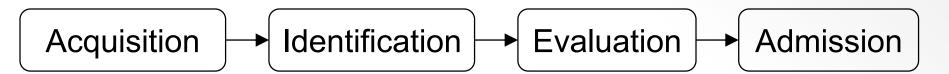
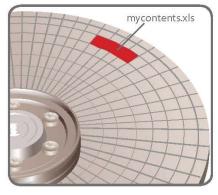
Managing privacy and access with digital forensics tools and techniques

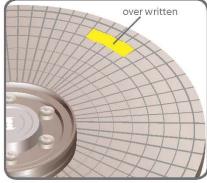
Creighton Barrett


Right to Know: Balancing Access and Privacy Symposium at Dalhousie University September 28, 2017

What is digital forensics?

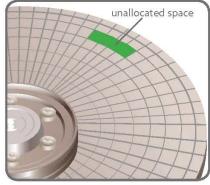
- Forensic science recovery and investigation of data found in digital storage devices
- Primarily used by specially trained professionals in criminal investigations, corporate investigations, etc.
- Archives are adopting digital forensics techniques to support acquisition, accessioning, appraisal, preservation, and <u>access</u>


Source: Infosec Institute, Digital Forensic Models (January 25, 2016): http://resources.infosecinstitute.com/digital-forensics-models/

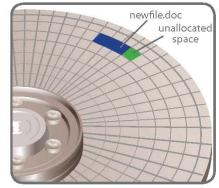

How are Deleted Files and Data Recovered?

Computers Don't Immediately Remove Data that is Deleted

Original Data



Data Wiped Clean or Shreaded


The data can be wiped clean or shreaded using privacy software.

Deleted Data

The original data is still present, but marked as unallocated space.

Partially Overwritten Data

Over time, some or all of the data can be over written. The remaining data can still be "carved" and reviewed.

What is unallocated space?

Unallocated Space is available disk space that is not allocated to any volume. The type of volume that you can create on unallocated space depends on the disk type. On basic disks, you can use unallocated space to create primary or extended partitions. On dynamic disks, you can use unallocated space to create dynamic volumes.

www.pinpointlabs.com

©2008 Pivotal Guidance

Preserve information about the operating system and file system

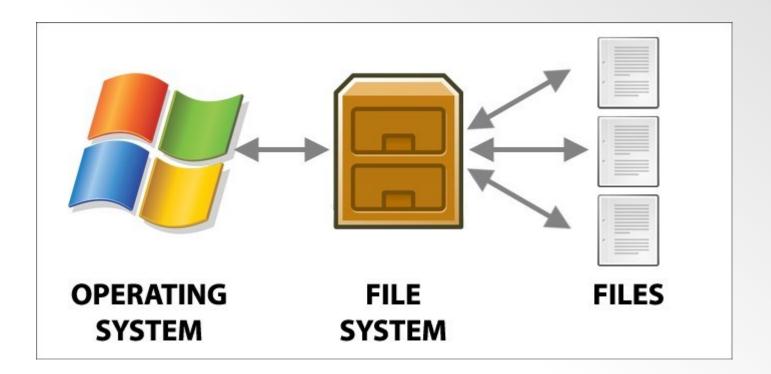


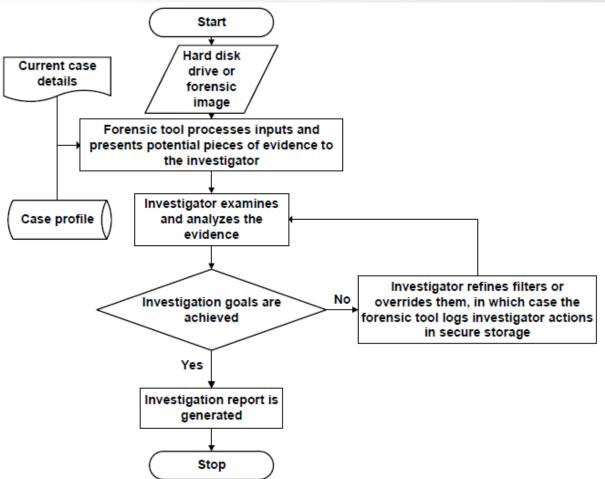
Image source: Power Data Recovery:

https://www.powerdatarecovery.com/hard-drive-recovery/volume-notcontain-recognized-file-system.html

Digital forensics concepts in context

Concept	Law enforcement	Libraries, archives, and museums
Chain of custody	Incident response, investigation	Acquire, appraise, and preserve data in accordance with accepted archival practice
Private data / personal information	Exploited for prosecution	Identified and redacted to protect privacy and comply with legislation
Storage	Secure storage of digital evidence	Long-term storage of digital objects in accordance with TDR standards
Access to information	Who is entitled to see the evidence?	Who is entitled to see the digital heritage collections?
Constraints	Time to trial	Collections backlogs

Adapted from: Kam Woods, Preservation, Privacy, and Access: Enhancing Digital Curation Workflows with Forensic Analysis (March 21, 2017): <u>http://wiki.bitcurator.net/downloads/kwoods-unc-digpres-v12.pdf</u>

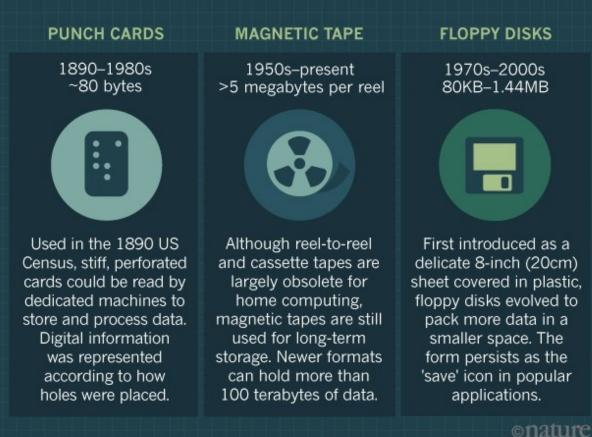

Privacy concerns in digital forensics

- Investigations reveal passwords, encryption keys, images, personally identifying information, etc.
- Scope of investigation
- Legal requirements

DALHOUSIE 1818 UNIVERSITY 2018

- Balance between protecting privacy and conducting complete investigations
- Lack of awareness or concern about privacy
- Lack of standardized ethical principles

Privacy solutions in digital forensics


Verma, Govindaraj, and Gupta. "Data privacy perceptions about digital forensic investigations in India." Published in *Advances in Digital Forensics XII*, edited by Gilbert Peterson and Sujeet Shenoi. Springer: 2016. https://link.springer.com/book/10.1007%2F978-3-319-46279-0

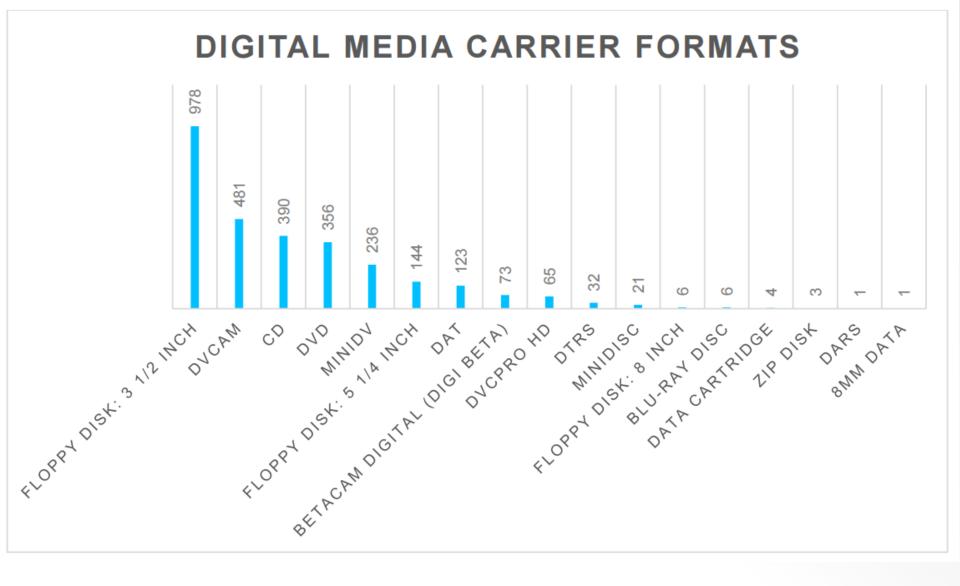
Why have a digital forensics lab in a library or archives setting?

OLD MEDIA

Researchers have stored data in dozens of formats over the years. Here are three former staples of computing that are rarely seen today.

Source: Baker, M. (2017, May 2). Disks back from the dead. *Nature, 545* (7652), 117– 118. <u>https://doi.org/1</u> 0.1038/545117a

How are archivists doing digital forensics work?


- Use write-blockers to create forensic images
- Adopt forensic software
- Incorporate digital forensics into workflows
- New policy decisions (e.g., preserve forensic image or extract files?)

	Drive/Image Verify Results			—		×	
Ξ						•	
	Name	201	6-015_extHDI	D_item2_co	py.001		
	Sector count	312	581808				
	MD5 Hash						
	Computed hash	dcf	dcf7e0b3c6e8992d33cb47490ed80a59				
	Report Hash	dcf	dcf7e0b3c6e8992d33cb47490ed80a59				
	Verify result	Mat	:ch				
	SHA1 Hash						
	Computed hash	cb5	cb5094eb2ebfca5c16462394bb66aaebd				
	Report Hash	cb5	cb5094eb2ebfca5c16462394bb66aaeb				
	Verify result	Mat	:ch				
	Dad Costor List					_	
Close							

Timeline at Dalhousie

- February 2016 Acquire forensic workstation
- May November 2016 Digital archives collection
 assessment project: http://hdl.handle.net/10222/72663
- January 2017 Install BitCurator and Forensic Toolkit (FTK) software
- February 2017 Advanced computer forensics training
- May 2017 Launch digital forensics lab
- April 2017 Dal's first time at BitCurator Users Forum

Policy, ethical, and legal questions for libraries and archives

- Recovery of deleted files if they appear to be archival?
- Decryption of EFS files? Other encryption methods?
- Use of Password Recovery Toolkit?
- Use of registry information, browser history, etc. to support archival appraisal?
- Modifications to standard deed of gift template?
- Monetary appraisal of born-digital archival material?

Privacy at Dalhousie

- FOIPOP Act
- Policy for the protection of personal information from access outside Canada (approved in 2007)
- Data classification schema (approved in 2013)
- LOTS of personal and confidential information in various locations
- Need to consider access requirements of the Archives Permanent Collection when policies are developed and updated

Dalhousie data classification schema

Level Number	Description
Highly sensitive	Information which may result in significant and substantial harm to the university or members of the university community, or which may violate legal or contractual requirements, if it were to be released
Sensitive	Information which could have a negative impact on the university or members of the university
Internal use	Information made available to faculty or staff of the university but not necessarily appropriate for the general public. (Directory listings, minutes from non- confidential meetings, internal websites, etc.)
Public use	Information that can be made generally available to the public.

Digital forensics tools

Device Side Data's FC 5025 USB floppy controller

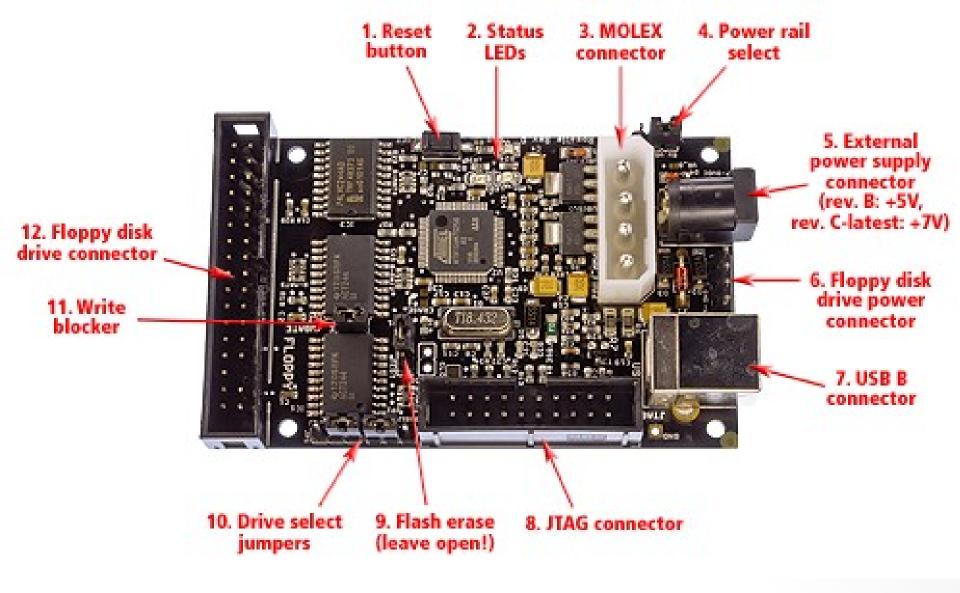
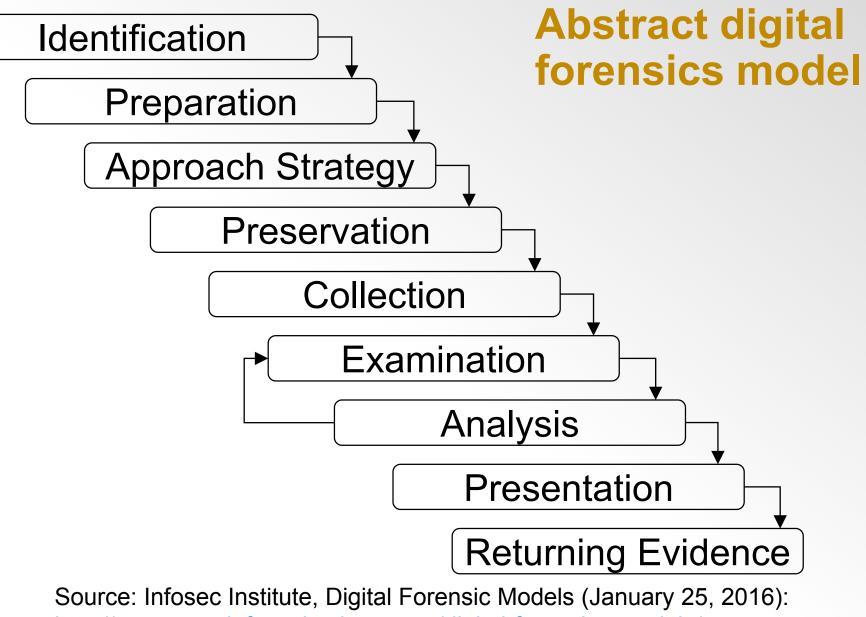


Image source: KryoFlux: <u>https://kryoflux.com/?page=kf_tech</u>

Managing privacy and access with digital forensics tools and techniques

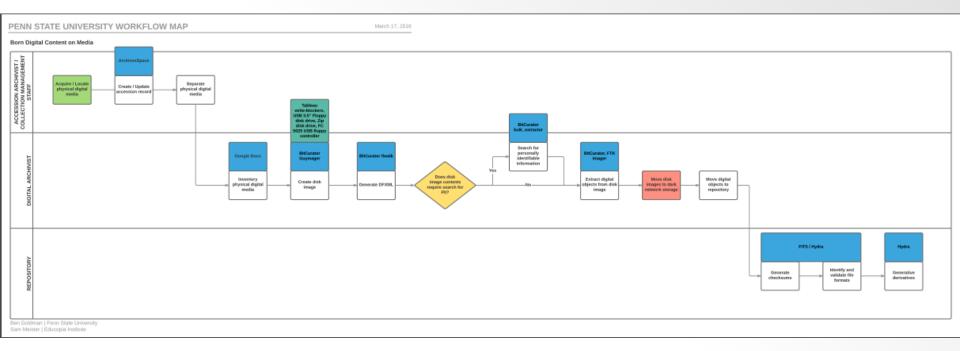
BitCuratør

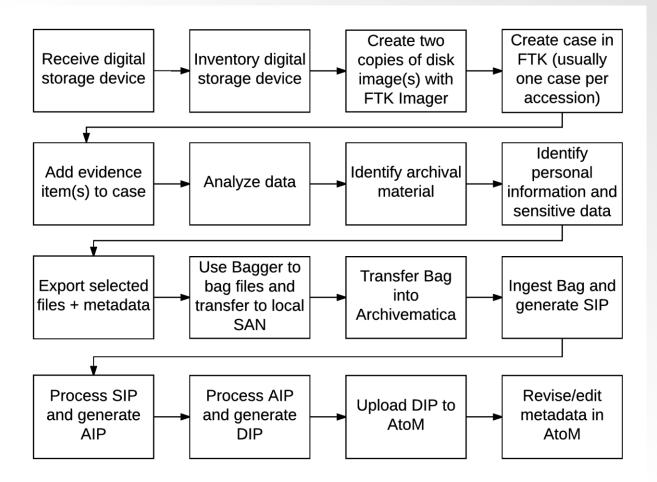
Forensic Toolkit (FTK)


Three components

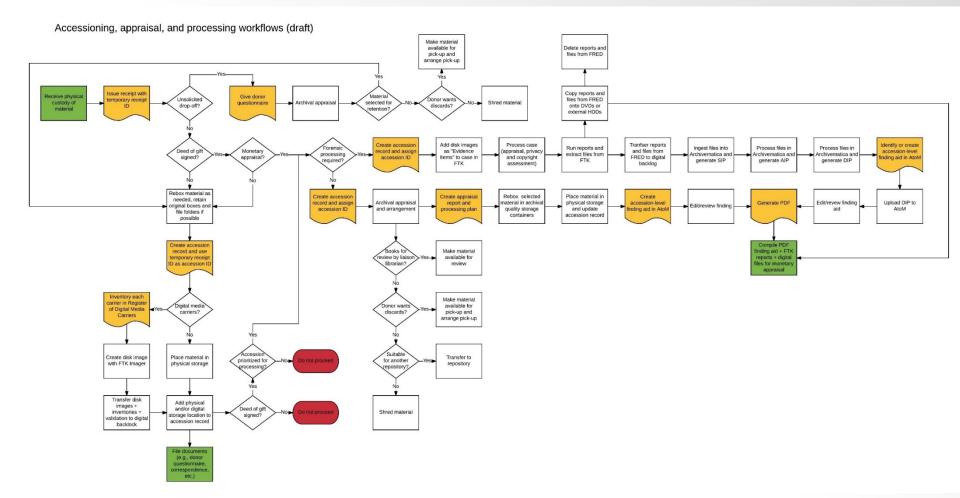
DALHOUSIE 1818 UNIVERSITY 2018

- Database (Oracle, PostgreSQL, Microsoft SQL)
- Graphical user interface (GUI)
- Known file filter server (contains datasets with hash values for known file types)
- Indexing, live search, regular expression
- Oracle "Outside In" technology for previewing most file types
- Integration with other AccessData products (Registry Viewer and Password Recovery Toolkit)


Digital forensics workflows


http://resources.infosecinstitute.com/digital-forensics-models/

Penn State University workflow



Dalhousie University workflow (draft)



Accessioning, appraisal, and processing workflow (draft)

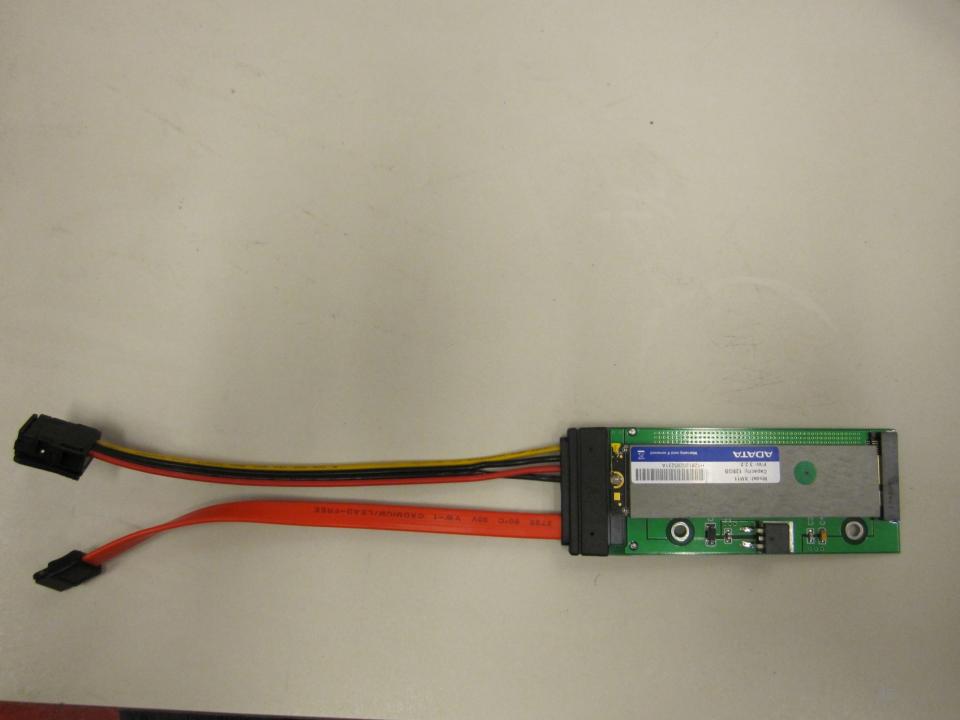
Identification of potentially sensitive information (BitCurator)

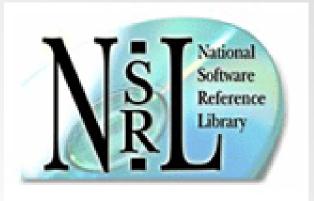
Bulk Extractor scanners – examples

Scanner name	Description
Wordlist	A list of all "words" extracted from a disk. Useful for password cracking or searching for specific terms.
Accounts	Credit card numbers, "track two" information, phone numbers, other formatted numbers. Useful for tracking how a device was used for business purposes.
Email	Discovers RFC822 email headers, HTTP cookies, hostnames, IP addresses, email addresses, and URLs. Useful for recreating email correspondence on a device.
Exif	Finds EXIF metadata in image and sound files.
Find	Returns the results of specific regular expressions.
vCard	Recovers vCards (standard electronic business cards).

BitCurator Access

	d/r	Filename	Size	Last Modified	Deleted?
k	r	SAttrDef	2560	2009-11-20T17:38:09Z	No
	r	\$BadClus	0	2009-11-20T17:38:09Z	No
	r	<u>\$Bitmap</u>	32320	2009-11-20T17:38:09Z	No
	r	\$Boot	8192	2009-11-20T17:38:09Z	No
	d	<u>SExtend</u>	552	2009-11-20T17:38:09Z	No
	r	<u>\$LogFile</u>	7405568	2009-11-20T17:38:09Z	No
	r	<u>\$MFT</u>	262144	2009-11-20T17:38:09Z	No
	r	<u>SMFTMirr</u>	4096	2009-11-20T17:38:09Z	No
	r	\$Secure	0	2009-11-20T17:38:09Z	No
	r	SI InCase	131072	2009-11-20112-38-002	No




FTK – Flag Duplicates

Additional Analysis Hashing / Job Options Indexing / Tools Miscellaneous	×
File Hashes Image: MD5 Hash Image: SHA-1 Hash Image: Files	PhotoDNA PhotoDNA
KFF KFF KFF Groups	Refinement Include OLE Streams: All
Fuzzy hash Match fuzzy hash Ibrary Recheck previously processed items Fuzzy hash options	
Target Items C Highlighted Items C Checked Items C Currently Listed Items (All Items	Job Options Send Email Alert on Job Completion
	OK Cancel

NSRL Reference Data Set (RDS)

- Hashsets and metadata used in file identification
- Data can be used in third-party digital forensics tools

- RDS is updated four times each year
- As of v2.55, RDS is partitioned into four divisions:
 - Modern applications created in or after 2000
 - Legacy applications created in or before 1999
 - Android Mobile apps for the Android OS
 - iOS Mobile apps for iOS

DALHOUSIE 1818 UNIVERSITY 2018

FTK – Known File Filter (KFF)

- KFF data hash values of known files that are compared against files in an FTK case
- KFF data can come from pre-configured libraries (e.g., NSRL RDS, DHS, ICE, etc.) or custom libraries
- FTK ships with version of NSRL RDS bifurcated into "Ignore" and "Alert" libraries
- KFF Server used to process KFF data against evidence in an FTK case
- KFF Import Utility used to import and index KFF data

FTK – Known File Filter (KFF)

Additional Analysis	×
Hashing / Job Options Indexing / Tools Miscellaneous	
File Hashes MD5 Hash SHA-256 Hash SHA-1 Hash Fuzzy hash Flag Duplicate Files	PhotoDNA PhotoDNA
KFF KFF Groups Recheck previously processed items	Refinement Indude OLE Streams: All
Fuzzy hash Match fuzzy hash Ibrary Recheck previously processed items Fuzzy hash options	
Target Items C Highlighted Items C Checked Items C Currently Listed Items (* All Items	Job Options Send Email Alert on Job Completion
	OK Cancel

Bill Freedman fonds filtered in FTK

Filter	Description	# of files	Size
Unfiltered	All files in case	26,651,084	3,568 GB
Primary status	Duplicate File indicator IS "Primary"	731,417	83.48 GB
Secondary status	Duplicate File indicator IS "Secondary"	16,569,218	271.5 GB
KFF Ignore	Match all files where KFF status IS "Ignore"	2,548,119	44.29 GB
No KFF Ignore	Match all files where KFF status IS NOT "Ignore" + KFF status IS "Not checked"	24,102,965	3524 GB
Primary status + No KFF Ignore	Match all files where duplicate file indicator IS "Primary" + KFF status IS NOT "Ignore"	626,351	71.95 GB
Actual files + Primary status + No KFF Ignore	Match all disk-bound files where duplicate file indicator IS "Primary" + KFF status IS NOT "Ignore"	103,412	61.81 GB

Research challenges and next steps

- Finish processing Bill Freedman fonds and preparing paper and electronic records for monetary appraisal
- Develop Privacy and Confidential Information Assessment Tool
- Finish Digital Forensics Lab manual
- Create forensic images of storage media identified during Digital Archives Collection Assessment
- Finish one thing...

