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Abstract

Principal Component Analysis (PCA) is a widely used tool for dimensional reduction and
data visualization. However, it cannot be used directly for microbiome data. In this thesis,
we aim to develop PCA for the underlying abundance of OTUs under the assumption that
conditional on the latent OTU abundance, the observed counts follow independent Poisson
distributions. By correcting this Poisson measurement error, we base our PCA on an unbi-
ased estimator of the covariance matrix of the latent OTU abundances. We further correct
the sequencing depth noise by analyzing the data as compositional. In order to deal with
the non-normality, we propose a logarithm-transformed Poisson-corrected PCA. We then
incorporate sequencing depth correction into this method. Finally, we address the problem
of projecting the observed data onto the log-transformed principal component space. We
examine the performance of our methods on simulated data and tongue microbiomes data.
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Chapter 1
Introduction

1.1 Principal Component Analysis as a Dimension Reduction and Data Exploration
Tool

Principal component analysis (PCA) is a statistical procedure that reduces the dimension-
ality of the data while retaining most of the variation in the data set [1]. PCA identifies a
number of orthogonal directions for the data to be projected on, called principal compo-
nents. The data projected on the first principal component accounts for as much as possible
of the variability in the data, and each succeeding principle component, subject to the or-
thogonality constraints, accounts for as much as possible of the remaining variability. By
successfully reducing the dimensionality of the data, PCA can thus help to identify new
potentially meaningful variables and to understand better the correlation structure among
the original variables.

PCA, as an important data exploration method, is widely used to identify patterns in
data, based on which a statistical model may be proposed for further analysis of the data.

In computation, PCA is equivalent to applying singular value decomposition (SVD)
on the column centralized data matrix. There has been a lot of interest in applying SVD
to gene expression data where the dimension of the data is higher than the number of
observations [2] [3].

1.2 Measurement Error for PCA

In experiments, the data that we observe differ randomly from the values that we intend to
measure and such error is called the measurement error. The measurement error problem
has been considered in great many papers and several monographs [4]. Ignoring measure-
ment errors in many cases can lead to biased inference or even erroneous conclusions [5].
PCA is widely used to reduce the dimension of the high dimensional data to the space
spanned by a few principal components, under the assumption that the eigenvectors associ-
ated with smaller eigenvalues are predominantly decided by the noise or otherwise less im-
portant features of the data. However, classical PCA does not distinguish between variance
caused by measurement error noise and the true underlying signal variations. Even when an
estimate of the measurement error variance is available, this information is not used when
calculating the principal component directions, e.g., by deweighting noisy data [6]. It is not
difficult to see that when measurement error is additive and independent to the variables be-
ing measured, the principal component directions are going to be decided by the sum of
the variances due to the variability of the variables being measured and the measurement
errors. If the variance due to measurement error is close to a multiple of the identity matrix,
then the measurement error will not change the estimated principal components much, so



the error introduced by ignoring the measurement error will not usually be serious.

Some work has been done in correcting the independent additive measurement errors
in PCA. For example, Maximum likelihood principal component analysis (MLPCA) is an
analog to PCA that incorporates information of additive measurement errors to develop
PCA models that are optimal in a maximum likelihood sense [7].

An alternative method, termed Weighted EMPCA, gives different weights to different
observations with the weights decided by the estimated measurement errors, so that less
weight is given to the observations with higher measurement errors [6].

More recently, Hellton and Thoresen [8] investigated the effects of random, additive er-
rors on PCA and illustrated that the measurement error will contribute to a large variability
in component loadings, relative to the loading values, such that interpretation based on the
loadings can be difficult.

It is not clear how principal component analysis will be influenced when the measure-
ment error is not additive and/or not independent of the underlying variables. We deal with
one type of such measurement error in the microbiome data analysis for PCA in this thesis.

1.3 Microbiome Data

The concept of the human microbiome was first suggested by Joshua Lederberg, who pro-
posed the term Microbiome, “to signify the ecological community of commensal, symbi-
otic, and pathogenic microorganisms that literally share our body space” [9]. Microbes are
extremely small living organisms that include bacteria, viruses, and fungi. Large and di-
verse populations of bacteria, viruses, and fungi occupy almost every surface of the human
body and the environment [10]. It is estimated that there are nearly 30 trillion bacterial
cells living in or on each human [11], and these along with other microbes are collectively
known as the microbiome.

The millions of organisms that make up the human microbiome play an important role
in both health and disease. Humans and microbes depend on one another: our bodies
provide microbes with resources, and the microbes provide functions necessary for our
health [12].

Researchers can use DNA sequencing to identify microbes. One common technique
is to sequence a marker: a short, unique DNA sequence that can be used to identify the
genome that contains it. Using markers, researchers can identify a microbe without having
to sequence its entire genome. This shortcut allows them to identify all the species present
in a sample very quickly. The next generation sequencing technology accelerated the data
collection on microbiome in and on human bodies under different health conditions and also
microbiome from different environments, for example ocean and soil. These data provide
potential for us to understand more about how the microbes as a community interact with
both humans and the environment. However the development of data analysis techniques
is lacking behind the data collection, although there has been a lot of work dedicated to
develop new computer tools and technology to make data analysis more manageable [13].

Microbiome sequence data sets are typically high dimensional, with the number of
taxa much greater than the number of samples. Also it is sparse as most taxa are only
observed in a small number of samples. Typically the data are collected as the counts of
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different microbes observed in each sample. The sampling error for these count data adds
an additional challenge for the downstream analysis [14].

Furthermore, because the total number of reads in a sample is influenced by a number
of factors in the sample collection and sequencing, rather than the underlying microbial
community, the counts for different microbes are not comparable across different samples.
This is the issue referred to as the sequencing depth. Often sequencing depth is measured
by the total number of microbes observed in each sample. Obviously the total count of
microbes in each sample is related to both the noise integrated through the sequencing pro-
cess and up stream data sorting and the abundance of all different microbes in the sample.
In order to make the data entries comparable for the same OTU across different samples,
typically microbiome data have been treated as compositional data and analyzed using the
methods developed for the compositional data [15]. The problem with taking proportions
in the data and treating them as compositional data is that the different sequencing depths
across samples add another level of heterogeneity in addition to the heterogeneity due to
the different sampling errors [16].

Some work has been done on analysis of compositional data. Analysis of composition
of microbiomes (ANCOM) is a non-parametric statistical framework, which accounts for
the underlying structure in the data and can be used for comparing the composition of
microbiomes in two or more populations [17]. An additive logistic normal multinomial
regression model to associate the covariates to bacterial composition is proposed. The
model can naturally account for sampling variabilities and zero observations and also allow
for a flexible covariance structure among the bacterial taxa [18].

In this thesis, we will use “sequencing depth” more generally to represent a random
multiplier applied to the abundance of all OTUs, which represents the effect of a number
of experimental factors in sample collection and sequencing. This multiplier is not identifi-
able, which is why the tradition in microbiome analysis is to treat it as the total read count.
We will follow this tradition when performing PCA on the latent A in Chapter 2. However,
when dealing with the transformed A in Chapter 4, we cannot have that the compositional
form of A follows a log-normal distribution, or similar, so it does not make sense to let A
be compositional in this case. In that chapter, we consider sequencing depth to be a random
multiplier, and give two methods to identify a unique solution.

1.4 Structure of the Thesis

The major goal of this thesis is to develop PCA for count data assuming the sampling errors
are Poisson, with additional effort made to correct for different sequencing depths across
the samples.

The structure of the thesis is as follows. PCA analysis for count data with or without
sequencing depth complication is developed in Chapter 2. In consideration of the exponen-
tial growth of bacteria, we introduce the non-linear logarithm transformation on the latent
abundance and build a Poisson error correction PCA without considering the sequencing
depth complication in Chapter 3. We then extend the log-transformed PCA to the case
which treats sequencing depth as an nuisance random variable in Chapter 4.
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The former three chapters focus on the calculation of the principal component direc-
tions. For the log-transformed problem, the projection of the latent unobserved data to the
calculated principal component space is not a trivial problem. We devote Chapter 5 to the
projection of the latent data to the principal component space. Simulation results for differ-
ent versions of the PCA are included in the corresponding chapters. The real data analysis
are included in Chapter 6. Chapter 7 concludes the thesis.



Chapter 2

Principal Component Analysis for Count Data with Poisson Sampling
Errors

Suppose we are interested in the analysis of some latent multidimensional variable A =
(A1, Az, -+ ,A,), where A; (j =1,..., p)is arandom variable representing the true abun-
dance of the jth OTU for microbiome data. We collect n samples from this latent variable,

,,,,,

.....

ables with mean A;;. Sometimes we will need to refer to the underlying distribution of the
random vector, A, of Poisson means, and use X to denote the corresponding random vector
of Poisson counts.

Applying PCA directly on X gives a biased estimate for the principal components of
A, since X has larger variance in cases where A; is larger. (Or if we use correlation to
determine PCA, then X has relatively smaller variance when A; is larger.) Our objective
is to devise a method to correct this bias. We develop this method in Section 2.1, followed
by the simulation results for this case in Section 2.2.

There is an additional complication when we are studying microbiome data, namely
sequencing depth. For microbiome data, the sequencing depth is mostly determined by
experimental factors, rather than by any biologically interesting aspects of the samples.
Therefore, we are more interested in the compositional form. More formally, we suppose
the latent composition of the system is given by some random vector A, with A.1 = 1, and
that the vector or Poisson mean A = sA,. for some (scalar) random variable s, which is to
be treated as a noise variable. In Section 2.3, we develop a method to estimate the principal
components of this A, vector under this model, followed by the simulation results for this
case in Section 2.4.

2.1 Poisson Error Correction for PCA

By the law of total variance, we know that for two random variables X and Y, Var(X) =
E[Var[X|Y]] + Var[E[X|Y]]. Now we are interested in two random vectors A and X. A =
(Al JACREE Ap), and each A; (j = 1,2,---, p) is a random variable. X|A follows a Pois-

son distribution with mean A and X = (X1 X5 -- ~Xp), X;(j=12,---,p)is arandom
variable independent with each other conditional on A ;.

The law of total variance trivially extends to random vectors. The Variance-Covariance

5



matrix of X is

Var(X) = B[XX] - B[X]EB[X])”
= E[E[XX|A]] - E[E[XIAE[EXIAID"
= E[Var[XIA] + BIXIADEXIAD | - EEXIATDEEXIAL
= E[Var[X|A]] + Var[E[X|A]] 2.1)

Since E[X|A] = A,

Var[E[X|A]] = Var[A] (2.2)

Since X; ~ Po(A;), and X|A is independent of X;|A, foralli # jandi,j=1,2,---p,
Var(X;|A;) = A;. The off-diagonal elements of E[Var[X]|A]] are 0’s, and its jth diagonal
entry is A, so

E[Var[X|A]] = E[diag(A1, Az, -+, Ap)] (2.3)

By plugging in equations (2.2) and (2.3), the equation (2.1) is equivalent to
Var[X] = Var[A] + E[diag(A;, Az, -+ -, Ap)]
The latent variance is given by:

2 = Var[A]
= Var[X] - E[diag(A, Az, - -+, Ap)] 2.4)

So an unbiased estimator for Var[A] is given by:

5 -

-~ XT1
XX - diag (—)
n—1 n

= Ty — diag (X) (2.5)

where matrix X is a realization of random vector X and X is the column centered matrix
of X. We use Xy to denote the sample Variance-Covariance matrix from data X, and X to
denote the sample mean of X.

The Variance-Covariance matrix for classical PCA is computed by anIXXT, which is
the first term in (2.5). So our method corrects the diagonal elements and the off-diagonal
terms keep the same. We then implement eigen-decomposition on this Variance-Covariance

matrix to obtain principal components.

2.2 Simulation for Principal Component Analysis of X,

We test the performance of the Poisson noise corrected PCA on simulated data. We assume
the Poisson mean matrix of dimension n by p, is given by A = 1u” + vw’, where u ,v and
w are random vectors generated under normal distributions, say u = (uy,up, - -, up)T, vV =
(vi,va, -, v) and w = (wy,wo, -+ ,w,)". Bachu; (i = 1,2,---, p) has the same mean
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u, and standard deviation o, similarly each element of v follows a N(u,, 0'3) distribution
and each element of w follows a N(u,,, 02) distribution. 1 is a vector of length n of all 1’s.
We choose the means and standard deviations for u, v, and w to ensure all entries of A are
positive with high probability.

Let wy be a unit length vector in the direction of w.

If we could directly observe A, its sample variance would be:

T \T T
T, = (A1 A) (A—gz\)
n-—1 n n

1 117 ! 117
= Qu” + vw') - — @’ + VWT)) ((luT +vwl) - —@1u’ + VWT))
n n

1 ; Vi
= (Iu” +vw") — (1" + 2iVi
n—1 n

T
le)) ((luT +vw) - (1u” + ¥1WT))

= (v=vow!) ((v=vDw
i

1 _ _
= ——w(v-vD) (v-vD)w’
n-1
= o2ww’

So there is only one non-zero principal component which is parallel to w, i.e. wy.

We generate the data matrix X from its Poisson mean A. By applying our method on X
to estimate X, we can compare its PCA result with that from uncorrected PCA by using
2y on X to measure how well our method corrects the Poisson error.

We use the absolute value of cosine of the angle between the estimated and true princi-
pal components to assess the accuracy of the estimated principal components. If the cosine
of the angle between wy and PC1 from Poisson error corrected PCA is significantly greater
than the cosine of the angle between w, and PC1 from classical PCA, we can conclude that
our method corrects the Poisson error.

Data are simulated under 3 scenarios, all with p = 10, u ~ N(10, 2?), and v ~ N(5, 0.1%)
with w ~ N(30,5%), w ~ N(30, 15%), and w ~ N(30,252). We vary the standard deviation
of these normal distributions in the w direction to cover different ranges. For each scenario,
we set sample sizes n as 10, 50, 100, 300, 500, 1000 respectively, and the number of
variables p is 10. We then simulate 100 A matrices by A = 1u’ + vw’ for each sample size
and for each A we generate one X matrix.

The simulation follows the procedure below:

1. First we generate A = 1u” + vw’
(a) {w;}l_, are i.i.d. normal random variables with mean g, and standard deviation
Ou

(b) {v;}_, are i.i.d. normal random variables with mean u, and standard deviation

ay

(¢) {wi}, are 1.i.d. normal random variables with mean u,, and standard deviation
Ow



2. Then we simulate a Poisson sample X from A

Figures 2.1, 2.2, and 2.3 show the mean and confidence interval for the absolute value
of the cosines of the angles between true and estimated PC1 for the 3 scenarios. The red
line shows the results for the Poisson error corrected model while the black line shows the
results for the classical PCA. The shaded area is the Confidence Interval of the average
cosine of the angle, where CI = MEAN =+ 1.96*S.E. and standard error is computed by:

sample standard deviation

Vnumber of simulations

From Figures 2.1, 2.2, 2.3, we find that the Poisson error corrected PCA cosines of the
angles are higher than that of the classical PCA, that is particularly true for the large sample
sizes, and this pattern is consistent. We can make the conclusion that error corrected model
is superior to the classical PCA especially when sample size is large. This is expected,
since our method decreases the bias, but increases the variance. As sample size gets large,
the increase in variance has less effect, but the reduction in (squared) bias retains the same
effect.

2.3 Poisson Error Corrected PCA with Sequencing Depth correction

Let s be the sequencing depth of the latent Microbiome random vector A. For simplicity,
we will assume the sequencing depth s is known for all observations. (In practice we will
assume the sequencing depth of a sample is the total read count of that sample.) Denote the
underlying abundance (or proportion) as A, thus A = sA.. The conditional random vector
X|(s, A,) follows a Poisson distribution with mean sA.. The goal of this section is to find
an unbiased estimator of Var(A,).

By the law of total variance:

Var[s™'X] = Var[E[s'X|(s, A.)]] + E[Var[s~'X]|(s, A)]]
= Var[A.] + E[s > diag(A)]

(2.6)
So
T, = Var[A ] = Var[s~'X] — E[s* diag(A)] (2.7)
The sample version of Var(s~'X) in equation (2.7) is
1 o —~—~—~—
Var(s™'X) = —1(5—1X)T(S—1X) (2.8)
n —

where matrix X is a realization of random vector X,
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s; 1s the sequencing depth of X; (i = 1,2,--- ,n), and $TX=5"X- 11T¥-

So an unbiased estimator for Var(A.) is ﬁ(Sf‘\l_)/()T(g—‘\l-)/() — diag (@)

2.4 Simulation for Principal Component Analysis of X,

In order to test the performance of the Poisson error corrected PCA model with sequencing
depth correction, we simulate the true microbiome abundance matrix A from two compo-
nents: sequencing depth s and compositional form A., s = (s, 52, , 5,)! is a random
vector generated from a normal distribution and A, = 1u” + vw’, where u, v, and w are
random vectors generated from some different distributions.

We assign appropriate i, and o for s to make it a positive vector with high probability,
where {s;}"_, are i.i.d. normal random variables with mean u, and standard deviation o .
However since rare elements can be non-positive when sample size n is very large, we
change all non-positive elements in the latent S into 5. 5 was chosen so that the total
abundance of each row of Poisson data X is at least 1. For the simulated distribution of
S, there are very few samples with 0 < § < 5, and no problems arise from leaving these
values of S unchanged. This will enable us to compute the inverse matrix of estimated

S = dlag(Zle Xij)-

In compositional data A., u and w are random vectors generated from some different
normal distributions separately, say u = (uy, up, - - - , up)T, and w = (wy,wp, -, Wp)T. Each
uj (j = 1,2,---, p) has the same mean y, = % (p 1s the number of variables of A) and
standard deviation o, = # In this way, the vast majority of elements in u are positive and
the sum of u is approximately 1. We can change the non-positive elements into O and then
center the vector u so that the sum is exactly 1. Eachw; (i = 1,2,-- -, p) has the same mean
0 and standard deviation o-,,. We centralize w to make the requirement w1 = 0 hold. Let
w, be a unit length vector in the direction of w.

We simulate each v; (i = 1,2, --- ,n) as q; plus b; —a; times a Beta distribution, where (a;,b;)
is the interval for v; which makes every element in row i positive. Namely, we can write the
elements in A, as [u;+viw;liz12, _n:j=12..p, and the restrictionis u; +viw; > 0, j = 1,2,..., p
for the ith row. Since each u; is positive, we can then get v; > —:—: if w; is positive, and

v; < —i—’/'_ if w; is negative. By solving these j inequalities, we get an interval (a;,b;) which
contains all the possible v;’s. Then we simulate B ~ Beta(a,8), and let v; = (b; — a;)B + a;.
The parameters a and S are chosen to give E(v;) = 0 so that u is the mean of the data.

Now A = S(1u” + vw’), the Variance-Covariance matrix of A, is £,, = Cov(A,) =
Var(lu” + vw’).

Suppose u, v, and w are realizations of random vectors u, v, and w, the sample version of
the Variance-Covariance matrix Var(A,) is:
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Vﬂc) = Var(lu” + vw') = Var(ww’)

= ! ow” = D) (owT — vwT)
n—1

= (WY (= D)
n—1

=—wv -9 -y’
n—1

= 62w’

According to the eigen-decomposition rule, the first eigenvector of the above matrix is
parallel to w, which means that the first principal component of the constructed synthetic
data A, is wy. .

If the direction of the PC1 of X,_ is closer to that of Var(A,.) when using our corrected
covariance algorithm than when using uncorrected PCA, we can make the conclusion that
our method corrects some of the bias from Poisson error.

We simulate under 2 scenarios, all with p = 10, s ~ N(500,250%), u ~ N(5,(5;)*)
where p is the number of variables, w ~ N(0, 1?), and w ~ N(0, 5%). For each scenario,
different number of observations, i.e. 10, 50, 100, 300, 500, 1000, are simulated. We
simulate 100 A matrices by A = S(1u” + vw’) where S is the diagonal matrix of s and
apply the corrected model on the data and compare the results with that from classical PCA
on X and on the compositional form S !X separately.

Figures 2.4 and 2.5 show the mean and confidence interval of the absolute value of the
cosine of the angle between the PC1’s from three different methods and the true PC1 for
the 2 scenarios. The red line shows the results for the Poisson error corrected method with
sequencing depth corrected, while the black line shows the results for classical PCA on X
and the blue line shows the results for classical PCA on the compositional form of X. The
shaded area is the Confidence Interval of the mean cosine of the angle.

From Figures 2.4 and 2.5, we find that the Poisson error corrected PCA with sequenc-
ing depth corrected results are better than that of the two classical PCA methods and this
pattern is consistent. It is also noticed that for large sample sizes, although the results of
the correction is significant, the practical advantages of our method over the PCA on the
proportional data is limited. This is mainly because when the sample size is large, the pro-
portions, as estimators for the true composition, are unbiased and the variance estimates
need very little correction.
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Chapter 3
Principal Component Analysis on Non-linearly Transformed Latent A

In Chapter 2, we derived the Poisson error correction for PCA. In Section 2.2, we showed
that this method does improve PC estimation compared with applying PCA directly to the
X matrix. Sometimes, however we may be more interested in a transformation of the latent
variable A. In this chapter, we show how the method can be modified to estimate the
principal components of the transformed latent variables. Several transformations can be
used here, e.g.: logistic, log and square root transformation. Microbiome data can be fitted
using a log-normal distribution, so the logarithm transformation is the most appropriate to
represent the data features. (A number of papers related to the Microbiome use log scale to
measure the data [19] [20]).

3.1 Poisson Noise Corrected log transformed PCA

Suppose that we are now interested in the principal components of f(A) for some function
f. Since X ~ Po(A), we can use the law of total variance as we did for the linear case for
any function g(X).

Var(g(X)) = E(Var(g(X)|A)) + Var(E(g(X)|A))

We want to choose g(X) to be an unbiased estimator for f(A) so that E(g(X)|A) = f(A).
Then we will have

Var(f(A)) = Var(E(g(X)|A)) = Var(g(X)) — E(Var(g(X)|A)) (3.1

For a given f(X) we can solve the following to get the function g(X). Since X|A follows
a Poisson distribution, let g, = g(n) and we have

(o] n/‘ln
E@gX)IA=)=ey 82
oy n!

o g
ef) = Z e
n=0 :

so g, are the coefficients of the Maclaurin Series of e! £(A).

Now we consider the case of interest f(1) = log(4). Unfortunately, there is no Maclau-
rin Series for f(1) = log(4), because of the singularity at 0. This means that there is no
unbiased estimator for log(1). We can however find a function f(1) which approximates

16



17

log(4) on a range of interest. We can take a Taylor Series about a point a.

log(1) = log(a) + log (g)
= log(a) + log(l - (1 - g))

— log(a) - i n% (1 - f)m 3.2)

m=1 a

When we attempt to sum up the series to calculate the coefficients of 1™, the series
diverges. However, we can truncate the series at some value ny to obtain some polynomial
DPur.a(A). This will approximate log(4) on some interval. Suppose we have chosen p,, ,(1)
to approximate log(4) on an interval that contains all true values of A. Let p,, (1) =

Lo PmA”™.

Selecting the values of a and n is crucial in the expression (3.2). When 4 < 2a, ex-
pression (3.2) converges. The accuracy of the approximation increases as the value of ny
increases, but the variance also increases, so we need to find the trade-off between the
accuracy and consistency.

Microbiome sequence data has the characteristics of being over-dispersed and highly-
skewed, so we can not use the same a and ny pair in the approximation (3.2) for all the
reads. Allowing a and ny to vary between OTUs may help to solve this problem. However,
due to the sequencing depth problem which comes from collecting the data during the
experiment, there can still be too many observations that are larger than 2 times the sample
mean, which makes the approximation (3.2) not valid.

In this thesis, we propose the following function 4(A1) to approximate log(A1) in consid-
eration of the above concerns. For small values of A, we use expression (3.2) with fixed a
and ny. For large A, we simply use log(1). Now we seek to find a weight function m(2)
that assigns weight to each piece and ensure the smoothness of the function. We choose

m(d) = ——, where u and s are two parameters in the cumulative logistic distribution,
l+e” 75

and let h(1) = m(1)log(A) + (1 — m(A)) (log(@) = X7, L (1= 2)") be the function that
approximates log(A4).

Figure 3.1 compares these approximations for log(41), the red line shows the results for
log(A) while the blue line shows the results for the Taylor expansion p,, ,(1). The two
functions both have limitations so that we introduce h(A1), which is shown by the black
dotted line. Here we set a = 10, ny = 10, u = 2, s = 1. Since log(0) is not defined, we plot
log(1) and A(A) from infinitesimal, while the Taylor expansion starts from 0. The (smooth)
function h(A) approximates log(1) very well.



— log(lambda)
—— Taylor expansion
—— weighted average function

lambda

Figure 3.1: The weighted average function to approximate log(A).

18



19

Now we seek to solve

/ll
e =5

=0 ’

[ /lk nr . (] gl/l

k=0 m=0 =0

i "ZT /lm+k b gl/l
Pm = 5

k=0 m=0 k! =0 I

= Zm!(l)pm (3.3)
m=0 m

where the fourth line follows from the substitution / = k£ + m on the left hand side. Now
we can test the performance of g; in estimating log(A).

In Figure 3.2, the red line shows the results for the MSE of log(X) as an estimator for
log(4) while the blue line shows the results for the MSE of estimating log(4) by taking
the Taylor expansion using g, from Equation (3.3). For 4 < 10, the estimate using the
log(X) method varies a lot. Meanwhile, the Taylor expansion method is inconsistent when
A > 18. The dotted black line shows the results for the MSE of estimating log(1) by the

weighted average function m(x)log(x) + (I — m(x)) g, where m(x) = lﬂ . Here we set

l+e™ 75

a=10,ny = 10, u = 2, s = 1. In computation, we replace X = 0 with X = 0.1~ to make
log(X) valid. When A = 0, log(1) is computed by log(0.17%), we can then calculate MSE
of three estimated 1@). There is a lot of variance for g(X), because a few large values of
X can have very large influence, so the apparent spike at 4 = 18 is caused by a few large
influence points appearing in the 1000 simulations. We will use g, with fixed parameters
in the following calculations.

Having calculated the g;, we now look to calculate the variance of f(1). We calculate

0 nr k /11{
EGUOIA =)= f() = ) (Z m!(m)l"") a

k=0 \m=0

and

© (e k)
E(g(X)’|A = ) ~ [ m!( )pm] —e
; m k!

m=0
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Figure 3.2: The weighted average function as an estimation of log(A).
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SO

Var(@(X)|A = ) =

(3.4)
Lemma 3.1.1. If X ~ Po(A) then
0, ifX+#k
hk(X)—{]’ iFX =k (3.5
is an unbiased estimator for i—l;e‘l.
Meanwhile,
X
si(X) = (=1 "( k) (3.6)
is an unbiased estimator for ~24 Note that ( ) 0 when X < k.
Proof. By Taylor’s expansion,
A ) =D =D (=7 (="
[ _k' (0! L TR T TR
Ao A kD) AR (k+ ),
= Ze (-1 -1 -1
a VT e Y T e e D
A (k+n)!
_ 1y
Pt o OO
/l" Ak Ak k+1 Ak+2 k+2
= - D’ + ——e N | [ p—— 1
K¢ (0)( ARSI ( 1 )( T ( )( Kt
A (k+n
- 1 3.7
el ( )( Y+ (3.7)

Yy k(”) (3.8)

n=k

On the other hand we can expand E ((—I)X‘k(),f)) et Yo, (=1 k( )
O

Although (3.6) is an unbiased estimator for ”—],( ~21_ it has large variance which will
cause error in the subsequent calculation. Instead, we use a Bayesian approach to derive
an estimator where the data is given by a single observation x and we assume an improper

uniform prior c.
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Lemma 3.1.2. If X ~ Po(A1) where A follows an improper uniform prior,
k
(i) the posterior mean of %e‘ﬁ is

ket X+ R)!
2 T 3.9
(ii) the posterior mean of i—fe‘” is
k)!
3-CerkrD) (xxtkv ) (3.10)

Proof. Assume an improper uniform prior c:

p(A]x) o< L(4; x)c

oc (A, x+1,1) 3.11)
The posterior distribution of A|xis ['(4; x + 1, 1).

/1k 00 e—/l/lk 1
-1 _ -1
EA|X [e —k‘] = j(: X —x!€ dAa

00 —2/1/lx+k
- f ¢ da
o xlk!
2—(x+k) 00
= f e 2" da
0

x!k!

2—(x+k+1) 00 - . 1
- vl [ eyt —— ga
RIS )j; ¢ T 4

_ p~Gerksy X+ K)! (3.12)
xk!

/1/(
E.

/lk 00 e—l/l/lk AF
=22 _ P
E’AIX [e F] = vf(; X X!€ da
00 —3/1/1x+k
= f c da
o xlk!
3_(X+k) foo —3/1(3/1)x+k d/l
= e
Xk g
3—(x+k+1)
~ Xk

— 3—(x+k+1

_ . . _
So 2~ (kDI g an estimator for e

~ -31 x+k 1
(x+k)!‘f0 e " (31) —(x+k)! d(34)

) (x + k)!
x'k!

224
x O

(3.13)

_ ol - .
So 3-(k+ DI i an estimator for e
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Plugging the estimators in (3.5) and (3.13) into (3.4) gives that
nr 2 00 k nr nr
X k k—1 A1 (x + k)!
m'( )pm] — [ ( )( m'( )pm][ _]‘( ) J]3 (x+k+1)
(3.14)

is an estimator for Var[g(X)|A]. If we are using the weighted average function h(X) =
m(X)log(X) + (1 — m(X))g(X), then we have that

0 ﬂ 0 k k
Var(h(X)|A = 1) = Z(h(k))2 ¢ Z [Z h(Dh(k — 1))
k=0

k=0 \ [=0

u(X) =

SO

iy k)!
v(x) = (h(X))? — kz(; (;; h(Dh(k — 1)] 3*“’”“% (3.15)
is an estimator for Var(h(X)|A).

¥(g00- 2 g“))

Subtracting ;= “X from the sample variance gives an estimator of Var(E(g(X)|1)) =

h(X)
Var(f(A)). Similarly, we can subtract }’ = YY) from the sample variance w For the

off-diagonal terms, we have Cov(g(X)), g(X2)|A1 A1, Ay = 1,) =0, 50 Cos(f(/ll) f(d) =
Cov(g(X;), g(X3)), so only the diagonal elements of the variance matrix need to be modi-
fied.

3.2 Simulation for Principal Component Analysis of X,

In order to examine the performance of the Poisson noise corrected log transformed PCA,
we simulate A = eI“T”WT, where u ,v and w are random vectors. u = (uy, U, - -+ , u,,)T, V=
(vi,va, -, v) and w = (wy,wo, -+ ,w,)". Bachu; (i = 1,2,---, p) has the same mean
u, and standard deviation o, similarly v follows a N(u,, o) distribution and w follows a
N(u,,, o,,) distribution.

Let wy be a unit length vector in the direction of w. Now, w is the first principal
component (PC1) of log(A).

We generate the observed X from its Poisson mean A. By applying our method on X,
we can compare its result with the true principal component wy, to determine whether our
method corrects the Poisson error.

The simulation procedure is the same as in Section 2.1.

We simulate under 2 scenarios, all with p = 10, u ~ N(0.5, 0.52) and v ~ N(0.5, 0.52),
one scenario with w ~ N(0, 1?), and the other with w ~ N(0, 2%). We simulate 10, 50, 100,
500, 1000 observations for each scenarios. We simulate 100 A matrices by A = et !
and simulate one X matrix for each A.

We record the mean and variance of the cosine of the angle between the estimated PC1
and the true direction wy by our method and by applying PCA on X and log(X) to make
comparisons.

Figures 3.3 and 3.4 show the average absolute value of the cosine of the angle between
the estimated PC1 and the true direction for the 2 scenarios. The red line is for the results
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for the Poisson error corrected log transformed PCA while the black line shows the results
for classical PCA on X and the blue line shows the results for classical PCA on log(X). The
shaded area is the 95% Confidence Interval of the mean absolute value of the cosine of the
angle.
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Figure 3.3: Comparison of Poisson noise corrected log transformed Model and Classical
PCA on X and log(X), where u ~ N(0.5,0.5%), v ~ N(0.5,0.5%), w ~ N(0, 1).

From the figures we find that the Poisson noise corrected log transformed PCA per-
forms much better than classical PCA, both on X and on log(X), and the result shows good
consistency.
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Figure 3.4: Comparison of Poisson noise corrected log transformed Model and Classical
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3.3 Discussion

We approximate log(d) = p,.,(1) and use a Taylor series to obtain g;(X) as an estimator
for pyu, ().

We need to choose values a and ny of the Taylor series to achieve a good estimate of
2 ¢p- There are two criteria we need to consider. Firstly the difference between p,, ,, (1) and
log(A) induces a bias in our estimate. For the bias, we know that the radius of convergence
of the Taylor series is a, so for 4 > 2a, the bias is very large. We therefore want to
choose a large enough so that there are few or no data points with 4 > 2a. Having chosen
such an a, the Taylor series will converge to log(1), so the larger ny, the smaller the bias
log(A) = pan, (1). However, larger ny also increases the variance of g, ,,(X), and of u,,,(X).
Therefore we need to choose ny to balance these two constraints.

Theoretically, if we can find suitable a and ny for each OTU of the Microbiome data,
g1(X) 1s an unbiased estimator for p,,,(4). Empirically, the Microbiome data we observed
from experiment contains sequencing depth and that may cause high variance for a single
OTU. It is very likely to observe reads of one OTU that vary from 0 to 5000 with mean
1000. In this situation, we cannot find suitable values of a and ny that work for all the reads
in the form of g;(X) as an approximation of log(4) to meet the requirements of A4 < 2a and
the variance in g, ,, (X) 1s not too large.

In order to solve the problem, we introduce a weight function m(1d) = —1__ then

the weighted average function 4(1) = m(4) log(1) + (1 — m(1)) (log(a) -2, i(l - g)m)
approximates log(1). We choose parameters for m(A) and the values of a and nzy, and
examine the approximation /(A1) and the MSE of using g,(X) as an estimator of log(1). The
comparison can be found in Section 3.1, and the Figures 3.1 and 3.2 both illustrate that the

weighted function g, ,,(X) 1s a good estimator of log(A).



Chapter 4

Poisson Error Corrected log transformed PCA with Sequencing Depth
Correction

In Section 2.3, we have dealt with the Poisson error corrected PCA on A when sequencing
depth is subject to large noise.

Now let A = sA for some random variable s, where Ay is a form of underlying abun-
dance, and PCA of log(Ay) is of interest. (In this chapter we do not insist that Ay be
compositional, because that is incompatible with our assumption that the log-transformed
scale is the important scale on which to view the data.) s represents the sequencing depth
which is a random variable and unobserved, and Ay is not necessarily compositional.

In Section 3.1, we have calculated an estimate for the Variance-Covariance matrix X
of log(A), where A is the Poisson mean of X. That means we have estimated the total
variance of log(sAy). When both s and A, are not observable, in principle, Var(log(Ay)) is
not identifiable. We are going to derive two approaches to estimate the covariance matrix
% of log(Ay) from our estimate for X by adding two different types of constraints .

4.1 Method I: Composition Restricted Variance

It is natural to look for the Variance-Covariance matrix of log(A,) to be the Variance-
Covariance matrix of a compositional random vector. Thus we estimate the Variance-
Covariance matrix X, as the closest matrix which could be the Variance-Covariance matrix
of a compositional random vector. Under such a condition, we can consider the estimate
under the following constraints:

1. For any v..1 and w11, we have v/ Zow = v/ Zw

2. ¥, is a symmetric matrix

3.21=0

It is straight forward that the variance covariance matrix X. of compositional data has
the properties 2 and 3. The property 3 means the space spanned by the matrix X. is or-
thogonal to vector 1. We add a constraint that £, and X induce the same norm in the space
orthogonal to vector 1, which is expressed by property 1.

Proposition 4.1.1. Under the 3 constraints, there is an unique solution for . and it is
-1
given by X, =X — 1la’ — al wherea = (p] - IIT) >1.

Proof. Suppose . = £ — A where A is some p X p symmetric matrix which will be defined
later.

viZ.w=vZw-v Aw

0=vAw
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Since (Av)"w = 0 holds for any w_L1, so Av o 1, thus Av = d1, where d is some scalar
to make the equation holds and d is a linear function of v, d = a’v for some a.

For any v 1, we have Av = a’ vl = 1a’v for some a thus we have (A —1a”)v = 0. This
gives A = 1a’ + W where W = ¢17 for some vector ¢. Due to the second constraint, A is a
symmetric matrix, so ¢ = a. Thus £, = £ — 1a” —al’.

The next step is to solve for vector a in the above equation:

r1=31-1a"1-al"1
0=>1-1@"1)-a1’1)
( 117) ¥1
I+—|a=—
p p
a=(pr+117) 51

Plugging a into X, = X — 1a” —al’ will give us the Variance-Covariance matrix of log(A)
m]

4.2 Method II: Minimum Variance Constraint
Assuming the sequencing depth variable is independent of random vector A, we have that

X = Var(log(sAy))
= Var(log(s)1 + log(Ay))
= Var(log(s)1) + Var(log(Ay))
=1 Var(log(s)1” + %,
= 11" + %,

where o2 = Var(log(s))

We cannot determine the true value of af, but the constraint that X, is non-negative
definite gives a maximum for o2, which gives the minimum total variance for X,. This
means we attribute as much as possible of the total variance to the sequencing depth. This
maximum value of o occurs when there is an eigenvalue reduced to 0. That is o is the
smallest solution to [Z — 02117| = 0.

2]

Proposition 4.2.1. The largest o for ¥y to be non-negative definite is given by o> = =T

where ¥* = X, + HTT and X, is as calculated in Proposition 4.1.1

Proof. For any matrix B, |B(X — 0>117)B~!| = 0. We choose B so that:

1.B1 = (\/p,0,--- ,0)" = y/pe,.
2.B" = B!



Let M = BEB™', and let the (i, j)th element of M be M;;.

1 o --- 0 Mn—paf M,
0=|pzB'—po2| 0 O 0 Oflo| Ma Ma
0 0 - 0 My My
10 - 0
=gz - po?| | M
0 MpZ Mpp

= 2| - poi M|

M
" =X - poiIM — e;b” —be] +ee]]
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(4.1)

where b is chosen so that (M—ele—belT)el =0,s0b = (@,Mu, o, Myp)and M = M;

forany j=1,2,---,p.

Then we can solve for o} in equation (4.1): o3 = 55

Define £* = B~'M*B, thus |M*| = ||
> =B 'MB-B'eb’B-B'bel B+ B 'ee] B

1 1

=X - —10b'B) - —
B 'b)Y (B'b 1
48 By 1
A Vp p

=Y —1c" —c1” + 1117
P

-y 117

_ Bb
where ¢ = 7
(M —eb" —bel)e, =0
B™'(M —e,b" —be])BB 'e; =0
1b"B) (B'b)1”
(2_ (b°B) (B”'b) )1:0
Vp Vp

1
—(1m"BD) + (B 'p)171) = =1
@(< )+ (B”'b)1"1)

1’1 +c1’'1 =21

thus 117¢ + pc = 21. Solving for ¢, we will get ¢ = (llT + p)~'x1, thus

. 117
Y =Y-1c¢" —cl’ + —
p
117
=2 +—
p

where X is the same as that defined in Proposition 4.1.1.

1
B 'p)1” + (— 11T —
NG VAR
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4.3 Simulation for Principal Component Analysis of log transformed PCA with
Sequencing Depth Correction

We simulate under 2 scenarios, all with p = 10, s ~ N(2, 12), u ~ N(0.5, 0.12), vV ~
N(1, 0.52). In the first scenario we simulate w ~ N(0, 1?), while in the second scenario, we
let w ~ N(0,2?).

For each scenario, we simulate 100 A matrices for sample sizes 10, 50, 100, 300, 500,
1000 by A =S W where S is the diagonal matrix of s. Then we apply both models
on the data and compare the result with that from classical PCA on X and on log of the
compositional form of X separately.

Figures 4.1 and 4.2 show the average absolute cosine of the angle between the truth and
the estimated PC1 for the 2 scenarios. The red line shows the results for method I of the
Poisson error corrected log transformed PCA with sequencing depth correction, while the
blue line shows the results for classical PCA on X and the black line shows the results for
classical PCA on log of the composition form of X. The shaded area is the 95% Confidence
Interval of the average cosine of the angle.

From Figures 4.1 and 4.2, we can also observe that the performances of these two
classical methods vary a lot for different sample sizes and variations of w. However, for the
large sample size, applying PCA on log of the compositional form of X seem to capture the
most information of the true PC1 especially for the case when the standard deviation of w is
large. If we consider three different methods from all the situations as a whole, the Poisson
error corrected log transformed PCA with sequencing depth correction outperforms the
classical methods and this pattern is consistent.

Similar plots for method II are presented in Figure 4.3
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Figure 4.1: Comparison of Poisson error corrected log transformed PCA with sequencing
depth correction (Method I) and Classical PCA where u ~ N(0.5, 0.1%), v ~ N(1,0.5%),
w ~ N(0, 1?).
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Figure 4.2: Comparison of Poisson error corrected log transformed PCA with sequencing
depth correction (Method I) and Classical PCA where u ~ N(0.5, 0.1%), v ~ N(I, 0.52),
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Chapter 5
Projecting log(A) onto Principal Component Space

5.1 Projection Method

Suppose we have data matrix X, = (x1,x2,- -+, x,)7, its corresponding mean matrix A =
(A1, Ay, -, AT, where each A; (i = 1,2,---,n) is a vector of dimension p. We have
estimated the PC’s from our estimated Variance Covariance matrix Yjogs).

We would like to project IOE(K,-) — p to the first kK PC’s, where PC’s are already given by
Z@) = VDV', where V = (V,V,,---,V,) and D = diag(d,,ds, - -+ ,d,). If log(A) were

known, then the mean of log(A) would be u = % and the scores of log(A;) would be
% = VT(log(A;) — p). Thus the true projection of log(A;) on the first k principal

components is:

k k

Pl = > ViV V)V (log(A) — ) = > ViV (log(A) = ), k= 1,2, ,p

=1 =1

Since A and thus log(A) is not observed, we will need to estimate it so that it maximizes
the likelihood of the data on one hand and minimizes the difference between log(A;) — u
and its projection on the first k PC’s space on the other hand. We will continue to refer to
the quantities V7 (log(A;) — u) for our estimated A; as the scores. (Note that these scores
depend on k: where additional clarity is required, we will refer to them as k-scores.)

The penalized log-likelihood is given by

(X5 A V) = ) [XT Tog(A) +17A; = (log(A) — pt = Pi(k)" = (log(A) - = Pi(k))]
i=1
(5.1

where P;(k) = ';:1 VjVjT(log(Al-) — p) and p is the mean vector of the log(A). The idea
here is that if our latent log(A) follows a normal distribution with the estimated Variance-
Covariance matrix X, then the prior log-likelihood of A conditional on its projection is given
by the penalty term, so the penalized log-likelihood is the Bayesian posterior likelihood.
We maximize [,(X;; A;, V) over the vector A;, assuming V has been estimated using the
methods in Chapters 3 and 4.

To simplify the problem from optimizing /, on all elements of A simultaneously to a
much lower dimensional problem, we plug in the mean vector estimate based on

E[E[g(XIA]l = E[f(A)] = E[log(A)]

An estimator f1 for p is given in Section 3.1. Recall that

> (X
gmzzm@%

m=0
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where the expansion term P,, is defined by some parameter a and truncation point 7, and a
T

weight function m(X). Then i = % is an estimate for g, where g(X) is the matrix of

observed data X after the above transformation is performed elementwise.

Thus for each observation X;, we maximize (5.2) over A;

L,(Xi, Ai, V) = X log(Ay) — 1" A, — (log(A) — 1 — Pi(k)" =7 (log(A)) - — Pi(k))

)4 r )4
=X/ log(A) - 1"Ai | > Vf(log(A)—mVj] VP—‘VT[Z Vi(log(A) - m)V;
Jj=k+1 J=k+1
2, (VI (log(A) — )
= X" log(A;) —1"A; - Z ( ; Jogh) m) (5.2)

=kt dj

where log(A) -1 = X, V] (log(A) — )V

The total weighted squared scores on the last (p — k) principal space is used as penalty.
In the case that X is not of full rank, say it is of rank r < p, then for j > r, we have d; = 0
which forces the corresponding score to be zero. We therefore implement the solution as
a (constrained) optimization with the sum running from j = k + 1 to r and constraints
VIlog(A) —p) =0 for j>r.

When the eigenvalue d; is small, the principal score VjT(log(Ai) — p) will naturally be
very small. This forces log(A) — u to stay in the space where the data have larger variances,
so the variance of the estimated log(A) — u is close to our estimate for the variance of the
latent A.

For estimating the penalized maximum likelihood of A; = (A;1,Ap, -+, A;p), the ith
score function is:

oL, (X A1 V) X & 2[V] (log(A; - )] 1
b L R Vi(j)— (5.3)
6A,~j A,‘j [;1 dl Aij
X;j 2 2Vi)IV] log(A) — I
Xy OV osh) ~ ) 5.
Aij 1=+ 1 dilij

where V/(j) is the jth element of V.

In order to better deal with the constraints of V].T(log(Ai) —u) = 0 for j > r when

Rank(/Z\) = r, we re-parameterise A;; as follows. Denote log(A;) - = Z;:1 a;;V;, where
a;j = VJ.T (log(A;) — ) is the jth score of log(A;) — i, a;; = 0 for j > r. Thus the penalized
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log-likelihood can be written as:

P
l,(Xi;a;, V) = x7 [ﬁ+ Z ai;V;| - 17 2 aiV)
=1

(g (g

Jj=k+1 Jj=k+1
r r 2
a:.
= X! [ﬁ+ aijvj] T A E i) _ —
=1 j=ke1

The score functions relative to a;; will be

X'V, - vTe(ﬂ+Zasz)+ k<j<r
{VT(X A, 1<j<k

ol, XTV; = VIelEzav;), 1<j<k
dai;

VI(X, A)+2”” k<j<r -5

In this thesis, we solve these equations to maximize /, using the BB package in R. The
R function BBsolve uses Barzilai-Borwein spectral methods to solve nonlinear system of
equations.

Maximizing the penalized likelihood over these principal component scores for a fixed
k will directly give us the principal component projection.

When sequencing depth is not informative, but treated as noise, we have developed two
different methods by imposing two different sets of constraints to calculate the principal
components. The composition restricted variance method will compute the principal com-
ponent directions that are orthogonal to vector 1. The variance due to sequencing depth
difference can be computed by projecting log(A;) — u to direction 1. Thus when consider-
ing projection of data onto principal component space, we only need to include the 1 vector
as the first vector. The penalized log-likelihood is the same as (5.1) with P;(k) defined as
Pi(k) = Z];:o VJ.T(log(A,-) —)V;, where V, = 1. We then project this MLE orthogonally
onto the principal component space without the vector 1.

5.2 Simulation for projecting log(A) onto Principal Component Space

Data are simulated with u ~ N(0,0,5%), v, ~ N(0.5,0.5%), and w, ~ N(0.5, 1), where
t = (1,2,---,k) indicates the number of principal components we generate for the syn-
thetic data set. We set the number of observations as 10, 50, 100, 200, 500 and 1000
respectively, and the number of variables is 10. We then simulate one A matrix by A =
e v VoW WO for each sample size and we generate 100 X matrices.

The simulation follows the procedure below:

. T T
1. First generate A = e!¥ F(V1:V2 V) (Wiwa. i)
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(@) {w;}!_, are i.1.d. normal random variables with mean y, and standard deviation

Ty
(b) {(vy)i}i, arei.i.d. normal random variables with mean y, and standard deviation
ay

(c) {(w,);}, are i.i.d. normal random variables with mean u,, and standard devia-
tion o,

(d) The Gram-Schmidt process is used to find w,, L w,, , where #; = (1,2,--- ,k)
andt, = (1,2,--- k), 11 # 1.
Note that we only generate 2 A matrices for each sample size. The first one is
A =™ ' and the second one is A = e HVivIWLw)T

2. Simulate 100 Poisson sample X matrices from A

3. Apply Poisson error corrected log transformed PCA on each X to get a corrected
variance covariance matrix X,

4. Compute c’l?j (i=12,---,nj = 1,2,---, p) by maximizing the penalized log-
likelihood (5.5), and thus get the estimated A. Note that = gof—l)rl.

We then use Mean Squared Error of the estimated log(A) to assess the accuracy of
the penalized maximum log-likelihood estimation for the scores. We expect the estimated
scores to capture the true information. That is to compute Z§:1 ||lo§/§~ i) — log(A,; j)||2 for
each row i, and find the average of the 100 simulations.

We can compare our projection method with the restricted maximum likelihood estima-
tion (rMLE), where we restrict log(A) to lie on the first k£ principal component space. The
restricted log-likelihood function is

L(Xi, A, V) = X[ log(A) =17 A (5.6)

where log(A;) — it = 2, VI (log(Ay) =)V
The score functions relative to a;; (j < k) can be computed by:

ol = XTV. — yTe@#Zaivi)
Gaij L /
= VIX - A) (5.7)

where V; is the jth eigenvector of our estimated Poisson noise corrected variance covari-
ance matrix and j =1,2,--- ,k.

We compare a third method, the orthogonal projection of log(X) onto the principal
component space. This can be seen as coming from our penalized likelihood function
where the penalty in (5.1) becomes infinitesimal, or the restricted log-likelihood function
in (5.6) where log(A;) — 1 = ;’:1 VJ.T(log(Ai) —1)V;. The three methods are based on
the same eigen structure, which comes from Poisson noise corrected log transformed PCA.
We compute MSE of 1@) and compare among the three methods. Note that in our
simulation, we set k = 1 and r = 2.
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For two A matrices generated by A = ™ "™ and A = ™+’ e firgt
check the performance of Poisson noise corrected log transformed model. In Table 5.1,
we measure the average cosine of the angle between the estimated PC1 and the true PC1
by applying classical PCA on X, log(X), and the third column refers to our method. The
second A = ™ +1v2Mw)" g generated by 2 principal components, so we compare the
average cosine of the angle of two estimated PCs with the truth for the three methods, which
can be found in Table 5.3. The Poisson noise corrected log transformed model outperforms
both classical methods for the two A matrices we randomly generated. Furthermore, for
A = O the third eigenvalue of our model is much more to 0 compared with
the classical PCA approaches in all the simulations. All the evidence suggests that Poisson
noise corrected log transformed model better reveals the latent information. Tables 5.2 and
5.4 measure the MSE of estimated 1@(7\) for two A matrices by applying three projection
methods onto the same Poisson noise corrected PC space.

Table 5.1: Average cosine of the angle in simulations for A = el v’

sample size | PC1 of X | PC1 of log(X) | PCI of Zj,ea)
10 0.907419 | 0.603683 0.896323

50 0.908442 | 0.911651 0.966031

100 0.903882 | 0.924421 0.972581

200 0.902934 | 0.959206 0.97886

500 0.904976 | 0.976776 0.982043
1000 0.898269 | 0.98062 0.983057

Table 5.2: MSE of simulations for A = e!® +'V'

sample size | IMLE log(X) penalized MLE
10 4.005166 | 10.49233 | 1.759245

50 2.957265 | 12.52773 | 1.447736

100 3.004657 | 11.76455 | 1.329299

200 3.126116 | 12.20281 | 1.332634

500 2.801252 | 12.26772 | 1.4465

1000 2.7283 12.76184 | 1.492862




Table 5.3: Average cosine of the angle in simulations for A = ! *01¥2(vi.w)"
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sample size | PC1 of X | PC2 of X | PC1 of log(X) | PC2 of log(X) | PC1 of Xjea) | PC2 of Zijog(p)
10 0.605491 | 0.487335 | 0.619698 0.324089 0.757472 0.595476

50 0.921586 | 0.828291 | 0.687107 0.672328 0.945374 0.933076
100 0.924367 | 0.741037 | 0.661069 0.659361 0.959238 0.955071
200 0.92996 | 0.759048 | 0.680626 0.682302 0.971504 0.972154
500 0.933418 | 0.644119 | 0.853567 0.855021 0.979798 0.981086
1000 0.932935 | 0.603131 | 0.903078 0.90241 0.981731 0.984

Table 5.4: MSE of simulations for A = e!¥ +vivawiw)"

sample size | IMLE log(X) penalized MLE
10 3.488864 | 11.62662 | 0.916661
50 1.985524 | 14.03555 | 0.726366
100 1.981952 | 14.11767 | 0.562823
200 2.130901 | 14.5734 | 0.598255
500 1.971641 | 14.26033 | 0.484051
1000 1.960451 | 14.23148 | 0.489428




Chapter 6

PCA on the Moving Picture Data

The moving picture data is a human microbiota time series that covers two individuals
at four body sites over 396 timepoints [21]. In this chapter we apply our Poisson noise
corrected PCA methods on the tongue data of both individuals.

We will compare the analysis results of our method with several other methods popu-
larly used in practice on this data with several different levels, i.e. genus level, family level,
order level, and class level [22]. We avoid using the species level because at species level
there are many more variables than samples, and this presents problems for PCA. There are
different methods developed for PCA when the number of variables is much higher than the
number of observations. It is however not the focus of this thesis to deal with that aspect of
PCA. The proposed method in this thesis can be further developed to suit the situation of
high dimensional problems.

After removing the variables for which all observations are 0’s, the total number of
different OTUs (variables) at species level for the tongue data is around 2000. The sample
sizes are 134 and 374 respectively for two people. The numbers of OTUs are 916, 268,
138, and 92 for genus level, family level, order level, and class level respectively.

Through a quick check of the data, it is immediately apparent that sequencing depth is
much higher for one of the individuals. This is most likely the result of differences in the
experimental factors, rather than interesting biological signals. Figure 6 shows the classical
PCA and our Poisson error corrected log transformed PCA on all the data of two individ-
uals on genus level. The clear separation in the 1st PC is mostly due to the sequencing
depth differences between two separated groups of data. The second PC of classical PCA
doesn’t show any separation between the data of two individuals. Our method shows slight
separation of the two individuals within the subgroup of the data with similar sequencing
depths.

The full tongue data in genus level can be clustered into two groups using the K-means
algorithm. The first group contains 198 observations while the number of observations
for the second group is 310. From the boxplots of sequencing depths for both groups in
Figure 6.2, we find that the clustering is mainly based on sequencing depth rather than any
biologically interesting information.

In order to demonstrate that our method is able to pick up relevant biological signals,
we sub-sample the data so that sequencing depth is not the dominant factor to separate
the data of these two individuals. Through sub-sampling, we make the distributions of the
sequencing depths for the two individuals the same. (Note that this is not a recommended
analysis technique for this data set. Rather we are ensuring that any failure to adequately
account for sequencing depth does not give our method an unfair advantage.) Note that
we have retained the within sample variation in sequencing depths. Thus the sequencing
depth correction is still important for our analysis. Among individual 1’s data, there are a
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large number of samples with much higher sequencing depths, thus for each sample from
individual 1, we pick a sequencing depth s from a sample from individual 2, and sub-sample
the corresponding individual 1’s sample down to the sequencing depth s.

We apply the Poisson noise corrected log transformed PCA on the preprocessed data X
to get a corrected variance covariance matrix to estimate the latent structure Xjooa). Then
we apply the projection method, i.e. the penalized MLE method to estimate the latent A.
The eigen-decomposition of corrected covariance matrix is VDV’ = 5.’: ng VJ.T, and we
set 7 to be the number of eigenvalues greater than 1072, In practice, projecting the data onto
the first two principal components is often used as the visualization method, so here we set

k = 2. We use @ as our estimate of the latent column mean u. We plot the estimated
scores on the first two corrected principal components and differentiate the two individuals
with two colors.

To examine the performance of Poisson noise corrected log transformed PCA with
sequencing depth correction for the tongue data, we define the projection as P;(k) and
Pi(k) = Z];:o V].T(log(Al-) —u)V;, where V, = 1. Again, applying penalized MLE method
with this new P;(k), we can get the estimated scores on the first two principal components V
and V,. We can also project the centered X, centered log(X), and the centered compositional
form of X onto their corresponding classical PCs space separately. By checking how well
two groups are separated we can roughly assess the performance of each method.

Recall that PCA is not a supervised method, so optimal classification performance is
not the main objective here. However, measuring the amount of latent variance explained is
not straightforward. Since we have good reason to believe that the difference between the
two individuals should account for a large proportion of the true latent variance, looking
at the separation between the classes after applying PCA serves as a good proxy for the
methods ability to remove the measurement error noise, while retaining the biologically
important signal.

Figures 6.3, 6.4, 6.5 and 6.6 illustrate the performances of the Poisson noise corrected
PCA and classical PCAs on different forms of the preprocessed data organized at genus
level, family level, order level, and class level. For genus level and family level, log trans-
formation without Poisson error correction (middle left) reveals the patterns of the data
and differentiates the two groups significantly better than the classical PCA on X (top left).
By applying our method and projecting the estimated latent scores on the Poisson noise
corrected first two principal components space, we get slightly better results.

However, log transformation (left middle) without Poisson error correction does not
produce as much separation between the two individuals for data at the order level and class
level. Our method (left bottom) differentiates the two groups much better than classical
PCAs on X, log(X), and the compositional form of X.
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Chapter 7
Conclusion

In this thesis, we first proposed Poisson noise corrected PCA of the observed OTUs data
to estimate the latent truth. The sequencing depth difference among the samples is further
considered to be corrected in the PCA. By applying the corrected PCA on synthetic data
sets and comparing the result with that of classical method, Poisson noise corrected PCA
with sequencing depth correction outperforms classical PCAs both on observed data and
the compositional form of data.

Due to the fact that bacteria grow exponentially, we build a logarithm transformed PCA
that is to correct for the Poisson noise and find the latent truth which is on log scale. From
the simulation results, we find that our method outperforms classical PCA both on observed
data and on log transformation of the observed data, this is especially true when sample size
is large. We then proposed two methods to correct for the sequencing depth noise for the
Poisson noise corrected log transformed PCA. Our method captures the most information
comparing to classical PCA on different forms of the observed data.

We further developed a penalized MLE method to find the projection of the latent data,
with the assumption that the latent Poisson means lie close to the principal component
space derived by our method. The mean squared error of the estimated latent Poisson
means from the penalized MLE is smaller than that from rMLE or log transformation of
data. We can make the conclusion that the projection method based on Poisson noise
corrected log transformed PCA can find latent truth from observed data which may reduce
noise to a large extent.
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