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Abstract

In this research work, models will be developed for optimal dispatch problems ap-

plied in a smart grid environment. The models will be used to solve optimal dispatch

problems and other problems such as: optimal power flow , unit commitment and

short term hydrothermal scheduling for a smart grid environment. The main objec-

tives of smart grid include the optimization of energy production, minimization of

the production cost, integration of renewable energy resources and implementation

of real time pricing and billing. Each problem will be effected by the objectives of

the smart grid and the tools used to implement these objectives such as demand side

management (DSM) and load forecasting. There are many constraints in the prob-

lems treated such as generators capacity, ramp rate limit, and prohibited operational

zones. This research will define the changes in all these constraints. There is also

the problem of valve point effects for thermal driven units which will change the fuel

cost equation of the generators, which categorizes it as non-smooth and non-convex

problem. The second objective of this work will be selecting a suitable algorithm or

algorithms to solve the problems with different constraints. The algorithms tested

are population based and are inspired by nature. A new heuristic optimization tech-

nique called Khums optimization algorithm is introduced and tested on some of the

problems treated.
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Chapter 1

Introduction

1.1 Motivation

In the conventional power network, the economic dispatch problem shown in Fig

(1.1) is to allocate the demand load at a specific time to the available generation

units with small integration of renewable energy usually considered as a negative

load. The generation should always match the load to maintain the frequency of the

system and also to satisfy customer needs.

There are no current means of two-way communication between the power pro-

ducing organization and consumers and it is difficult for the producers to control the

loads individually. The nature of the electrical load is effected by the development,

and in general it is increasing. In the past, the load increasing problem usually lead

to an expensive solution by installing new power plants.

New power network known as smart grid is proposed as a natural development of

the massive development in communication systems which facilitates smart decision

making [34]. Smart grid (SG) was introduced in [119] and although, there is no

standard definition of the smart grid, the European Technology Platform defines it

as: “an electrical network that can intelligently integrate the actions of all users

connected to it, generators, consumers and those that do both in order to efficiently

deliver sustainable, economic and secure electricity supplies” [63].

The main objectives of smart grids are implementation of real time pricing and

billing, integration of renewable resources in the network, integration of plugin hybrid

electrical vehicles (PHEVs) and electrical vehicles (EVs) with the management sys-

tem, optimization of energy production, reducing production costs and the greenhouse

gases emissions (GHGs) and finally insure the two-way information flow between the

utility and consumers. This power network allows the utility to accommodate con-

sumer load commands easily through the advanced metering infrastructure installed

in this network as shown in Fig (1.2).

1
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In power systems with appreciable renewable energy and incentivising consumer

driven load curtailment implementation of real time pricing are proposed as a smart

grid function.

The problem of load increasing at the peak hours can be solved in SG network by

controlling the consumption of the consumer (load side) and keeping the same power

generation capacity which saves a significant amount of costs.

Fig (1.2) shows also that there is considerable contribution of the renewable energy

resources in the SG, which requires developing a more realistic model. This model

should deals with the intermittent behavior of these type of energy sources.

Demand side management (DSM) is one of the tools proposed to achieve some of

the SG objectives [63]. DSM is the sum of all measures used by the utility to control

the user side load at peak times to insure the reliability and sustainability of power

generation and to save the large sums of money that will be used in building new

power plants.

The economic dispatch problem will be effected by the presence of DSM mea-

sures and the significant contribution of the renewable energy resources. In order

to address the problem, a mathematical model for the renewable energy resources

and a mathematical model for the demand side management load reduction for the

economic dispatch problem should be developed. In this thesis the renewable power

source under consideration are the wind turbine and the demand side management

measures under consideration. The DSM measures will be applied to reduce the load

at peak times.
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1.2 Thesis Objective

Solving the economic dispatch for smart grid network will allow other power system

operational problems because ED is a main part of these problems such as: optimal

power flow, unit commitment and the short term hydrothermal scheduling. The

objectives of this thesis are:

1. Develop a mathematical model for the economic dispatch problem for smart grid

that can account for the significant contribution of the renewable energy source

represented by the wind turbines and account for the application of demand

side management represented by the load reduction at peak load times.

2. Develop or select a mathematical cost model for the wind turbine units that

can deal with the intermittent nature and can be used to solve the economic

dispatch problem.

3. Develop mathematical cost models for the load reduction at peak times that

can be used to solve the economic dispatch problem.

4. Use the model for economic dispatch for the smart grid to solve the optimal

power flow [52], the unit commitment [75] and the short term hydrothermal

scheduling [36].

5. Develop new modern optimization algorithm to solve one or more of the four

problems and compare it with other algorithms in the literature.
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1.3 Thesis Contribution

The contributions of this thesis can be stated as follows:

1. Propose and test a new mathematical optimization algorithm known as the

Khums optimization algorithm.

2. Develop a mathematical model for the economic dispatch problem for smart

grid accounts for the significant contribution of wind energy and accounts for

the application of the load reduction at peak load times and use it to model

and solve the optimal power flow problem, the unit commitment problem and

the short term hydrothermal scheduling problem.

3. Propose, test and study mathematical cost models for the load reduction at

peak times that can be used to solve the economic dispatch problem. The

proposed models are the negative load cost model, the probabilistic cost model

based on Normal Distribution, probabilistic cost model based on Exponential

Distribution and probabilistic cost model based on Weibull Distribution.

4. Study the different cost model proposed in literature for the wind turbine and

select the probabilistic model based on the result obtained to deal with the

intermittent nature of the wind turbine.
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Figure 1.1: Economic dispatch problem for conventional power
network

Figure 1.2: New economic dispatch problem for Smart Grid
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1.4 Thesis Outline

This thesis is organized to eleven chapters and three appendices as follows:

Chapter 1 This chapter includes the motivation, the objectives of the thesis, the

major contributions and the thesis outline.

Chapter 2 This chapter contains literature reviews for the power system operation

problems considered in this thesis starting by the economic dispatch problem,

then the unit commitment problem, the hydrothermal scheduling and the opti-

mal power flow problem.

Chapter 3 This chapter will cover the mathematical modeling of economic dispatch

problem for smart grid network with different constraint and taking account for

both the wind energy significant contribution and load reduction at peak load

times.

Chapter 4 This chapter briefly review the modern optimization algorithms used

in this thesis to study the developed or selected model for the different com-

ponents such as the wind turbine and the load reduction model and solve the

power system operation problems. These algorithms include the Black hole

optimization algorithm, the Biogeography based optimization algorithm, the

Differential evolution algorithm and the Genetic algorithm.

Chapter 5 This chapter covers a new optimization algorithm known as the Khums

optimization algorithm.

Chapter 6 This chapter covers the study of the two proposed cost model for the

wind turbine in literature, compare them and solve the economic dispatch prob-

lem incorporating wind energy.

Chapter 7 This chapter covers the development of four mathematical cost model

for the load reduction at peak load and compare the solution of the problem

using the negative load model and the probabilistic model based on Normal

distribution.
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Chapter 8 Unit commitment for smart grid is formulated in this chapter and solved

for four units benchmark test system and ten units benchmark test system

with different constraints and including both the wind turbines and the load

reduction at peak loads.

Chapter 9 Hydrothermal scheduling for smart grid is formulated in this chapter

and solved for two different benchmark test system with different constraints

and including both wind turbines and the load reduction at peak loads.

Chapter 10 Optimal power flow for smart grid is formulated in this chapter and

solved for IEEE 30 bus benchmark test system with different constraints and

including both wind turbines and the load reduction at peak loads.

Chapter 11 This chapter includes the conclusion and the suggestion for future

work.

Appendix A This appendix covers the mathematical proof of wind turbine prob-

abilistic cost model based on Weibull Distribution.

Appendix B This appendix covers the mathematical proof of load reduction prob-

abilistic cost model based on normal Distribution, exponential Distribution and

Weibull Distribution.

Appendix C This appendix contains the data of most of the benchmark test sys-

tems used in this thesis.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, a literature review will be made for the four power system operation

problems under consideration in this thesis and they include the economic dispatch,

the unit commitment, the short term hydrothermal scheduling and the optimal power

flow problems.

2.2 Economic Dispatch

Economic dispatch (ED) is finding the minimum cost of generating electrical energy

while satisfying the load demand and the system constraints. There are many con-

straints such as generators capacity, ramp rate limits, prohibited operation zones

[8].

A modern generation unit has input-output characteristics which are highly non-

linear because of the valve point effect and ramp rate limits and discontinuities due

to prohibited operational zones[7].

Methods proposed for solving the ED problem can be classified like most engi-

neering problems into deterministic methods and stochastic methods[135].

Deterministic methods such as lambda iteration method, gradient methods, base

point, and participation factors method as mentioned in [124] assume that the cost

curve is continuous and monotonically increasing (convex and smooth objective). This

assumption may lead to unfeasible solutions or may lead to suboptimal solution which

means that the conventional methods fails in solving such problems with non-smooth

and non-convex objectives.

Dynamic programming proposed also to solve the economic dispatch problem [124]

and it dose not impose any restriction on the objective function or the constrains but

it suffers from the curse of dimensionality.

8
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Stochastic optimization algorithms proposed for solving the economic dispatch

are metaheuristic optimization algorithms which either population based like genetic

algorithm and biogeography based optimization algorithm or trajectory based like

the simulating annealing and evolutionary strategy[135].

Metaheuristic optimization algorithms propose a feasible solution to the prob-

lem because they impose no restriction on the nature of the objective functions or

constraints. They also provide fast, easy and optimal or near optimal solution.

The drawbacks of using the meta-heuristic algorithms are the lack of theoretical

basis which make it not clear for some readers, different search may lead to different

solutions, and Optimal solution is not guaranteed.

Simulated Annealing was proposed to solve the economic dispatch to overcome

the conventional methods drawbacks in [125]. The algorithm is powerful and can find

the optimal and near optimal solution. On the other hand the algorithm is slow.

Genetic algorithm was proposed to solve the economic dispatch with two phases

to improve the performance of the algorithm and to obtain better solutions [80]. The

algorithm was also proposed to solve the economic dispatch with valve point effect

considered in [120]. Then it was proposed to solve the economic dispatch in large

scale systems [19] because it is faster and more robust compare with lambda iter-

ation. The problem was solved for a system with ramp rate limits and prohibited

operation zones. The main disadvantage of using genetic algorithm lies in the pre-

mature convergence which may lead to local optima in dealing with highly correlated

optimization parameters or in other words highly epistatic objective functions [40].

Evolutionary programming (EP) was proposed to solve the non-smooth fuel cost

function economic dispatch problem because it can overcome the GA algorithm con-

vergence problem and SA high processing time problem [133]. EP proposed to solve

the environmentally constrained economic dispatch problem and solution acceleration

techniques is proposed and used to enhance the speed and robustness of the algorithm

[121]. To enhance the performance of the EP algorithm in solving the economic dis-

patch problem with non-convex cost curve, two modification were proposed to the

adaptation bases in [103].

The Particle Swarm Optimization (PSO) algorithm was proposed to solve the

economic dispatch problem with prohibited operation zones and ramp rate limits
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constraints and the valve point effect is considered in the fuel cost functions in [40].

The main difficult problem in using the particle swarm optimization is the process of

choosing the inertia weight factor and the acceleration constants coefficients because

the non proper selection may lead to unfeasible solutions [70].

Differential Evolution (DE) was proposed to solve the economic dispatch problem

with valve point effects, fuel switching and prohibited operating zones because it

is an extremely powerful and simple evolutionary algorithm with great convergence

characteristics and requires few control parameters [87]. It was also proposed to solve

the economic environmental dispatch problem considering emissions as constraints

and as a second objective function of a multiobjective optimization problem [86].

Artificial neural networks were proposed to find the real time optimal dispatch of

thermal power plant units considering the operation requirements and the network

power losses [24]. The disadvantage of the neural network applied in economic dis-

patch problem is that it may fail to converge to an equilibrium point. To overcome

this problem a modified Hopfield network was proposed to solve the economic dis-

patch problem where the internal parameters of the Hopfield network are calculated

in a way guarantee the convergence to an equilibrium point [22].

Biogeography based optimization algorithm was proposed to solve the convex and

non-convex economic dispatch problem with ramp rate limit, prohibited operation

zones, power losses, valve point effect and multi-fuel option. This algorithm is easy

to implement and has good convergence performance compare to other evolutionary

algorithms in solving economic dispatch problem [9, 76]. But like other algorithms it

cannot guarantee the optimal solution where it can get the optimal or near optimal

solution. Based on the no free lunch theorems, there is no best universal algorithm

for all optimization algorithms, which encourages the researcher to find the best

optimization algorithm for a specific optimization problem.

In order to improve the performance of evolutionary algorithms, hybrid algorithms

were proposed to solve the economic dispatch problem.Two hybrid algorithms GGA

and GAA2 based on genetic algorithm and simulated annealing were proposed to

solve the environmental economic dispatch problem [118]. A DE/BBO algorithm

proposed to improve the solution quality and the convergence speed [8]. BBO/ES

hybrid algorithm proposed to solve the economic dispatch problem where equality
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and inequality constraints, transmission losses and valve point effect were considered

[91].

2.3 Unit Commitment

The unit commitment (UC) problem is defined as: finding the minimum cost schedule

of a set of generators by turning each one either ON or OFF over a given time horizon

to meet the demand load and satisfy different operational constraints [98].

Three components are associated with the total unit commitment cost and they

are: the operation cost, start up cost, and shut down cost. There are many constraints

in the unit commitment problem such as spinning reserve, minimum uptime, minimum

downtime, crew, must run and fuel constraints [129]. The problem is a nonlinear, large

scale, mixed integer combinatorial optimization problem with constrains.

Several methods were proposed to solve the unit commitment problem. Conven-

tional methods such as exhaustive enumeration, Priority List, Mixed integer program-

ming, Dynamic Programming, Branch-Bound, Interior Point optimization, decompo-

sition technique and Lagrangian Relaxation were used to solve the UC problem.

Exhaustive enumeration will evaluate all possible combination of ON and OFF

schedule of the problem which forNg generation units and T period equal to (2Ng−1)T .
For a small system consisting of four generation units, scheduled for 24 hours and

using a supercomputer that do forty thousand trillion operation per second, it will

take around 13345.155 years to complete all the possible combinations. Hence, it is

not suitable for solving the UC problem because of the curse of dimensionality[129].

Priority list is fast and simple method for solving the UC problem and there are no

curse of dimensionality in it, but it is highly heuristic and usually achieves schedules

with relatively high operating cost [129].

Dynamic Programming (DP) [129] can reduce the number of possible combinations

of the ON and OFF schedule in UC problem by eliminating the non feasible solutions.

DP can handle the different constraints of unit commitment problem but it suffer from

the curse of dimensionality for large systems.

Branch-and-bound techniques proposed to solve the unit commitment problem

with startup costs, demand constraint, reserve constraint, minimum up constraint
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and minimum down time constraint. This method does not require a priority or-

dering of the units like the priority list method [21]. The applications using this

method are limited to small sized systems because the computation time will increase

exponentially with the size of UC problem.

Interior Point optimization/ cutting plane methods have good convergence char-

acteristics and the parameter tuning is not a critical issue compared to sub-gradient

and bundle methods [74].

Mixed Integer programming guarantees convergence to the optimal solution in a

finite number of steps while providing a feasible and accurate modeling framework

[15]. This method was applied to small systems and the approximation done limit

the solution space.

Lagrange Relaxation (LR) is the most realistic and efficient method for large scale

systems [140, 20]. The drawbacks of LR method is that the convergence to a feasible

solution after a limited number of iterations is not guaranteed and it is inherently

sub optimal.

Metaheuristic algorithms were proposed as solution methods to the unit commit-

ment problem to cover the shortcomings of the classical methods and search for the

optimal solution. These methods are inspired by nature and they include: Expert

Systems [79], Simulated Annealing (SA) [102], Artificial Neural Networks [97], Ge-

netic Algorithm (GA) [114], Ant Colony Search Algorithm (ACSA) [132, 110], Tabu

Search (TS) method [140] and Biogeography Based Optimization (BBO) [75]. These

algorithms do not impose any restriction on the nature of the objective function or

constraints but do not guarantee the global optimal solution all the time because they

may converge to near optimal solution.

The expert system method is mainly used for search and optimization because

it reduces the complexity in calculation and reduces computation time. The main

problem in this method arises if a new schedule is different from schedule in the

database.

Simulated Annealing was proposed to solve the UC problem to overcome the

conventional algorithms weakness that may converges to global optimum solution.

The drawback of the SA is it may converge to a local optimal solution if the annealing

scheduling is not selected carefully and It will take much time to reach the solution.
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Artificial Neural networks method can accommodate more complicated constraints

and the solution convergence is rapid and has a good quality. The main disadvantage

of the artificial neural networks is the computation time which increases exponentially

with size of the problem [1].

Genetic Algorithm is a general purpose stochastic and parallel search method

based on the mechanics of natural selection and natural genetics. GA is mainly used

for search and optimization and one of the frequently algorithm applied for solving

the unit commitment problem. This algorithm has the potential of obtaining near

optimal global solution, obtain accurate result within short time and the constraints

are included easily.

Ant Colony Search Algorithm (ACSA) algorithm is a powerful tool to solve opti-

mization problems in power systems such as economic dispatch and unit commitment

inspired by the ants behavior in finding the shortest bath between the nets and the

food source. ACSA is successfully applied to solve the unit commitment in [110].

An improved ACSA which use artificial ants with memory and not completely blind

and to insure solution optimality, the state transition, global updating rule and local

updating rule were introduce[132]. The improve d algorithm produce lower cost but

with higher execution time compared with the conventional ACSA. Also as the agent

number increase the cost decrease and the execution time increase [132].

Tabu search algorithm is an iterative improvement procedure that uses a short

term memory of recent solutions to escape from local optima to a better near global

or global solution. The main disadvantages of the Tabu search algorithm are the long

processing time and the possibility of trapping on a local optima is significant [1].

Biogeography Based Optimization (BBO) is a global evolutionary optimization

algorithm such as GA and Particle Swarm optimization (PSO) algorithms which is

inspired by the study of distribution of species in Habitats. BBO is simple in concept,

fast and easy to implement in solving the unit commitment problem compared with

other evolutionary algorithms, but like other algorithms it cannot grantee the optimal

solution where it can get the optimal or near optimal solution [75].
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2.4 Hydrothermal Scheduling

The hydrothermal scheduling (HTS) problem is finding the optimal power alloca-

tion of the load among the available thermal unit and hydro units for a period of

time and the objective is to minimize the thermal units total fuel cost. There are

many constraints in the HTS problem such as real power balance, thermal generation

unit power limit constraints and hydro generation unit power limit constraint, water

discharge rate, spillage discharge rate, starting storage volume and ending storage

volume [124].

Various classical methods such as Lagrange relaxation and dynamic programming

were used to solve the HT problem. First order gradient methods were used for

long-term and short-term hydrothermal scheduling of multi storage hydroelectric and

multi thermal systems[2]. Direct method which treats constraints as subspaces and

the solution is automatically restricted within the limiting subspaces was used to solve

the long-term and short-term hydrothermal scheduling problems [96].

Multi pass dynamic programming (MPDP) technique with successive approxima-

tions is used to solve the daily hydrothermal scheduling problem [57]. The combi-

nation is used to reduce the long computation time and the large storage memory

requirement. Extended differential dynamic programming and mixed coordination

was used to solve short-term scheduling of hydrothermal scheduling [115]. The varia-

tional feedback nature of the control strategy is used to handle unpredictable changes

in natural inflow. Mixed-integer is used to solve the short term hydrothermal schedul-

ing problem [84]. The main problem of the dynamic programing is the curse of di-

mensionality [124, 126].

The Lagrangian relaxation technique was presented to solve the short term hy-

drothermal scheduling problem with cascaded reservoirs and discrete hydro con-

straints in [45]. Dual problem formulation based Lagrange relaxation method pre-

sented to solve the short term hydrothermal scheduling problem [94]. Lagrangian

multipliers correction procedure called optimal distance method is used short-term

hydro-thermal coordination procedures based on the Lagrangian relaxation technique

[93]. Lagrange relaxation techniques overcome the dimensionality problem for large

network but they required special measures to get a feasible solution if the objective

function is not convex and the algorithm iterative process may oscillate [18].
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Modern algorithms were used to solve the HT problem because they are easy to

implement and can handle the nonlinear or non-convex objectives or constraint and

they can find the optimal or near optimal solutions .

The Simulated Annealing algorithm was proposed to solve short term hydrother-

mal scheduling because it overcome the drawback of Lagrange relaxation and dynamic

programming [126]. Coarse grained parallel simulated annealing algorithm proposed

to modify the speed of the algorithm [127]. The weakness of the SA algorithm lies

on the annealing scheduling were it should be selected carefully or the obtained so-

lution will lies on the local optimal solution and if the annealing scheduling was well

selected, it will cost a lot of computation time.

Evolutionary Programming (EP) algorithm [134] was proposed to overcome the

drawback of simulation annealing in solve the short-term hydrothermal scheduling

problem.

Genetic Algorithm was also proposed to overcome the drawback of the conven-

tional method and the drawback of the simulating annealing algorithm in solving the

short term hydrothermal scheduling problem [85, 130, 44].

Evolution Strategies were used to solve the short-term hydrothermal scheduling

[123]. Decomposition is not required in this algorithm like the previous algorithm

were the evolutionary algorithm is used to optimize the hydroelectric subsystem and

the conventional method to solve the thermal system like in [85].

The Hopfield Neural Networks were proposed to overcome the problem of long

time required to solve the hydrothermal scheduling problem by other methods [72].

Heuristic rule is used to deal with the situations were some of the practical constraints

was violated. A two-phase neural network based optimization method were proposed

to solved short-term scheduling of a hydrothermal power system and does not required

a heuristic rule and has the ability to generate feasible solutions[81].

The Bacterial Foraging Algorithm was used to solve the HT problem as [35, 36,

37]. A new modification was proposed to solve the poor convergence properties and

high execution time requirements problems in the algorithm specially in dynamic

environment and high dimension search space.
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The Particle Swarm Optimization Algorithm was proposed to solve the HTS prob-

lem [136] because the PSO algorithm is easy to implement and have a high compu-

tational efficiency. The algorithm required high population size and high generation

in order to get a reasonable solution which will cost a lot of computation time. A

small population-based particle swarm optimization approach proposed to solve the

problem of high computation time in short-term hydrothermal scheduling by using a

small population size[138]. Time varying acceleration coefficient based particle swarm

optimization with constriction factor and inertia weight approach was applied to de-

termine the optimal hourly schedule of power generation in a hydrothermal power

system [23].

The Imperialistic Competition Algorithm based optimization technique was pre-

sented for solving the short-term economic emission dispatch problem in a hydrother-

mal system with cascaded reservoirs [68].

The Teaching Learning Based Optimization techniques was applied to solve short-

term scheduling of a hydrothermal power system with cascaded reservoirs and the

delay of water transport between the cascaded reservoirs are also taken in to consid-

eration [89].

The Grey Wolf Optimization Algorithm was used to solve short-term hydro-

thermal scheduling problems which provide enough diversity for finding better so-

lutions [113].

Searching for better convergence and less execution time, the Symbiotic Organ-

isms Search algorithm was proposed to solve the short-term hydrothermal generation

scheduling in [59].
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2.5 Optimal Power Flow

Optimal power flow (OPF) is one of the most important optimization problems in

power system operation and control that has been studied widely in the past few

decades. The main objective used in the OPF problem is to reduce the generation cost

with or without reducing the system losses subjected to different equality constraints

such as full AC power flow, DC power flow and steady state security. The problem is

also subject to inequality constraints such as active/reactive power generation limits,

bus voltage limits and control limits.

As an optimization problem, OPF is classified as nonlinear and non-convex opti-

mization problem as result of the process of selecting both the objective function and

system constraints. It is also a large scale optimization problem because of the large

number of variables dealt with even in small systems.

Variables in this problem are classified as state and control variables. State vari-

ables are continuous and include the bus voltage magnitude, the bus voltage phase

angle, the bus injected active and the reactive power. The control variables are a mix

of continuous variable and discrete variables. The control variables include the gener-

ation voltage magnitude, the generation active power, the generation reactive power

and the setting of network control devices such as the transformers tap changers and

switching devices.

Many classical optimization algorithms were proposed as methods of solution to

the OPF problem since the introduction of the problem by Carpentier in 1962[14]

such as gradient methods[26, 5, 38, 31, 13, 88], Newton methods[112, 56], sequen-

tial linear programing[4], sequential quadratic programing[12, 16] and interior point

methods[117]. All these methods assume that the objective function is continuous

and monotonically increasing and linearize both the objective function and the sys-

tem constraints around the selected operating point. But, the OPF problem is highly

nonlinear and non-convex optimization problem which means that it has more than

one optimal solution. Furthermore, modern generation units have input-output char-

acteristics which are highly nonlinear because of the valve point effect and ramp rate

limits and discontinuous due to prohibited operation zones. Hence, using the clas-

sical methods with the new units may lead to infeasible solutions or may lead to

suboptimal solutions.
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Evolutionary algorithms (EA) were used frequently in the engineering optimiza-

tion methods to overcome the weakness of the conventional methods in finding the

global optimal solution while satisfying the different constraints. EA are metaheuristic

optimization algorithms which is usually inspired by nature. They are also derivative

free and dynamic robust algorithms. These algorithms can be applied to any problem

that can be formulated as an optimization problem.

Genetic Algorithm (GA)[55], Particle Swarm optimization algorithm (PSO)[29,

62], Evolutionary Programming (EP)[39], Differential Evolution (DE)[108], Ant Colony

Optimization (ACO)[27], and Biogeography Based Optimization (BBO)[100] are ex-

ample of metaheuristic optimization algorithm.

GA is the most widely used and the oldest metaheuristic algorithm and it is relies

on natural selection for solving optimization problems[101]. GA is a population based

optimization algorithm which apply basically to main operation for generating the

new solutions which is: crossover and mutation. The offspring solution generated after

the two operation will replace the old population. Lai et al.[69] presents an improved

genetic algorithm to solve the OPF problem using a dynamical hierarchy of the coding

system which has the ability to code a large number of control variables in a practical

system. Zhang et al.[137] used an integer/float mixed coding GA for optimizing the

power system reactive power. Real coded GA is easier and straightforward and it is

utilized to solve the OPF problem in recent papers[109, 41].

PSO is a population based algorithm which is inspired by swarm intelligence

of animals such as birds and fish schooling. Kim et al.[66] used straightforward

parallelization of PSO algorithm to overcome higher computing time to find optimal

point. Hajian-Hoseinabadi et al.[46] used a modified particle swarm optimization

algorithm for solving the OPF problems. The main distinction of this approach is

in using particles worth experience instead of the best previous experience. Zhang

and Liu [139] utilize the PSO method to deal with the reactive power optimization

problem in power system.

Evolutionary programming is population based algorithm proposed by Lawrance

Fogel [39] based on finite state machine. Wong and Yuryevich [128] applied evolution-

ary programming for solving the optimal power flow problem with highly non-linear



19

generator input output cost curves. Tangpatiphan and Yokoyama [116] applied an im-

proved Evolutionary Programming algorithm for the OPF with steady state voltage

stability which utilize the crossover techniques from real coded genetic algorithm.

Differential evolution is a simple population based algorithm which create the new

candidate solutions basically from adding a scaled amount of the difference between

two or more vectors in the population to a third vector [101]. Liang et al.[71] propose

a modified DE algorithm to overcome the disadvantage of premature convergence

generated from not using a large population in solving optimal reactive power flow

problems. Abou El Ela et al. [32] utilize the DE algorithm to solve the optimal power

flow problem.

Ant colony optimization is a population based algorithm inspired by the ants food

searching. Kalil et al. [60] apply the ACO algorithm to solve the optimal reactive

power in order to improve voltage stability, transmission loss and voltage profile

monitoring. Gasbaoui and Allaoua [42] utilize the ACO algorithm for solving the

OPF combinatorial problem.

Biogeography based optimization (BBO) is population based algorithm which

simulate the process of how species migrate between islands, how new species arise,

and become extinct [100]. Bhattacharya and Chattopadhyay[10] employ the BBO

algorithm to solve OPF problems with generators that have both convex or non-

convex fuel cost characteristics. Roy et al. [92] present the BBO algorithm for

solving the OPF considering generators valve point effect.

The Harmony Search (HS) algorithm proposed in [43] is relies on musical processes

in concept. Khazali and Kalantar[65] ues HS algorithm to solve the optimal reactive

power dispatch with power transmission loss, voltage stability and voltage profile as

separate objective functions. Sivasubramani and Swarup [105] apply the HS algorithm

for optimal power flow (OPF) problem as a multi-objective optimization problem

with generation fuel cost, power transmission loss and voltage stability index as three

objective functions.



Chapter 3

Economic Dispatch Problem for Smart Grid

3.1 Introduction

Economic dispatch (ED) is finding the minimum cost of generating electrical en-

ergy while satisfying the load demand and the system constraints.In power systems

with appreciable renewable energy and incentivising consumer driven load curtail-

ment, implementation of real time pricing is proposed as a smart grid function. In

smart grid network, the economic dispatch problem will be affected by the presence of

demand side managements (DSM) measures due to the advanced metering infrastruc-

ture installed in this network, and the significant contribution of the renewable energy

resources. This chapter proposes the formulation of economic dispatch problem for

smart grid network, and define the different equality and inequality constraints.

3.2 Smart Grid Economic Dispatch Mathematical Formulation

Smart grid is shown in Fig(3.1) where renewable energy contribution is significant

and there are means of two-way communication between the utility and the con-

sumer through the smart meters installed in the network which ease the process of

DSM measures. In this work the renewable power source under consideration is the

wind turbine and the demand side management measures under consideration are

the changing of the loads shape measures by load management programs. The DSM

measures will be applied to reduce the load at peak times. Hence, the ED problem

at smart grid defined as the allocation of the load demand on the available genera-

tion units (thermal and wind) and choose the cheapest area or consumers to apply

DSM measures (load reduction) while satisfying the unit constraints and the system

constraints. The general formulation of the ED optimization problem can be stated

as follows:

20
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Figure 3.1: Effect of DSM on the economic dispatch problem for
Smart Grid
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min J (3.1)

J = FC +Wcost + LRcost (3.2)

Where J is the objective function, FC is the total fuel cost of thermal generation

units, Wcost is the total cost of wind power generation and LRcost is the total cost of

load reduction. Wcost model and LRcost model will be discussed in chapter (6) and

(7) respectively.

FC =
Nx
∑

i=1

ai P
2
i + bi Pi + ci (3.3)

Where FC is the total fuel cost of generators, Nx is the number of generator units,

Pi is the output power of generation unit i, ai, bi and ci are the fuel cost coefficients.

The fuel cost equation considering the valve point effect is given by:

FC =
Nx
∑

i=1

ai P
2
i + bi Pi + ci +

∣

∣ei sin(fi (P
min
i − Pi))

∣

∣ (3.4)

Where ei, fi are the fuel cost coefficients and Pmin
i is the minimum active output

power of the ith generating unit.

3.3 Equality Constraints

3.3.1 Real Power Balance Constraint

Equation (3.5) represents the equality constraint in the problem, where the PD rep-

resent the total load demand and PL is the power losses.

Nx
∑

i=1

Pi +
Nw
∑

j=1

wj +

Nd
∑

k=1

Lk = PD + PL (3.5)

PL =
Nt
∑

h=1

Nt
∑

m=1

Ph Bhm Pm +Bh0 Ph +B00 (3.6)

Where wj available wind power for the jth wind turbine, Lk is the available load

reduction from area k and Nd is the total number of load reduction areas. Nt =

Nx +Nw, Bhm, Bh0 and B00 are the Power loss coefficients.
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3.4 Inequality Constraints

3.4.1 Generator Power Limit Constraint

Generation units are restricted by their limits in term of generation active power as

follows:

Pmin
i ≤ Pi ≤ Pmax

i i = 1, 2 · · · , Nx (3.7)

Where Pmin
i and Pmax

i , are the minimum active output power, maximum active out-

put power of the ith generating unit respectively.

3.4.2 Ramp Rate Limit Constraint

Pi now − Pi new ≤ DRi

Pi new − Pi now ≤ URi

(3.8)

Where DRi is the down ramp limit of the ith generator and URi is the up ramp

limit of the ith generator.

3.4.3 Prohibited Operating Zone Constraint

Pmin
i ≤ Pi ≤ P l

i,1

P u
i,1 ≤ Pi ≤ P l

i,2

P u
i,2 ≤ Pi ≤ P l

i,3

...

P u
i,jx
≤ Pi ≤ Pmax

i

i = 1, 2 · · · , Nx

jx = 1, 2 · · · ,mi

(3.9)

where P l
i,jx

, P u
i,jx

are the lower and upper bound of the jthx prohibited zone of the

ith generation unit respectively, and mi is the total number of prohibited operating

zones of the ith generation unit.

3.4.4 Wind Turbine Power Limit Constraint

0 ≤ wj ≤ wr
j j = 1, 2 · · · , Nw (3.10)
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Here wr
j , is the rated active power output of the jth wind turbine unit and Nw is

the total number of wind turbine units.

3.4.5 Load Reduction Power Limit Constraint

Lmin
k ≤ Lk ≤ Lmax

k k = 1, 2 · · · , Nd (3.11)

Here Lmin
k and Lmax

k , are the minimum active power reduction, maximum active power

reduction of the kth area respectively.

3.5 Summary

In this chapter, a formulation of economic dispatch problem for smart grid network

is proposed, and the different equality and inequality constraints was defined. The

objective function and the constraints were modified based on the significant contri-

bution of both wind energy and load reduction. The cost models will be discussed in

detail in chapter (6) for wind turbine and chapter (7) for load reduction.



Chapter 4

Metaheuristic Optimization Algorithms

4.1 Population Based Modern Optimization Algorithm

Metaheuristic optimization algorithms are usually population based algorithms where

we start with some random candidate solutions to solve the optimization problem.

Some algorithms like the evolutionary strategy algorithm and the simulating an-

nealing algorithm require only one single candidate solution, whereas most of the

algorithms require a group of candidate solutions like the genetic algorithms and the

particle swarm optimization algorithm. The pseudo code of the population based

metaheuristic algorithms is shown in (1). This chapter introduce the metaheuristic

optimization algorithms that have been used in this thesis to solve the power system

operation problems and these algorithms are: black hole algorithm, biogeography

based optimization, differential Evolution and genetic algorithm.

Algorithm 1 Metaheuristic Algorithm

1: Initialization

2: Generate a random set of solutions

3: Calculate the fitness of each habitat

4: Save the Optimal solution

5: while not (termination criterion) do

6: Execute the Algorithm

7: Calculate the fitness of each habitat

8: Save the Optimal solution

9: end while

10: return

25
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4.2 Black Hole Algorithm

The black hole algorithm (BH) is a population based algorithm inspired by the black

hole phenomenon[53] and has common features with other population based algo-

rithms such as genetic algorithm(GA), particle swarm optimization(PSO), differential

evolution (DE), etc. A candidate solution in the BH algorithm is represented by a

star and the best candidate solution is selected to be a black hole. Two operations

in the proposed algorithm are used to evolve the population toward the optimality:

star absorption and star sucking.

4.2.1 Star Absorption

It is the operation of moving the stars towards the black hole under the black hole

absorbing force and in the optimization method it is equivalent to recombination

in other evolutionary algorithms. For example crossover in GA, crossover in DE,

migration in BBO, etc. Star absorption can be formulated as follows:

X t+1
i = X t

i + r (XBH −X t
i ) (4.1)

where X t+1
i and X t

i are the location ith star (candidate solution) at iteration t and

t+ 1 respectively, XBH is the location of the black hole(best candidate solution) and

r is random number in the interval [0,1].

4.2.2 Star Sucking

During the moving operation of stars toward the black hole, there is a probability

of crossing the event horizon which is the point of no return. If a star (candidate

solution) crosses the event horizon it will be sucked by the black hole (best solution)

and the new solution will be generated in order to keep a constant number of candidate

solutions. The radius of the event horizon in the BH algorithm calculated as follows:

R =
fBH
∑N

i=1 fi
(4.2)

where fBH is the fitness value of the black hole, fi is the fitness value of the ith

star and N is the number of stars. If the distance between the candidate solution
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and the best solution is less than R, that candidate solution will be replaced by new

solution. The pseudo code for the BH algorithm is shown in Algorithm (2).

Algorithm 2 Black Hole Algorithm

1: Initialize a random population of stars ( Xi and i ∈ [1, N ] and Xi = [x1i · · · xmi])

2: Calculate the fitness of each star

3: XBH ← Optimal solution

4: while not (termination criterion) do

5: for each star Xi and i ∈ [1, N ] do

6: X t+1
i ← X t

i + r (XBH −X t
i )

7: end for

8: R← fBH∑N
i=1 fi

9: for each individual Xi and i ∈ [1, N ] do

10: Di ←
√

(x1BH − x1i)2 + · · · (xmBH − xmi)2

11: if Di < R then

12: Xi ← Randomly generated individual

13: end if

14: end for

15: Calculate the fitness of each star

16: XBH ← Optimal solution

17: end while

18: return
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4.3 Biogeography Based Optimization

Biogeography based optimization (BBO) method is a population based algorithm

proposed by Simon in [100]. BBO is inspired by the study of distribution of species

in Habitats. The mathematical model was developed by MacArthur and Edward

Wilson as pointed in [100]. In BBO Islands represent a feasible candidate solution.

The solutions will be ranked using two variables: immigration rate λ (bad) and

emigration µ (good) rate. The fitness is defined in BBO as the habitat suitability

index (HIS) and there are two main operations in this algorithm: migration and

mutation. The pseudo code for the BH algorithm is shown in Algorithm (3).

Algorithm 3 BBO Algorithm

1: Initialize the BBO parameters

2: Generate a random set of habitats( Ii and i ∈ [1, N ])

3: Calculate the fitness (HSI) of each habitat

4: Calculate and map µ and λ

5: IBest ← Optimal solution

6: while not (termination criterion) do

7: Migration process

8: Mutation process

9: Fitness, µ and λ Calculation and mapping

10: IBest ← Optimal solution

11: end while

12: return

4.3.1 Migration

Migration is the process of probabilistically sharing information between habitats

using the λ and µ rates. We modify each solution based on other solutions by first

randomly selecting an island to be modified (poor island) using the immigration rate λ

(bad). After that using the emigration rate µ (good) we select a source of modification

(good island). Then we randomly select a feature from the good island to modify the

poor island.
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4.3.2 Mutation

A rarely severely destructive events can extremely change the HSI of a habitat and

can cause the species count to deviate from its equilibrium point [100]. In mutation

a randomly new candidate solution will be generated to replace the old one using the

selected mutation rate.
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4.4 Differential Evolution

Differential evolution (DE) is a population based optimization algorithm introduced

by Ken Price and Rainer Storn[106]. The motivation of the algorithm was a result of

developing a solution to the Chebyshev polynomial coefficients and the optimization

of digital filter coefficients. This algorithm uses three operations to generate new

candidate solutions: mutation, crossover and selection [111]. The pseudo code for the

DE method shown in Algorithm (4).

4.4.1 Mutation

In the mutation process a new candidate solution is created by modifying a randomly

selected solution as shown generally in the Equation (4.3):

vi =

{

xr1 + F × (xr2 − xr3) r < pf

xr1 +
(F+1)

2
× (xr2 − xr1 + xr3 − xr1) r ≥ pf

(4.3)

Where F is the step size parameter, pf is the mutation rate, ri is random integer

and xri is the candidate solution in the population which has a position ri.

4.4.2 Crossover

In the crossover process the old and new solutions generated in mutation are merged

as shown in (4.4) to generate new population.

ui =

{

vi r < co

xi r ≥ co
(4.4)

Where co is the crossover probability.

4.4.3 Selection

The selection process is done by implementing (4.5) which chooses between the parents

and the children based on the fitness function.

xi =

{

ui f(ui) < f(xi)

xi f(ui) ≥ f(xi)
(4.5)
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Algorithm 4 Differential Evolution

1: Initialize the DE parameters{F, pf, co}
2: Generate a random set of individual( xi, v

0
i i ∈ [1, N ])

3: Calculate the fitness of each individual

4: while not (termination criterion) do

5: for each individual xi and i ∈ [1, N ] do

6: r1 ← random integer ∈ [1, N ]

7: r2 ← random integer ∈ [1, N ] and r2 6= r1

8: r3 ← random integer ∈ [1, N ] r3 6= r2 6= r1

9: r ← random number

10: if r < pf then

11: vi ← xr1 + F × (xr2 − xr3)

12: else

13: vi ← xr1 +
(F+1)

2
× (xr2 − xr1 + xr3 − xr1)

14: end if

15: r ← random number

16: if r < co then

17: ui ← vi

18: else

19: ui ← xi

20: end if

21: Calculate the fitness of ui

22: if f(ui) < f(xi) then

23: xi ← ui

24: end if

25: end for

26: end while

27: return
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4.5 Genetic Algorithm

GA is a population based optimization algorithm proposed by John Holland [135]

which is inspired by the biological evolution based on theory of natural selection of

Darwin. This algorithm uses three operations to generate a new candidate solution:

reproduction, crossover and mutation [90]. The pseudo code for the GA method

shown in Algorithm (5).

4.5.1 Reproduction

In this process the mating pool is generated from the good solutions from the popu-

lation. This process uses the roulette wheel selection or other methods to choose the

best parents to generate a new child through the crossover and mutation process.

4.5.2 Crossover

This process will decide how much of genetic information will be shared between

the parents and offspring using one of the methods such as: single point crossover,

multiple point crossover, uniform crossover or other methods. The crossover process is

done randomly based on the crossover probability pc which is usually selected between

[0.7, 1].

4.5.3 Mutation

In GA the mutation process is simply done for each member of the population gen-

erated after the crossover process. If the member has n bits and the probability of

mutation is pm, then we flip the zero to one and vice versa randomly based on pm.
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Algorithm 5 GA Algorithm

1: Initialize the GA parameters

2: Generate a random set of individual( xi and i ∈ [1, N ])

3: Calculate the fitness of each individual

4: while not (termination criterion) do

5: Reproduction process

6: for each individual xi and i ∈ [1, N ] do

7: if r < pc then

8: Crossover process

9: end if

10: end for

11: for each individual xi and i ∈ [1, N ] do

12: if r < pm then

13: Mutation process

14: end if

15: end for

16: Calculate the fitness of each individual

17: end while

18: return
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4.6 Summary

In this chapter, black hole algorithm, biogeography based optimization, differential

Evolution and genetic algorithm were introduced. All these algorithms are popula-

tion based. The main processes were explained and the pseudo codes were presented.

These algorithms will be used to solve the power system operations under considera-

tion in this thesis.



Chapter 5

Khums Optimization Algorithm (KOA)

5.1 Introduction

In Islamic tradition, Khums and Zakat are religious taxes paid by believers to the

Islamic government and are required religious obligations. These taxes help the needy

in the Islamic nation. Khums is the 20% tax paid generally on income and other earn-

ings depending on the Islamic group tradition. Like charity on all the world, helping

the poor people will help society to become safer, stable and create a better future

for all individuals by reducing the gap between the rich and poor [95]. This is similar

to the Christian tithing tradition which is one tenth of annual produce or earnings,

formerly taken as a tax for the support of the church and clergy. Next sections will

cover the Khums optimization algorithm, then the KOA algorithm main operations:

collection and distributions and finally, the KOA simulation results compared with

other algorithms.

5.2 Khums Optimization Algorithm

There are two processes in Khums: collection and distribution. In collection believers

will pay the 20% of their profit with certain conditions based on the Islamic group

and in distribution the money will be distributed among the different eligible Khums

receivers like the orphans, poor and wayfarers which also based on the Islamic group.

In the Khums optimization algorithm (KOA), each solution is considered as a Khums

paying person. The solutions are ranked based on the earnings each person have and

this is decided based on the objective function. High income people are considered

as good solution and poor profit or no profit persons are considered as poor solution

which required a help and support from the community. In KOA in order to generally

simulate the process, there are two operations: collection and distribution. In the

collection process the 20% will be taken from all the solution based on the profit they
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gain where higher profit persons will pay more than the poor or nonprofit persons.

The distribution process here will be based on the earnings where the poor solution

will get more help from the Khums money. The pseudo code for the KOA optimization

method is shown in Algorithm (6).

5.2.1 Collection Process

In this process, the rich individuals (good solutions) who must pay the 20% tax from

their earnings were identified and ranked based on their profit. By cutting this tax

from the good solutions we create new solutions as shown in (5.1).

Xnew
i = Xold

i (1−Kr R(i)) (5.1)

R(i) =
N − i

N
(5.2)

Where Xnew
i is the new solution generated after the collection process, Xold

i is

the old solution, Kr is the Khums tax rate and R(i) is rate between 0 and 1 define

the best (R = 1) and the poor solution(R = 0) in a population where the solution

is sorted from the best to the worst. The pseudo code for the collection process is

shown in Algorithm (7).

5.2.2 Distribution Process

In this step the poor solutions are identified and classified based on their needs where

the larger in need will get more support. By supporting these individuals, new solu-

tions will be created as shown in (5.3).

Xnew
i = Xold

i +Xm Kr P (i) (5.3)

P (i) = 1−R(i) (5.4)

Where m is a random integer between 0 and the number of population, P (i) is

rate between 0 and 1 define the rich (P = 0) and the poor solution(P = 1) in a

population where the solution is sorted from the best to the worst. The function of R

and P is not the only way of representing these variables and it could be any function
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that serve the same purpose. The pseudo code for the distribution process is shown

in Algorithm (8).

Algorithm 6 KOA Algorithm

1: Initialize the KOA parameters

2: Generate a random set of individual( xi and i ∈ [1, N ])

3: Calculate the fitness of each individual

4: Calculate the R and P of each individual

5: xbest ← Optimal solution

6: while not (termination criterion) do

7: Collection process

8: xi ← xi ∪ xbest

9: xbest ← Optimal solution

10: Distribution Process

11: xi ← xi ∪ xbest

12: xbest ← Optimal solution

13: end while

14: return

Algorithm 7 Collection process

1: for each individual xi and i ∈ [1, N ] do

2: Xnew
i = Xold

i (1−Kr R(i))

3: Calculate the fitness of each individual

4: Mapping R and P of each Xi

5: end for

6: return

5.3 Simulation Results

To explore the performance of the algorithm, it was first applied on 14 benchmark

from the literature and compare the performance with other methods. Then the

KOA algorithm was applied to solve an engineering problem and the result was com-

pared with other algorithms in literature. The code used in the first part is from
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Algorithm 8 Distribution Process

1: for each individual xi and i ∈ [1, N ] do

2: m← random integer ∈ [1, N ]

3: Xnew
i = Xold

i +Xm Kr P (i)

4: Calculate the fitness of each individual

5: Mapping R and P of each Xi

6: end for

7: return

http://academic.csuohio.edu/simond/bbo/ and the only modification was adding the

KOA algorithm.

5.3.1 Benchmark Test

Fourteen common benchmark functions and eight population based optimization algo-

rithms were used to test the performance of the KOA algorithm. The algorithms are:

ant colony optimization (ACO) [28], biogeography-based optimization (BBO) [100],

differential evolution (DE) [107], evolutionary strategy (ES) [101, 6], genetic algo-

rithm (GA) [135, 101, 6], probability-based incremental learning (PBIL) [99], particle

swarm optimization (PSO) [135, 101] , stud genetic algorithm (StudGA) [101, 30].

The evolutionary algorithms parameters can be found in [100]. In KOA, the Khums

tax rate Kr is chosen to be 0.2 based on Table 5.1, where the performance and the

CPU time present a compromise solution. For all algorithms, The population size is

50, the elitism parameter is 2 and the number of generation is 50. Table 5.2 represents

the normalized mean minimum optimization results of the benchmark functions for

100 monte carlo simulation where 1 represents the minimum value. The performance

of the KOA algorithm was the best in solving all the benchmark except the Fletcher

benchmark function and the Rastrigin benchmark function. Table 5.3 presents the

normalized best minimum optimization results of the benchmark functions for for

100 Monte Carlo simulation. In this table also the KOA algorithm outperform the

other algorithms in all benchmark except the Fletcher benchmark function and the

Rastrigin benchmark function. The mean CPU time of the algorithms shows that

the PIBL algorithm is the best in term of speed and that the KOA is the third in the
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rank.

Table 5.1: Normalized mean minimum optimization results of the benchmark func-
tions for the koa optimization algorithm with different Kr for 100 monte carlo simu-
lation

KOA0.1 KOA0.2 KOA0.25 KOA0.6

Ackley 2 1 1 6
Fletcher 1 1 1 1
Griewank 3 1 1 90
Penalty1 16 1 1 9.15E+07
Penalty2 11 1 4 4.07E+07
Quartic 203 1 5 4.27E+05
Rastrigin 1 1 1 2
Rosenbrock 2 1 1 13
Schwefel 7 2 1 2
Schwefel2 11 1 1 819
Schwefel3 5 1 1 32
Schwefel4 3 1 1 22
Sphere 16 1 2 547
Step 15 1 2 573

Mean CPU 1.14 1.12 1.17 1.00

Table 5.2: Normalized mean minimum optimization results of the benchmark func-
tions for the koa and other algorithm for 100 monte carlo simulation of each algorithm

ACO BBO DE ES GA KOA PBIL PSO StudGA
Ackley 6 3 5 7 6 1 8 6 3
Fletcher 10 1 4 10 4 13 9 8 1
Griewank 11 8 18 90 36 1 196 71 7
Penalty1 7.63E+08 3.68E+05 2.61E+06 3.68E+08 4.81E+06 1 8.28E+08 5.76E+07 999
Penalty2 2.45E+08 4.22E+05 3.63E+06 1.55E+08 5.85E+06 1 3.15E+08 4.06E+07 3.40E+04
Quartic 9.09E+04 8412 3.69E+04 1.18E+06 7.94E+04 1 1.43E+06 2.58E+05 3770
Rastrigin 4 1 4 6 4 2 6 5 1
Rosenbrock 92 5 13 113 23 1 94 27 6
Schwefel 2 1 5 6 2 1 7 7 1
Schwefel2 477 273 642 745 505 1 754 513 413
Schwefel3 20 3 9 33 15 1 25 19 4
Schwefel4 22 23 27 34 29 1 36 28 19
Sphere 587 46 117 1255 422 1 1285 452 46
Step 101 43 107 735 228 1 1253 433 37
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Table 5.3: Normalized best minimum optimization results of the benchmark functions
for the koa and other algorithm for 100 monte carlo simulation of each algorithm

ACO BBO DE ES GA KOA PBIL PSO StudGA
Ackley 5 3 5 8 6 1 9 7 3
Fletcher 19 1 7 23 4 16 18 16 1
Griewank 5 4 10 58 10 1 148 50 3
Penalty1 27 135 1.07E+04 4.54E+07 184 1 6.60E+08 4.90E+06 42
Penalty2 3 32 3.81E+05 6.65E+07 6.56E+04 1 1.20E+08 8.98E+06 29
Quartic 3.90E+04 2727 4.43E+04 2.17E+06 1.63E+04 1 9.99E+05 2.16E+05 318
Rastrigin 6 1 5 9 5 2 9 7 1
Rosenbrock 41 2 7 70 7 1 54 13 3
Schwefel 223 85 778 869 125 1 1229 926 70
Schwefel2 326 203 482 754 305 1 1018 617 386
Schwefel3 30 2 13 42 14 1 49 22 4
Schwefel4 22 20 33 45 22 1 42 27 14
Sphere 622 37 114 1924 225 1 1556 467 28
Step 66 24 93 847 83 1 1582 498 24

Mean CPU 3.44 2.06 2.95 2.12 2.43 2.10 1.00 3.29 2.43

5.3.2 Economic Dispatch Solution

The general procedure to solve the economic dispatch problem using any metaheuris-

tic algorithm is shown in Procedure (3).

Procedure 1: Economic Dispatch Solution

1. Initialize the algorithm parameters (population size, no of generations,

no of iteration, mutation rate, cross over rate, khums rate).

2. Generate a set of feasible solutions where each solution consist of output

power generation for each unit that satisfy the different economic dispatch

constraints required in the problem.

3. Calculate the objective function.

4. Save the best solution.

5. Apply the algorithm operations on the set of the solutions.

6. Check the feasibility of the generated solutions and repeat steps (3-4).

7. Repeat steps (5-6) until the termination criterion is achieved.
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5.3.3 ED Problem with Valve Point Effect

Two test system were used to test the efficiency and performance of the KOA al-

gorithm in comparison with other algorithms in the literature. Three and Thirteen

generating units with quadratic cost function, and the effects of valve-point loading is

considered. The unit characteristics cost coefficients, and generators operating limits

are shown in Appendix (C.1.2) and Appendix (C.1.4). The result shown is a result

of Monte Carlo simulation of 100 iteration for both system. For the three genera-

tion system the population and generation are 100. The best minimum cost equal

to 8234.09 $/h and the mean minimum cost equal to 8244.4407 $/h. In the case of

the thirteen generation system the population was 300 and the generation was 100.

The best minimum cost equal to 17965.8138 $/h and the mean minimum cost equal

to 17974.5619 $/h. In both cases the KOA algorithm succeed in solving the problem

with small percentage difference than the best solution less than or equal to 0.011%.

This work has been reported in [51].

Table 5.4: Optimal results for three machine system with valve point effect

Algorithm KOA GA[82] BBO[77] SOS[82]
P1 300.24 300 300.2829 300.27
P2 149.7725 150 149.7377 400
P3 400 400 399.9794 149.73
PD 850 850 850 850

Total Cost ($/h) 8234.09 8234.6 8234.0777 8234.07
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Table 5.5: Optimal results for thirteen machine system with valve point effect

Algorithm KOA BBO[78] FAPSO-NM[83] PSO[17]
P1 627.41 627.4094 628.32 538.561
P2 223.99 223.9911 222.75 299.355
P3 149.42 149.4163 149.6 75.037
P4 109.78 60 109.87 159.734
P5 109.83 109.7842 109.87 60.078
P6 109.85 109.8296 109.87 109.864
P7 109.86 109.8499 109.87 109.913
P8 60.00 109.8591 60 159.753
P9 109.86 109.8632 109.87 60.069
P10 40.00 40 40 40.035
P11 40.00 40 40 77.561
P12 55.00 55 55 55.042
P13 55.00 55 55 55
PD 1800 1800.0028 1800.02 1800.002

Total Cost $/h 17965.814 17965.8098 17963.84 18014.16
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5.4 Conclusion

In this chapter, a new optimization algorithm called Khums optimization algorithm

is introduced. KOA has two operations to search for optimal solution, collection and

distribution. In collection, new solution will be generated from cutting the tax from

the solutions based on their profit and in distribution, the generated solution will be

as result from distributing these tax among the poor solutions. The algorithm was

applied to solve 14 benchmark from the literature and compare the performance with

other methods. Then the KOA algorithm is applied to solve the economic dispatch

with valve point effect for two systems. The results show that the new algorithm can

be applied to solve practical optimization problems. Although, KOA has a better

performance on solving the benchmark systems but we can not conclude that it is

better than other algorithms based on the no free lunch theorem. Three interesting

modification can be studied in the future. The first modification is about the khums

tax rate where it is assumed in this work to be constant 20%. The khums rate can

be random but within this range and a comparison between the performance of the

algorithm based on these two tax rates observed. The second modification is in the

way of ranking the good solutions and poor solutions. Other methods can be used to

study the effects on the performance of the algorithms. Finally, the last modification

can be done by adding the effects of death of tax payers and the effect of joining new

tax payers which is similar to mutation process in other algorithms which may effect

the performance of the algorithm and need to be studied as future work.



Chapter 6

Wind Turbine Cost Model

6.1 Introduction

Among the renewable energy (RE) sources, wind energy is one popular and most used

in the modern power system network. Like other RE sources wind energy suffers from

intermittency and uncertainty of availability but with a higher rate [61]. Integrating

such a RE source in the power system increases the complexity of the economic

dispatch problem and finding a suitable wind turbine cost model becomes important

to achieving reliable and efficient optimal solution [61].

Many algorithms were proposed to deal with the intermittent behavior of the

wind turbines because of the impacts of merging significant wind power capacity on

conventional generation, reserve levels and emissions as shown in [25].

The conventional approach models the intermittent resources as negative load

[122]. Model Predictive Control proposed in [131] is used for dispatching the available

generation with the objective of minimizing the total production cost.

A probabilistic model for the wind turbine output based on the Weibull proba-

bility density function is used in [54], which accounts for both overestimation and

underestimation of available wind power. The probabilistic method used to model

and solve the economic dispatch problem with random wind power constraint using

a penalty function and interior point method [141].

This chapter will cover both wind turbine cost models, the negative load model

and the probabilistic model based on weibull distribution. It is assumed that the

anticipated (forecast) wind power output is available in the studies of this thesis.
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6.2 Wind Turbine Cost Model as a Negative Load

In this model all the forecast wind power will be used to calculate the new load by

subtracting the wind power from the total load as done in [122]. There will be no

dispatching for the wind power with other power generator to decide the optimal

power allocation among all of them. Wind turbine cost model as a negative load in

the economic dispatch problem is shown in (6.1).

WCost =
Nw
∑

m=1

dm wsc
m (6.1)

where WCost is the total wind power generation cost for Nw units, wsc
m is the scheduled

wind power for the mth wind turbine, dm is the cost coefficients and usually called

direct cost coefficient.

6.3 Wind Turbine Cost Model as a Probabilistic Model

In this model the wind turbine is treated as a normal power generation units with

a cost function modeled using the Weibull distribution and the objective function

will be to minimize the total cost of both the thermal generation units and the wind

turbine units. The total wind cost WCost is consists of the sum of three components:

direct cost, underestimate cost and overestimate cost as shown in (6.2).

WCost =
Nw
∑

m=1

Cdm + Cpm + Crm (6.2)

where WCost is the total cost of wind power, Nw is the number of wind turbines,

Cdm is direct cost for wind turbine m, Cpm is underestimate cost for wind turbine m

and Crm is overestimate cost for wind turbine m. A detailed total wind power cost is

shown in (6.3), which show that there are two components depends on the expected

value of exceeding or not exceeding the scheduled value. In both cases there will be

a cost to be paid, hence there will be an effect on the total cost. A more detailed

expression is shown in (6.3).

WCost =
Nw
∑

m=1

dm wsc
m + kpm Eue

m + krm Eoe
m (6.3)
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where wsc
m is the scheduled wind power for the mth wind turbine, wm available

wind power for the mth wind turbine, Eue
m is the expected value of wm > wsc

m for the

mth wind turbine, Eoe
m is the expected value of wm < wsc

m for the mth wind turbine,

dm, kpm and krm are the direct, penalty, and reserve cost coefficients for the mth wind

turbine respectively. A detailed proof of the model is found in [73] and in Appendix

A. The underestimation and overestimation expected values are shown in (6.4) and

(6.5) respectively.

(6.4)
Eue

m = (wr − wsc
m) (e

−(Vr
c
)k − e−(Vo

c
)k) + (wsc

m +
wr

h
) (e−(Vr

c
)k − e−(

V sc
m
c

)k)

+
wr c

Vin h
[Γ(1 +

1

k
, (
V sc
m

c
)k)− Γ(1 +

1

k
, (
Vr

c
)k)]

(6.5)
Eoe

m = wsc
m (1− e−(

V sc
m
c

)k + e−(Vo
c
)k) +

wr

h
(e−(

Vin
c

)k − e−(
V sc
m
c

)k)

− wr c

Vin h
[Γ(1 +

1

k
, (
Vin

c
)k)− Γ(1 +

1

k
, (
V sc
m

c
)k)]

where wr is the wind turbine rated power, Vr is the wind turbine rated speed, Vin

is the wind turbine cut in speed, Vo is the wind turbine cut out speed, c is the scale

factor of the Weibull distribution, k is the shape factor of the Weibull distribution,

and h = Vr

Vin
− 1.

In order to study the effect of the shape factor k and scale factor c on the per-

formance of the model, a plot of the overestimate expected power, underestimate

expected power and total wind cost at different scale factor and shape factor is shown

in Fig(6.1) to Fig(6.6). The wind turbine model parameters are shown in Appendix

(C.1.5).

The scale factor c usually proportional to mean wind speed and it is proportional

to wind generated power. It is observed in Fig(6.1) as c increase the overestimate

expected power will decrease which means that the probability that the overestima-

tion forecasting error decrease at higher forecast power and this will decrease the

overestimation cost.

The situation is opposite in Fig(6.2), where Eue increase with the increase in c at

low forecast power which indicate that as c increase the probability of underestimate

forecast power increase.
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Since, at low forecast power the underestimate expected power is higher than the

overestimate expected power and at high forecast power the situation is opposite, the

total wind forecast will follow the underestimate cost at low forecast power and follow

the overestimate expected power at high forecast power as shown in Fig(6.3).

The change in the shape factor k did not show significant difference in the over-

estimate expected power or the underestimate expected power or the total wind cost

as shown in the Fig(6.4) to Fig(6.6).

Figure 6.1: Wind turbine model overestimate expected power for different scale factor
(c)
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Figure 6.2: Wind turbine model underestimate expected power for different scale
factor (c)

Figure 6.3: Wind turbine model total cost (WCost) for different scale factor (c)
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Figure 6.4: Wind turbine model overestimate expected power for different shape
factor (k)

Figure 6.5: Wind turbine model underestimate expected power for different shape
factor (k)
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Figure 6.6: Wind turbine model total cost (WCost) for different shape factor (k)
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6.3.1 Economic Dispatch Solution Incorporating Wind Energy

The general procedure to solve the economic dispatch problem incorporating wind

energy using any metaheuristic algorithm is shown in Procedure (2).

Procedure 2: Economic Dispatch Solution

1. Initialize the algorithm parameters (population size, no of generations,

no of iteration, mutation rate, cross over rate, khums rate).

2. Generate a set of feasible solutions where each solution consist of output

power generation for each thermal unit and the wind power which gener-

ated randomly based on the forecast. The solutions satisfy the different

economic dispatch constraints required in the problem.

3. The direct cost, overestimation cost and the under estimation cost for

wind power are calculated for all the solutions.

4. Calculate the objective function.

5. Save the best solution.

6. Apply the algorithm operations on the set of the solutions.

7. Check the feasibility of the generated solutions and repeat steps (3-5).

8. Repeat steps (6-7) until the termination criterion is achieved.
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6.4 Comparison Of Wind Turbine Probabilistic Model With Negative

Model in Economic Dispatch Problem

The Differential evolution (DE) algorithm will be used to do a comparison between

the two wind turbine cost models proposed in the last sections and will be used to

solve the economic dispatch problem.

The economic dispatch problem will be solved with and without the valve point

effect considering different constrains such as generators capacity, ramp rate limit,

and prohibited operation zones. The probabilistic wind cost model and the negative

load wind cost model will be used to model the significant integration of wind energy

in the problem to study them and to select the suitable model among them. Three

test systems with different constraints will be used to select the best cost model for

the wind turbine.

All the DE parameters were selected based on the experience of solving the prob-

lem. For the first two test systems, the selected number of generations and population

size are 40 and 40 respectively and for the third system are 30 and 30 respectively.

The other evolutionary algorithm parameters are shown in Table (6.1). This work

has been reported in [48].

Table 6.1: Parameters for BBO and DE

Algorithm co pf F
BBO - 0.005 -
DE 0.5 0.005 0.9
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6.4.1 Test System 1

This system consists of three generation units with quadratic cost functions and a

wind turbine. The units characteristics cost coefficients and generators operating

limits are shown in Appendix (C.1.1) and the wind turbine cost model is shown in

Appendix (C.1.5).

The total cost obtained is shown in Fig(6.7) for different scale factors c where the

figure vertical axis represents the total cost ($/h) and the horizontal axis represents

the wind power forecast in (MW). The total cost decrease as c increase and finally

it matches the negative load model at c = 20.It is clear that the probabilistic model

and the negative load model are similar for low forecast power and for each c value

curve there is a critical wind power point represents the separation between the two

models curves. From that point the probabilistic model cost start to be constant and

will continue to the end of the wind power forecast range. This is because the model

will select the critical wind power always if the forecast power is grater or equal to it.

The objective function cost curve is shown in Fig(6.8) which further explains the

behavior of the total cost curve. At the critical wind forecast point the negative load

model and the probabilistic model start to separate, where the negative load model

cost become high and the probabilistic cost model keep a constant cost. As c value

increase the critical wind forecast point point increase and the two model become

equivalent.

Since no significant change in the wind cost model happens in the change of the

shape factor k in the selected range, it is expected that the total cost curve and the

objective function cost curve will not change significantly as result of change in k as

shown in Fig(6.9) and Fig(6.10) respectively.

To appreciate the benefits of using the probabilistic model, let assume that there

was a forecasting error of 6% of total capacity (9.9 MW) at Pw = 68 MW and c=12.

Table (6.2) shows the calculation of total cost resulted from the overestimation and

the underestimation forecasting error. In both cases the probabilistic model succeed

in getting the lower cost compared to negative load model.
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Table 6.2: Total cost under 6% of total wind turbine capacity forecasting error

Overestimate error
Model Forecast Power scheduled Power Total Cost ($/h)

Probabilistic 68+9.9=77.9 MW 70 MW 8119+10 (70-68)-8 (70-68)=8123
Negative Load 68+9.9=77.9 MW 77.9 MW 8109+10 (77.9-68)-8 (77.9-68)=8128.8

Underestimate error
Model Forecast Power scheduled Power Total Cost ($/h)

Probabilistic Model 68-9.9=58.1 MW 58.1 MW 8130+6 (68-58.1)-8 (68-58.1)=8110.2
Negative Load Model 68-9.9=58.1 MW 58.1 MW 8130+6 (68-58.1)-8 (68-58.1)=8110.2

Figure 6.7: Total cost for three generator quadratic cost functions and with wind
power for different scale factor (c)
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Figure 6.8: Objective function cost for three generator quadratic cost functions and
with wind power for different scale factor (c)

Figure 6.9: Total cost for three generator quadratic cost functions and with wind
power for different shape factor (k)
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Figure 6.10: Objective function cost for three generator quadratic cost functions and
with wind power for different shape factor (k)
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6.4.2 Test System 2

This system consists of three generation units with quadratic cost functions and the

effects of valve-point loading is considered. All the equality and inequality constraints

are considered. The units characteristics cost coefficients, and generators operating

limits are shown in Appendix (C.1.2) and the wind turbine cost model is shown in

Appendix (C.1.5).

The effect of valve point non-linearity is obvious on the total cost curves using

both models as shown in Fig (6.11) to Fig (6.12). Like the case without valve point

effect, as c increase the total cost curves using the probabilistic model follow the total

cost using negative load model and the picture is more clear if you see it from the

objective function window as shown in Fig (6.13). At low wind power forecast the

total cost using probabilistic model is equivalent to the total cost using negative load

model.

It is clear from Fig (6.13) that like the previous case there is a critical wind

forecast power, where the objective function cost based on the probabilistic model

will be almost constant with a small change within a small range because of the valve

point effect and the objective function cost using the negative load model will be

increasing as the wind forecast power increase.

The performance of the total cost using different k values is shown in Fig (6.14)

to Fig (6.15) where it is obvious that like the previous case the change in the total

cost due to the change in k is small compare to the case of changing the value of c.

This fact is also clear in the objective function cost plot at different k values shown

in Fig (6.16).

It is important to clarify the fact that the values of c and k are decided by the

site chosen and we cannot change them, but we change them here to understand the

behavior of the probabilistic model at different values.
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Figure 6.11: Total cost for three generation units with quadratic cost functions and
the effects of valve-point loading is considered and with wind power at scale factor
(c=10)

Figure 6.12: Total cost for three generation units with quadratic cost functions and
the effects of valve-point loading is considered and with wind power at scale factor
(c=20)
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Figure 6.13: Objective function for three generation units with quadratic cost func-
tions and the effects of valve-point loading is considered and with wind power at
different scale factor (c)

Figure 6.14: Total cost for three generation units with quadratic cost functions and
the effects of valve-point loading is considered and with wind power at shape factor
(k=1.8)
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Figure 6.15: Total cost for three generation units with quadratic cost functions and
the effects of valve-point loading is considered and with wind power at shape factor
(k=2.3)

Figure 6.16: Objective function for three generation units with quadratic cost func-
tions and the effects of valve-point loading is considered and with wind power at
different shape factor (k)
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6.4.3 Test System 3

This test system consists of six generation units with quadratic cost functions, trans-

mission losses, ramp rates limits and prohibited operating zones of these thermal

units. The unit characteristics of cost coefficients, and generators operating limits

are shown in Appendix (C.1.3) and the wind turbine cost model is shown in Ap-

pendix (C.1.5). The difference between this test system and the previous ones is the

presence of ramp rate limits, presence of the losses, the generation units number and

the absence of the valve point effect.

The general performance of the total cost using the probabilistic model is like the

previous cases and more clear than the case of valve point effect as shown in Fig

(6.17). As the scale factor value increase the probabilistic model critical wind power

point move down and the total cost using probabilistic model become equivalent to

the total cost using negative load model.

In the objective function cost curve shown in Fig (6.18), as the c value increase

the wind forecast critical point increase and the objective function cost based on

probabilistic model become equivalent to the objective function based on negative

load model. At low wind forecast both models are almost equivalent and as c increase

in the low forecast reign the objective function cost increase.

The total cost using probabilistic model increase as shape factor k increase like

the previous cases but the change is very small compared to the change in scale factor

c as shown in Fig (6.19).

The objective function cost for different value of shape factor k is shown in Fig

(6.20), where there is no significant change in the critical point of the wind forecast but

as k increase the objective function cost is decreased as the forecast power increase.
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Figure 6.17: Total cost for six generator with wind power considering the prohibited
operation zones and the ramp rate limits for different scale factor (c).

Figure 6.18: Objective function cost for six generator with wind power considering
the prohibited operation zones and the ramp rate limits for different scale factor (c)



63

Figure 6.19: Total cost for six generator with wind power considering the prohibited
operation zones and the ramp rate limits for different shape factor (k)

Figure 6.20: Objective function cost for six generator with wind power considering
the prohibited operation zones and the ramp rate limits for different shape factor (k)



64

6.5 Economic Dispatch Incorporating Wind Energy Solution

This section proposes a group of Evolutionary Algorithms: Black Hole (BH) algo-

rithm, Biogeography Based Optimization (BBO) algorithm, Differential Evolution

(DE) algorithms and Khums optimization algorithm (KOA) to solve the economic

dispatch problem incorporating wind energy (EDIW) uncertainty. For all the algo-

rithms, the selected number of generation, population size and number of iteration

for the first system systems are 100, 100 and 20 respectively. On the other hand

the selected number of generation, population size and number of iteration for the

second system systems are 100, 200 and 20 respectively. The optimization algorithm

parameters are shown in Table (6.1). This work has been reported in [49] without

the KOA algorithm.

6.5.1 Test System 1

This system consists of three generation units with quadratic cost functions and the

effects of valve-point loading is considered. All the equality and inequality constraints

are considered. The units characteristics cost coefficients, and generators operating

limits are shown in Appendix (C.1.2) and the wind turbine cost model is shown in

Appendix (C.1.5).

The general performance of the total cost using the probabilistic wind turbine

cost model for a fixed value of c and k obtained in section (6.4), is equivalent to

the negative load model in the low load forecast power and remain equivalent to it

till the forecast reach a certain wind power forecast point called the critical wind

power forecast point and after that, no increase in the scheduled wind power will

be obtained by the wind probabilistic cost model as the forecast increase. Due to

the presence of valve point effect nonlinearity there is a fluctuation on the objective

function and total cost performance in a range around a mean value which make the

problem difficult to solve as shown in Fig (6.11) and Fig (6.13).

Four algorithms were used to solve the problem at three wind forecasting points

as shown in Table (6.3). DE and KOA algorithms succeeded in solving the problem

in all the forecasted points and show the general performance expected. BBO and

BH fails in the last forecast (165 MW) in finding the minimum point compared to DE
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and KOA, where the total cost obtained is small but the objective function value is

high which indicate that there is a high overestimation error. DE succeed in finding

the minimum cost with minimum objective value in all wind forecast values and KOA

find the wind forecast critical region.
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Table 6.3: Optimal results for test system 1 obtained by using BBO, BH, DE and KOA (PD = 850MW )

Wind Power Forecast 0 MW 50 MW 165 MW
Algorithm BBO BH DE KOA BBO BH DE KOA BBO BH DE KOA
P1 (MW) 299.75 498.94 300.27 299.46 399.98 399.19 399.20 399.38 298.76 399.19 399.20 398.80
P2 (MW) 151.10 99.87 149.73 151.12 151.50 99.85 99.87 149.76 149.15 99.90 149.73 149.59
P3 (MW) 399.15 251.19 400.00 399.42 249.99 324.40 324.40 250.98 322.06 249.61 249.60 249.03
PW (MW) 0.00 0.00 0.00 0.00 48.53 26.57 26.53 49.88 80.03 101.30 51.47 52.59

Fuel Cost ($/h) 8236.09 8241.19 8234.07 8235.28 7795.78 7954.29 7954.28 7768.87 7511.74 7284.58 7741.24 7741.11
Cd ($/h) 0.00 0.00 0.00 0.00 388.25 212.54 212.28 399.04 640.21 810.38 411.76 420.68
Cp ($/h) 390.96 390.96 390.96 390.96 199.61 277.24 277.36 195.33 113.81 71.32 190.36 186.92
Cr ($/h) 0.00 0.00 0.00 0.00 166.40 76.14 76.02 172.76 338.36 480.24 180.37 185.79

Total cost ($/h) 8236.09 8241.19 8234.07 8235.28 8184.03 8166.83 8166.56 8167.91 8151.95 8094.96 8152.99 8161.80
Objective Function ($/h) 8627.05 8632.15 8625.03 8626.23 8550.04 8520.20 8519.95 8536.00 8604.12 8646.52 8523.72 8534.50

Table 6.4: Comparison of algorithms results of test system 1

Wind Power Forecast 0 MW 50 MW 165 MW
Algorithm BBO BH DE KOA BBO BH DE KOA BBO BH DE KOA

Minimum total cost ($/h) 8236.09 8241.19 8234.07 8235.28 8184.03 8166.83 8166.56 8167.91 8151.95 8094.96 8152.99 8161.80
Average total cost ($/h) 8270.43 8243.39 8241.41 8243.14 8239.15 8177.90 8177.24 8183.89 8190.86 8161.71 8174.51 8215.67
Maximum total cost ($/h) 8319.19 8265.90 8264.77 8252.22 8296.58 8228.64 8225.61 8208.36 8239.80 8246.64 8228.01 8282.26
Standard deviation ($/h) 25.24 6.05 6.17 3.87 32.94 19.09 18.61 10.32 22.54 37.68 22.76 33.40
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6.5.2 Test System 2

This test system consists of six generation units with quadratic cost functions, trans-

mission losses, ramp rates limits and prohibited operating zones of these thermal

units. The unit characteristics of cost coefficients, and generators operating limits

are shown in Appendix (C.1.3) and the wind turbine cost model is shown in Ap-

pendix (C.1.5).

The results support the previous result obtained by Test system 3 in section (6.4)

which show that the probabilistic model at constant c and constant k will act as

negative load model for low forecast till the forecast value reach the critical point

where the probabilistic model will stop following the negative load model and the

schedule wind power value be fixed and equal to the critical wind forecast point as

the wind power forecast increase because the overestimate forecast error will increase.

It is obvious that all algorithms have almost the same total cost and objective

function cost at first wind forecast point, and in the second forecast point DE and

BBO are slightly better than other algorithms.

In the last forecast point, although the BBO has the highest total cost but it

has the lowest objective function cost which means that BBO has the best point.

DE can compete because the objective cost difference between it and between the

BBO is small (3.24 $/h) but the total cost difference is large (23.17 $/h). This is not

correct because of the overestimation cost will be more than the saving since the DE

scheduled wind power is higher than BBO scheduled wind power by 4.69 MW and

the overestimation cost is 10 $/MW.
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Table 6.5: Optimal results for test system 2 obtained by using BBO, BH, DE and KOA (PD = 1263MW )

Wind Power Forecast 0 MW 50 MW 165 MW
Algorithm BBO BH DE KOA BBO BH DE KOA BBO BH DE KOA
P1 (MW) 447.74 448.26 447.50 443.95 438.54 430.33 438.69 430.13 421.16 436.53 415.33 439.23
P2 (MW) 173.08 173.86 173.31 175.50 166.71 160.50 166.61 168.05 160.54 177.54 171.37 168.18
P3 (MW) 264.31 263.79 263.46 258.86 253.86 250.02 256.41 251.03 247.10 240.52 250.64 245.03
P4 (MW) 138.41 137.71 139.07 136.97 130.00 126.46 131.37 146.00 132.05 100.63 125.01 93.00
P5 (MW) 165.40 164.85 165.47 170.78 164.05 166.95 157.53 162.00 137.05 138.40 139.50 125.00
P6 (MW) 87.03 87.51 87.14 89.97 72.00 93.38 74.46 68.00 73.00 68.21 64.43 93.00
PW (MW) 0.00 0.00 0.00 0.00 49.99 47.58 50.00 49.68 102.99 112.41 107.68 110.89
PL (MW) 12.97 12.98 12.96 13.03 12.15 12.23 12.06 11.89 10.88 11.24 10.96 11.33

Fuel Cost ($/h) 15449.91 15449.93 15449.90 15450.64 14777.81 14813.08 14776.96 14785.13 14074.54 13957.44 14013.80 13987.97
Cd ($/h) 0.00 0.00 0.00 0.00 399.91 380.67 400.00 397.47 823.88 899.28 861.45 887.09
Cp ($/h) 390.96 390.96 390.96 390.96 194.99 202.65 194.96 195.95 68.42 53.44 60.71 55.73
Cr ($/h) 0.00 0.00 0.00 0.00 173.27 161.99 173.33 171.83 492.29 561.58 526.40 550.15

Total cost ($/h) 15449.91 15449.93 15449.90 15450.64 15177.72 15193.74 15176.96 15182.59 14898.42 14856.72 14875.25 14875.06
Objective Function ($/h) 15840.87 15840.89 15840.86 15841.60 15545.99 15558.39 15545.24 15550.37 15459.13 15471.74 15462.37 15480.94

Table 6.6: Comparison of algorithms results of test system 2

Wind Power Forecast 0 MW 50 MW 165 MW
Algorithm BBO BH DE KOA BBO BH DE KOA BBO BH DE KOA

Minimum total cost ($/h) 15449.91 15449.93 15449.90 15450.64 15177.72 15193.74 15176.96 15182.59 14898.42 14856.72 14875.25 14875.06
Average total cost ($/h) 15450.00 15450.35 15449.90 15454.79 15181.76 15201.67 15194.79 15214.80 14915.28 14910.10 14919.45 14973.70
Maximum total cost ($/h) 15450.57 15453.77 15449.90 15459.92 15189.38 15221.54 15217.65 15247.02 14932.78 14931.85 14953.99 15054.00
Standard deviation ($/h) 0.15 0.93 0.00 2.67 2.74 7.06 13.62 16.11 8.52 15.26 19.49 53.47
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6.6 Conclusion

In this chapter, two wind turbine cost models proposed in the literature in solving the

economic dispatch problem were introduced and they are: negative load model and

the probabilistic wind turbine cost model. Differential evolution is used to compare

between the probabilistic wind turbine cost model and the negative load model in

solving the economic dispatch problem. Three test systems were used to compare

the behavior of the probabilistic model with the negative load model. Then several

metaheuristic optimization algorithms used to solve two systems at three different

wind forecast points to test the probabilistic model results obtained in the previous

section were DE used to solve the problem. The second objective is to show complete

solution for the problem at different wind forecast solution using different algorithms.

For all the cases it is clear that the behavior of the probabilistic model at low wind

forecast will be equivalent or following the negative load model till the forecast wind

power reaches a critical point where in the objective function cost the negative load

will start to become costly compared to the probabilistic model which will schedule

the wind at fix power equal to the critical wind power forecast even if the wind power

forecast is increase to a higher value because the overestimation forecast error is high

and the overestimation cost is also high. The probabilistic model is better than the

negative load model if the wind power generation capacity is significant compared

to the total generation capacity because the probabilistic model account for both

the overestimation and underestimation forecasting error and the negative load did

not account. Also using the probabilistic model you have the flexibility to get many

models including the negative load model by adjusting the direct cost, reserve cost

and penalty cost.



Chapter 7

Load Reduction Cost Model

7.1 Introduction

Load reduction proposed in this thesis as a smart grid function, is the incentivising

consumer driven load curtailment implementation of real time pricing. Finding a

suitable model for load reduction at peak times is important to get a correct solution

to the economic dispatch problem. The conventional network models it as negative

load because it is easy to deal with it in solving the the ED problem, but due to

the size of load reduction power contribution, this model may lead to an incorrect

result and financial loss due to errors in forecasting. To overcome the load reduction

forecasting error problem, probabilistic modeled is proposed in this chapter because

it accounts for both overestimation and underestimation of available load reduction.

7.2 Load Reduction Cost Model as a Negative Load

This model is the used model in the conventional power networks because it is easier

to handle it in solving the economic dispatch problem. The load reduction power is

assumed to be constant, and the only change in the ED problem will be modifying

the total demand by cutting the load reduction amount.

The drawbacks of this model are due to the errors of overestimating and underes-

timating the load reduction amount in the forecasting stage which lead to inaccurate

economic dispatch solution and lose of money. Load reduction cost modeled as a

negative load in the economic dispatch problem is shown in (7.1).

LRcost =
Nd
∑

k=1

hk Lk (7.1)

Here LRcost is the total cost of load reduction, Nd is the number of load reduction

areas, Lk is the power reduced from area k, hk is the load reduction cost coefficients.

70
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7.3 Probabilistic Model for Load Reduction

The probabilistic model is a more realistic option in dealing with the forecasting

errors, because it accounts for both overestimation and underestimation error. The

main drawback is the complexity of handling it in the economic dispatch problem.

The probabilistic Load reduction cost model in the economic dispatch problem is

shown in (7.2).

LRcost =

Nd
∑

i=1

LD
cost + Lue

cost + Loe
cost (7.2)

Where LRcost is the total cost of load reduction, Nd is the number of load reduction

units, LD
cost is the direct cost, Lue

cost is the load reduction underestimate forecast error

cost and Loe
cost is the load reduction overestimate forecast error cost.

LRcost =

Nd
∑

i=1

hi L
sc
i + kuei ELue

i + koei ELoe
i (7.3)

Here Li is the available load reduction from area i, Lsc
i is the scheduled (forecast)

load reduction power for the ith area, ELue
i is the expected value of Li > Lsc

i for the

ith area, ELoe
i is the expected value of Li < Lsc

i for the ith area, hi, kuei and koei

are the available, penalty, and reserve cost coefficients for the ith area respectively.

ELue
i and ELoe

i are calculated based on the probability distribution of load reduction

at the targeted area. Since, the consumer behavior probability distribution is not

known yet in this specific issue, the load reduction model is formulated for three

probability distributions: Normal distribution, Exponential distribution and Weibull

distribution. Then the model formulated using Normal distribution will be used in

this thesis because it is the most common choice for unknown distribution random

variables and it is used in many fields.
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7.3.1 Load Reduction Model Based on Normal Distribution

Assume that load reduction Power is L and L ∼ N(µ, σ2) and that the Load reduction

Power L ∈ [Lmin Lmax]. The overestimate and underestimate expected values are

shown in (7.4) and (7.5) respectively. A detailed proof of the model is found in

Appendix (B).

ELoe = (Lsc − µ) (F (Lsc)− F (Lmin)) +
σ√
2π

[

exp
−(Lsc

−µ)2

2σ2 − exp
−(Lmin−µ)2

2σ2

]

(7.4)

ELue = (µ− Lsc) (F (Lmax)− F (Lsc))− σ√
2π

[

exp
−(Lmax−µ)2

2σ2 − exp
−(Lsc

−µ)2

2σ2

]

(7.5)

Figures (7.1) to (7.3) show the load reduction model overestimation cost, under-

estimation cost and total cost at different mean values (µ) assuming that the load

reduction is active and the load reduction cost model data are shown in Appendix

(C.5). As the mean value increase, the overestimation cost decrease and the under-

estimation cost increase. Also, it is clear that the overestimation cost equal to zero

before the mean value and the underestimation cost equal to zero after the mean

value. This explains the load reduction total cost behavior shown in Fig(7.3), where

the load reduction total cost increase at low power forecast value as the mean value

(µ) increase and it decrease at high power forecast value as the mean value increase.

The standard deviation value (σ) effect on the load reduction cost model is gen-

erally increase the cost at the region near the mean value as the standard deviation

increase as shown in Fig(7.4) to Fig(7.6).
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Figure 7.1: Load reduction model overestimate cost for different
mean (µ)

Figure 7.2: Load reduction model underestimate cost for different
mean (µ)
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Figure 7.3: Load reduction model Total cost for different mean (µ)

Figure 7.4: Load reduction model overestimate cost for different variance (σ2)
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Figure 7.5: Load reduction model underestimate cost for different variance (σ2)

Figure 7.6: Load reduction model Total cost for different variance (σ2)
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7.3.2 Load Reduction Model Based on Exponential Distribution

Assume that load reduction Power is L and L ∼ Exp(λ) and that the Load reduction

Power L ∈ [Lmin Lmax]. The overestimate and underestimate expected value are

shown in (7.6) and (7.7) respectively. A detailed proof of the model is found in

Appendix (B).

ELoe = (Lsc − Lmin) e
−λ Lmin − 1

λ
(F (Lsc)− F (Lmin)) (7.6)

Eue = (Lsc − Lmax) e
−λ Lmax − 1

λ
(F (Lsc)− F (Lmax)) (7.7)

7.3.3 Load Reduction Model Based on Weibull Distribution

Assume that load reduction Power is L and L ∼ W (c, k) and that the Load reduction

Power L ∈ [Lmin Lmax]. The overestimate and underestimate expected value are

shown in (7.8) and (7.9) respectively. A detailed proof of the model is found in

Appendix (B).

ELoe = Lsc (F (Lsc)− F (Lmin))− c (Γ(1 +
1

k
, (
Lmin

c
)k)− Γ(1 +

1

k
, (
Lsc

c
)k)) (7.8)

Eue = c (Γ(1 +
1

k
, (
Lsc

c
)k)− Γ(1 +

1

k
, (
Lmax

c
)k))− Lsc (F (Lmax)− F (Lsc) (7.9)
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7.3.4 Economic Dispatch Solution Incorporating Wind Energy and

Load Reduction

The general procedure to solve the economic dispatch problem incorporating wind

energy and load reduction is active using any metaheuristic algorithm is shown in

Procedure (3).

Procedure 3: Economic Dispatch Solution

1. Initialize the algorithm parameters (population size, no of generations,

no of iteration, mutation rate, cross over rate, khums rate).

2. Generate a set of feasible solutions where each solution consist of output

power generation for each thermal unit, the wind power which generated

randomly based on the forecast and the load reduction power which gen-

erated randomly based on the forecast. The solutions satisfy the different

economic dispatch constraints required in the problem.

3. The direct cost, overestimation cost and the under estimation cost for

wind power and load reduction power are calculated for all the solutions.

4. Calculate the objective function.

5. Save the best solution.

6. Apply the algorithm operations on the set of the solutions.

7. Check the feasibility of the generated solutions and repeat steps (3-5).

8. Repeat steps (6-7) until the termination criterion is achieved.
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7.4 Comparison Of Load Reduction Probabilistic Model With Negative

Model in Economic Dispatch Problem Without Wind Energy

To analyze the difference between the load reduction negative load cost model and

the load reduction probabilistic cost model based on normal distribution and to select

the suitable model among them, economic dispatch problem will be solved with and

without the valve point effect considering different constraints such as generators

capacity, ramp rate limit, and prohibited operation zones.

Three test systems were used to study the difference between the two models.

The first system is composed of three generation units with generation capacity con-

straints. The generation units cost coefficients and capacity limits are shown in

Appendix (C.1.1). To observe the effect of valve point nonlinearity, a three machine

system shown in Appendix (C.1.2) is used and to observe the prohibited operation

zones, ramp rate limit and power losses, a six machine system shown in Appendix

(C.1.3) is used. The systems were modified by assuming that the systems operate at

peak value and the load reduction program is active. The demand load for the first

and the second system are 1000 MW and for the third system is 1400 MW.

The load reduction probabilistic cost model and the load reduction negative load

cost model will be used to model the load reduction in the problem. KOA algorithm

were used to solve the problem with Khums tax rate selected to be Kr = 0.2. For

the three test systems, the selected number of generations and population size are 50

and 50. The load reduction cost model data are shown in Appendix (C.5).

The performance of load reduction probabilistic cost model and the load reduction

negative load cost model are shown in Fig(7.7) for three machine test system. The

effect of valve point nonlinearity on the performance is shown in Fig(7.9) and the

effect of prohibited operation zone and ramp rate limit is shown in Fig(7.11).

The general response obtained, as expected to be similar in general to the response

obtained in Chapter (6). The two models are equivalent in the lower load reduction

forecast values till the forecast value reach a critical point and it is here equal to

the mean value µ. After that the load reduction probabilistic cost model will stop

increasing by always scheduling a load reduction value near the mean value because

of the high overestimation forecasting error cost. On the other hand, the negative

load reduction cost model increase as the forecast increase which may result in high
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loss of money due to the load reduction overestimation forecasting error.

Total cost can mislead the decision maker as shown in Fig (7.8 ), Fig (7.10)

and Fig (7.12) where the negative load model always have the lowest price. But as

shown before in Table (6.2) in Chapter (6) that even though that the negative load

model produce lower cost but due to small overestimation forecasting error and by

calculating the cost of this error, the new total cost is higher in the case of negative

load model compare to the probabilistic model.

Figure 7.7: Objective function cost for three generator quadratic cost functions and
with load reduction power at different mean value (µ)
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Figure 7.8: Total cost for three generator quadratic cost functions and with with load
reduction power at different mean value (µ)

Figure 7.9: Objective function for three generation units with quadratic cost functions
and the effects of valve-point loading is considered and with load reduction power at
different mean value (µ)
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Figure 7.10: Total cost for three generation units with quadratic cost functions and
the effects of valve-point loading is considered and with load reduction power at
different mean value (µ)

Figure 7.11: Objective function cost for six generator with load reduction considering
the prohibited operation zones and the ramp rate limits at different mean value (µ)
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Figure 7.12: Total cost for six generator with load reduction considering the prohib-
ited operation zones and the ramp rate limits at different mean value (µ)
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7.5 Comparison Of Load Reduction Probabilistic Model With Negative

Model in Economic Dispatch Problem With Wind Energy

There are four possible combination for the wind turbine operation cost model and

load reduction operation cost model as shown in Table(7.1).

Table 7.1: Possible combination for the wind turbine operation cost model and load
reduction operation cost model

Cost Model Option wind Turbine Load Reduction
1 Negative Negative
2 Negative Probablistic
3 Probablistic Negative
4 Probablistic Probablistic

Like the last section (Section (7.4)), three Test systems were used to study the

difference between the two models. The first system is composed of three generation

units with generation capacity constraints. The generation units cost coefficients and

capacity limits are shown in Appendix (C.1.1). To observe the effect of valve point

nonlinearity, a three generating units system shown in Appendix (C.1.2) is used and

to observe the prohibited operation zones, ramp rate limit and power losses, a six

machine system shown in Appendix (C.1.3) is used. The systems were modified by

adding wind turbine to each system and assuming that the system operate at peak

value and the load reduction program is active. The load reduction cost model data

and the wind turbine cost model are shown in Appendix (C.5). The demand load for

the first and the second system are 1000 MW and for the third system is 1400 MW.

DE algorithm were used to solve the problem and the optimization parameters are

shown in Table (7.2). For the three test systems, the selected number of generations

and population size are 50 and 50 respectively.

Table 7.2: Parameters for DE

Algorithm co pf F
DE 0.5 0.005 0.9

The objective function cost for three generation unit system with quadratic cost

functions, with one wind turbine unit and with load reduction for all possible combi-

nation of models is shown in Fig(7.13) from different views. The effect of valve point
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nonlinearity on the objective function cost is shown in Fig(7.15) and the effect of pro-

hibited operation zones and the effect of ramp rate limit on the objective function cost

is shown in Fig(7.17). In general, it is clear that the probabilistic-probabilistic option

is the lowest cost option most of the time or the second lowest and the difference

between it and the lowest option is not high.

The bottom view of the objective function cost shown in Fig(7.13e), Fig(7.15e)

and Fig(7.17e) support the general behavior of the probabilistic model mentioned in

Section (7.4), but in two dimension. There are two critical points, one for the wind

forecast and one for the load reduction forecast. The minimum region area depends

on the critical points values.

If the forecast value is low then the best model is the negative load model for that

variable and if the forecast value is high for any variable, then the best model is the

probabilistic model.

It is like a road map for the operator or dispatcher to decide based on the fore-

casting data, the preferred model. Table (7.3) shows the different combination based

on the forecasting data.

Table 7.3: Different model combination for wind turbine cost model and load reduc-
tion cost model based on forecasting data

Forecast
wind Turbine Load Reduction Model Combination

Low Low Negative-Negative (N-N)
Low High Negative-Probablistic (N-P)
High Low Probablistic-Negative (P-N)
High High Probablistic-Probablistic (P-P)

Based on the observation mentioned before about the probabilistic-probabilistic

option is the lowest or the second lowest most of the times and the difference is not

high, the probabilistic-probabilistic option present a good and competitive choice for

all the cases if the dispatcher need to work with one model for the wind turbines

and one model for the load reduction models and avoid the complexity if the cost

difference is not significant.

Total cost of all the four combinations is shown in Fig(7.14), Fig(7.16) and

Fig(7.18) for the cases. Although, the probabilistic-probabilistic option is higher

in total cost in all the time intervals but it is the least expensive if the forecast error
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occurred, because it is obtained based on the objective function cost which account

for overestimation and underestimation forecasting error.

(a) 0◦ View (b) 180◦ View

(c) Side view (d) Another side view

(e) Bottom view (f) Top view

Figure 7.13: Objective function cost for three generator with quadratic cost functions
and with load reduction power and with wind energy included for all the possible
combination of models
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Figure 7.14: Total cost for three generator with quadratic cost functions and with
load reduction power and with wind energy included for all the possible combination
of models
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(a) 0◦ View (b) 180◦ View

(c) Side view (d) Another side view

(e) Bottom view (f) Top view

Figure 7.15: Objective function cost for three generation units with quadratic cost
functions and the effects of valve-point loading is considered and with load reduction
power and with wind energy included for all the possible combination of models
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Figure 7.16: Total cost for three generation units with quadratic cost functions and
the effects of valve-point loading is considered and with load reduction power and
with wind energy included for all the possible combination of models
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(a) 0◦ View (b) 180◦ View

(c) Side view (d) Another side view

(e) Bottom view (f) Top view

Figure 7.17: Objective function cost for six generator considering the prohibited
operation zones and the ramp rate limits and with load reduction power and with
wind energy included for all the possible combination of models
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Figure 7.18: Total cost for six generator considering the prohibited operation zones
and the ramp rate limits and with load reduction power and with wind energy included
for all the possible combination of models
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7.6 Conclusion

In this chapter two models were presented for the load reduction as demand side

management measure for economic dispatch problem in smart grid network at peak

load time and they are the negative load cost model and the probabilistic cost model

based on Normal distribution. The first model is the model used in the conventional

network. The load reduction probabilistic cost model is proposed in this chapter

and in this thesis to model the load reduction to minimize the effect of load reduction

forecasting error in smart grid network. The general response of the objective function

and the total cost function obtained without wind energy, is similar in general to the

response obtained in Chapter (6).

The general response of of the objective function and the total cost function

obtained with wind energy is more complex and result into four possible model com-

binations: N-N, N-P, P-N and P-P.

Among the four combinations, P-P are the most reliable in dealing with the fore-

casting errors because it is either the cheapest choice or the second cheapest choice

in the objective function for the three test systems in the four regions. Hence, in all

the next chapters the P-P model will be used to model the wind energy and the load

reduction.



Chapter 8

Unit Commitment Problem For Smart Grid

8.1 Introduction

Finding the ON/OFF schedule of a set of generators over a time horizon in a way

that minimizes the operation cost is the definition of unit commitment problem. The

time horizon usually is 24 hours of day or 168 hours of a week [129].

The integration of a significant amount of renewable energy and the integration

of load reduction as demand side management measure increase the complexity of

the problem and introduce many challenges in finding the optimal solution which

accounts for the intermittent behavior of renewable resources and the error in the

forecasting of the available renewable power and the forecasting of the amount of

load reduction at peak loads.

In the conventional network, the wind power modeled as negative load because of

the small contribution of it compared to the thermal units. Load reduction is also

modeled as negative load due to the small contribution compared with the capacity

of the system.

In the smart grid and based on its objectives, there will be a significant con-

tribution of renewable energy which helps in minimizing production costs and the

greenhouse gases emissions (GHGs). In this chapter, unit commitment will be mod-

eled and solved for smart grid network by assuming significant integration of wind

energy to the network and the load reduction programs are active.

8.2 Smart Grid Unit Commitment Mathematical Formulation

Suppose that there are N generation units that will feed the demand load over T

periods. The unit commitment objective function can be written as:

min Cth + Cwind + CLR (8.1)

92



93

where Cth is the total thermal unit commitment cost, Cwind is the total wind power

generation cost and CLR is the total load reduction cost.

8.2.1 Thermal Power Generation Cost

The thermal unit commitment cost compose of the fuel cost and the start up cost as

shown in (8.2)[129, 64].

Cth =
T
∑

t=1

N
∑

j=1

[F (Pj(t)) + SCj(t)] (8.2)

where Cth is the total unit commitment cost for N units in T periods (hours),

F (Pj(t)) is the fuel cost function for unit j at period t and SCj(t) is the start up cost

for unit j at period t. The fuel cost function is shown in (8.3)[129, 64].

F (Pj) = ajP
2
j + bjPj + cj (8.3)

where aj, bj, cj are the fuel cost coefficients of generator j, Pj is the the output

power of generator j and F (Pj) is the fuel cost of unit j. Start up cost is a function of

time, where time will decide the start up cost price. Cold start up cost is considered

if the unit is off for a long period, whereas a hot start up cost is considered if it is off

for a short period. the start up cost is defined as follows [64]:

SCj(t) =







Chot
j T off

j ≤ T down
j + T cold

j

Ccold
j T off

j > T down
j + T cold

j

(8.4)

where SCj(t) is the start up cost for unit j, T off
j is the continuous off time duration

of generating unit j, T down
j is the minimum down time of unit j, T cold

j is the cold start

hours of unit j, Chot
j is the hot start cost for unit j and Ccold

j is the cold start cost for

unit j.

8.2.2 Wind Power Generation Cost

There are two cost model shown in Chapter (6): the negative load model and the

probabilistic model. Based on these models, the total wind cost for Nw units and in

T periods can be calculated as follows:
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Cwind =
T
∑

t=1

W t
Cost (8.5)

Where W t
Cost is the total wind power generation cost.

8.2.3 Load Reduction Cost

There are two main cost model proposed in Chapter (7): the negative load model

and the probabilistic model. The probabilistic cost model was formulated to normal

distribution, weibull distribution, and exponential distribution. Based on the selected

model, the total wind cost for T periods can be calculated as follows:

CLR =
T
∑

t=1

LRt
Cost (8.6)

Where LRt
Cost is the total cost of load reduction.

8.3 Equality Constraints

8.3.1 Real Power Balance Constraint

The total power generated from thermal and wind units should equal the load demand

at each period of time as shown in (8.7), where the PD represents the total load

demand.

Nx
∑

i=1

Pi +
Nw
∑

j=1

wj = PD −
Nd
∑

k=1

Lk (8.7)

Where wj available wind power for the jth wind turbine and Lk is the available

load reduction from area k.

8.4 Inequality Constraints

8.4.1 Spinning Reserve Constraint

The total amount of generation available from all units synchronized in the system

minus the demand power and the losses of the system is the spinning reserve. The

importance of the spinning reserve is that when a unit or more is lost the system
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frequency will not drop. Spinning reserve is specified as a percentage of peak load

or enough of making up the loss of the largest unit loaded on the system. Spinning

reserve should be distributed around the system to avoid transmission limitations

[129, 64].

N
∑

j=1

Pmax
j ≥ PD + PR (8.8)

Pmax
j is the maximum power generated from unit j, PD is the total demand power

and PR is the required spinning reserve.

8.4.2 Minimum Up Time Constraint

If the unit is turned on it should not turned off before a minimum up time [64].

TON
j ≥ T up

j (8.9)

TON
j is the continuous ON time duration and T up

j is the minimum up time for unit

j.

8.4.3 Minimum Down Time Constraint

If the unit is turned off it should not turned on before a minimum down time [64].

TOFF
j ≥ T down

j (8.10)

TOFF
j is the continuous OFF time duration and T down

j is the minimum down time

for unit j.

8.4.4 Generator Power Limit Constraint

Generation units are restricted by their limits in term of generation active power as

follows:

Pmin
j ≤ Pj ≤ Pmax

j j = 1, 2 · · · , N (8.11)

where Pmin
j , Pmax

j , are the minimum active power output, maximum active power

output of the jth generating unit respectively.
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8.4.5 Wind Turbine Power Limit Constraint

0 ≤ wj ≤ wr
j j = 1, 2 · · · , Nw (8.12)

Here wr
j , is the rated active power output of the jth wind turbine unit.

8.4.6 Load Power Limit Constraint

Lmin
k ≤ Lk ≤ Lmax

k k = 1, 2 · · · , Nd (8.13)

Here Lmin
k , Lmax

k , are the minimum active power reduction, maximum active power

reduction of the kth unit respectively.
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8.5 Unit Commitment Solution Incorporating Wind Energy and Load

Reduction

The general procedure to solve the unit commitment problem incorporating wind en-

ergy and load reduction measures are active at peak loads using any metaheuristic

algorithm is shown in Procedure (4).

Procedure 4: Unit Commitment Solution

1. Initialize the algorithm parameters (population size, no of generations,

no of iteration, mutation rate, cross over rate).

2. Generate a set of feasible solutions where each consist of a set of ON/OFF

schedules, and on each hour in any schedule there are the wind power and

the load reduction power, both generated randomly based on the forecast.

3. The economic dispatch is calculated using Quadratic programing for all

the solutions.

4. The direct cost, overestimation cost and the under estimation cost for

wind power and load reduction power are calculated for all the solutions.

5. Calculate the objective function.

6. Save the best solution.

7. Apply the Algorithm operations on the set of the solutions.

8. Check the feasibility of the generated solutions and repeat steps (3-6).

9. Repeat steps (7-8) until the termination criterion is achieved.
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8.6 Unit Commitment Solution Incorporating Wind Energy and Load

Reduction using BBO and GA

In this section, a numerical example will be shown using the new unit commitment

model for two test systems assuming that the wind energy is included and the load

reduction is active. The wind energy cost model and the load reduction cost model

are the probabilistic based on Weibull distribution and probabilistic based on Normal

distribution respectively.

BBO and GA were selected to solve the unit commitment because of their ability

to operate on the binary numbers easily and directly without creating many violations

in the unit commitment problem. The parameters for the BBO and GA algorithms

are selected as shown in Table (8.1).

For the first test cases the selected number of generation, population size and

number of iteration are 50, 50 and 10 respectively and for the second test system

it is 200, 200 and 10 respectively. The wind turbine cost model parameters and

the load reduction cost model parameters are shown in Table (8.2) and Table (8.3)

respectively. This work has been reported in [50].

Table 8.1: BBO and GA parameters for unit commitment problem

Algorithm CO pf
BBO - 0.005
GA 0.75 0.005

Table 8.2: Wind turbine data for unit commitment problem

Test System k c kp kr d Vi Vr V0 Wr

1 & 2 2 10 6 11 8 5 15 45 165

Table 8.3: Load reduction cost model data for unit commitment problem

System h kue koe µ σ Lmin(MW ) Lmax(MW )
1 & 2 9 7 11 75 5 0 90
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8.6.1 Test System 1

This system consists of four thermal generation units, a wind turbine and load reduc-

tion measures are active at peak loads. The study is for eight periods of time and the

spinning reserve for the thermal units is assumed to be 10% of the demand at each

period. The data and load demand are shown in Appendix(C.2.1).

The evolutionary algorithm parameters, the wind turbine cost model data and

the load reduction cost model data are shown in Table (8.1), Table (8.2) and Table

(8.3) respectively.

Table (8.5) lists the optimum schedule obtained using the proposed algorithms

without including the wind energy and the load reduction measures are not active.

It is obvious that the minimum total cost generated by the proposed algorithms is

lower than that obtained using other algorithms as shown in Table (8.4) and Figure

(8.1). Also, both algorithms succeed in getting the same minimum total cost when

the wind turbine is not included.

Table (8.6) and Figure (8.2) show the optimum results with the wind energy

included based on the probabilistic model and the load reduction measures are not

active. Table (8.7) and Figure (8.3) shows the show the optimum results without the

wind energy and the load reduction measures are active. Finally, Table (8.8) and

Figure (8.4) show the optimum results with the wind energy and the load reduction

measures are active.

It is obvious that, the objective function cost and the total cost obtained by the

BBO algorithm is lower than that obtained using the GA algorithm for this test

system in all the cases except the first case shown in Table (8.5). Also, The total cost

decreases with the merging of wind energy and applying the load reduction measures.

The rule is to choose the solution with lower objective function cost because as

the objective function cost decrease, the overestimation cost and the underestimation

cost decrease. If both the objective function and the total cost are together smaller for

one algorithm solution, then the obtained solution in that case is the best compared

to the other solution.
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Table 8.4: Minimum cost for BBO, GA, LR, PSO-LR, B.SMP, and A.SMP without
wind energy for test system 1

Method Minimum Cost ($)
BBO 74528.67
GA 74528.67

LR [64] 75232
PSO-LR [64] 74808
B.SMP [64] 74812
A.SMP [64] 74812

Figure 8.1: Minimum cost for BBO, GA, LR, PSO-LR, B.SMP, and A.SMP without
wind energy for test system 1
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Table 8.5: Optimal results of four thermal generation units with eight periods of time
and the spinning reserve for the thermal units is assumed to be 10% of the demand
at each period without wind energy and without load reduction

Algorithm BBO GA
Time U1 U2 U3 U4 U1 U2 U3 U4
1 300.00 150.00 0.00 0.00 300.00 150.00 0.00 0.00
2 300.00 205.00 25.00 0.00 300.00 205.00 25.00 0.00
3 300.00 250.00 30.00 20.00 300.00 250.00 30.00 20.00
4 300.00 215.00 25.00 0.00 300.00 215.00 25.00 0.00
5 276.19 123.81 0.00 0.00 276.19 123.81 0.00 0.00
6 196.19 83.81 0.00 0.00 196.19 83.81 0.00 0.00
7 202.86 87.14 0.00 0.00 202.86 87.14 0.00 0.00
8 300.00 200.00 0.00 0.00 300.00 200.00 0.00 0.00

Fuel Cost ($) 74378.64571 74378.6457
Start-Up Cost ($) 150.0200 150.0200
Total Cost ($) 74528.6657 74528.6657

Objective Function Cost ($) 74528.6657 74528.6657

Table 8.6: Optimal results of four thermal generation units, a wind turbine and load
reduction is not active at peak loads for eight periods of time and the spinning reserve
for the thermal units is assumed to be 10% of the demand at each period

Algorithm BBO GA Forecast
Time U1 U2 U3 U4 wsc

m U1 U2 U3 U4 wsc
m wF

m

1 300.00 150.00 0.00 0.00 0.00 300.00 150.00 0.00 0.00 0.00 0.00
2 300.00 210.00 0.00 20.00 0.00 300.00 205.00 25.00 0.00 0.00 0.00
3 300.00 250.00 30.00 20.00 0.00 300.00 250.00 30.00 20.00 0.00 0.00
4 300.00 175.52 25.00 0.00 39.48 300.00 172.53 25.00 0.00 42.47 50.00
5 244.62 108.03 0.00 0.00 47.35 246.54 108.98 25.00 0.00 19.48 50.00
6 163.30 67.37 0.00 0.00 49.33 157.84 64.64 25.00 0.00 32.52 50.00
7 134.21 60.00 0.00 0.00 95.79 83.97 60.00 0.00 0.00 146.03 165.00
8 244.35 107.89 0.00 0.00 147.76 279.02 125.22 0.00 0.00 95.76 165.00

Fuel Cost ($) 67653.3505 68949.0726
Start-Up Cost ($) 150.0200 150.0200

Cdm ($) 3037.7037 2690.0729
Total Cost ($) 70841.0743 71789.1654

Objective Function Cost ($) 74659.0291 75557.0800
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Figure 8.2: Optimal results of four thermal generation units, a wind turbine and load
reduction is not active at peak loads for eight periods of time and the spinning reserve
for the thermal units is assumed to be 10% of the demand at each period

Table 8.7: Optimal results of four thermal generation units without wind energy and
the load reduction is active at peak loads for eight periods of time and the spinning
reserve for the thermal units is assumed to be 10% of the demand at each period

Algorithm BBO GA Forecast
Time U1 U2 U3 U4 Lsc

m U1 U2 U3 U4 Lsc
m LF

m

1 300.00 150.00 0.00 0.00 0.00 300.00 150.00 0.00 0.00 0.00 0
2 295.07 133.25 25.00 0.00 76.69 296.37 133.90 25.00 0.00 74.73 81
3 300.00 165.28 25.00 20.00 89.72 300.00 203.24 25.00 20.00 51.76 90
4 300.00 146.25 25.00 0.00 68.75 300.00 145.52 25.00 0.00 69.48 72
5 276.19 123.81 0.00 0.00 0.00 276.19 123.81 0.00 0.00 0.00 0
6 196.19 83.81 0.00 0.00 0.00 196.19 83.81 0.00 0.00 0.00 0
7 202.86 87.14 0.00 0.00 0.00 202.86 87.14 0.00 0.00 0.00 0
8 300.00 200.00 0.00 0.00 0.00 300.00 200.00 0.00 0.00 0.00 0

Fuel Cost ($) 70013.6561 70737.9757
Start-Up Cost ($) 150.0200 150.0200

LD
cost ($) 2116.4364 1763.7309

Total Cost ($) 72280.1125 72651.7266
Objective Function Cost ($) 75152.01011 75514.52764
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Figure 8.3: Optimal results of four thermal generation units without wind energy and
the load reduction is active at peak loads for eight periods of time and the spinning
reserve for the thermal units is assumed to be 10% of the demand at each period

Table 8.8: Optimal results of four thermal generation units, a wind turbine and load
reduction is active at peak loads for eight periods of time and the spinning reserve
for the thermal units is assumed to be 10% of the demand at each period

Algorithm BBO GA Forecast
Time U1 U2 U3 U4 wsc

m Lsc
m U1 U2 U3 U4 wsc

m Lsc
m wF

m LF
m

1 300.00 150.00 0.00 0.00 0.00 0.00 300.00 150.00 0.00 0.00 0.00 0.00 0.00 0.00
2 300.00 181.09 25.00 0.00 0.00 23.91 300.00 200.20 25.00 0.00 0.00 4.80 0.00 81.00
3 300.00 195.65 25.00 20.00 0.00 59.35 300.00 178.71 25.00 20.00 0.00 76.29 0.00 90.00
4 294.56 132.99 0.00 0.00 47.08 65.37 300.00 162.22 0.00 0.00 46.06 31.72 50.00 72.00
5 265.66 118.54 0.00 0.00 15.80 0.00 256.16 113.79 0.00 0.00 30.05 0.00 50.00 0.00
6 187.04 79.23 0.00 0.00 13.73 0.00 163.24 67.33 0.00 0.00 49.43 0.00 50.00 0.00
7 148.86 60.15 0.00 0.00 80.99 0.00 156.46 63.94 0.00 0.00 69.60 0.00 165.00 0.00
8 243.18 107.31 0.00 0.00 149.51 0.00 261.86 116.65 0.00 0.00 121.49 0.00 165.00 0.00

Fuel Cost ($) 65805.8885 66294.5325
Start-Up Cost ($) 150.0200 150.0200

Cdm ($) 2456.8569 2532.9931
LD
cost ($) 1337.6590 1015.2560

Total Cost ($) 69750.4245 69992.8016
Objective Function Cost ($) 76642.3054 76920.9708
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Figure 8.4: Optimal results of four thermal generation units, a wind turbine and load
reduction is active at peak loads for eight periods of time and the spinning reserve
for the thermal units is assumed to be 10% of the demand at each period
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8.6.2 Test System 2

This system consists of ten thermal generation units, a wind turbine and load re-

duction measures are active at peak loads. The study is for twenty-four periods of

time and the spinning reserve on the thermal units is assumed to be 10% of the de-

mand at each period. The data and load demand are shown in Appendix(C.2.2) and

The evolutionary algorithm parameters, the wind turbine cost model data and the

load reduction cost model data are shown in Table (8.1), Table (8.2) and Table (8.3)

respectively.

Table(8.10) lists the optimum schedule obtained using the proposed algorithms

without the wind energy and the load reduction is not active. BBO get better solution

compared to GA and both succeed in finding lower cost compared to other algorithms

except A.SMP [64] and B.SMP [64] as shown in Table (8.9) and illustrated in Figure

(8.5).

Table(8.11) shows the optimum results with the wind energy included and the

load reduction measures are not active where The BBO algorithm again gets better

solution compared to GA in both the objective function cost and the total cost as

shown in Figure (8.6).

Table(8.12) shows the optimum results without the wind energy included and the

load reduction measures are active and Table(8.13) shows the optimum results with

the wind energy included and the load reduction measures are active. GA obtained

better solution compare to BBO in both the objective function cost and the total cost

as shown in Figure (8.7) and Figure (8.8) respectively.

Table 8.9: Minimum cost for BBO, GA, LR, PSO-LR, B.SMP, and A.SMP without
wind energy for test system 2

Method Minimum Cost ($)
BBO 565092.46
GA 565249.50

LR [64] 565825.00
DP [64] 565825.00
GA [64] 565852.00

B.SMP [64] 564017.73
A.SMP [64] 563937.26
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Figure 8.5: Minimum cost for BBO, GA, LR, PSO-LR, B.SMP, and A.SMP without
wind energy for test system 2
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Table 8.10: Optimal results of ten thermal generation units with twenty-four periods of time and the spinning reserve on the
thermal units is assumed to be 10% of the demand at each period without wind energy and the load reduction measures are
not active

Algorithm BBO GA
Time U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
1 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 455.00 265.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 265.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 455.00 345.00 130.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 455.00 340.00 130.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00
5 455.00 395.00 130.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 455.00 390.00 130.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00
6 455.00 365.00 130.00 130.00 0.00 20.00 0.00 0.00 0.00 0.00 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00
7 455.00 410.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 455.00 410.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00
8 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00
9 455.00 455.00 130.00 130.00 95.00 0.00 25.00 10.00 0.00 0.00 455.00 455.00 130.00 130.00 100.00 20.00 0.00 10.00 0.00 0.00
10 455.00 455.00 130.00 130.00 162.00 33.00 25.00 0.00 0.00 10.00 455.00 455.00 130.00 130.00 162.00 33.00 25.00 0.00 0.00 10.00
11 455.00 455.00 130.00 130.00 162.00 73.00 25.00 0.00 10.00 10.00 455.00 455.00 130.00 130.00 162.00 73.00 25.00 10.00 0.00 10.00
12 455.00 455.00 130.00 130.00 162.00 80.00 25.00 43.00 10.00 10.00 455.00 455.00 130.00 130.00 162.00 80.00 25.00 43.00 10.00 10.00
13 455.00 455.00 130.00 130.00 162.00 33.00 25.00 0.00 10.00 0.00 455.00 455.00 130.00 130.00 162.00 33.00 25.00 10.00 0.00 0.00
14 455.00 455.00 130.00 130.00 95.00 0.00 25.00 0.00 10.00 0.00 455.00 455.00 130.00 130.00 85.00 20.00 25.00 0.00 0.00 0.00
15 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00
16 455.00 310.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 455.00 310.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00
17 455.00 260.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 455.00 260.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00
18 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00
19 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00
20 455.00 455.00 130.00 130.00 162.00 33.00 25.00 10.00 0.00 0.00 455.00 455.00 130.00 130.00 162.00 0.00 25.00 23.00 10.00 10.00
21 455.00 455.00 130.00 130.00 85.00 20.00 25.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 95.00 0.00 25.00 0.00 10.00 0.00
22 455.00 455.00 130.00 0.00 0.00 25.00 25.00 10.00 0.00 0.00 455.00 360.00 130.00 130.00 0.00 0.00 25.00 0.00 0.00 0.00
23 455.00 425.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 455.00 315.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuel Cost 561692.4647 562129.5031
Start-Up Cost 3400.00 3120.0000
Total Cost 565092.4647 565249.5031

Objective Function Cost 565092.4647 565249.5031
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Table 8.11: Optimal results of ten thermal generation units, a wind turbine and the load reduction measures are not active
for twenty-four periods of time and the spinning reserve on the thermal units is assumed to be 10% of the demand at each
period

Algorithm BBO GA Forecast
Time U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 wsc

m U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 wsc
m wF

m

1 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 455.00 385.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0.00 455.00 265.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 455.00 359.21 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.79 455.00 344.64 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.36 30.00
5 455.00 281.36 130.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 3.64 455.00 384.98 130.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 5.02 30.00
6 455.00 333.54 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 26.46 455.00 455.00 130.00 0.00 50.54 0.00 0.00 0.00 0.00 0.00 9.46 30.00
7 455.00 383.44 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 26.56 455.00 388.11 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 21.89 60.00
8 455.00 409.26 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 50.74 455.00 417.73 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 42.27 60.00
9 455.00 455.00 130.00 130.00 48.28 0.00 25.00 0.00 0.00 0.00 56.72 455.00 455.00 130.00 130.00 65.69 0.00 0.00 10.00 0.00 0.00 54.31 60.00
10 455.00 455.00 130.00 130.00 90.54 20.00 25.00 0.00 0.00 0.00 94.46 455.00 455.00 130.00 130.00 140.26 20.00 0.00 10.00 0.00 10.00 49.74 100.00
11 455.00 455.00 130.00 130.00 149.31 20.00 25.00 10.00 0.00 0.00 75.69 455.00 455.00 130.00 130.00 162.00 30.06 25.00 0.00 10.00 0.00 52.94 100.00
12 455.00 455.00 130.00 130.00 129.08 20.00 25.00 10.00 0.00 0.00 145.92 455.00 455.00 130.00 130.00 126.43 20.00 25.00 0.00 10.00 0.00 148.57 165.00
13 455.00 455.00 130.00 130.00 76.30 20.00 0.00 0.00 0.00 0.00 133.70 455.00 455.00 130.00 130.00 128.71 20.00 25.00 0.00 0.00 0.00 56.29 165.00
14 455.00 455.00 130.00 130.00 74.39 20.00 0.00 0.00 0.00 0.00 35.61 455.00 455.00 130.00 130.00 64.55 20.00 0.00 0.00 0.00 0.00 45.45 70.00
15 455.00 422.12 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 37.88 455.00 415.32 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 44.68 70.00
16 455.00 240.85 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 69.15 455.00 280.89 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 29.11 70.00
17 455.00 211.27 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 48.73 455.00 213.70 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 46.30 70.00
18 455.00 297.13 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 62.87 455.00 291.90 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 68.10 70.00
19 455.00 444.85 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 15.15 455.00 415.43 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 44.57 70.00
20 455.00 455.00 130.00 0.00 162.00 80.00 25.00 49.00 10.00 10.00 24.00 455.00 455.00 130.00 130.00 132.71 20.00 25.00 0.00 10.00 10.00 32.29 50.00
21 455.00 455.00 130.00 0.00 162.00 32.46 25.00 0.00 10.00 0.00 30.54 455.00 455.00 130.00 0.00 162.00 24.84 25.00 10.00 0.00 0.00 38.16 50.00
22 455.00 455.00 0.00 0.00 96.06 20.00 25.00 0.00 0.00 0.00 48.94 455.00 455.00 0.00 0.00 117.86 20.00 25.00 0.00 0.00 0.00 27.14 50.00
23 455.00 420.00 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 420.00 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuel Cost 537264.4644 540310.8040
Start-Up Cost 3170.0000 3230.0000

Cdm ($) 7940.3943 6693.2187
Total Cost 548374.8588 550234.0227

Objective Function Cost 565092.4647 565249.5031
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Figure 8.6: Optimal results of ten thermal generation units, a wind turbine and
the load reduction measures are not active for twenty-four periods of time and the
spinning reserve on the thermal units is assumed to be 10% of the demand at each
period
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Table 8.12: Optimal results of ten thermal generation units without wind energy and the load reduction measures are active at
peak loads for twenty-four periods of time and the spinning reserve on the thermal units is assumed to be 10% of the demand
at each period

Algorithm BBO GA Forecast
Time U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Lsc

m U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Lsc
m LF

m

1 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 455.00 265.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 265.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 455.00 235.00 130.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 235.00 130.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 455.00 260.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 285.00 130.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 455.00 410.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 410.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 455.00 455.00 130.00 130.00 95.00 0.00 25.00 0.00 0.00 10.00 0.00 455.00 455.00 130.00 130.00 85.00 20.00 25.00 0.00 0.00 0.00 0.00 0.00
10 455.00 455.00 130.00 130.00 162.00 24.37 25.00 10.00 0.00 0.00 8.63 455.00 455.00 130.00 130.00 123.93 20.00 25.00 0.00 10.00 0.00 51.07 81.00
11 455.00 455.00 130.00 130.00 141.84 20.00 25.00 10.00 10.00 0.00 73.16 455.00 455.00 130.00 130.00 162.00 67.36 25.00 10.00 10.00 0.00 5.64 90.00
12 455.00 455.00 130.00 130.00 162.00 72.71 25.00 10.00 10.00 10.00 40.29 455.00 455.00 130.00 130.00 162.00 70.82 25.00 10.00 10.00 10.00 42.18 90.00
13 455.00 455.00 130.00 130.00 162.00 26.84 25.00 10.00 0.00 0.00 6.16 455.00 455.00 130.00 130.00 115.65 20.00 25.00 0.00 10.00 0.00 59.35 76.50
14 455.00 455.00 130.00 130.00 85.00 20.00 25.00 0.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 85.00 20.00 25.00 0.00 0.00 0.00 0.00 0.00
15 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 455.00 310.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 310.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 455.00 260.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 260.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 455.00 455.00 130.00 130.00 88.99 20.00 25.00 10.00 0.00 0.00 86.01 455.00 455.00 130.00 130.00 162.00 20.18 25.00 0.00 10.00 0.00 12.82 90.00
21 455.00 455.00 130.00 130.00 75.00 20.00 25.00 10.00 0.00 0.00 0.00 455.00 455.00 130.00 130.00 75.00 20.00 25.00 0.00 10.00 0.00 0.00 0.00
22 455.00 455.00 0.00 0.00 145.00 20.00 25.00 0.00 0.00 0.00 0.00 455.00 455.00 0.00 0.00 145.00 20.00 25.00 0.00 0.00 0.00 0.00 0.00
23 455.00 420.00 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 420.00 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuel Cost 557526.8976 557722.5808
Start-Up Cost 3170.00 3110.00

LD
cost ($) 1928.2282 1539.4357

Total Cost 562625.1258 562372.0165
Objective Function Cost 573926.9713 573755.5840
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Figure 8.7: Optimal results of ten thermal generation units without wind energy and
the load reduction measures are active at peak loads for twenty-four periods of time
and the spinning reserve on the thermal units is assumed to be 10% of the demand
at each period
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Table 8.13: Optimal results of ten thermal generation units, a wind energy and the load reduction measures are active at peak
loads for twenty-four periods of time and the spinning reserve on the thermal units is assumed to be 10% of the demand at
each period

Algorithm BBO GA Forecast
Time U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Lsc

m Lsc
m U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Lsc

m Lsc
m wF

m LF
m

1 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 245.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 295.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 455.00 265.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 265.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 455.00 348.06 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.94 0.00 455.00 345.32 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.68 0.00 30.00 0.00
5 455.00 276.71 130.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 8.29 0.00 455.00 260.09 130.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 24.91 0.00 30.00 0.00
6 455.00 356.61 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 3.39 0.00 455.00 332.90 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 27.10 0.00 30.00 0.00
7 455.00 363.40 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 46.60 0.00 455.00 353.91 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 56.09 0.00 60.00 0.00
8 455.00 455.00 130.00 130.00 28.23 0.00 0.00 0.00 0.00 0.00 1.77 0.00 455.00 425.81 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 34.19 0.00 60.00 0.00
9 455.00 455.00 130.00 130.00 86.23 20.00 0.00 0.00 10.00 0.00 13.77 0.00 455.00 455.00 130.00 130.00 54.08 20.00 0.00 0.00 0.00 0.00 55.92 0.00 60.00 0.00
10 455.00 455.00 130.00 130.00 127.92 20.00 25.00 10.00 0.00 0.00 31.70 15.38 455.00 455.00 130.00 130.00 143.87 20.00 25.00 0.00 0.00 10.00 15.91 15.23 100.00 81.00
11 455.00 455.00 130.00 130.00 145.70 20.00 25.00 10.00 0.00 0.00 74.29 5.00 455.00 455.00 130.00 130.00 101.73 20.00 25.00 0.00 0.00 10.00 81.26 42.01 100.00 90.00
12 455.00 455.00 130.00 130.00 162.00 62.10 25.00 10.00 10.00 0.00 58.43 2.47 455.00 455.00 130.00 130.00 121.15 20.00 25.00 0.00 0.00 10.00 141.53 12.31 165.00 90.00
13 455.00 455.00 130.00 130.00 106.63 20.00 25.00 10.00 0.00 0.00 36.60 31.77 455.00 455.00 130.00 130.00 54.70 20.00 25.00 0.00 0.00 0.00 75.18 55.12 165.00 76.50
14 455.00 455.00 0.00 130.00 150.09 20.00 25.00 10.00 0.00 0.00 54.91 0.00 455.00 455.00 130.00 130.00 69.53 20.00 0.00 0.00 0.00 0.00 40.47 0.00 70.00 0.00
15 455.00 455.00 0.00 130.00 100.83 20.00 0.00 0.00 0.00 0.00 39.17 0.00 455.00 405.51 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 54.49 0.00 70.00 0.00
16 455.00 390.01 0.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 49.99 0.00 455.00 303.42 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 6.58 0.00 70.00 0.00
17 455.00 336.36 0.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 53.64 0.00 455.00 192.38 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 67.62 0.00 70.00 0.00
18 455.00 420.87 0.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 69.13 0.00 455.00 317.41 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 42.59 0.00 70.00 0.00
19 455.00 426.71 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 33.29 0.00 455.00 443.49 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 16.51 0.00 70.00 0.00
20 455.00 455.00 130.00 130.00 103.86 20.00 0.00 10.00 0.00 10.00 30.51 55.63 455.00 455.00 130.00 130.00 119.87 0.00 25.00 10.00 0.00 10.00 38.82 26.31 50.00 90.00
21 455.00 455.00 130.00 130.00 62.84 20.00 0.00 10.00 0.00 10.00 27.16 0.00 455.00 455.00 130.00 130.00 41.26 0.00 25.00 10.00 0.00 10.00 43.74 0.00 50.00 0.00
22 455.00 455.00 130.00 0.00 39.95 20.00 0.00 0.00 0.00 0.00 0.05 0.00 455.00 340.16 130.00 130.00 0.00 0.00 25.00 0.00 0.00 0.00 19.84 0.00 50.00 0.00
23 455.00 315.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 315.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fuel Cost 542905.6077 537127.0122
Start-Up Cost 3460.00 2880.00

Cdm ($) 5197.0036 6899.5196
LD
cost ($) 992.2421 1358.7409

Total Cost 552554.8534 548265.2727
Objective Function Cost 573633.5985 569628.4015
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Figure 8.8: Optimal results of ten thermal generation units, a wind energy and the
load reduction measures are active at peak loads for twenty-four periods of time and
the spinning reserve on the thermal units is assumed to be 10% of the demand at
each period
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8.7 Conclusion

In this chapter, the unit commitment model for Smart Grid is modeled assuming the

incorporation of significant amount of wind power and the load reduction measures are

active at peak loads. Then, a procedure using any metaheuristic optimization was

proposed to solve the problem. The Biogeography Based Optimization algorithm

(BBO) and Genetic Algorithm (GA) were proposed and successfully utilized to solve

the problem. The algorithms were applied to two systems to validate their accuracy

and effectiveness, one consists of four thermal generation units, a wind turbine and a

load reduction measures are active at peak loads with eight periods of time and the

spinning reserve for the thermal units is assumed to be 10% of the demand at each

period and the second consists of ten thermal generation units, a wind turbine and

load reduction measures are active at peak loads with twenty-four periods of time

and the spinning reserve on the thermal units is assumed to be 10% of the demand at

each period. The simulation results of the proposed algorithms have been compared

with other algorithms in the literature when the wind energy is not included and the

load reduction measures are not active. Based on the results obtained in both test

systems, there is not much difference to declare a clear superior method, instead, the

methods BBO and GA offer similar sets of feasible near-optimal solutions. They also

generate a better solutions compared with other algorithms in the literature when

the wind energy is not included and the load reduction measures are not active for

the first system. Also, the total cost decrease with the merging of wind energy and

applying the load reduction measures.



Chapter 9

Hydrothermal Scheduling Problem for Smart Grid

9.1 Introduction

Hydrothermal scheduling (HTS) is finding the hour-by-hour optimal power allocation

of the load among the available thermal units and hydro units for a time period

between 1 day to 1 week, and the objective is to minimize the total fuel cost [129].

The wind power and the load reduction usually modeled as negative load due to the

small contribution compared with the capacity of the system.

In smart grid the HTS problem will be finding the optimal power allocation of

the load among the available thermal unit, renewable resources, assuming the load

reduction measures are active at peak loads and hydro units for a period and the

objective is to minimize the total fuel cost and the greenhouse gases emissions.

The integration of significant amount renewable energy and the integration of

load reduction as demand side management measure increase the complexity of the

problem and introduce many challenges in finding the optimal solution which accounts

for the intermittent behavior of renewable resources and errors in the forecasting of

the available renewable power and the forecasting of the amount of load reduction at

peak loads. In this chapter, fixed head hydrothermal scheduling will be modeled and

solved for smart grid network by assuming significant integration of wind energy to

the network and the load reduction programs are active.

9.2 Smart Grid Hydrothermal Scheduling

Mathematical Formulation

Suppose that there are N thermal generation units, and Nh hydro generation units

that will feed the demand load over T periods and there areNd areas for load reduction

at peak load times. The hydrothermal scheduling objective function for smart grid

network can be written as:

115



116

min Cth + Cwind + CLR (9.1)

where Cth is the total thermal power generation cost, Cwind is the total wind power

generation cost and CLR is the total load reduction cost.

9.2.1 Thermal Power Generation Cost

The total thermal power generation cost is shown in (9.2)[129].

Cth =
T
∑

t=1

N
∑

j=1

F (Pj(t)) (9.2)

where Cth is the total generation cost forN units in T periods (hours) and F (Pj(t))

is the fuel cost function for unit j at period t.

F (Pj) = ajP
2
j + bjPj + cj (9.3)

where aj, bj, cj are the fuel cost coefficients of generator j, Pj is the the output

power of generator j and F (Pj) is the fuel cost of unit j.

9.2.2 Wind Power Generation Cost

There are two cost model shown in Chapter(6): the negative load model and the

probabilistic model. Based on these models, the total wind cost for Nw units and in

T periods can be calculated as follows:

Cwind =
T
∑

t=1

W t
Cost (9.4)

Where W t
Cost is the total wind power generation cost.

9.2.3 Load Reduction Cost

There are two main cost models proposed in Chapter(7): the negative load model

and the probabilistic model. The probabilistic cost model was formulated to normal

distribution, weibull distribution, and exponential distribution. Based on the selected

model, the total wind cost for T periods can be calculated as follows:
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CLR =
T
∑

t=1

LRt
Cost (9.5)

Where LRt
Cost is the total cost of load reduction.

9.3 Equality Constraints

9.3.1 Real Power Balance Constraint

The total power generated from thermal and wind units should equal the load demand

at each period of time as shown in (9.6), where the PD represents the total load

demand and PL is the power losses.

Nh
∑

m=1

PH m +
Nx
∑

i=1

Pi +
Nw
∑

j=1

wj = PD + PL −
Nd
∑

k=1

Lk (9.6)

PL =
Nt
∑

k=1

Nt
∑

l=1

(Pk Bkl Pl +B0l Pl +B00) (9.7)

Where PH m is the hydro power generation, wj is the available wind power for the

jth wind turbine and Lk is the available load reduction from area k. Bkl, B0l and B00

are the power loss coefficients and Nt = Nx +Nh +Nw.

9.3.2 Total Water Discharge Constraint

For fixed head reservoir the discharge rate is shown in (9.8) and the total volume for

each hydro plant is fixed and the sum of the discharge rate for the total period should

equal the total volume as shown in (9.9).

qmt = αm P 2
H m(t) + βm PH m(t) + γm (9.8)

T
∑

t=1

qmt nt = Vm (9.9)

where qmt is the discharge rate for hydro generation unit m at time t and Vm is

the total volume for hydro generation unit m.
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9.4 Inequality Constraints

9.4.1 Thermal Unit Power Limit Constraint

Thermal generation units are restricted by their limits in term of generation active

power as follows:

Pmin
j ≤ Pj ≤ Pmax

j j = 1, 2 · · · , N (9.10)

where Pmin
j , Pmax

j , are the minimum active power output, maximum active power

output of the jth generating unit respectively.

9.4.2 Hydro Unit Power Limit Constraint

Hydro generation units are restricted by their limits in terms of generation active

power as follows:

Pmin
H m ≤ PH m ≤ Pmax

H m m = 1, 2 · · · , Nh (9.11)

where Pmin
H m , Pmax

H m , are the minimum active power output, maximum active power

output of the mth generating unit respectively.

9.4.3 Wind Turbine Power Limit Constraint

0 ≤ wj ≤ wr
j j = 1, 2 · · · , Nw (9.12)

Here wr
j , is the rated active power output of the jth wind turbine unit.

9.4.4 Load Power Limit Constraint

Lmin
k ≤ Lk ≤ Lmax

k k = 1, 2 · · · , Nd (9.13)

Here Lmin
k , Lmax

k , are the minimum active power reduction, maximum active power

reduction of the kth unit respectively.
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9.5 Fixed Head Hydrothermal Scheduling Solution Procedure

Incorporating Wind Energy and Load Reduction

‘The general procedure to solve the Fixed Head Hydrothermal Scheduling problem

incorporating wind energy and load reduction measures are active at peak loads using

any metaheuristic algorithm is shown in Procedure (5).

Procedure 5: Fixed Head Hydrothermal Scheduling

1. Initialize the algorithm parameters (population size, no of generations,

no of iteration, mutation rate, cross over rate).

2. Generate a set of feasible solutions where each consist of a set of water

discharge rate schedules, and on each hour in any schedule there are the

wind power and the load reduction power, both generated randomly based

on the forecast.

3. The economic dispatch is calculated using lambda iteration method for

all the solutions to determine the thermal power generation values, the

power loss and the fuel cost.

4. The direct cost, overestimation cost and the under estimation cost for

wind power and load reduction power are calculated for all the solutions.

5. Calculate the objective function.

6. Save the best solution.

7. Apply the Algorithm operations on the set of the solutions.

8. Check the feasibility of the generated solutions and repeat steps (3-6).

9. Repeat steps (7-8) until the termination criterion is achieved.
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9.6 Fixed Head Hydrothermal Scheduling Incorporating Wind Energy

and Load Reduction

This section proposes a numerical example of the the fixed head hydrothermal schedul-

ing problem incorporating wind energy and the load reduction measures are active

at peak loads using the Biogeography based optimization algorithm (BBO), Genetic

algorithm and the Khums Optimization Algorithm (KOA). Two benchmark systems

were used and a comparison will be done between the results with other algorithms

in the literature if possible. Probabilistic model will be used to represent the wind

turbine cost model and the load reduction cost model.

9.6.1 Test 1

The study system consists of one thermal generation unit, one hydro generation unit

and a wind turbine and the load reduction measures are active at peak loads with

two periods of time. The data for the thermal generation units, the hydro units and

load demand are shown in Appendix (C.3.1). The wind turbine cost model data and

the load reduction cost model data are shown in Appendix (C.3.3).

Table (9.1) and Figure (9.1) show the obtained schedule using BBO algorithm,

GA algorithm, KOA algorithm, LGIM[124] algorithm and IBFA[35] algorithm. The

table shows the thermal power PTH , the hydro power PH , the power loss PLoss and

the water flow q for two periods. The BBO, GA and KOA result is higher than the

two algorithm with 0.0164%, 0.0312% and 0.0052% respectively.

If the wind energy included the problem will be complex because of the inherent

intermittent behavior of wind speed. Probabilistic cost model is used to minimize the

effect of inaccurate wind speed forecasting. The rule here is to choose the solution

with lower objective function which has lower overestimate and underestimate fore-

casting error. Table (9.2) shows the results when wind energy is included and the

load reduction measures are not active. KOA algorithm introduce the best solution

because it has the lowest objective function cost and the lowest total cost compared

with BBO and GA as shown in Figure (9.2).

Table (9.3) shows the results in the case of load reduction measures are active and

the wind energy is not included. The results again shows that the KOA algorithm
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introduce the best solution because it has the lowest objective function cost and the

lowest total cost compared with BBO and GA as shown in Figure (9.3).

Table (9.4) and Figure (9.4) show the results in the case of wind energy is included

and the load reduction measures are active at peak loads. The results shows that the

KOA algorithm introduce the lowest objective function and BBO solution has the

lowest total cost. The rule is to choose the lowest objective function even if the total

cost is higher. Hence, the KOA solution is the recommended solution for this system

at this situation.
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Table 9.1: Comparison of BBO, GA, KOA, LGIM and IBFA algorithms results of test system 1 without wind energy and
without load reduction

Load (MW) BBO GA KOA LGIM[124] IBFA[35]
PTH (MW) 553.54 549.20 566.25 567.40 565.89

1200 PH (MW) 683.88 688.75 669.62 668.30 670.03
(12 am to 12 pm) q (acre-ft/h) 3728.86 3753.09 3658.00 3651.50 3660.00

PTH (MW) 699.17 703.48 686.85 685.70 687.17
1500 PH (MW) 860.00 855.00 874.30 875.60 873.93

(12 pm to 12 am) q (acre-ft/h) 4604.20 4579.35 4675.27 4681.70 4673.40
Total Cost ($) 169657.89 169683.00 169639.14 169630.00 169630.00
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Figure 9.1: Comparison of BBO, GA, KOA, LGIM and IBFA algorithms results of
test system 1 without wind energy and without load reduction

Table 9.2: BBO, GA and KOA algorithms results of test system 1 with wind energy
and load reduction is not active

Load (MW) BBO GA KOA
PTH (MW) 581.39 536.56 514.48

1200 PH (MW) 627.00 677.50 700.62
(12 am to 12 pm) Pw (MW) 23.06 22.66 24.17

Ploss (MW) 31.45 36.72 39.27
q (acre-ft/h) 3446.19 3697.18 3812.10
PTH (MW) 631.66 672.41 685.84

1500 PH (MW) 915.00 865.00 843.27
(12 pm to 12 am) Pw (MW) 20.32 22.44 27.78

Ploss (MW) 66.98 59.86 56.89
q (acre-ft/h) 4877.55 4629.05 4521.00

Total Cost ($) 168158.37 167940.76 167532.98
Objective Function Cost ($) 171384.20 171338.82 171255.09



124

Figure 9.2: BBO, GA and KOA algorithms results of test system 1 with wind energy
and load reduction is not active

Table 9.3: BBO, GA and KOA algorithms results of test system 1 without wind
energy and with load reduction active at peak loads

Load (MW) BBO GA KOA
PTH (MW) 555.66 550.09 554.31

1200 PH (MW) 681.50 687.75 683.01
(12 am to 12 pm) PLR (MW) 0.00 0.00 0.00

Ploss (MW) 37.16 37.84 37.32
q (acre-ft/h) 3717.06 3748.12 3724.54
PTH (MW) 680.27 685.33 681.09

1500 PH (MW) 862.00 856.00 860.86
(12 pm to 12 am) PLR (MW) 17.17 17.29 17.34

Ploss (MW) 59.44 58.62 59.29
q (acre-ft/h) 4614.14 4584.32 4608.48

Total Cost ($) 169136.03 169109.52 169087.81
Objective Function Cost ($) 170663.62 170653.22 170619.90



125

Figure 9.3: BBO, GA and KOA algorithms results of test system 1 without wind
energy and with load reduction active at peak loads

Table 9.4: BBO, GA and KOA algorithms results of test system 1 with wind energy
and with load reduction active at peak loads

Load (MW) BBO GA KOA
PTH (MW) 536.93 603.13 561.44

1200 PH (MW) 675.00 595.00 652.74
Pw (MW) 24.52 30.19 19.90

(12 am to 12 pm) PLR (MW) 0.00 0.00 0.00
Ploss (MW) 36.45 28.32 34.09
q (acre-ft/h) 3684.75 3287.15 3574.13
PTH (MW) 656.42 582.20 634.53

1500 PH (MW) 868.00 947.00 891.17
Pw (MW) 19.24 25.41 20.64

(12 pm to 12 am) PLR (MW) 16.62 17.13 17.19
Ploss (MW) 60.27 71.74 63.54
q (acre-ft/h) 4643.96 5036.59 4759.13

Total Cost ($) 167420.68 167365.01 167434.11
Objective Function Cost ($) 172356.45 172476.27 172169.52
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Figure 9.4: BBO, GA and KOA algorithms results of test system 1 with wind energy
and with load reduction active at peak loads
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9.6.2 Test 2

This study system consists of three thermal generation units, one hydro generation

unit and a wind turbine. The data and load demand are shown in Appendix (C.3.2).

The wind turbine cost model data and the load reduction cost model data are shown

in Appendix (C.3.3).

The schedule obtained using BBO, GA and KOA without wind energy and without

load reduction are shown in Table(9.6), Table(9.7) and Table(9.8) respectively and the

results are illustrated in Figure (9.5). At each hour the thermal power Pi, the hydro

power PH , the power loss PLoss and the water flow q are shown in the table. If the

wind or the load reduction are included the actual value Pw for the wind and the PLR

for load reduction and forecast schedule P F
w for the wind and P F

LR for load reduction

will be provided in the table. All the values are within limits and the solution is

feasible. The total costs obtained is higher than the cost obtained in [35, 67] as

shown in Table(9.5), but in both references the obtained result has unfeasible values.

The infeasible point in [35] is in P2 at H24 which is lower than the machine limit and

there is also a small violation to the power balance constraint. In [67] the violation

is in P2 and PH power limits.

Table (9.9), Table (9.10) and Table (9.11) show the obtained feasible schedule

using BBO algorithm, GA algorithm and KOA algorithm respectively with wind

power included and the load reduction is not active. The rule is to choose the solution

with lower objective function as stated before, hence the best schedule achieved will

be using GA algorithm as shown in Figure (9.6).

The best solution obtained in the case of the load reduction measures are active

and the wind energy is not included will be the KOA algorithm schedule because it

has the lowest objective function as shown in Figure (9.7) and shown in Table (9.12),

Table (9.13) and Table (9.14) respectively.

Finally, the best solution obtained when the wind energy included and the load

reduction measures are active is the BBO algorithm schedule as shown in Figure (9.8)

and shown in Table (9.15), Table (9.16) and Table (9.17) respectively.
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Table 9.5: Comparison of BBO, GA, KOA, IBFA and NRM algorithms results of test
system 2 without wind energy and without load reduction

Algorithm Cost (Rs)
BBO 24304.13
GA 24302.15
KOA 24303.72

IBFA[35] 24267.41
NRM[67] 24276.79

Figure 9.5: Comparison of BBO, GA, KOA, IBFA and NRM algorithms results of
test system 2 without wind energy and without load reduction
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Table 9.6: BBO algorithm result of test system 2 without wind energy and without
load reduction

Time P1 P2 P3 PH PLoss q (m3/h)
H1 68.77 40.00 63.42 10.00 7.20 346.00
H2 76.33 41.60 70.91 10.00 8.85 346.00
H3 89.28 49.37 83.59 10.00 12.26 346.00
H4 115.70 66.01 109.21 10.00 20.93 346.00
H5 133.69 77.99 126.47 10.00 28.16 346.00
H6 151.54 90.49 143.45 10.88 36.37 364.77
H7 165.30 100.56 156.39 11.18 43.43 371.04
H8 169.29 103.91 160.72 21.40 45.34 595.58
H9 168.06 104.00 161.28 50.81 44.17 1311.22
H10 174.94 109.98 168.91 69.00 47.83 1805.61
H11 184.75 118.85 179.89 95.04 53.54 2582.70
H12 194.26 126.91 189.19 99.00 59.37 2708.06
H13 200.00 133.29 196.36 99.00 63.66 2708.06
H14 190.66 123.81 185.64 97.00 57.12 2644.54
H15 173.34 109.68 168.96 95.00 46.98 2581.50
H16 170.03 105.69 163.46 56.00 45.19 1448.16
H17 167.68 103.27 160.18 38.00 44.13 986.64
H18 157.68 95.70 150.55 35.00 38.93 913.50
H19 155.33 93.41 147.35 17.00 38.11 497.34
H20 142.30 83.96 134.71 11.00 31.98 367.26
H21 124.66 71.90 117.83 10.00 24.40 346.00
H22 102.41 57.50 96.36 10.00 16.28 346.00
H23 80.63 44.15 75.13 10.00 9.92 346.00
H24 71.56 40.00 66.20 10.00 7.77 346.00
Total Cost (Rs) 24304.13 Total Volume (m3) 24999.97
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Table 9.7: GA algorithm result of test system 2 without wind energy and without
load reduction

Time P1 P2 P3 PH PLoss q (m3/h)
H1 68.77 40.00 63.42 10.00 7.20 346.00
H2 76.33 41.60 70.91 10.00 8.85 346.00
H3 89.28 49.37 83.59 10.00 12.26 346.00
H4 115.70 66.01 109.21 10.00 20.93 346.00
H5 133.54 77.89 126.33 10.32 28.09 352.75
H6 151.30 90.33 143.25 11.36 36.24 374.88
H7 164.90 100.29 156.06 11.94 43.20 387.35
H8 160.12 97.64 153.10 39.25 40.12 1017.49
H9 173.09 107.51 165.45 41.00 47.06 1060.86
H10 183.16 115.88 175.66 53.00 52.70 1368.41
H11 184.77 118.86 179.91 95.00 53.55 2581.50
H12 195.79 128.08 190.43 96.00 60.31 2612.96
H13 200.00 134.47 197.72 97.00 64.20 2644.54
H14 190.96 124.03 185.89 96.42 57.30 2626.12
H15 173.34 109.68 168.96 95.00 46.98 2581.50
H16 171.05 106.41 164.30 54.00 45.77 1394.96
H17 164.11 100.80 157.20 45.00 42.12 1161.50
H18 157.17 95.35 150.12 36.00 38.66 937.76
H19 152.78 91.72 145.21 22.00 36.72 609.04
H20 138.80 81.71 131.71 18.00 30.23 519.44
H21 124.66 71.90 117.83 10.00 24.40 346.00
H22 102.41 57.50 96.36 10.00 16.28 346.00
H23 80.63 44.15 75.13 10.00 9.92 346.00
H24 71.56 40.00 66.20 10.00 7.77 346.00
Total Cost (Rs) 24302.15 Total Volume (m3) 24999.06
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Table 9.8: KOA algorithm result of test system 2 without wind energy and without
load reduction

Time P1 P2 P3 PH PLoss q (m3/h)
H1 68.77 40.00 63.42 10.00 7.20 346.00
H2 76.33 41.60 70.91 10.00 8.85 346.00
H3 89.28 49.37 83.59 10.00 12.26 346.00
H4 115.70 66.01 109.21 10.00 20.93 346.00
H5 132.73 77.38 125.64 11.94 27.70 387.35
H6 150.61 89.88 142.67 12.71 35.87 403.97
H7 157.33 95.18 149.76 26.63 38.91 715.07
H8 163.78 100.13 156.16 32.08 42.15 843.30
H9 173.86 108.06 166.09 39.51 47.52 1023.79
H10 182.70 115.54 175.28 53.89 52.42 1392.00
H11 183.80 118.14 179.10 96.94 52.99 2642.64
H12 195.31 127.71 190.04 96.94 60.01 2642.64
H13 200.00 132.90 195.92 99.66 63.48 2729.00
H14 190.28 123.52 185.33 97.75 56.89 2668.43
H15 171.97 108.70 167.82 97.75 46.25 2668.43
H16 175.47 109.52 167.96 45.39 48.34 1171.38
H17 166.75 102.62 159.40 39.82 43.60 1031.54
H18 159.29 96.78 151.90 31.83 39.81 837.29
H19 153.42 92.15 145.75 20.74 37.07 580.69
H20 139.67 82.27 132.46 16.25 30.65 480.93
H21 124.66 71.90 117.83 10.00 24.40 346.00
H22 102.41 57.50 96.36 10.00 16.28 346.00
H23 80.63 44.15 75.13 10.00 9.92 346.00
H24 71.56 40.00 66.20 10.00 7.77 346.00
Total Cost (Rs) 24303.72 Total Volume (m3) 24986.46



132

Table 9.9: BBO algorithm result of test system 2 with wind energy and the load
reduction measures is not active

Time P1 P2 P3 PH Pw PLoss q (mˆ3/h) P F
w

H1 68.77 40.00 63.42 10.00 0.00 7.20 346.00 0.00
H2 76.33 41.60 70.91 10.00 0.00 8.85 346.00 0.00
H3 89.28 49.37 83.59 10.00 0.00 12.26 346.00 0.00
H4 115.11 65.62 108.65 10.00 1.33 20.71 346.00 30.00
H5 131.10 76.24 124.01 10.25 5.44 27.05 351.40 30.00
H6 148.30 88.19 140.40 11.00 6.90 34.80 367.26 30.00
H7 156.38 94.02 148.07 12.00 18.29 38.76 388.64 50.00
H8 169.87 104.03 160.72 12.15 9.13 45.89 391.79 50.00
H9 170.61 105.12 162.30 27.32 20.57 45.93 731.15 50.00
H10 175.56 110.10 168.89 59.17 9.52 48.24 1533.41 20.00
H11 182.41 116.97 177.71 95.79 4.28 52.17 2606.23 20.00
H12 191.99 124.87 186.83 96.00 8.23 57.93 2612.96 40.00
H13 188.89 122.33 183.96 97.00 28.85 56.04 2644.54 40.00
H14 186.64 120.43 181.75 96.00 9.84 54.67 2612.96 20.00
H15 165.66 103.69 161.57 95.07 16.84 42.83 2583.57 20.00
H16 160.69 98.97 155.19 67.00 8.31 40.16 1749.34 20.00
H17 154.87 94.26 148.95 55.00 9.20 37.28 1421.50 20.00
H18 148.32 89.16 142.09 44.00 10.62 34.20 1136.16 20.00
H19 147.47 87.97 140.27 24.00 9.39 34.11 654.56 20.00
H20 138.78 81.59 131.51 14.00 4.41 30.31 431.76 10.00
H21 123.90 71.40 117.10 10.00 1.69 24.09 346.00 10.00
H22 100.07 56.03 94.09 10.00 5.32 15.52 346.00 10.00
H23 80.63 44.15 75.13 10.00 0.00 9.92 346.00 0.00
H24 71.56 40.00 66.20 10.00 0.00 7.77 346.00 0.00
Total Cost (Rs) 24215.53 Total Volume (m3) 24985.23
Objective Function Cost (Rs) 25649.05
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Table 9.10: GA algorithm result of test system 2 with wind energy and the load
reduction measures is not active

Time P1 P2 P3 PH Pw PLoss q (mˆ3/h) P F
w

H1 68.77 40.00 63.42 10.00 0.00 7.20 346.00 0.00
H2 76.33 41.60 70.91 10.00 0.00 8.85 346.00 0.00
H3 89.28 49.37 83.59 10.00 0.00 12.26 346.00 0.00
H4 115.21 65.69 108.74 10.00 1.11 20.75 346.00 30.00
H5 129.21 74.96 122.20 10.18 9.70 26.26 349.86 30.00
H6 147.60 87.66 139.69 10.18 9.35 34.48 349.86 30.00
H7 164.31 99.81 155.45 10.82 2.51 42.92 363.46 50.00
H8 165.44 100.86 156.85 16.83 13.37 43.36 493.68 50.00
H9 164.34 101.39 158.11 57.00 1.28 42.12 1474.88 50.00
H10 169.28 105.55 163.47 68.29 13.11 44.70 1785.63 20.00
H11 182.76 117.22 177.99 95.00 4.39 52.36 2581.50 20.00
H12 185.73 119.77 181.02 98.00 19.62 54.14 2676.24 40.00
H13 190.78 123.99 185.89 99.00 22.55 57.21 2708.06 40.00
H14 182.56 117.09 177.86 96.00 18.74 52.25 2612.96 20.00
H15 170.27 107.27 166.02 95.00 6.74 45.30 2581.50 20.00
H16 168.79 104.57 161.99 51.00 8.20 44.56 1316.06 20.00
H17 164.43 100.88 157.23 40.00 4.81 42.36 1036.00 20.00
H18 152.24 91.60 145.16 31.00 16.27 36.28 817.66 20.00
H19 147.45 87.90 140.15 22.00 11.63 34.14 609.04 20.00
H20 139.11 81.85 131.87 15.00 2.60 30.43 453.50 10.00
H21 121.77 69.99 115.06 10.00 6.43 23.25 346.00 10.00
H22 101.62 57.01 95.60 10.00 1.79 16.02 346.00 10.00
H23 80.63 44.15 75.13 10.00 0.00 9.92 346.00 0.00
H24 71.56 40.00 66.20 10.00 0.00 7.77 346.00 0.00
Total Cost (Rs) 24198.98 Total Volume (m3) 24977.88
Objective Function Cost (Rs) 25623.27
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Table 9.11: KOA algorithm result of test system 2 with wind energy and the load
reduction measures is not active

Time P1 P2 P3 PH Pw PLoss q (mˆ3/h) P F
w

H1 68.77 40.00 63.42 10.00 0.00 7.20 346.00 0.00
H2 76.33 41.60 70.91 10.00 0.00 8.85 346.00 0.00
H3 89.28 49.37 83.59 10.00 0.00 12.26 346.00 0.00
H4 113.97 64.88 107.55 10.00 3.89 20.29 346.00 30.00
H5 125.29 72.56 118.86 19.92 7.81 24.45 562.27 30.00
H6 138.69 81.76 131.83 22.59 15.21 30.09 622.34 30.00
H7 152.59 91.67 145.17 24.73 12.40 36.57 671.34 50.00
H8 164.48 100.57 156.69 29.83 0.99 42.56 789.88 50.00
H9 169.34 104.40 161.52 34.23 15.60 45.10 894.84 50.00
H10 178.19 111.64 170.50 45.07 19.50 49.90 1163.21 20.00
H11 183.48 117.88 178.80 96.88 0.75 52.80 2640.74 20.00
H12 188.82 122.27 183.88 96.88 14.14 56.00 2640.74 40.00
H13 195.00 127.54 189.90 99.13 13.25 59.83 2712.35 40.00
H14 188.97 122.39 184.02 96.88 3.81 56.09 2640.74 20.00
H15 164.91 103.18 160.95 96.88 16.53 42.45 2640.74 20.00
H16 172.71 107.32 165.25 43.65 7.87 46.81 1127.38 20.00
H17 163.05 99.84 155.90 39.78 8.06 41.63 1030.48 20.00
H18 153.32 92.56 146.50 36.82 7.51 36.72 957.67 20.00
H19 148.92 88.93 141.51 21.38 9.10 34.85 595.09 20.00
H20 135.72 79.52 128.66 15.61 9.40 28.91 466.74 10.00
H21 124.66 71.90 117.83 10.00 0.00 24.40 346.00 10.00
H22 99.41 55.62 93.45 10.00 6.81 15.31 346.00 10.00
H23 80.63 44.15 75.13 10.00 0.00 9.92 346.00 0.00
H24 71.56 40.00 66.20 10.00 0.00 7.77 346.00 0.00
Total Cost (Rs) 24249.24 Total Volume (m3) 24924.58
Objective Function Cost (Rs) 25657.92
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Figure 9.6: BBO, GA and KOA algorithms results of test system 2 with wind energy
and without load reduction

Figure 9.7: BBO, GA and KOA algorithms results of test system 2 without wind
energy and the load reduction measures is active
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Table 9.12: BBO algorithm result of test system 2 without wind energy and the load
reduction measures is active

Time P1 P2 P3 PH PLR PLoss q (mˆ3/h) P F
LR

H1 68.77 40.00 63.42 10.00 0.00 7.20 346.00 0
H2 76.33 41.60 70.91 10.00 0.00 8.85 346.00 0
H3 89.28 49.37 83.59 10.00 0.00 12.26 346.00 0
H4 115.70 66.01 109.21 10.00 0.00 20.93 346.00 0
H5 133.45 77.84 126.26 10.49 0.00 28.05 356.38 0
H6 151.70 90.60 143.59 10.57 0.00 36.46 358.02 0
H7 164.22 99.82 155.50 13.25 0.00 42.80 415.55 0
H8 162.80 99.46 155.34 33.99 0.00 41.60 889.24 0
H9 176.39 109.84 168.16 34.64 0.00 49.04 904.69 0
H10 164.80 102.45 159.76 78.00 12.28 42.29 2065.04 18
H11 175.54 111.46 171.15 96.00 19.07 48.23 2612.96 20
H12 189.70 122.97 184.66 96.00 13.19 56.53 2612.96 20
H13 194.03 126.72 188.97 99.00 15.49 59.23 2708.06 18
H14 183.22 117.64 178.50 96.00 17.28 52.64 2612.96 20
H15 172.84 109.32 168.55 96.00 0.00 46.72 2612.96 0
H16 175.15 109.30 167.70 46.00 0.00 48.15 1186.96 0
H17 166.66 102.56 159.33 40.00 0.00 43.55 1036.00 0
H18 160.22 97.41 152.68 30.00 0.00 40.32 794.00 0
H19 152.78 91.72 145.21 22.00 0.00 36.72 609.04 0
H20 140.29 82.67 132.99 15.00 0.00 30.97 453.50 0
H21 124.66 71.90 117.83 10.00 0.00 24.40 346.00 0
H22 102.41 57.50 96.36 10.00 0.00 16.28 346.00 0
H23 80.63 44.15 75.13 10.00 0.00 9.92 346.00 0
H24 71.56 40.00 66.20 10.00 0.00 7.77 346.00 0
Total Cost (Rs) 24249.83 Total Volume (m3) 24996.31
Objective Function Cost (Rs) 25264.26
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Table 9.13: GA algorithm result of test system 2 without wind energy and the load
reduction measures is active

Time P1 P2 P3 PH PLR PLoss q (mˆ3/h) P F
LR

H1 68.77 40.00 63.42 10.00 0.00 7.20 346.00 0
H2 76.33 41.60 70.91 10.00 0.00 8.85 346.00 0
H3 89.28 49.37 83.59 10.00 0.00 12.26 346.00 0
H4 115.70 66.01 109.21 10.00 0.00 20.93 346.00 0
H5 133.55 77.90 126.34 10.29 0.00 28.09 352.21 0
H6 151.61 90.54 143.52 10.74 0.00 36.41 361.62 0
H7 165.53 100.72 156.58 10.74 0.00 43.57 361.62 0
H8 166.28 101.84 158.24 27.21 0.00 43.58 728.60 0
H9 179.23 111.85 170.48 29.21 0.00 50.78 775.39 0
H10 180.28 113.31 172.51 45.99 14.00 51.10 1186.67 18
H11 177.52 113.03 173.04 95.91 14.83 49.34 2610.13 20
H12 188.53 121.99 183.55 96.00 15.73 55.82 2612.96 20
H13 193.63 126.34 188.52 98.00 17.47 58.97 2676.24 18
H14 183.18 117.60 178.45 96.00 17.37 52.62 2612.96 20
H15 172.98 109.42 168.66 95.72 0.00 46.79 2604.19 0
H16 161.00 99.43 155.87 74.00 0.00 40.31 1948.56 0
H17 165.63 101.85 158.47 42.00 0.00 42.97 1085.84 0
H18 157.17 95.35 150.12 36.00 0.00 38.66 937.76 0
H19 147.25 88.07 140.51 33.00 0.00 33.84 865.34 0
H20 139.79 82.35 132.57 16.00 0.00 30.72 475.36 0
H21 124.66 71.90 117.83 10.00 0.00 24.40 346.00 0
H22 102.41 57.50 96.36 10.00 0.00 16.28 346.00 0
H23 80.63 44.15 75.13 10.00 0.00 9.92 346.00 0
H24 71.56 40.00 66.20 10.00 0.00 7.77 346.00 0
Total Cost (Rs) 24264.75 Total Volume (m3) 24963.46
Objective Function Cost (Rs) 25261.78
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Table 9.14: KOA algorithm result of test system 2 without wind energy and the load
reduction measures is active

Time P1 P2 P3 PH PLR PLoss q (mˆ3/h) P F
LR

H1 68.77 40.00 63.42 10.00 0.00 7.20 346.00 0
H2 76.33 41.60 70.91 10.00 0.00 8.85 346.00 0
H3 89.28 49.37 83.59 10.00 0.00 12.26 346.00 0
H4 115.70 66.01 109.21 10.00 0.00 20.93 346.00 0
H5 131.35 76.51 124.44 14.74 0.00 27.05 447.81 0
H6 146.60 87.26 139.27 20.62 0.00 33.76 578.01 0
H7 159.60 96.70 151.66 22.20 0.00 40.16 613.53 0
H8 160.69 98.02 153.58 38.13 0.00 40.43 989.84 0
H9 173.19 107.58 165.53 40.81 0.00 47.12 1056.15 0
H10 182.78 115.11 174.55 41.23 13.96 52.64 1066.71 18
H11 176.53 112.27 172.14 96.84 15.99 48.79 2639.48 20
H12 189.14 122.57 184.24 97.65 12.59 56.20 2665.16 20
H13 192.72 125.66 187.80 100.00 17.23 58.41 2740.00 18
H14 181.40 116.31 177.01 99.93 16.95 51.61 2737.76 20
H15 172.42 109.02 168.20 96.84 0.00 46.49 2639.48 0
H16 175.53 109.57 168.01 45.26 0.00 48.38 1168.09 0
H17 169.87 104.78 161.99 33.75 0.00 45.40 883.36 0
H18 160.32 97.48 152.76 29.81 0.00 40.38 789.46 0
H19 151.89 91.13 144.46 23.76 0.00 36.25 649.16 0
H20 137.88 81.12 130.92 19.85 0.00 29.78 560.54 0
H21 124.66 71.90 117.83 10.00 0.00 24.40 346.00 0
H22 102.41 57.50 96.36 10.00 0.00 16.28 346.00 0
H23 80.63 44.15 75.13 10.00 0.00 9.92 346.00 0
H24 71.56 40.00 66.20 10.00 0.00 7.77 346.00 0
Total Cost (Rs) 24250.00 Total Volume (m3) 24992.54
Objective Function Cost (Rs) 25251.18
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Table 9.15: BBO algorithm result of test system 2 with wind energy and the load reduction measures is active

Time P1 P2 P3 PH Pw PLR PLoss q (mˆ3/h) P F
w P F

LR

H1 68.77 40.00 63.42 10.00 0.00 0.00 7.20 346.00 0.00 0.00
H2 76.33 41.60 70.91 10.00 0.00 0.00 8.85 346.00 0.00 0.00
H3 89.28 49.37 83.59 10.00 0.00 0.00 12.26 346.00 0.00 0.00
H4 111.05 63.00 104.72 10.00 10.46 0.00 19.23 346.00 30.00 0.00
H5 128.93 74.76 121.92 10.04 10.49 0.00 26.14 346.80 30.00 0.00
H6 145.02 85.85 137.27 10.50 14.60 0.00 33.26 356.53 30.00 0.00
H7 162.48 98.49 153.79 11.71 5.44 0.00 41.92 382.44 50.00 0.00
H8 162.34 98.51 153.88 15.78 21.22 0.00 41.74 470.44 50.00 0.00
H9 175.20 108.82 166.89 32.00 5.50 0.00 48.41 841.38 50.00 0.00
H10 180.00 112.83 171.81 39.00 7.79 14.61 51.04 1011.26 20.00 18.00
H11 174.02 110.22 169.62 95.00 5.28 18.21 47.37 2581.50 20.00 20.00
H12 178.67 113.99 174.20 96.99 20.29 15.85 50.01 2644.25 40.00 20.00
H13 183.26 117.74 178.66 98.00 22.65 17.36 52.68 2676.24 40.00 18.00
H14 174.00 110.24 169.66 96.00 19.91 17.55 47.36 2612.96 20.00 20.00
H15 167.77 105.34 163.64 95.65 11.56 0.00 43.95 2601.79 20.00 0.00
H16 157.43 96.75 152.44 73.99 7.87 0.00 38.49 1948.25 20.00 0.00
H17 153.81 93.79 148.47 65.02 0.60 0.00 36.71 1694.13 20.00 0.00
H18 145.32 86.95 139.12 42.00 19.41 0.00 32.81 1085.84 20.00 0.00
H19 151.00 90.44 143.52 22.00 3.88 0.00 35.85 609.04 20.00 0.00
H20 139.59 82.05 132.09 10.08 6.95 0.00 30.76 347.62 10.00 0.00
H21 120.68 69.27 114.01 10.00 8.86 0.00 22.82 346.00 10.00 0.00
H22 100.70 56.43 94.70 10.00 3.89 0.00 15.72 346.00 10.00 0.00
H23 80.63 44.15 75.13 10.00 0.00 0.00 9.92 346.00 0.00 0.00
H24 71.56 40.00 66.20 10.00 0.00 0.00 7.77 346.00 0.00 0.00
Total Cost (Rs) 24197.57 Total Volume (m3) 24978.49
Objective Function Cost (Rs) 26636.34
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Table 9.16: GA algorithm result of test system 2 with wind energy and the load reduction measures is active

Time P1 P2 P3 PH Pw PLR PLoss q (mˆ3/h) P F
w P F

LR

H1 68.77 40.00 63.42 10.00 0.00 0.00 7.20 346.00 0.00 0.00
H2 76.33 41.60 70.91 10.00 0.00 0.00 8.85 346.00 0.00 0.00
H3 89.28 49.37 83.59 10.00 0.00 0.00 12.26 346.00 0.00 0.00
H4 106.84 60.31 100.66 10.00 19.95 0.00 17.76 346.00 30.00 0.00
H5 131.71 76.64 124.58 10.10 4.27 0.00 27.31 348.09 30.00 0.00
H6 151.03 90.13 142.97 10.89 1.09 0.00 36.13 364.95 30.00 0.00
H7 160.62 97.12 152.05 11.77 9.37 0.00 40.95 383.76 50.00 0.00
H8 166.64 101.60 157.70 12.12 16.07 0.00 44.13 391.12 50.00 0.00
H9 180.91 112.55 171.03 13.19 14.46 0.00 52.15 414.32 50.00 0.00
H10 165.32 102.46 159.60 66.72 8.59 14.89 42.58 1741.61 20.00 18.00
H11 174.17 110.33 169.76 95.00 4.96 18.22 47.45 2581.50 20.00 20.00
H12 182.22 116.78 177.48 95.00 14.46 16.10 52.05 2581.50 40.00 20.00
H13 191.84 124.88 186.90 99.00 14.23 6.01 57.86 2708.06 40.00 18.00
H14 177.30 112.86 172.83 96.03 14.93 15.26 49.22 2614.01 20.00 20.00
H15 166.88 104.63 162.75 95.00 14.20 0.00 43.48 2581.50 20.00 0.00
H16 157.38 96.71 152.39 74.00 7.99 0.00 38.47 1948.56 20.00 0.00
H17 154.43 93.75 148.21 49.00 16.72 0.00 37.12 1264.06 20.00 0.00
H18 153.57 92.69 146.65 35.00 8.95 0.00 36.87 913.50 20.00 0.00
H19 142.17 84.42 135.56 31.00 13.36 0.00 31.51 817.66 20.00 0.00
H20 137.77 80.86 130.49 13.00 7.75 0.00 29.88 410.14 10.00 0.00
H21 120.69 69.27 114.01 10.00 8.85 0.00 22.83 346.00 10.00 0.00
H22 99.34 55.58 93.38 10.00 6.98 0.00 15.29 346.00 10.00 0.00
H23 80.63 44.15 75.13 10.00 0.00 0.00 9.92 346.00 0.00 0.00
H24 71.56 40.00 66.20 10.00 0.00 0.00 7.77 346.00 0.00 0.00
Total Cost (Rs) 24263.96 Total Volume (m3) 24832.34
Objective Function Cost (Rs) 26703.92
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Table 9.17: KOA algorithm result of test system 2 with wind energy and the load reduction measures is active

Time P1 P2 P3 PH Pw PLR PLoss q (mˆ3/h) P F
w P F

LR

H1 68.77 40.00 63.42 10.00 0.00 0.00 7.20 346.00 0.00 0.00
H2 76.33 41.60 70.91 10.00 0.00 0.00 8.85 346.00 0.00 0.00
H3 89.28 49.37 83.59 10.00 0.00 0.00 12.26 346.00 0.00 0.00
H4 105.95 59.74 99.79 10.00 21.97 0.00 17.46 346.00 30.00 0.00
H5 126.65 73.41 120.06 17.35 7.57 0.00 25.05 505.08 30.00 0.00
H6 137.07 80.71 130.40 25.36 15.77 0.00 29.31 685.68 30.00 0.00
H7 148.99 89.26 142.07 30.93 13.45 0.00 34.71 815.95 50.00 0.00
H8 156.00 94.42 148.88 33.81 14.97 0.00 38.10 884.88 50.00 0.00
H9 167.91 103.30 160.15 33.81 19.15 0.00 44.33 884.88 50.00 0.00
H10 173.55 108.08 166.23 46.58 12.03 15.77 47.24 1201.84 20.00 18.00
H11 177.11 112.74 172.70 96.84 12.53 2.19 49.12 2639.48 20.00 20.00
H12 177.74 113.35 173.48 99.62 18.21 17.08 49.50 2727.97 40.00 20.00
H13 184.76 119.05 180.22 100.00 16.87 17.68 53.58 2740.00 40.00 18.00
H14 182.53 117.11 177.89 96.84 7.03 10.83 52.24 2639.48 20.00 20.00
H15 165.29 103.46 161.31 96.84 15.74 0.00 42.65 2639.48 20.00 0.00
H16 171.39 106.00 163.52 35.48 19.80 0.00 46.21 925.22 20.00 0.00
H17 165.37 101.40 157.79 34.38 9.01 0.00 42.95 898.42 20.00 0.00
H18 156.73 94.74 149.20 26.83 11.08 0.00 38.60 719.83 20.00 0.00
H19 150.05 89.80 142.69 23.52 4.28 0.00 35.35 643.61 20.00 0.00
H20 133.44 78.11 126.75 21.57 7.93 0.00 27.81 599.25 10.00 0.00
H21 124.65 71.90 117.82 10.00 0.02 0.00 24.39 346.00 10.00 0.00
H22 100.65 56.39 94.65 10.00 4.01 0.00 15.70 346.00 10.00 0.00
H23 80.63 44.15 75.13 10.00 0.00 0.00 9.92 346.00 0.00 0.00
H24 71.56 40.00 66.20 10.00 0.00 0.00 7.77 346.00 0.00 0.00
Total Cost (Rs) 24195.93 Total Volume (m3) 24919.04
Objective Function Cost (Rs) 26687.80
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Figure 9.8: BBO, GA and KOA algorithms results of test system 2 with wind energy
and the load reduction measures is active
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9.7 Conclusion

In this chapter, the fixed head hydrothermal scheduling problem for Smart Grid is

modeled assuming the incorporation of significant amount of wind power and the

load reduction measures are active at peak loads. Then, a procedure using any meta-

heuristic optimization was proposed to solve the problem. The Biogeography Based

Optimization algorithm (BBO) and Genetic algorithm (GA) and Khums optimization

algorithm (KOA) were proposed and successfully utilized to solve the problem. The

algorithms were applied on two systems to validate their accuracy and effectiveness,

one is composed of one thermal generation units, a hydro plant, a wind turbine and

a load reduction measures are active at peak loads with two periods of time and the

second consists of three thermal generation units, a hydro plant, a wind turbine and

load reduction measures are active at peak loads with twenty-four periods of time.

The simulation results of the proposed algorithms have been compared with other

algorithms in the literature when the wind energy is not included and the load reduc-

tion measures are not active. Based on the results obtained in the first test systems,

KOA succeeded in obtaining a good solution for the problem compared with BBO

and GA. BBO, GA and KOA also generate a slightly higher cost solution compared

with other algorithms in the literature when the wind energy is not included and

the load reduction measures are not active for the first system. In the second test

system, GA obtained the best schedule in the case of wind energy included and the

load reduction measures are not active. KOA obtained the best solution in the case

of wind energy not included and the load reduction is active. In the case of the wind

energy is included and the load reduction measures are active, BBO obtained the best

schedule.



Chapter 10

Optimal Power Flow Problem For Smart Grid

10.1 Introduction

Optimal power flow (OPF) is a nonlinear, non-convex and large-scale optimization

problem and one of the most important optimization problems in power system op-

eration and control. The main objective is to reduce the generation cost with or

without reducing the system losses subjected to different equality constraints.

In smart grid the OPF objectives are modified to minimizing the total fuel cost

and the greenhouse gases emissions. One way of achieving these objective is by

the integration of a significant amount renewable energy and the integration of load

reduction as demand side management measure which will increase the complexity

of the problem and introduce many challenges in finding the optimal solution which

accounts for the intermittent behavior of renewable resources and the error in the

forecasting of the available renewable power and the forecasting of the amount of

load reduction at peak loads.

In power systems with appreciable renewable energy and incentivising consumer

driven load curtailment implementation of real time pricing are proposed as a smart

grid function.

In this chapter, OPF will be modeled and solved for smart grid by assuming

significant integration of wind energy to the network and the load reduction programs

are active. It is assumed that the anticipated (forecast) wind power output is available

in the studies of this thesis.
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10.2 Smart Grid Optimal Power Flow Mathematical Formulation

The general formulation of the optimal power flow optimization problem for smart

grid network can be stated as follows

min J(x, u) (10.1)

s.t g(x, u) = 0 (10.2)

and h(x, u) ≤ 0 (10.3)

where J is the OPF objective function, g is the equality constraints, h is the

inequality constraints, x, and u are the system state and control vectors respectively.

The state variable can be represented as

xT = [PG1 QG1 · ·QGNx VL1 · ·VLNy SL1 · ·SLNz] (10.4)

where PG1 is the slack bus generator output power, QG is the generator output

reactive power, VL is the PQ bus voltages, SL is the transmission line power flow

,Nx,Ny and Nz are the number of generator units, the number of PQ buses, and

the number of transmission lines respectively. The control vector is shown in (10.5),

where the VG is the voltage at controlled buses, PG is the generator real output power,

T is the transformers tap changers setting, Qc the output reactive power generated

by the shunt compensator, Pwj available wind power for the jth wind turbine, PLk is

the available load reduction from area k, Nt, Nc, Nx and Nd are the number of tap

changing transformers, number of shunt compensators, number of wind turbines, and

number of areas of load reduction respectively.

uT = [VG1 · ·VGNx PG2 · ·PGNx T1 · ·TNt QC1 · ·QCNc Pw1 · ·PwNw
PL1 · ·PLNd

] (10.5)
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10.3 The Objective Function

OPF problem usually solved with one of the four following objective functions: fuel

cost minimization, voltage profile improvement, voltage stability limit enhancement

and voltage stability enhancement during contingency condition.

10.3.1 Fuel Cost Minimization

In this case, the objective is to minimize the total fuel cost of the generation units as

follows:

J1 = Wcost + LRcost +
Nx
∑

i=1

fi = Wcost + LRcost +
Nx
∑

i=1

ai + bi Pi + ci P
2
i (10.6)

Where fi is the fuel cost of generation unit i, Nx is the number of generator units,

Pi is the out power of generation unit i, ai, bi and ci are the fuel cost coefficients.

Wcost is the total cost of wind power generation and LRcost is the total cost of load

reduction. Wcost model and LRcost model will be discussed in chapter (6) and (7)

respectively.

10.3.2 Voltage Profile Improvement

Minimizing the fuel cost may produce inappropriate voltage profile which means that

the solution is not feasible because of the poor voltage profile. Hence, the objective

function in (10.6) is modified by introducing the voltage deviation scaled weighting

factor w as new term as shown in (10.7) which is selected to be 100 as proposed in

[33].

J = J1 + w

Ny
∑

j=1

|Vj − 1| (10.7)

Where Vj is the voltage of load bus j and Ny is the number of load buses.
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10.3.3 Voltage Stability Enhancement

Voltage stability can be defined as the system ability to maintain steady voltages at

all buses after being subjected to disturbances. The symptoms can be noticed as rise

or fall of voltages of some buses which in turn can lead to loss of some loads, tripping

of some transmission lines or loss of synchronism of some generators[3]. Assessing

voltage stability can be achieved by calculating the L-index at all the load buses

which serve as voltage stability indicators. The range of this index lies between 0

which represent the no load case and 1 which represents the voltage collapse condi-

tion. Hence, low value for L-index is recommended to insure the voltage stability of

the network after a disturbances. L-index can be calculated as shown in[33]. The

objective function is modified in this case to serve the required purpose by adding a

scaled term represent the maximum L-index of the network and the scaling factor β

is chosen to be 6000 as proposed in [33]. The objective function can be expressed as

shown in (10.8).

J = J1 + βmax (Lj) j = 1, 2 · · ·Ny (10.8)

10.3.4 Voltage Stability Enhancement During Contingency

Condition

In this case, the objective function will be the same objective function as in case 3

and the contingency condition simulated is the outage of a transmission line. In the

IEEE 30 bus system, for example, the line is line (2-6).

10.4 Equality Constraints

10.4.1 Power Flow Equality Constraints

The power flow equations (10.9) and (10.10) represent the set of equality constraints

in the OPF problem, where the Pi represent the injected active power at bus i, Qi is

the injected reactive power at bus i, Gim, N is the total number of buses , Gim Bim,

and θim represent the conductance and susceptance and voltage phase angle difference

between bus i and m respectively.
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Pi − Vi

N
∑

m=1

Vm (Gim cos θim +Bim sin θim) = 0 (10.9)

Qi − Vi

N
∑

m=1

Vm (Gim sin θim +Bim cos θim) = 0 (10.10)

10.5 Inequality Constraints

10.5.1 Thermal Unit Power Limit Constraint

Generation units are restricted by their limits in term of generation voltage, active

power and reactive power as follows:

V min
Gi ≤ VGi ≤ V max

Gi i = 1, 2 · · · , Nx (10.11)

Pmin
Gi ≤ PGi ≤ Pmax

Gi i = 1, 2 · · · , Nx (10.12)

Qmin
Gi ≤ QGi ≤ Qmax

Gi i = 1, 2 · · · , Nx (10.13)

Where V min
Gi , V max

Gi , Pmin
Gi , Pmax

Gi , Qmin
Gi and Qmax

Gi are the minimum voltage, maxi-

mum voltages, minimum active power output, maximum active power output, mini-

mum reactive power output and maximum reactive power output of the ith generating

unit respectively.

10.5.2 Transformer Constraints

Transformer tap changers settings lower and upper limits are represented as follows:

Tmin
i ≤ Ti ≤ Tmax

i i = 1, 2 · · · , Nt (10.14)

Where Tmin
i and Tmax

i are the minimum and maximum tab setting limits of the

ith transformer unit respectively. Nt is the number of transformer with tap changers.
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10.5.3 Shunt Compensator Constraints

Shunt VAR compensators are constrained by their limits as follows:

Qmin
ci ≤ Qci ≤ Qmax

ci i = 1, 2 · · · , Nc (10.15)

Where Qmin
ci and Qmax

ci are minimum and maximum Var injection limits of the ith

shunt capacitor unit respectively. Nc is the number of shunt VAR compensators.

10.5.4 Security Constraints

Security constraints includes the minimum and maximum voltage of the load buses,

and the transmission line capacity limit which can be formulated as follows:

V min
Li ≤ VLi ≤ V max

Li i = 1, 2 · · · , Ny (10.16)

SLi ≤ Smax
Li i = 1, 2 · · · , Nz (10.17)

where V min
Li , V max

Li and Smax
Li are the minimum voltage of the ith load bus, maximum

voltage of the ith load bus and maximum apparent power flow limit of the ith branch

respectively. Nz is the number of shunt VAR compensators. Nz is the number of

transmission lines.

10.5.5 Wind Turbine Power Limit Constraint

0 ≤ Pwj ≤ P r
wj j = 1, 2 · · · , Nw (10.18)

Here Pwr
j , is the rated active power output of the jth wind turbine unit. Nw is the

number of wind turbines.

10.5.6 Load Power Limit Constraint

Pmin
Lk ≤ PLk ≤ Pmax

Lk k = 1, 2 · · · , Nd (10.19)

Here Pmin
Lk , Pmax

Lk , are the minimum active power reduction, maximum active power

reduction of the kth unit respectively. Nd is the number of load reduction areas.
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10.6 Optimal Location for Wind Turbine

The optimal location of wind turbine is obtained here for modifying the IEEE bench-

mark system by adding a wind turbine or turbines in a locations which have the

minimum operational cost based on the optimal power flow. The method is simply

by connecting the wind turbine to a bus with a direct cost and solve for the optimal

power flow with fuel cost minimization objective. All the buses will be tested in this

case and the bus with minimum cost will be selected to add the wind turbine to it in

the following sections. Fig(10.1) and Fig(10.2) show the results of solving the optimal

power flow after connecting the wind turbine to a bus at a time saving the cost. The

Figures show clearly that there will be a variation on the cost due to wind turbine

connection based on the selected bus.

Figure 10.1: Total cost obtained from connecting a wind turbine in a bus and solving
the OPF for total cost minimization
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Figure 10.2: Total cost obtained from connecting a wind turbine in a bus and solving
the OPF for total cost minimization
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10.7 Optimal Location for Load Reduction

The optimal location to apply the load reduction measures is obtained here for mod-

ifying the Benchmark test system. The method is simply by reducing the load at a

load bus and solve for the optimal power flow with fuel cost minimization objective.

All the load buses will be tested in this case and the bus with minimum cost will be

selected to add apply the load reduction measures on it. Fig(10.3) and Fig(10.4) show

the results of applying a load reduction on a bus at a time and solve for optimal power

flow and saving the cost. The Figures show clearly that there will be a variation on

the cost due to load reduction based on the load bus.

Figure 10.3: Total cost obtained from reducing the load in each load bus and solving
the OPF for total cost minimization
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Figure 10.4: Total cost obtained from reducing the load in each load bus and solving
the OPF for total cost minimization
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10.8 Optimal Power Flow Solution Incorporating Wind Energy and

Load Reduction

The general procedure to solve the optimal power flow problem incorporating wind

energy and load reduction measures are active at peak loads using any metaheuristic

algorithm is shown in Procedure (6).

Procedure 6: Optimal Power Flow

1. Initialize the algorithm parameters (population size, no of generations,

no of iteration, mutation rate, cross over rate).

2. Generate a set of feasible solutions where each consist of a control vector

shown in (10.5) where the wind power and the load reduction power, both

generated randomly based on the forecast.

3. Optimal power flow is calculated for each solution.

4. The direct cost, overestimation cost and the under estimation cost for

wind power and load reduction power are calculated for all the solutions.

5. Calculate the objective function.

6. Save the best solution.

7. Apply the Algorithm operations on the set of the solutions.

8. Check the feasibility of the generated solutions and repeat steps (3-6).

9. Repeat steps (7-8) until the termination criterion is achieved.
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10.9 Optimal Power Flow Incorporating Wind Energy and Load

Reduction by BH Algorithm and KOA Algorithm

In this section, numerical examples of the solution of the optimal power flow incor-

porating wind energy and the load reduction measures are active will be illustrated

using the black hole optimization algorithm (BH) and the khums optimization algo-

rithm (KOA). The IEEE 30 bus benchmark test system will be modified and used

for the analysis. The optimal power flow simulation will be done by modifying the

MATPOWER simulation package[143, 142] to use the evolutionary algorithms and

to use different objective functions. The wind turbine cost model is assumed to be

probabilistic based on the Weibull distribution and the load reduction model is also

the probabilistic model but based on the Normal distribution.

10.9.1 Test System: IEEE 30-bus system

IEEE 30-bus system has six generation units, four off line tap changer transformers,

and nine shunt reactive power compensators. The bus, line, fuel cost coefficients and

parameters limits have been adopted from[33].

In this test system, the proposed algorithms have been utilized to solve the OPF

problem with four separate objective functions: fuel cost minimization, voltage profile

improvement, voltage stability limit enhancement and voltage stability enhancement

during contingency condition.

Wind turbine farm will be added to the system at the bus which selected based

on the OPF solution for the total cost minimization. Fig (10.5) shows the result

obtained and it is clear that bus 5 has the lowest cost but the difference is very small

and the wind turbine can be connected to any bus.

Similar decision will be obtained based on the result shown in Fig (10.6) where

the difference in cost due to load reduction between the load buses is very small and

the load reduction measures can be applied on any load bus. The selection criterion

then will be based on the required load reduction amount.

The wind turbine will be connected to bus 7 and the load reduction bus will be

applied to bus 5 since it has the largest load.
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Figure 10.5: Total cost obtained from connecting a wind turbine in a bus and solving
the OPF for total cost minimization

Figure 10.6: Total cost obtained from reducing the load in each load bus and solving
the OPF for total cost minimization
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The optimum control variable settings obtained by BH and KOA for the four

cases without wind energy and without load reduction are shown in Table (10.3).

In case 1, the objective is to minimize the total fuel cost of the generation units as

shown in (10.6). The total fuel cost obtained for BH and KOA is higher than the

best solution obtained in HFPSONM[58] by 0.62 % and 0.63 % respectively as shown

in Table (10.1) and Figure (10.7). This work has been reported in [47] without the

KOA algorithm.

Case 2 represent the Voltage profile improvement where the objective function of

case 1 is modified by adding a scaled voltage deviation of load buses. The control

variables are shown for case 2 in Table (10.3) while a comparison of the results with

other techniques are shown in Table (10.1), Figure (10.7) and Figure (10.8). The

results obtained using the BH and KOA algorithm are close to other algorithms. BH

fuel cost is lower than the KOA and KOA has a lower voltage deviation than BH. The

best result obtained is the HFPSONM[58] results because the choosing criterion will

be based on the fuel cost and the voltage deviation and it has the best compromise

solution as shown in Table (10.1).

Case 3 represents the voltage stability enhancement where the voltage stability

defined as the system ability to maintain steady voltages at all buses after being

subjected to disturbances. The control variable for case 3 is shown in Table (10.3).

Since the best solution is decided based on the fuel cost value and the Lmax value,

BH, KOA and the HFPSONM[58] are the best solutions compared to other solutions

as shown in Figure (10.7) and Figure (10.9).

Case 4 represents the voltage stability enhancement during contingency condition.

In this case, the objective function will be the objective function in case 3 and the

contingency condition simulated is the outage of line (2-6). The control variable is

shown in Table (10.3). The total fuel cost obtained by BH and KOA is better than

the other solutions because they have the lowest fuel cost with small difference in the

Lmax value as shown in Figure (10.7) and Figure (10.9). .

The optimum control variable settings obtained by BH and KOA for the four cases

with wind energy and the load reduction measures are active are shown in Table (??),

Figure (10.7) and Figure (10.11). .

The wind turbine cost model data and the load reduction cost model data are
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shown in Appendix (C.4.1). The wind turbine is connected to bus 7 and the load

reduction measures are active on load bus 5. The forecast wind power for all the cases

is 10 MW and the forecast load reduction is 13.19 MW.

In case 1, case 3 and case 4 BH has the optimum solution compared to KOA. In

case 2 KOA the optimum solution compared to BH as shown in Figure (10.10). .

Table 10.1: Comparison of BH and KOA optimization algorithms result with other
algorithms in literature without wind energy and the load reduction is not active

Case Algorithm Fuel cost ($/h) PLoss (MW) Voltage deviations Lmax

BH 799.87 8.87 1.0932 0.1337

KOA 799.95 8.89 1.1048 0.1327

1 BBO[11] 799.1116 8.63 - -

DE[33] 799.2891 8.629 - -

HFPSONM[58] 794.9545 9.363 - -

BH 803.07 9.72 0.3023 0.1357

KOA 804.74 10.19 0.1763 0.1425

2 BBO[11] 804.9982 9.95 0.102 -

DE[33] 805.2619 10.4412 0.1357 -

HFPSONM[58] 803.5278 9.794 0.0859 -

BH 800.29 8.99 1.1090 0.1318

KOA 800.27 8.99 1.0406 0.1325

3 BBO[11] 805.7252 10.21 - 0.1104

DE[33] 807.5272 10.3142 - 0.1219

HFPSONM[58] 801.7488 8.992 - 0.1023

BH 803.942 9.80 1.0886 0.1326

KOA 803.82 9.79 1.0681 0.1334

4 PSONM[58] 807.5284 9.823 - 0.1279

DE[33] 810.2661 10.3142 - 0.1347

HFPSONM[58] 805.7573 9.265 - 0.1078
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Figure 10.7: Comparison of BH and KOA optimization algorithms fuel cost results
with other algorithms in literature without wind energy and the load reduction is not
active

Figure 10.8: Comparison of BH and KOA optimization algorithms voltage deviation
results with other algorithms in literature without wind energy and the load reduction
is not active
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Figure 10.9: Comparison of BH and KOA optimization algorithms Lmax results with
other algorithms in literature without wind energy and the load reduction is not active
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Table 10.2: Optimal control variable setting for IEEE 30 bus system without wind
energy and without load reduction

Case 1 2 3 4

Control variables KOA BH KOA BH KOA BH KOA BH

P1 177.38 177.35 176.87 176.91 177.46 177.43 176.32 175.52

P2 48.70 48.69 48.95 48.85 48.69 48.69 47.09 47.90

P5 21.35 21.34 21.63 21.51 21.33 21.33 21.35 21.32

P8 21.00 21.03 21.86 21.67 21.02 21.06 23.66 23.69

P11 11.86 11.86 12.25 12.18 11.88 11.88 12.76 12.77

P13 12.00 12.00 12.03 12.01 12.00 12.00 12.00 12.00

V1 1.09 1.09 1.03 1.06 1.10 1.10 1.10 1.10

V2 1.07 1.07 1.01 1.04 1.08 1.08 1.08 1.09

V5 1.04 1.04 0.98 1.00 1.05 1.05 1.05 1.05

V8 1.04 1.05 0.96 1.00 1.05 1.06 1.04 1.05

V11 1.00 1.03 1.02 0.99 1.10 1.04 1.09 1.06

V13 1.06 1.06 1.06 1.02 1.05 1.04 1.05 1.05

T11 1.0719 1.0035 1.0135 1.0051 1.0251 0.9793 1.0490 0.9792

T12 0.9136 0.9774 1.0351 1.0725 0.9756 0.9703 1.0801 0.9944

T15 0.9883 0.9693 1.0635 0.9933 0.9320 0.9341 0.9530 0.9545

T36 0.9820 0.9854 0.9280 0.9136 0.9680 0.9682 0.9740 0.9627

Qc10 4.54 2.55 3.84 2.99 0.00 1.31 3.93 1.30

Qc12 4.14 2.51 4.85 3.57 0.00 1.42 3.29 0.85

Qc15 3.65 3.16 4.29 3.27 0.00 0.92 3.12 1.24

Qc17 3.41 3.07 3.40 3.85 0.00 1.08 4.70 0.88

Qc20 4.39 2.41 4.89 3.52 0.00 1.15 3.89 1.01

Qc21 3.78 3.51 3.87 3.90 0.00 1.06 3.26 0.96

Qc23 4.69 3.09 3.65 3.51 0.00 0.99 3.05 1.25

Qc24 3.83 2.32 3.61 3.92 0.00 0.96 4.25 0.95

Qc29 4.76 3.07 4.25 3.67 0.00 1.39 3.23 1.12

Fuel cost ($/h) 799.95 799.87 804.74 803.07 800.27 800.29 803.82 803.94

PLoss (MW) 8.89 8.87 10.19 9.72 8.99 8.99 9.79 9.80

Voltage deviations 1.1048 1.0932 0.1763 0.3023 1.0406 1.1090 1.0681 1.0886

Lmax 0.1327 0.1337 0.1425 0.1357 0.1325 0.1318 0.1334 0.1326
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Table 10.3: Optimal control variable setting for IEEE 30 bus system with wind energy
and with load reduction

Case 1 2 3 4

Control variables KOA BH KOA BH KOA BH KOA BH

P1 166.74 166.81 169.83 167.98 170.05 167.00 167.60 165.88

P2 46.10 46.10 47.07 46.42 47.03 46.14 45.94 45.51

P5 20.35 20.34 20.88 20.45 20.75 20.34 20.52 20.37

P8 15.43 15.33 18.71 16.22 15.51 15.58 19.53 18.43

P11 10.07 10.08 11.05 10.26 10.77 10.13 11.35 10.96

P13 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00

Pw7 9.57 8.70 4.06 5.67 5.82 6.81 2.36 6.12

V1 1.09 1.09 1.04 1.09 1.07 1.09 1.10 1.10

V2 1.07 1.07 1.02 1.07 1.04 1.08 1.09 1.09

V5 1.05 1.04 1.00 1.04 1.01 1.05 1.06 1.06

V8 1.05 1.04 1.00 1.04 1.01 1.05 1.05 1.05

V11 1.03 1.05 1.08 0.97 1.04 1.04 1.10 1.06

V13 1.05 1.04 1.05 1.04 1.07 1.05 1.04 1.06

Vw7 1.04 1.04 1.00 1.04 1.01 1.04 1.05 1.04

T11 0.9726 1.0317 1.1000 1.0862 0.9260 0.9805 1.1000 0.9767

T12 1.1000 1.0145 0.9547 0.9517 1.1000 0.9992 0.9000 0.9809

T15 0.9780 0.9508 1.0121 1.0548 0.9935 0.9657 0.9320 0.9590

T36 1.0140 0.9555 0.9680 1.0398 0.9380 0.9744 0.9680 0.9583

Qc10 4.17 2.32 5.00 4.08 5.00 2.18 3.13 0.44

Qc12 5.00 2.06 0.82 3.02 3.57 2.33 0.00 0.40

Qc15 3.78 1.76 0.00 2.95 5.00 2.59 0.00 0.47

Qc17 5.00 2.15 0.10 4.10 3.96 2.23 0.15 0.43

Qc20 4.46 1.65 0.04 3.06 5.00 2.22 0.00 0.52

Qc21 5.00 2.03 0.00 3.97 3.94 2.23 0.00 0.38

Qc23 5.00 1.74 0.04 4.09 5.00 2.11 0.00 0.38

Qc24 3.40 2.33 0.70 3.59 0.27 2.32 0.70 0.48

Qc29 3.30 2.12 0.00 4.27 3.47 2.74 0.00 0.47

PL5 10.90 11.96 8.76 12.37 10.00 13.16 13.09 12.92

VL5 1.05 1.04 1.00 1.04 1.01 1.05 1.06 1.06

Fuel cost ($/h) 734.92 734.02 760.23 740.33 749.68 734.13 750.37 740.84

Wind cost ($/h) 8.61 7.83 3.65 5.10 12.00 6.13 8.00 5.51

Load Reduction cost ($/h) 10.90 11.96 8.76 12.37 12.00 13.16 20.00 12.92

PLoss (MW) 7.76 7.91 8.94 7.97 8.53 7.77 8.99 8.78

Voltage deviations 0.9563 0.8628 0.2040 0.3614 0.9266 1.1395 1.0400 1.0643

Lmax 0.1382 0.1328 0.1457 0.1469 0.1335 0.1321 0.1333 0.1326

Total cost ($/h) 754.44 753.81 772.64 757.81 773.68 753.43 778.37 759.26

Objective Function cost ($/h) 765.48 757.25 800.67 801.06 1574.49 1553.26 1578.29 1562.27
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Figure 10.10: Objective function and total cost for IEEE 30 bus system with wind
energy and with load reduction for the four cases

Figure 10.11: voltage deviation and Lmax for IEEE 30 bus system with wind energy
and with load reduction for the four cases
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10.10 Conclusion

In this chapter, the optimal power flow problem for Smart Grid is modeled assuming

the incorporation of significant amount of wind power and the load reduction measures

are active at peak loads with different objective functions including minimizing the

fuel cost, enhancing the voltage profile and improving the voltage stability under

both normal and contingency conditions. Then, a procedure using any metaheuristic

optimization was proposed to solve the problem. The BH and KOA algorithms have

been tested on the IEEE 30-bus system. The simulation results of the proposed

algorithms have been compared with those reported in literature. Based on the results

obtained, BH and KOA succeeded in solving the problem and the solution obtained

is close to the solution obtained using other algorithms when the wind energy is not

included and the load reduction is not active. BH obtain better solution compared to

KOA when the wind energy is included and the load reduction measures are active.



Chapter 11

Conclusion

11.1 Conclusion

In this research work, a formulation of economic dispatch problem for smart grid is

proposed, and the different equality and inequality constraints were defined. The ob-

jective function and the constrains were modified based on the significant contribution

of both wind energy and load reduction at peak loads.

Two wind turbine cost models proposed in the literature for solving the economic

dispatch problem were introduced and they are: negative load model and the proba-

bilistic wind turbine cost model. Comparisons between the probabilistic wind turbine

cost model and the negative load model in solving the economic dispatch problem

were done for three test systems. For all the cases, the behavior of the probabilistic

model at low wind forecast will be equivalent or following the negative load model

till the forecast wind power reach a critical point. Then the negative load will start

to become costly compared to the probabilistic model which will schedule the wind

at fix power equal to the critical wind power forecast even if the wind power forecast

increased to a higher value because the overestimation forecast error is high and the

overestimation cost is also high.

Two models were proposed for the load reduction as demand side management

measure for economic dispatch problem in smart grid at peak load time and they

are the negative load cost model and the probabilistic cost model based on Normal

distribution. The general response of the objective function and the total cost function

obtained without wind energy, is similar in general to the response obtained by the

wind turbine only. The general response of the objective function and the total cost

function obtained with wind energy is more complex and result into four possible

model combinations: N-N, N-P, P-N and P-P. Where N stand for negative load cost

model and P stand for probabilistic cost model based on Normal distribution. Among

the four combinations, P-P are the most reliable in dealing with the forecasting errors

165
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because it is either the cheapest choice or the second cheapest choice in the objective

function for the three test systems in the four regions.

Since the economic dispatch is a main operation on the unit commitment (UC)

problem solving and it affects the UC problem results, a unit commitment model

for Smart Grid is modeled assuming the incorporation of significant amount of wind

power and the load reduction measures are active at peak loads. Then, a procedure

using any metaheuristic optimization was proposed to solve the problem. The Bio-

geography Based Optimization algorithm (BBO) and Genetic Algorithm (GA) were

proposed and successfully utilized to solve the problem. The algorithms were applied

to two test systems. Based on the results obtained in both test systems, BBO and

GA succeeded in obtaining a good solution for the problem with a slight difference

between them. Also, the total cost decrease with the merging of wind energy and

applying the load reduction measures.

The fixed head hydrothermal scheduling problem is also affected by the economic

dispatch model which motivate the modeling of the fixed head hydrothermal schedul-

ing problem for Smart Grid assuming the incorporation of significant amount of wind

power and the load reduction measures are active at peak loads. Then, a procedure

using any metaheuristic optimization was proposed to solve the problem. The Bio-

geography Based Optimization algorithm (BBO) and Genetic algorithm (GA) and

Khums optimization algorithm (KOA) were proposed and successfully utilized to

solve the problem on to two test systems to validate their accuracy and effectiveness.

Based on the results obtained in the first test systems, KOA succeed in obtaining

a good solution for the problem compared with BBO and GA. In the second test

system, GA obtained the best schedule in the case of wind energy included and the

load reduction measures are not active. KOA obtained the best solution in the case

of wind energy not included and the load reduction is active. In the case of the wind

energy is included and the load reduction measures are active, BBO obtained the best

schedule. All the solutions obtained for both test systems are feasible solutions and

the differences is on the amount of wind energy and load reduction overestimation

and underestimation forecasting error.

Optimal power flow for Smart Grid is modeled. Then, a procedure using any

metaheuristic optimization was proposed to solve the problem. The BH and KOA
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algorithms have been tested on the IEEE 30-bus system. The simulation results

of the proposed algorithms have been compared with those reported in literature.

Based on results obtained, BH and KOA succeeded in solving the problem and the

solution obtained is close to the solution obtained using other algorithms when the

wind energy is not included and the load reduction is not active. BH obtained better

solution compared to KOA when the wind energy is included and the load reduction

measures are active.

In this research work, new optimization algorithm called Khums optimization al-

gorithm proposed. KOA has two operations to search for optimal solution, collection

and distribution. In collection, new solution will be generated from cutting the tax

from the solutions based on their earning and in distribution the generated solu-

tion will be as result from distributing these taxes among the poor solutions. The

algorithm was applied to solve 14 benchmark from the literature and compare the

performance with other methods. Then the KOA algorithm applied to solve the eco-

nomic dispatch with valve point effect for two systems. The results show that the new

algorithm can be applied to solve practical optimization problems. Although, KOA

has better performance on solving the benchmark systems but we cannot conclude

that it is better than other algorithms based on the no free lunch theorem.
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11.2 Scope of Future Work

• Develop probabilistic model for other renewable resources (if needed) to incor-

porate them in the economic dispatch model.

• Study and develop model for the energy storage elements to incorporate in the

economic dispatch model.

• Develop an environmental multi fuel economic dispatch model for smart grid

which will be more complicated multi objective economic dispatch model.

• Study the consumer behavior on load reduction to decide accurately the load

reduction probability distribution function.

• Three interesting modifications can be studied in the future for the Khums

optimization algorithm:

1. The first modification is about the Khums tax rate where it is assumed in

this work to be constant 20%. The khums rate can be random but within

this range and a comparison between the performance of the algorithm

based on these two tax rates observed.

2. The second modification is in the way of ranking the good solutions and

poor solutions. Other methods can be used to study the effects on the

performance of the algorithms.

3. Finally, the last modification can be done by adding the effects of death

of tax payers and the effect of joining new tax payers which is like the

mutation process in other algorithms which may affect the performance of

the algorithm and need to be studied as future work.



Appendix A

Wind Turbine Probabilistic Cost Models

A.1 Introduction

• The source of the derivation for the probabilistic model

• Assume that the wind speed is V and V ∼ W (c, k).

• The wind Power Pw(v) = 0.5 ρAs v
3 (w).

where ρ is the air density in (kg/m3), As is the cross sectional area in (m2)

through which the wind pass and V is the wind speed in (m/s).

• The pdf and cdf of the weibull distribution is shown in(A.1) and (A.2) while

the expected (mean) and the variance are shown in (A.3) and (A.4) respectively

[73].
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Figure A.1: Wind Turbine Power Curve
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0 if v < Vin

(V−Vin)wr

(Vr−Vin)
if Vin ≤ v < Vr

wr if Vr ≤ v < Vo

0 if v ≥ Vo

(A.5)

Fig(A.1) shows the speed power curve of the wind turbine. while (A.5) shows

the simplified speed power mathematical model. Using the power curve the target

is to find the cdf of the power of the wind turbine knowing that the Pw ∝ V 3 and

the V ∼ W (c, k). From the mathematical model we observe that the there are two
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regions where the w = 0, one region with constant power w = wr and one linear

region between Vin and Vr. First we will find the probability of w = 0:

P (W = 0) = P (v < Vin) + P (v ≥ Vo)− P (v < Vin ∩ v ≥ Vo)

P (v < Vin ∩ v ≥ Vo) = 0

P (v < Vin) = P (v ≤ Vin) = F (Vin) = 1− exp[−(Vin

c
)k]

P (v ≥ Vo) = 1− F (Vo) = 1− (1− exp[−(Vo

c
)k]) = exp[−(Vo

c
)k]

P (W = 0) = 1− exp[−(Vin

c
)k] + exp[−(Vo

c
)k]

Second we will find the probability of w = wr:

P (W = wr) = P (Vr ≤ v < Vo)

= F (Vo)− F (Vr)

= 1− exp[−(Vo

c
)k]− ((1− exp[−(Vr

c
)k]))

= exp[−(Vr

c
)k])− exp[−(Vo

c
)k])

Between Vin and Vr the cdf can be calculated by linear transformation as follow:

w =
(V − Vin)wr

(Vr − Vin)

V − Vin =
w

wr

(Vr − Vin)

V = Vin +
w

wr

(
Vr

Vin

− 1)

h =
Vr

Vin

− 1

V = (1 +
w h

wr

)Vin

Substituting in (B.9) by V = (1 + w h
wr

)Vin as follow:

φ(w) = F ((1 +
w h

wr

)Vin) = (1− exp[−(
(1 + w h

wr
)Vin

c
)k])
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The cdf of the wind power Fw(w) = P (W ≤ w):

First w ≤ 0 and since the event is not possible, then

P (W < 0) = 0

For 0 ≤ w < wr

P (0 ≤ W < wr) = P (W = 0 ∪ 0 < W ≤ wr)

= P (W = 0) + P (0 < W ≤ wr)− P (W = 0 ∩ 0 < W ≤ wr)

= P (w = 0) +

∫ w

0

f(u)du

= P (W = 0) + φ(w)− φ(0)

= 1− exp[−(Vin

c
)k] + exp[−(Vo

c
)k]

+ (1− exp[−(
(1 + w h

wr
)Vin

c
)k])− (1− exp[−(Vin

c
)k])

= 1− exp[−(
(1 + w h

wr
)Vin

c
)k] + exp[−(Vo

c
)k]

For w ≥ wr, and since P (W > wr) is not possible

P (W ≤ wr) + P (W > wr) = 1

P (W > wr) = 0

P (W ≤ wr) = 1

Hence the the wind power cdf can be written as follows:

Fw(w) =























0 if w < 0

1− exp(−( (1+
hw
wr

)Vin

c
)k) + exp(−(Vo

c
)k) if 0 ≤ w < wr

1 if w ≥ wr

(A.6)
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Figure A.2: Over estimate case where the forecast Value wF is grater than the actual
value w

Figure A.3: When the actual value lies between wmin and wF

A.2 Overestimation of w:

From Fig(B.8) it is obvious that the forecast value is grater than the actual value

(wF > w). which leads to financial loss due to buying unplanned power from other

utilities. To account for this events we should calculate the expected value of wF > w

and merge it with our cost model for the wind turbine. But according to fig(A.3) and

fig(A.5), this will happen only in the region from (wmin, wsc). Hence, the expected

value of overestimation [73] will be as follows:

Eoe = I1 + I2

At w = 0

I1 = wF P (w = 0)

I1 = wF [1− exp(−(Vin

c
)k) + exp(−(Vo

c
)k)]
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I2 =
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to simplify the integration, let V = (1 + hw
wr

)Vin

V = (1 +
hw

wr

)Vin

dV =
hVin

wr

dw

w =
wr

hVin

(V − Vin)

I3 will become as follow:
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I3 =

∫ VF

Vin

k

c

wr

hVin

(V − Vin)

(

V

c

)k−1

exp[−(V
c
)k] dV

=

∫ VF

Vin

k

c

wr

hVin

V

(

V

c

)k−1

exp[−(V
c
)k] dV

− wr

h

∫ VF

Vin

k

c

(

V

c

)k−1

exp[−(V
c
)k] dV

I3 = I4 −
wr

h
[F (VF )− F (Vin)]

I3 = I4 −
wr

h
[1− exp(−(VF

c
)k)− (1− exp(−(Vin

c
)k))]

I3 = I4 −
wr

h
[exp(−(Vin

c
)k)− exp(−(VF

c
)k)]

VF = (1 +
hwF

wr

)Vin

I4 =

∫ VF

Vin

k

c

wr

hVin

V

(

V

c

)k−1

exp[−(V
c
)k] dV

=
k wr

hVin

∫ VF

Vin

(

V

c

)k

exp[−(V
c
)k] dV

to simplify the integration, let y = (1 + hw
wr

)Vin

y =

(

V

c

)k

⇒ y
1
k =

V

c

dy =

(

V

c

)k−1
k

c
dV

I4 =
k wr

hVin

∫ (
VF
c

)k

(
Vin
c

)k
y exp[−y] y−k+1 c

k
dy

I4 =
cwr

hVin

∫ (
VF
c

)k

(
Vin
c

)k
y

1
k exp[−y] dy
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Incomplete Gamma function is shown here:

Γ(α, x) =

∫

∞

x

yα−1 exp(−y) dy
∫ b

a

yα−1 exp(−y) dy =

∫

∞

a

yα−1 exp(−y) dy −
∫

∞

b

yα−1 exp(−y) dy

= Γ(α, a)− Γ(α, b)

I4 =
k wr

hVin

∫ (
VF
c

)k

(
Vin
c

)k
y exp[−y] y−k+1 c

k
dy

I4 =
cwr

hVin

∫ (
VF
c

)k

(
Vin
c

)k
y

1
k exp[−y] dy

Using the incomplete Gamma function

1

k
= α− 1

α = 1 +
1

k

I4 =
cwr

hVin

[Γ(1 +
1

k
, (
Vin

c
)k)− Γ(1 +

1

k
, (
VF

c
)k)]

Back substitution of I4 in I3 and I3 in I2 as follow:

I3 = I4 −
wr

h
[exp(−(Vin

c
)k)− exp(−(VF

c
)k)]

I3 =
cwr

hVin

[Γ(1 +
1

k
, (
Vin

c
)k)− Γ(1 +

1

k
, (
VF

c
)k)]− wr

h
[exp(−(Vin

c
)k)− exp(−(VF

c
)k)]

I2 = wF [exp(−(Vin

c
)k)− exp(−(VF

c
)k)]

− [
cwr

hVin

[Γ(1+
1

k
, (
Vin

c
)k)−Γ(1+

1

k
, (
VF

c
)k)]− wr

h
[exp(−(Vin

c
)k)−exp(−(VF

c
)k)]]

Back substitution of I2 and I1 in Eoe as follow:

Eoe = I1 + I2
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Figure A.4: under estimate case where the forecast Value wF is smaller than the
actual value w

Eoe = wF [1− exp(−(Vin

c
)k) + exp(−(Vo

c
)k)] + wF [exp(−(Vin

c
)k)− exp(−(VF

c
)k)]

− cwr

hVin

[Γ(1+
1

k
, (
Vin

c
)k)−Γ(1+

1

k
, (
VF

c
)k)]+

wr

h
[exp(−(Vin

c
)k)−exp(−(VF

c
)k)]

Eoe = wF [1− exp(−(Vin

c
)k) + exp(−(Vo

c
)k)]

+ (wF +
wr

h
) [exp(−(Vin

c
)k)− exp(−(VF

c
)k)]

− cwr

hVin

[Γ(1 +
1

k
, (
Vin

c
)k)− Γ(1 +

1

k
, (
VF

c
)k)]

Or we can simplify it more as follows:

Eoe = wF [1− exp(−(VF

c
)k) + exp(−(Vo

c
)k)] +

wr

h
[exp(−(Vin

c
)k)− exp(−(VF

c
)k)]

− cwr

hVin

[Γ(1 +
1

k
, (
Vin

c
)k)− Γ(1 +

1

k
, (
VF

c
)k)]

A.3 Underestimation of w:

From Fig(B.8) it is obvious that the forecast value is less than the actual value

(wF < w). which leads to a problem of wasting the available power by not using it.

To account for this events we should calculate the expected value of wF < w and

merge it with our cost model for the load reduction. But according to fig(A.3) and

fig(A.5), this will happen only in the region from (wF , wmax). Hence, the expected

value of underestimation will be as follows:
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Figure A.5: When the actual value lies between wF and wmax

Eue = M1 +M2

At w = wr

M1 = (wr − wF ) P (w = wr)

M1 = (wr − wF ) [exp(−(
Vr

c
)k)− exp(−(Vo

c
)k)]

M2 =

∫ wr

0

max(w − wF , 0) f(w) dw

=

∫ wr

wF

(w − wF ) f(w) dw

=

∫ wr

wF

w f(w) dw −
∫ wr

wF

wF f(w) dw

M2 = M3 − wF (Fw(wr)− Fw(wF ))

= M3 − wF [1− exp(−(
(1 + hwr

wr
)Vin

c
)k) + exp(−(Vo

c
)k

− (1− exp(−(
(1 + hwF

wr
)Vin

c
)k) + exp(−(Vo

c
)k))]

= M3 + wF [exp(−(Vr

c
)k)− exp(−(VF

c
)k)]

M3 =

∫ wr

wF

w f(w) dw

=

∫ wr

wF

w
k hVin

wF c

(

(1 + hw
wr

)Vin

c

)k−1

exp[−(
(1 + hw

wr
)Vin

c
)k]

to simplify the integration, let V = (1 + hw
wr

)Vin



179

V = (1 +
hw

wr

)Vin

dV =
hVin

wr

dw

w =
wr

hVin

(V − Vin)

M3 will become as follow:

M3 =

∫ Vr

VF

k

c

wr

hVin

(V − Vin)

(

V

c

)k−1

exp[−(V
c
)k] dV

=

∫ Vr

VF

k

c

wr

hVin

V

(

V

c

)k−1

exp[−(V
c
)k] dV

− wr

h

∫ Vr

VF

k

c

(

V

c

)k−1

exp[−(V
c
)k] dV

M3 = M4 −
wr

h
[F (Vr)− F (VF )]

M3 = M4 −
wr

h
[1− exp(−(Vr

c
)k)− (1− exp(−(VF

c
)k))]

M3 = M4 −
wr

h
[exp(−(VF

c
)k)− exp(−(Vr

c
)k)]

VF = (1 +
hwF

wr

)Vin

M4 =

∫ Vr

VF

k

c

wr

hVin

V

(

V

c

)k−1

exp[−(V
c
)k] dV

=
k wr

hVin

∫ Vr

VF

(

V

c

)k

exp[−(V
c
)k] dV

to simplify the integration, let y = (1 + hw
wr

)Vin

y =

(

V

c

)k

⇒ y
1
k =

V

c

dy =

(

V

c

)k−1
k

c
dV
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M4 =
k wr

hVin

∫ (Vr
c
)k

(
VF
c

)k
y exp[−y] y−k+1 c

k
dy

M4 =
cwr

hVin

∫ (Vr
c
)k

(
VF
c

)k
y

1
k exp[−y] dy

Incomplete Gamma function is shown here:

Γ(α, x) =

∫

∞

x

yα−1 exp(−y) dy
∫ b

a

yα−1 exp(−y) dy =

∫

∞

a

yα−1 exp(−y) dy −
∫

∞

b

yα−1 exp(−y) dy

= Γ(α, a)− Γ(α, b)

M4 =
k wr

hVin

∫ (Vr
c
)k

(
VF
c

)k
y exp[−y] y−k+1 c

k
dy

M4 =
cwr

hVin

∫ (Vr
c
)k

(
VF
c

)k
y

1
k exp[−y] dy

Using the incomplete Gamma function

1

k
= α− 1

α = 1 +
1

k

M4 =
cwr

hVin

[Γ(1 +
1

k
, (
VF

c
)k)− Γ(1 +

1

k
, (
Vr

c
)k)]

Back substitution of M4 in M3 and M3 in M2 as follow:

M3 = M4 −
wr

h
[exp(−(VF

c
)k)− exp(−(Vr

c
)k)]

M3 =
cwr

hVin

[Γ(1 +
1

k
, (
VF

c
)k)− Γ(1 +

1

k
, (
Vr

c
)k)]− wr

h
[exp(−(VF

c
)k)− exp(−(Vr

c
)k)]

M2 =
cwr

hVin

[Γ(1 +
1

k
, (
VF

c
)k)− Γ(1 +

1

k
, (
Vr

c
)k)]

− wr

h
[exp(−(VF

c
)k)− exp(−(Vr

c
)k)] + wF [exp(−(Vr

c
)k)− exp(−(VF

c
)k)]
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Back substitution of M2 and M1 in Eoe as follow:

Eue = M1 +M2

Eue = (wr − wF ) [exp(−(
Vr

c
)k)− exp(−(Vo

c
)k)]

+
cwr

hVin

[Γ(1 +
1

k
, (
VF

c
)k)− Γ(1 +

1

k
, (
Vr

c
)k)]

− wr

h
[exp(−(VF

c
)k)− exp(−(Vr

c
)k)] + wF [exp(−(Vr

c
)k)− exp(−(VF

c
)k)]

Eue = (wr − wF ) [exp(−(
Vr

c
)k)− exp(−(Vo

c
)k)]

+ (wF +
wr

h
) [exp(−(Vr

c
)k)− exp(−(VF

c
)k)]

+
cwr

hVin

[Γ(1 +
1

k
, (
VF

c
)k)− Γ(1 +

1

k
, (
Vr

c
)k)]



Appendix B

Load Reduction Probabilistic Cost Models

B.1 Probabilistic Model of the Load Reduction using

Normal Distribution

• Assume that load reduction Power is L and L ∼ N(µ, σ2).

• Assume that the Load reduction Power is Lmin ≤ L ≤ Lmax.

• The pdf of the normal distribution is shown in(B.1) while the expected (mean)

and the variance shown in (B.2) and (B.3) respectively.

f(x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 (B.1)

E(X) =

∫

∞

−∞

x f(x) dx = µ (B.2)

V ar(X) = E(X2)− E(X)2 = σ2 (B.3)

B.1.1 Overestimation of L

From Fig(B.5) it is obvious that the forecast value is grater than the actual value

(LF > L). which leads to financial losses due to buying unplanned power from other

utilities. To account for this events we should calculate the expected value of LF > L

and merge it with our cost model for the load reduction. But according to fig(B.2)

and fig(B.4), this will happen only in the region from (Lmin, LF ). Hence, the expected

value of overestimation will be as follows:

182
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Figure B.1: Over estimate case where the forecast Value LF is grater than the actual
value L

Eoe =

∫

∞

−∞

max(0, LF − L) f(L) dL

Eoe =

∫ LF

Lmin

(LF − L) f(L) dL

Eoe = LF

∫ LF

Lmin

f(L) dL−
∫ LF

Lmin

L f(L) dL

Eoe = LF (F (LF )− F (Lmin))−X11

X11 =

∫ LF

Lmin

L f(L) dL

X11 =

∫ LF

Lmin

(L− µ+ µ) f(L) dL
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X11 =

∫ LF

Lmin

(L− µ)
1

σ
√
2π

e
−(L−µ)2

2σ2 dL+ µ

∫ LF

Lmin

f(L) dL

X11 =
−σ√
2π

∫ LF

Lmin

−(L− µ)

σ2
e

−(L−µ)2

2σ2 dL+ µ (F (LF )− F (Lmin))

X11 = µ (F (LF )− F (Lmin)) +
−σ√
2π

[

e
−(L−µ)2

2σ2

]LF

Lmin

X11 = µ (F (LF )− F (Lmin))−
σ√
2π

[

e
−(LF−µ)2

2σ2 − e
−(Lmin−µ)2

2σ2

]

Eoe = LF (F (LF )− F (Lmin))− (µ (F (LF )− F (Lmin))−
σ√
2π

[

e
−(LF−µ)2

2σ2 − e
−(Lmin−µ)2

2σ2

]

)

Eoe = (LF − µ) (F (LF )− F (Lmin)) +
σ√
2π

[

e
−(LF−µ)2

2σ2 − e
−(Lmin−µ)2

2σ2

]

Eoe = (LF − µ) (F (LF )− F (Lmin)) +
σ√
2π

[

e
−(LF−µ)2

2σ2 − e
−(Lmin−µ)2

2σ2

]

Figure B.2: When the actual value lies between Lmin and LF
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B.1.2 Underestimation of L

From Fig(B.5) it is obvious that the forecast value is less than the actual value

(LF < L). which leads to a problem of wasting the available power by not using it.

To account for this events we should calculate the expected value of LF < L and

merge it with our cost model for the load reduction. But according to fig(B.2) and

fig(B.4), this will happen only in the region from (LF , Lmax). Hence, the expected

value of underestimation will be as follows:

Figure B.3: Underestimate case where the forecast Value LF is grater than the actual
value L

Eue =

∫

∞

−∞

max(0, L− LF ) f(L) dL

Eue =

∫ Lmax

LF

(L− LF ) f(L) dL

Eue =

∫ Lmax

LF

L f(L) dL− LF

∫ Lmax

LF

f(L) dL

Eue = X11 − LF (F (Lmax)− F (LF ))

X11 =

∫ Lmax

LF

L f(L) dL

X11 =

∫ Lmax

LF

(L− µ+ µ) f(L) dL
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Figure B.4: When the actual value lies between LF and Lmax

X11 =

∫ Lmax

LF

(L− µ)
1

σ
√
2π

e
−(L−µ)2

2σ2 dL+ µ

∫ Lmax

LF

f(L) dL

X11 =
−σ√
2π

∫ Lmax

LF

−(L− µ)

σ2
e

−(L−µ)2

2σ2 dL+ µ (F (Lmax)− F (LF ))

X11 = µ (F (Lmax)− F (LF )) +
−σ√
2π

[

e
−(L−µ)2

2σ2

]Lmax

LF

X11 = µ (F (Lmax)− F (LF ))−
σ√
2π

[

e
−(Lmax−µ)2

2σ2 − e
−(LF−µ)2

2σ2

]

Eue = µ ((F (Lmax)− F (LF ))−
σ√
2π

[

e
−(Lmax−µ)2

2σ2 − e
−(LF−µ)2

2σ2

]

− LF (F (Lmax)− F (LF ))

Eue = (µ− LF ) (F (Lmax)− F (LF ))−
σ√
2π

[

e
−(Lmax−µ)2

2σ2 − e
−(LF−µ)2

2σ2

]

Eue = (µ− LF ) (F (Lmax)− F (LF ))−
σ√
2π

[

e
−(Lmax−µ)2

2σ2 − e
−(LF−µ)2

2σ2

]
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B.2 Probabilistic Model of the Load Reduction using

Exponential Distribution

• Assume that load reduction Power is L and L ∼ Exp(λ).

• Assume that the Load reduction Power is Lmin ≤ L ≤ Lmax.

• The pdf and cdf of the exponential distribution is shown in(B.8) and (B.9) while

the expected (mean) and the variance shown in (B.10) and (B.11) respectively.

f(x) = λ e−λ x u(x) (B.4)

F (x) = P (X ≤ x) =

∫ x

−∞

λ e−λ m u(m) dm

F (x) =

∫ x

0

λ e−λ m dm =
[

−e−λ m
]x

0

F (x) = (1− e−λ x) u(x) (B.5)

E(X) =

∫

∞

−∞

x f(x) dx =
1

λ
(B.6)

V ar(X) = E(X2)− E(X)2 =
1

λ2
(B.7)

B.2.1 Overestimation of L

From Fig(B.5) it is obvious that the forecast value is grater than the actual value

(LF > L). which leads to financial loss due to buying unplanned power from other

utilities. To account for this events we should calculate the expected value of LF > L

and merge it with our cost model for the load reduction. But according to fig(B.2)

and fig(B.4), this will happen only in the region from (Lmin, LF ). Hence, the expected

value of overestimation will be as follows:
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Figure B.5: Over estimate case where the forecast Value LF is grater than the actual
value L

Eoe =

∫

∞

−∞

max(0, LF − L) f(L) dL

Eoe =

∫ LF

Lmin

(LF − L) f(L) dL

Eoe = LF

∫ LF

Lmin

f(L) dL−
∫ LF

Lmin

L f(L) dL

Eoe = LF (F (LF )− F (Lmin))−X11

X11 =

∫ LF

Lmin

L f(L) dL

X11 =

∫ LF

Lmin

L λ e−λ L u(L) dL

Using Integration by Parts:

∫ b

a

u dv = [u v]ba −
∫ b

a

v du

u = L⇒ du = dL

dv = λ e−λ L dL⇒ v = −e−λ L
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X11 =
[

−L e−λ L
]LF

Lmin
−
∫ LF

Lmin

−e−λ L dL

X11 = Lmin e−λ Lmin − LF e−λ LF − 1

λ
(e−λ LF − e−λ Lmin)

Eoe = LF (F (LF )− F (Lmin))− (Lmin e−λ Lmin − LF e−λ LF − 1

λ
(e−λ LF − e−λ Lmin))

Eoe = (LF − Lmin) e
−λ Lmin − 1

λ
(F (LF )− F (Lmin))

Eoe = (LF − Lmin) e
−λ Lmin − 1

λ
(F (LF )− F (Lmin))
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B.2.2 Underestimation of L

From Fig(B.6) it is obvious that the forecast value is less than the actual value

(LF < L). which leads to a problem of wasting the available power by not using it.

To account for this events we should calculate the expected value of LF < L and

merge it with our cost model for the load reduction. But according to fig(B.2) and

fig(B.4), this will happen only in the region from (LF , Lmax). Hence, the expected

value of underestimation will be as follows:

Figure B.6: Over estimate case where the forecast Value LF is smaller than the actual
value L

Eue =

∫

∞

−∞

max(0, L− LF ) f(L) dL

Eue =

∫ Lmax

LF

(L− LF ) f(L) dL

Eue =

∫ Lmax

LF

L f(L) dL− LF

∫ Lmax

LF

f(L) dL

Eue = X11 − LF (F (Lmax)− F (LF ))

X11 =

∫ Lmax

LF

L f(L) dL
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X11 =

∫ Lmax

LF

L f(L) dL

X11 =

∫ Lmax

LF

L λ e−λ L u(L) dL

Using Integration by Parts:

∫ b

a

u dv = [u v]ba −
∫ b

a

v du

u = L⇒ du = dL

dv = λ e−λ L dL⇒ v = −e−λ L

X11 =
[

−L e−λ L
]Lmax

LF
−
∫ Lmax

LF

−e−λ L dL

X11 = LF e−λ LF − Lmax e−λ Lmax − 1

λ
(e−λ Lmax − e−λ LF )

Eue = LF e−λ LF − Lmax e−λ Lmax − 1

λ
(e−λ Lmax − e−λ LF )− LF (F (Lmax)− F (LF ))

Eue = (LF − Lmax) e
−λ Lmax − 1

λ
(F (LF )− F (Lmax))
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B.3 Probabilistic Model of the Load Reduction using

Weibull Distribution

• Assume that load reduction Power is L and L ∼ W (c, k).

• Assume that the Load reduction Power is Lmin ≤ L ≤ Lmax.

• The pdf and cdf of the weibull distribution is shown in(B.8) and (B.9) while

the expected (mean) and the variance shown in (B.10) and (B.11) respectively.

f(x) =
k

c

(x

c

)k−1

exp[−(x
c
)k] u(x) (B.8)

F (x) = P (X ≤ x) =

∫ x

−∞

k

c

(m

c

)k−1

exp[−(m
c
)k] u(m) dm

F (x) =

∫ x

0

k

c

(m

c

)k−1

exp[−(m
c
)k] dm =

[

−exp[−(m
c
)k]
]x

0

F (x) = (1− exp[−(m
c
)k]) u(x) (B.9)

E(Xn) =

∫

∞

−∞

mn k

c

(m

c

)k−1

exp[−(m
c
)k] u(m) dm

(
m

c
)k = Z ⇒ m

c
= Z

1
k ⇒ mn = cn Z

n
k

dZ =
k

c
(
m

c
)k−1 dm

E(Xn) = cn
∫

∞

0

Z
n
k exp[−Z] dZ

E(Xn) = cn
∫

∞

0

Z
n
k
+1−1 exp[−Z] dZ = cn Γ(1 +

n

k
)
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E(Xn) = cn Γ(1 +
n

k
) (B.10)

V ar(X) = E(X2)− E(X)2 = c2 (Γ(1 +
2

k
)− (Γ(1 +

1

k
))2) (B.11)

B.3.1 Overestimation of L

From Fig(B.5) it is obvious that the forecast value is grater than the actual value

(LF > L). which leads to financial loss due to buying unplanned power from other

utilities. To account for this events we should calculate the expected value of LF > L

and merge it with our cost model for the load reduction. But according to fig(B.2)

and fig(B.4), this will happen only in the region from (Lmin, LF ). Hence, the expected

value of overestimation will be as follows:

Figure B.7: Over estimate case where the forecast Value LF is grater than the actual
value L
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B.3.2 Underestimation of L

From Fig(B.5) it is obvious that the forecast value is less than the actual value

(LF < L). which leads to a problem of wasting the available power by not using it.

To account for this events we should calculate the expected value of LF < L and

merge it with our cost model for the load reduction. But according to fig(B.2) and

fig(B.4), this will happen only in the region from (LF , Lmax). Hence, the expected

value of underestimation will be as follows:

Figure B.8: Over estimate case where the forecast Value LF is grater than the actual
value L
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Appendix C

Test Systems Data

C.1 Economic Dispatch Test Systems

C.1.1 Three Unit System

This system consists of three generation units with quadratic cost functions the de-

mand load is 850 MW. The unit characteristics of cost coefficients, and generators

operating limits were taken from [104].

Table C.1: Generation units cost coefficients and capacity limits

Unit ai bi ci Pmin
i Pmax

i

1 0.001562 7.92 561 100 600
2 0.00482 7.97 78 50 200
3 0.00194 7.85 310 100 400

C.1.2 Three Unit System with Valve Point Effect

This system consists of three generation units with quadratic cost functions and the

effects of valve-point loading is considered. The unit characteristics cost coefficients,

and generators operating limits were taken from [104]. The demand load is 850 MW.

Table C.2: Generation units cost coefficients and capacity limits

Unit ai bi ci ei fi Pmin
i Pmax

i

1 0.001562 7.92 561 300 0.0315 100 600
2 0.00482 7.97 78 150 0.063 50 200
3 0.00194 7.85 310 200 0.042 100 400
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C.1.3 Six Unit System

This test system consists of six generation units with quadratic cost functions, trans-

mission losses, ramp rates limits and prohibited operating zones. The unit charac-

teristics cost coefficients, and generators operating limits were taken from [40]. The

demand load is 1263 MW. The power loss coefficients are in per unit and the base is

equal to the system base which is equal to 100 MVA.

Table C.3: Generation units cost coefficients, capacity limits, prohibited operation
zones, and ramp rate limits

Unit ai bi ci Pmin
i P l

i,1 P u
i,1 P l

i,2 P u
i,2 Pmax

i Pi now DRi URi

1 0.007 7 240 100 210 240 350 380 500 440 120 80
2 0.0095 10 200 50 90 110 140 160 200 170 90 50
3 0.009 8.5 220 80 150 170 210 240 300 200 100 65
4 0.009 11 200 50 80 90 110 120 150 150 90 50
5 0.008 10.5 220 50 90 110 140 150 200 190 90 50
6 0.0075 12 190 50 75 85 100 105 120 110 90 50

Power loss coefficients:

Bij =

























0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002
0.0012 0.0014 0.0009 0.0001 −0.0006 −0.0001
0.0007 0.0009 0.0031 0 −0.001 −0.0006
−0.0001 0.0001 0 0.0024 −0.0006 −0.0008
−0.0005 −0.0006 −0.001 −0.0006 0.0129 −0.0002
−0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.015

























B0j =
[

−0.0003908 −0.0001297 0.0007047 5.91E − 05 0.0002161 −0.0006635
]

B00 = 0.0056
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C.1.4 Thirteen Unit System with Valve Point Effect

This system consists of thirteen generation units with quadratic cost functions and the

effects of valve-point loading is considered. The unit characteristics cost coefficients,

and generators operating limits were taken from [104]. The demand load is 1800 MW.

Table C.4: Generation units cost coefficients and capacity limits

Unit ai bi ci ei fi Pmin
i Pmax

i

1 0.00028 8.1 550 300 0.035 0 680
2 0.00056 8.1 309 200 0.042 0 360
3 0.00056 8.1 307 200 0.042 0 360
4 0.00324 7.74 240 150 0.063 60 180
5 0.00324 7.74 240 150 0.063 60 180
6 0.00324 7.74 240 150 0.063 60 180
7 0.00324 7.74 240 150 0.063 60 180
8 0.00324 7.74 240 150 0.063 60 180
9 0.00324 7.74 240 150 0.063 60 180
10 0.00284 8.6 126 100 0.084 40 120
11 0.00284 8.6 126 100 0.084 40 120
12 0.00284 8.6 126 100 0.084 55 120
13 0.00284 8.6 126 100 0.084 55 120

C.1.5 Wind Turbine and Load Reduction Cost Model Data

Wind turbine cost model data and load reduction cost model data based on Normal

distribution are shown in Table (C.5) and Table (C.6) respectively. These are the

default model data for solving the economic dispatch problem and if there are any

changes, they will be specified.

Table C.5: Wind turbine cost model data for economic dispatch problem

k c kp kr d Vi Vr V0 Wr

2 10 6 10 8 5 15 45 165

Table C.6: Load reduction cost model data for economic dispatch problem

h kue koe µ σ Lmin(MW ) Lmax(MW )
9 7 11 75 5 0 200
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C.2 Unit Commitment Test Systems

C.2.1 Four Unit System

This system consists of four generation units with quadratic cost functions. The

unit characteristics cost coefficients, generators operating limits, minimum up time,

minimum down time, hot start cost, cold start cost and initial state were taken from

[64].

Table C.7: Generation Units characteristics for four units system

Unit 1 2 3 4
Pmax (MW) 300 250 80 60
Pmin (MW) 75 60 25 20

a 0.0021 0.0042 0.0018 0.0034
b 16.83 16.95 20.74 23.6
c 684.74 585.62 213 252

Minimum up time (h) 4 3 2 1
Minimum down time (h) 5 5 4 1
Hot start up cost ($) 500 170 150 0
Cold start up cost ($) 1100 400 350 0.02
Cold start time(h) 5 5 4 0

Initial state 8 8 -5 -6

Table C.8: Load Demand (MW)

Hour 1 2 3 4 5 6 7 8
Load (MW) 450 530 600 540 400 280 290 500
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C.2.2 Ten Unit System

This system consists of ten generation units with quadratic cost functions. The

unit characteristics cost coefficients, generators operating limits, minimum up time,

minimum down time, hot start cost, cold start cost and initial state were taken from

[64].

Table C.9: Generation Units characteristics for ten units system

Unit 1 2 3 4 5 6 7 8 9 10
Pmax (MW) 455 455 130 130 162 80 85 55 55 55
Pmin (MW) 150 150 20 20 25 20 25 10 10 10

a 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173
b 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c 1000 970 700 680 450 370 480 660 665 670

Minimum up time (h) 8 8 5 5 6 3 3 1 1 1
Minimum down time (h) 8 8 5 5 6 3 3 1 1 1
Hot start up cost ($) 4500 5000 550 560 900 170 260 30 30 30
Cold start up cost ($) 9000 10000 1100 1120 1800 340 520 60 60 60
Cold start time(h) 5 5 4 4 4 2 2 0 0 0

Initial state 8 8 -5 -5 -6 -3 -3 -1 -1 -1

Table C.10: Load Demand (MW)

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Load 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500
Hour 13 14 15 16 17 18 19 20 21 22 23 24
Load 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800
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C.2.3 Wind Turbine and Load Reduction Cost Model Data

Wind turbine cost model data and load reduction cost model data based on Normal

distribution are shown in Table (C.11) and Table (C.12) respectively. These are the

default model data for solving the unit commitment problem and if there are any

changes, they will be specified.

Table C.11: Wind turbine cost model data for unit commitment problem

Test System k c kp kr d Vi Vr V0 Wr

C.2.1 2 10 6 10 8 5 15 45 165
C.2.2 2 10 6 10 8 5 15 45 495

Table C.12: Load reduction cost model data for unit commitment problem

System h kue koe µ σ Lmin(MW ) Lmax(MW )
C.2.1 9 7 11 75 5 0 90
C.2.2 9 7 11 170 10 0 200
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C.3 Fixed Head Hydrothermal Scheduling Test Systems

C.3.1 One Hydro Unit One Thermal Unit System

The study system consists of one thermal generation unit and one hydro generation

unit with two periods of time. The data and load demand are given in [124].The

water volume of the hydroplant is 100,000 acre-ft over the scheduling period and the

fuel cost is 1.15 $/MBtu.

Thermal unit System:

H(P) = 0.0016P 2 + 8P + 500

150MW ≤ P ≤ 1500MW

Hydroplant:

q = 330 + 4.97PH acre-ft/h

for 0 MW ≤ PH ≤ 1000 MW

q = 5300 + 12 (PH − 1000) + 0.05 (PH − 1000)2 acre-ft/h

for 1000 MW ≤ PH ≤ 1100 MW

Power Loss: PL = 0.00008P 2
H

The load demand is as follows:

12 am-12 pm: PD = 1200 MW

12 pm-12 am: PD = 1500 MW

The wind forecast for C.3.2 system is as follows:

12 am-12 pm: wF = 40 MW

12 pm-12 am: wF = 47.5 MW
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The load reduction forecast for C.3.2 system is as follows:

12 am-12 pm: LF = 0 MW

12 pm-12 am: LF = 20 MW
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C.3.2 One Hydro Unit Three Thermal Unit System

The study system consists of three thermal generation units and one hydro generation

unit. The data and load demand are given in [35]. The load demand is shown in

Table (C.15). The total water volume of the hydroplant is 25,000 m3 and the fuel

cost is 1 $/MBtu.

Thermal units System:

H(P1) = 0.01P 2
1 + 0.1P1 + 100

H(P2) = 0.02P 2
2 + 0.1P2 + 120

H(P3) = 0.01P 2
3 + 0.2P3 + 150

Hydroplant:

q = 140 + 20PH + 0.06P 2
H m3/h

50MW ≤ P1 ≤ 200MW

40MW ≤ P2 ≤ 170MW

30MW ≤ P3 ≤ 215MW

10MW ≤ PH ≤ 100MW

Table C.13: Load demand for test system 2

Hour Load Hour Load Hour Load Hour Load
1 175 7 390 13 565 19 375
2 190 8 410 14 540 20 340
3 220 9 440 15 500 21 300
4 280 10 475 16 450 22 250
5 320 11 525 17 425 23 200
6 360 12 550 18 400 24 180
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Table C.14: Wind forecast for test system 2

Hour P F
w Hour P F

w Hour P F
w Hour P F

w

1 0 7 50 13 40 19 20
2 0 8 50 14 20 20 10
3 0 9 50 15 20 21 10
4 30 10 20 16 20 22 10
5 30 11 20 17 20 23 0
6 30 12 40 18 20 24 0

Table C.15: Load reduction forecast for test system 2

Hour P F
LR Hour P F

LR Hour P F
LR Hour P F

LR

1 0 7 0 13 18 19 0
2 0 8 0 14 20 20 0
3 0 9 0 15 0 21 0
4 0 10 18 16 0 22 0
5 0 11 20 17 0 23 0
6 0 12 20 18 0 24 0
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C.3.3 Wind Turbine and Load Reduction Cost Model Data

Wind turbine cost model data and load reduction cost model data based on Normal

distribution are shown in Table (C.16) and Table (C.17) respectively. These are the

default model data for solving the fixed head hydrothermal scheduling problem and

if there are any changes, they will be specified.

Table C.16: Wind turbine data used for hydrothermal scheduling problem benchmark
test systems

Test System k c kp kr d Vi Vr V0 Wr

C.3.1 2 10 6 11 8 5 15 45 50
C.3.2 2 10 3 6 4 5 15 45 50

Table C.17: Load reduction cost model data for fixed head hydrothermal scheduling
problem

Test System h kue koe µ σ Lmin(MW ) Lmax(MW )
C.3.1 9 7 11 17 1 0 20
C.3.2 4.5 3 6 17 1 0 20
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C.4 Optimal Power Flow Test Systems

C.4.1 Wind Turbine and Load Reduction Cost Model Data

Wind turbine cost model data and load reduction cost model data based on Normal

distribution are shown in Table (C.18) and Table (C.19) respectively. These are the

default model data for solving the optimal power flow problem and if there are any

changes, they will be specified.

Table C.18: Wind turbine data used for optimal power flow problem benchmark test
systems

Test System k c kp kr d Vi Vr V0 Wr Bus Number
IEEE 30-Bus 2 10 0.6 1.75 0.9 4 11.5 30 20 7

Table C.19: Load reduction cost model data for optimal power flow problem

Test System h kue koe µ σ Lmin(MW ) Lmax(MW ) Bus Number
IEEE 30-Bus 1 0.6 1.75 9.42 1.88 0 15.06 5
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