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Abstract

This thesis studies two well-known geometric structures in computational geometry: maxi-

mal points and convex hull. Extending the concepts to multiple maximal and convex layers

is natural. We study the maximal and convex layers of a point set in d dimensions drawn

from a uniform or component-independent (CI) distribution. A distribution is component-

independent if each coordinate of a point is chosen independently from continuous distribu-

tion. Precisely, we want to compute and to bound the expected size of the first k layers.

For the first set of results, we show that, for d ∈ {2, 3}, the first n1/d−ε maximal layers

can be computed using dn + o(n) scalar comparisons with high probability. For d ≥ 4, the

first n1/2d−ε maximal layers can be computed within this bound with high probability. The

first n1/d−ε convex layers in two dimensions, the first n1/2d−ε convex layers in 3D, and the

first n1/(d2+2) convex layers in d ≥ 4 dimensions can be computed using 2dn + o(n) scalar

comparisons with high probability. Since the expected number of maximal layers in 2D is

2
√
n, our result for 2D maximal layers shows that it takes dn + o(n) scalar comparisons to

compute a 1/nε-fraction of all layers in the average case. For the second set of results, we

show that the kth maximal and convex layer of a point set drawn from a continuous CI

distribution in d dimensions has expected size O(kd logd−1(n/kd)).
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Chapter 1

Introduction

Computational geometry is a branch of computer science studying algorithms dealing with

geometry structures. Computational geometry started in the late 1970s [4] and has grown

into a large, thriving research field to which many high-quality journals and conferences are

solely devoted. Computational complexity is the center of computational geometry where the

practical application could run on large datasets ranging from tens to hundreds of millions

of points [8]. The application domains include, but are not limited to, computer graphics,

geometrical searching and route planning in geographic information systems (GIS), motion

planning and collision detection in robotics, and design and verification of integrated circuits

(IC).

Among others, maximal and convex layers are two fundamental geometric structures

in computational geometry. For two distinct points p and q, point p dominates q if p’s

coordinate is at least q’s coordinate in every dimension. For a point set S in d-dimensional

space, p ∈ S is called a maximal point if there is no point in S dominating p. The skyline

(first maximal layer) of S is the set of all maximal points in S. Refer to Figure 1.1 (a), the

skyline contains all the red points. For an alternative definition, the orthant at a point p is

the region containing all points dominated by p. The skyline is the set of points both in S

and on the boundary of the union of the orthants of all p ∈ S [1]. Finding the skyline of a

point set has a broad range of applications in statistic, economics, and operations research

[38]. It is also used to compute the running time of a dynamic algorithm [2] and to solve the

floating currency problem in economics [38]. In the database community, the standard SQL

skyline operator is computing maximal points under the hood [6].

A point p ∈ S belongs to the convex hull (first convex layer) of S if there exists a

(d − 1)-dimensional hyperplane through p that has all points of S on the same side. Refer

to Figure 1.1 (b), the convex hull contains all the red points. Convex hull is extensively

used in computer visualization, GIS and pattern recognition. For k > 1, the kth maximal or

convex layer is the skyline or convex hull of the subset of S obtained by removing the first
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(a) Maximal layers (b) Convex layers

Figure 1.1: Maximal layers and Convex layers in two dimensional space.

k−1 maximal or convex layers, respectively. Finding multiple maximal or convex layers has

many applications in data mining [6], pattern recognition and statistics [12, 35]. The optimal

solution to the half-plane range search problem, a standard retrieval problem, depends on

convex layers [15]. Computing convex layers is also an interesting problem on its own because

intuitively it is geometrically equivalent to sorting problem [12]. Although it is commonly

known that sorting can be reduced to convex hull, computing only the convex hull of an

arbitrary point set is often easier than sorting. When the size of the convex hull is a small

fraction of the size of the point set, a much faster algorithm can be designed to compute the

convex hull [3]. By computing all convex layers, we lift the complexity of these problems to

catch up with sorting.

1.1 Motivation

As we shall discuss in more detail in Chapter 2, maximal and convex layers are geometric

structures that have been studied extensively. So far, only the expected sizes, for a particular

set of distributions, of the first maximal and convex layers are known [2]. Although the

technique in [2] works well for point sets in general d-dimensional space, it is unlikely that

the same technique can be extended to bound the size of any inner layers, because the

analysis heavily depends on the component-independent property of the input.

Besides the complexity aspect, computing multiple maximal and convex layers is inter-

esting on its own. In Chapter 2, we will see that there have been many optimal results in
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the worst-case analysis for small dimensional space (d = 2, 3). For d = 2, researchers even

achieved output-sensitive results [35], in which the running time depends on the size of the

output. It is not hard to come up with an adversary argument showing that any algorithm

correctly computing even only the first maximal or convex layer in d ≥ 2 dimensions requires

at least Ω(n log n) scalar comparisons in the worst case. Scalar comparisons are the compar-

isons between two coordinates or between one coordinate and one fixed value. On the other

hand, for component-independent (CI) point distributions, one can compute the skyline or

convex hull in expected linear time. A point distribution is component-independent if each

coordinate of a point is chosen independently from continuous distribution. The restriction

to CI distribution is not “too narrow” because CI distribution is the only distribution studied

in many well-known papers, for example, [19], [2], [25]. In fact, Dalal [19] only deals with

uniform distribution, a particular type of CI distribution.

Comparison-based algorithms are the algorithms whose decisions are made by the results

of scalar comparisons. A natural goal is to minimize the exact constant factors in the leading

term of the number of comparisons, as done for sorting [22, 30], median finding [20, 21], heap

building [26, 32], and orthogonal type problems [11]. To that end, Bentley et al. [3] presented

an algorithm to find the skyline of a point set in d dimensions using only dn+ o(n) expected

scalar comparisons. For convex hull, Bentley et al.’s algorithm [3] used 2dn+ o(n) expected

scalar comparisons for d ∈ {2, 3}. For d ≥ 4, the algorithm found a superset of input points,

staying on the boundary of the convex hull, of expected size O(logd−1 n) using 2dn + o(n)

scalar comparisons in expectation. In [3], dn is proven to be the lower bound on the number

of scalar comparisons required for computing either the skyline or the convex hull.

There have been several follow-up results from [3], such as the improvement of lower order

terms in [18]. The work of Golin [25] is also interesting because it shows that the alternative

algorithm to compute the skyline, proposed in [3], in fact uses n + o(n) expected scalar

comparisons for inputs from any two-dimensional CI distribution, though its running time

was not analyzed in [3]. Golin [25] also lifted the result in expectation to high probability.

Up to now, only expected bounds on the number of scalar comparisons were known even for

computing only the first convex or maximal layer, with the exception of [25]. However, it is

unclear how to extend the work from [25] to higher dimensions.
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1.2 Our contribution

This thesis extends Bentley et al.’s results to multiple layers in both expectation and with

high probability. Our results are the first to match the optimal constant factor in the leading

term of the expected number of scalar comparisons on random point sets when extracting

more than one maximal layers. In the case of the convex hull, the constant factor is up to

two times the optimal one. Remarkably, in high dimensional space where d ≥ 4, we are

the first to compute multiple convex layers on random point sets in linear time. In fact,

no O(n polylog(n)) algorithm is known so far. For a set S of n planar points sorted by the

x-coordinates, the number of maximal layers of S is the length of a longest monotonically

increasing subsequence (LMIS) of the sequence of y-coordinates in S. If the distribution from

which S is drawn is CI, this sequence of y-coordinates is a uniform random permutation of

the y-coordinates. From [23], the expected length of an LMIS of this sequence approximates

to 2
√
n when n is large enough. Thus at least in two dimensions, since our algorithm finds

n1/2−ε maximal layers, we can extract a 1/nε-fraction of all maximal layers while using a

near optimal expected number of scalar comparisons.

Although it is not difficult to extend Bentley et al.’s algorithms to compute inner layers,

we find that it is more challenging to analyze the running time. The fundamental idea of our

analysis involves a process of conceptually subdividing an object into smaller objects that

are similar in term of topology. The existence of an input point inside each similar object

will guarantee the topology of one of the first layers. The idea may be of general interest, as it

may be useful to analyze similar problems involving multiple layers. For example, section 4.3

uses the idea to analyze multiple orthant layers. Indeed, we apply the above idea to establish

upper bounds on the expected size of maximal and convex layers of random point sets.

Our first main results transform a worst-case algorithm computing layers in d dimensions

in O(kcn1+ε) scalar comparisons into an algorithm computing the first n
1
c+1
−ε maximal or

convex layers, but using only dn + o(n) or 2dn + o(n) scalar comparisons, respectively,

in expectation and with high probability, where c and ε are constants with c ≥ 0 and

0 < ε < 1
(c+1)d

. With this transformation, we obtained the following results:

1. We provide an algorithm to compute the first k = n
1
d
−ε maximal layers using only

dn+o(n) scalar comparisons in expectation and with high probability, where d ∈ {2, 3}.
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2. We provide an algorithm to compute the first k = n
1
2d
−ε maximal layers using only

dn+ o(n) scalar comparisons in expectation and with high probability, where d ≥ 4.

3. We provide an algorithm to compute the first k = n
1
d
−ε convex layers using only

2dn+ o(n) scalar comparisons in expectation and with high probability, where d = 2.

4. We provide an algorithm to compute the first k = n
1
2d
−ε convex layers using only

2dn+ o(n) scalar comparisons in expectation and with high probability, where d = 3.

5. We provide an algorithm to compute the first k = n1/(d2+2) convex layers using only

2dn+ o(n) scalar comparisons with high probability 1−O( 1
n1/d−ε ), where d ≥ 4.

In the first four results, the high probability is equal to 1− o(n−nγ ), where γ is an arbitrary

constant in (0, cε+ ε2

2(ε+1)d
).

Our second main results bound the size of the k-th maximal or convex layer of a d-

dimensional point set. We show that, for any point set S drawn from a continuous CI

distribution in d dimensions and a fixed parameter k ≤ n,

1. The kth maximal layer has expected size O(kd logd−1(n/kd)).

2. The kth convex layer has expected size O(kd logd−1(n/kd)).

1.3 Outline

Chapter 2 provides a survey on the literature of maximal and convex layers, and some

other related computational geometry topics. Chapter 3 proves our first set of results, while

Chapter 4 deals with the second set. And finally, Chapter 5 offers concluding remarks.
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Chapter 2

Previous work

This chapter will discuss in detail the background literature related to this thesis. In par-

ticular, Section 2.1 surveys the algorithms computing maximal and convex layers whose

worst-case running time are bounded asymptotically, including output-sensitive algorithm.

Section 2.2 reviews the works concerning the exact constant factors in the bounds on running

times. Lastly, Section 2.3 gives an overview for the community’s interest in the complexity

of geometric structures.

2.1 Algorithms computing maximal and convex layers

Back in the 1970s, Kung et al. [31] presented algorithms to compute the skyline of a point

set in 2D or 3D in O(n log n) worst-case time, which is asymptotically optimal. For a fixed

dimension d ≥ 4, the cost is O(n logd−2 n), which is still the most efficient known solution.

Blunck and Vahrenhold [5] introduced in-place algorithms for computing the skyline, which is

the first maximal layer, in 2D and 3D, where in-place means that besides the representation

of the input, only O(1) extra space is used by the algorithms.

For convex hulls, there are also many classical results. The computational geometry

textbook by Berg et al. [4] presents several intuitive and easy-to-implement algorithms to

construct the convex hull of a 2D or 3D point set in worst-case optimal time, which is

O(n log n). Surprisingly, the convex hull in high dimensional space, where d ≥ 4, is not

easy to compute. The reason arises from the fact that the complexity of the convex hull in

high dimensions matches the number of facets, which may be up to Θ(nbd/2c) in the worst

case, rather than the number of vertices as in low dimensions. Starting with an optimal

algorithm for only even dimensions in [41], it took a decade before Chazelle and Bernard

[13] finally came up with the best worst-case solution in Θ(nbd/2c) time for an arbitrary

dimension. Because of the high cost of computing convex hulls in high dimensions, there

have been attempts to compute only the extreme points, which are the input points staying

on the boundary of the convex hull, and there are only O(n) of them. Golin and Sedgewick
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[24] computed a superset of extreme points with size O(
√
n) in O(n) time. For random sets

of points sampled from a CI distribution, Bentley et al.’s algorithm [3] returned a superset of

extreme points with expected size O(logd−1 n) and used only 2dn+ o(n) scalar comparisons

in expectation.

Computing multiple layers is also interesting. All maximal layers can be computed in-

place in O(n log n) time for a 2D point set [5]. In 3D, using dynamic fractional cascading,

Agarwal [37] presented a solution to compute all maximal layers in O(n log n log log n) time.

Later, Buchsbaum and Goodrich [7] improved Agarwal’s result to use only O(n log n) time

and O(n log n/ log log n) space. For d ≥ 4, besides the trivial, non-efficient solution of

applying Kung et al. [31] recursively, there have been no publications on the problem of

computing multiple maximal layers. Researchers have also considered the computation of

multiple convex layers. All convex layers of a point set can be computed using O(n log n)

time and O(n) space in 2D [12]. For d ≥ 3, no optimal algorithm for computing multiple

convex layers is known.

Along with worst-case algorithms, output-sensitivity of the solutions has also been ex-

tensively studied. The classical result from Kirkpatrick and Seidel [28] presented output-

sensitive algorithms to compute the skyline in 2D and 3D in O(n log h) time; and in higher

dimensions when d ≥ 4 in O(n logd−2 h) time, where h is the output size. The first opti-

mal output-sensitive algorithm which computes a convex hull in 2D in O(n log h) time is

credited to Kirkpatrick and Seidel [29]. Later, Chan et al. [10] and Wenger [44] indepen-

dently simplified [29]’s work, while Chan [9] provided a different, more elegant algorithm. In

3D, at first, Clarkson and Shor [17] and Clarkson [16] presented two optimal, randomized,

and output-sensitive convex-hull algorithms. Subsequently, Chazelle and Matoušek [14] and

Chan [9] gave two deterministic versions of the algorithms. On the other hand, there is not

much work on output-sensitive algorithms for multiple layers yet. Nielsen [35] is the first to

present an output-sensitive algorithm for finding the first k convex or maximal layers of a

2D point set in O(n log hk) time, where hk is the number of points in these layers.
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2.2 Constant factors in the number of comparisons

Minimizing the constant factors in the leading term of the number of comparisons is common

in the mathematics as well as in the computer science literature. In this section, we will

focus on computational geometry context and particularly the skyline and convex hull. One

of the most well-known results is in [42] for the 2D point location problem, which is to

report the face of a planar subdivision containing a given query point. Seidel and Adamy

[42] even showed a nice bound on the second term by answering a 2D point location query

in log n + 2
√

log n + O(log1/4 n) comparisons, which are point and line comparisons, with

linear space. Inspired by [42], Chan and Lee [11] presented an output-sensitive 2D-maximal

algorithm which uses only n log h + O(n
√

log h) scalar comparisons where h is the output

size. In 3D, the randomized algorithm in [11] used at most n log h + O(n log2/3 h) scalar

comparisons in expectation. The same bounds on the number of scalar comparisons are

applied to the convex hull in 2D and 3D in [11]. However, since computing the convex hull is

a non-orthogonal problem, the definition of a comparison includes both scalar comparisons

and predicate operations, for example, testing whether three points are in clockwise order

or not. It is controversial to show the exact relationship between scalar comparisons and

predicate operations.

For inputs drawn from the uniform distribution inside a square, Clarkson [16] introduced

an algorithm to compute the skyline in 2n + O(n5/8) scalar comparisons in expectation.

Extending the distribution to be any CI distribution, Bentley et al. [3] provided a different

algorithm to find the 2D skyline in 2n+o(n) scalar comparisons in expectation. Later, Golin

[25] showed that another algorithm, suggested but not analyzed by Bentley et al. [3], also

achieved the same expected bound on the number of scalar comparisons. The authors of [3]

provided algorithms to compute skylines in any d-dimensional space, d ≥ 2, using at most

dn + o(n) scalar comparisons in expectation. Bentley et al. [3] computed the convex hull

in 2dn + o(n) expected scalar comparisons where the number of dimensions, d, is 2 or 3.

The key ingredient of Bentley et al.’s skyline and convex hull algorithms is the ability to

prune most of the points in the original set, and these points are not on the skyline or the

convex hull. The subset of remaining points is small enough to apply any optimal worst-case

algorithm to extract the layer. Such a small subset can only exist if the skyline or convex

8



hull is small, which motivates the need to study the complexity of these layers.

2.3 Complexity of geometric structure

Raynaud [39] proved that if input points are uniformly and independently picked inside a

disk, then the expected size of the convex hull is Θ(n1/3). On the other hand, point sets with

the same restriction picked from a square will result in an expected Θ(log n)-size convex

hull [40]. Rényi and Sulanke [40] showed that if inputs are randomly and independently

picked inside a 2D convex polygon with k sides, then the expected size of the convex hull

is O(k log n). Those results are often included in geometry textbooks, such as [43] and [38].

Bentley et al. [2] extended the results to high dimensions and the skyline as well. They

proved that the expected size of the skyline or the expected number of vertices of the convex

hull over an arbitrary CI distribution is O(logd−1 n). Sariel [27] later provided different proofs

for the same bounds as in [2].

On the “real” complexity of the convex hull in high dimensions, Raynaud [39] showed

that the expected number of facets of the convex hull is O(n(d−1)/(d+1)) for points sampled

from the uniform distribution inside a d-dimensional sphere. In case of points sampled from

a d-dimensional normal distribution, the bound changed to O(log(d−1)/2 n) [39]. Besides

the expected bound 2
√
n on the number of maximal layers in 2D, Dalal [19] is the first

to provide a tight bound in the same manner for convex hull. Dalal [19] showed that the

expected number of convex layers is Θ(n2/(d+1)) for a set of n points independently chosen

from a uniform distribution inside any bounded, non-empty region in Rd. Readers can refer

to Okabe et al. [36] for a review of many other problems in this area.
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Chapter 3

Algorithms for maximal and convex layers

This chapter proves our first set of results. At first, Section 3.1 provides an overview of our

algorithm. Then Section 3.2 provides and analyzes the algorithms to compute maximal lay-

ers, while Section 3.3 discusses the algorithms to compute convex layers in small dimensional

space when d = 2 or 3. Section 3.4 ends the chapter with the algorithm to compute convex

layers in high dimension, d ≥ 4.

3.1 Algorithm Overview

We start the algorithm outline with Subsection 3.1.1 describing the original idea from Bentley

et al. [3]. Subsection 3.1.2, then, gives an overview on how we adapt to compute multiple

layers.

3.1.1 The original algorithm to compute one layer

This thesis starts with the following simple idea from Bentley et al.’s paper [3]: Find a

rectangular inner region I that is expected to contain almost all points in S and is likely

to be completely below the skyline of S or inside the convex hull of S (refer to Figure 3.1).

In particular, with high probability, the outer region O = Rd \ I will contain all points in

S that belong to the skyline or convex hull. Surprisingly, as shown in [3], that is enough

to compute the skyline or convex hull of a point set S using only dn + o(n) or 2dn + o(n)

expected comparisons.

Following the definitions of region I and O, the algorithm partitions the point set S into

two subsets SI = S ∩ I and SO = S ∩ O. Since SI will likely contain almost all points in

S, SO is small in expectation. Thus, Bentley et al. [3] only used o(n) expected comparisons

to compute the skyline, or convex hull, LO of SO by some standard skyline or convex hull

algorithm. The final step is to check the validity of the calculated layer LO. This step is done

by running a test to check whether certain subregions of O (C and C1, . . . , C4, respectively,

in Figure 3.1) contain at least one point of SO. If so, the algorithm terminates in this case.
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I

O C

p

(a) Maximal layers

I

O C1C2

C3 C4

p+

p−

(b) Convex layers

Figure 3.1: The inner and outer regions used in Bentley et al.’s and our algorithm illustrated
for the 2D case. I is shaded blue. O is shaded pink, including the darker regions, which are
the corners that are tested by the algorithm to find out whether they each contain a point.
As illustrated in red, any point in C dominates I in the case of maximal layers; in the case
of convex layers, the convex hull of any four points in C1, . . . , C4 encloses I.

Because I is entirely below or inside LO, no point in S \ SO = SI ⊆ I can be on the first

maximal layer or convex hull of S. Thus, LO is also the skyline or convex hull of S. On the

other hand, if LO fails the test, the first maximal or convex layer is extracted by running a

standard skyline or convex hull algorithm on S, instead of SO. Because the cost for this case

is too high, I is specifically designed to minimize the probability that this happens. The

expected cost of the final step for both cases is, therefore, o(n).

For the skyline algorithm, I = (−∞, x1(p)] × (−∞, x2(p)] × · · · × (−∞, xd(p)], where

p is an appropriate point and xi(p) denotes the ith coordinate of p. For the convex hull

algorithm, I = [x1(p
−), x1(p

+)]× [x2(p
−), x2(p

+)]× · · · × [xd(p
−), xd(p

+)] for an appropriate

pair of corner points (p−, p+). In the case that points are distributed uniformly at random in

the unit hypercube, the corner points of I can be found without any comparisons by setting

xi(p
−) = ε and xi(p) = xi(p

+) = 1 − ε for all 1 ≤ i ≤ d and some appropriate value ε > 0.

To partition S into SI and SO, we compare each point in S to p (or to each point in the pair

(p−, p+)), which takes d (or 2d) scalar comparisons. Thus, in total, it takes dn or 2dn scalar

comparisons for the whole set S.

For an arbitrary CI distribution, the process is slightly different. Specifically, each of

p, p−, and p+ can be found using dn + o(n) scalar comparisons by randomized linear-time

selection. The partitioning of S into SI and SO is performed as part of the selection process

without incurring any additional comparisons. We discuss this in more detail as part of our
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high-probability analysis and extension to multiple layers (Lemmas 3.1 and 3.7). Overall,

the algorithm takes dn+o(n) or 2dn+o(n) expected comparisons, involving in the following

procedure: finding p or the pair (p−, p+), computing the partition of S into SI and SO, and

a process for computing and validating the maximal layer or convex hull using o(n) scalar

comparisons expectedly.

3.1.2 An overview of our algorithm to compute multiple layers

To extend Bentley et al.’s result to multiple maximal or convex layers, the inner region

I needs to contain, again, almost all points in S while the first k layers are unlikely to

intersect I. We will modify the choices for the point p or the pair of points (p−, p+) to

maximize the number of extracted layers. The algorithm starts with computing the corner

points of I and the partition of S. Then, the first k layers are obtained from SO using some

known algorithms which have running times bounded in the worst case. The validity of each

layer can be tested by checking the existence of input points inside each of certain subregions

after removing all computed layers from S. If the test fails, we throw away the results and

recompute the first k layers from S.

To achieve the same bound of dn+o(n) or 2dn+o(n) on the number of scalar comparisons

as [3] and to show that there are high probability results, we need to strengthen the analysis

of Bentley et al. to show that (a) computing p or the pair (p−, p+) and the partition of S

can be done using only dn+o(n) or 2dn+o(n) scalar comparisons with high probability and

(b) with high probability, no point in I is part of the first k layers.

Since the proofs are slightly simpler, we present our result for maximal layers first. Then,

in Section 3.3, we argue that the same approach, with minor modifications, can also be used

to compute convex layers.

3.2 Maximal Layers

In this thesis, we use the notation p ↗ q to mean that point q dominates point p. For

any positive value τ ∈ [0, 1], point p is a τ -pivot of S if the expected number of points

p′ ∈ S satisfying xi(p
′) ≥ xi(p) is τn, ∀i ∈ [1, d], where xi(p) is p’s ith coordinate. Point

p is not necessarily in S. To simplify the analysis, we denote SL(k)(S) as the set of the

12



first k maximal layers of the set S. In the case of the first layer, we sometimes omit the

superscript and only call SL(S) for convenience. With the definition of I as in Section 3.1,

an appropriate τ -pivot p establishes the inner region I. We first prove the following lemma

on locating a τ -pivot in general.

Lemma 3.1. Let S be a point set drawn from a CI distribution. For any value t > 0, any

value τ ∈ (0, n−t], and any constant γ ∈ (0, 1), a τ -pivot p and a partition of S into two

subsets SI = S∩I and SO = S∩(Rd \I) can be computed using dn+o(n) scalar comparisons

in expectation and with probability at least 1 − o
(
n−n

γ
)

, where I is the region dominated

by p.

Proof. If S is drawn uniformly at random from the unit hypercube, we define p = (1 −
τ, . . . , 1−τ). In the ith dimension, 1 ≤ i ≤ d, let Gi be the interval containing all coordinates

greater than xi(p). Then, the length of the interval Gi is τ . Since n points in S are randomly

chosen, there are τn expected points in Gi for any dimension. Thus, p is a τ -pivot of S and

apparently, p can be found without any comparisons. I is the region containing all points

dominated by p. Thus, to partition S into SI and SO, we check for each point whether it is

dominated by p (and thus belongs to SI) or not (and thus belongs to SO). This partitioning

process will take d scalar comparisons for each point or dn scalar comparisons in total for the

whole set S, that is, the lemma holds in the worst case for a uniform random distribution.

For an arbitrary CI distribution, we want xi(p) to be the (τn)th largest coordinate in

dimension i among the points in S. If so, by definition, p is a τ -pivot. As we show in

Appendix A, the (τn)th largest element, among a set of n coordinates in any dimension,

can be found using n + o(n) scalar comparisons in expectation and with probability at

least 1 − o
(
n−n

γ
)

using a simplified version of LazySelect [34]. While computing p, each

coordinate, and therefore the corresponding point in S, is tagged as less than or equal to, or

greater than xi(p). Computing xi(p) in all d dimensions will give p and take dn+o(n) scalar

comparisons in expectation and with probability at least 1−o
(
n−n

γ
)

. The subset SI is then

obtained by gathering all not-greater-than tagged points, while SO is the complement of SI

from S. This partitioning process requires no further scalar comparisons.

We now find the requirements for τ to create the right inner region I. Recall from

Section 3.1, I needs to likely contain almost all points from S while unlikely intersect with
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Figure 3.2: Illustration of half-spaces in 2D. B1 is shaded green while B2 is filled with pink
dashes.

any of the first k maximal layers. Because it is easier for us to analyze from the perspective

of the outer region O , we will restate these requirements in an equivalent form: O needs to

likely contain very few points from S while enclosing all first k maximal layers completely.

As shown later, these two restrictions provide the domain for τ , from which we shall pick

the optimal value. We first work with the condition limiting the size of SO.

Lemma 3.2. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1 be

constants, let τ ≥ nε2−1, let p be a τ -pivot of S, let SI ⊆ S be the set of points dominated by

p, and let SO = S \ SI . Then E(|SO|) ≤ dτn and P (|SO| > 2dτn) = o
(
n−n

ε1
)
.

Proof. We can cover the outer region O with d halfspaces B1, B2, . . . , Bd, where Bi = {p′ ∈
Rd | xi(p′) ≥ xi(p)}, refer to Figure 3.2.

From the definition of the τ -pivot p, we have E(|Bi∩S|) = τn and E(|SO|) ≤
∑d

i=1E(|Bi∩
S|) = dτn. Since |Bi∩S| is the sum of independent Bernoulli random variables, the Chernoff

bound states that

Pr(|Bi ∩ S| > 2τn) < e−τn/3 ≤ n−n
ε2/(3 lnn) = o

(
n−n

ε1
)
.

Thus, P (|SO| > 2dτn) ≤
∑d

i=1 P (|Bi ∩ S| > 2τn) = o
(
dn−n

ε1
)

= o
(
n−n

ε1
)
.

Now we can focus on analyzing the likelihood for the first k maximal layers to stay

completely in O. We first state a condition for the existence of multiple layers, then, integrate

the probability to complete the analysis. For the first step, we show a condition for the

presence of the first k maximal layers by induction on k in Lemma 3.3. To state this lemma,

for an arbitrary point q ∈ Rd, we define Iq = (−∞, x1(q)]× (−∞, x2(q)]× · · · × (−∞, xd(q)]
and Oq = Rd \ Iq.
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Figure 3.3: Visualizing the regions in 2D.

Lemma 3.3. Let p be an arbitrary point in Rd and consider the corresponding partition

of S into subsets SI and SO. If there exist k + 1 points p1, p2, . . . , pk+1 in SO such that

p ↗ pk+1 ↗ · · · ↗ p1, then SL(k)(SO) = SL(k)(S) and no point in S ∩ Ipk , except possibly

pk itself, is part of these layers. In particular, pk+1 /∈ SL(k)(S).

Proof. The base case is when k = 1; refer to Figure 3.3. Since p1 ∈ SO and p1 dominates all

points in SO ∩ Ip1 , SL(Op1 ∩SO) = SL(SO). Since SO ⊆ S, p1 is also in S. Then, because p1

dominates all points in S∩Ip1 , SL(Op1∩S) = SL(S). Since p↗ p1, Op1 ⊆ O. Therefore, we

have Op1 ∩ SO = Op1 ∩ (O ∩ S) = (Op1 ∩O)∩ S = Op1 ∩ S. Thus, SL(SO) = SL(Op1 ∩ S) =

SL(S). No point in S ∩ Ip1 is on SL(S) because they are all dominated by point p1 ∈ S.

Since p2 ↗ p1, p2 ∈ S ∩ Ip1 and therefore p2 /∈ SL(S).

Suppose that the lemma holds for some integer k ≥ 1. We will prove that it also applies

for k+1; refer to Figure 3.3. Indeed, by the inductive hypothesis, SL(k)(Opk+2
∩S) = SL(k)(S)

and SL(k)(Opk+2
∩SO) = SL(k)(SO), when we replace S by SO in the lemma. Since p↗ pk+2,

Opk+2
⊆ O. Therefore, we have Opk+2

∩SO = Opk+2
∩ (O∩S) = (Opk+2

∩O)∩S = Opk+2
∩S.

Thus, SL(k)(SO) = SL(k)(Opk+2
∩ S) = SL(k)(S) and no point in S ∩ Ipk is part of these

layers.

Now, we define S ′ = S \SL(k)(S) as the set left after removing the first k maximal layers

from the original. By definition, SL(S ′) is also the (k + 1)st maximal layer of S. Because

pk+1 and pk+2 are in S ∩ Ipk , pk+2 and pk+1 are in S ′. Applying the base case for set S ′

and p ↗ pk+2 ↗ pk+1, we get SL(S ′ ∩ O) = SL(S ′) and no point in S ∩ Ipk+1
is part of

this layer. Because SL(k)(SO) = SL(k)(S), SL(S ′ ∩ O) is also the (k + 1)st maximal layer
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of SO. Combining all pieces together, we have SL(k+1)(SO) = SL(k+1)(S) and no point in

S ∩ Ipk+1
is part of these layers. In particular, pk+2 ↗ pk+1, pk+2 ∈ S ∩ Ipk+1

and therefore,

pk+2 /∈ SL(k+1)(S).

Finally, we provide the probability for k + 1 points, p1 to pk+1, in Lemma 3.3 to exist.

Lemma 3.4. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1

be constants, let τ
k+1
≥ n(ε2−1)/d, and let h0, h1, . . . , hk+1 be k + 2 points such that hj is a(

j
k+1

τ
)
-pivot of S for all 0 ≤ j ≤ k + 1. Then with probability at least 1 − o

(
n−n

ε1
)
, each

hyperrectangle Hj defined by points hj−1 and hj, for 1 ≤ j ≤ k + 1, contains a point pj ∈ S.

These points satisfy pk+1 ↗ pk ↗ · · · ↗ p1.

Proof. Consider an arbitrary hyperrectangle Hj, see Figure 3.4. Since hj−1 and hj are the(
j−1
k+1

τ
)
-pivot and

(
j

k+1
τ
)
-pivot correspondingly, Pr(xi(p) ∈ [xi(hj), xi(hj−1)]) = τ

k+1
, ∀p ∈ S,

∀i ∈ [1, d]. Because the coordinates are chosen independently, Pr(p ∈ Hj) =
(

τ
k+1

)d
. Thus,

E(|Hj∩S|) =
(

τ
k+1

)d
n. Since |Hj∩S| is the sum of independent Bernoulli random variables,

the Chernoff bound states that

P (Hj ∩ S = ∅) < e−(τ/(k+1))dn/4

As there are k+1 Hj’s, the probability that there exists at least one hyperrectangle containing

no input point in its interior is at most

(k + 1)e−(τ/(k+1))dn/4 ≤ (k + 1)e−n
ε2/4 ≤ n1−nε2/(4 lnn) = o

(
n−n

ε1
)

for τ
k+1
≥ n(ε2−1)/d, ε1 < ε2, and k + 1 ≤ n.

We are now ready to prove Theorem 3.5, which transforms an algorithm computing

multiple layers in worst-case O(kcn1+ε) scalar comparisons into an algorithm computing the

same number of maximal, but using only dn + o(n) scalar comparisons, in expectation and

also with high probability.

Theorem 3.5. Let S be a set of n points drawn from an arbitrary CI distribution in d

dimensions. Suppose there is an algorithm M that can compute the first k maximal layers

of S using O(kcn1+ε) scalar comparisons in the worst case, where c and ε are constants with
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Figure 3.4: An example of defining Hi’s in 2D, where k = 3. In this figure, the entire big
rectangle is C and each Hi represents a blue shaded square. It also shows the points pi’s
defined in Lemma 3.4.

c ≥ 0 and 0 < ε < 1
(c+1)d

. Then the first κ = n
1

(c+1)d
−ε maximal layers of S can be computed

using dn+o(n) expected scalar comparisons, and the actual number of comparisons is within

the same bounds with probability 1− o(n−nγ ) for any γ ∈ (0, (cε+ ε2

2(ε+1)
)d).

Proof. Our algorithm starts by applying Lemma 3.1 to find a τ -pivot p and the partition of

S into SI and SO (the valid range for τ is shown at the end of this proof). It, then, computes

the first k maximal layers of SO using M . And to finish, the algorithm performs a check to

see whether there exists a point in SO dominating p, after removing the computed maximal

layers. If it passes the test, then no point in SI can contribute to SL(k)(S). In other words,

SL(k)(SO) = SL(k)(S), so the algorithm reports the computed maximal layers. Otherwise,

it runs M on S to compute SL(k)(S).

What left is to analyze the running time. We are only interested in the number of scalar

comparisons. We prove that this algorithm uses dn + o(n) scalar comparisons with high

probability. The total number of comparisons in the algorithm is dn+ o(n) if (a) computing

p and partitioning S into SI and SO takes dn + o(n) comparisons, (b) running algorithm

M on SO incurs o(n) comparisons, and (c) the algorithm passes the final test, which means

there exists a point in SO not on the first k maximal layers while dominating p. Thus, it

suffices to bound the probability that any of these three conditions fails.

By Lemma 3.1, (a) fails with probability o
(
n−n

γ
)

, for any γ ∈ (0, 1), as long as τ = n−t

for some t > 0. Running algorithm M on SO incurs o(n) scalar comparisons if |SO| =
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o
(
n1/(1+ε)

)
/kc. By Lemma 3.2, |SO| ≤ 2dτn with probability 1−o

(
n−n

γ
)

as long as τ ≥ nε2−1

for some ε2 > γ. Therefore, (b) fails with probability o
(
n−n

γ
)

as long as τn = o
(
n1/(1+ε)

)
/kc

and τ ≥ nε2−1. By Lemma 3.3 and Lemma 3.4, (c) fails with probability o
(
n−n

γ
)

as long

as τ
k+1
≥ n(ε2−1)/d for some ε2 > γ. Thus, the probability that any of these three conditions

fails is o(n−n
γ
), if τ is in a valid domain to hold the above constraints.

First observe that ε2 − 1 < 0. Thus, τ ≥ nε2−1 if τ
k+1
≥ n(ε2−1)/d, so it suffices to choose

a value of τ = n−t, for some t > 0, such that τ
k+1
≥ n(ε2−1)/d and τn = o

(
n1/(1+ε)

)
/kc.

The last two constraints imply that kc+1 = o(n−ε/(ε+1)+(1−ε2)/d) or k = o(n
1

(c+1)d
−ε+δ) where

δ = ε− ε2
(c+1)d

− ε
(ε+1)(c+1)

. For any ε2 <
(
cε+ ε2

2(ε+1)

)
d, we have δ > 0, that is, we can compute

up to n
1

(c+1)d
−ε maximal layers and, since (cε + ε2

2(ε+1)
) > 0, we can choose values γ and ε2

such that 0 < γ < ε2 < (cε+ ε2

2(ε+1)
)d.

It remains to choose τ . We have τn = o
(
n1/(1+ε)

)
/kc if t > ε

1+ε
+ c

(c+1)d
− εc. To satisfy

τ
k+1
≥ n(ε2−1)/d for large enough n, we need t < ε − 1

(c+1)d
− ε2−1

d
, which is true as long

as t < ε − 1
(c+1)d

− εc − ε2

2(1+ε)
+ 1

d
because ε2 < (cε + ε2

2(ε+1)
)d. It is easy to verify that

ε
1+ε

+ c
(c+1)d

− εc < ε− 1
(c+1)d

− εc− ε2

2(1+ε)
+ 1

d
. Thus, we can choose a value of t that satisfies

both constraints and set τ = n−t. In addition, since ε < 1
(c+1)d

, we have ε
1+ε

+ c
(c+1)d

− εc > 0,

that is, t > 0.

With the chosen value of τ , we analyze the expected bound on the number of scalar

comparisons in our algorithm. Our algorithm can be viewed as a sequence of three actions:

(1) finding p and corresponding partition of S, (2) applying M to SO and (3) either checking

the condition or applying M to S. Let X, Y, Z correspondingly be the number of scalar

comparisons used in each action. The expected number of scalar comparisons used by our

algorithm is E(X + Y + Z) = E(X) + E(Y ) + E(Z). By Lemma 3.1, E(X) = dn + o(n).

By Lemma 3.2, we have

E(Y ) ≤ O
(
kc(2dτn)1+ε

)
Pr(|SO| ≤ 2dτn) +O(kcn1+ε)o

(
n−n

γ)
< O

(
(kcτn)1+ε

)
+ o(n) = o(n)

where d = O(1), t > 0 and τnkc = o
(
n1/(1+ε)

)
.

To compute E(Z), observe that action (3) could be split into three cases: (c1) passing

the test and SO ≤ 2dτn, (c2) passing the test and SO > 2dτn, (c3) failing the test. In any

cases, our algorithm performs d|SO| scalar comparisons for the test. Let Zi, for i ∈ {1, 2, 3},
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be the number of scalar comparisons used in each corresponding case. Suppose each case

can occur with probability Pr(Zi) correspondingly. By Lemma 3.2, Pr(Z2) = o
(
n−n

γ)
. By

Lemma 3.3 and Lemma 3.4, Pr(Z3) = o
(
n−n

γ
)

. Thus,

Z1Pr(Z1) ≤ 2d2τn = o(n)

Z2Pr(Z2) ≤ dno
(
n−n

γ)
= o(n)

Z3Pr(Z3) ≤ (dn+O(kcn1+ε))o
(
n−n

γ)
= o(n)

where d = O(1), t > 0 and τnkc = o
(
n1/(1+ε)

)
. It implies that E(Z) =

∑3
i=1 ZiPr(Zi) =

o(n). Finally, we conclude that E(X + Y + Z) = dn+ o(n).

We then apply Theorem 3.5 to achieve the following results on computing maximal layers:

Theorem 3.6. Let S be a set of n points drawn from an arbitrary CI distribution in d

dimensions. If d ∈ {2, 3} and ε > 0, the first n
1
d
−ε maximal layers of S can be computed

using dn + o(n) expected scalar comparisons. If d ≥ 4, the first n
1
2d
−ε maximal layers can

be computed using the same expected number of scalar comparisons. In all these cases, the

actual number of comparisons is within the same upper bounds on the expected number of

comparisons with probability 1− o(n−nγ ), where γ is as in Theorem 3.5.

Proof. Since all maximal layers can be computed in O(n log n) time in 2D by [5] and in 3D by

[7], there exist algorithms M to compute the first k 2D, 3D-maximal layers using O(kcn1+ε)

scalar comparisons in the worst case, where c = 0 and 0 < ε < 1
(c+1)d

. For d ≥ 4, Kung

et al.’s algorithm [31] computes one maximal layer in O(n logd−2 n) time, which is O(n1+ε)

for any 0 < ε. Thus, we can extend the algorithm in [31] to compute the first k layers in

O(kcn1+ε) worst-case time (and therefore the number of scalar comparisons), where c = 1.

Therefore, we can apply Theorem 3.5 to give the conclusion.

3.3 Convex Layers in Two and Three Dimensions

To extend the framework from Section 3.2 to compute convex layers, we introduce the notion

of dominance to the 2d possible quadrants of a point in Rd. Each quadrant is identified

by a sign vector σ ∈ {+1,−1}d. A point q ∈ Rd σ-dominates another point p ∈ Rd,
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written as p ↗σ q, if σ ◦ q dominates σ ◦ p, where p ◦ q is the Hadamard product: p ◦
q = (x1(p)x1(q), x2(p)x2(q), . . . , xd(p)xd(q)). For an arbitrary value τ ∈ [0, 1] and any sign

vector σ, point p is a (τ, σ)-pivot of S if the expected number of points p′ ∈ S satisfying

xi(σ)xi(p
′) ≥ xi(σ)xp(p) is τn, for all i ∈ [1, d]. For given values of τ, σ, it is possible to

choose multiple (τ, σ)-pivots.

We give particular names to emphasize the importance of these two sign vectors 1 =

(1, . . . , 1) and −1 = (−1, . . . ,−1). From the definition of σ-dominance, 1-dominance is the

same as normal dominance and a (τ,1)-pivot is just a τ -pivot in Section 3.2. When 0 < τ <

1/2, let p−, p+ be one of the possible (τ,−1)-pivots and (τ,1)-pivots correspondingly. As

said in Section 3.1, (p−, p+) shapes the inner region I = [x1(p
−), x1(p

+)]× [x2(p
−), x2(p

+)]×
· · · × [xd(p

−), xd(p
+)] and outer region O = Rd \ I; see Figure 3.1. It is not hard to see

that I contains all points in Rd that dominate p− and are dominated by p+. In term of

σ-dominance, I contains all points 1-dominated by p+ and −1-dominated by p−.

Similar to Section 3.2, S is partitioned into SI = S ∩ I and SO = S ∩O. All 2d corners of

the hyperrectangle I are the points {pσ | σ ∈ {+1,−1}d}, where pσ = 1
2
((1 + σ) ◦ p+ + (1−

σ) ◦ p−). Since S is drawn from a CI distribution, each such corner pσ is also a (τ, σ)-pivot

of S. Let CH(k)(S) be the set of the first k convex layers of the set S, where CH(1)(S)

is sometimes simplified as CH(S). Again, we need to find appropriate domain for τ to

construct the right inner region I. We start with the following partition lemma.

Lemma 3.7. Let S be a point set drawn from a CI distribution. For any value t > 0, any

value τ ∈ (0, n−t], and any constant γ ∈ (0, 1), a pair of points (p−, p+) such that p− is a

(τ,−1)-pivot of S and p+ is a (τ,1)-pivot of S and a partition of S into two subsets SI = S∩I
and SO = S ∩ O can be computed using 2dn + o(n) scalar comparisons in expectation and

with probability at least 1− o
(
n−n

γ
)

.

Proof. Without much work, Lemma 3.1 can be generalized to σ-dominance. In particular, the

generalized version of Lemma 3.1 can find pσ and corresponding partition in dn+o(n) scalar

comparisons in expectation and with probability at least 1 − o
(
n−n

γ
)

; refer to Figure 3.5.

Thus, applying the modified Lemma 3.1 twice with 1-dominance and −1-dominance matches

the claimed number of scalar comparisons. Let SIpσ be the set of input points σ-dominated

by pσ. Since SIp+ and SIp− are computed, SI = SIp+ ∩SIp− and SO = S \SI can be produced
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p−

Ip−

Figure 3.5: Illustration of the generalized version of Lemma 3.1 with −1-dominance in 2D.
The inner region Ip− is shaded blue.

without any additional scalar comparisons.

We next analyze the size of SO.

Lemma 3.8. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1 be

constants, let τ ≥ nε2−1, let p− be a (τ,−1)-pivot of S, let p+ be a (τ,1)-pivot of S, let

I be the hyperrectangle defined by (p−, p+), let SI = S ∩ I, and let SO = S \ SI . Then

E(|SO|) ≤ 2dτn and P (|SO| > 4dτn) = o
(
n−n

ε1
)
.

Proof. The proof is identical to the proof of Lemma 3.2 after observing that SO can be covered

with 2d halfspaces B−1 , B
−
2 , . . . , B

−
d , B

+
1 , B

+
2 , . . . , B

+
d , where B−i = {p′ ∈ Rd | xi(p′) ≤ xi(p

−)}
and B+

i = {p′ ∈ Rd | xi(p′) ≥ xi(p
+)} for all 1 ≤ i ≤ d.

We now compute the probability of CH(k)(S) ⊆ O. Similar to maximal layers, we

also find an indicator for the existence of multiple layers, at first. Then, we find out the

probability that this signal may occur. We need the following definitions: given two points

h−, h+ such that h− ↗ h+, the pair (h−, h+) defines an axis-aligned hyperrectangle Ih. The

hyperrectangle Ih has 2d corners {hσ | σ ∈ {+1,−1}d} where hσ = 1
2
((1+σ)◦h++(1−σ)◦h−).

Let SIh = S ∩ Ih. We start with the following lemma:

Lemma 3.9. Let h−0 , h
−
1 , . . . , h

−
k+1 and h+0 , h

+
1 , . . . , h

+
k+1 be points such that h−0 ↗ h−1 ↗

. . . ↗ h−k+1 ↗ h+k+1 ↗ h+k ↗ · · · ↗ h+0 and consider the regions I and O defined by the

pair of points p− = h−k+1 and p+ = h+k+1. If, for every sign vector σ ∈ {+1,−1}d, there

exist k + 1 points pσ1 , p
σ
2 , . . . , p

σ
k+1 in SO such that hσj ↗σ pσj ↗σ hσj−1 for all 1 ≤ j ≤ k + 1,

then CH(k)(SO) = CH(k)(S) and no point in SIhk is part of these layers. In particular,

pσk+1 /∈ CH(k)(S) for any σ ∈ {+1,−1}d.
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(b) Inductive step

Figure 3.6: Illustration in 2D. The inner regions Ih1 and Ihk+1
are shaded blue. Note that

h+2 = p+ and h−2 = p− in (a) while h+k+2 = p+ and h−k+2 = p− in (b).

Proof. In this proof, unless σ is specifically given a value, any statement using the sign vector

σ will apply for every σ ∈ {+1,−1}d. Since the points all come in pairs, we write vσi ↗σ vσj

in short for v−j ↗ v−i ↗ v+i ↗ v+j , for any two pairs (v−i , v
+
i ) and (v−j , v

+
j ). Let Ohj = Rd\Ihj ,

for all 0 ≤ j ≤ k + 1.

The base case is when k = 1; refer to Figure 3.6. Since hσ1 ↗σ pσ1 and pσ1 ∈ SO, no point

in SO ∩ Ih1 can be on CH(SO). In other words, CH(Oh1 ∩ SO) = CH(SO). Since pσ1 is also

in S, no point in S ∩ Ih1 can be on CH(S). Thus, CH(Oh1 ∩ S) = CH(S). Since pσ ↗σ hσ1 ,

Oh1 ⊆ O. Therefore, we have Oh1 ∩ SO = Oh1 ∩ (O ∩ S) = (Oh1 ∩ O) ∩ S = Oh1 ∩ S. Thus,

CH(SO) = CH(Oh1 ∩S) = CH(S). Since pσ2 ↗ hσ1 , pσ2 ∈ Ih1 ∩S and therefore pσ2 /∈ CH(S).

Suppose that the lemma holds for some integer k ≥ 1. We will prove that it also applies

for k+1; refer to Figure 3.6. By the inductive hypothesis, CH(k)(Ohk+1
∩S) = CH(k)(S) and

CH(k)(Ohk+1
∩SO) = CH(k)(SO), when we replace S by SO in the lemma. Since pσ ↗σ hσk+1,

Ohk+1
⊆ O. Therefore, we have Ohk+1

∩SO = Ohk+1
∩ (O∩S) = (Ohk+1

∩O)∩S = Ohk+1
∩S.

Thus, CH(k)(SO) = CH(k)(Ohk+1
∩ S) = CH(k)(S) and no point in S ∩ Ihk is part of these

layers.

Now, we define S ′ = S \CH(k)(S) as the set left after removing the first k convex layers

from the original. By definition, CH(S ′) is also the (k + 1)st convex layer of S. Because
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pσk+1 and pσk+2 are in S ∩ Ihk , pσk+2 and pσk+1 are in S ′. Applying the base case for set S ′ and

hσk+2 ↗σ hσk+1 ↗σ hσk , we get CH(S ′ ∩ O) = CH(S ′) and no point in S ∩ Ihk+1
is part of

this layer. Because CH(k)(SO) = CH(k)(S), CH(S ′ ∩ O) is also the (k + 1)st convex layer

of SO. Combining all pieces together, we have CH(k+1)(SO) = CH(k+1)(S) and no point in

S ∩ Ihk+1
is part of these layers. In particular, since pσk+2 ↗σ hσk+1, p

σ
k+2 ∈ S ∩ Ihk+1

and

therefore, pσk+2 /∈ CH(k+1)(S).

Lastly, we provide the probability for the condition.

Lemma 3.10. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1 be

constants, let τ
k+1
≥ n(ε2−1)/d, and let h−0 , h

−
1 , . . . , h

−
k+1, h

+
0 , h

+
1 , . . . , h

+
k+1 be points such that

h−j is a
(

j
k+1

τ,−1
)
-pivot and h+j is a

(
j

k+1
τ,1
)
-pivot for all 0 ≤ j ≤ k + 1. Then with

probability at least 1− o
(
n−n

ε1
)
, every hyperrectangle Hσ

j defined by the points hσj−1 and hσj ,

for 1 ≤ j ≤ k + 1 and every sign vector σ ∈ {+1,−1}d, contains a point pσj ∈ S.

Proof. Analogous to the proof of Lemma 3.4, P (Hσ
j ∩S = ∅) < e−(τ/(k+1))dn/4, so the proba-

bility that there exists a pair (j, σ) such that Hσ
j ∩S = ∅ is less than (k+ 1)2de−(τ/(k+1))dn/4.

As shown in the proof of Lemma 3.4, (k+ 1)e−(τ/(k+1))dn/4 = o
(
n−n

ε1
)
. Since d is a constant,

this implies that (k + 1)2de−(τ/(k+1))dn/4 = o
(
n−n

ε1
)
.

Similar to Section 3.2, we first prove Theorem 3.11 to transform an algorithm computing

multiple layers in worst-case O(kcn1+ε) scalar comparisons into an algorithm computing the

same number of convex layers, but using only 2dn+ o(n) scalar comparisons, in expectation

and also with high probability.

Theorem 3.11. Let S be a set of n points drawn from an arbitrary CI distribution in d

dimensions. Suppose there is an algorithm M that can compute the first k convex layers of S

using O(kcn1+ε) scalar comparisons in the worst case, where c and ε are constants with c ≥ 0

and 0 < ε < 1
(c+1)d

. Then the first κ = n
1

(c+1)d
−ε convex layers of S can be computed using

2dn+ o(n) expected scalar comparisons, and the actual number of comparisons is within the

same bounds with probability 1− o(n−nγ ) for any γ ∈ (0, (cε+ ε2

2(ε+1)
)d).

Proof. Our algorithm picks (p−, p+) and partitions set S into SI and SO by Lemmas 3.7. It

then uses algorithm M to compute the first k convex layers of SO. Finally, we check whether,
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for every σ ∈ {+1,−1}d, there exists a point σ-dominating pσ in SO after the computed

convex layers are removed. If this test succeeds, the algorithm reports the computed convex

layers. Otherwise, it runs M on S to compute the first k convex layers of S.

The analysis of this algorithm is identical to the proof of Theorem 3.5 for maximal layers

using Lemmas 3.7, 3.8, 3.9, and 3.10, in place of Lemmas 3.1, 3.2, 3.3, and 3.4.

Finally, we prove the results for computing convex layers when d = 2 or 3.

Theorem 3.12. Let S be a set of n points drawn from an arbitrary CI distribution in d

dimensions. If d = 2, the first n
1
d
−ε convex layers of S can be computed using 2dn + o(n)

expected scalar comparisons. If d = 3, the first n
1
2d
−ε convex layers can be computed using this

number of expected scalar comparisons. In all these cases, the actual number of comparisons

is within the same upper bounds on the expected number of comparisons with probability

1− o(n−nγ ), where γ is as in Theorem 3.11.

Proof. The first k convex layers in 2D can be computed using O(kcn1+ε) scalar comparisons

where c = 0 because all convex layers can be computed as shown in [12] in O(n log n) worst-

case time. For d = 3, the O(n log n)-time algorithm in [4] can recursively extract the first k

convex layers using O(kcn1+ε) scalar comparisons where c = 1 in the worst case. In a nutshell,

we just proved that there exists an algorithm M satisfying the condition in Theorem 3.11,

for all cases. Thus, we can apply Theorem 3.11 directly to get Theorem 3.12.

3.4 Convex Layers in Four or Higher Dimensions

This section discusses the problem of computing the first k convex layers of a point set S

drawn from an arbitrary CI distribution in four or higher dimensions, for k ≤ n1/(d2+2).

The worst-case optimal algorithm for computing the convex hull (only one layer) in d ≥ 4

dimensions [13] takes O(nbd/2c) comparisons. O(nbd/2c) is so high that if we make SO small

enough to bound the cost, the probability of achieving this cost would asymptotically be

close to zero. We need a more efficient way to extract the layers. Fortunately, Bentley et

al. [2] already gave us the hint.

Let σ ∈ {+1,−1}d be a sign vector, let σ ◦ S = {σ ◦ p | p ∈ S}, and let Lσ be the set

of points p ∈ S such that σ ◦ p belongs to the skyline of σ ◦ S. We call Lσ the σ-skyline
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of S. Bentley et al. [2] showed that Q′ =
⋃
σ∈{+1,−1}d L

σ is a superset of extreme points,

which are points in S staying on the boundary of CH(S). However, the authors in [2]

stopped at computing the superset. Matoušek and Plecháč [33] later called Q′ the quadrant

hull of S and gave a different definition. For an arbitrary point q ∈ Rd and a sign vector

σ ∈ {+1,−1}d, let ortσ(q) = {x ∈ Rd|sgn(x− q) = σ} be the σ-orthant at q and ortσ(q) =

Rd\ortσ(q), where sgn(x) is the sign vector of x. Then, the quadrant hull of S defined in [33]

is
⋂
{ortσ(q)|S ⊆ ortσ(q),∀q ∈ Rd, σ ∈ {+1,−1}d}. We opt for orthant hull here because

an orthant is the generalization of quadrants to higher dimensions. We will show that the

orthant hull definition in [33] is equivalent to a region Z with the points
⋃
σ∈{+1,−1}d L

σ on

its boundary. Indeed, if S ⊆ ortσ(q), then q is not σ-dominated by any point in S. It

means that, for a given σ ∈ {+1,−1}d, Lσ forms a boundary for Z by the skyline definition.

Therefore, a point q is in the inner region of Z if and only if ∀σ ∈ {+1,−1}d,∃p ∈ S | q ↗σ p.

It means that, by definition, no point in Q′ =
⋃
σ∈{+1,−1}d L

σ will stay inside Z. Thus, Q′ is

the exact set of points in S staying on the boundary of the orthant hull.

With little effort, the construction that proves Theorem 3.11 can be modified to obtain

the following theorem:

Theorem 3.13. Let S be a set of n points in d ≥ 4 dimensions drawn from an arbitrary

CI distribution. For any k ≤ n1/(d2+2), the first k convex layers of S can be found using

2dn+ o(n) scalar comparisons with probability 1−O( 1
n1/d−ε ), for any ε > 0.

Proof. Applying Kung et al.’s algorithm in [31] to compute all 2d σ-skylines in d ≥ 4

dimensions where σ ∈ {+1,−1}d, we get set Q′ in O(n logd−2 n)-time. It is trivial that

CH(Q′) = CH(S). As shown later, with high probability, the size of Q′ is small enough so

that applying Chazelle’s convex hull algorithm to Q′ takes O(n) comparisons. Altogether,

this gives an algorithm M to compute CH(1)(S) using O(n logd−2 n) comparisons with high

probability. To compute CH(k)(S) in general, our algorithm computes the convex hull of

the point set left in the ith iteration after removing the first i − 1 convex layers. As we

show below, with high probability, this will take O(kn logd−2 n) time. Our analysis is based

on the fact, proven later, that all supersets of the extreme points used in our algorithm are

included in the first k orthant layers, which has expected size O(kd logd−1 n).
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Theorem 3.11 requires M to achieve a running time of O(kn1+ε) in the worst case. How-

ever, if M only attains the same running time with probability at least p > 0, we can still

modify the proof of Theorem 3.11 to capture probability p in the final result as well. Indeed,

similar to Sec 3.2 and 3.3, the 2dn+ o(n) bound on the number of scalar comparisons holds

when three conditions (a), (b), and (c) are satisfied. While (a) and (c) are unaffected by

algorithm M itself, it takes more work to prove condition (b), which limits the running time

of algorithm M on SO to o(n). From Lemma 3.8, O(k|SO|1+ε) = o(n) fails with probability

at most o(n−n
γ
). Since M fails to achieve running time O(k|SO|1+ε) with probability at most

1−p, (b) fails with probability at most Θ
(

max
(

1−p, o
(
n−n

γ
)))

. Combining with fail prob-

abilities of (a) and (c) from previous sections, Theorem 3.11 produces a convex hull algorithm

that uses 2dn+ o(n) scalar comparisons with probability at least Θ
(

min
(
p, 1− o

(
n−n

γ
)))

.

Since we prove later that M achieves a running time of O(kn logd−2 n) with probability at

least 1 − 1
n1/d−ε , Theorem 3.13 follows by setting c = 1 and ε = 1/(2d) − 1/(d2 + 2) as in

Theorem 3.11.

What left is to analyze the running time of algorithm M . Let Q be the convex hull while

Q′ =
⋃
σ∈{+1,−1}d L

σ be the orthant hull, OH(S), of S. Bentley et al. proved that Q ⊆ Q′.

Similar to other multi-layer definitions, for i ≥ 1, let the ith orthant layer of S be the orthant

hull of the set left after removing the first i−1 orthant layers from S. Let OH(k)(S) be the set

of the first k orthant layers of the set S, where OH(1)(S) is sometimes simplified as OH(S).

Let Q1, Q2, . . . , Qk be the first k convex layers of S and Si = S \
⋃i−1
j=1Qj, where S1 = S, be

the corresponding subset of S after CH(i−1)(S) is removed from S, for all 1 ≤ i ≤ k. We

define Q′i as OH(Si), i ∈ [1, k], which is the actual orthant hull algorithm M uses. Since

Qi ⊆ Q′i from [2], a point inside the region enclosed by OH(i)(S) cannot be on
⋃i
j=1Q

′
j. In

other words,
⋃k
i=1Q

′
i is a subset of the points on the first k orthant layers1 of S.

Each iteration i has two steps: first computing Q′i by applying Kung et al.’s algorithm

[31] once for each sign vector σ, then finding Qi by Chazelle’s algorithm [13]. While the

first step takes O(2dn logd−2 n) = O(n logd−2 n) time, the second step uses O(|Q′i|bd/2c) time.

Summing over all k iterations, we get the following upper bound on the time

O(kn logd−2 n+
k∑
i=1

|Q′i|bd/2c) = O(kn logd−2 n+ k|Q′′|bd/2c)

1Note that
⋃k

i=1Q
′
i is not a subset of the first k σ-maximal layers of S, as shown in the remark.
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p

Figure 3.7: A counterexample showing the the first two convex layers is not a subset of a
bounded number of σ-maximal layers.

where Q′′ = OH(k)(S). As we show in Section 4.3,

E(k2/d|Q′′|) = O(k2/dkd logd−1 n) = O(n1/d logd−1 n)

because k ≤ n1/(d2+2). Thus, by Markov’s inequality, P (k2/d|Q′′| > n2/d) ≤ n−1/d+ε, that is,

M takes O(kn logd−2 n) time with probability at least 1− n−1/d+ε, as claimed.

Remark It is tempting to try to compute k > 1 convex layers by the first k σ-maximal

layers of S (defined analogously to the σ-skyline of S). For this to work, one has to prove

that the union of a bounded number of σ-maximal layers of S is a superset of the first k

convex layers. However, this fails even for k = 2 because the second convex layer may contain

a vertex that does not belong to the kth σ-maximal layer for any σ ∈ {+1,−1}d and any

k = o(n). Figure 3.7 shows an example in 2D where the point p is on the second convex layer

but is in the (bn/4c+1)st σ-maximal layer for each σ ∈ {+1,−1}2. This counterexample can

be generalized to d dimensions to show that it is possible for a point in the second convex

layer to be in the (bn/2dc+ 1)st σ-maximal layer for each σ ∈ {+1,−1}d. It is possible that

scenarios as in this figure are unlikely to arise in point sets drawn from a CI distribution,

but this would require further analysis.
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Chapter 4

Expected Size of the First k Layers

This chapter will focus on our second set of results, which is an upper bound on the expected

size of the first k maximal or convex layers. The first maximal or convex layer of a point set

drawn from a CI distribution has expected size O(logd−1 n), as proven in [2] by Bentley et

al. Although it is hard to extend Bentley et al.’s technique to bound the size of any further

layer, we are inspired by the counting approach in [2] to give in Section 4.1 a simple proof

for an O(log n) bound on the expected size of a constant number of maximal layers in 2D.

For the result in general d dimensional space, we deeply thank an anonymous reviewer

of a conference submission based on this work to provide a proof sketch bounding the

size of maximal layers in 2D. We extend the sketch to show in Section 4.2 that, for con-

tinuous CI distributions in d dimensional space, the kth maximal layer has expected size

O((2k)d logd−1(n/kd)), for any k in [1, n]. In Section 4.3, we show how to obtain the same

bound (up to a factor of 8d) for orthant layers, which is the key ingredient for Section 3.4.

From the argument in Section 3.4, it is easy to deduct that CH(k)(S) ⊆ OH(k)(S). Thus,

Section 4.3 also gives O(kd logd−1(n/kd)) bound for the kth convex layer. Since it is also not

hard to see that SL(k)(S) ⊆ OH(k)(S), Section 4.2 and 4.3 could have been combined into

one. However, we leave them as is to help the readers understand the idea more easily as the

analysis on maximal layers is simpler. Because components of input points are drawn from

continuous distribution, with probability 1, all points in the input have distinct coordinates

in each dimension.

4.1 Constant Maximal Layers in 2D

This section proves that the expected size of the kth maximal layer in 2D is O(log n). Since

Bentley et al. [2] already proved the result for k = 1, we focus on a constant integer k ≥ 2. Let

S = {p1, p2, . . . , pn} and xi, yi denote the x- and y-coordinates of pi for 1 ≤ i ≤ n. Without

loss of generality, we assume that S is sorted by x-coordinates such that x1 > x2 > · · · > xn.

Because S is randomly picked from a CI distribution, the sequence Ln = 〈y1, y2, . . . , yn〉 is a
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uniform random permutation. Let Ki is the event that pi belongs to the kth layer, ∀i ∈ [1, n].

Then, the expected size of the kth layer is
∑n

i=1 Pr(Ki). By Lemma 4.1 below, Pr(Ki) ≤ c
i
,

for some positive constant c. Thus,
∑n

i=1 Pr(Ki) ≤
∑n

i=1
c
i

=≤ c
∑n

i=1
1
i

= O(log n), which

completes this section.

Lemma 4.1. There exists a positive constant c such that Pr(Ki) ≤ c
i
.

Proof. Since the depth of a point in maximal layers only depends on points dominating it,

we are motivated to compute Pr(Ki) through Dij, which is the event that there are exactly

j points that dominate pi. Precisely,

Pr(Ki) =
n−1∑
j=1

Pr(Ki|Dij)Pr(Dij) =
i−1∑
j=1

Pr(Ki|Dij)Pr(Dij).

This identity holds because Pr(Dij) = 0 for j ≥ i, as only i−1 points to the right of pi, which

are p1, p2, . . . , pi−1, can dominate pi. Lemma 4.2 shows that Pr(Dij) = 1
i

for all 1 ≤ j < i.

Lemma 4.3 shows that Pr(Ki|Dij) ≤ 4j(k−2)

j!
. Thus,

Pr(Ki) ≤
1

i

i−1∑
j=1

4j(k−2)

j!
≤ 1

i
e4
k−2

because ∞∑
j=0

xj

j!
= ex

Since k is a constant, c = e4
k−2

is a positive constant. Thus, Pr(Ki) ≤ c
i
.

What left is to prove Lemma 4.2 and 4.3.

Lemma 4.2. Pr(Dij) = 1
i
.

Proof. Because S is x-sorted, only the element in Si = {p1, p2, . . . , pi−1, pi} can dominate pi.

Si corresponds to the subsequence Li = 〈y1, y2, . . . , yi〉 of Ln. A point in Si dominates pi

if and only if its y-coordinate is greater than yi. Thus, Dij is equivalent to the event that

yi is the (j + 1)st largest element in Li. Since Ln is a uniform random permutation, the

subsequence Li must also be a uniform random permutation. We have Pr(Dij) = 1
i
.

Lemma 4.3. Pr(Ki|Dij) ≤ 4j(k−2)

j!
.

29



Proof. Let D be the subset of j points in Si−1 = {p1, p2, . . . , pi−1} that dominate pi. We

observe that pi belongs to the kth layer if and only if the point set D has k−1 maximal layers.

We also observe thatD is a CI random point set. Let pm,t be the probability that a CI random

point set D′ of size m has t layers. W.l.o.g, we assume that D′ is sorted by x-coordinate in

decreasing order. Let gm,t be the number of permutations of the y-coordinates where D′ has

t layers. We have pm,t = gm,t
m!

. We will prove by induction on t that gm,t ≤ 4m(t−1). Thus,

pm,t = gm,t
m!
≤ 4m(t−1)

m!
. It follows that Pr(Ki|Dij) = pj,k−1 ≤ 4j(k−2)

j!
.

The base case is when t = 1. Since only the permutation arranging the y-coordinates in

increasing order results in a single layer, gm,t = 1 = 4m(t−1). Thus, the base case holds.

Suppose that gm,t ≤ 4m(t−1) for all values from 1 to t−1. We will show that the inequality

also holds for t. Indeed, the event that D′ has t maximal layers is equivalent to the event

that D′ can be partitioned into two subsets D′1 = SL(D′) and D′2 = D′ \D′1. D′2 has t − 1

maximal layers. Since SL(D′) has one maximal layer in itself, gm,t is at most n(1,t−1), the

number of permutations of the y-coordinates of the points in D′ such that D′ can be split

into two subsets D′1 with one layer and D′2 with t − 1 layers, regardless of whether or not

D′1 is the skyline of D′. To count n(1,t−1), we first fix the size of D′1 to some value s. We

pick s points for D′1 and then pick s y-coordinates for these points. The remaining points

and the remaining y-coordinates go to D′2. Since gs,1 is the number of permutations of

the y-coordinates where D′1 has 1 layer and gm−s,t−1 is the number of permutations of the

y-coordinates where D′2 has t− 1 layers, we have:

gm,t ≤ n(1,t−1) =
m−t+1∑
s=1

(
m

s

)(
m

s

)
gs,1gm−s,t−1 =

m−t+1∑
s=1

(
m

s

)2

gm−s,t−1.

because gs,1 = 1 from the base case and D′1 can have any size between 1 and m− t+ 1.

By the inductive hypothesis, gm−s,t−1 ≤ 4(m−s)(t−2) ≤ 4m(t−2), this gives:

gm,t ≤
m−t+1∑
s=1

(
m

s

)2

4m(t−2) = 4m(t−2)
m−t+1∑
s=1

(
m

s

)2

≤ 4m(t−2) · 4m = 4m(t−1).

where
∑m−t+1

s=1

(
m
s

)2 ≤ (
∑m

s=0

(
m
s

)
)2 = (2m)2 = 4m.
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4.2 The First k Maximal Layers

We now present an approach based on integrals to bound the expected size of the first k

layers. Our expected bound on the first k maximal layers is stated in the following theorem:

Theorem 4.4. For any point set S drawn from a continuous CI distribution in d dimensions,

the kth maximal layer has expected size O(kd logd−1(n/kd)).

Proof. For an arbitrary continuous CI distribution D, each ith dimension has a cumulative

distribution function Fi, for all 1 ≤ i ≤ d. For any point set S drawn from D, the mapping

φ maps each point p in S to a point φ(p) = (F1(x1(p)), F2(x2(p)), . . . , Fd(xd(p))) in set S ′.

By definition, S ′ is drawn uniformly at random from the unit hypercube. Any cumulative

distribution function is non-decreasing. However, since the CI distribution is continuous, Fi

must be an increasing function for ∀i ∈ [1, d]. Therefore, φ is a one-to-one mapping and

p ∈ S σ-dominates q ∈ S if and only if φ(p) σ-dominates φ(q). It follows that the upper

bound on the expected size of maximal layers in S ′ also holds for S.

We now consider this problem and redefine S to be the set of n points drawn from a unit

hypercube. Given set S, the minimal layer of S are the points in S that do not dominate any

other points. The kth minimal layer of S is the minimal layer of the set left after removing

the first k−1 minimal layers from S. For convenience, we will analyze minimal layers instead

of maximal ones because the kth minimal layer of S is equivalent to the kth maximal layer

via the transformation (x1, x2, . . . , xd) 7→ (1− x1, 1− x2, . . . , 1− xd).

Let ML(k)(S) be the set of points in S and on the first k minimal layers. For every point

p ∈ Rd, let Dp be the part of the unit hypercube dominated by p, and let |Dp| =
∏d

i=1 xi(p)

be the volume of Dp. For t ∈ N, let Bt be the surface containing all points p ∈ [0, 1]d such

that |Dp| =
∏d

i=1 xi(p) = (2k)dt
n

; see Figure 4.1. Bt divides the unit hypercube into upper

region L+
t , including (1, . . . , 1), and lower region L−t , including (0, . . . , 0). For t ≥ 0, we want

to bound the volume of Lt = L+
t ∩L−t+1, the region between Bt and Bt+1. Refer to Figure 4.2,

L−t composes of the region below the surface Bt and a union of d− 1 small hyperrectangles,
(2k)dt
n

volume each. Thus, the volume of L−t is bounded by

|L−t | =
∫
· · ·
∫
R

(2k)dt

nx1x2 · · ·xd−1
dx1 . . .dxd−1 +

(d− 1)(2k)dt

n
,
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B3

L2

p

Figure 4.1: Bound on the probability that a point in Lt belongs to the first k minimal layers
in 2D. Here, k = 2 and n = 160. The region L2 is shaded. Each of the grey grid cells
contains two points of S in expectation. Any point in such a grid cell (red) is dominated by
p and all points in grid cells to its top right. Thus, unless more than two of these grid cells
are empty, p does not belong to the first two minimal layers.

where R = [ (2k)
dt

n
, 1]× . . .× [ (2k)

dt
n
, 1] is a hypercube in d− 1 dimensions.

Since f(x1, . . . , xd−1) = (2k)dt
nx1x2···xd−1

is continuous on R, by Fubini’s Theorem, the above

multiple integral is indeed an iterated integral, which means that:

|L−t | =
∫ 1

(2k)dt/n

· · ·
∫ 1

(2k)dt/n

(2k)dt

nx1x2 · · ·xd−1
dx1dx2 · · ·dxd−1 +

(d− 1)(2k)dt

n

=

∫ 1

(2k)dt/n

· · ·
∫ 1

(2k)dt/n

(
(2k)dt

nx2 · · ·xd−1

∫ 1

(2k)dt/n

1

x1
dx1

)
dx2 · · ·dxd−1 +

(d− 1)(2k)dt

n

=

∫ 1

(2k)dt/n

· · ·
∫ 1

(2k)dt/n

(
(2k)dt

nx2 · · ·xd−1
ln(x1)

∣∣∣1
(2k)dt/n

)
dx2 · · ·dxd−1 +

(d− 1)(2k)dt

n

=

∫ 1

(2k)dt/n

· · ·
∫ 1

(2k)dt/n

(2k)dt ln(n/(2dkdt))

nx2 · · ·xd−1
dx2 · · ·dxd−1 +

(d− 1)(2k)dt

n

= O

(
(2k)dt logd−1(n/kd)

n

)
.

Because Lt ⊆ L−t+1, |Lt| = O
(

(2k)dt logd−1(n/kd)
n

)
. Now, we find the probability that a point

p ∈ Lt ∩ S stays on one of the first k layers. Consider the hyperrectangle Dp and a uniform

grid of it with (2k)d cells by dividing each side of Dp into 2k equal intervals. Because a

point p ∈ Lt will stay above the surface Bt, |Dp| > (2k)dt
n

. Thus, the volume of each cell in

the grid is greater than t/n. It implies that in expectation, there are more than t points in

each cell. Applying the Chernoff bound, any of these grid cells is empty with probability

less than e−t/4. The expected number of empty cell on the diagonal of the grid is at most
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x1

x2 x3

(2k)dt
n

0 1

1

Figure 4.2: Illustration in 3D of L−t , which is the union of both the orange and green regions.

The surface Bt is shaded blue. Each of the three red segments has length (2k)dt
n

. The blue
square highlights the region over which the integral is computed.

2ke−t/4. For p to be on one of the first k minimal layers, there must be at least k out of the

2k cells on the diagonal that are empty, which happens with probability less than 2e−t/4, by

Markov’s inequality. In other words, Pr(p ∈ML(k)(S)|p ∈ Lt) < 2e−t/4. Then,

Pr(p ∈ML(k)(S) ∧ p ∈ Lt) = Pr(p ∈ML(k)(S)|p ∈ Lt)Pr(p ∈ Lt)

= O

(
(2k)dt logd−1(n/kd)

net/4

)
where Pr(p ∈ Lt) = |Lt| = O

(
(2k)dt logd−1(n/kd)

n

)
, k ≤ n is a fixed parameter. The ex-

pected number of points in S that belong to Lt and to one of the first k layers is thus

O( (2k)
dt logd−1(n/kd)

et/4
). Since the union of all Lt, t ≥ 0, is the unit hypercube, summing over all

Lt gives the expected number of points on the first k minimal layers, which is:
∞∑
t=0

O

(
(2k)dt logd−1(n/kd)

et/4

)
= O((2k)d logd−1(n/kd))

∞∑
t=0

t

et/4

= O((2k)d logd−1(n/kd)),

since
∑∞

t=0
t

et/4
≤ c, for some positive constant c. Thus, the total expected size of the

first k minimal layers, and therefore the expected size of the kth minimal layer, of S is

O((2k)d logd−1(n/kd)).

4.3 The First k Orthant Layers

In this section, we will bound the expected size of the first k orthant layers.
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Theorem 4.5. For any point set S drawn from a continuous CI distribution in d dimensions,

the kth orthant layer has expected size O(kd logd−1(n/kd)).

Proof. Similar to Section 4.2, we only need to prove the expected bound for inputs drawn

from uniform distribution. Let o be the center point of the unit hypercube. Point o splits the

unit hypercube into 2d orthants Oσ with side length 1/2 for σ ∈ {+1,−1}d. Precisely, Oσ

is the set of all points in the unit hypercube that σ-dominate o. As will be shown later, for

every σ ∈ {−1,+1}d, the expected size of OH(k)(S)∩Oσ is O((4k)d logd−1(n/kd)). Summing

over all 2d orthants, we obtain a bound of O((8k)d logd−1(n/kd)) = O(kd logd−1(n/kd)) on

the expected size of the first k orthant layers of S. Since there exists a one-to-one function

mapping a point in an arbitrary orthant Oσ to another point in orthant O−1, w.l.o.g. we

only need to analyze the orthant O−1. The argument for other orthant Oσ is symmetric.

We now start the inspection of orthant O−1 by defining some terminologies at first. For

every point p ∈ Rd and for any σ ∈ {+1,−1}d, let Dσ
p be the part of the unit hypercube

σ-dominated by p. We observe that D1
p is the Dp defined in Section 4.2. For t ∈ N, let

Bt be the surface containing all points p ∈ [0, 1]d such that |D1
p | =

∏d
i=1 xi(p) = (2k)dt

n
. Bt

divides the unit hypercube into upper region L+
t , including (1, . . . , 1), and lower region L−t ,

including (0, . . . , 0). For t ≥ 0, let Lt = L+
t ∩ L−t+1 be the region between Bt and Bt+1.

We want to bound the probability that a point p ∈ Lt ∩ O−1 belongs to one of the first

k orthant layers. For a point p ∈ Lt ∩ O−1 and for any σ ∈ {+1,−1}d, we divide each

hyperrectangle Dσ
p into a uniform grid with (2k)d cells by dividing each side of Dσ

p into 2k

equal intervals. For all σ, starting from p to the opposite corner of Dσ
p , let Hσ

1 , H
σ
2 , . . . , H

σ
2k

be the grid cells on the diagonal in the same order. The argument in Section 4.2 shows that

Pr(S ∩ H−1i = ∅) < e−t/4 for all 1 ≤ i ≤ 2k. Because p ∈ O−1, we have |Hσ
i | ≥ |H−1i | for

all i and all σ. Thus, the probability for any diagonal cell to be empty is Pr(S ∩Hσ
i = ∅) ≤

Pr(S ∩ H−1i ) < e−t/4. For any fixed index 1 ≤ i ≤ 2k, among 2d all possible sign vectors,

the probability that there exists at least one σi such that S ∩Hσi
i = ∅ is less than 2de−t/4.

Therefore, E[X] < 2d+1ke−t/4, where X is the number of indices i such that S ∩Hσi
i = ∅ for

some sign vector σi. By Markov’s inequality, Pr(X ≥ k) < 2d+1e−t/4. Similar to the proof of

Lemma 3.9, if there exist k indices 1 ≤ i1 < i2 < · · · < ik ≤ 2k such that, for all 1 ≤ j ≤ k

and all σ ∈ {−1,+1}d, Hσ
ij
∩ S 6= ∅, then p is not on the kth orthant layer. Thus, for p to

be on the kth orthant layer, there have to be at least k indices 1 ≤ i′1 < i′2 < · · · < i′k ≤ 2k
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and sign vectors σ1, σ2, . . . , σk such that S ∩Hσj
i′j

= ∅ for all 1 ≤ j ≤ k. Therefore,

Pr(p ∈ OH(k)(S)|p ∈ Lt ∩O−1) ≤ Pr(X ≥ k) < 2d+1e−t/4.

Since Lt ∩O−1 ⊆ Lt, from the exact same calculation as in Section 4.2, |Lt ∩O−1| ≤ |Lt| =
O
(

(2k)dt logd−1(n/kd)
n

)
. We have

Pr(p ∈ OH(k)(S) ∧ p ∈ Lt ∩O−1) = Pr(p ∈ OH(k)(S)|p ∈ Lt ∩O−1)Pr(p ∈ Lt ∩O−1)

= O
((4k)dt logd−1(n/kd)

net/4

)
where k ≤ n is a fixed parameter. Thus, the expected number of points in Lt ∩ O−1 that

belong to the first k orthant layers is O
(

(4k)dt logd−1(n/kd)

et/4

)
. Again, since

∑∞
t=0

t
et/4
≤ c where

c is a positive constant, summing over all Lt, t ≥ 0, gives the expected number of points in

O−1 that belong to the first k orthant layers, which is O((4k)d logd−1(n/kd)), as claimed.
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Chapter 5

Conclusions

This thesis studies two well-known geometric structures in computational geometry: maximal

points and convex hull. Extending the concepts to multiple maximal and convex layers is

natural. There have been extensive works around the topic. For worst-case analysis, the

first maximal or convex layer can be computed optimally in [31], [4], [13], while all layers in

two and three dimensions can be extracted by [5], [7], [12]. The result in [5] even achieves

an in-place solution, which is optimal in space. For output sensitive analysis, multiple layers

can be computed in 2D by [35]. A short adversary argument shows that at least Ω(n log n)

comparisons are required to compute even the first layer. However, for certain distribution,

like the CI distribution, it is possible to use O(n) expected comparisons. Bentley et al. [3]

are the first to present algorithms to compute the first maximal and convex layer from CI

distribution in dn + o(n) and 2dn + o(n) expected scalar comparisons, respectively. The

result in [3] is also interesting in the aspect of optimizing the leading term of the number of

comparisons, which is an attractive field of its own with many papers, such as [42], [11] and

[16].

We are the first to present, in the first part of this thesis, algorithms to compute multiple

maximal and convex layers using near optimal expected number of scalar comparisons. The

final result is even lifted to high probability. The algorithms find a certificate to prune

most of the points. The certificate is chosen such that the remaining set is likely to contain

the first k layers. Therefore, it is cheap to extract multiple layers using known worst-case

algorithms. Although it is not hard to extend the algorithms in [3] to compute inner layers, it

is challenging to analyze the running time. Our analysis is based on an idea of diagonal-grid

building, which proves to be useful for other purposes; for example, we apply the same idea

to bound the size of the first k layers in the second half of the thesis.

The rest of the thesis studies the complexity of maximal and convex layers. Analyzing

complexities of geometric structures is interested by many researchers, as shown in [39], [40],

etc. The expected size of the first layer over an arbitrary CI distribution is proven to be
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O(logd−1 n) by [2]. Although we cannot extend the technique in [2] to bound any further

layer, we are inspired by the counting method to give a bound for a constant number of

maximal layers in 2D. With the help from an anonymous reviewer, we show that the first

k layers have expected size O(kd logd−1(n/kd)). To our surprise, the upper bound in this

part enables us to compute multiple convex layers in high dimensions when d ≥ 4. So far,

there is no expected linear-time algorithm to compute even the second convex layers when

d ≥ 4 because of the high convex-hull complexity. We are the first to compute a non-constant

number of convex layers in high probability using at most twice the optimal number of scalar

comparisons.

Several open problems arise from the thesis.

Open Problem 1. Either tighten the bound O(kd logd−1(n/kd)) on the expected size of the

first k maximal and convex layers or prove a matching lower bound.

Open Problem 2. The constant factor in the bound on the expected size of the first k convex

layers currently is 4d. From the nature of the relationship between maximal and convex layers

shown in this thesis, one would expect the factor to be 2d. Is it possible to achieve that?
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Appendix A

LazySelect for Elements Far From the Median

Our algorithm for CI distributions makes use of the following theorem, which we prove here.

Theorem A.1. For any t ∈ (0, 1) and any k < n1−t, the kth largest element in a set S of

n elements can be found using n + o(n) comparisons with probability 1 − o(n−nε), for any

constant ε ∈ (0, 1) and sufficiently large n. The expected number of comparisons is also

n + o(n). Furthermore, every element of S can be tagged as an element greater than, equal

to, or less than the kth largest element of S without incurring additional comparisons.

We simplify the LazySelect algorithm in [34] to prove Theorem A.1. Let m = o(n/ log n)

and 0 < α < 1 be parameters to be chosen later. We sample a set R of m elements from

S with replacement. Since m is small, we can sort R by any optimal worst-case sorting

algorithm using o(n) comparisons. Then, instead of picking two pivots as in [34], we only

set one, a = R[`], where ` = (1− α)m. By comparing every element in S to a and partition

S into two sets S< and S≥ containing the elements less than and greater than or equal to

a, respectively. This takes n comparisons. As we shall prove later, it is likely that the kth

largest element will fall in S≥ while |S≥| is relatively small. Precisely, we sort S≥ using o(n)

comparisons and select the (k − |S<|)th element x in S≥ if |S<| < n − k and |S≥| ≤ n
log2 n

.

Otherwise, we repeat this process until |S<| < n − k and |S≥| ≤ n
log2 n

. The tagging of

elements in S as being less than, or greater than or equal to x, the kth largest element of S,

required in Section 3.2 is easily accomplished without additional comparisons by tagging all

elements in S< and preceding x in S≥ as less than x and the remaining elements in S≥ as

greater than or equal to x.

By Lemma A.2 and A.3, the probability for either |S<| ≥ n − k or |S≥| > n
log2 n

to

happen is at most o(n−n
ε
). Thus, with high probability at least 1 − o(n−nε), the algorithm

will stop after the first iteration, which means that it only uses n + o(n) comparisons. The

expected number of iterations the algorithm executes is
∑∞

i=0

(
o(n−n

ε
)
)i

= 1+o(1). It follows

that the expected number of comparisons the algorithm performs is n + o(n). This proves

Theorem A.1. What left is the proof of Lemma A.2 and A.3.
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Lemma A.2. For any α > n−t and k < n1−t, Pr(|S<| ≥ n− k) <
(

e
αnt

)αm
.

Proof. Let x be the kth largest element in S and X be the number of elements in R greater

than x. If |S<| ≥ n − k, then x ∈ S< and thus x < a. Since a = R[(1 − α)m], x < a is

equivalent to X > αm. Therefore,

Pr(|S<| ≥ n− k) ≤ Pr(X > αm)

Because the probability for an element in S to be greater than x is (k − 1)/n and |R| = m,

we have:

E(X) =
k − 1

n
m <

k

n
m <

m

nt

if k < n1−t. By Chernoff bound,

Pr(X > (1 + δ)E(X)) <

(
eδ

(1 + δ)1+δ

)E(X)

≤
(

e

1 + δ

)(1+δ)E(X)

We choose δ = αnt − 1 > 0. Since E(X) < m
nt

,

Pr(|S<| ≥ n− k) ≤ Pr(X > αm) <
( e

αnt

)αm

Lemma A.3. For any α < 1
log2 n

, Pr(|S≥| > n
log2 n

) < e
−(1−α log2 n)2m

2 log2 n .

Proof. Let y be the ( n
log2 n

)th largest element in S and Y be the number of elements in R at

least y. If |S≥| > n
log2 n

, then y ∈ S≥ and y > a. Since a = R[(1− α)m], y > a is equivalent

to Y ≤ αm. Therefore,

Pr(|S≥| >
n

log2 n
) ≤ Pr(Y ≤ αm)

Because the probability for an element in S to be greater than y is ( 1
log2 n

) and |R| = m, we

have:

E(Y ) =
m

log2 n

Apply Chernoff bound with 1 > δ = 1− α log2 n > 0 for α < 1
log2 n

,

Pr(Y < (1− δ)E(Y )) < e
−δ2E(Y )

2

=⇒ Pr(|S≥| ≥
n

log2 n
) ≤ Pr(Y < αm) < e

−(1−α log2 n)2m

2 log2 n
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Choosing α = 1
2 log2 n

satisfies both conditions on α in Lemmas A.2 and A.3 for large

enough n and gives Pr(|S<| ≥ n − k) <
(

2e log2 n
nt

) m
2 log2 n

and Pr(|S≥| ≥ n
log2 n

) < e−m/8 log
2 n

because α = 1
2 log2 n

implies that (1 − α log2 n)2 = 1/4. Both bounds are minimized when

m is maximized, so we choose m = n
log2 n

. Since t > 0, nt

2e log2 n
> e for sufficiently large n,

we obtain that both Pr(|S<| ≥ n − k) < e−n/2 log
4 n = o(n−n

ε
) and Pr(|S≥| ≥ n

log2 n
) <

e−n/8 log
4 n = o(n−n

ε
), for any 0 < ε < 1. This finishes the proof of Theorem A.1.
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