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Abstract

Skip lists allow search, insert, and delete operations in O
(
log n

)
average time. How-

ever, they show a lack of efficiency when dealing with data exhibiting locality of

reference, meaning the keys are searched or updated non-uniformly. The dynamic bi-

ased skip list
(
DBSL

)
[28, 29] allows O(log r(k)) amortized time per operation, where

r(k) is the number of distinct keys accessed after k was last accessed.

The performance of DBSL has not been fully evaluated. We implemented DBSL

and compared it with move-to-front lists, red-black trees and splay trees, using real-

world and synthetic data. Our results show that when a highly biased data sequence

contains delete operations, DBSL is more efficient compared to the others. When the

degree of bias is moderate, DBSL is not competitive against splay trees, but is more

efficient than red-black trees and skip lists. When the data sequence is less biased,

DBSL is the least efficient.
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Chapter 1

Introduction

A dynamic table data structure maintains a set of keys from a totally ordered universe

to support the following operations:

• Search
(
k
)
: Look for a certain key k in the data structure. If k exists, return

a pointer to its location. Otherwise, return the position in which k should be

inserted.

• Insert
(
k
)
: Add key k into the data structure. This operation is completed

only if k does not exist in the current data structure.

• Delete
(
k
)
: Remove key k from the current data structure. If k is not main-

tained by the container, do nothing.

The problem of designing an efficient dynamic table is fundamental in computer

science; therefore, many data structures have been designed. They include classic

data structures such as AVL trees [3], skip lists [71], BB[x] [60],
(
a,b

)
-trees [16], red-

black trees [14] and splay trees [76]. These data structures support search, insert

and delete functions in logarithmic time. However, many data structures do not

consider that, in many applications, requests often show locality of reference. This

means that within any time interval, only a small portion of data is accessed, some

keys are accessed more frequently while other keys are accessed very rarely. Locality

of reference exists in many applications such as those for memory, cache and buffer

management [23, 74, 75, 37, 47], and also in those for requests between two web servers

[9, 6, 18]. Locality of reference can be used to predict future behaviors [44, 13, 32].

Let us consider the example of handling requests between two web servers. Since the

reference streams exhibit locality, caching techniques can be used to find objects that

are more likely to be accessed again in a near future, thus the communication time

between the two servers can be reduced. Therefore, exploiting locality of reference

has been widely applied as a programming optimization technique. Extensive theories

1
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have been researched to take query patterns into account to create data structures

that are more time efficient, in either the amortized or the worst-case sense, than those

only providing O
(
log n

)
1 time per search operation, where n is the total number of

distinct keys in the sequence.

In practice, a sequence of operations on the data often shows locality of refer-

ence. Special biased data structures are designed to deal with such a biased request

sequence. The most frequently needed keys can be accessed faster than those that

are rarely needed. Given a sequence of operation on a data structure, the working

set [76] of a key k is defined as a set of distinct keys in the data structure that have

been accessed since last time k was accessed. Let the rank of k represent the size of

k’s working set, denoted as r(k). A data structure is recognized as a data structure

with the working set property if it can access the key k in O(log r(k)) time. One of

the most well-known data structure that has the working set property is the splay

tree [76]. Some modified splay trees also satisfy the working set property, such as the

R-splay tree [5], and the W-splay tree [4].

In this paper, we study an extension of the skip list which is the dynamic biased

skip list [28] and conduct experiments to evaluate its performance. The dynamic

biased skip list can be used to exploit bias and access an existing key k in O
(
log r

(
k
))

time, which satisfies the working set property. Even though a splay tree supports an

amortized O
(
log r

(
k
))

time for accessing an existing key k, an insertion or a deletion

in a splay tree takes O
(
log n

)
time per operation. In the dynamic biased skip list, an

updating operation can be done in O
(
log rmax

(
k
))

amortized time, where rmax

(
k
)
is

the maximum rank that the key k achieves during its lifetime.

1.1 Dynamic Data Structures

The study of a dynamic dictionary is a fundamental topic in computer science. There

are a lot of data structures that support dynamic operations in logarithmic time. In

this section, we will briefly discuss related dynamic data structures.

1Throughout this thesis, log n represents log2 n.
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1.1.1 Move-to-front Lists

Amove-to-front list is a dynamic linked list. When a key is found, it will be reallocated

as the new head of the list, so it can be found quickly in a short while. Searching

for an existing key k takes O
(
r
(
k
))

time. If the access sequence shows considerable

bias, the searching performance can be improved to O
(
1
)
. Although a move-to-front

list does not have the working set property and suffers an O(n) worst-case operation

time, it is still a favourable choice for biased data patterns because the most popular

keys stay near the head and are quickly accessible.

1.1.2 Red-black Trees

A red-black tree is a self-balancing binary tree in which each node is holding additional

color information and maintains some invariants on colors to keep balanced. After

an insertion or a deletion, the tree will adjust the colors of related nodes to maintain

the color requirements.

A red-black tree supports each search, insert and delete operation in O
(
log n

)
worst-case time, which is better than most binary trees that suffer an O(n) worst-

case time per operation. Since red-black trees work particularly well in handling

frequent updates, they are widely applied in Linux kernels or as a mapping storage

[57, 19, 55].

1.1.3 Splay Trees

A splay tree, invented by Sleator and Tarjan [76], is a self-adjusting binary tree in

which each node does not keeps extra information for balancing. A splay tree uses

a special scheme, called splaying, to restructure itself. It moves the most recently

accessed node to the root of the tree with a series of specific rotations. Such recon-

struction applies in each operation. Consequently, the most popular keys are more

likely to stay near the root and can be accessed more quickly in the future. Splay trees

support search, insert and delete operations in amortized O
(
log n

)
time. Moreover,

the working set theorem for splay trees states that the cost of accessing an existing

key in a splay tree is O(log r(k)) amortized.

The splay tree’s working set property inspired many researchers to extend the
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splay tree model. An randomized splay tree [5] uses a random parameter, p, called

splay probability, to decide whether to splay or not. It supports an O
(
log r

(
k
))

amortized expected access time. In practice, it can achieve an improvement of up to

25% over the original deterministic splay tree when the access sequence is generated

by uniform distribution and Zipf ’s distribution [70]. However, such an improvement

becomes insignificant when the random access sequence has a high level of locality of

reference. Another extension of the splay tree is called W-splay tree [4]. A W-splay

algorithm uses a special method to calculate the cost of splaying, which takes the

current working set into consideration and splays only when necessary. The W-splay

tree maintains O
(
log r

(
k
))

amortized time per search operation.

1.1.4 Skip Lists

Skip lists, invented by Pugh [71], are fascinating. It is built in layers and each layer

is an ordered linked list. The lowest level contains all the keys. The next higher layer

contains keys that are copied up from a lower level with a certain preset probability

p, where 0 < p < 1. This procedure is repeated until a level with no keys copied from

a lower layer is encountered. A skip list supports an expected logarithmic time on

accessing and updating, and is easy to be implemented. Such characteristics make

skip lists widely studied. Papadakis et al.[64] theoretically proved the upper bound

of each search, insertion and deletion operation is expected in O
(
log n + 1

)
. Etim

[31] executed experiments between skip list, splay trees, non-recursive AVL trees

and recursive 2-3 trees, and found that skip lists are as fast as optimized balanced

trees and faster than randomized trees. In 1990, Pugh [72] proposed an optimization

to reduce the number of key comparisons in a sequential search algorithm. In the

optimized search algorithm, the target key is compared against any existing key no

more than once so that redundant comparisons are avoided. Pugh showed the upper

bound of the expected successful search cost is O(log 1
p
n), using this optimized search

algorithm. Kirschenhofer et al. [48] further analyzed the search cost for both successful

and unsuccessful searches. It is also pointed out in [72] that skip lists support not

only search, insert, delete operations, but also the following three operations:

• JOIN
(
S1,S2

)
. Given two ordered sets S1 and S2, where all the keys in S1 are

smaller than those in S2. Merge to get a new set S so that S = S1 ∪ S2.
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Merging two skip lists of sizes n and m respectively takes O(logmax(n,m))

expected time.

• SPLIT
(
S, k

)
. Given an ordered set S, split S into two subsets S1 and S2, where

all keys in S1 are smaller than or equal to key k and those in S2 are larger than

key k. Splitting one skip lists of size n takes O(log n) expected time.

• FINGERSEARCH
(
k1, k2

)
. Given that key k1 already in the data structure,

search for k2 in the data structure, starting from the position of k1. The skip

list supports a finger-search operation in O(d) expected time, where d is the

search path distance between k1 and k2.

Munro, Papadakis and Sedgewick [59] applied deterministic algorithms on skip

lists and proved that the deterministic skip lists are competitive with balanced trees

in terms of both time and space. The deterministic skip list guarantees at maximum

2n pointers and a Θ
(
log n

)
worst-case time per update operation, where n is the

number of distinct keys in the data structure. Bose et.al [17] developed the skip lift,

which improves the performance of a regular skip list. For each update operation, it

needs only O
(
1
)
worst-case time for structural changes. Golovin proposed a B-skip-

list [35] inspired by B-trees, which can be used in file systems and databases. The

B-skip-list supports search, insert or delete operations in O
(
logB n

)
expected I/O

transfers, where B is usually chosen to match the size of a cache block.

Skip lists can be applied to distributed systems. In 2003, Aspnes and Shah [10]

extended skip lists using a graph algorithm and named this extension skip graph. In

a skip graph, each level may contain several doubly linked lists and each node on that

level belongs to one of these lists. The lowest level L0 in a skip graph contains all the

keys in a doubly linked list. level L1, which is immediately above L0, is divided into

2 lists, and level Li is divided into 2i lists when i ≤ ⌈log n⌉. Skip graphs are used in

distributed systems where resources are stored in separate nodes. Each node x in the

skip graph has two fields: a key and a membership vector m(x) of an infinite word

over a fixed alphabet that x is in. In which sub-list each node belongs to is decided

by the node’s membership vector. When a sub-list can be identified by a finite word

w and w is a prefix of m(x), x is contained by this sub-list. In practice, each node

can be hosted by different machines. Experimental results indicate the skip graph
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has a better fault tolerance performance over other distributed data structures, since

repairing errors in skip graph is simpler and more straightforward. Erway et al. [30]

developed a dynamic provable data possession
(
DPDP

)
scheme based on skip list

models. Provable data possession
(
PDP

)
technique is used when a client needs to

know if a server stores the data which is previously stored by the client and if the

data is not tampered. Classic PDP algorithms [11] can only be applied on static files,

because the clients are not allowed to update the sorted files. The DPDP scheme, on

the other hand, can still guarantee data possession with updates.

Skip lists can be also extended as networking techniques. An overlay network can

be seen as a structure built on top of another network and its nodes are connected

using virtual links but not real links. Those virtual links are representing paths in

the underlying network. Using the skip graph’s basic structure, Harvey et al. [38]

developed a skipnet as an overlay network. A skipnet provides a fine data placement

scheme and guarantees the locality of routing, that classical overlay networks can not

support. Clouser, Nesterenko, and Scheideler [21] introduced a distributed skip list

called Tiara. By using a self-stabilizing algorithm, Tiara can better tolerate faults or

inconsistencies that are common in peer-to-peer systems, and can reach an eventual

self-stabilization without previous knowledge of the current network situation. Nor,

Nesterenko and Scheideler [61] developed a deterministic self-stabilizing skip list used

for asynchronous message-passing systems. Wang and Liu [82] developed an overlay

network for real-time media distribution, based on skip list algorithms. The authors

also executed experiments to evaluate the performance of this overlay network, and

claimed it is capable with frequent videocassette recorder
(
VCR

)
operations, such

as pause, resume, fast-forward, rewind and stop, at a low cost and still maintains a

satisfying playback quality, which other existing media networks can rarely achieve.

Ergun et al.[29] proposed the dynamic biased skip list, which takes the access

pattern into consideration and supports a O
(
log r(k)

)
amortized time for successful

search, insert and delete operations. Bagchi and Buchsbaum [12] developed a variant

of skip list for generally biased access sequences using a weight function. Given n

elements, let wi be the number of times that the item i is accessed, where 1 ≤ i ≤ n,

and WS =
i∑

1≤i≤n

wi. This biased skip list accesses an item i in O
(
log

WS

wi

)
time,

which is asymptotically optimal. Bagchi and Buchsbaum showed the biased skip lists
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also support these three operations: joining two biased skip lists S1, S2 is bounded

by O(log(
W1

w1max

) + log(
W2

w2min

)), where W1 and W2 are the total weights of S1 and S2

respectively, w1max is the weight of the largest key in S1, and w2min
is the smallest key’s

weight in S2. Splitting one biased skip list S into two takes O(log(
W

min(k−, k+)
)),

where W is the total weight of all keys in S, k− and k+ are k’s largest in-order

predecessor and smallest in-order successor. A finger-search operation in such a biased

skip list uses O(log
W (k1, k2)

min(wk1 , wk2)
) expected time, where W (k1, k2) =

∑
k1≤u≤k2

wu.

The biased skip list maintains a biased dictionary and is theoretically comparable

with some other weighted data structures in worst-case scenarios, such as biased

search trees [15] and weighted randomized search trees [8], which will be described

in Section 1.1.5. This biased skip list, however, may lack efficiency in practice since

each key’s weight must be determined in advance.

1.1.5 Other Biased Data Structures

Additional novel data structures have been designed for biased data patterns. For

example, a biased search tree, developed by Bent, Sleator and Tarjan [15], holds an

worst-case O
(
log

Ws

wk

)
bound for each search, insertion and deletion operation, where

Ws and wk hold the same definitions as the previously defined variables. Seidel and

Aragon [8] developed a weighted randomized search trees. Such a randomized search

tree can be used to execute search, insert, delete and finger-search operations on key

k taking O
(
log

Ws

wk

)
time in expected cases, and execute join or split operations in

O(1+ log
W1

wT1max

+log
W2

wT2min

)
expected time, where W1, W2 are the total weights of

the two trees, wT1max, wT2min are the maximum weight of a key in the first tree T1 and

the minimum weight of a key in the second tree T2, respectively. Using an underlying

splay tree scheme, Iacono [41] developed a set of splay trees called the splay tree

forest. A splay tree forest can access an existing item in O
(
log r

(
k
))

amortized time

and report a non-existing item in O
(
log n

)
time under the worst-case scenario.
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1.2 Our Work

Our work is motivated by the work of Ergun et al. [28] on a dynamic extension of the

skip list which takes advantage of the current working set property. The dynamic bi-

ased skip list theoretically satisfies an O
(
log r

(
k
))

expected time for search, insertion

and deletion operations.

Ergun et al. [29] implemented a biased skip list and executed experiments with

move-to-front lists and original skip lists. However, the dynamic biased skip list is

not fully implemented and tested, and there remains a large amount of work to be

done. For example, they only tested search and insert operations, and the delete

functions were not coded. More real-world data sets should be used to evaluate the

performance, and more self-adjusting data structures should be tested against the

biased skip list, especially splay tree models, which have the working set property.

In our experimental studies, we first implemented the dynamic biased skip list

with search, insert, delete operations. Then, we applied a hybrid search algorithm on

the dynamic biased skip list using real-world data sets; this search algorithm examines

a small set of recently accessed keys sorted by rank before searching from the head

position of a biased skip list. After changing parameter values in the hybrid data

structure, we found the optimized configured dynamic biased skip list for each data

set. Finally, dynamic biased skip lists were compared with move-to-front lists, original

skip lists, red-black trees, splay trees, R-splay trees and W-splay trees using both real-

world and synthetic data. Our experimental results suggested that dynamic biased

skip lists have the potential to be a better choice for highly biased data patterns with

search, insertion and deletion operations. However, the move-to-front list was the

fastest data structure when the sequence contains only search requests. Splay trees

and splay tree extensions are also able to take biased access patterns into consideration

and result in better performances than ordinary skip lists and red-black trees.

1.3 Organization of The Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the

move-to-front list, the original skip list, splay tree, two splay tree extensions and the

red-black tree. The move-to-front list is discussed since the dynamic biased skip list
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applies the move-to-front algorithm as an underlying scheme. We thoroughly discuss

the self-adjusting data structures mentioned above so that readers can gain a deep

understanding about the code in our paper.

Chapter 3 demonstrates the dynamic biased skip list. We start the chapter by

discussing a biased skip list, which provides fast lookup responses but lacks efficiency

in construction and insert/delete operations. Following that, we explain a simpler

construction method that avoids unnecessary copies and apply a lazy updating scheme

to prevent frequent structure adjustments.

Our experimental results are given in Chapter 4. First, we determine the optimal

dynamic biased skip list parameters for each data set by experimenting with different

parameter values. After that, we compare move-to-front lists, skip lists, red-black

trees, splay trees and their variants with dynamic biased skip lists using real-world

data. Experimental studies with synthetic data are conducted in the last section.

Chapter 5 presents our conclusions, not only for the dynamic biased skip list, but

also for the other data structures we implemented.



Chapter 2

A Review of Different Search Structures

This chapter introduces move-to-front lists, original skip lists, red-black trees and

splay tree extensions that will be compared with the dynamic biased skip list in our

experimental studies.

2.1 Move-to-front Lists

The move-to-front list [74] is a simple structure which optimizes a linked list by

putting the last accessed key at the head of the list. This heuristic adapts quickly

to bias changes in data queries. The move-to-front scheme is used in the dynamic

biased skip list as an underlying filter for highly skewed data patterns. Also, the

move-to-front list is tested as a benchmark against other data structures.

In a move-to-front list, the search algorithm starts from the head node and follow

the links to find the target value. If the target key k is found, the nodes preceding

and following k are linked and k is moved to the head of the list. If k is not present

in the current list, the search procedure will terminate until the end of the list is

reached. Search, insert and delete operations in a move-to-front list are completed in

O(n) worst-case time. Figure 2.1 illustrates the search procedure in a move-to-front

list.

13

13

46

46

28

28

37

37

5

5

Figure 2.1: Search for 37 in a move-to-front list

Move-to-front lists can be used in caches or files systems [43, 42], or in a data

10
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compression algorithm [20, 80]. If the access sequence shows locality of reference,

the frequently accessed are more likely to stay near the head position and thus can

be found more quickly. A move-to-front list thus supports efficient operations for

highly biased data sets. However, a move-to-front list lacks efficiency with uniformly

distributed queries or queries that include insertions and deletions.

2.2 Red-black Trees

Red-black trees are binary trees in which each node holds additional information to

keep the tree balanced. This extra information is a colour, which is either red or

black. A red-black tree satisfies the following properties:

1. Each node is either red or black.

2. The root node is black. All leaf nodes
(
NIL nodes

)
are black.

3. A red node’s parent must be black.

4. All paths from the root to a leaf node contain the same number of black nodes.

The number of black nodes along a path from the root node to any leaf node is

called the black height of the tree.

7

4 13

12 16

8 10 19

Figure 2.2: A red-black tree
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Figure 2.2 is an example of a red-black tree, in which the dark colored nodes

represent the black nodes and the light coloured nodes represent the red nodes. The

NIL nodes are omitted in this figure. Red-black trees have been widely studied,

and have the ability to deal with frequent insertions and deletions [62, 73, 78, 40].

Therefore, red-black trees can be used as a good benchmark for the dynamic biased

skip list in regards to experiments with update operations.

By keeping these colouring requirements, a red-black tree can always maintain a

logarithmic height. Let us consider a red-black tree of n nodes, and remove all the

red nodes without changing the black height of tree. Then reconnect each black node

to its closest ancestor. The ‘trimmed’ tree has leaves at the same depth, which is

the black height
(
denoted as bh

)
. Each internal node in this tree has 2 to 4 children.

Such a tree contains at least Ω(2bh) nodes. Adding back the red nodes, if n is Ω(2bh),

bh is O(log n). Since there are not two adjacent red nodes along any path, the longest

path is at most 2bh. Therefore, the height of a red-black tree is always bounded by

O(log n).

Searching for key k in a red-black tree is the same as searching in an ordinary

binary tree. The search procedure starts from the tree’s root node. Since the red-black

tree is built in sorted order, k and the key of the current node can be compared. If k

is equal to the current node, the target is found and the search operation terminates.

If k is larger than the current node, the search operation proceeds to the current

node’s right child. Otherwise, it follows the left link to reach the left subtree. This

process is iterated until a node that has a key equal to k is reached, or the remaining

subtree is null.

An insertion operation starts with an unsuccessful search that returns the position

in which to insert the element. After adding the new element into the tree as done

in a plain binary search tree, two operations are performed to resolve the colour

properties. Since the colour properties may be violated after an insertion, a recolour

operation is need to be done to solve that. If a single recolour operation does not

work, more nodes will be recoloured, and the tree structure will be adjusted using

rotations. Splay trees, AVL trees and some other tree structures also use rotations

for reconstruction.

A rotation moves a child node up and its parent node down, thus changing the
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structure of the tree without changing the in-order traversal key ordering. There are

two kinds of rotations: left-rotation and right-rotation. Let x denote the current

node, and p denote the parent node of x. A left-rotation is needed when x is the

right child of p. x will be moved up as a new parent, thus making p the left child of x.

Figure 2.3 shows an example of the left-rotation. cl and cr represent the left and right

child of x, respectively. s is an additional child of parent p. A detailed description

of this process is provided in Algorithm 1. In the pseudocode, left represents the left

child of the current node and right represents the right child of the current node. The

parent node of current node is denoted as parent. Root is the root node of the tree

and x is the right child of p, which follows the same pattern as Figure 2.3. Similarly,

a right-rotation moves x, which is now the left child of p, up as a new parent of p and

makes p the right child of x. How a red-black tree rebalances itself using recoloring

and rotations can be found in [22].

p

s x

cl cr

x

p

s cl

cr

Figure 2.3: A left rotation

A red-black tree guarantees O
(
log n

)
worst-case time per operation. Some re-

searchers [62, 73, 40] have pointed out that red-black trees may outperform other

binary trees when handling frequent insert/delete operations, but may not be as effi-

cient as other self-adjusting trees that do searches solely [78, 25]. Red-black trees are

widely used in many applications, such as:

1. HashMap in Java 8 [55]. A HashMap has a number of buckets, and entries

are stored in them. The implementation of HashMap uses red-black trees to

represent the entries in a bucket once the bucket size exceeds a certain constant.
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Algorithm 1 Left-rotation
(
p
)

p.right ← x.left

x.left.parent ← p

x.parent ← p.parent

if p.parent=NULL then

Root ← x

else if p = p.parent.right then

p.parent.right ← x

else

p.parent.left← x

x.left ← p

p.parent ← x

2. C++ STL, such as map, multimap, multiset [57, 19].

3. Completely Fair Scheduler [63] in Linux kernels. CFS is implemented as a red-

black tree to handle CPU resources for executing processes and optimize CPU

utilizations. It uses a red-black tree to keep track of future tasks.

2.3 Splay Trees

We briefly review splay trees and two splay tree extensions: randomized splay trees

and W-splay trees. The randomized splay tree was introduced by Albers and Karpin-

ski [5] and the W-splay tree was introduced by Aho, Elomaa and Kujula [4].

2.3.1 Original Splay Tree

The splay tree is a self-adjusting binary search tree devised by Sleator and Tarjan

[76]. It is theoretically proved to satisfy the Static Optimality Theorem, which means

that a splay tree performs as well as an optimum static binary search tree. A splay

tree is easy to implement since each node of the tree holds no additional information

for maintaining the tree’s balance.

A splay tree supports SEARCH, INSERT, DELETE, JOIN and SPLIT opera-

tions. The fundamental idea behind a splay tree, is called ‘SPLAY’. This technique
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is automatically performed with every single operation.

The essential idea of SPLAY
(
x
)
is to move the current node x up to the root

position using a series of rotations. This procedure enables a key to be accessed

quickly in the near future. Different from the single rotation operation in a binary

search tree, the splaying operation is usually done by combining two rotations in

a pair. If the node x is rotated to the root position using only single rotations, the

running time can be Θ(n) per access [76]. This indicates, using only single rotations to

adjust the structure shows a lack of amortized efficiency. Splaying performs rotations

in pairs. Let p denote the parent of x, and g denote the grandparent of x
(
which is

the parent of p
)
. If the path from p to x goes through p’s left link, it is called a zig

case. Otherwise, it is a zag case. Splaying is performed with two rotations, except

when p is the root node of the tree, in which case a simple left rotation or a right

rotation is performed.

Depending on the positions of x, p and g, there are four cases of double rotations:

zig-zig, zag-zag, zig-zag, and zag-zig. These four cases are the only possibilities

in making two moves along a path. SPLAY
(
x
)
repeats the following steps until x

becomes the root of the tree.

• Zig-zig case/ Zag-zag case

In a zig-zig or a zag-zag case, x and p appear on the same side of their parent,

both left or both right. Figure 2.4 shows the example of zig-zig case. A rotation

is needed at g, and p and x will be moved up one level. Following that, a rotation

at p is performed, which takes x up one more level. A zag-zag case can be solved

symmetrically.

• Zig-zag case/ Zag-zig case

These two cases cover the remaining conditions. In this case, p and x are

different types of children. Figure 2.5 presents the procedure for dealing with

a zig-zag case, where x is the right child of p and p is the left child of g. Two

rotations will be performed: a rotation at p, taking x one level up to become

the parent of p and a rotation at g, making x the parent for both p and g.
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g

p u

x s

cl cr

x

cl p

cr g

s u

Figure 2.4: Zig-zig case

x

g

cr u

g

p u p

s clx

cl cr

s

Figure 2.5: Zig-zag case

A splay tree favours the following operations in logarithmic time:

1. SEARCH
(
k
)

To search for a certain key k in a splay tree, the first step is same as that in a

binary tree. If the target key is found, it is splayed to the root position. If the

key does not exist, the last non-NULL node on the search path will be lifted up

to the root position by splaying.

2. INSERT
(
k
)
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To insert a key k into the tree, a binary search will be triggered in order to

provide a proper position for this insertion. After the key is inserted, a splaying

operation on the newly inserted node is performed, so this node becomes the

new root of the tree.

3. DELETE
(
k
)

To delete a node x of key k, x will be found by searching the entire tree. If

x has no children, it can be removed directly. Otherwise, either x ’s in-order

predecessor or successor needs to be found. The node copies its key to x, and

then is deleted. Finally, splaying is performed on the parent of the removed

node, making the parent node the new root of the tree.

4. JOIN
(
T1,T2

)
Assuming all the keys in tree T1 are smaller than those in tree T2. To merge

the two splay trees, the first step is to search for the largest key kmax in T1

and rotate it to the root. Then, in the resulting tree, kmax will have no right

children. Following that, T2 is attached as a right subtree of kmax, so that the

two trees are jointed.

5. SPLIT
(
k,T

)
The split operation returns two subtrees of tree T, where all keys in one subtree

are smaller than or equal to key k and all keys in the other subtree are larger

than k. Assume that k already exists in the tree. A splay operation is executed

on k so that k becomes the root of the tree. Then the right subtree of k will be

spliced out, so that the two required trees are obtained. If k is not maintained

by the tree, the first step is to find a key k′ which is the largest element smaller

than k in the splay tree, and the following steps are the same as previous but

performed on k′.

Sleator and Tarjan [76] showed some theorems that splay trees satisfy, such as the

Balance Theorem and the Working set Theorem.

Theorem 1 (Balance Theorem) The total access time of a sequence with length

m and n distinct keys is at most (1 + d)(3m log n+m) + (1 + d)n log n.



18

Theorem 2 (Working Set Theorem) The total access time of a sequence with

length m and n distinct keys is at most (1 + d)(6
∑m

j=1 log(r(j) + 1) + 4m) + (1 +

d)(2n log n+ n).

Splay trees can be applied for data compression and encryption [45, 36, 58]. In

data compression algorithms, the input text can be compressed by using fewer bits to

encode more frequently occurring characters. Since the occurring characters exhibit

locality of reference, splay trees can be used in those applications for compressing

the input text. Besides, a node in a splay tree only requires two pointers with no

additional information. This implies a splay tree has a better cache performance

[85, 33, 81] when memory is limited. Moreover, with the working set property, splay

trees are particularly useful in garbage collection algorithms [46].The limitation of

splay tree algorithm is the height of a splay tree can be linear [81, 79] in worst-cases.

2.3.2 Randomized Splay Tree

As discussed in the last section, splay trees support amortized logarithmic running

time per operation and have the working set property. By adapting itself with each

search or update operation, a splay tree makes the most frequently accessed elements

stay near the root of the tree. However, splay trees have the disadvantage that they

rotate with every access, which may lead to a high overhead. Based on this observa-

tion, Albers and Karpinski [5] developed a randomized splay tree. In a randomized

splay tree, the splaying is executed with a certain probability p ∈
[
0, 1

]
. Operations

within a randomized splay tree are only slightly different from that of one regular

splay tree. When searching returns a node, a random float number in the range of[
0,1

]
is generated. If the number is smaller than p, the current node is splayed up

to the root position. Otherwise, the tree remains the same. From this randomized

splaying scheme, one can observe that if p is set close to 1 or the input pattern is

highly biased, the most ‘popular’ elements will still have a high possibility of staying

near the root position. Albers and Karpinski [5] also theoretically approved that the

randomized splay tree satisfies the Balance Theorem and the Working Set Theorem.

Theorem 3 (Balance Theorem) The expected total access time of a sequence with

length m and n distinct keys is at most (1 + pd)(3m log n+m) + (1
p
+ d)n log n.
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Theorem 4 (Working Set Theorem) The expected total access time of a sequence

with length m and n distinct keys is at most (1 + pd)(6
∑m

j=1 log(r(j) + 1) + 4m) +

(1
p
+ d)(2n log n+ n).

2.3.3 W-splay Tree

In experimental studies, randomized splay trees gain some improvements upon orig-

inal splay trees by reducing the number of splayings using a random parameter.

However, whether the amount of splay operations could be reduced more efficiently

is left an open problem. Aho, Elomaa and Kujula [4] developed another splay tree

extension call ‘W-splay tree’, which takes the current working set into consideration

and reduces the number of splaying steps. The working set [26] in a W-splay tree

is slightly different from what we previously defined. It is defined as follows: access

requests to keys often exhibit locality of reference. At any time interval, only a small

portion of data may be accessed frequently while the other keys stay ‘unpopular’.

Such a small portion of keys are defined as the current working set. The main idea

of W-splay algorithm is to monitor the need for splaying by maintaining a counter,

whose initial value is 0. Each access contributes to a change of the counter in the

following way:

counter = counter · d+ depth− limitw. (2.1)

In this equation, depth is the number of edges that are traversed to find the target

key. d and limitw are two variables that affect the value of counter, which will

be described later. When the value of the counter is non-negative, the tree splays;

otherwise, it stays still. d is a discount factor in a range of
[
0,1

)
, which regulates the

effect that the previous value of counter has on its current value. Taking discounted

history into account is necessary, since it ensures that accessing a non-popular key

does not restructure the tree. In practice, the authors found out the value of d does

not overly affect the performance of the W-splay tree. Therefore, they suggest d = 0.9

as an acceptable value of d. limitw is the maximum value for acceptable depths for a

working set w, it is initialled as follows,

limitw = c log(sw + 1), (2.2)
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where c is a constant, and sw is the size of w, which is approximated using the

method shown in [26]. Changes to the value of limit are allowed with every access in

the W-splay scheme:

limitChange = p
( a

a+ b
− 1

d

)
. (2.3)

Assume the sequence s1,s2,...si−1 is accessed and the access si is being operated. a

is the number of splayed accesses in s1, s2,...,si−1, b is the number of non-splayed

accesses before executing si. Notice that a+ b = i. p is a factor defining the adaptive

depth. If the value of limitChange is positive, it will be added to limitw. Thus the

variable limitw can be adjusted with every splaying operation. If the value is negative,

then the value of limitw does not change.

The W-splay algorithm makes it possible to take advantage of the working set and

reduces the number of costly splaying operations by monitoring the current working

set. In addition, Aho, Elomaa and Kujula [4] proved that the W-splay tree conforms

to the balance theorem of a splay tree:

Theorem 5 (Balance Theorem) The total access time of a sequence with length

m and n distinct keys is at most 2mnlimitw +ms(1 + d)(3 log n+ 1) + (1 + d)n log n.

Based on the experimental results in [4], the access time was shorter in W-splay

trees than in ordinary splay trees. We will execute experiments using real-world data

sets to further test the performance of W-splay tree.

2.4 Skip Lists

Skip lists [71] can be seen as a simulation of a binary tree built via a hierarchy of

linked lists. A skip list allows for lookups in O
(
log n

)
expected time, where n is

the number of distinct keys held by the data structure. A skip list contains several

levels and is built in a bottom-up fashion. Each level is an ordered linked list. The

lowest level L0 contains all keys in sorted order. To construct level L1, which is one

level higher than L0, each node in level 0 is copied up to next level with a certain

probability. In our study, the copying-up probability is set to
1

2
, which is the most

commonly used value. This is repeatedly performed until a level with no keys copied

up is encountered. On average,
n

2
keys are in level L1,

n

4
keys are in level L2,

n

8
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keys are in level L3, and in general,
n

2i
keys are in level Li. The expected height of

a skip list is thus bounded by log n. The structure of a skip list can be viewed as

a two-dimensional collection of nodes arranged horizontally into levels and vertically

into columns.

A search operation in a skip list starts from the leftmost key on the highest level.

Then the search traverses the data structure using horizontal pointers until the current

element is greater than or equal to the target value. If the current element is equal

to the target, then the target is found. If current element is greater than the target,

or the end of current level is reached, the procedure returns to the previous node and

drop down one level. By repeating this procedure, either the target is found, or the

bottommost level is reached, where the target key is in the range of
(
k1, k2

)
and k1

and k2 are two adjacent nodes on the lowest level.

We now analyze he expected running time for each access. Suppose k is found at

one level, then we analyze the search path reversely. The level at which k is found

is defined as level l1. The next higher level is l2, and so on. The analysis counts the

expected number of links from the current location of k to the leftmost and topmost

key in the data structure. Let S represent the search path on a key k, c(i) represent

the number of links traversed on level li, h be the expected height of the skip list.

The expected length of a search procedure is

E[S] = E[h+
∞∑
i=0

c(i)] = E[h] + E[

logn∑
i=0

c(i)] + E[
∞∑

i=logn+1

c(i)] (2.4)

The expected height E(h) is O(log n). Since the copy-up probability is 1
2
, the ex-

pected number of keys traversed on one level before finding a link to go to a higher

level is thus 1. The probability of a node that has more than r levels is 1
2r
, so the
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expected number of nodes in level r is n
2r
. Thus,

E[S] = E[h] + E[

logn∑
i=0

c(i)] + E[
∞∑

i=logn+1

c(i)]

= E[h] + E[

logn∑
i=0

1] + E[
∞∑

i=logn+1

n

2i
]

≤ E[h] + E[

logn∑
i=0

1] + E[
∞∑
i=0

1

2i
]

≤ O(log n)

The expected search cost in a skip list is bounded in O(log n). An example of the

search operation in a skip list is shown in Figure 2.6. The bold line shows the search

path for key 42.
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Figure 2.6: Search for key 42 in a skip list

The insertion of key k into a skip list starts with a search operation, which returns

the correct position on the bottommost level in which to insert k. After determining

the correct position, the node of key k is immediately inserted and copied up to a

higher level based on the copying-up probability. The key will be copied to level L2

with a probability of 1/2 and to L3 with a probability of 1/4. This is continuously

performed until k no longer needs to be copied up. The skip list’s deletion operation

also starts with executing a search operation. If target key k is found, all copies of

k are removed, which can be easily accessed by climbing down the column of k. The

number of copies of k is O
(
log n

)
as expected, and the number of pointers that must

be updated is no more than twice the number of levels in the list. The assignments to
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new nodes or deletions of an existing node can be done in constant time. Therefore, it

is safe to predict that the skip list’s average running time for completing an insertion

or a deletion is O
(
log n

)
.

A skip list has been used for:

1. The implementation of the QMap class in Qt application, which is a cross-

platform application development framework for desktop, embedded and mo-

bile. The framework of Qt is written in C++ and QMap class
(
up to Qt4

)
is a

template class that uses a skip-list as a key/value dictionary [77].

2. ConcurrentSkipListSet and ConcurrentSkipListMap in the Java 1.6 API [39, 27].

3. Databases as a index of key/value pairs, like MemSQL [24, 52], skipDB [34].

4. Distributed applications [30], where the nodes of the skip list represents the

computer systems and pointers represent a network connection.

Skip lists have drawbacks as well. First, there is a very small possibility that a skip

list will become a linked list, where all keys are stored in the same level. Moreover,

due to the coin-flip scheme and linked hierarchy, a skip list may not be perfectly

balanced thus each search, insert and delete operation may have an O(n) worst-case

running time [71]. Plenty of research on skip lists [65, 49, 64, 48] claims that a skip

list guarantees O
(
log n

)
expected running time for each operation. We will execute

experiments using both real-world and synthetic data sets with skip lists.
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Dynamic Biased Skip Lists

In this chapter, we introduce the dynamic biased skip list, developed by Ergun, Sahi-

nalp, Sharp and Sinka [28, 29]. First we demonstrate a biased version of the skip

list, which takes advantage of query patterns using a rank assignment scheme. This

biased skip list supports a successful search in O
(
log r

(
k
))

time and an unsuccessful

one bounded by O
(
log n

)
. Also it favors an insert/delete operation in O

(
log n

)
ex-

pected time. Then we introduce a modification of the biased skip list which supports

updates in O
(
log r

(
k
))

time.

3.1 Biased Skip List

The biased skip list is an extension of skip lists. Each existing key in the biased

skip list is given a unique rank in the range [1,2,...,n], where n is the number of keys

maintained by the data structure. When a key k with rank i is accessed, it is given

a new rank of 1. All the keys with a rank i
′
< i will have to update their ranks to

i
′
+ 1. If a key is not previously maintained by the data structure, it will be given

rank 1 , and all the existing keys increase their ranks by 1. Thus, by maintaining the

ascending rank order, the least recent access order of keys can be recorded.

Let rank of key k, denoted as r
(
k
)
, represent the number of unique keys accessed

since last time k was accessed. This is k ’s current rank. Let rmax

(
k
)
represent the

maximum rank in k ’s lifespan. A conceptual move-to-front list is applied to keep the

keys in ascending rank order. The list is divided into classes conceptually: class C1

contains the first key with the smallest rank, class C2 contains the next 2 keys in rank

order, and following this pattern, in general, class Ci contains 2
i−1 keys. Consider a

biased skip list of n distinct keys. Based on the rank assignment scheme and class

division scheme, the number of classes is ⌈log n⌉. A biased skip list is constructed

in a bottom-up fashion like a regular skip list, in which each level maintains keys in

sorted order. Assume the distinct keys are partitioned into c classes. The levels in a

24
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biased skip list, from the bottommost level to the topmost one, are defined as level

L2c−1, L2(c−1), L2(c−1)−1,..., L2, L1. They are constructed as follows :

• Level L2c−1

– The lowest level.

– Maintains all keys in sorted order.

• Level L2d, for d = 1, 2, ..., c− 1

– Contains all keys from classes C1, C2..., Cd.

– Picks up some keys from Level L2d+1 with a probability of
1

2
.

• Level L2d−1, for d = 1, 2, ..., c− 1

– Contains all keys from classes C1, C2..., Cd−1.

– Picks up some keys from Level L2d with a probability of
1

2
.

The conceptual move-to-front list can be implemented using extra links. In our

design, we call it a rank keeper. For each key, we pick one of its copies that appears

higher than any other copies as an entry , and use pointers to connect all the entries

by rank ascending order. Based on the construction algorithm, all keys from class

Cd, 1 ≤ d < c will be automatically copied to Level L2d. This level is called the

default level of the key. Figure 3.1 gives an example of the construction procedure

for a biased skip list.

Construction of a biased skip list of n keys takes O
(
n
)
expected time, assuming the

keys are in sorted order. The problem can be seen as counting the number of copies

of all the keys. The copies of all keys can be divided into two parts: the automatic

copies and the random copies. The random copies are created with a probability of

1
2
. Therefore, the expected number of random copies of a key is

2c∑
i=1

1

2i
≤

∞∑
i=1

1

2i
≤ 1. (3.1)

Now let us count the number of automatic copies. In class Cc, the number of

keys is at most ⌊n
2
⌋. Those keys are automatically inserted into Level L2c+1, thus the
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Figure 3.1: An example of biased skip list

copies from Class Cc are bounded in O
(
n
)
. In class Cd, there are at most ⌊ n

2c−i+1 ⌋
keys and these keys will have 2(c− i) copies. Since the number of classes is bounded

by O(log n), the total number of automatic copies of n keys is

logn∑
i=1

n · 2(c− i)

2c−i+1
≤ O(n) (3.2)

The first step in searching for a certain key k in the biased skip lists is exactly

the same as searching in a regular skip list. After the key is successfully found, some

following operations need to be performed. First, k will be reallocated as the new

head of the rank keeper by adjusting related pointers. Also k will be given rank 1

and be lifted to Level L2 in which all class C1 elements should stay. Second, due to

the class assignment rules, all classes are of fixed sizes. This means that the ranks of

some keys are needed to be re-assigned due to the change of k ’s rank. Assume that

k had a rank of i and belonged to class Cd. All keys that have ranks smaller than i

should increase their ranks by 1. If k is the last element in class Cd, then all elements

that are the last elements in class C1 to class Cd should lower their default levels by

2. Otherwise, the last elements from class C1 to class Cd−1 are adjusted with the

same operations mentioned above. Notice that it is very costly to increment ranks
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of each affected key. To reduce the expense, we use an extra array to store all nodes

located at the tail positions in each class, since only class tail nodes will be moved to

the next class and be reallocated down two default levels in the data structure.

A successful search algorithm can be found in Algorithm 2. The skipListSearch
(
k
)

returns the position of k, following the search algorithm of a regular skip list. The

classInfo represents the class number of the key. The array Tail stores the last

elements from all classes, where Tail[i] returns the tail node of Class Ci. The degrade

operation lowers the class tail node’s default levels by 2 since they have a larger class

number. In practice, this can be done by removing the highest two copies of a key,

or if the key has no more than two copies, its copies are removed and the key is

immediately inserted into a specific level. After that, the entry of each key is inserted

to its previous position in the rank keeper. Similarly, in the upgrade operation on the

newly-found node x, we simply copy the node up to its default level L2, randomly

copy it up to a higher level L1, and move it as the new head of the rank keeper. Its

previous successor next and predecessor prev in the rank keeper are linked after that.

Algorithm 2 Search algorithm in biased skip list

x← skipListSearch
(
k
)

num← x.classInfo

x.classInfo ← 1

if x =Tail[num] then

Tail[num] ← x.prev

for
(
i = 0; i < num; i++

)
do

y ←Tail[i]

Tail[i]← y.prev

y.classInfo ← y.classInfo+1

degrade
(
y
)

upgrade
(
x
)

A searching operation in a biased skip list takes O
(
log r

(
k
))

time for a successful

search, andO
(
log n

)
time for an unsuccessful search, where n is the number of distinct

keys in the data structure. Let us first analyze a successful search. Assume that the

target k is in Class Cd. According to the class assignment scheme, it is clear that
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d ≤ log r(k) + 1. Searching for the target k involves two parts: traversing horizontal

and vertical pointers. Since k is guaranteed to be found at Level L2d, the vertical

distance to travel is at most 2d.

Now let us count the expected number of horizontal links traversed on each level.

Class C1 contains only 1 key, which is inserted to L2 and will be randomly copied to L1.

Thus the expected number of node on the topmost level is at most 1. The expected

number of links is 2 at maximum. Suppose that level Lx is reached by dropping from

the node ax−1 on Level Lx−1. Assume that the node right next to ax−1 on Lx−1 is

a
′
x−1. According to the construction scheme, it is clear that ax−1 < k < a

′
x−1. Let

ax and a
′
x represent the copies of ax−1 and a

′
x−1 on Lx, respectively. The number of

links we travelled on Lx, in the worst case, is the number of links between ax and a
′
x.

According to the randomized copy-up scheme with the copy-up probability of
1

2
that

all keys are subject to, the expected number of keys that are not copied to a higher

level between two keys that have been copied to a level above is 1. Also, notice that

some of the keys between ax and a
′
x are copied up in a mandatory manner if the key’s

default level is higher than Lx, so the expected number of keys that are not copied

up between ax and a
′
x is at most 1. Therefore, the number of links traversed on Level

Lx is at most 2. In general, a search involves traversing 2d levels with at most 2

links on each level in expectation, so the expected search time for an existing key k

is bounded by O
(
d
)
.

After locating k, the class tail nodes that have a class number smaller than d

need to be updated. This is done in the for loop in Algorithm 2. We previously

presented the algorithm for degrading a tail node: delete the two copies appearing

on the two highest levels, and link it again into rank keeper. Inserting or deleting

a node, assigning new class numbers and adjusting pointers in rank keeper all take

constant time. Thus the cost over the for loop is bounded by the number of affected

class tail nodes, which is O
(
d
)
. In the following upgrade operation, the newly found

node x needs to be copied up to at most Level L1. Since k is guaranteed to be found

at least on Level L2d, the total number of new copies of k is no more than 2d−1. The

time for joining x ’s predecessor and successor by moving x as the new head in rank

keeper takes constant time. Thus, the expected time on operations after finding k is

bounded by O
(
d
)
as well. Summing up the two results shows that the entire search
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procedure takes O
(
d
)
expected time, which is O

(
log r

(
k
))
.

For an unsuccessful search, the number of links traversed on each level is no more

than 2, as previously analyzed. The search procedure will end when the bottommost

level is reached. Since the total number of levels in a biased skip list is 2c + 1, the

expected time for an unsuccessful search is O
(
log n

)
, where c is the number of classes

in the data structure, and c = ⌈log n⌉.
A biased skip list accesses an existing key in O

(
log r

(
k
))

time, which satisfies

the working set property. However, an insertion or deletion operation lacks efficiency

due to the mandatory copying-ups and moving-downs of affected keys. For example,

to insert a key k into a biased skip list, knowing that k will not be found, it will be

inserted at the bottommost level and copied up to Level L2 or Level L1. Each class tail

node must be moved two levels down. The whole insertion operation therefore takes

O
(
log n

)
expected time. Deleting a certain key k from class Cd starts with locating

k in the data structure. Then all the copies of k can be removed by traversing down.

After that, each key that is the first element in class Cd′ , for all d < d
′ ≤ c, will be

moved up two default levels. The entire deletion operation is completed in O
(
log n

)
expected time.

Based on this observation, two modifications are developed to improve the per-

formance of insert and delete operations in a biased skip list: a simpler construction

scheme and a lazy-updating algorithm.

3.2 Modifications

3.2.1 Improved Construction Scheme

As described in the previous section, a biased skip list supports efficient searching

operations. However, large numbers of copies of a key, especially of a frequently-

accessed key, will slow down the progress of an insertion or a deletion. Besides,

searching for a ‘unpopular’ key is costly since lower levels contain more keys, including

ones with small ranks. To improve these, a biased skip list can be modified with a

simpler construction. Assume that c is the total number of classes in a biased skip

list. c = log r
(
n
)
, where n is the number of distinct keys.

• Level L2c−1
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– All keys in Class Cc.

• Level L2d, for d = 1, 2, ..., c− 1

– All keys in Class Cd.

– Picks up some keys in Level L2d+1 with a probability of
1

2
.

– Copies down some keys in Level L2d−1 after L2d−1 is built up, with a

probability of
1

2
. Those keys can be further copied down to lower levels

with a a probability of
1

2
.

• Level L2d−1, for d = 1, 2, ..., c− 1

– Picks up some keys in Level L2d with a probability of
1

2
.

– Copies down some keys in Level L2d−2 after Level L2d−2 is built up, with

a probability of
1

2
. Those keys can be further copied down to lower levels

with a a probability of
1

2
.

Figure 3.2 illustrates the improved construction progress of a biased skip list.
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Figure 3.2: Improved BSL
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In this improved construction procedure, the newly inserted element does not need

to be inserted at the bottommost level and copied up to Level L2. Instead, each key

stays on its default level and is copied up or down randomly. It is emphasized that the

importance of the copying-down step is different from that in an original biased skip

list. Suppose that each level contains only default keys and random keys are picked

up from a lower level. An extreme situation may occur in which one class contains

keys in a small range of value, but its adjacent two classes contain keys of different

ranges. See Figure 3.3 for an example. The bold line represents the search path for

key 69. In such cases, a search procedure may have to traverse back and forth in the

entire biased skip list until it finds the target key, which will bring negative effects

on the performance of the data structure. Therefore in the new design of the biased

skip list, each level can have keys not only from the lower levels but also from higher

levels. In this way some improvements in efficiency can be achieved.
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Figure 3.3: An extreme situation without randomly copying keys down

The expected construction time of the improved skip list is O
(
n
)
, if the keys are

given in sorted order. Inserting all keys from class Cc into level Lc takes O(|Cc|) time.

For any d < c, level L2d contains keys from class Cd and keys randomly picked up

from a lower level, its size is in O(|Cd|), level L2d−1 is built from a previous level L2d
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so that its size is also O(|Cd|). Since the number of keys which are copied down from

a higher level decreases faster than the expected number of keys on the level, it is

reasonable to argue the size of each level is O(|Ci|). The number of times that a key

being copied up is
2d∑
i=1

1

2i
≤

∞∑
i=1

1

2i
≤ 1. (3.3)

Similarly, the number of times that this key being copied down is also less than 1.

The cost of constructing class Cd is thus O(|Ci|). Notice that to copy a key down or to

copy it up, we need to go to its left neighbour on the same level, in the aim of finding

a link to reach a lower level. And after reaching the lower level, we may need to go

to a right neighbour to find the proper position to insert the key. Ergun et al. [28]

showed that such traversing time on each level is bounded by O(1) in expectation.

Summing up the results mentioned above, the entire construction procedure is done

in O(n) expected time.

3.2.2 Lazy Update Scheme

The class assignment scheme fixes the class sizes in a strict manner. Therefore,

an insertion will be costly, affecting all the class node tails and causing O
(
log n

)
adjustments. In this case, the lazy update scheme should be applied. To apply the

scheme, flexible class sizes are allowed. For any class Ci, its size ranges from 2i−1

to 2i+1, with its default size 2i. Such a lazy update rule makes most insertions or

deletions more ‘localized’ in the data structure. This means, only when the number

of keys in a class reaches the upper bound of class size, keys need to be moved from

one class to another. Otherwise, the key will be inserted with few readjustments on

the structure. A biased skip list with both the lazy update scheme and improved

construction is called a dynamic biased skip list.

A successful search in a dynamic biased skip list takes O
(
log r

(
k
))

expected time,

and an unsuccessful search takes O
(
log n

)
time. Although the size of classes are

flexible, an existing key k that belongs to class Cd is still guaranteed to be found

at level L2d. The number of vertical steps to find k is at most O(log r(k)). Let us

bound the number of horizontal links on each level while we go down. With a similar

argument to that shown in the analysis for a biased skip list, the expected number
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of links that need to be visited until k or a key greater than k is found is at most 2.

If k is not found on one level, later actions may be traversing to the left side to find

a way down to a lower level, and after the lower level is reached, traversing to the

right. Following the same logic in the analysis of the improved construction time, the

expected number of such links is constant. After k is found, all the class tail nodes

that has a class number smaller than d needs to be updated. The update operations

include rewriting their ranks, increasing their class number by 1 and moving their

default levels down by 2, and take no more than O(log r(k)) time in expectation, as

we analyzed previously. Therefore, the expected time of the entire search operation

is O(d), which is O
(
log r

(
k
))
. If the key k is not maintained by the data structure,

the expected operation time is O(log n) since all the O(log n) levels need to be visited

and O(log n) class tail nodes need to be updated.

As analyzed in the last paragraph, a search operation on key k involves updating

operations on all the class tail nodes that has a class number smaller than k’s class

number before k is accessed. The updating operations include moving the class tail

nodes to next class and moving them down by 2 levels. Therefore, the size of each

class stays the same after a search operation and will be changed only with insertions

or deletions. When a key k is inserted into the dynamic biased skip list, it is given

rank 1 and set into Class C1. Random copies of k are added into Level L1 and into

lower levels determined by a coin-flip result. If the number of nodes in Class C1

reaches its upper bound, then half of the keys that have larger ranks will be moved to

Class C2 and degraded with default levels moved down in the data structure. Let us

carry out the same operations on Class C2. If a Class Ci reaches its upper bound 2i,

then 2i−1 higher ranked keys in Class Ci are moved to class Ci+1, with default levels

of those keys moved down by 2. This enables Class Ci to return to its default size.

This procedure is executed recursively until the size of the current class is under its

upper limit.

A costly case may occur when all classes are full, an insertion will bring movements

to all classes and the whole data structure is reconstructed. However, it can still

be proved [29] that an insertion or a deletion in a dynamic biased skip list costs

O
(
log rmax

(
k
))

amortized time.
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3.3 Hybrid Search Algorithm

As discussed in the last subsection, the implementation of a dynamic biased skip

list contains the skip list structure and a move-to-front list component, the rank

keeper. Inspired by this design, Ergun et al. [29] proposed a hybrid search algorithm

but did not explicitly describe how it works. We further implemented the modified

algorithm based on the following observation: a regular search procedure starts from

the topmost and leftmost key in the skip list, and traverses to the right or down to

locate the target value. However, each layer in the dynamic biased skip list is an

ordered linked list. If the target is frequently accessed with a large value, a search

has to travel for a long distance to reach the target key. To avoid such cases, the

search can start from the rank keeper, where keys are linked by rank ascending order.

A search operation in this hybrid data structure has two steps:

1. Set a maximum number of links for traversing in rank keeper. The ratio between

this number and the default size of Class C1 is denoted as t.

The search operation will start looking for the target key in the rank keeper. If

the target is found within the maximum number of links, make it the new head

in the rank keeper without adjusting the structure of the dynamic biased skip

list. Then the procedure ends with a successful search.

2. If the target cannot be found from the previous step, the searching starts from

the topmost and leftmost key in the dynamic biased skip list. This is the same

as searching in an original skip list.

Notice that it is reasonable to set t under 1. Otherwise, an adverse situation

may occur if the target key is not maintained by the first class. For example, if the

specific key can not be found in the first step of the hybrid algorithm, it can not be

found on the first two levels either
(
with a high possibility

)
. In this case, we have to

start looking for it from the head of dynamic biased skip list and traverse the first

two levels again. This is very costly since searching in the rank keeper is a linear

search and therefore, it requires more time and leads to less efficient performances.

Moreover, it should be avoided to turn the biased skip list search procedure into a

searching operation in a move-to-front list. Therefore, the maximum value of t is 1

in our hybrid algorithm.
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In addition, Ergun et al. [29] performed 2 sets of experiments with this hybrid

search algorithm on a biased skip list, but they did not examine the optimal values

of t for different biased skip list configurations. In our study, we further evaluate the

performances of this hybrid data structure.



Chapter 4

Experiments

In Ergun et al.’s implementation studies [29], the authors completed the following

experiments on biased skip lists:

• Analysis of search times with different Class C1 default size using synthetic data

sets.

• Comparison of the search times between biased skip lists, move-to-front lists,

skip lists and binary tries, using synthetic data sets.

• Comparisons of the search times between biased skip lists and move-to-front

lists with disabled caches, using synthetic data sets.

• Comparisons of biased skip lists with move-to-front lists and skip lists, using a

real-world data set. In this experiment, the operation sequence includes a small

portion of insertion operations and while the remaining are search operations.

The dynamic biased skip list was not implemented in this paper. Also the perfor-

mances of biased skip lists/dynamic biased skip lists are not fully evaluated for the

following reasons:

• Insert/delete operations are not completely included.

The authors in [29] executed one experiment with insertion operations on bi-

ased skip list. In this experiment, the 1.5 ∗ 104 insertions were a tiny portion

compared with the operation sequence length which is 1.8 ∗ 106. The remaining

experiments were done with all keys inserted at the beginning. In addition, the

delete operation was not implemented in any experiments.

• The biased skip list is tested with only one real-world data set.

The biased skip lists experiments were conducted with one real-world data set

in [29]. This database is highly biased, with the average rank of all keys being

only 25.

36
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• Comparisons between biased skip lists and other data structures are not enough.

In [29], the biased skip list was compared against the move-to-front lists, orig-

inal skip lists and binary tries. As mentioned previously, data containers that

exhibits the working set property work well for biased data patterns, of which

the biased skip list is one. However, move-to-front list suffers an O
(
n
)
average

running time, skip lists and binary tries do not exhibit the working set property.

This means that a comparison between these data structures will not provide a

convincing conclusion.

We fully implemented the dynamic biased skip list and tested it using both real-

world data sets and synthetic data with different degrees of bias. Its performance

was then compared to that of move-to-front lists, skip lists, splay trees, randomized

splay trees, W-splay trees and red-black trees. Some data structures were already

implemented and their code were available in the public domain. The skip list imple-

mentation can be found at [71]. The code for red-black trees is provided by Martinian

[2]; and splay tree implementation is provided by Buricea [1]. We implemented the

move-to-front lists and dynamic biased skip list ourselves. In addition, based on

the implementation of [1], we further implemented the randomized splay trees and

W-splay trees.

A list of abbreviations used in our experiment is given below:

• MFL: move-to-front list

• ST: splay tree

• R-ST: randomized splay tree

• W-ST: W-splay tree

• RBT: red-black tree

• SL: skip list

• DBSL: dynamic biased skip list

• H-DBSL: dynamic biased skip list with the hybrid search algorithm described

previously
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This chapter is organized as follows: in Section 4.1, we introduce some abbre-

viations used in our discussions, the real-world data sets that are used for testing

and other information regarding the experimental setup. In Section 4.2, we describe

the experiments for changing the sizes of Class C1, which follows the experimental

procedure outlined in [29]. In Section 4.3, we test different values of t to find the

optimal parameters for our data structure. In Section 4.4, we compare move-to-front

lists, skip lists, red-black trees, splay trees, randomized splay trees and W-splay trees

with dynamic biased skip lists using real world data. Section 4.5 then repeats the

comparison experiments using synthetic data of varying degrees of bias measured by

the average rank of keys in the sequence.

4.1 Experimental Setup

All the experiments were performed on a machine with an Intel Core i5-3550 processor

at 3.30 GHz, with 64KB of L1 Cache, 256KB L2 Cache, 6144KB L3 Cache and 16GB

RAM with Physical Address Extension installed on a 32-bit Ubuntu Linux system.

The PC runs on Ubuntu 12.10 with a 3.5.0-51-generic kernel. The data structures

tested in our experiments are written in C++ and compiled using gcc-4.7.2 with

optimization level O3.

We find 8 realistic data sets with different degrees of bias. To determine the bias

degree of a data set, we define a data set’s rank be calculated as the average rank of

each access. The rank of each access is calculated as follows: the first access will be

given rank as 1 and inserted into an empty move-to-front list. Following this pattern,

if an access is performed on an existing key k, we start from the head of the move-

to-front list, and count the number of distinct keys before k is found as the access’s

rank; otherwise it will be given a rank of 1. Thus we can get the rank of the whole

sequence and calculate the data set’s rank. Table 4.1 gives a description of these data

sets.

The LBL trace data
(
short

)
and the Wiki adminship election data show a high

degree of bias, with intensive access for a small amount of keys. On the other hand,

the Amazon product reviews, Query log data and Pizza requests data sets contain

keys with even access possibilities. The remaining data sets, the Accesses to Amazon

website, LBL trace data
(
long

)
and the Twitter updates, have bias that lie in between
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Dataset Accesses Distinct
keys

Rank Description

LBL
trace data(
short

)
[67]

178,995 1,622 19 TCP packages between the Lawrence
Berkeley Laboratory and other web-
sites in 2 hours. Keys are local PC
addresses.

Wiki ad-
minship
election
[51]

994,452 2,931 33 Voting records of candidates for ad-
ministrator positions. Keys are elec-
tion IDs.

Accesses
to Ama-
zon web-
site [53]

716,064 6,452 283 History of users accessing targeted
branch websites of Amazon.com.
Keys are user IP addresses.

LBL
trace data(
long

)
[68]

7,822,816 13,783 442 TCP packages between the Lawrence
Berkeley Laboratory and other web-
sites in 30 days.

Twitter
updates
[84]

5,108,859 5,179 515 Collection of a portion of twitter
users and their updates. Keys are
twitter user IDs.

Amazon
product
reviews
[56]

194,439 10,429 1,904 Product reviews on cell phones and
accessories. Keys are product IDs.

Query log
data [66]

3,558,411 65,516 3,926 A collection consists of web queries
collected over three months. Keys
are different IP addresses.

Pizza re-
quests [52]

1,323,096 16,736 4,165 A collection of textual requests for a
free pizza from the Reddit commu-
nity. Keys are user IDs.

Table 4.1
Real-world data sets used in experiments

the two extremes. We use these three groups of data to make our experiments credible.

We also conduct experiments with synthetic data. Our synthetic data is generated

in the same way as [29], where our operation sequence is of length 108 and contains

106 unique keys:

1. Randomly generate a sequence Sdata of 106 distinct keys.

2. Generate a sequence Srank representing the rank of each access sequence. Bias
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in Srank is simulated with geometric distribution. The geometric distribution is

a discrete random sampling distribution which represents the number of failed

Bernoulli trials before a success is got. If the probability of success in such a

trial is p, then the probability of the x-th trial is the first success is

P (k) = p(1− p)x−1, (4.1)

for x = 1,2,3...

3. Set the (Srank
1 )-th key in Sdata as the first element, and move the key as the

first key in Sdata. The (Srank
2 )-th key is then set as the second element in the

desired sequence, and is moved to the head in Sdata. This pattern is repeatedly

done until we get a sequence of 108 operations.

4.2 Analysis of Different C1C1C1 Sizes

As we discussed in the last chapter, the expected search time for an existing key k is

bounded by O
(
d
)
, where d is the number of the class that k belongs to. Therefore, the

default size of Class C1 may affect the performance of the DBSL since it determines

in which class k stays. In this section, we change the default sizes of Class C1 with

different operation sequences.

We first show how the running time changes as the size of Class C1 increases.

We change Class C1 default size from 22 to 211. Also, to test the performance of

update operations thoroughly, we start from an empty DBSL and vary the ratios

between insert and delete operations for the operation sequence in our experimental

studies. The ratio of deletion operations are set from 0 to 25%. Each access sequence

is either an insertion or a deletion, in this way the data structure can be built up with

successful insertions. If the insertion is on a key that already exists, only a search

operation will be performed.

We select the Wiki adminship election data set as the highly biased data pattern

for testing the performance of DBSL. This data set has 2931 distinct keys, 994, 452

operations, and its average rank is 33. The LBL trace data
(
short

)
that has the

same degree of bias, returned an optimal C1 size as 2
4, which is the same as the result

from using the Wiki adminship election data. Therefore, we just put one experimental
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result to represent experiments on highly biased data sets. For a less biased database,

we pick two data sets: a
)
the accesses to Amazon website data set, which has 6452

keys, 7,822,816 access requests, rank of 283, and has an optimal class C1 size of 27

and b
)
the Twitter updates data set, which is ranked 515 with 5, 108, 859 operations

and 5179 unique keys. The optimal class C1 size using Twitter updates data sets is 27

when the access sequence contains 25% deletions and 28 under other circumstances.

The result using the long LBL trace data, which is of roughly the same degree of

bias, returned 27 as an optimal C1 size, which is the same result as using the Amazon

website data set. For data sequences with a low degree of bias, we pick the Amazon

product review data set as a representative, which has 194, 439 operations on 10, 429

distinct keys. Our results indicate an optimal C1 size can optimize the performance

of DBSL, and that as the degree of bias increases, the optimal size of C1 increases as

well. All the experiments are executed for 5 times and the final result is calculated

as the average value of the 5 results, so the deviation is minimized.

Our results are seen in Figures 4.1, 4.2, 4.3 and 4.4. The vertical axis represents

the total run time for each data set, measured in seconds
(
s
)
, and each line in the

chart represents different ratios between insert and delete operations. Results from

the rest of data sets can be found in Appendix A.1.

We observe from all the experimental results that, as we increase the size of Class

C1, the total running time will first decrease and then increase. As we discussed in

the last section, the operation time is affected from three sub-procedures. We take a

search operation for example, assume the target key is k in Class Ci:

1. Locating k in the dynamic biased skip list, including traversing horizontally and

vertically.

2. Lifting k to higher levels.

3. Moving down related class tail nodes that has a smaller class number than i.

When the size of C1 doubles, there will be a fewer number of classes in the whole

data structure, thus the total height is reduced by 2. The sub-procedures 2 and 3 will

be shortened. However the number of keys on each level also doubles in expectation.

Therefore, the performance of the sub-procedure 1 should be analyzed with different

C1 sizes. When the C1 size increases from a small value, the enlarged C1 can still
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hold a portion of frequently accessed keys. The time of sub-procedure 1 will not be

affected too much due to the small number of keys from each class. That explains

why the time drops at the beginning, when the size of C1 increases from small.

We also noticed, running time starts to increase when the default size of Class

C1 passes a ‘limit value’. This is because the time spent on the first sub-procedure

becomes the most expensive part. For example, if we enlarge the default size of C1

from 512 to 1024, although it will cause the number of classes reduced by 1, copies of

the target key reduced by 2 and number of class tail node to be updated reduced by

1. However, there will be more than 512 keys on the first two levels, more than 1024

keys on the next two levels, in which some ‘unpopular’ keys are included. This brings

unnecessary comparisons in the search procedure. Also notice that the searching on

each level is a linear search which suffers a O
(
n
)
average running time. Based on

this observation, we can conclude, the choice of the C1 default size can optimize the

performance of DBSL.

Figure 4.3 represents an interesting phenomenon: when there are 25% deletion

operations, a smaller default size of Class C1 yields a slightly better result. This is the

only data set which has a changing optimal class size when changing the percentage

of deletion operations. However, if we continue to increase the deletion operation

ratio to 30%, the optimal C1 size is back to 28. The experimental results suggest

that, even if the operation sequences can affect the optimal C1 size, it is a smaller

variation compared with the degree of data bias.

The optimal Class C1 sizes for each data set can be seen in Figure 4.5. Comparing

the results with data sets of different degrees of bias, we observe that when the rank

of the data set increases, the optimal Class C1 size increases. Following the same

logic described in last paragraph, a small Class C1 size, which is the optimal choice

for a highly biased data pattern, can be extremely expensive with a unbiased data

pattern. Since the capacity of each level is low, the overhead for maintaining smaller

classes is the most costly part in a search procedure. A larger C1 size will reduce this

kind of overhead for a less biased data set. Therefore, the size of the topmost class

can be applied to adjust the configuration of DBSL to best suit the input bias.
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4.3 Analysis of Varying Value of t in H-DBSL

The design of the hybrid search algorithm aims to take advantage of the rank keeper

thus speeding up the search time. Next, we evaluate the performance of H-DBSL

by changing t. Recall that the largest possible value of t is 1, which means that

the maximum length we search in the rank keeper is the value of current Class C1

default size. In our experimental evaluations, the value of t starts from zero and

is incremented by 20% until it reaches the default size of Class C1. We execute

experiments with the size of Class C1 fixed while changing t. Figure 4.6 displays the

results using data sets with all degrees of bias, where ‘33/2931’ means the rank of data

is 33 and the number of distinct keys is 2931. In Figure 4.6a, the fixed C1 size is 128,

Figure 4.6b is the result with C1 size of 512. The experiments using Wiki adminship

data
(
rank 33

)
, Accesses to Amazon data

(
rank 283

)
and Amazon product review

data
(
rank 1904

)
are executed for 100 times, LBL trace data

(
rank 442

)
, Twitter

updates data
(
rank 515

)
and Query log data

(
rank 3926

)
are executed for 10 times

so that all the running times are measured with seconds and fit into one coordinate.
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Figure 4.6: Change t on fixed C1 sizes using different data sets

We observe, for those non-uniformly distributed data patterns, changing t from

0 to 1 will first bring an improvement in performance, and then the running time

increases. This indicates that starting the search in rank keeper is beneficial for

capturing bias with a biased data set. However, the hybrid algorithm is less efficient

when compared to the original search algorithm for data sets with a rank no smaller
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than 515. This is easy to explain, since the data is less biased, searching for the first

t · |C1| elements in the rank keeper will more likely result in failure, making the total

running time larger.
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Figure 4.7: Change C1 sizes on fixed t values using different data sets

Now we set the ratio t fixed, and change the sizes of C1, the results can be seen

in Figure 4.7. For each data set, no matter how t changes, the optimal size of C1

does not change. This indicates, for a mostly unbiased data set, start to search in the

rank keeper first will bring a small improvement in practice, C1 is the major factor

to affect the performance.

We finally give the results of varying C1 and varying t, using a data set of different

degree of bias. Figure 4.8 represents the result of changing the ratio of t with different

class C1 sizes, using three different data sets. The access sequences contain insert and

search operations only. For a highly biased data sequence, if the size of C1 is small,

changing t does not affect the performance of H-DBSL much. However, if the size

of C1 increases, increasing the value of t brings improvement of the performance.

Notice that, when |C1| = 64, the optimal value of t is 0.8, and when |C1| keeps
increasing, the optimal value of t drops to 0.4. This is because, when C1 is smaller,

the frequently accessed keys can be found in the rank keeper with a large value of t,

since the degree of bias is high and the number of frequently accessed keys is small.

In contrast, when the size of C1 increases, a smaller t ensures that the most popular

keys can still be found in the rank keeper in such a hybrid search algorithm. When
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the sequence’s degree of bias drops, see Figure 4.8b, this pattern still exists: if |C1|
is small, the hybrid search algorithm performs slightly better than the regular search

algorithm. If |C1| increases from 32 to 512, the optimal t drops from 0.6 to 0.2. But

when the rank of data reaches 515, see Figure 4.8c, increasing the value of t decreases

efficiency. This is because, since the degree of bias of data decreases, some keys can

not be found in the rank keeper. The search algorithm has to start from the head

position of the dynamic biased skip list. Therefore the searching in the rank keeper

is highly unnecessary and decreases the efficiency of the entire search operation.
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The optimal pairs of C1 and t for each data set under different deletion ratios
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can be seen in Table 4.2. In this Table, ‘128/0.4’ means that C1 size is 128 and

t is 0.4. The best configurations for the highly biased data sets
(
the first two rows

in the Table
)
are ‘256/0.4’. When the bias of data is extremely high, this hybrid

search algorithm excels since most frequently accessed keys can easily be found with

a few links from the head of the rank keeper. Notice that, ‘256/0.4’ is a general

good combination for most data sequences. For each data sequence, we also show

the different between the running time under the optimal pair and the running time

under ‘256/0.4’. ‘9.0%’ means the operation time using this the current pair is 9.0%

faster than the running time using the pair ‘256/0.4’.

We conduct experiments on the optimal C1 sizes with varying t and varying dele-

tion ratios. Those experimental results can be seen in Appendix A.2.

4.4 Comparison of Data Structures using Real-World Data

In this section, we present the experimental results for the comparisons between the

MFL, SL, RBT, ST,R-ST,W-ST, DBSL and H-DBSL, using all 8 real-world data sets.

Based on the results in Section 4.2 and Section 4.3, we use the best values of Class C1

and t. The R-ST and W-ST models are set with the optimum splaying parameters

determined in [5] and [4]. We execute experiments using highly biased data sets, see

Figure 4.9, using data sets with moderate degree of bias, see Figure 4.10, and using

data exhibiting low bias, see Figure 4.11.

When the data set is highly biased and only search operations are performed,

MFL’s performance exceeds all the other data structures due to its simple structure.

However, when there are more insertions/deletions, the operation time of MFL in-

creases quickly. Except MFL, H-DBSL shows the best performance among all the

other data containers with highly biased data. We can observe that the H-DBSL con-

sistently outperforms DBSL at any ratios of deletion operation. The hybrid search

algorithm, which takes its advantage from the underlying move-to-front schemed rank

keeper, makes search operations more efficient than that in DBSL. Also notice that,

the default size of C1 in H-DBSL is larger than that of DBSL, so that fewer structural

changes will take place with more insertions/deletions. DBSL is slightly slower than

the H-DBSL but still faster than other binary trees and the original skip list. How-

ever, if we continue decrease the degree of bias of data, the two DBSL models become
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Deletion Ratios
Data sets 0 5% 10% 15% 20% 25%

LBL trace
data

(
short

) 256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

Wiki admin-
ship election

256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

256/0.4
(0)

Accesses
to Amazon
website

128/0.4
(9.0%)

128/0.4
(8.6%)

128/0.4
(9.1%)

128/0.4
(8.0%)

128/0.2
(7.5%)

128/0.2
(7.7%)

LBL trace
data

(
long

) 128/0.6
(3.7%)

128/0.2
(5.7%)

128/0.2
(5.3%)

128/0.2
(7.8%)

128/0.2
(7.5%)

128/0.2
(9.8%)

Twitter up-
dates

256/0
(5.0%)

256/0
(7.9%)

256/0
(10.4%)

256/0
(8.1%)

256/0
(11.2%)

128/0
(13.7%)

Amazon
product
reviews

256/0
(10.8%)

256/0
(12.3%)

256/0
(14.6%)

256/0
(16.5%)

256/0
(15.3%)

256/0
(15.2%)

Query log
data

512/0
(12.8%)

512/0
(11.9%)

512/0
(10.1%)

512/0
(11.9%)

512/0
(8.6%)

512/0
(7.9%)

Pizza re-
quests

512/0
(12.2%)

512/0
(12.3%)

512/0
(14.2%)

512/0
(16.2%)

512/0
(17.8%)

512/0
(17.9%)

Table 4.2
Optimized combination of C1 and t for different data sets
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less efficient. When the rank of data reaches 1904, both H-DBSL and DBSL are not

competitive with other binary trees or the skip list. As the data is showing less local-

ity of reference, keys are staying evenly on each level, and costly re-adjustments have

to be done with every search or unsuccessful insertion. Therefore, maintaining the

large number of pointers becomes a big overhead on performance. Also notice that

the performance of H-DBSL is even worse than that of DBSL. With non biased ac-

cess distributions, keys are accessed with uniform possibilities. Therefore, it is highly

possible that starting the search in the rank keeper will result in wasted time.

The three splay trees outperform both the skip list and the red-black tree by a

wide margin with data of small ranks. We have discussed the working set properties of

splay trees in Chapter 3. The splaying operation moves the most frequently accessed

keys near the root, from which the splay trees benefit when dealing with highly

biased data. Randomized splay trees are better than W-ST and ST, and ST is the

slowest among the three. This result indicates the calculation in W-splay algorithm

is less efficient than just reducing splaying at some possibility, but is still better than

deterministic splaying. As the degree of bias drops, W-ST is superior to R-ST and

ST at any degree of bias and at any ratios between insertions and deletions. Both

splay tree extensions are more efficient than the original splay tree. This indicates

the two methods for reducing the chance of splaying bring efficiency improvements

for the deterministic splaying operations in ST. Since the W-ST outperforms R-ST

and ST under most circumstances, and is only slightly slower than R-ST when the

bias degree of data is extremely high, it is safe to conclude that W-ST is the more

favourable choice compared to the other two splay tree models.

SL and RBT are slower than splay trees and DBSL models when data exhibits

locality of reference. SL performs better than RBT. However, RBT plateaus earlier

than SL. When the degree of bias decreases, RBT exhibits a faster processing time

than SL. SL turns out to be the least efficient with sequences that have low degrees

of bias among the binary tree structures. This can be explained from the cache

behaviors of SL. SL is not cache-friendly [71] since it does not adjust its own structure

to changes in locality of reference. To be more specific, even if two related keys

are both frequently accessed, they may still stay far away from each other or even
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on different pages. This may lead to cache misses due to the jumps between non-

contiguous parts of allocated memory. We can also explain the phenomenon by

discussing the way in which these data structures are maintained. To maintain a

SL, newly inserted keys only have a 50% probability of having just one node in the

list structure, and a 50% probability of being continuously copied-up. Additionally,

each node has approximately four pointers on average. This means SL has a big

overhead for keeping itself ‘seemingly adaptive’ with query distributions. Pugh [71]

theoretically proved that the average number of comparisons performed in a search

operation is 3
2
log n + 7

2
in a skip list, while in a binary tree like RBT, the number

is just log n [50]. SL cannot actually guarantee being balanced nor be cache-friendly

with a large number of distinct keys, so it has the largest overhead while running.

Notice that, when data pattern becomes almost non-biased, RBT turns out to be as

competitive as W-ST. Results from [69, 83, 4, 62, 73, 78] also indicate that the RBT

is superior for sequences with a low degree of bias: with the balancing scheme, the

total height of the tree is maintained in O
(
log n

)
.

We also provide the performances of each data structure under different deletion

operation ratios in Appendix A.3.

4.5 Comparison with Data Structures using Generated Data

We follow the same pattern of experiments from last section, except now we use the

synthetic data sets. The average rank of the data sets changes from 5 to 500. Based

on previous experimental results, although the optimal default size of Class C1 in

DBSL changes with the degree of bias, the size of 128 works well overall for data sets

with average rank lower than 500. Similarly, in the H-DBSL, the value of t is 0.4

and default size of C1 is 256 for generic good performances. Thus, in the following

experiments, we always apply |C1| = 128 with DBSL and |C1| = 256, t = 0.4 with

H-DBSL.

We first test the search operations only. Running times of different data structures

are shown in Figure 4.12. Most self-adjusting data structures perform well when the

rank of data set is low. We present a partly enlarged figure of comparisons for the

case where the average rank of the data is lower than 200, in Figure 4.13.
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When the rank of data is under 100, MFL returns the best performance as com-

pared to any other data containers. The running time of MFL increases dramatically

when the degree of bias of the access sequence drops. When the rank of data is

larger than 300, MFL is not competitive at all. The relationship between the rank

of data and MFL’s running time can be recognized as linear relationship. An access

sequence in a MFL takes O(r(k)) time for searching for an existing key k, and O(n)

time for a non-existing key, where n is the total number of stored distinct keys. We

believe that if we introduce more insertion/deletion operations into the query data,

the performance of MFL will be even worse.

The DBSL and H-DBSL runs second to MFL with highly biased data, but are

exceeded marginally by W-ST when data rank increases to 50. H-DBSL loses its

superiority when data rank is larger than 100. Both DBSL and H-DBSL outperform

the initial skip list at all rank degrees, which indicates that the maintaining of extra

pointers in DBSL models can bring efficiency improvement in practice. R-ST is

slightly faster than ST when data rank is small. When the rank of data is under 50,

W-ST is less competitive as St or R-ST. However, W-ST has a better performance

than both of the other two splay trees when the rank of data is higher. This indicates,

the time spent on evaluating the current working set in W-splay algorithm is less than

that spent on random splayings or deterministic splayings. RBT and SL are not as

efficient as other data structures. RBT processes data at least one order of magnitude

slower than SL. But we still believe RBT can provide a better result than SL since the

running time of RBT plateaus when rank is 400 while the running time of SL keeps

increasing. The figure also indicates that, even though each of the data structures(
except MFL

)
has a logarithmic pattern between the running time and the rank of

data, performances of STs and DBSLs are slightly better than those of SL and RBT.

This is because, accessing an existing key k in STs and DBSLs takes O(log r(k))

time, while in SL and RBT it takes O(log n) time. In highly biased data sequences,

r(k) is often smaller than n, and therefore STs and DBSLs are preferred under such

circumstances.

In the following experiments, we set 10% of the query operations as deletions.

The results are shown in Figure 4.14. Figure 4.15 is a partly enlarged figure of 4.14,

where the rank of data is between 5 to 200.
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Figure 4.14: 108 requests including 10% deletions on different data structures;
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As expected, if we decrease the degree of bias in a data set and introduce more

insertion/deletion requests, MFL’s performance is not competitive with any other

data structures. The performances of H-DBSL and DBSL are only slightly better

than splay trees when data rank is small. H-DBSL catches up with original DBSL

before data rank reaches 400, which is earlier than that shown in Figure 4.12.

Another observation is that RBT presents as a favourable choice over ST and SL.

This suggests RBT may be an ideal tool for dealing with continual update operations.

We carry out experiments on data set that includes 20% deletion operations. The

results can be seen in Figure 4.16 and Figure 4.17.

The performance of MFL is rather bad, as we expected. The experimental result

depicts that RBT outperforms the other data structures except W-ST. Although the

implementation of RBT is complicated due to the large amount of edge cases, RBT is

extremely efficient when insert/delete operations are relatively frequent. In a RBT,

the shape of the tree is constrained at all times, consequently the height of the tree

is bounded under O
(
log n

)
no matter what kind of operation is applied. In this way

RBT make less structural changes to balance itself, which makes it faster to respond

to insertions or deletions. This implies that RBT is the best choice for dealing with

a number of insert/delete operations if the bias degree of data is unknown. SL is

not comparable with RBT or ST at any deletion ratios. In such a random skip

list, an insertion has to spend time on generating random bits for making copy-up

decisions. This prevents SL from being a comparable alternative to other binary

search structures.

W-ST and R-ST both inherit the working set property from ST. ST must rotate

with every single operation due to the mandatory splaying scheme. In contrast, R-

ST reduces the times of splaying by a random factor and W-ST reduces splaying by

observing current working set. These two methods both improve the performance of

regular splay trees.

We observe that DBSL favours an overall competitive ability for dealing with bi-

ased data patterns, especially with frequent updating operations. H-DBSL catches

up with DBSL’s performance when rank of data reaches 300. Summing up the com-

parisons of H-DBSL and DBSL from Figure 4.12, 4.14, and 4.16, we suggest using

DBSL when the update operations are frequent. Also, we consider the running times
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of DBSL and W-ST when rank of data is 500. Although DBSL is slower under any

deletion ratios, the difference from Figure 4.16 is noticeable smaller than that in Fig-

ure 4.12. This indicates the lazy-updating scheme can bring improvement in practice,

especially with frequent updating operations.
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Figure 4.16: 108 requests including 20% deletions on different data structures;
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Chapter 5

Conclusions

In our work, we mainly studied the dynamic biased skip list and executed experiments

to evaluate its performance. The dynamic data structure maintains a move-to-front

list component to store the most recently accessed keys, and moves the frequently

needed keys to higher levels. Thus, those keys can be accessed faster in the near

future. The dynamic biased skip list supports O
(
log r

(
k
))

amortized time with each

successful search, insertion and deletion, and O
(
log n

)
amortized time for a failed

search, where r
(
k
)
is the number of distinct keys accessed after the last time k was

accessed, and n is the total number of keys in the structure.

We implemented the dynamic biased skip list first. Then we fully evaluated its

performances using both synthetic and real-world data sets. We also compared DBSL

with additional self-adjusting data structures, such as move-to-front lists, skip lists

and red-black trees. In addition, we noticed that splay trees have working set prop-

erties to quickly access biased data patterns, so we included comparison with splay

trees, randomized splay trees, and W-splay trees as well.

Our research and experimental results suggest that when dealing with highly bi-

ased data sets with only search operations, DBSL and H-DBSL work better than the

tree structures and are only slightly slower than MFL. If we introduce some insert

and delete operations into the data set, DBSL models excel. Based on the results,

we can safely conclude, the H-DBSL can take great advantage from the hybrid algo-

rithm with data exhibits high bias. If the degree of bias drops, although DBSL is not

competitive against splay trees, it still supports a faster operation time than RBT

and SL. However, if the data pattern exhibits no bias, the maintenance of DBSL or

H-DBSL will bring the largest overhead in performance and the two models are no

longer comparable with the other data structures.

The hybrid search algorithm outperforms the regular search algorithm with data

showing considerable bias. On the contrary, the hybrid data structure suffers the
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worst running time with uniformly distributed patterns, since searching in the move-

to-front list will likely end in a failure.

W-ST is overall better than the other two splay tree models. Only when bias is

extremely high will the performance of W-ST be worse than that of R-ST and ST.

RBT is capable of doing frequent insert/delete operations, so we suggest using it to

deal with data sets that need to be intensively updated. SL is not competitive with

ST in all of our experiments, and is only slightly better than RBT with highly biased

sequences containing solely search operations, although it supports search, insert,

delete operations in O
(
log n

)
expected time.

Further work can be done based on this thesis. For example, we determined

the optimum Class C1 sizes of DBSL dealing with different data sets. However,

without the knowledge of the data’s degree of bias, DBSL cannot work under the

best configuration. Thus, how to capture the bias of data while running can be

future work. Also, more types of distributions, like the frequency distribution [54],

the Zipfian distribution [70], and the Levy distribution [7] can be used to simulate

locality of reference and evaluate the performance of dynamic biased skip list.
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Appendix A

More Experimental Results

A.1 Changing Class C1 Sizes
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A.2 Changing Value of t in H-DBSL
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A.3 Comparison of Data Structures using Real-World Data

Table tables A.1 to A.6 provide the performances of each data structure under differ-

ent deletion operation ratios. So that people can find the best solution for a particular

data set with a particular sequence. The experiments using LBL trace data
(
short

)(
rank 19

)
, Wiki adminship data

(
rank 33

)
, Accesses to Amazon data

(
rank 283

)
and

Amazon product review data
(
rank 1904

)
are executed for 100 times, LBL trace data(

rank 442
)
, Twitter updates data

(
rank 515

)
, Query log data

(
rank 3926

)
, Pizza

requests
(
rank 4165

)
are executed for 10 times so that all the running times are

measured with seconds and fit into one coordinate.

Data Structures
Data sets MFL SL DBSL H-

DBSL
ST R-ST W-ST RBT

LBL trace
data

(
short

) 1.30 10.14 6.45 6.33 9.93 8.42 10.94 10.53

Wiki admin-
ship election

1.23 7.28 3.57 3.03 4.67 5.25 5.91 8.61

Accesses
to Amazon
website

3.71 4.13 2.85 2.55 3.60 3.30 3.08 4.28

LBL trace
data

(
long

) 2.47 6.01 5.41 5.23 6.63 6.45 4.03 6.20

Twitter up-
dates

9.94 5.08 4.60 4.63 4.79 4.66 4.23 4.56

Amazon prod-
uct reviews

13.28 1.59 3.21 3.42 1.21 1.11 0.99 1.03

Query log
data

146.40 4.50 5.71 6.39 3.80 3.35 3.14 3.30

Pizza requests 25.48 3.03 6.78 8.00 3.21 3.01 2.87 2.02

Table A.1
Running time on each data structure when deletion ratio is 0
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Data Structures
Data sets MFL SL DBSL H-

DBSL
ST R-ST W-ST RBT

LBL trace
data

(
short

) 4.35 12.80 8.09 7.85 10.48 8.93 11.65 13.20

Wiki admin-
ship election

3.18 8.05 3.61 3.26 5.21 5.63 5.98 9.37

Accesses
to Amazon
website

6.06 5.27 3.01 2.96 4.02 3.45 3.37 5.27

LBL trace
data

(
long

) 8.42 6.73 7.25 7.23 7.31 6.30 4.00 6.73

Twitter up-
dates

12.81 5.43 4.79 4.86 5.05 4.97 4.55 5.06

Amazon prod-
uct reviews

14.64 1.80 3.44 3.61 1.24 1.14 1.04 1.16

Query log
data

182.47 4.75 6.01 6.87 4.53 3.64 3.40 3.58

Pizza requests 25.91 3.30 7.02 8.56 3.24 3.03 2.81 2.05

Table A.2
Running time on each data structure when deletion ratio is 5%
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Data Structures
Data sets MFL SL DBSL H-

DBSL
ST R-ST W-ST RBT

LBL trace
data

(
short

) 7.07 13.47 9.16 8.74 11.05 9.22 12.88 14.27

Wiki admin-
ship election

4.80 8.871 3.90 3.31 5.75 5.90 6.06 10.36

Accesses
to Amazon
website

7.81 6.01 3.20 3.09 4.32 3.85 3.64 5.61

LBL trace
data

(
long

) 11.85 8.51 8.20 8.84 7.96 6.25 3.97 8.52

Twitter up-
dates

14.73 5.77 5.15 5.30 5.26 5.11 4.71 5.47

Amazon prod-
uct reviews

15.67 2.06 3.64 3.86 1.34 1.21 1.05 1.31

Query log
data

24.62 4.98 6.10 7.05 4.88 3.99 3.70 3.94

Pizza requests 27.76 3.56 7.13 8.67 3.34 3.11 2.78 2.15

Table A.3
Running time on each data structure when deletion ratio is 10%
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Data Structures
Data sets MFL SL DBSL H-

DBSL
ST R-ST W-ST RBT

LBL trace
data

(
short

) 9.45 14.42 10.09 9.83 11.24 10.10 13.36 14.97

Wiki admin-
ship election

6.19 9.64 4.09 3.40 6.09 6.13 6.13 10.42

Accesses
to Amazon
website

9.46 6.89 3.39 3.15 4.53 3.98 3.88 5.81

LBL trace
data

(
long

) 19.10 9.29 8.80 9.07 8.33 6.27 3.94 9.93

Twitter up-
dates

16.31 6.02 5.32 5.85 5.56 5.27 4.86 5.45

Amazon prod-
uct reviews

18.92 2.49 3.89 4.11 1.39 1.23 1.11 1.41

Query log
data

287.20 5.03 6.29 7.27 5.18 4.52 3.95 4.15

Pizza requests 26.71 3.57 7.25 8.70 3.39 3.17 2.70 2.18

Table A.4
Running time on each data structure when deletion ratio is 15%
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Data Structures
Data sets MFL SL DBSL H-

DBSL
ST R-ST W-ST RBT

LBL trace
data

(
short

) 11.54 15.40 10.89 9.97 11.81 11.17 13.64 15.46

Wiki admin-
ship election

7.30 9.94 4.13 3.66 6.21 6.45 6.18 10.46

Accesses
to Amazon
website

10.76 7.54 3.52 3.26 4.82 4.09 4.00 5.99

LBL trace
data

(
long

) 24.06 10.51 8.69 9.39 8.75 6.24 3.90 10.51

Twitter up-
dates

17.60 6.16 5.40 5.62 5.59 5.32 4.99 5.81

Amazon prod-
uct reviews

21.51 2.60 4.12 4.49 1.43 1.27 1.16 1.48

Query log
data

322.95 5.18 6.43 7.56 5.41 4.70 4.02 4.30

Pizza requests 26.30 3.67 7.40 8.76 3.43 3.11 2.70 2.26

Table A.5
Running time on each data structure when deletion ratio is 20%
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Data Structures
Data sets MFL SL DBSL H-

DBSL
ST R-ST W-ST RBT

LBL trace
data

(
short

) 13.18 16.24 10.91 10.02 12.40 11.64 13.88 16.32

Wiki admin-
ship election

8.38 10.19 4.29 3.87 6.39 6.60 6.21 10.51

Accesses
to Amazon
website

11.69 7.66 3.47 3.38 4.90 4.34 4.11 6.15

LBL trace
data

(
long

) 28.17 11.02 8.08 9.08 8.90 6.22 3.88 11.02

Twitter up-
dates

18.54 6.27 5.56 5.89 5.62 5.47 5.09 5.88

Amazon prod-
uct reviews

23.37 2.72 4.26 4.69 1.48 1.32 1.21 1.53

Query log
data

351.53 5.24 6.39 7.73 5.60 4.80 4.16 4.41

Pizza requests 25.48 3.03 6.77 8.30 3.21 3.00 2.87 2.02

Table A.6
Running time on each data structure when deletion ratio is 25%
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