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Abstract 

Xie and Gough (2013) developed an algorithm to expand the application of the classic Stefan 

equation to allow for the prediction of the freeze or thaw depth in multi-layered soils. This 

discussion paper demonstrates that the development of this algorithm is premised on 

mathematical expressions that are not physically tenable. A previously proposed equation for 

applying the Stefan approach to multi-layered soils is herein derived from first principles using 

the appropriate governing equations, boundary conditions, and initial conditions. Numerical 

methods are employed to demonstrate the accuracy of this equation derived from first principles. 

This approach can be implemented in existing cold regions hydrology models to estimate the 

active layer thickness in permafrost regions underlain by layered soils. 

1. Introduction 

The classic Stefan equation (1891) has been frequently applied as a parsimonious approach for 

predicting the active layer thickness (thaw depth) in permafrost or the frost depth in seasonally 

freezing soils (Jumikis, 1977; Williams and Smith, 1989; Woo, 2012). The active layer thickness 
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and frost depth are important considerations for geotechnical engineers, geocryologists, and 

permafrost hydrologists due to the hydraulic impedance of pore ice (Kurylyk and Watanabe, 

2013; Woo, 2012), the difference in strength properties between frozen and unfrozen soil 

(Jumikis, 1977), and heaving phenomena associated with freezing soils (Andersland and 

Ladanyi, 1994; Rempel, 2012).  

The governing equations underlying the Stefan approach invoke many simplifying assumptions, 

including those listed below, that may limit the fidelity of this approach to physical processes 

(Kurylyk et al., 2014a), and thus many variants have been proposed (e.g., Zhang et al., 2008). 

Firstly, the simplest Stefan equation is premised on the assumption that the temperature 

distribution in the upper thawed or frozen zone is linear, which implies that conduction 

dominates and quasi-steady-state conditions have been achieved. Secondly, the Stefan equation 

assumes temporally invariant thermal properties in the upper thawed or frozen zones, whereas 

the thawed zone may be characterized by pronounced temporal variability in soil moisture and 

thermal properties (e.g., Hayashi et al., 2007). Thirdly, the classic Stefan equation for soil freeze-

thaw does not account for heat conduction below the freezing or thawing front, and thus assumes 

uniform temperatures at the freezing point (0°C) in the lower zone. Finally, the Stefan equation 

assumes that the soil is homogeneous both with respect to the thermal conductivity as well as the 

latent heat required to freeze or thaw a unit depth of soil. Several attempts have been made to 

address this latter limitation by modifying the Stefan equation to accommodate freeze-thaw in 

layered soils (e.g., Aldrich and Paynter, 1953; Nixon and McRoberts, 1973; Xie and Gough, 

2013), and I wish to briefly address the differences in these formulations. 

 



2. The Xie and Gough (2013) algorithm 

In their interesting paper, Xie and Gough (2013) provide an approach for predicting the depth of 

freezing or thawing in multi-layered soils. Herein, the discussion is constrained to soil thawing 

with only two layers to simplify comparisons between approaches. Except where it is decidedly 

inconvenient, I employ the same nomenclature as Xie and Gough (2013). The simple form of the 

Stefan equation for predicting the depth of thaw in homogeneous soils is (Jumikis, 1977): 
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where ξ is the depth of soil thaw (m), k is the thermal conductivity of the soil (W m-1°C-1), It is 

the total surface thawing index (temporal integral of positive surface temperature since initiation 

of thawing, °C s), L is the latent heat of fusion of bulk water (334, 000 J kg-1), ω is the mass of 

pore ice in the initially frozen soil divided by the mass of dry soil, and ρ is the dry bulk density 

of the soil (kg m-3). Sometimes the right hand side of Eq. (1) is multiplied by a correction factor 

to account for the volumetric heat capacity of the soil. This form is known as the modified 

Berggren formula (Aldrich and Paynter, 1953). Note that the product of ω and ρ is equal to the 

product of the pore ice density and the volumetric pore ice content (volume of ice divided by the 

total volume of soil), and thus hydrologists who prefer this nomenclature may make these 

substitutions in any of the following equations. 

Xie and Gough (2013) correctly note that two soils with different thermal properties and 

different moisture contents would experience a different thawing depth if exposed to the same 

thawing index. Hence they propose the following dimensionless term based on Eq. (1): 
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Figure 1: Soil thaw penetration into a two layered soil for (a) when the thawing front is within the first layer 

and (b) when the thawing front penetrates past the layer interface. 
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where the subscripts denote the properties of two different soils. Xie and Gough (2013) then 

propose that Eq. (2) can be indirectly employed in conjunction with Eq. (1) to predict the depth 

of soil thaw in a two-layered soil using a sequential approach. They first propose that the total 



thawing index should be used to predict the hypothetical thaw depth if the entire domain were 

homogeneous with the properties of layer 1 (Eq. 19 of Xie and Gough, 2013): 
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 Xie and Gough (2013) then note that if ξ1 is less than the thickness of the first layer (Z1) (Fig. 

1a), the algorithm is complete, and ξ = ξ1. If ξ1 > Z1 (Fig. 1b), a ‘residual depth’ can be obtained: 

                                                                       111 Z                                                           (4) 

According to Xie and Gough (2013), the thawing depth propagation into the second layer can 

then be obtained from Eqs. (2) to (4): 
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Thus, for a two layered thawing soil, the general Xie and Gough (2013) algorithm becomes: 
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where I1 is the thawing index required to thaw the first layer. This parameter can be obtained by 

rearranging Eq. (3) and replacing It with I1 and ξ1 with Z1. 
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The Xie and Gough (2013) algorithm for a two layered thawing soil can be shown to reduce to 

Eq. (8) via algebraic manipulation: 
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This algorithm is invalid due to the tacit assumptions of Eq. (5) (Eq. 21 in Xie and Gough, 2013). 

Most notably this algorithm does not account for the fact that as the thawing front penetrates past 

the layer interface (Fig. 1b), the upper layer temperature gradient and the layer interface 

temperature (which drives thawing in the lower layer) become dependent on the lower layer 

thermal properties. These dependencies arise because both the temperature distribution and the 

conductive flux must be continuous across the layer interface, even under quasi-steady-state 

conditions (Lachenbruch, 1959). Thus, Δξ1, which is effectively a measure of the thawing 

potential for the second layer, cannot be obtained independently of the second layer thermal 

properties and then directly employed to obtain ξ2 via Eq. 5. Hence, the assumptions invoked by 

Eqs. (5) to (8) are not physically tenable even under the limiting conditions of the Stefan 

approach.  

3. The Nixon and McRoberts (1973) equation 

A preferable approach for obtaining a modified Stefan equation for two layered soils is to derive 

the equation from first principles using the governing heat transport equations, boundary 

conditions, and initial conditions. The unsteady one-dimensional heat diffusion equation for 

homogeneous soils is (Williams and Smith, 1989): 
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where T is temperature (°C), z is depth (m), t is time (s), and C is the volumetric heat capacity of 

the soil (J m-3 °C-1). Eq. (9) represents heat diffusion above the thawing front and does not 

account for the latent heat released or absorbed during the freeze-thaw process. When the rate of 

temperature change within the subsurface is slow (as in the case of slow downward propagation 

of the thawing depth), Eq. (9) can be approximated with the steady one-dimensional heat 

conduction equation: 
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This quasi-steady-state assumption is valid when the Stefan number is low and latent energy 

exchange dominates sensible energy transfer (Kurylyk et al., 2014a). Eq. (10) implies that since 

the divergence of the conductive flux is zero, the thermal gradient must be a constant for 

homogeneous soil. This is also the approach employed in the development of the classic Stefan 

equation. 

If the total thawing index is less than I1 (see Eq. 7), then the thawing front is within the first layer 

(Fig. 1a), and it can be calculated via the homogeneous Stefan equation (Eq. 1). This derivation 

has been frequently presented in geotechnical engineering texts (e.g., Jumikis, 1977).   

Equations can be obtained for the interface between the two soil layers. Firstly, the temperature 

must be continuous across the interface: 
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where T1 represents the temperature distribution in the upper layer (°C), T2 represents the 

temperature distribution in the lower layer (°C), and Z1 represents the thickness of the upper 

layer (m). Also, the conductive flux must be continuous across the layer interface, except when 

the thawing front is exactly at the layer interface (Lachenbruch, 1959). 
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Equation (12) indicates that the temperature gradient in the upper layer is dependent on the 

thermal properties of the lower layer when the thawing front propagates past the layer interface. 

This complicates the governing equations as has been previously noted in the derivation of solute 

transport analytical solutions for layered soils, which are governed by analogous physics and 

mathematics (e.g., Pérez Guerrero et al., 2013). 

If there is a negligible conductive flux below the thawing front (i.e. thermally uniform conditions 

close to 0°C), the conductive flux immediately above the thawing front is equal to the rate of 

latent heat absorbed at the thawing front. In the case when the thawing front penetrates past the 

layer interface, this energy balance can be written as: 
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When the thawing front is in the second layer, the heat fluxes in the upper and lower (but still 

above the thawing front) layers are related to the temperatures at the surface, layer interface, and 

thawing front:  
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where Ts is the surface temperature for a given time (°C), Tf is the freezing temperature (0°C), 

and TZ is the temperature at the layer interface (°C). Equating (14) and (15) due to the conductive 

flux continuity condition (Eq. 12), dropping the null Tf term, and rearranging to isolate for TZ 

yields: 

                                                                 

1

1

21

1

k
Z

kZ

Tk
T s

Z
















.                                                 (16) 

Eqs. (15) and (16) can be combined to provide an expression for the conductive flux above the 

thawing front: 
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This conductive flux is equal to the rate of latent heat absorbed at the thawing front in 

accordance with Eq. (13). 
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Rearranging to integrate yields: 
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The lower limits of integration indicate that the integration begins when the depth to the thawing 

front crosses the layer interface depth (Z1), which occurs at t = t1. 

Integrating Eq. (19) and recalling the fundamental definition of the total thawing index (see 

Fig.1) yields: 
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Eq. (20) can be rearranged into the format of the quadratic equation with ξ as the variable: 
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Applying the quadratic equation yields: 
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I1 can be obtained from Eq. (7). If It = I1 then ξ = Z1, and it is trivial to employ this condition to 

restrict the solution (Eq. 22) to the positive root. Expanding terms, simplifying, and recalling that 

the classic Stefan equation is valid when the thawing front is in the first layer yields the final 

version of the modified Stefan equation for two-layered soils: 
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Note that It still refers to the total thawing index since t = 0 (Fig. 1), not simply the thawing index 

from the time the thawing front passes the first layer. This methodology can be expanded to 

accommodate soil with more than two layers, as each additional layer introduces new unknowns 

(e.g., temperature distribution in nth layer) and new boundary conditions (temperature and flux 

continuity across the layer interface). It will eventually become more practical to use numerical 

methods if the soil is broken up into many layers. Both Eqs. (8) and (23) expectedly reduce to the 

Stefan equation for homogeneous soils (Eq. 1) if ω1=ω2, ρ1 = ρ2 and k1 = k2. However, these 

equations can diverge greatly if the thermal conductivities and/or the moisture contents differ 

between layers. 

After deriving Eq. (23), I noticed that this equation was already proposed several decades ago by 

Nixon and McRoberts (1973). The forms of these equations (i.e., Eq. 23 here and Eq. 19 of 

Nixon and McRoberts, 1973) can be shown to be identical when adjustments are made for the 

different nomenclatures employed. Only the governing equations and boundary conditions were 

presented by Nixon and McRoberts (1973), and thus I thought it valuable to include the 

derivation presented above to demonstrate the physical basis for this formulation. 

Furthermore, Eq. (23) can be shown to be identical to the multi-layered Stefan approach 

developed by Aldrich and Paynter (1953) (at least in the case of a two-layered thawing soil), 

although these two approaches were developed using very different techniques. This is the 

algorithm which is presented in Jumikis (1979, p. 216-219) and Woo (2012, p. 55) and which 

was criticized by Xie and Gough (2013). For example, this equation in the case of two layered 

soils is (from Eqs. 9 and 10 of Xie and Gough, 2013): 
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where R1 is the thermal resistance in layer 1 (i.e., thickness of layer divided by thermal 

conductivity) and I2 is the thawing index (°C s) not consumed in the thawing of layer 1 (It – I1). 

Substituting the expressions in for R1 and I2 yields: 
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which can be shown to be equivalent to Eq. (23) via the definition of I1 given in Eq. (7). It should 

be noted, however, that some texts appear to define I2 as the thawing index required to freeze the 

entire last layer that experiences thaw in a multi-layered soil (i.e., in this case the entire second 

layer), whereas herein it is physically defined as the thawing index not consumed by the thawing 

of the preceding layer(s).  

4. Assessment of solution via numerical methods 

Numerical methods can be employed to demonstrate that the solution form originally presented 

by Nixon and McRoberts (1973), and derived herein as Eq. (23), is able to reproduce the physics 

of soil thawing in two-layered soils, at least under the remaining assumptions of the Stefan 

approach. SUTRA is a finite element model that simulates groundwater flow and coupled heat or 

solute transport in soils (Voss and Provost, 2010). A beta version of the code allows for soil 

freezing and thawing (McKenzie et al., 2007) and has been applied to study the hydraulic and 

thermal regimes of permafrost and seasonally freezing soils (e.g., Briggs et al., 2014; Ge et al., 

2011; Kurylyk et al., 2014b; McKenzie and Voss, 2013; Wellman et al., 2013). Readers are 

directed to these papers for a description of the underlying equations and numerical solution 

techniques employed in this version of SUTRA. 
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Figure 2: Soil thaw penetration into a two-layered soil for (a) sand overlying peat and (b) peat overlying sand 

as predicted by the Xie and Gough (2013) algorithm (Eq. 8), Nixon and McRoberts (1973) equation (Eq. 23), 

and SUTRA simulation. Parameters for the numerical and analytical solutions are given in Table 1.  

SUTRA simulations were performed for two simple hypothetical soil thawing scenarios. In the 

first scenario, a 10 cm thick (Z1, Fig. 1) layer of saturated sand with a porosity of 0.4 overlies a 

10 cm thick layer of saturated peat with a porosity of 0.8. In the second scenario, the peat soil 

occupies the 10 cm upper layer, and the sand is below. The soil properties for these thawing 

scenarios are given in Table 1 and are taken from Monteith and Unsworth (2007) for these soil 

types.  

SUTRA parameters are also listed in Table 1. Short time steps (0.0001 days) and small elements 

(a column of 200 elements with 1 mm height) were used due to the non-linearity of the equations 

and the steep freezing curve employed (see Kurylyk et al., 2014a).  Specified pressure boundary 

conditions were established so that no groundwater flow occurred, and thus heat advection was 

negligible. A specified temperature (1 °C) was assigned to the surface of the soil column. In 

accordance with the Stefan equation, no lower thermal boundary condition was assigned. The 



specific heats for the peat and sand were set to a low value (0.1 J kg-1 °C-1) to mimic the quasi-

steady conditions of the Stefan approach. 

Table 1: Parameterization of analytical solutions and SUTRA 

Symbol Definition Value Units 

k1 Sand conductivity 0.5 W m-1 °C-1 

k2 Peat conductivity 2.2 W m-1 °C-1 

L Latent heat of fusion  3.34E5 J kg-1 

Z1 Thickness of layer 1 0.10 m 

Ts Surface temp.1 1 °C 

ω1ρ1 See note2 800 kg m-3 

ω2ρ2 See note2 400 kg m-3 

Δt SUTRA time step size 0.0001 days 

Δz SUTRA element height 0.001 m 

Tm Thawing curve min3 -0.005 °C 

1The surface temperature was constant, thus the thawing index is equal to 1°C × time. 
2 For saturated soils, the product of the moisture content by weight and the dry bulk density can be shown to be 

equal to the porosity times the density of bulk water. 
3 The analytical solutions consider thawing to occur at a single temperature, but in SUTRA freezing and thawing 

occur over a temperature range. Tm is the temperature at which the soil is fully frozen. The soil freezing curve was 

linear (Kurylyk et al., 2014a). Initial conditions were set at Tm (-0.005 °C) to ensure that the soil was fully frozen. 

Figure 2 demonstrates that the SUTRA simulations concur with Eq. (23) proposed by Nixon and 

McRoberts (1973) rather than Eq. (8) developed by Xie and Gough (2013). For both thawing 

scenarios, the analytical and numerical solutions overlap until the thawing front has penetrated 

past the depth of the first layer, but the curves diverge after this point. In the scenario with sand 

on top (Fig. 2a), the difference between Eq. (23) and Eq. (8) after 40 days is 8 mm (4.5%), and 

the difference between Eq. (23) and the SUTRA results is less than the element size (1 mm). In 

the scenario with peat on top, the difference between Eq. (23) and Eq. (8) after 50 days is -23 

mm (-14%), whereas the difference between Eq. (23) and SUTRA is only 1.8 mm (1%). The 

minor discrepancies between the SUTRA results and Eq. (23) in Fig. 2 can be attributed to 

spatiotemporal discretization errors and the finite freezing temperature range employed. 



In summary, Eqs. (23) or (24) should be utilized for parsimonious analyses of layered soils rather 

than the Xie and Gough (2013) algorithm or the homogenous Stefan equation (1), as the former 

is not mathematically correct and the latter can produce significant errors in multi-layered soils. 

This is particularly the case in many permafrost regions where a layer of insulating peat overlies 

a more thermally conductive soil or in locations where a thin pavement layer with distinct 

thermal properties overlies a homogeneous soil (e.g., Jumikis, 1977, p. 217). Furthermore, Eq. 

(23) may prove to be useful in calculating the influence of segregated ice on the thawing rate of 

otherwise relatively homogeneous soil. Modified Stefan algorithms for layered soils can be 

incorporated into cold regions hydrology and land surface models to estimate the frost depth or 

active layer depth in heterogeneous soils (Carey and Woo, 2005; Fox, 1992; Woo et al., 2004). 

5. Conclusions 

It is not my intent to discount the interesting paper by Xie and Gough (2013). Indeed there are 

many valuable aspects of that paper including their soil freeze-thaw data from sites in China and 

the discussion related to the importance of including more flexible soil freeze-thaw algorithms in 

cold regions hydrology and land surface models. The intent of this discussion was to rather 

identify and explain the implicit errors in their algorithm and then to direct land surface and cold 

regions hydrology modelers back to the Nixon and McRoberts (1973) equation (herein Eq. 23), 

which is more rigorously derived and has been verified with numerical methods. 
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