member 

is modeled by the following differential equation:  

sin
zi zi zi zi zi zi zi zi

J b m gl uθ θ θ+ + =
ii i

              (6.63) 

where
zi

m ,
zi

l , 21

3zi zi zi
J m l= and 

zi
b are the masses, lengths, inertias and viscous-friction’s 

coefficients of the master/slave systems respectively. By considering the small angle 
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approximation and selecting 1 2, ziz i zi z i
x xθ θ= =

i

as the state variables, the master/slave 

systems of (6.63) can be represented in state space form of (6.34) with the following 

matrix entities: 

[ ]

0 1 0

, 1

1 0

zi zizi zi zi

zizi zi

zi

A Bm gl b

JJ J

C

   
   = =
   − −
     

=

                    (6.64) 

By using mm1=5kg, mm2=3kg, ms1=2kg, ms2=1kg, ms3=4kg lm1=1m, lm2=2m, ls1=1m, 

ls2=0.5m, ls3=1m, bm1=2Nms/rad, bm2=1Nms/rad, bs1=2Nms/rad, bs2=1Nms/rad and 

bs3=2Nms/rad in (6.64), the following master/slave systems are obtained: 

1 1

2 2

1 1

2 2

3 3

0 1 0
,

29.430 1.20 0.60

0 1 0
,

14.715 0.25 0.25

0 1 0
,

29.430 3.00 1.50

0 1 0
,

58.860 12.0 12.0

0 1 0
,

29.430 1.50 0.75

m m

m m

s s

s s

s s

A B

A B

A B

A B

A B

   
= =   − −   

   
= =   − −   

   
= =   − −   

   
= =   − −   

   
= =   − −   

                        (6.65) 

The other parameters of the multilateral teleoperation system are selected as:  

• Environmental model: 1 2 3 10 /
e e e

k k k Nm rad= = =  

• Time delay in the communication channel: 0.5T s=  

• Alpha-influencing-factors:  11 12 21 22

31 32

0.5, 0.3, 0.4, 0.3,

0.1, 0.4

α α α α

α α

= = = =

= =
 

• Force feedback gains: 0.01, 1,2, 1, 2,3
fij

k i j= ∀ = =  

• Desired dynamics for dual-master systems: 
( ) ( )

( )

2

2

12 36

           12 36

p s s s

s s

= + + ×

+ +
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• Desired dynamics for tri-error systems: 
( ) ( ) ( )

( )

2 2

2

12 36 12 36

           12 36

q s s s s s

s s

= + + × + + ×

+ +
  

Note that the force feedback gains can also be selected to include the effect of alpha-

influencing factors. In this case, slave systems will reflect the alpha-scaled environmental 

force to the master systems as these are being alpha-influenced by the master systems. 

Now, since the master and slave systems (6.63) do not contain zeros in their differential 

equation representation, we will determine the control gains through the application of 

design conditions given in (6.52)-(6.54). Thus, by considering the aforementioned system 

parameters and solving the 28 design equations (6.52)-(6.54) using the MATLAB® 

symbolic toolbox, we obtain the control gains for the dual-master/tri-slave teleoperation 

system as: 

[ ]

[ ]
1

2

16.882 18.8774

72.4834 44.7241

m

m

K

K

= − −

= − −
              (6.66) 

[ ]

[ ]

[ ]

1

2

3

4.6869 6.0572

2.2571 0.0601

14.3325 14.9022

s

s

s

K

K

K

= − −

=

= − −

                     (6.67) 

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

11

12

21

22

31

32

0.2438 0.0387

0.2064 0.0331

0.0596 0.010

0.0054 0.0011

0.0356 0.0036

1.0552 0.1757

s

s

s

s

s

s

R

R

R

R

R

R

= − −

=

= − −

= − −

=

=

           (6.68) 

11

12

21

22

31

32

0.1884

0.0541

0.0170

0.0061

0.0811

0.1553

G

G

G

G

G

G

=

=

=

=

=

=

                       (6.69) 

With the control gains in (6.66)-(6.69) and considering the operator’s forces to be 

1 1
m

F N= and 2 0.5
m

F N= , the dual-master/tri-slave teleoperation system is simulated in 
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MATLAB/Simulink environment and the results are shown in Fig. 6.5 and Fig. 6.6. Figure 6.5 

presents the reference tracking results while Fig. 6.6 shows the control efforts for all the members 

of the teleoperation system. It can be seen from Fig. 6.5 that the references set by the master 

systems are being tracked by the slave systems and the desired dynamic response of the master 

systems is also achieved. Note that the references for the slave systems in this case are: 

1 11 1 12 2s ref m m
α α= +x x x , 2 21 1 22 2s ref m m

α α= +x x x and 3 31 1 32 2s ref m m
α α= +x x x . Since, in 

some cases, it is difficult to distinguish the response of the slave systems from these 

reference motions (position references are shown by dotted lines), the steady state values 

of the desired motions are also plotted which will further help in establishing the fact that 

the slave systems remain synchronized to the reference motions during the steady state. 

The operation of dual-master/tri-slave teleoperation system is also evaluated under time 

varying operator’s forces. The simulation results for this case are shown in Figs. 6.7 and 

6.8. It can be seen that the slave systems are able to track the references set by the master 

systems. 
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Figure 6.542Reference tracking by slave systems in a dual-master/tri-slave teleoperation system under 

constant operator’s forces 
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Figure 6.643Control inputs for the master and slave systems in dual-master/tri-slave teleoperation system 

with constant operator’s forces 
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Figure 6.744Reference tracking by slave systems in a dual-master/tri-slave teleoperation system under time 

varying operator’s forces 
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Figure 6.845Control inputs for the master and slave systems in dual-master/tri-slave teleoperation system 

with time varying operator’s forces 

 

Note that the afore-presented simulation results consider the desired dynamic behavior 

for the master and error systems. If the desired response is to be assigned to the slave and 

error systems, then the procedure in Appendix ‘B’ will yield 36 design conditions for the 

dual-master/tri-slave teleoperation system which are greater than the number of unknown 

variables. However, if a square teleoperation system is considered, then the said 

procedure will generate the same number of design conditions as the unknown variables. 

Therefore, we now consider a dual-master/dual-slave teleoperation system to show the 

applicability of the procedure where the desired dynamic behavior is to be directly 

assigned to the slave and error systems. The master and slave systems forming the dual-

master/dual-slave teleoperation system are assumed to be given by (5.30) and (5.31) 

respectively. The other parameters of the teleoperation system are given as:      

• Environmental model: 1 2 5 /
e e

k k Nm rad= =  

• Time delay in the communication channel: 0.5T s=  

• Alpha-influencing-factors:  11 22 12 210.3, 0.7α α α α= = = =  

• Force feedback gains: 0.01, 1, 2, 1,2
fij

k i j= = =  



 121 

• Desired dynamics for the slave and error systems: 

( ) ( ) ( ) ( )2 28 16 8 16p s q s s s s s= = + + × + +  

Considering the above parameters, the design conditions in (B7)-(B9) are solved using 

the MATLAB symbolic toolbox and the following control gains are obtained: 

[ ]

[ ]
1

2

64.6951 4.2647

56.1869 2.1394

m

m

K

K

= − −

= − −
                                           (6.70) 

[ ]
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s
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= − −
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                   (6.71) 

[ ]

[ ]

[ ]

[ ]

11

12

21

22

0.7694 0.1975

0.0203 0.0001

0.0186 0.0001

0.8862 0.2170

s

s

s

s

R

R

R

R

= − −

= − −

= −

=

                     (6.72) 
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            (6.73) 
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Figure 6.946Reference tracking by slave systems in a dual-master/dual-slave teleoperation system under 

constant operator’s forces 

 

With the control gains in (6.70)-(6.73), the dual-master/dual-slave teleoperation system is 

now simulated in MATLAB/Simulink environment under the control of constant operator 

forces of 1 1
m

F N= and 2 0.5
m

F N= . The resulting master and slave systems’ states are 

plotted in Fig. 6.9 and the corresponding control inputs are shown in Fig. 6.10. It can be 

seen that the slave systems are following the reference trajectories 

1 11 1 12 2s ref m m
α α= +x x x and 2 21 1 22 2s ref m m

α α= +x x x , as set by the master systems while 

exhibiting the desired dynamic response. 
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Figure 6.1047Control inputs for the master and slave systems in dual-master/dual-slave teleoperation 

system with constant operator’s forces 
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6.3 STABILITY ANALYSIS 

The stability of alpha-modified and extended state convergence controller is studied 

through a frequency domain criterion proposed in [152] which has also been used in 

earlier works on teleoperation systems [88], [153]. To apply this delay independent 

criterion, we write the closed loop multi-master/multi-slave teleoperation system of 

(6.42)-(6.43) without approximating the time delay as: 

( )

( )

( )
( )

( )
( )

( )

( )                

t t t T
t

t t T
t

t T

 
−          = + + +          −          

 
− 

 

m m m m m m m m m

m

s s s s s s s
s

m

s

x A + B K 0 x 0 B R x B
F

0 A + B K x B R 0 x 0
x

0
F

B G

i

i
 (6.74) 

The closed loop teleoperation system of (6.74) can be represented in compact form as: 

( ) ( ) ( ) ( ) ( )0 1 0 1t t t T t t T= + − + + −x A x A x B u B u
i

                (6.75) 

The delay independent criterion of [152] for analyzing the asymptotic stability of (6.75) 

is now stated: 

Lemma 1[152]: The asymptotic stability of (6.75) is achieved iff all of its solutions given 

by the characteristic equation (6.76) lie in the open-left half of the complex plane. 

0 1 0Tss e−− − =I A A                       (6.76) 

Theorem 1 [152]: Let 1 0 0
T

s
= +A A A , 1 0 0

T

a
= −A A A , 2 1 1

T

s
= +A A A , 

2 1 1
T

a
= −A A A and 

[ ]
{ }

( )
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( ){ }
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1 max 1 2 2
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1 max 1 1
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1
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1
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2

1
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2
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2

s s a

s

a a s
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b j

l b

b j

l j b

θ π
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λ θ θ

λ

λ θ θ

λ

∈

∈
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 
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 
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A A A

A

A A A

A

 

All unstable solutions of (6.76), if any, can be located in the region Ω formed by 

( ) ( )1 20 Re , Ims l s l≤ ≤ ≤                                 (6.77) 
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In order for the system (6.75) to maintain its asymptotic stability, it is sufficient to show 

that the Eigen values of 0 1
j T

e
ω+A A do not cross the imaginary axis for [ ]2 2,l lω ∈ − . We 

therefore compute the maximum of the real part of eigen values of 0 1
j T

e
ω+A A over the 

range [ ]2 2,l lω ∈ − for both the alpha modified single-master/single-slave and dual-

master/tri-slave teleoperation systems. The force feedback gain and the time delay in both 

cases are set as 0.1N and 0.5s, respectively, while the environmental stiffness is varied. 

The result of this analysis is shown in Fig. 6.11. It can be seen that the single-

master/single-master teleoperation system is stable for higher values of the stiffness 

parameter as compared to dual-master/tri-slave teleoperation system. However, the 

stability of teleoperation system is improved when the time delay is reduced, as shown in 

Fig. 6.12.    

 
Figure 6.1148Stability analysis of teleoperation system in varying environment (T=0.5s) 
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Figure 6.1249Stability analysis of teleoperation system in varying environment (T=0.1s) 

 

6.4 CONCLUSIONS 

This chapter has presented an extension of the state convergence scheme for multilateral 

teleoperation systems. This is achieved by first proposing an alpha-modified form of the 

state convergence based bilateral controller which is then extended to design the 

multilateral controller. The proposed multilateral controller can be applied to any k-

master/l-slave nth order teleoperation system and requires the solution of n(k+l)+(n+1)kl 

design equations. The obtained control gains ensure that the l-slave systems follow the 

references set by the k-master systems and the desired dynamic behavior of the 

teleoperation system is also achieved. The proposed scheme has been validated through 

simulations in MATLAB/Simulink environment by considering a one DoF dual-

master/tri-slave teleoperation system. Future work involves the real time implementation 

of the proposed state convergence based multilateral controller.  
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CHAPTER 7: EXTENDED STATE CONVERGENC METHOD 

CONSIDERING NON-LINEAR DYNAMICS 

This chapter presents the design of a time-delayed multi-master-single-slave nonlinear 

teleoperation system based on the method of state convergence. In previous chapter, we 

have presented an extended state convergence control architecture where k-master 

systems can cooperatively control l-slave systems. However, this extended state 

convergence method is only applicable to linear teleoperation systems when the 

communication channel offers no time delays. These two limitations have been addressed 

in this chapter by considering the nonlinear dynamics of master/slave systems and 

asymmetric communication time delays. A Lyapunov based stability analysis is presented 

and control gains of the extended state convergence method are selected to ensure the 

stability of the multilateral system against the communication time delays and to achieve 

the zero tracking error of the slave system. In order to validate the proposed scheme, 

MATLAB simulations are performed on a tri-master-single-slave nonlinear teleoperation 

system. 

7.1. MODELING OF NONLINEAR TELEOPERATION SYSTEM 

We consider an n degrees-of-freedom teleoperation system which is comprised of k-local 

(master) and 1-remote (slave) manipulators and posses the following nonlinear dynamics: 

( ) ( ), , 1,2,...,j j j j j j j j j j j

l l l l l l l l l l l
M q q C q q q g q F j kτ

•• • • 
+ + = + ∀ = 

 
           (7.1) 

( ) ( ),r r r r r r r r r r rM q q C q q q g q Fτ
•• • • 

+ + = − 
 

                       (7.2) 

where the subscript l stands for the local while subscript r stands for the remote systems. 

The teleoperation system parameters are: ( ) ( ), , ,j n n j n n

l r l r
M M C C× ×∈ ∈� � and 

( ) 1,j n

l r
g g ×∈� which denotes the inertia, coriolis/centrifugal and gravity matrices of local 

and remote manipulators respectively. The other quantities in (7.1) and (7.2) 
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are ( ) ( ) ( )1 1 1 1 1, , , , , , , , ,j n j n j n j n j n

l r l r l r l r l r
q q q q q q F Fτ τ

• ••• ••
× × × × ×   

∈ ∈ ∈ ∈ ∈   
   

� � � � � , which 

denotes the position, velocity, acceleration, torque and external force signals in local and 

remote manipulators respectively. The dynamic representation of the teleoperation 

system given by (7.1) and (7.2) posses following properties which will be utilized in 

Section 7.3 to prove the system’s stability [93],[94]: 

P1: The inertia matrices are positive definite, symmetric and bounded i.e. under the 

existence of two positive constants 1ε and 2ε , the inequality 

( )1 20 I M q Iε ε< < < ≤ ∞ holds.  

P2: The inertia and coriolis/centrifugal matrices have a skew-symmetric relation which 

exists in the form ( ) 2 , 0,T n
a M q C q q a a

• •  
− = ∀ ∈  

  
� . 

P3: The coriolis/centrifugal vectors are bounded i.e. under the existence of a positive 

constant 3ε , the inequality 3,C q q q qε
• • • 

≤ 
 

holds. 

P4: If the velocity and acceleration signals are bounded, then the time derivative of 

coriolis/centrifugal matrices is also bounded. 

Along with the above properties P1-P4, the following assumptions A1-A2 and lemmas 

L1-L2 will be used in the paper [93],[94]: 

A1: The human operators and remote environment are passive i.e. there exists positive 

constants j

l
υ and 

r
υ such that the inequalities 

0

ft

j j j

l l lF q dtυ
•

− < −∫ & 
0

ft

j j

r r rF q dtυ
•

− < −∫ hold. 

Also, the environment is modeled by a spring-damper system i.e. 
r re r re r

F K q B q
•

= + with 

n n

re
K

×∈� and n n

re
B

×∈� being positive definite diagonal matrices. 

A2: The gravity loading vectors of local and remote manipulators are known.          

L1: Let , na b ∈� be any vector signals, n nK ×∈� be a positive definite diagonal matrix 

and γ be a positive constant. Then for any time varying continuously differentiable 



 129 

function ( )iT t  with a known upper bound 
i

T
+ , the following inequality holds: 

( )
( ) 2

0 0 0 0

2
f f fi

t t tT t

T T TiT
a K b t d dt a Kadt b Kbdtσ σ γ

γ

+• • ••

− − ≤ +∫ ∫ ∫ ∫      

L2: Let n
a ∈� be any vector signal and ( )iT t be a time varying function with a known 

upper bound
i

T
+ , then the following inequality holds: 

( )( ) ( ) ( )
( )

1/2

20

iT t

i ia t T t a t a t d T aσ σ
• •

+− − = − ≤∫    

7.2. MODIFIED EXTENDED STATE CONVERGENCE SCHEME 

We have proposed an extended state convergence scheme in [151] for delay-free linear 

multilateral teleoperation system where cooperative control of l-remote robotic systems 

by k-local robotic systems is established. In this chapter, we will show that the said 

scheme can indeed be applied to control nonlinear multilateral teleoperation system when 

asymmetric time varying delays exist in the communication links. To achieve this, a 

simplified version of the extended state convergence architecture is proposed with a view 

of controlling a multi-master-single-slave nonlinear teleoperation system. The proposed 

architecture differs slightly from its standard counterpart [151] in that the control gains 

associated with the direct transmission of operators’ forces to slave robotic system are 

eliminated. The modified architecture is shown in Fig.7.1 and is comprised of the 

following parameters: 

j

l
F : This scalar parameter denotes the force applied by the jth operator onto the jth local 

manipulator. 

jα : This scalar parameter denotes the authority level of the j
th operator in the desired 

remote tracking task and all such authority factors are aggregated to be unity i.e. 

1
j

j

α =∑ . 

( )ljT t : This scalar parameter denotes the time varying delay faced by the motion signals 

as transmitted by the j
th local system across the communication channel towards the 

remote system. 
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Figure 7.1 50Modified extended state convergence architecture for multi-master-single-slave tele-robotic 

system 
 

( )rjT t : This scalar parameter denotes the time varying delay faced by the motion signals 

as transmitted by the remote system across the communication channel towards the j
th 

local system. 

1 2
j j j

l l l
K K K =   : This 2n n× matrix parameter defines the position ( )1

j n n

l
K ×∈�  and 

velocity ( )2
j n n

l
K ×∈� feedback gains for the j

th local manipulator. Both the constituent 

parameters will be found as a part of the design procedure. 
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1 2r r r
K K K =   : This 2n n× matrix parameter defines the position ( )1

n n

r
K ×∈�  and 

velocity ( )2
n n

r
K ×∈� feedback gains for the remote manipulator. Similar to j

l
K , both the 

constituent parameters of 
r

K  will be found as a part of the design procedure. 

1 2
j j j

r r r
R R R =   : This 2n n× matrix parameter models the effect of j

th local 

manipulator’s motion onto the remote manipulator where both the constituent parameters 

1
j n n

r
R

×∈�  and 2
j n n

r
R

×∈� will be determined as a part of the design procedure.  

1 2
j j j

l l l
R R R =   : This 2n n× matrix parameter models the effect of the remote 

manipulator’s motion onto j
th local manipulator where both the constituent parameters 

1
j n n

l
R

×∈�  and 2
j n n

l
R

×∈� will be determined as a part of the design procedure. 

7.3. STABILITY ANALYSIS AND CONTROL DESIGN 

The goal of this section is to establish that the proposed multilateral teleoperation system, 

as depicted in Fig. 7.1, can maintain stability in the presence of time varying delays and 

under an appropriate selection of the control gains, the remote manipulator can follow the 

reference set by the local manipulators according to their authority levels i.e. 

( ) ( )
1

lim 0
k

j

r j l
t

j

q t q tα
→∞

=

 
− = 

 
∑ . To achieve these goals, we proceed as follows: 

Theorem 7.1: Let ,
lj rj

γ γ be positive scalar constants, 1,n n n n
K K

× ×∈ ∈� � be positive 

definite diagonal matrices and ,lj rjT T
+ + be the bounds on time varying delays. Now, if the 

control gains of the multilateral teleoperation system (7.1)-(7.2) are selected as in (7.3)-

(7.4) and 1k + inequalities in (7.5) are also satisfied, then the proposed multilateral 

teleoperation system remains stable in the presence of time varying delays i.e. 

lim lim lim lim 0, 1, 2,...,j j

l r l r
t t t t

q q q q j k
• • •• ••

→∞ →∞ →∞ →∞
= = = = = = = = ∀ = . 

1 2 1 1 2

1 2 1 1 2
1

, 2 , , 2 , 1, 2,...,

, 2 , , 2 , 1, 2,...,

j j j j j j

l l j ld l j l j ld

k
j j j j

r r j rd r j r j rd

j

K K K K K R K R K j k

K K K K K R K R K j k

α α α

α α α
=

= − = − − = = ∀ =

= − = − − = = ∀ =∑
          (7.3) 
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1 11 ( ) , 1 ( ) , 1, 2,...,j j

ld rj rd ljK T t K K T t K j k
• •   

= − = − ∀ =   
   

        (7.4) 

( )
2

2

1

1
1 1

2 0, 1, 2,...,
2 2

0
2 2

j rj j lj

j

lj

k k
j lj j rj

j j rj

T
K K K j k

T
K K K

α γ α
α

γ

α γ α

γ

+

+

= =

− − − > ∀ =

− − >∑ ∑

         (7.5) 

Proof: Consider the multilateral teleoperation system given by (7.1)-(7.2). The control 

inputs ,j

l r
τ τ for this teleoperation system can be written by observing the extended state 

convergence architecture of Fig. 7.1 as: 

( ) ( )( ) ( )( )1 2 1 2 , 1, 2,...,j j j j j j j j j

l l l l l l l l r rj l s rj
g q K q K q R q t T t R q t T t j kτ

• •

= + + + − + − ∀ =      (7.6) 

( ) ( )( ) ( )( )1 2 1 2
1 1

k k
j j j j

r r r r r r r r l lj r l lj

j j

g q K q K q R q t T t R q t T tτ
• •

= =

= + + + − + −∑ ∑       (7.7) 

By substituting the control law (7.6) in (7.1) and (7.7) in (7.2) and by considering the 

model of the remote environment, the closed loop multilateral teleoperation system is 

obtained as: 

( )( ) ( )( )1 2 1 2 , 1,2,...,j j j j j j j j j j j

l l l l l l l l l r rj l s rj l
M q C q K q K q R q t T t R q t T t F j k

•• • • •

+ = + + − + − + ∀ =  

                   (7.8) 

( )( ) ( )( )1 2 1 2
1 1

k k
j j j j

r r r r r r r r r l lj r l lj re r re r

j j

M q C q K q K q R q t T t R q t T t K q B q
• • ••• •

= =

+ = + + − + − − −∑ ∑  

                   (7.9) 

Now, we define the following Lyapunov-Krasovskii function to analyze the stability of 

the closed loop tele-robotic system (7.8)-(7.9) with the control gains given in (7.3)-(7.4): 

( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

1 1

1 1 10

1 1
1

1 1 1 1
, , , , 1

2 2 2 2

1

2

lj rj

k k
j j j jT j j T jT j T

l r l r r l l l l r r r j l l r re r

j j

tk k k
T

jT j j j j

l l l j l s l s

j j j

tk
jT j T

j l l j r r

j t T t t T t

V q q q q q q q M q q M q q Kq q K q

q F d q q K q q

q K q d q K q d

α

ξ ξ ξ υ α

α ξ ξ ξ α ξ ξ ξ

• • • • ••

= =

•

= = =

• • • •

= − −

 
− = + + − + 

 

+ − + + − −

+ +

∑ ∑

∑ ∑ ∑∫

∑ ∫
1

tk

j=

∑ ∫

                     (7.10) 
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By taking the time derivative of (7.10) and using the closed loop teleoperation system 

(7.8)-(7.9) along with the property P2 and assumption A1, we have: 

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

( )

1 2 1 2
1

1 2 1 2
1 1

1 1

1

k
jT j j j j j j

l l l l l l r rj l s rj

j

k k
T j j j j

r r r r r r l lj r l lj re r re r

j j

k k
jT j T jT j

j l l r re r j l l s

j j

T j

j r r l

V q K q K q R q t T t R q t T t

q K q K q R q t T t R q t T t K q B q

q Kq q K q q K q q

q K q q

α α

α

• •• •

=

• • • •

= =

• • •

= =

•

 
= + + − + − + 

 

 
+ + − + − − − 

 

+ − + + − +

−

∑

∑ ∑

∑ ∑

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

1 1
1 1 1

1 1
1 1

1

1

k k k
jT j jT j

j l l j l lj lj l lj

j j j

k k
T T

j r r j r rj rj r rj

j j

q K q q t T t T t K q t T t

q K q q t T t T t K q t T t

α α

α α

• • • ••

= = =

• • • ••

= =

 
+ − − − − 

 

 
+ − − − − 

 

∑ ∑ ∑

∑ ∑

             

  (7.11) 

By defining 1 11 ( ) , 1 ( )j j

ld rj rd ljK T t K K T t K
• •   

= − = −   
   

 and grouping the terms in (7.11) and 

simplifying further, we obtain: 

( ) ( )( ) ( )( )

( )( )( ) ( )

( )( )

1 1 1
1 1 1

1 2 1 2 1
1 1 1 1

2
1

k k k
jT j j jT j T

l l l l l r rj j r r r j r

j j j

k k k k
T j j j jT j j T

r r l lj j l l l j l r r j r

j j j j

k
T jT j

r re r l l r rj

j

V q K K q q R q t T t Kq t q K K q

q R q t T t Kq q K K q q K K q

q B q q R q t T t q

α α

α α α

• • ••

= = =

• • • • •

= = = =

• • • •

=

 
= + + − − + + + 

 

 
− − + + + + − 

 

+ − +

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ( )( )

( )( ) ( )( ) ( )( ) ( )( )

2
1

1 1

k
T j j

r r l lj

j

k k
jT j j T j

j l lj rd l lj j r rj ld r rj

j j

R q t T t

q t T t K q t T t q t T t K q t T tα α

• •

=

• • • •

= =

− −

− − − − −

∑

∑ ∑

 

               (7.12) 

By plugging the control gains (7.3) in (7.12) and on simplifying, we have:  

( )( )( ) ( )( )( ) ( )

( )( ) ( )( ) ( )( )

( )( )

1
1 1 1

1
1

2

2

pk k
jT T j j jT j

j l r rj r j r l lj l l j l

j j j

k
T jT j j T j jT j

r r j l ld l r rj ld r rj l ld r rj

j

T T j jT j j

r re r j r rd r l lj rd l

V q K q t T t q q K q t T t q q K q

q K q q K q q t T t K q t T t q K q t T t

q B q q K q q t T t K q

α α α

α

α

• • • ••

= = =

• • • • • • • •

=

• • • • • •

= − − + − − − − −

 
− + − − − − − 

 

− + −

∑ ∑ ∑

∑

( )( ) ( )( )
1

2
k

T j j

lj r rd l lj

j

t T t q K q t T t
• •

=

 
− − − 

 
∑

                  (7.13) 
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Let us now define the error signals relevant to the proposed multilateral teleoperation 

system as: 

( )( )

( )( )

, 1, 2,...,

, 1, 2,...,

j
r

j
l

j

r l ljq

j

l r rjq

e q q t T t j k

e q q t T t j k

= − − ∀ =

= − − ∀ =
        (7.14) 

We can write (7.13) in terms of the integral equality 

( )( ) ( ) ( )
( )

0

iT t

iq t T t q t q t dσ σ
•

− − = − −∫ and error signals (7.14) as: 

( )
( )

( )
( )

( ) 1
1 1 10 0

1
1 1

2
rj lj

j j j j
r r l l

T t T t
k k k

jT T j jT j

j l r j r l l j l

j j j

k k
T T T j T j

r r r re r j rd j ldq q q q
j j

V q K q t d q K q t d q K q

q K q q B q e K e e K e

α σ σ α σ σ α

α α

• • • • • ••

= = =

• • • • • •• •

= =

= − − − − − −

− − − −

∑ ∑ ∑∫ ∫

∑ ∑
 

             (7.15) 

By integrating (7.15) over the time interval 0,
f

t   and using lemma L1, we have: 

( )
2

2

1
1 10 0 0 0

1
1 0 0 0 0

2
2 2

2 2

f f f f

f f f f

j
r

t t t t
k k

rj rjjT j T jT j

j l l r r l j l

j jrj

t t t t
k

lj ljT jT j T T

j r r l l r r r re r

j lj

T

j rdq

T
V ds q K q ds q K q ds q K q ds

T
q K q ds q K q ds q K q ds q B q ds

e K

γ
α α

γ

γ
α

γ

α

+• • • • • ••

= =

+• • • • • • • •

=

•

 
 ≤ + − −
 
 

 
 + + − − −
 
 

∑ ∑∫ ∫ ∫ ∫

∑ ∫ ∫ ∫ ∫

1 10 0

f f

j j j
r l l

t t
k k

j T j

j ldq q q
j j

e ds e K e dsα
•• •

= =

−∑ ∑∫ ∫

       (7.16) 

The inequality (7.16) can be further reduced as: 

( ) ( ) ( ) ( )

( ) ( )

2

2

2 2

1
1 1 22

2 22

1
1 12 2 2

0 2
2 2

2 2

j
r

j
l

k k
j rj j lj j j

f j l j rd q
j jlj

k k
j lj j rjj

j ld s e rq
j j rj

T
V t V K K K q K e

T
K e K K K q B q

α γ α
µ α µ α

γ

α γ α
µ α µ µ

γ

+ • •

= =

+ • ••

= =

 
 − ≤ − − − − − −
 
 

  
  − − − − −

  
  

∑ ∑

∑ ∑

 

             (7.17) 

where ( )Xµ specifies the minimum eigen value of X . Taking the limit as 
f

t → ∞ in 

(7.17) and on the satisfaction of the inequalities in (7.5), it can be concluded that the 
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signals , , , ,j j j

l r l r r l
q q q q q q L

• •

∞

 
− ∈ 

 
and 2, , ,j j

r l

j

l r q q
q q e e L

• • • • 
∈ 

 
. Now, it is left to show the 

zero convergence of velocity and acceleration signals for proving the system’s stability. 

The zero convergence of velocity signals is achieved if the acceleration signals remain 

bounded. Thus, we first analyze the acceleration signals of (7.8) and (7.9) by disregarding 

the external forces and rewriting them as: 

( ) ( )( ) ( )( )
1

1 2 1 2
j j j j j j j j j j

l l l l l l l m l r rj l r rj
q M C q K q K q R q t T t R q t T t
•• • • •−  

= − + + + − + − 
 

               (7.18) 

( )( ) ( )( )1
1 2 1 2

1 1

k k
j j j j

r r r r r r r r r l lj r l lj

j j

q M C q K q K q R q t T t R q t T t
• ••• •

−

= =

 
= − + + + − + − 

 
∑ ∑       (7.19) 

If we analyze (7.18) and (7.19) along with the control gains (7.3) of the teleoperation 

system, we are left to show that the signals 

( )( ) ( )( )
1

,
k

j j

l j r rj r j l lj

j

q q t T t q q t T t Lα α ∞
=

 
− − − − ∈ 

 
∑  since it has already been shown that 

2,j

l r
q q L

• • 
∈ 

 
and , , , ,j j j

l r l r r l
q q q q q q L

• •

∞

 
− ∈ 

 
by virtue of 

0

0V ds

∞ •

≤∫ . We can write the 

left-over signals as: 

( )( ) ( ) ( )( )( )
21

j j

l j r rj l j r j r r rj
q q t T t q q q q t T tα α α− − = − + − −

��������	����	

      (7.20) 

( )( ) ( )( )( )

1
2

1 1 1

k k k
j j j j

r j l lj r j l j l j l lj

j j j

q q t T t q q q q t T tα α α α
= = =

 
− − = − + − − 

 
∑ ∑ ∑

������	
��������	

    (7.21) 

The first part of the signals in (7.20)-(7.21) are bounded since , ,j j

l r l r
q q q q L

• •

∞

 
− ∈ 

 
 

while the second part of the signals are bounded by virtue of lemma L2 and ,j

l r
q q L

• •

∞

 
∈ 

 
. 

This implies that the left hand sides of (7.20)-(7.21) are also bounded. By using the 

properties P1 and P3 of the robot dynamics and the 

result ( )( ) ( )( )
1

, , , , , ,
k

j j j j j

l r l r r l l j r rj r j l lj

j

q q q q q q q q t T t q q t T t Lα α
• •

∞
=

 
− − − − − ∈ 

 
∑ , it can be 
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concluded that the signals ,j

l r
q q
•• •• 

 
 

 are bounded. Since the signals ,j

l r
q q

• • 
 
 

 also belong 

to 2L , then by Barbalat’s lemma, we have: lim lim lim lim 0j j
rl

j

l r qqt t t t
q q e e

• • • •

→∞ →∞ →∞ →∞
= = = = . To show 

the convergence of acceleration signals, we consider the time-derivative of (7.18)-(7.19): 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1

1 2 1 2

1

1 2 1 2         +

j
j j j j j j j j jl

l l l l m l l l r rj l r rj

j j j j j j j j j

l l l l l l l l r rj l r rj

d q d
M C q K q K q R q t T t R q t T t

dt dt

d
M C q K q K q R q t T t R q t T t

dt

••
• • •−

• • •−

 
= − + + + − + − 

 

 
− + + + − + − 
 

      (7.22) 

( ) ( )( ) ( )( )

( )( ) ( )( )

1
1 2 1 2

1 1

1
1 2 1 2

1 1

          

k k
j j j jr

r r r r r r r r l lj r l lj

j j

k k
j j j j

s r r r r r r r l lj r l lj

j j

d q d
M C q K q K q R q t T t R q t T t

dt dt

d
M C q K q K q R q t T t R q t T t

dt

••
• ••

−

= =

• ••
−

= =

 
= − + + + − + − 

 

 
+ − + + + − + − 

 

∑ ∑

∑ ∑

   

  (7.23) 

By using the properties P3 and P4 of the robot dynamics and using the earlier result: 

( )( ) ( )( )
1

, , , , , ,
k

j j j j j

l r l r r l l j r rj r j l lj

j

q q q q q q q q t T t q q t T t Lα α
• •

∞
=

 
− − − − − ∈ 

 
∑ , it can be 

concluded that the second derivative terms in (7.22) and (7.23) are bounded. The first 

derivative terms in (7.22) and (7.23) are also bounded owing to the boundedness of the 

signals , , ,j j

l l r r
q q q q

• •• • •• 
 
 

, properties P1 and P2 of the robot dynamics, and 

considering ( )1 1 1 1 1TM M M M M C C M
• •

− − − − −= − = − + . Thus the right hand sides of (7.22) 

and (7.23) remain bounded implying that the signals ,j

l r
q q L
••• •••

∞

 
∈ 

 
are uniformly 

continuous. Signal continuity further implies that the integral exists and is bounded. 

Thus, based on the previous result: lim lim 0j

l r
t t

q q
• •

→∞ →∞
= = , we have 
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( ) ( )
0 0

lim 0 , lim 0
t t

j j

l l r r
t t

q dt q q dt q
•• • •• •

→∞ →∞
= − = −∫ ∫  and by Barbalat’s lemma, it can be concluded 

that: lim lim 0j

l r
t t

q q
•• ••

→∞ →∞
= = . The proof is now completed ■ 

Theorem 7.2: In the absence of environmental force, the remote manipulator achieves the 

desired position in equilibrium state i.e. ( ) ( )
1

lim 0
k

j

r j l
t

j

q t q tα
→∞

=

 
− = 

 
∑ when the control 

gains of the teleoperation system are set according to (7.3).  

Proof: It has been shown in theorem 7.1 that the closed loop multilateral tele-robotic 

system (7.8)-(7.9) remains stable under the control gains of (7.3). Then, by plugging (7.3) 

in (7.9) and using the result from theorem 7.1 lim lim 0r r
t t

q q
• ••

→∞ →∞
= = , we have: 

( )( )
1

lim 0
k

j

r j l lj
t

j

q q t T tα
→∞

=

− − =∑                                (7.24) 

Through the use of integral equality ( )( ) ( )
( )lj

t

j j j

l lj l l

t T t

q t T t q q dξ ξ
•

−

− = − ∫ , and the earlier 

result on velocity convergence lim 0j

l
t

q
•

→∞
= , we can write (7.24) as

1

lim 0
k

j

r j l
t

j

q qα
→∞

=

− =∑ . 

Thus, the remote manipulator achieves the desired position in free motion when the 

equilibrium state of the tele-robotic system is reached. This completes the proof ■ 

Remark 7.1: The velocity control gains of the proposed multilateral tele-robotic system 

depend on the derivative of the time varying delays as can be seen from (7.3). These 

gains, therefore, are unrealizable since only the upper bounds on the communication 

delays are known. As a remedy, extra ramp signals ( )( ) ( )( ),
lj rj

r t T t r t T t− −  are 

transmitted across the communication channel and their time-derivatives are used to 

implement the velocity control gains as: 

1 1( ) , ( ) , 1, 2,...,j j

ld rj rd ljK r t T t K K r t T t K j k
• •   

= − = − ∀ =   
   

      (7.25) 

Remark 7.2: It is usual to have force feedback in tele-robotic system which is believed to 

improve the task performance. The proposed multilateral tele-robotic system also 
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provides force feedback to the operators when the remote manipulator comes in contact 

with the environment. It is not difficult to show that in the proposed multilateral tele-

robotic system, static environmental force is related to the operators’ forces 

as 2

1 1

1
k k

j

e j l j r

j j

F F Kqα α
= =

 
= − − 

 
∑ ∑ .              

7.4. SIMULATION RESULTS 

In order to validate the proposed multilateral tele-robotic system, simulations are 

performed in MATLAB/Simulink environment where three local manipulators are 

driving a single remote manipulator each of which has two degrees-of-freedom. The 

dynamical system representation of these manipulators is given by (7.1)-(7.2) with the 

following description of inertia matrices, coriolis/centrifugal matrices and gravity 

vectors: 

( ) ( )11 12 11 12 1

21 22 21 22 2

, , ,
m m c c g

M q C q q g q
m m c c g

•      
= = =      

      
                 (7.30) 

( ) ( )

( )

2 2 2
11 2 1 2 2 2

2 2
12 21 2 2 2

2
22 2

2 cos

cos

m m l m m l m l q

m m m l m l q

m m l

= + + +

= = +

=

                     (7.31) 

( ) ( )

( )

2 2
11 2 2 2 12 1 2 2 2

2
21 1 2 2 22

sin , sin

sin , 0

c q m l q c q q m l q

c q m l q c

• • •

•

 
= − = − + 

 

= =

                  (7.32) 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 2 1 2sin sin , sing g gg a m l q q a m m l q g a m l q q= + + + = +             (7.33) 

where 1 2,m m are the masses of links 1 and 2 respectively; 1 2l l l= = are the lengths of 

links and 
g

a is the acceleration due to gravity. The numerical values of these parameters 

are assumed to be the same for all the local manipulators: 1 2 1 ,  1
m m m

m m kg l m= = = . 

However, remote manipulator has more inertia than the local manipulators: 

1 2 5 ,  2
s s s

m m kg l m= = = . These manipulators communicate over a communication 

channel which offers time varying delays as shown in Fig. 7.2. The only information 

which is known to the designer about these delays is their upper bounds: 
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1 1 2 2 3 20.4,  0.8,  0.2
l r l r l r

T T T T T T
+ + + + + += = = = = = . By assigning the authority factors to the 

operators as 1 2 30.5, 0.3, 0.2α α α= = = and solving the inequalities in (7.5) and using 

(7.3), we obtain the following control gains for the tele-robotic system: 

1

25.0 0 31.25 0
,

0 15.0 0 18.75
K K

   
= =   
   

                   (7.34) 

1 1 2 2 3 3
1 1 1 1 1 1

12.5 0 7.5 0 5.0 0
, ,

0 7.5 0 4.5 0 3.0l r l r l r
R R R R R R

     
= = = = = =     

     
    (7.35) 

Under the control gains of (7.34)-(7.35), we first simulate the behavior of the tele-robotic 

system in free motion when operators apply constant forces. These force profiles are 

shown in Fig. 7.3 while the resultant position trajectories of the local and remote 

manipulators are shown in Fig. 7.4. It can be observed that the proposed tele-robotic 

system remains stable in the presence of time varying delays and the remote manipulator 

displays the desired response. The corresponding control inputs of the manipulators are 

also shown in Fig. 7.5. We have also investigated the operation of tele-robotic system 

when the remote manipulator comes in contact with the environment. For this purpose, 

the parameters of the remote environment are assumed as: 
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Figure 7.2 51Time varying delays of the communication channel 
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100.0 0 10.0 0
,

0 100.0 0 10.0re re
K B

   
= =   
   

        (7.36) 

The interaction of the remote manipulator with the environment exists for 100sec in 

simulations starting at 150t s= as can be seen in Fig. 7.6. It can be observed that during 

the interaction period, tele-robotic system is able to maintain its stability as the position 

signals do not diverge. However, remote manipulator fails to follow the desired position 

references. In fact, the analysis of (7.9) in steady state reveals that the position error is 

inevitable during the contact motion. In addition, the local manipulators do receive the 

force feedback from the remote environment as their position signals show a decrease 

when the remote manipulator hits the environment. 

The response of the time-delayed tele-robotic system is also observed under the 

application of more realistic operators’ forces which are shown in Fig. 7.7. The results for 

this simulation are shown in Fig. 7.8 which clearly demonstrates that the tele-robotic 

system remains stable and the remote manipulator successfully tracks the desired position 

references.   
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Figure 7.352Profile of operators’ forces 
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Figure 7.4 53Position signals of the manipulators (a) Joint 1 trajectories (b) Joint 2 trajectories 
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Figure 7.554Torque inputs of the manipulators (a) Joint 1 control inputs (b) Joint 2 control inputs 
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Figure 7.655Position signals of the manipulators during free (t<100) and contact (100<t<200) motion (a) 

Joint 1 position trajectories (b) Joint 2 position trajectories 
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Figure 7.756Time varying operators’ forces 
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Figure 7.857Position trajectories of the manipulators under time varying applied forces (a) Joint 1 position 

signals (b) Joint 2 position signals 

7.5. CONCLUSIONS 

The design of a state convergence based multilateral tele-robotic system is presented 

where remote manipulator can track the combined reference position of the local 

manipulators in the presence of time varying delays. Using a simplified form of the 

extended state convergence architecture and Lyapunov-Krasovskii theory, a set of design 

inequalities are obtained which along with the known information on the bounds of time 

varying delays and authority factors are solved to get control gains of the tele-robotic 

system. MATLAB simulations are finally carried out on a two degrees-of-freedom tri-

master-single-slave nonlinear tele-robotic system and the results have shown the validity 

of the proposed multilateral control scheme. Future work involves improving the 

operators’ perception of the remote environment and extending the proposed scheme to 

cover any number of remote manipulators. Experimental results are also planned as a part 

of future study. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

This chapter highlights the contributions of the thesis and the possible future research 

directions are also presented. 

8.1 CONTRIBUTIONS 

This thesis has discussed the control design of teleoperation systems using the method of 

state convergence. State convergence has been used to control the linear and nonlinear 

teleoperation systems. However, state convergence based control design for an important 

class of nonlinear systems known as TS fuzzy systems was not discussed in the literature. 

Thus first contribution of this thesis forms the control design of nonlinear teleoperation 

system represented by TS fuzzy models in the framework offered by SC methodology. 

To this end, a suitable fuzzy control law is introduced and the design conditions to 

impose the desired dynamic behavior of teleoperation system are derived for different 

teleoperation models in the absence and presence of communication delay using the 

method of SC. Further, the existing linear bilateral controller based on SC is found to be 

the special case of the proposed SC based fuzzy bilateral controller. The effectiveness of 

the proposed scheme in controlling the nonlinear teleoperation system is proven through 

MATLAB simulations where it is also compared with the existing linear scheme. 

Contrary to other complex teleoperation control schemes based on TS fuzzy systems, the 

presented method is simple to apply with guaranteed dynamic behavior of teleoperation 

system and no Lyapunov function is required to prove the stability of the system. The 

same fuzzy SC controller is also shown to work with other variants of the SC scheme. 

Thus fuzzy SC methodology with transparency condition and fuzzy SC methodology for 

unknown environments are proposed which are also validated through MATLAB 

simulations. 

Second contribution of the thesis lies in the extension of state convergence architecture to 

cover the case of multi-master-multi-slave teleoperation systems. In its original form, the 

method of state convergence cannot be applied to multi-systems. Thus a more general 

alpha-modified form of the state convergence scheme is first proposed for the bilateral 

teleoperation systems. This modified SC form provides the grounds to design the 
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multilateral controller. The proposed multilateral controller can be applied to any k-

master/l-slave nth order teleoperation system and requires the solution of n(k+l)+(n+1)kl 

design equations. The obtained control gains ensure that the l-slave systems follow the 

references set by the k-master systems and the desired dynamic behavior of the 

teleoperation system is also achieved. The proposed scheme has been validated through 

simulations in MATLAB/Simulink environment by considering a one DoF dual-

master/tri-slave teleoperation system. 

Third contribution of the thesis is to show the applicability of the proposed extended state 

convergence architecture to control a multi DoF nonlinear teleoperation system. Through 

the use of Lyapunov-Krasovskii control theory, sufficient conditions are obtained to 

guarantee the stability of the multilateral nonlinear teleoperation system based on state 

convergence while the tracking task is also achieved. The proposed scheme is validated 

through simulations in MATLAB/Simulink environment on a two DoF tri-master-single-

slave nonlinear teleoperation system in the presence of time varying delays. 

Several contributions other than the state convergence theory are also made by the author 

during his PhD studies. These include the design of neo-fuzzy integrated brain emotional 

learning networks for time series prediction and classification problems; the design of 

fuzzy model based and model free controllers for a variety of electromechanical plants 

such as mobile robots, single link manipulator, rotary inverted pendulum, DC series 

motor, automotive suspension system, aero pendulum and magnetic levitation system. 

8.2 FUTURE WORK DIRECTIONS 

With regards to the development of TS fuzzy state convergence controller, the proposed 

approach can only be applied to nonlinear teleoperation systems which can be 

approximated by a class of SISO TS fuzzy models with common input and output 

matrices. A possible future direction can be the extension of the proposed scheme to 

more general classes of SISO and MIMO TS fuzzy models. 

With regards to the development of state convergence based multilateral controller, it is 

assumed that the slave devices do not interact with each other and so do the master 

devices. A possible future direction can therefore be the consideration of these 

interactions while designing the tele-controller. 
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In addition, the proposed bilateral and multilateral teleoperation schemes have only been 

validated in simulations. The real time implementation is highly desirable which can be 

carried as a part of future work.    
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APPENDIX A 

By exchanging the position of master and slave systems in (6.11), we have the following 

augmented system: 
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Where the matrix entries are given as: 
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                     (A2) 

Where, M and S are given by (6.13). The slave-master augmented system in (A1) will 

now be transformed to yield slave-error augmented system. Since the slave system is to 

be alpha-influenced by the master system, the following linear transformation is 

introduced: 
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                                  (A3) 

The time derivative of A3 along with (A1)-(A3) yields the following transformed slave-

error augmented system: 
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Where the matrix entries are given as: 
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The application of the state convergence procedure on (A4) yields the following design 

conditions: 

1 2 0B Bα− =                          (A6) 

( ) ( )11 21 12 22

1
0A A A Aα α
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− + − =                           (A7) 
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                           (A8) 

In (A8), matrices P and Q contain the desired dynamics for slave and error systems. The 

equations (A6)-(A8) form 3n+1 design conditions for single-master/single-slave 

teleoperation system where the slave system is to be alpha-influenced by the master 

system and desired dynamic response is to be imposed on the slave and error systems. 
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APPENDIX B 

The closed loop teleoperation system of (6.45) is re-written as: 
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The various matrix entities in (B1) are found to be: 
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The block matrix V in (B2) is found to be: 
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We now introduce the following linear transformation: 
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Where, the matrix A is given by (6.49). By taking the time derivative of (B4) and using 

(B1)-(B4), we obtain the following transformed system: 
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Various matrix entries in (B5) are determined to be: 



 169 
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The application of state convergence method on (B5) yields the following design 

conditions: 

1 2
B -ΑB = 0                                     (B7) 

( ) ( ) -1

11 21 12 22A -ΑA + A -ΑA Α = 0                                  (B8) 

( )

( ) =

-1

11 12

-1

12 22

sI - A + A Α = sI - P

sI + A -ΑA Α sI - Q
                                     (B9) 

In (B9), the matrices P and Q contain the desired dynamics of the slave and error systems 

respectively. From (B7)-(B9), we obtain a total of ( ) 22 1nt n t+ + × design conditions 

which can be solved to determine the control gains for a square multilateral teleoperation 

system considering the desired dynamic behavior for slave and error systems. 
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