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Abstract

High dynamic range (HDR) images provide the capacity to represent the luminance in

real scenes with much higher precision than standard image formats. With advances

in hardware and computer graphics technologies, HDR images are rapidly becoming

more commonplace. To visualize HDR images on contemporary display devices, the

dynamic range needs to be adapted to the much smaller range of the devices. This is

accomplished through tone mapping, with the goal of reproducing the visual appear-

ance of HDR scenes. Tone mapping has attracted much attention and several dozens

of tone mapping operators have been proposed.

Nevertheless, it remains challenging to objectively evaluate the quality of tone

mapped images and optimize tone mapping operators with automated algorithms.

Using virtual photographs to bridge the gap of dynamic ranges for feature analysis, we

propose two feature-based quality metrics for tone mapped images, which measure the

distortion of important image features that affect the perceived quality. We present an

image quality metric called visual saliency distortion predictor (VSDP) that measures

the distortion in visual saliency for quality assessment. Additionally, by incorporating

multiple feature-based measures to predict the quality of tone mapped images, we

introduce another quality metric: perceptual distortion predictor (PDP). Subjective

and numerical experiments indicate that the proposed feature-based quality metrics

can yield more reliable prediction than the alternative approaches.

Once suitable quality metrics are defined, there emerges an opportunity to auto-

mate the tuning of existing tone mapping operators. By minimizing the distortion in

visual saliency predicted by the quality metric VSDP, we developed an automatic pa-

rameter tuning algorithm for tone mapping operators. Moreover, based on the quality

prediction of PDP, we propose an automated blended tone mapping algorithm which

blends images from multiple operators with varying weights to leverage the strengths

of each of operators considered. Experiments with a broad range of HDR images and

statistical analysis demonstrate the effectiveness of the tone mapping optimization

algorithms.
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Chapter 1

Introduction

The dynamic range of illumination in a real-world scene is on the order of 10, 000 to 1

from highlights to shadows, and even higher for the scenes including both an outdoor

area illuminated by sunlight and an indoor area illuminated by interior light [86, 9].

The development of High Dynamic Range (HDR) images capture a greater dynamic

range between the lightest and darkest areas of real-world scenes. Compared with

standard dynamic range (SDR) or low dynamic range (LDR) images, HDR images

allow more intensity levels which enables them to represent real world visual data in

a more accurate way (We don’t distinguish between luminance and intensity in the

thesis). Usually, HDR images are generated by taking multiple-exposed photographs

of the same scene and merging their data with developed algorithms [18]. Because of

the limitation of display contrast, HDR images cannot be displayed on regular display

devices such as LCDs and CRTs directly, and tone mapping is needed to fit their high

dynamic range into the displayable range of conventional devices. The algorithms of

tone mapping is called tone mapping operator (TMO) [86].

Figure 1.1 shows an example of HDR imaging. The left image is the photograph

sequence with various exposures which are subsequently combined into an HDR im-

age, and the right image is a tone mapped image of the generated HDR scene. As we

can see, the tone mapped image can have plausible exposure and detail preservation

in both bright and dark areas, such as the sky in the background and the woods

in the foreground, while any single exposure in the photograph sequence cannot. A

thorough review of HDR imaging can be found in the books by Reinhard et al. [86]

and Banterle et al. [9]. In this chapter, we introduce the research problems that will

be addressed in current context (Section 1.1), the research objectives (Section 1.2),

and the major contributions (Section 1.3), and then we outline the structure of the

thesis (Section 1.4).

1
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Photograph sequence Tone mapped image

Figure 1.1: An example of HDR imaging on the HDR image “Sequoia Remains”.
Left: image sequence with various exposures that can be used to generate the HDR
image. Right: tone mapped image from the HDR image. The images are from Mark
Fairchild’s HDR Photographic Survey c© 2006-2007 Mark D. Fairchild.

1.1 Research Problems

HDR images provide the capacity to represent the luminance in the real scenes ranging

from bright sunlight to faint starlight with much higher precision than standard image

formats allow. Typically, HDR images are categorized as scene-referred images whose

luminance levels correspond to that of real scenes, while LDR images are display-

referred with luminance variants matching the dynamic range of display devices.

HDR images are becoming increasingly commonplace, and they have successfully been

used for many applications such as digital photography, physical-based rendering, and

virtual reality.

Tone mapping is one of the core problems in HDR imaging and corresponding

applications, and it is the topic of interest in the thesis. According to Reinhard et

al. [86], the ultimate goal of tone mapping is to reproduce the visual appearance of

HDR scenes when displayed with low dynamic range. Although an extensive body
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of research has focused on tone mapping, it remains an open question to measure

and quantify visual appearance reproduction during tone mapping. Due to the huge

difference in luminance levels, conventional image analysis algorithms and quality

evaluation methods designed for LDR images cannot be applied to HDR images di-

rectly. It is fundamental and essential to establish a framework to bridge the gap of

dynamic range between LDR and HDR images and build new approaches for objec-

tive quality evaluation of tone mapped images, which will provide deeper insight to

understand and exert the strength of TMOs.

In this thesis, we mainly focus on three research problems: visual saliency analysis

on HDR images, objective image quality assessment of tone mapped images, and tone

mapping optimization.

1.1.1 Visual Saliency Analysis on HDR Images

The human visual system can obtain a rich stream of visual data (108-109 bits per

second) from the real world [42]. Rather than processing the data in parallel, the

mechanism in our brain prioritizes the important parts over the others to guide our

gaze, which is known as selective attention [31]. Based on the mechanism of selective

attention, computational visual attention systems have been designed to detect re-

gions of interest in digital images [11]. Although the computational models can lead

to satisfying results for LDR images, they do not usually perform well when applied

to HDR images [13]. Because HDR images allow a much higher dynamic range, if

the saliency detection models are applied to HDR images directly, the dynamic range

will be scaled, which can lead to the loss of HDR content that in turn makes salient

regions appear not salient or vice versa. Also, Narwaria et al. [74] have found that

TMOs “can [. . . ] modify human attention and fixation behavior significantly”, thus

rendering the approach of applying salience analysis techniques after tone mapping

unreliable. In this thesis, we concern ourselves with visual saliency analysis on HDR

images. As an important image feature, visual saliency can be used for various ap-

plications that involve HDR image understanding and tone mapping, such as visual

saliency guided tone mapping, and image quality assessment of tone mapped images.

Moreover, visual saliency analysis could be used as an example to explore the possible

solutions for image feature analysis on HDR images.
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1.1.2 Objective Image Quality Assessment

Because any process applied to images may cause information loss or quality reduc-

tion, image quality assessment plays an important role in many image processing

problems, such as image acquisition, synthesis, enhancement, restoration, and re-

production [12]. Objective image quality assessment provides quantitative measures

that can automatically predict the perceived image quality. Compared with subjec-

tive assessment, objective assessment is more economic, faster, more consistent, and

applicable in optimization of image processing systems. Due to these advantages,

it has been widely used in image processing applications [12]. With the develop-

ment of HDR images and tone mapping algorithms comes a need for image quality

evaluation of tone mapped images. Unfortunately, the typical image quality metrics

assume that reference and test images have the same dynamic range [100], and they

cannot be applied to quality evaluation of tone mapped images. More specifically,

the quality metrics calculate visible distortion based on the difference of intensity

or contrast values, and thus not applicable for image pairs with significant different

dynamic ranges. In comparison with conventional methods, the quality evaluation of

tone mapped images should focus on the reproduction of important image features

relevant to image quality judgement, rather than the optical match between reference

and test images [7].

1.1.3 Tone Mapping Optimization

During the last two decades, several dozens of TMOs have been proposed to reproduce

the visual appearance of HDR images, ranging from the use of simple sigmoidal

functions [88] to more complicated gradient domain operations [13]. Many of the

TMOs depend on parameters that significantly impact the quality of the tone mapped

images. Choosing an appropriate operator and setting its parameters for a particular

HDR image often requires careful tuning, which could be tedious and time-consuming

even for knowledgable users. Several user interfaces have been introduced to assist in

this manipulation process. Lischinski et al. [57] present an interactive tool for users

to indicate regions of interest with brush strokes and make local adjustments of visual

parameters. In the work of Chisholm et al. [16], users can iteratively select the best

image among a set of blended tone mapped images for parameter optimization. These
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interfaces enable rapid and intuitive manual manipulation, but they still need user

interaction to achieve satisfying performance. In this thesis, we apply the objective

image quality assessment to automatic tone mapping optimization, and problems

including parameter tuning and blended tone mapping are addressed.

1.2 Objectives

The main objectives are to develop objective image quality metrics for tone mapped

images and apply the image quality metrics for automatic tone mapping optimization

in terms of parameter tuning of TMOs and blended tone mapping. More generally, we

would like to explore the solutions for image feature analysis and comparison across

different dynamic ranges, which could serve as the basis for various applications in

HDR imaging.

1.3 Contributions

The main contributions of the thesis are summarized as follows:

• We introduce a novel algorithm for visual saliency analysis of HDR images [33].

The algorithm decomposes HDR images into multi-exposed LDR images, which

are referred to as virtual photographs, and then incorporates them for visual

saliency analysis. We demonstrate that our method can produce more consis-

tently reliable results than existing methods. The algorithm is general and can

be easily tailed for other image feature analysis on HDR images (Chapter 3).

• Based on the assumption that regions of interest predicted by bottom-up vi-

sual attention models should be preserved during tone mapping, we propose

a new feature-based quality metric called visual saliency distortion predictor

(VSDP) [34, 35]. The quality metric measures the distortion in visual saliency

for quality predictions of tone mapped images. We have evaluated the quality

metric by applying it to a number of test images and found that it yields more

accurate evaluation than prior work (Chapter 4).

• Derived from perceptual studies, we then present a more comprehensive feature-

based quality metric called perceptual distortion predictor (PDP) [38, 32]. The
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quality metric measures the distortions of tone mapped images in terms of

brightness, visual saliency, and detail reproduction in light and dark areas, and

assigns an overall distortion value to each image. Validation using a subject-

rated image database indicates the proposed metric is more consist with sub-

jective evaluation results than alternative approaches (Chapter 4).

• We employ the proposed quality metrics to tone mapping optimization, and

develop an automatic parameter tuning algorithm that can optimize the param-

eters of arbitrary TMOs by minimizing visual saliency distortion [34, 35]. The

minimization is accomplished by employing an evolutionary algorithm (EA). Ex-

periments using several TMOs demonstrate the effectiveness of our parameter

tuning algorithm. Statistical analyses are conducted to assess the improvement

over default parameter settings and previous methods (Chapter 5).

• With the perceptual distortion predictor, we develop an automated blended

tone mapping algorithm to leverage the strengths of different operators for any

particular HDR image [36]. The blended tone mapping is solved as an opti-

mization problem, where the operators’ parameters and the weights are tuned

with an EA to generate the optimal solution. With a variety of HDR images,

we demonstrate its superiority over the conventional global and local TMOs

(Chapter 5).

• Using parameter space of TMOs as solution space and quality metrics as ob-

jective, EA provides a universal solution for objective quality assessment based

tone mapping optimization. We conduct a comparison between EA and an al-

ternative gradient-based optimization under a common platform, which shows

that EA results in significantly reduced computational effort [37] (Chapter 6).

1.4 Structure of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 describes the research

topics and the existing methods that serve as the background of the thesis which cov-

ers human visual attention, high dynamic range imaging, quality assessment of tone

mapped images, and evolution strategies. Chapter 3 presents the visual photograph
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based saliency detection method for HDR images. Chapter 4 focuses on objective

image quality metrics for tone mapped images, and two feature-based quality met-

rics VSDP and PDP are introduced and validated against prior works. Chapter 5

presents the application of the proposed quality metrics for tone mapping optimiza-

tion. Tone mapping optimization problems, including automated parameter tuning

of TMOs, and blended tone mapping, are addressed. Chapter 6 describes the com-

parison between EA and gradient-based optimization for tone mapping optimization,

and Chapter 7 concludes the thesis and discusses the directions for future research.



Chapter 2

Background

This chapter provides an overview of the various fields related to research topics

found throughout the thesis. First of all, we describe the concept of human visual

attention, computational attention models, and improved method for application to

HDR images (Section 2.1). Then, we discuss high dynamic range imaging, including

visual adaptation models, TMOs, and recent directions (Section 2.2). After that, we

outline the objective image quality assessment of tone mapped images and the state-

of-the-art methods (Section 2.3). Finally, we discuss evolution strategies in terms of

the optimization algorithm and parameter control (Section 2.4).

2.1 Visual Attention Models

Visual attention can be defined as the process of selecting a subset of the all the

available information for further processing. Since human needs to deal with a large

amount of information at each moment and the amount can be too high to be com-

pletely processed in its entirety at once, the brain tends to allocate the processing

resources to certain regions to obtain the most significant information, which is known

as the mechanism of selective attention [31]. By understanding and simulating the

selection mechanism, computational attention models analyze the regions of interests

(ROIs) which can attract more visual attention for their distinctive features compared

with others in the images. The computational models have a wide variety of appli-

cations in computer vision and image processing, such as object detection [97, 70],

human-robot interaction [41, 73], image and video compression [43], and image resiz-

ing [6, 99].

Visual attention can be categorized into two types: bottom-up and top-down

attention [19]. Bottom-up attention, also known as saliency-based attention [46], is

driven by purely visual data. The regions with sufficiently discriminative features

with respect to surrounding features can attract visual attention in a bottom-up

8
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manner. On the other hand, top-down attention is driven by cognitive phenomena,

such as knowledge, expectations, and the current task. For instance, it is more likely

for car drivers to see gas stations in a street than other targets. Because data-driven

stimuli can be easier to control than cognitive factors, bottom-up attention are more

thoroughly investigated than top-down attention [31]. We focus on bottom-up visual

attention in this thesis.

2.1.1 Related Concepts and Theory

This section introduces some concepts of visual attention and psychological theory

which are related to computational attention models.

• Visual Saliency: Visual saliency (or visual salience) “is the distinct subjective

perceptual quality which makes some items in the world stand out from their

neighbors and immediately grab our attention” [44]. To address the inability of

our brain to fully process all locations in parallel, visual attention is attracted

to visually salient stimuli, and processes one region at one time. This raises

a question: how to select the targets of attention? Visual saliency, which is a

bottom-up and stimulus-driven perceptual quality in the early stage of visual

processing, is capable of helping the brain to make reasonable and efficient

selections. In visual attention models, computing saliency is the detection of

the regions whose visual features such as intensity, orientation, and color are

discriminative with respect to surrounding regions.

• Saliency Map: A saliency map is an explicit two-dimensional map that rep-

resents visual saliency of any location in the corresponding visual scenes. The

concept of saliency map was first introduced by Koch and Ullman [50] for visual

attention deployment. Once the saliency map is established, the most salient

targets that attract visual attention can be calculated by a Winner-Take-All

(WTA) network. A saliency map can be generated by analyzing the saliency

map of each individual feature (called conspicuity maps) [31] in parallel and

then integrating the maps together into a single map. Since saliency map is a

computationally tractable representation of visual saliency, it has been widely

used in computational visual attention models.
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• Feature Integration Theory: Feature integration theory developed by Treis-

man and Gelade [92, 93] has been one of the most influential psychological

theories of human visual attention. The theory claims that “different features

are registered early, automatically and in parallel across the visual field, while

objects are identified separately and only at a later stage, which requires fo-

cused attention” [92]. A demonstration of feature integration theory is shown

in Figure 2.1. In the pre-attentive stage, primitive features, such as color, and

orientation, will be automatically and unconsciously analyzed resulting in to-

pographical maps, which highlight the conspicuities from various features. In

the focused attention stage, the conspicuity maps of features are collected in

a master map of location, and serially scanning the master map focuses visual

attention on the selected salient regions.

2.1.2 Computational Model

Because visual attention provides a selection mechanism to determine the most rel-

evant targets within visual data, there is a significant interest in visual attention

models in computer vision and robotics. In the last two decades, many computa-

tional attention models have been developed, which greatly improve existing vision

systems [31]. Most models are built on feature integration theory introduced by

Treisman and Gelade [92], whose core idea is to extract several types of features and

combine their saliency to generate a saliency map.

A milestone is the computational model developed by Itti et al. [47]. Based on

the behavior and the neuronal architecture of the primates’ early visual system, Itti

et al. [47] proposed a visual attention model to predict bottom-up attention in static

color images. Their model uses a center-surround mechanism to generate the feature

maps for color, intensity, and orientation, and then combine the maps into a unified

saliency map. Later on, the model was revised by Itti and Koch [46], who introduced a

within-feature competition scheme for feature combination. Itti et al.’s model [47, 46]

is the best-known attention system, and it serves as the basis for many research into

visual attention [31]. Most recent visual attention models share a similar structure

but suggest various improvements. Some of the models focus on the selections of

visual features, and other features such as skin color [56, 41], motion [62, 45, 94],
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Figure 2.1: Demonstration of the Feature Integration Theory [93].

depth [14, 30], optical flow [96], flicker [45], corner [29, 78], and symmetry [41] are

adopted for visual attention analysis. Also, some works address the representation

of visual attention. More advanced approaches that integrate image segmentation

on feature [98] or saliency maps [30] are developed to determine irregularly-shaped

attention regions. A thorough review of current computational attention models can

be found in the survey paper by Borji and Itti [11].

Most of computational visual attention models share a very similar structure

originally adopted from psychological theories such as the feature integration the-

ory [92, 93]. We use Itti et al.’s model [47, 46] as an example to introduce the general

structure of visual attention models. Since the revised model [46] is employed in the
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Figure 2.2: Architecture of Itti and Koch’s model [46].

thesis, we will refer to the model as “Itti and Koch’s model” in the following context.

The architecture of their model is demonstrated in Figure 2.2.

First, Itti and Koch’s model extracts low-level visual features including intensity,

color, and orientation from the original images at several spatial scales. The different

scales are generated using Gaussian pyramid to avoid explicitly applying large filters

that could be slow. Each feature is computed with a center-surround operation.

Inspired from retinal ganglion cells in the visual receptive fields [80], the operation

compares the intensity values in center regions with those of surrounding regions. It is

implemented by calculating the difference between fine and coarse scales. Usually, the

finest scale of pyramids is ignored to reduce the influence of noise. Three commonly

used features are used in Itti and Koch’s model: intensity, color, and orientation.
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Test images Color maps Intensity maps Orientation maps Saliency maps Visual attentions

Figure 2.3: Results from Itti and Koch’s model [46]. First column: the test images.
Second column: the saliency maps calculated from the color feature. Third column:
the saliency maps calculated from the intensity feature. Forth column: the saliency
maps calculated from the orientation feature. Fifth column: the combined saliency
maps. Sixth column: the predicted visual attention (red circles).

The intensity is calculated as on/off intensity contrast, color is computed on double-

opponent red/green and blue/yellow, and orientation is measured on the local contrast

of orientations of 0◦, 45◦, 90◦, and 135◦.

Afterwards, the cross-scale feature maps are combined into the conspicuity map

for each feature. To solve the signal-to-noise problem during combination, Itti and

Koch [46] introduced a within-feature spatial competition scheme. According to op-

tical imaging [105] and human psychophysics [110], the interaction of long-range

cortico-cortical connections are thought to result from a balance of excitation and

inhibition between neighboring neurons. By simulating the structure of the interac-

tion, the within-feature spatial competition scheme is realized by a two dimensional
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difference-of-Gaussians (DoG) approach. Each feature map is iteratively convolved

with the DoG filter, which yields local excitation at each visual location counteracted

by broad inhibition from neighboring location.

Finally, the conspicuity maps of intensity, color, and orientation are linearly

summed into a single saliency map. The saliency map could already be regarded as

the final output of computational models since it is capable of showing the saliency

of each location in the input scene. Nevertheless, computational models usually com-

pute the trajectory of visual attention as well to mimic human saccade (the movement

of eyeball) which starts with the target with the highest saliency value, in which a

winner-take-all (WTA) network can be used to select the image regions with local

saliency maxima. A fixed size disk is applied to represent the focus of attention

(FOA) since visual attention is usually on a region rather than a single point [46].

When a winner is found, the FOA shifts to the winning location. The shifting acti-

vates inhibition which can prevent the network from returning to its initial state: the

inhibitory center is at the location of the winner; the winner and its neighbors are

inhibited in the saliency map.

Figure 2.3 demonstrates several examples of saliency detection from Itti an Koch’s

model. As shown in the examples, the model is capable of recognizing the salient

targets which are discriminative for their unique visual features relative to the sur-

rounding fields, such as the balloons (First row), faces (Second row), water skiing

person (Third row), airplanes (Forth row), boats (Fifth row), and elephants (Sixth

row).

2.1.3 Improved Model for HDR images

Because of the huge difference in the dynamic range of luminance, conventional models

using contrast-based feature analysis is not suitable for saliency detection on HDR

images. When applying the models for HDR images directly, the significant reduction

of contrast will cause inaccurate predictions, in which salient regions may appear not

salient or vice versa. As shown in the example of Figure 2.4, only the sun can be

detected while other eye-catching targets such as the tree and stone are missed.

Brémond et al. [13] proposed a visual attention model for HDR images. Based

on the observation that saliency can be better preserved for color features than the
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HDR scene Saliency map Focus of attention

Figure 2.4: Applying Itti and Koch’s model on the HDR image “Sunol8”. Left: false
color map of the HDR image. Middle: saliency map generated from Itti and Koch’s
model [46]. Right: focus of attention (red circle) predicted from the saliency map.
HDR image from High Dynamic Range Imaging, published by Morgan Kaufmann
Publishers, c© 2006 Elsevier Inc.

other features when applying Itti and Koch’s model [46] directly for HDR images,

they hypothesize that the better preservation of saliency for color features is due to

the normalization of color features. Therefore, they modify Itti and Koch’s model by

adding normalization to other visual features as well. More specifically, the cross-scale

differences in terms of intensity and orientation are normalized over the intensity, for

which the authors suggest that normalization may be seen as a gain modulation,

which is the physiological mechanism of visual adaptation.

In eye tracking experiments with human subjects, they find that their approach

provides more accurate saliency maps than that of Itti and Koch [46] when the latter

is applied either directly to the HDR image or after dynamic range compression

with tone mapped images from six TMOs. Before our approach was proposed [33],

Brémond et al.’s model was the only method for visual attention analysis on HDR

images.

2.2 HDR Tone Mapping

The problem of HDR tone mapping is to reproduce real-world scenes on existing dis-

play devices with lower dynamic ranges. It was first recognized by early artists to

faithfully depict natural scenes on canvas. Because the light intensity levels in the

environment may be completely beyond the levels that the pigments can provide,

artists make use of some techniques such as drawing all objects with middle range
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Figure 2.5: Pictorial outline of HDR tone mapping. The image is from High Dynamic
Range Imaging, published by Morgan Kaufmann Publishers, c© 2006 Elsevier Inc.

colors [60] to overcome the limited dynamic range. Today, the focus of the problem

has shifted to rendering HDR images on conventional display devices or media with

limited luminance levels. HDR tone mapping addresses the significant contrast reduc-

tion from the scene intensities to the display intensities with the goal of achieving a

visual match between the observed scene and the tone mapped images on the display

(see the illustrated outline in Figure 2.5). Since Tumblin and Rushmeier [95] formally

introduced the “display range” problem and used human visual models to solve the

problem, HDR tone mapping has become an active research area in the community

of computer graphics and many TMOs have been proposed.

2.2.1 Visual Adaptation Models

The human visual system addresses a similar problem to HDR tone mapping. The

signal-to-noise of in individual channel in the visual pathway (from retina to brain)

is less than 2 orders of magnitude [20]. In spite of the limited dynamic range, the

human visual system enable us to perceive the detailed contrast under a wide range

of illumination. Therefore, it would be informative to understand the mechanisms

of the human visual system when solving the problem of tone mapping. Two of the

most relevant visual adaptation models, including threshold versus intensity function,

and photoreceptor responses relation, are briefly discussed. These visual adaptation
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Figure 2.6: Threshold versus intensity (TVI) function. The plot illustrates the no-
ticeable threshold ΔIb at various background intensity Ib. The image is from High
Dynamic Range Imaging, published by Morgan Kaufmann Publishers, c© 2010 Else-
vier Inc.

models are used as theoretical supports by most existing TMOs [86].

In psychophysics, human visual adaptation is studied by measuring the minimum

light increment that can be noticed by observers from the background intensity. The

minimum amount of increment is called just-noticeable difference (JND). The thresh-

old versus intensity (TVI) function, which provides the relation between JND denoted

by ΔIb and background intensity given by Ib, is illustrated in Figure 2.6. As shown in

the function curve, the ratio of ΔIb/Ib over much of the intensity range of background

is roughly constant. Since the rule was first discovered by Ernst Heinrich Weber, it

is known as the Weber’s law, and the ratio is called Weber constant. Weber law

indicates that visual adaptation scales the scene intensity according to that of the

background in order to preserve our ability for contrast perception within a large

range of intensity levels.

Human visual adaptation to various illumination conditions is accomplished with

the coordinated action of the pupil, the rod-cone cells, and the photoreceptor mech-

anism [86]. After light passes through the pupil and reaches the retina, it will be

absorbed by photoreceptor cells including rods and cones, which function in varying

lighting conditions. The photoreceptor cells convert the absorbed light energy into
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Figure 2.7: Response curve of dark-adapted rod and cone cells to various intensities
in arbitrary units. The image is from High Dynamic Range Imaging, published by
Morgan Kaufmann Publishers, c© 2010 Elsevier Inc.

neural responses, and the process is referred as the photoreceptor mechanism. Even

though the human visual system performs over a wide range of background intensi-

ties, it always maintain its log-linear property for about 3 log units of intensity range.

The photoreceptor response curves of dark-adapted rod and cone cells are given in

Figure 2.7. The response curve of rods cells appears in the left position because of its

higher sensitivity to light. Independent measures have verified that the S-shaped re-

sponse curve remains the same for different background intensities [86]. The position

of the curve will shift horizontally along the intensity axis with varying background

intensities, which means that human visual system adapts to new environments and

retains local contrast.

2.2.2 Tone Mapping Operators

TMOs aim to compress the dynamic range of HDR images to fit into the available

display range of a particular device or medium. TMOs can be roughly classified into

two categories: global operators [104, 88, 23, 83], and local operators [24, 27, 5, 85].
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Global operators handle images as a whole and apply the same transformation to every

pixel. The transformation could be realized with logarithmic curve, sigmoid curve,

or others derived from characteristics of the human visual system. On the other

hand, local operators simulate the visual adaptation mechanism and apply spatially

variant transformation for each pixel. Since local operators reduce scene contrast

according to neighborhood intensities, they can better preserve local contrast than

global operators. Nevertheless, local operators are computationally more expensive,

and may introduce artifacts such as halos, which impair the perceived naturalness of

tone-mapped images. A good review of existing TMOs can be found in the books

by Reinhard et al. [86] and Banterle et al. [9]. Although this is not exhaustive, we

briefly describe a number of TMOs that are frequently used [55, 15, 52, 16]. Some of

the operators will be adopted in the following chapters.

• Linear Mapping: A simple method for tone mapping is to linearly scale the

contrast levels of HDR images into the displayable ranges. Linear tone map-

ping usually causes significant content loss, making it insufficient to accurately

reproduce the visual appearance of the original scenes.

• Drago Logarithmic Mapping [23]: Drago’s logarithmic operator is derived

from the log-linear curve of photoreceptor response function. To preserve details

while compressing contrast, the algorithm improves the logarithmic compression

by introducing an adaptive adjustment of logarithmic bases for different pixel

values.

• Schlick Uniform Rational Quantization [88]: Schlick’s operator applies

an uniform rational quantization for the purpose of dynamic range reduction.

Compared with other more complete perceptually-based operators, the algo-

rithm provides a simple yet efficient solution to generate realistic looking images

on display devices.

• Ashikhmin Spatially Variant Operator [5]: Ashikhmin’s operator is a local

operator based on human visual adaptation. For local contrast preservation,

the algorithm calculates the local world adaptation as the average luminance of

neighboring pixels, and then employs a perceptual capacity function to compute

the local display adaptation and display values.
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• Durand and Dorsey Bilateral Filtering [24]: The bilateral operator uses

an edge preserving smoothing filter, known as a bilateral filter, to separate

the HDR scenes into different frequency components. Then, the low-frequency

component is compressed and recombined with the high-frequency component

to generate the final output results.

• Reinhard Photographic Tone Reproduction [85]: The photographic oper-

ator mimics the techniques developed in conventional photography for dynamic

range compression. The method employs a sigmoid function to compress the

contrast of HDR scenes, and replicates the photographic dodging and burning

to increase pixel contrast relevant to the surrounding areas.

• Image Color Appearance Model (iCAM06) [51]: iCAM was originally

proposed as an image color appearance model [27]. Later, Kuang et al. in-

corporated an edge preserving spatial filter and light adaptation functions into

the color appearance model, and utilized the revised model for HDR images

rendering.

• Reinhard and Devlin Photoreceptor Model [83]: The photoreceptor op-

erator simulates the mechanisms of photoreceptor adaptation to solve tone map-

ping problem. Several user parameters are provided that allow control of inten-

sity, contrast, and the adaptation level in terms of light and color.

• Fattal Gradient Domain Compression [28]: By performing dynamic range

compression in gradient fields, Fattal’s operator identifies gradients at varying

spatial scales, attenuates their magnitudes with a compressive function, and

then integrates the compressed gradients by solving a Poisson equation.

Figure 2.8 illustrates tone mapped images generated by the above-mentioned

TMOs with default parameter settings. Since the operators address tone mapping

with a variety of methods and goals, they usually lead to images that look quite dif-

ferent from each other. Because different TMOs even parameters yield different tone

mapped images, one of most challenging tasks in the domain of tone mapping is to

select an appropriate operator and parameter settings for a particular HDR image.
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Linear mapping

Ashikhmin [5]

Kuang et al. [51]

Drago et al. [23]

Durand and Dorsey [24]

Reinhard and Devlin [83]

Schlick [88]

Reinhard et al. [85]

Fattal et al. [28]

Figure 2.8: Tone mapping images from various operators on the HDR image “Lab
Window”. The HDR image is from Mark Fairchild’s HDR Photographic Survey c©
2006-2007 Mark D. Fairchild.

2.2.3 Recent Directions

More recent approaches to HDR tone mapping offer several new directions, such as

user-assisted tone mapping [57, 16], styled rendering [8, 2], display conditions aware

tone mapping [65, 84], and tone mapping optimization based on objective image

quality assessment [108, 34, 35, 36]. Since the development of objective equality

metrics and tone mapping optimization algorithms will be discussed in the following

context, here we focus on the other three directions.

The TMOs with default parameter settings usually cannot guarantee good results

and manual adjustment is required for further improvement. Several user interfaces

are introduced to assist in the manipulation process, which allows interactive con-

trol. Lischinski et al. [57] present an interactive tool for users to indicate regions
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of interest with brush strokes and make local adjustments of tone values and other

visual parameters in an image. In the work of Chisholm et al. [16], users are able

to iteratively select one of several alternative tone mapped images provided in the

interface for parameter optimization rather than tweaking parameters directly.

While conventional TMOs target a natural and faithful rendering of real-world

scenes, some algorithms are proposed to learn artistic styles from the predefined

examples and generate the results with personal taste and preference. Based on a

two-scale non-linear decomposition of an image, Bae et al. [8] adjust visual qualities

such as the tonal balance and detail amount to explore various styles on tone mapped

images. Also, Akyüz et al. [2] propose an algorithm to learn the style from a set of

manipulated images and transfer the learned style for new images.

Display devices can differ dramatically in their peak brightness, contrast, and

black level. It can be expected that the same tone mapped image shown on various

devices will have different appearances. In order to have accurate representation

on a particular device, Mantiuk et al. [65] introduce a novel algorithm which takes

ambient illumination and display characteristics into consideration for tone mapping.

Moreover, inspired from color appearance model, Reinhard et al. [84] propose an

appearance reproduction method to produce HDR images and video for display under

specific viewing conditions of environment and devices.

2.3 Image Quality Assessment of Tone Mapped Images

Tone mapped images vary across different TMOs and parameter settings. Therefore,

a natural question is which tone mapped image most faithfully reproduces the visual

appearance of an HDR scene. Generally speaking, the image quality of tone mapped

images can be evaluated with both subjective and objective methods. Subjective

evaluation can be carried out with psychophysical experiments, where human subjects

are asked to make judgements of image quality. On the contrary, objective evaluation

is implemented with computational models based on image processing theories or

assumptions, which can make quality prediction in an automated manner.

A number of subjective studies have been conducted to compare the existing

TMOs and analyze the features that contribute to good image quality. Drago et
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al. [21, 22] compare six TMOs by asking subjects to judge the similarity and dissim-

ilarity of pairs of tone-mapped images. The statistical analysis reveals that image

quality is most related to apparent naturalness (the degree of resembling realistic

scenes) and apparent level of details (the visibility of scene content). Ledda et al. [55]

validate six TMOs with HDR scenes displayed on a HDR device. In their experiments,

human subjects are asked to make quality assessment based on overall similarity and

detail reproduction respectively. Kuang et al. [52] perform a series of experiments

to evaluate seven TMOs for their performance in overall preference and reproduc-

tion accuracy. Also, Čad́ık et al. [15] conduct a more comprehensive assessment in

which observers are asked to rank the tone mapped images from fourteen operators.

Their study suggests an approximation of overall image quality based on the mea-

surement of image features including brightness, contrast, detail reproduction and

color appearance.

Subjective methods can have reliable performance for quality evaluation. Nev-

ertheless, they suffer from some fundamental drawbacks. First of all, subjective

assessment is built on psychophysical experiments which could be expensive and

time-consuming. Secondly, it cannot be incorporated in an automatic framework

for tone mapping optimization. Although the limitations could be addressed by ob-

jective methods, the conventional image quality metrics commonly assume that the

compared image pairs have a similar dynamic range [100], and they are not suitable

for quality evaluation of tone mapped images where the assumption does not hold.

In an attempt to overcome the drawbacks of conventional methods, several objective

quality assessment methods for tone mapped images have been proposed. Using a

new definition of visible distortion, Aydin et al. [7] compute an image quality met-

ric for image pairs with arbitrary dynamic ranges. Also, by measuring structural

fidelity and statistical naturalness, Yeganeh and Wang [108] propose an objective

assessment method called tone mapped image quality index (TMQI). More recently,

Ma et al. [61] modify the measurement used in TMQI and introduce TMQI-II as an

improved variant.

In this section, we focus on the objective quality assessment of tone mapped

images. The current methods, such as dynamic range-independent quality assess-

ment [7], TMQI [108], and TMQI-II [61], are discussed.
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2.3.1 Dynamic Range-Independent Image Quality Assessment

Based on advanced models of human visual system, contrast distortion metric such

as visible difference predictor (VDP) [17] can capture the near threshold differences

and scale them in just noticeable difference units. Mantiuk et al. [66] propose an

HDR extension of VDP (HDR-VDP) to make prediction of perceivable difference in

the full luminance range of HDR images. Taking two HDR images as reference and

test images, HDR-VDP uses threshold fidelity measure to analyze the visibility of

distortion and output a probability map of detection. Based on the measurement of

HDR-VDP, Aydin et al. [7] propose a dynamic range-independent quality evaluation

methods for tone mapped images shown on displays. The central idea of the metric is

a new definition of visible distortion based on the classification of structural changes,

in which three types of distortion can be detected (illustrated in Figure 2.9):

• Loss of visible contrast: the contrast that is visible in the reference image be-

come invisible in the test image, which commonly happens during tone mapping.

• Amplification of invisible contrast: the contrast that is invisible in the refer-

ence image become visible in the test image, and it can be caused by contrast

stretching in inverse tone mapping.

• Reversal of visible contrast: the contrast can be seen in both reference and test

images but with different polarity. This strong distortion is usually related to

noticeable artifacts.

The three types of distortion are visualized as an in-context distortion map [17]

with an arbitrary color, and the magnitude of detection probability is denoted by the

scale of saturation. A sample of the distortion visualization is provided in Figure 2.10,

where the loss of visible contrast, amplification of invisible contrast, and reversal of

visible contrast are represented with color green, blue, and red respectively. Aydin et

al. [7] conduct perceptual experiments to validate the proposed quality metric, and

the results show that the maps of contrast distortion have good correlations with

the subjective assessment of image distortion types. However, since it is not obvious

how the quality maps could be condensed into a single score for an entire image, the

metric is not immediately applicable for tone mapping optimization.
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Figure 2.9: Three types of contrast distortion that the quality metric classifies as a
structural change (left) or a lack of structural change (right). The solid and dashed
lines denotes the reference and test signals, and the horizontal lines depict the visi-
bility threshold [7]. The image is from High Dynamic Range Imaging, published by
Morgan Kaufmann Publishers, c© 2010 Elsevier Inc.

2.3.2 Tone Mapped Image Quality Index

A milestone in the development of objective quality assessment is the introduction of

the Tone Mapped Image Quality Index (TMQI) by Yeganeh and Wang [108]. TMQI

measures the image quality in terms of structural fidelity and statistical naturalness,

and assigns a single quality score to each image, which makes it suitable for the

application of quality improvement in an optimization framework.

The structural fidelity is an improved SSIM index [102, 101] for the comparison

of image pairs with various dynamic ranges. Based on the assumption that the per-

ceived changes in structure information can be used as predictor of image quality,
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Figure 2.10: Distortion maps that are partially shown and saturation scales that
indicate the magnitude of detection probability [7]. Green depicts loss of visible
contrast; blue denotes amplification of invisible contrast; red represent reversal of
visible contrast.

SSIM calculates the similarity between two images based on their spatial dependen-

cies of pixels. The original SSIM algorithm consists of three comparison components

including luminance, contrast, and structure. Since tone mapping causes significant

changes in luminance and contrast, the direct comparison of these components is

inappropriate for quality assessment of tone mapped images. To address that, the

structural fidelity modifies the SSIM algorithm by discarding the luminance compo-

nent and redefining the contrast component. In the new definition, the difference of

signal strength will not be penalized if the signal strengths of the HDR and LDR

images are both significant (above a visibility threshold) or both insignificant (below

a visibility threshold). The measurement of structural fidelity is performed on two

local image patches from the HDR and the tone mapped LDR images and a slid-

ing window is adopted to run across the entire image space. Inspired by multi-scale

SSIM [103], the structural fidelities are analyzed at multiple scales, where the images

are iteratively processed by low-pass filtering and downsampling to create an image

pyramid. A quality map that reflects the variation of structural fidelity across the

image space is generated at each scale, and the maps of different scales are averaged

into a score Sl where l denotes the number of the scale. The quality score Sl can be

described as follows,
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Figure 2.11: Framework of multi-scale structural fidelity measurement [108].

Sl =
1

Nl

Nl∑
i=1

Slocal(xi, yi). (2.1)

In the equation, xi and yi denote the i− th patch of the HDR reference and LDR test

images respectively, and Nl denotes the number of patches. Afterwards, the overall

structural fidelity S is computed by combining the scores of different scales

S =
L∏
l=1

Sβl

l , (2.2)

in which L denotes the total number of scales and βl denotes the weight assigned to

the l − th scale. Based on the psychophysical experiment [103], L is set to 5 and

{βl} is set to {0.0448, 0.2856, 0.3001, 0.2363, 0.1333}. The framework of the multi-

scale structural fidelity measurement is demonstrated in Figure 2.11. It is worth

mentioning that the measure is performed only on the luminance channel for color

images.

Assuming that good quality tone mapped images should should look as “natural”

as possible, Yeganeh and Wang [108] also introduce a scene-independent measurement

named as statistical naturalness, which calculates the similarity of brightness and

contrast between the tone mapped images and natural images. They assert that the

measurement of statistical naturalness can best complement the structural fidelity

where brightness modeling and evaluation are missing. The statistical naturalness is

built upon a large data set consisting of about 3000 8 bits/pixel gray-scale images that

represent many different types of natural scenes. As shown in Figure 2.12, the means

and standard deviations of the images are analyzed to indicate the overall brightness
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Figure 2.12: Histograms of means fitted by Gaussian PDF (left) and standard devi-
ations fitted by Beta PDF (right) of natural images [106].

and contrast of “natural scenes”, and a penalty is given to tone mapped images with

different brightness and contrast. In order to quantify the distortion, the histograms

of means m and standard derivations d are fitted with a Gaussian probability density

function Pm(m) and a Beta probability density function Pd(d) respectively, which are

formulated as follows,

Pm(m) =
1√
2πσm

exp{−m− μm

2σ2
m

} (2.3)

Pd(d) =
(1− d)βd−1dαd−1

B(αd, βd)
(2.4)

where B() denotes the Beta function. The parameters used in the formula are esti-

mated with regression: μm = 115.94, σm = 27.99, αd = 4.4, and βd = 10.1. The fitted

curves of these two functions are given in Figure 2.12. With the estimations of dis-

tortions in brightness and contrast, the statistical naturalness measure N is defined

as the product of Pm(m) and Pd(d):

N =
1

K
PmPd (2.5)

where K is a normalization factor computed as K = max{PmPd}.
With the structural fidelity measure S and the statistical naturalness measure N ,

the TMQI measure Q is defined as a three-parameter function to combine these two

measures:
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Q = aSα + (1− a)Nβ (2.6)

In this function, a controls the relative importance of the two components, while α

and β adjust their sensitivities respectively. Since both S and N are upper-bounded

by 1, the overall quality measure Q is upper-bounded by 1 as well. With an iterative

learning process, the parameters are tuned to best fit the subjective evaluation data

provided by Song et al. [90], and the settings are a = 0.8012, α = 0.3046, and

β = 0.7088.

The TMQI was then validated by comparing the objective quality assessment re-

sults with subject-rated image data, and the results show good correlation between

the TMQI measure and subjective ranking scores. Nevertheless, the TMQI suffers

from several drawbacks which could lead to inaccurate prediction. First of all, the vis-

ibility threshold used in the structural fidelity is too sensitive, and any tiny changes

in local patch in HDR images could cause a significant difference in quality mea-

sure [61]. Secondly, the statistical naturalness measurement always favors the images

with “average” brightness and contrast, and that bias towards “average” images is too

coarse to make accurate quality prediction for HDR scenes under a broader range of

illuminations [34, 35, 61]. The drawbacks of the statistical naturalness in the quality

evaluation and application of tone mapping optimization will be further discussed in

the following chapters.

2.3.3 Tone Mapped Image Quality Index II

Most recently, the limitations of TMQI have been recognized by Ma et al. [61], and

they propose an improved variant of the quality measure named TMQI-II, in which

the original measurement of structural fidelity and statistical naturalness are updated

for better accuracy.

Using a sliding window across the image space, the structural fidelity of TMQI can

generate a quality map that indicates the preservation of local structural information.

Compared with the original SSIM index [102, 101], the measurement modifies the

contrast comparison by suggesting that the HDR and tone mapped images patches

should have the same visibility of local contrast. To access the contrast visibility,

they apply a nonlinear function derived from the contrast sensitivity model for the
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Figure 2.13: Structural fidelity map on the HDR image “Belgium house” (brighter
indicates higher quality) [61]. Left: tone mapped image from photographic oper-
ator [85]. Middle: structural fidelity map generated by TMQI. Right: structural
fidelity map generated by TMQI-II.

contrast which is calculated as the local standard deviation. However, as mentioned

earlier, the threshold determined by the function suffers from the problem of over

sensitivity, which in turns mistakenly marks the invisible contrast as visible contrast.

The phenomenon is illustrated in Figure 2.13. The structural fidelity measure of

TMQI incorrectly recognizes the homogeneous wall areas as contrast visible in HDR

images, and then applies quality penalties for these areas of the tone mapped image

resulting in inaccurate predictions. Assuming that the contrast visibility function

should be adapted to the local luminance levels of HDR images, Ma et al. employ

the coefficient of variation as an approximation of the local contrast in HDR image

patches rather than the standard deviation. They assert that the modification is

consistent with Weber’s law and remains invariant to linear contrast stretching. The

quality map generated by the updated structural fidelity is shown in Figure 2.13

(right). In the same fashion with TMQI, the single quality score for the entire image

is computed as the weighted average of the quality maps across multiple scales.

The statistical naturalness in TMQI is built on the statistical average of brightness

and contrast derived from a large set of natural images. Using a Gaussian density

function Pm and a Beta density function Pd is used to indicate the naturalness qual-

ities of brightness and contrast respectively, the overall quality score of statistical

naturalness is calculated as the normalized product of these two density functions.

The measure of statistical naturalness is completely independent of the image con-

tent of reference HDR scenes, which is an over simplification. The model suggests
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Figure 2.14: Surfaces of the functions Pm (left) and Pd (right) [61].

that statistically natural tone mapped images of dynamic range [0, 255] should have

an average brightness around 116 and a contrast around 65 which correspond to the

peaks in the density functions. However, each tone mapped image should have differ-

ent brightness and contrast values to look natural depending on the original scenes.

In order to overcome the limitation, Ma et al. propose an image dependent natural-

ness model. They compress the luminance of HDR images based on the logarithmic

average, and calculate the mean μe and standard deviation σe of the compressed lumi-

nance as the estimation of brightness and contrast for naturalness. Asserting that the

measures should remain in certain ranges to be “natural”, they introduce acceptable

boundaries [μl, μr] and [σl, σr] for brightness and contrast respectively. Afterwards,

with the approximated values and boundaries of the two components, the functions

Pm and Pd in statistical naturalness are redefined using Gaussian cumulative distri-

bution functions, which are described as follows,

Pm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2πθ1

∫ μ

−∞
exp

(
−(t− τ1)

2

2θ21

)
dt μ ≤ μe

1√
2πθ2

∫ 2μr−μ

−∞
exp

(
−(t− τ2)

2

2θ22

)
dt μ > μe,

(2.7)
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Pd =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2πθ3

∫ σ

−∞
exp

(
−(t− τ3)

2

2θ23

)
dt σ ≤ σe

1√
2πθ4

∫ 2σr−σ

−∞
exp

(
−(t− τ4)

2

2θ24

)
dt σ > σe

(2.8)

where the parameters τi and θi (i ∈ [1, 2, 3, 4]) are determined by points on the

curve; see [61] for details. Figure 2.14 illustrates the surfaces of the two functions. It

can be observed that heavy penalties will be applied for tone mapped images whose

brightness or contrast is outside of the acceptable boundaries.

The overall quality of TMQI-II is defined as the weighted average of the mea-

sures of updated structural fidelity and statistical naturalness. Instead of learning

weights from subjective data, TMQI-II emphasizes the equal importance and em-

ploys the same weights for these two components. The comparison of TMQI and

TMQI-II is conducted with a subject-ranked database, and the experiment shows

that the updated measurements can have improved correlation with respect to sub-

jective evaluations. As the improved variant of TMQI, TMQI-II has been used as a

baseline to compare our feature-based quality metric against.

2.3.4 Other Methods

Other than the state-of-the-art methods discussed in the previous sections, a few other

image quality assessment approaches for tone mapped images have been proposed,

and most of them use partially or completely scene-independent measures.

Derived from the TMQI [108], Nasrinpour and Bruce [75] propose a saliency

weighted tone mapped quality index that use visual saliency to further align the

human adjustments of image quality. They modify the measurement of structural

fidelity in TMQI by introducing visual saliency in the pooling strategy to compute

the overall score. Since the statistical naturalness component remains the same, their

method inherits the limitations of TMQI regarding the over-simplification of quality

judgement in terms of brightness and contrast. A similar saliency-based modifica-

tion of TMQI has also been presented by Liu et al. [59] which suggests a new pooling

method for the structural fidelity using visual saliency while having the statistical nat-

uralness unchanged. Based on the local phase information of images, Nafchi et al. [72]
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use the locally weighted mean phase angle map for quality evaluation, and incorpo-

rate the phase-based measure in TMQI as an improved quality metric. This approach

still uses the scene-independent statistical naturalness to make explicit constraints on

brightness and contrast, which could introduce artifacts in quality predictions. Also,

asserting that higher quality tone mapped images should maintain much more de-

tails, Gu et al. [39] propose a totally blind quality metric by estimating the amount

of local details, in which the details are quantified as the entropies in the brightened

and darkened tone mapped images.

Although no-reference measures provide an easy solution when reference images

are not immediately available for comparison, they are too coarse to make accurate

prediction for the breadth of real world images. Some discussion of the limitations can

be found in the prior works [35, 61]. Considering the ultimate goal of tone mapping

is to reproduce the visual appearance of HDR scenes [86], we mainly focus on the

full-reference objective quality assessment for tone mapped images, which calculates

the distortion between compressed LDR and original HDR images.

2.4 Evolution Strategies

Evolution strategies (ESs) [81, 89], also referred to as evolutionary strategies, are

optimization techniques based on the principles of biological evolution. They belong

to a general class of evolution methodologies that take the candidate solutions to the

optimization problem as individuals in a population and select the better individuals

in each generation.

ESs are most commonly used for black-box optimization problems where derivative

information is not available. They are relatively robust with regard to the ruggedness

of the objective function (rugged fitness landscape). In the present context, evolution

strategies are useful as the quality of a tone mapped image can only be evaluated

through application of the TMOs, and no convenient mathematical assumptions re-

garding the objective can be made. This section briefly introduces the main principles

of the optimization algorithm and parameter control. A thorough survey of evolution

strategies was conducted by Hansen et al. [40].
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2.4.1 Algorithm Description

From the algorithmic viewpoint, ES are stochastic optimization algorithms that iter-

ate variation and selection in populations of candidate solutions. The search space is

the continuous domain R
n and the solutions is search space are n-dimensional vectors.

We assume a population of individuals. Each individual represents a candidate solu-

tion, and consists of a parameter vector x ∈ R
n and an associate fitness value f(x).

In some cases, there is only one individual in the populations. Depending on the roles

of individuals in a generation, they can also be denoted as parents or offspring.

For each generation, one or several parents are selected from the current popula-

tion, which is called mating selection, and offspring are generated from the selected

parents by duplication and recombination. Then, the offspring undergo mutation

which introduces small, random, and unbiased changes to these individuals. The av-

erage size of the changes are adapted over time, and the parameters that allow the

control of adaption is called control parameters. For instance, the step-size σ deter-

mines the notion of “small”. Although the method of parameter control is not always

directly inspired by biological evolution, it can be a central feature for evolution

strategies. After mutation, the offspring become new members, and the size of the

population grows accordingly. Next, based on the fitness value, environment selection

reduces the population to its original size, in which only the best individuals can sur-

vive and become the parents for next generation. There exist two basic strategies for

the environment selection: plus- and comma- selection. In plus-selection, individuals’

age is not considered, and the best individuals are selected from both parents and

offspring. Comma-selection takes age into account, and only the offspring can survive

to the next generation.

2.4.2 Parameter Control

Controlling the parameters of mutation is key to the design of ES [40]. The step-size

σ is a scaling factor for the random vector perturbation, and it plays an important

role in parameter control. To a large extent, the step-size controls the convergence

speed of the algorithms. When larger step-sizes lead to larger expected improve-

ment, the step-size control techniques should increase the step-size to meet the target.

Conversely, when smaller step-sizes contribute to better performance, the techniques
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should decrease its value instead. The control of the step-size can be performed on

different levels: the step-size can have different values for various individuals, or a

single step-size value can be applied to all individuals.

Algorithm 1 The (1 + λ)− ES with the Chisholm et al.’s Strategy

1: given n, λ ∈ N+, α ∈ [0, 1]

2: initialize P = {(x, σ, f(x)),x ∈ R
n, σ > 0

3: while not happy do

4: for k ∈ {1, ..., λ} do

5: xk = x+ σ ×N(0, I)

6: P ← P ∪ {(xk, σ, f(xk)) | 1 ≤ k ≤ λ}
7: P ← select 1 best(P )

8: if P doesn’t change then

9: σ ← σ × α

A number of ES have been proposed with various parameter control methods, such

as the 1/5th success rule [81], self-adaption [40], and cumulative step-size adaption

(CSA) [4]. The 1/5th success rule [81] is established in the early stage of the devel-

opment of evolutionary strategies. It uses 1/5 as the success value to switch between

increasing and decreasing the step-size: step-size increases if the success probability

is larger than 1/5 and decreases otherwise. The parameter control via self-adaptation

is seminal in the domain of evolution strategies. In self-adaption [40], the generation

of new step-size is similar with that of offspring, which is conducted by recombination

and mutation. As for the cumulative step-size adaption [4], it introduces a cumulative

path to guide the adaption of step-size. The cumulative path is the combination of

all steps made by the algorithm with their importance decreasing exponentially over

time.

Here, we use a simple method proposed by Chisholm et al. [16] as an example to

introduce the procedure of parameter control. The method was proposed for inter-

active evolution of tone mapping, and it is efficient to yield good converge within a

relatively small number of iterations. In their approach, the step-size is updated with

a strength factor when the parent is superior to all its offspring. The algorithm 1)
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demonstrates the implementation of (1 + λ)− ES with the strategy. Given a popu-

lation P of 1 individual (x, σ, f(x)),x ∈ R
n (Lines 2), where x is a solution vector, σ

is the step size, and f(x) is the fitness function from R
n to R. Firstly, λ offspring are

generated from the single parent x with mutation defined by the step-size σ (Lines

5). Afterwards, the new offspring are added to P (Line 6), and the best individual in

P that survives the environmental selection will be parent for next generation (Line

7). If parent remains the same with the previous generation, the algorithm updates

the step-size σ by multiplying a strength factor α (Line 9). This process will continue

until satisfying results are arrived.



Chapter 3

Visual Saliency Analysis on HDR Images

3.1 Introduction

By simulating the selective-attention mechanism in the human visual system [31],

visual saliency analysis aims to detect the salient targets that attract eye fixation.

Because saliency analysis can predict the regions of interest and allow the priori-

tized allocation of resources in subsequent applications, it plays an important role in

computer vision and image understanding.

However, typical visual attention models are built on LDR images, and they are

not suitable for saliency analysis on HDR images. When applying the models to HDR

images, high dynamic range will be scaled which inevitably causes content loss that

in turn makes salient regions appear not salient or vice versa. Image contents within

HDR images may not register as salient due to the significant contrast reduction,

preventing the current computational models from obtaining useful results. Also,

Narwaria et al. [74] have found that TMOs can modify human attention and fixation

behavior significantly, making it unreliable to apply salience analysis techniques after

tone mapping.

In this chapter, we introduce a novel algorithm for saliency analysis of HDR images

based on virtual photographs [33]. Inspired by the process of generating HDR im-

ages from multiple LDR exposures, we decompose an HDR image into multi-exposed

virtual photographs for the preservation of image content, and then incorporate the

virtual photograph sequence for visual saliency analysis. Experiments with a vari-

ety of HDR images demonstrate that our algorithm can produce more consistently

reliable predictions than the existing methods.

37
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Figure 3.1: Histogram for HDR scenes that are overall dark (left), medium (middle),
and light (right). Images from High Dynamic Range Imaging, published by Morgan
Kaufmann Publishers, c© 2010 Elsevier Inc.

3.2 Virtual Photograph Based Visual Saliency Analysis

3.2.1 Taking Virtual Photographs

Taking virtual photographs was first introduced for flash-exposure HDR imaging [1,

87], in which a series of images with different flash intensity and exposures are cap-

tured and merged into HDR maps, and virtual photographs can then be taken for any

combination of exposure and flash intensity. In these methods, the response function

of the camera that is recovered when producing an HDR image is applied for taking

virtual photographs from the same HDR image. Consequently, it is assumed that the

response function is already available.

For HDR images that are captured directly by a digital camera, generated syn-

thetically using ray tracing, or generated using other approaches different from those

that combine multiple LDR images, a response function may not be readily available.

In order to obtain well-exposed virtual photographs from an HDR image if the re-

sponse function of the capturing device is not available, we adopt a simple transfer

function often used in modern photography [91] in combination with the key of a

scene based calibration.

For natural scenes, the lighting conditions can be revealed in the histogram of the

images. As shown in Figure 3.1, a dark scene often displays a peak towards the left

of the histogram, a light scene on the right of the histogram, and medium ones in the
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middle of the histogram. Based on this observation, Reinhard [82] introduces the key

of a scene which is a unitless number related to the overall lighting level, and proposes

a calibration algorithm for HDR images. The same heuristic has been adopted to

calibrate HDR images for taking virtual photographs. Based on the distance of the

logarithmic average luminance to the minimum luminance in an image relative to the

difference between the minimum and maximum luminance, the key of a scene α can

be calculated as follows,

f =
2 logLav − logLmin − logLmax

logLmax − logLmin

, (3.1)

α = 0.18× 4f (3.2)

in which Lav, Lmin, Lmax denote the log average luminance, minimum luminance,

and maximum luminance, respectively. To reduce the influence of outliers, 1% of the

lightest and darkest pixels are excluded for the calculation of minimum and maximum

luminance [82]. For an HDR image with luminance values L(x, y), we calibrate the

luminance so that the log average value Lav can be scaled to the estimated key of the

scene α. The calibrated luminance L′(x, y) is defined as

L′(x, y) =
α

Lav

L(x, y). (3.3)

With the calibrated luminance, we apply a transfer curve that mainly compresses

high luminance to take virtual photographs with different exposures. The exposures

can be calculated as the product of the calibrated luminance L′(x, y) and exposure

time Δt. Then, denoting the displayable luminance value as Ld(x, y), the process of

taking virtual photograph is described as

Ld(x, y) =
L(x, y)Δt

1 + L(x, y)Δt
. (3.4)

A comparison between real and virtual photographs is shown in Figure 3.2, where

the real photographs have been used to generate the HDR images. As we can see, the

virtual photographs look very similar to the real originals. We do note some minor

differences, since the exposure times of virtual photographs do not completely match

those of the real photographs. Figure 3.3 below presents evidence that the differences

are too small to significantly affect the subsequent saliency analysis.
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Figure 3.2: Comparison between real photographs (upper row) and virtual pho-
tographs (lower row) on HDR image “Memorial Church”. Exposure times in all
cases increase by a factor of two between neighboring images when moving from left
to right. The HDR image that the virtual photographs are derived from as well as
the real photographs are from Paul Debevec c© 1997 ACM.

3.2.2 Analyzing Visual Saliency

In order to preserve image contents of HDR images while reducing artifacts that

may be introduced by under- or over-exposed images, we calculate a sequence of nine

virtual photographs with exposure times Δt ∈ {1/15, 1/8, 1/4, 1/2, 1, 2, 4, 8, 15}. We

adopt the method of Itti and Koch [46] to calculate the saliency map of each image

in the sequence of virtual photographs, but other salience detection operators could

be used instead.

Then the saliency maps are combined into the saliency map of the HDR image.

One difficulty in combining different saliency maps is the signal-to-noise ratio problem

identified by Itti and Koch [46], which means that some salient objects may be

weakened or entirely lost during combination. We solve this problem by adopting

the spatial competition scheme used by Itti and Koch [46] for noise reduction in the

feature maps, which is realized with a two-dimensional Difference-of-Gaussians (DoG)

filter. The salient locations in each saliency map can be excited with counteraction
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Figure 3.3: Virtual photographs (left) and their corresponding saliency maps (right).
The HDR Image is from Paul Debevec c© 1997 ACM.

triggered by the inhibition from the surrounding regions.

After the competition, the saliency maps are combined into the saliency map for

the HDR image by computing their weighted average, where weights decrease with

increasing degrees of over- and under-exposure. A similar strategy is used when

producing HDR images from multiple LDR images with different exposures. Debevec

and Malik [18] make use of a simple hat function for the weights while Mann and

Picard [63] use the derivative of the response curve as the weighting function. We

employ φσ(log2 Δt) with φσ(x) = exp(−(x/σ)2/2) and σ = 1.2 to weight the saliency

map obtained from the virtual photograph with exposure time Δt.

With the saliency map, the focus of attention can be directed to the regions

with the highest values. To that end, we utilize a winner-take-all (WTA) neural

network [50, 46] to determine the saliency locations and a fixed-size circle (one eighth

of the smaller of the input image width and height) to represent the focus of attention.

WTA networks work well to simulate the selection mechanism of the human brain [31].
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Figure 3.4: Comparison between the results generated from virtual and real pho-
tographs. From left to right: saliency map from virtual photographs, regions of
visual attention (red circles) from virtual photographs, saliency map from real pho-
tographs, and regions of visual attention from real photographs. The HDR Image is
from Paul Debevec c© 1997 ACM.

A sequence of virtual photographs and their saliency maps are shown in Figure 3.3.

It is apparent that some salient features are present only in a subset of the virtual

photographs, and therefore only in some parts of the dynamic range. The final results

from combining the salience maps of the virtual photographs as well as of the real

photographs using the algorithm described above are shown in Figure 3.4. Here as

well as in the following figures, HDR images are tone mapped using a local adaption

algorithm [85] with manual manipulation of the curve and saturation for display

purposes. As shown in this example, the virtual photographs contribute to similar

saliency maps and the same locations of visual attention as the sequence of real

photographs.

3.2.3 Experimental Results

A number of computational visual attention models have been proposed during the

past decades. However, it is still challenging to establish an objective criteria for

the performance of visual attention models. Although eye-tracking data can serve

as the ground truth for human fixation, the previous studies show that predictive

models of human fixation is beyond the possibilities of bottom-up visual attention

models [13, 49], which limits its application for the performance judgement of visual
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attention models. Similar to the prior works in the domain [47, 46], we test our al-

gorithm on various natural HDR images to detect the targets that can be of interest

for human observers, where all images are provided in color and contain a number

of “targets” with discriminative features. The experimental results indicate that our

method is able to produce reasonable predictions. In each case, the eye-catching tar-

gets that differ from the surrounding environment by their unique colors, intensities,

or orientations, can be marked as visually salient. Three examples are shown in Fig-

ure 3.5. As we can see, the targets with discriminative visual features can be found,

such as the red car (First row), the ancient buildings (Second row), and the trees

(Third row).

A comparison with results generated by applying the method of Itti and Koch [46]

directly to the HDR image as well as those obtained using the algorithm of Brémond

et al. [13] is shown in Figures 3.6, 3.7, and 3.8. Compared with the methods of

Itti and Koch [46] and Brémond et al. [13], our method addresses the problem of

HDR content loss that occurs due to contrast compression, and therefore consistently

leads to better performance for detecting the salient regions of HDR images. As

illustrated in Figure 3.6, if the luminance of the HDR image is compressed before

the saliency analysis (as is the case with the other methods), it is hard for the visual

models to analyze image contents in the relatively darker areas of the image. In this

example, only the sun and its reflection on the water surface are detected by the

other approaches, while the targets in other regions, such as the mountains, sailboat,

and house, are neglected. The same pattern occurs in Figure 3.7. The previously

cited methods fail to capture the bridge in the background, which is darker than

the foreground. Another example is given in Figure 3.8. Our method detects the

woman that is obviously the most important target, while the other methods cannot.

We hypothesize that this is because the image contents in relatively dark areas are

weakened or even entirely lost as a result of significant changes in contrast in the

other approaches.

3.3 Conclusion and Discussion

A number of computational visual attention models have been proposed for LDR

images. However, relatively poor results have been observed when applying some
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of those systems for saliency analysis of HDR images since lightness reduction will

lead to significant content loss. To preserve content of HDR images and incorporate

them into the saliency analysis, a virtual photograph based method is proposed in

this chapter. The approach utilizes a sequence of virtual photographs rather than a

single image for revealing HDR content. Our method reliably characterizes regions of

visual attention for HDR images and has a wide variety of potential applications, such

as HDR image or video coding, visual saliency based tone mapping, and objective

evaluation of tone mapped images. The virtual photograph technique presented in

the algorithm opens new avenues to extract image features from HDR images, which

can also be used for other features, such as brightness, and local detail.

There are some future research directions which can be pursued to extend the work

in this chapter. First of all, our method adopts the key of a scene based calibration

when taking virtual photographs from HDR images, and the incorrect estimation of

the key of a scene can somewhat effect the following feature analysis. Considering the

calibration algorithm is derived from the observation on natural scenes, our method

cannot guarantee reliable feature analysis on artificial HDR images. In the future,

we would like to explore alternative calibration algorithms or further improvements

that are applicable for different types of HDR images. Secondly, the current imple-

mentation of our method is built on the visual attention model of Itti and Koch [46],

and thus it could suffer from the limitations of their particular method. Since our

method is flexible enough to adopt any other visual attention models, testing variant

existing models and comparing them can be considered as future work.
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Figure 3.5: Results of saliency analysis on the HDR images “M3 Middle Pond”,
“Exploratorium(1)”, and “Otter Points”. First column: saliency maps generated
with our method. Second column: prediction of visual attention (red circles). The
HDR images are from Mark Fairchilds HDR Photographic Survey c© 2006-2007 Mark
D. Fairchild.
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Figure 3.6: Comparison with other approaches on the HDR image “Bar Harbor Sun-
rise”. From top to down, saliency maps and regions of visual attention (red circles)
produced by our method, the method of Itti and Koch [46], and the method of
Brémond et al. [13]. The HDR image is from Mark Fairchilds HDR Photographic
Survey c© 2006-2007 Mark D. Fairchild.
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Figure 3.7: Comparison with other approaches on the HDR image “Mackinac Bridge”.
From top to down, saliency maps and regions of visual attention (red circles) produced
by our method, the method of Itti and Koch [46], and the method of Brémond et
al. [13]. The HDR image is from Mark Fairchilds HDR Photographic Survey c©
2006-2007 Mark D. Fairchild.
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Figure 3.8: Comparison with other approaches on the HDR image “Celine1”. From
left to right, saliency maps and regions of visual attention (red circles) produced
by our method, the method of Itti and Koch [46], and the method of Brémond et
al. [13]. The HDR image is from High Dynamic Range Imaging, published by Morgan
Kaufmann Publishers, c© 2006 Elsevier Inc.



Chapter 4

Objective Image Quality Assessment of Tone Mapped Images

4.1 Introduction

With the development of HDR tone mapping, it is essential to perform quality mea-

sures for tone mapped images. Without reliable quality evaluation, tone mapped

images cannot be compared and further improvement of existing operators could be

aimless. Although the quality assessment can be carried out by human observers in

psychophysical experiments [21, 22, 55, 52], objective quality metrics are especially

appealing as they are far more economic, faster, more consistent, and applicable in

optimization frameworks. In this chapter, we focus on objective quality assessment of

tone mapped images, which calculates the distortion between compressed LDR and

original HDR images.

Conventional image quality assessment (IQA) algorithms which assume that ref-

erence images and test images have the same dynamic range is less suitable for quality

evaluation of tone mapped images [102, 100]. These IQA algorithms compute distor-

tion based on the difference of the magnitude of intensity or normalized contrast, and

their predictions could be meaningless when the image pair has significantly differ-

ent dynamic ranges. We assume that the quality evaluation of tone mapped images

should focus on the reproduction of important image features that affect the perceived

quality to human observers rather than the exact match of intensity or contrast.

The virtual photograph based algorithm bridges the gap of dynamic ranges for

feature analysis, which enables the comparison of image features for quality evalu-

ation. Using the algorithm for features analysis of HDR images, we propose two

feature-based quality metrics for tone mapped images, including visual saliency dis-

tortion predictor (VSDP) [34, 35], and perceptual distortion predictor (PDP) [38, 32].

The quality metrics calculate the distortion in image features for quality prediction.

A series of experiments demonstrates the effectiveness of the proposed feature-based

quality metrics and their benefits over the prior works.

49
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4.2 Visual Saliency Distortion Predictor

According to Reinhard et al. [86], the ultimate goal in tone mapping is to reproduce

the visual appearance of HDR images. This raises the question: how we can evaluate

the image quality of tone mapped images for visual realism? Based on eye-tracking

data, Liu and Heynderickx [58] assert that visual attention affects how visual signals

are received by the human visual system, and it would be beneficial for objective image

quality assessment. Narwaria et al. [74] consider several TMOs to study the effects of

tone mapping on visual attention. Their results indicate that visual attention needs

to be considered for perceptual evaluation as human visual attention and fixation

behaviour can be affected during tone mapping.

Inspired by these studies of visual attention [58, 74], we employ the bottom-up

visual saliency calculated from computational visual attention models to measure

image quality of tone mapped images, and propose an objective image quality metric

called visual saliency distortion predictor (VSDP) [34, 35]. If tone mapped poorly,

regions of interest (ROIs) in HDR images predicted by visual saliency may exhibit

inaccurate contrast when displayed with low dynamic range and thus appear more or

less salient. As shown in Figure 4.1 and Figure 4.2, different tone mapped versions

of HDR images have varied saliency maps, and the tone mapped image sharing more

similarity of its saliency map with that of the HDR image tends to provide a more

faithful impression.

4.2.1 Visual Saliency Distortion

We have proposed a virtual photograph based algorithm for saliency analysis on

HDR images. To do that, we employ camera curves to take multiple-exposed virtual

photographs from HDR images, analyze visual saliency on the sequence of virtual

photographs, and then combine the results into a unified map. The algorithm applies

existing visual attention models to HDR images. In order to calculate visual saliency

distortion, we use the virtual photograph based algorithm to generate saliency maps

of HDR images, and the process is described as follows,

SH(x, y) =
1

N

N∑
i=1

wiSLi(x, y), (4.1)
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Reference image

Saliency map of HDR image

Tone mapped image A

Saliency map of image A

Tone mapped image B

Saliency map of image B

Figure 4.1: Application of visual saliency for quality evaluation on the HDR image
“Bandon Sunset (1)”. First column is the reference image tone mapped with man-
ual manipulation and its saliency map generated by the virtual photograph based
algorithm [33]. Second and third columns are tone mapped images from Schlick’s
operator [88] with various parameter settings and their saliency maps generated by
the model of Itti and Koch [46]. The HDR image is from Mark Fairchild’s HDR
Photographic Survey c© 2006-2007 Mark D. Fairchild.

Reference image

Saliency map of HDR image

Tone mapped image A

Saliency map of image A

Tone mapped image B

Saliency map of image B

Figure 4.2: Application of visual saliency for quality evaluation on the HDR image
“Redwood Sunset”. First column is the reference image tone mapped with man-
ual manipulation and its saliency map generated by the virtual photograph based
algorithm [33]. Second and third columns are tone mapped images from Schlick’s
operator [88] with various parameter settings and their saliency maps generated by
the model of Itti and Koch [46]. The HDR image is from Mark Fairchild’s HDR
Photographic Survey c© 2006-2007 Mark D. Fairchild.
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Here, SH(x, y) and SLi(x, y) denote the saliency map of HDR image and virtual

photograph respectively, and the parameter wi depicts the weight of each individual

map. It is worth noting that saliency maps of HDR images in this quality metric is

generated by the precursor of the approach described in Chapter 3, in which we use

a camera curve recovered from existing photograph sequences. Afterwards, we use

the visual attention model of Itti and Koch [46] to compute the saliency map of tone

mapped images SL(x, y). Adopting the same visual attention model for both HDR

images and tone mapped images can better ensure an unbiased comparison.

With saliency maps of HDR and tone mapped LDR images in hand, we seek

to quantify their difference which is referred to as visual saliency distortion. The

normalized saliency map can be treated as a probability distribution that assigns a

probability of visual attention to each pixel in an image. Therefore, visual saliency

distortion can be measured by computing the information loss when the probability

distribution calculated from a tone mapped image is used to approximate that of the

HDR image. The Kullback-Leibler (K-L) divergence [53], or relative entropy, is used

to quantify the information loss as

DKL(H||L) =
∑
x,y

ln

(
SH(x, y)

SL(x, y)

)
SH(x, y) . (4.2)

Here, DKL(H||L) denotes the K-L divergence between the normalized saliency map of

HDR image SH(x, y) and that of tone mapped image SL(x, y), where the summation

extends over all pixels.

4.2.2 Experimental Results

The visual saliency distortion predictor (VSDP) was proposed for parameter tuning

of TMOs [34, 35]. Before VSDP was published, Yeganeh and Wang [108] proposed the

tone mapped image quality index (TMQI) by combining the measures of structural

fidelity and statistical naturalness. Since TMQI can assign a single quality score to

a entire image, it is potentially applicable for parameter optimization. Nevertheless,

because the quality metric uses non-reference statistics of natural images to measure

the quality of tone mapped images, it is too coarse to make accurate prediction for the

breadth of real world images. More specifically, the statistical naturalness measure

suggests that tone mapped images of dynamic range [0, 255] should have mean value
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Reference image

TMQI score

TMQI score

Best image from VSDP

TMQI Score: 0.7457
Statistical Naturalness: 0.0275
Structural Fidelity: 0.6466
Saliency Distortion: 0.1831

TMQI Score: 0.7164
Statistical Naturalness: 0.0478
Structural Fidelity: 0.6223
Saliency Distortion: 0.5136

Best image from TMQI

TMQI Score: 0.8752
Statistical Naturalness: 0.7344
Structural Fidelity: 0.6896
Saliency Distortion: 0.6850

TMQI Score: 0.8036
Statistical Naturalness: 0.3154
Structural Fidelity: 0.6908
Saliency Distortion: 1.0107

Figure 4.3: Comparison of image quality evaluation between VSDP and TMQI on
the HDR images “Frontier” and “HDR Mark”. First column: reference images tone
mapped with manual manipulation. Second column: the best tone mapped images
selected based on VSDP. Third column: the best tone mapped images selected based
on TMQI. The HDR images are from Mark Fairchilds HDR Photographic Survey c©
2006-2007 Mark D. Fairchild.

around 116 and the standard deviation around 65 to appear natural. This measure

can dominate TMQI and assign high scores to an “average” image, which will cause

inaccuracy for quality evaluation of either naturally bright or dark scenes.

We have conducted an experiment to compare VSDP and TMQI for parameter

optimization. In the experiment, we use 4 HDR images that cover different image

contents and lighting conditions, including “Frontier”, “HDR Mark”, “Lab Booth”,

and “Blooming Gorse (1)”. For each HDR image, we generate 25 visually different

tone mapped images using Schlick’s operator [88] with various parameter settings,

and then apply both VSDP and TMQI to select the best tone mapped image. The

reference images provided at [26] are used as benchmarks. Since these images are
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Reference image

TMQI Score

TMQI Score

Best image from VSDP

TMQI Score: 0.9054
Statistical Naturalness: 0.6422
Structural Fidelity: 0.8416
Saliency Distortion: 0.4994

TMQI Score: 0.8603
Statistical Naturalness: 0.3212
Structural Fidelity: 0.8832
Saliency Distortion: 0.2471

Best image from TMQI

TMQI Score: 0.9317
Statistical Naturalness: 0.8149
Structural Fidelity: 0.8400
Saliency Distortion: 0.9173

TMQI Score: 0.9758
Statistical Naturalness: 0.9829
Structural Fidelity: 0.9135
Saliency Distortion: 0.2755

Figure 4.4: Comparison of image quality evaluation between VSDP and TMQI on the
HDR images “Lab Booth” and “Blooming Gorse (1)”. First column: reference images
tone mapped with manual manipulation. Second column: the best tone mapped
images selected based on VSDP. Third column: the best tone mapped images selected
from TMQI. The HDR images are from Mark Fairchilds HDR Photographic Survey
c© 2006-2007 Mark D. Fairchild.

tone mapped with hand tuning of the tone-reproduction curve and saturation, they

are expected to have more faithful appearance than other tone mapped versions.

Figure 4.3 illustrates the comparison on the HDR images “Frontier” and “HDR

Mark”. Those two examples are relatively dark scenes in both outdoor and indoor

environments. As we can see, the tone mapped images selected by VSDP share

similar appearance with reference images, while the images selected from TMQI are

apparently too bright to faithfully reproduce these two scenes. And in Figure 4.4, we

demonstrate the comparison on the HDR images “Lab Booth” and “Blooming Gorse

(1)”, where they depict an indoor moderate scene and an outdoor relatively bright

scene respectively. VSDP yields consistently reliable predictions while TMQI does
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not. Using the no-reference measure of statistical naturalness, TMQI cannot have

accurate quality prediction except for the scenes with “average” brightness and con-

trast, making it not applicable for tone mapping optimization. A more comprehensive

comparison of the quality metrics is provided in Chapter 5.

4.3 Perceptual Distortion Predictor

Although visual saliency has been employed in VSDP for quality evaluation, it is by

no means the only image feature that can affect the perceived quality of tone mapped

images, and other image features should be considered as well for more thorough

evaluation. To do that, we further introduce a feature-based quality metric called

perceptual distortion prediction (PDP) [38, 32], which extends the usage of virtual

photograph based algorithm for multiple image features and incorporates them for

the quality assessment.

In order to understand the perceived quality of tone mapped images to human

observers, Drago et al. [22] conducted a series of psychophysical experiments, which

found that subjective preference is most related to the apparent naturalness (the

degree of resembling realistic scenes) and the apparent level of detail (the visibility

of scene content). Also, in the work of Ledda et al. [55], the perceived quality of tone

mapped images is measured in terms of overall similarity and detail reproduction.

These perceptual studies [22, 55] suggest that the perceptual quality of tone mapped

images can be explained with the global fidelity to the original HDR images and

preservation of local detail.

In the quality metric, we use the feature-based measures, including brightness

distortion, visual saliency distortion, and detail distortion in light and dark areas,

to estimate the perceived image quality of tone mapped images. The brightness

distortion and visual saliency distortion are related to the reproduction of perceived

luminance and regions of interest, and they are used to measure the global fidelity to

original HDR scenes. Due to the truncation of luminance during tone mapping, detail

reproduction is mainly an issue in relatively light and dark areas [15]. Consequently,

the detail distortion in light and dark areas are incorporated for the measurement of

local detail preservation.

The framework of the perceptual distortion prediction is illustrated in Figure 4.5.
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Figure 4.5: The framework of Perceptual Distortion Predictor

The quality metric takes an HDR image and a tone mapped image as the inputs

and generate a distortion score for quality prediction. First of all, we take virtual

photographs from the HDR scene, and analyze image features using the virtual pho-

tography sequence. After that, with the image features of both the HDR reference

image and LDR test image, the quality of tone mapped images is assessed by com-

bining the feature-based measures, including brightness distortion, visual saliency

distortion, and detail distortion in light and dark areas.

4.3.1 Taking Virtual Photographs

We first employ the virtual photograph based algorithm for visual saliency analysis on

HDR images. The virtual photographs bridge the gap of dynamic ranges for feature

analysis, which enables the measure of feature distortion between HDR images and

tone mapped images. In the quality metric, we use the virtual photograph sequence

taken from HDR images to analyze multiple image features, including both global

and local ones.

As described in Chapter 3, we calibrate HDR scenes with the key of a scene,

and then take virtual photographs with the transfer curve from modern photography.

We take a sequence of 11 virtual photographs from HDR images with exposure time
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Figure 4.6: Transfer curves and virtual photographs of the HDR image “Tree”. Upper
row: the transfer curves with exposure time 1/8 (green), 1 (blue), and 8 (red). Lower
row: virtual photographs with exposure time 1/8, 1, and 8 respectively. The HDR
image is from Industrial Light & Magic.

Δt ∈ {1/30, 1/15, 1/8, 1/4, 1/2, 1, 2, 4, 8, 15, 30}. Examples of the curves and the

virtual photographs are demonstrated in Figure 4.6. The figure on the upper shows

the histogram and transfer curves with three different exposure settings. The other

three images are the virtual photographs taken with the respective transfer curves.

It is worth noting that the quality metric makes the quality prediction based on the

distortion in image features and the similarity to the transfer curves cannot guarantee

good quality of tone mapped images (see Appendix A for evidence).
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4.3.2 Brightness Distortion

Brightness represents the visual perception of human beings for a particular lumi-

nance. In our quality metric, we aim to measure the overall brightness of HDR images

as a quantity within the standard dynamic range, so a bright daylight scene and a

dim night scene can be well distinguished. Similar overall brightness indicates faithful

reproduction of illumination conditions, which can be crucial to the understanding of

original HDR scenes.

Since the HDR images are calibrated with the key of a scene that correlates with

the illumination of the original images, the virtual photograph taken without any ex-

posure adjustment tends to produce more faithful brightness than others. Therefore,

we estimate the brightness of an HDR image BH as the statistical average value of the

virtual photograph that is directly generated from calibrated data (Δt = 1). Given a

tone mapped image with average value BL, the brightness distortion Bdst is defined

as the absolute difference

Bdst = |BH − BL| . (4.3)

4.3.3 Visual Saliency Distortion

Visual saliency predicts the regions of interest that can attract human visual attention

by their discriminative visual features from surrounding environment. In the problem

of HDR tone mapping, consistency in visual saliency can ensure the regions of interest

of HDR scenes are exhibited with accurate contrast when displayed with low dynamic

ranges, which in turn produces an overall faithful impression [35].

As with the visual saliency distortion predictor (VSDP) [34, 35], we calculate the

bottom-up visual saliency of virtual photographs with Itti and Koch’s visual attention

model [46], and combine the saliency maps into a unified map for HDR images by

calculating their weighted average. The weights are scalar values based on the well-

exposedness of virtual photographs, which decrease with an increasing degree of over-

and under-exposure. The weight of a virtual photograph with exposure time Δt is

defined as exp(−(log2 Δt)2/2σ2) where σ = 1.2. With the saliency map of HDR image

SH(x, y) and that of tone mapped image SL(x, y), the visual saliency distortion Sdst is

calculated as the Kullback-Leibler divergence between the saliency maps, which has

been described in equation 4.2.
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Figure 4.7: Illustration of weight maps of virtual photographs for detail analysis. The
HDR image is from Industrial Light & Magic.

4.3.4 Detail Distortion in Light and Dark Areas

Preserving local detail during tone mapping is one of the most important concerns in

quality evaluation [22, 55, 15] and algorithm design [24, 27, 5, 85]. Detail reproduction

is mainly an issue in light and dark areas because the truncation of luminance in these

areas can cause detail loss [15].

We calculate detail maps of virtual photographs with the Laplacian responses

to high frequency detail, and then combine the detail maps into a unified map for

HDR images. Since detail belongs to local features, a weight map will be generated

for each virtual photograph based on the well-exposedness of pixel values. In our

implementation, the weight function exp(−(p−M)2/0.08) defined in [69] for exposure

fusion is adopted, where p denotes the normalized values and M denotes middle grey

in sRGB colour space. The function is applied for the three colour channels separately,

and the results are multiplied to yield the weight of each pixel. Figure 4.7 illustrates

the weight maps for the virtual photograph sequence with increasing exposures. We

calculate the weighted average along each pixel to fuse the detail maps. The detail

distortion in light areas Dl
dst and dark areas Dd

dst are computed as
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Figure 4.8: Weight maps that represent light (left) and dark (right) areas. The HDR
image is from Industrial Light & Magic.

Dl
dst =

√∑
x,y

(DH(x, y)−DL(x, y))
2 Wl(x, y)

Dd
dst =

√∑
x,y

(DH(x, y)−DL(x, y))
2 Wd(x, y) ,

where DH(x, y) and DL(x, y) are the detail maps of the HDR and tone mapped

images, and Wl and Wd are weight maps that represent light and dark areas in the

HDR scene (illustrated in Figure 4.8). We first estimate the weight maps according to

the cumulative probability density of luminance. Then, we calculate the log average

Lav and the weighted log average using the estimated weight maps of bright and

dark areas Ll
av and Ld

av, and further adjust the weight maps by multiplying strength

factors θ and φ, where θ =
(
(Ll

av − Lav)/(L
d
av − Lav)

)2
, and φ = 1/θ, which means

that higher weights will be assigned to the bright or dark areas with more conspicuous

luminance (higher degree of being bright or dark).

4.3.5 Overall Perceptual Distortion

For the measure of overall distortion, we combine the normalized distortion measures

together and assign a single quality score for each tone mapped image. Since Bdst

is already within the range of [0, 1], we only need to address Sdst, D
l
dst, and Dd

dst.

Because it is difficult to estimated outside boundary of distortion values, we adopt

the scaling function f(x) = x/(x + c) to compress the large margin values, where
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c is a parameter that can be estimated from the distribution of quality predictions.

By applying the feature-based measures on 160 image pairs generated from sixteen

HDR images and ten TMOs, we determine the parameters to ensure similar standard

deviation for all the distortion measures. In our implementation, c is set to 10 for

visual saliency distortion and 20 for detail distortion. With the normalized distortion

measures, the overall perceptual distortion is calculated as

Odst = w1Bdst + w2Sdst + w3D
l
dst + w4D

d
dst , (4.4)

where wi, i ∈ {1, 2, 3, 4}, denote the weights of brightness distortion, visual saliency

distortion, and detail distortion in light and dark areas, respectively. Without fur-

ther evidence that describes the interaction of feature-based measures for quality

assessment, we assign the same weights 0.25 to different quality measures by em-

phasizing their equal importance. A similar pooling strategy have been adopted in

TMQI-II [61].

4.3.6 Experimental Results

We test the proposed quality metric on a broad range of HDR scenes and tone mapped

images from different TMOs and parameter settings. In the test cases, we confirmed

that the common artifacts of tone mapped images that lead to quality reduction can

be well predicted by the feature-based measures.

Figure 4.9 illustrates the brightness artifacts which happen frequently during tone

mapping. In this example, the tone mapped images (middle and right) are appar-

ently either too dark or bright to depict the daylight scene, and the artifacts can

be detected by the measure of brightness distortion. Figure 4.10 shows example of

contrast artifacts of tone mapped images. These artifacts are usually caused by an

inappropriate operation of local adaption, and they may cause structural changes,

making the tone mapped images appear “unreal” or “unnatural”. As shown in the

figure, the tone mapped image with relatively lower visual saliency distortion (left)

tends to have more faithful and natural appearance than others. An example of detail

artifacts is provided in Figure 4.11. Compared with the left tone mapped images, the

other two images (middle and right) suffer from detail loss in either light or dark

regions (the color charts inside and outside of the box), and the perceptual difference
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Brightness Distortion: 0.0409 Brightness Distortion: 0.2907 Brightness Distortion: 0.1787

Figure 4.9: Image quality assessment using brightness distortion on the HDR image
“C08”. The images are generated from various TMOs with some manipulation of
parameter settings. The HDR image is from H. Nemeto et al. [76].

can be predicted by corresponding detail distortion measures. For instance, because

of over and under-exposure in light and dark areas respectively, the middle image has

higher distortion values in these areas.

These examples give a sense of how the distortion measure operates. For a system-

atic validation, we compare the objective quality assessment results with subjective

evaluation data. The experiment is carried out with the subject-rated image database

introduced by Yeganeh and Wang [108], which is the largest database for the evalu-

ation of objective quality metrics of tone mapped images. The database consists of

15 image sets and 120 tone mapped images with subjective rankings from 20 human

observers. The tone mapped images are generated using five TMOs developed by

Reinhard et al [82], Drago et al. [23], Durand and Dorsey [24], Mantiuk et al. [64],

and Pattanaik et al. [79], and three built-in operators in Adobe Photoshop, namely

“Exposure and Gamma”, “Equalize Histogram”, and “Local Adaption”. In each test,

the subjects are asked to rank the 8 tone mapped images in each image set from the

best to the worst, and the subjective ranking for each image is calculated as the

mean ranking score of subjects. To quantify the correlation between the objective

and subjective ranks, two statistical metrics: Spearman’s rank correlation coefficient

(SRCC) [71] and Kendall’s rank correlation coefficient (KRCC) [48], have been used.

The metrics are non-parametric measures of ranking correlation whose value increases

with the increasing similarity of ranks (the value is 1 for identical ranks).

Spearman’s rank correlation coefficient (SRCC) is defined as follows,

SRCC = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)
, (4.5)

where N represents the numbers of observations in the ranks, and di denotes the
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Saliency Distortion: 0.0154 Saliency Distortion: 0.2327 Saliency Distortion: 0.1700

Figure 4.10: Image quality assessment using visual saliency distortion on the HDR
image “C10”. The images are generated from various TMOs with some manipulation
of parameter settings. The HDR image is from H. Nemeto et al. [76].

Detail Distortion in Light
Areas: 0.4479

Detail Distortion in Dark
Areas: 0.2596

Detail Distortion in Light
Areas: 0.6195

Detail Distortion in Dark
Areas: 0.3415

Detail Distortion in Light
Areas: 0.4842

Detail Distortion in Dark
Areas: 0.2840

Figure 4.11: Image quality assessment using detail distortion in light and dark areas
on the HDR image “Test Chart”. The images are generated from various TMOs
with some manipulation of parameter settings. The HDR image is from Empa Media
Technology.

difference between two ranks of each observation.

Kendall’s rank correlation coefficient (KRCC) is defined as follows,

KRCC =
Nc −Nd

N(N − 1)/2
. (4.6)

where Nc and Nd are the number of concordant pairs (the pairs with consistent rank

order) and discordant pairs (the pairs with inconsistent rank order) respectively.

In the experiment, we generate the rankings from the objective quality metrics for

all fifteen image sets, and then compare the generated objective predictions with the

subjective results provided in the database, where the similarity between objective

and subjective ranks is measured in terms of SRCC and KRCC. The alternative full-

reference methods are used as the benchmark for comparison, including the visual

saliency distortion predictor (VSDP) [35], and the improved variant of Tone Mapped

Image Quality Index (TMQI-II) [61], whose implementation is provided by the original
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Table 4.1: Comparison with the alternative objective quality metrics (VSDP and
TMQI-II) and the mean behavior of individual subject.

Test data
SRCC KRCC

VSDP TMQI-II Subject VSDP TMQI-II Subject
Positive Ranks 10 12 10 10 9 9
Negative Ranks 2 1 5 2 1 6

Ties 3 2 0 3 5 0
p Value 0.020 0.002 0.363 0.016 0.010 0.650

authors. We do not use Aydın et al.’s method [7] because it is not obvious how the

quality maps could be condensed into a single score for rank prediction. In addition to

the alternative quality metrics, the mean behaviour of subjects is also incorporated for

comparison (the benchmark is provided in the original database). To generate that,

the subjective ranks from individual subjects are compared with the subjective ranks,

and the mean performance of all individual subjects is computed accordingly [108].

Table 4.2 lists the performance of VSDP, the performance of TMQI-II, the mean

performance of individual subjects, and the performance of our method in terms of

both SRCC and KRCC. Based on the average values, our method produces better

results than the alternative metrics and the mean behavior of individual subjects.

To further analyze the difference, we carry out a paired test between the perfor-

mance of our method and those of the other approaches. A Wilcoxon signed-rank test

is used to compare the matched samples and assess whether they are significantly dif-

ferent from each other. Table 4.1 shows the outcomes of the paired test, including the

positive ranks (the number of image sets in which our method performs better), the

negative ranks (the number of image sets in which the alternatives perform better),

the ties (the number of image sets with the same performance), and the asymptotic

significance (two-tailed), which is also known as p value. If the p value is less than

0.05, the test groups are deemed to have a statistically significant difference. It can be

seen that, according to both SRCC and KRCC, our method can perform significantly

better than both VSDP and TMQI-II, and it performs similarly with mean behavior

of individual subjects.

Finally, Figure 4.12 illustrates the performance in terms of SRCC of the indi-

vidual feature-based measures and the overall perceptual measure. As we can see,
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Figure 4.12: SRCC performance of the distortions in various image features and the
overall perceptual distortion.

an individual feature-based measure cannot guarantee good quality predictions for

different HDR images, and the overall perceptual measure leverages the strengths of

each considered measure for better performance.
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Table 4.2: Performance evaluation using subjective database [108]. For the 15 image sets in the database, the performance
of VSDP, the performance of TMQI-II, the mean performance of individual subject, and the performance of our method are
listed in terms of both SRCC and KRCC.

Image Set
SRCC KRCC

VSDP TMQI-II Subject Our Method VSDP TMQI-II Subject Our Method

1 0.5952 0.9048 0.9071 0.9048 0.4286 0.7857 0.8071 0.7857
2 0.3810 0.5000 0.8251 0.5714 0.2857 0.2857 0.7269 0.4286
3 0.7619 0.6905 0.8797 0.7619 0.5714 0.5714 0.7642 0.5714
4 0.6667 0.6905 0.9130 0.6667 0.4286 0.5000 0.8107 0.4286
5 0.8810 0.6667 0.6000 0.8333 0.7857 0.5000 0.4714 0.7143
6 0.9286 0.9762 0.7630 0.9762 0.8571 0.9286 0.6464 0.9286
7 0.9286 0.8333 0.8285 0.9286 0.8571 0.7143 0.7250 0.8571
8 0.5238 0.6667 0.8023 0.7619 0.2857 0.5000 0.7000 0.5714
9 0.6429 0.8095 0.7857 0.9286 0.5000 0.7143 0.6607 0.8571
10 0.9048 0.9048 0.9276 0.9524 0.7857 0.7857 0.8418 0.8571
11 0.8571 0.8333 0.8523 0.8810 0.6429 0.7143 0.7428 0.7143
12 0.9524 0.5952 0.7595 0.8571 0.8571 0.4286 0.6250 0.7143
13 0.3452 0.7500 0.6970 0.7738 0.1786 0.6071 0.5637 0.6071
14 0.6667 0.7619 0.7702 0.8333 0.4286 0.5714 0.6214 0.6429
15 0.9524 0.9048 0.9035 1.0000 0.8571 0.7857 0.8142 1.0000

average 0.7325 0.7659 0.8143 0.8421 0.5833 0.6262 0.7014 0.7119
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4.4 Conclusion and Discussion

Using virtual photograph based analysis for feature extraction and comparison of im-

age pairs with different dynamic ranges, we have proposed two full-reference quality

metrics for tone mapped images. The fundamental principle of our metric is that the

quality evaluation of tone mapped images should focus on the reproduction of impor-

tant image features that are related to the quality as perceived by human observers.

Subjective and numerical experiments have been used to verify the effectiveness of

our method and its benefits over prior works. The feature-based quality metrics can

be applied for comparison of TMOs and automated tone mapping optimization.

The proposed feature-based quality metrics suffer from some limitations which

could be addressed or improved in the future. First of all, the quality metrics mainly

focus on the luminance channel, making it less effective to measure color reproduc-

tion. The chromatic information has been used for visual saliency analysis, but the

operation is limited to the central-surround difference across several color pairs. Con-

sidering most HDR scenes are captured in color, we would like to further investigate

the quality assessment of color reproduction in the future, and incorporate the mea-

sures in the current quality metrics for more comprehensive evaluation. Secondly,

in the absence of further evidence, the perceptual quality predictor adopts a rather

simple pooling strategy by emphasizing the same importance of different quality mea-

sures. It would be useful to perform a deeper study involving the relationship of the

feature-based measures and how they determine the image quality of any particular

HDR image in finer detail.



Chapter 5

Tone Mapping Optimization

5.1 Introduction

A large number of TMOs have been proposed and many of them depend on user

parameters that impact the quality of the tone mapped images. Without human

guidance, it is difficult to select an appropriate operator and parameter settings for a

particular HDR image. The development of objective image quality measures for tone

mapped images opens up the possibility of generating optimized tone mapped images

without the need for user input. In this chapter, we employ the proposed feature-

based quality metrics to solve the tone mapping optimization problems including

parameter tuning of TMOs [34, 35] and blended tone mapping [36]. The tone map-

ping optimization algorithms are implemented with an evolutionary strategy which

iteratively searches for the optimal solution in the parameter space of operators.

5.2 Parameter Tuning of Tone Mapping

Many TMOs provide several parameters for further adjustment [86]. Since the opti-

mal parameters settings could be image-dependent, the default settings cannot work

well for any arbitrary HDR image, and manual adjustments are required to achieve

satisfying results. However, parameter tweaking is a trial-and-error process that can

be tedious and time-consuming even for knowledgeable users with complete under-

standing of the parameters.

A number of methods have been proposed with the attempts to fine-tune param-

eters. Based on subjective experiments, Yoshida et al. [109] determine two generic

parameters for a global operator that can be partly estimated from image charac-

teristics. Also, by minimizing the visible contrast distortion between HDR images

and tone-mapped images displayed on a particular display device, Mantiuk et al. [65]

68
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address the tone mapping problem as an optimization problem in which a set of pa-

rameters that define a linear tone-curve is automatically adjusted. Nevertheless, these

methods are designed for particular parameters, and they cannot easily be adapted

for arbitrary parameters of other operators.

We seek to provide a universal solution for parameter tuning of TMOs without

the requirement for user interaction. Based on the proposed visual saliency distortion

predictor (VSDP), we employ the bottom-up visual saliency to measure image quality

for parameter tuning [34, 35]. If tone mapped poorly, regions of interest in HDR

images predicted by visual saliency may exhibit inaccurate contrast when displayed

with low dynamic range and thus appear more or less salient. Visual saliency based

parameter tuning helps to ensure that regions of interest will be reproduced with more

accurate contrast. With the visual saliency distortion calculated by VSDP, parameter

tuning can be treated as an optimization problem. We use an evolutionary algorithm

to iteratively find parameter settings to minimize distortion.

5.2.1 Search Space

The search space would be the parameter space of the selected operator. We choose

three TMOs are selected to validate the parameter tuning algorithm: Schlick’s opera-

tor [88], Ashikhmin’s operator [5], and Reinhard and Devlin’s operator [83]. Schlick’s

operator is a simple, yet effective tone mapping algorithm that can be used to generate

plausible results by tuning user parameters. Ashikhmin’s operator tends to preserve

local details during tone mapping with user parameters provided for further adjust-

ment. Similarly, Reinhard and Devlin’s operator is derived from the photoreceptor

mechanisms of the human visual system, and it provides user parameters for the

control of overall intensity, as well as light and chromatic adaptation. Ashikhmin’s

operator is local, while the other two operators are global. The three TMOs are

commonly used for subjective evaluation [15, 10], interactive tone mapping [16], and

in end user tools, such as Luminance HDR1.

We use the implementation of the operators provided by Reinhard et al. [86].

Table 5.1 lists the default settings, ranges, and short descriptions of the parame-

ters. The default value for gamma correction and the pre-scale factor are from the

1qtpfsgui.sourceforge.net
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Table 5.1: Default parameter values and ranges of TMOs.

Parameter Default Range Description
Schlick
n 0.18 [0.0, 1.0] just noticeable difference
γ 2.0 [1.5, 2.5] gamma correction
Ashikhmin
log10(p) -1.0 [−2.0,−4.0] pre-scale factor
t 0.5 [0.0, 1.0] threshold for scale
γ 2.0 [1.5, 2.5] gamma correction
Reinhard and Devlin
f 0.0 [−8.0, 8.0] scale factor
m *1 [0.3, 1.0] exponent for semi-saturation
a 1.0 [0.0, 1.0] light adaption
c 0.0 [0.0, 1.0] chromatic adaption
γ 2.0 [1.5, 2.5] gamma correction

implementation, and the default values for other parameters are derived from the

recommendations of the original papers. It is worth mentioning that we have the ex-

ponent for semi-saturation and chromatic adaption parameter remain unchanged for

Reinhard and Devlin’s operator. The exponent for semi-saturation is not included in

the optimization as its value can be well estimated by an algorithm recommended in

the original paper. We found out adding the exponent into parameter tuning cannot

contribute to extra gain in visual saliency distortion. As for the chromatic adaption

parameter, we use the default value because the measure of visual saliency mainly

focuses on luminance channel, making it less effective for the color related parameters.

5.2.2 Minimization of Visual Saliency Distortion

The optimization method used for minimizing visual saliency distortion is a (1 + λ)

evolution strategy (see Chapter 2 for the related terminology). Evolution strate-

gies (ESs) are a sub-class of nature-inspired search methods which have mutation,

recombination, and selection applied for the population of individuals that contain

candidate solutions. They are mostly useful for optimization problems where deriva-

tive information is not available and relatively robust with regard to the ruggedness

1The default value of m is estimated by an algorithm presented by Reinhard et al. [86].
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Algorithm 2 Parameter Tuning of TMOs
Set the generation counter t = 0;

Initialize the strategy parameters λ, σ;

Create the population;

Conduct tone mapping with the operator;

Calculate visual saliency distortion with VSDP;

while iteration number is smaller than the threshold do

for i ∈ {1, ..., λ} do

Generate offspring with mutation;

Conduct tone mapping with the operator;

Calculate visual saliency distortion with VSDP;

Update the population with generated offspring;

Select the individual with the least saliency distortion;

Update the step size σ;

t = t+ 1;

Return the optimal result;

of the objective function. We adopt the ESs here because the distortion measure of

tone mapped images can only be calculated through application of TMOs and no

convenient mathematical assumptions regarding the objective can be made. More-

over, ESs are relatively easy to implement and they are often capable of generating

substantial improvements in a small number of iterations.

ESs use real-value vectors to encode an individual that represents candidate so-

lution. For the problem of parameter tuning, the candidate solutions x ∈ R
n are

comprised of parameters of a TMO with their ranges normalized to a unit width. In

iteration t of the algorithm, λ > 1 offspring are generated from the parent x(t) as

y
(t)
i = x(t) + σ(t)z

(t)
i i = 1, . . . , λ (5.1)

where σ(t) denotes the step size and z
(t)
i ∈ R

n is a standard normally distributed

mutation vector. The step size σ(t) controls the expected distance of the offspring from

their parent and is initialized to 1/3. Out-of-range values of variables are clamped to

[0, 1]. Then, the candidate solution that leads to minimal visual saliency distortion is

selected and adopted as the parent x(t+1) for the next iteration. If the parent candidate

solution is superior to all of its offspring, then it is not replaced in iteration t. As with
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Chisholm et al. [16], we update the step size in subsequent iterations where the parent

is superior to all of its offspring by multiplying it with an adaption factor s which is

set to 0.8. The evolutionary algorithm typically requires relatively few iterations to

obtain a result with significantly reduced visual saliency distortion. The optimization

process is described in Algorithm 2.

5.2.3 Experimental Results

In our implementation, the number λ of offspring in each iteration is set to 8, and the

number of iterations to 7. Based on preliminary tests, these settings can yield good

results for the tested HDR images. Unless indicated otherwise, the initial values of

user parameters are randomly selected from within their ranges. The HDR images

in the database provided by Fairchild [26] are used as test images. The database

contains 105 HDR images with a broad range of luminance values, as well as the

corresponding reference images manually tone mapped for appearance.

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 demonstrate the results of our parameter tun-

ing algorithm on five HDR images. Compared with the images tone mapped with

default parameter settings, our results generally have closer visual appearance to

the reference images. An example of the evolution of saliency distortion is shown

in Figure 5.1, demonstrating that our approach can reduce the saliency distortion

significantly within a small number of iterations. However, we do notice differences

between the reference images and the tone mapped images with optimized parame-

ter settings. For manual tone mapping, there is flexibility for manipulation, such as

changing the tone mapping curve directly to show more details, and adjusting the

saturation for a more vivid look. In parameter tuning, we can only tune the user pa-

rameters provided by the original authors, and the results suffer from the limitations

of the particular TMO used. Therefore, parameter tuning can generate tone mapped

images that have similar visual appearance with reference images, but it cannot yield

identical results in most cases.

The computational cost of our algorithm is dominated by the cost of tone map-

ping. For the computation of saliency distortion, our MATLAB implementation

takes around 0.5 seconds for a 1028×577 pixel image running on an Intel Quad-Core

2.66GHz CPU with 4 GB of RAM. As each iteration requires several independent



73

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7

Sa
lie

nc
y 

di
st

or
tio

n

Generation

Schlick
Ashikhmin

Reinhard and Devlin

Figure 5.1: Evolution of visual saliency distortion in sample parameter tuning runs
for “Bandon Sunset (1)”.

applications of the TMO with different parameter settings, multiple cores can easily

be exploited.

5.2.4 Systematic Analysis

For a thorough evaluation, we apply the parameter tuning algorithm to all images in

the database [26]. Since reference images are available, the performance of optimized

and default parameter settings can be quantified with full-reference image quality as-

sessment metrics. Two widely used metrics are chosen to evaluate the performance:

peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index [103, 101].

PSNR is a quantity related to mean squared error (MSE), which measures the aver-

age squared luminance difference between the reference and test images. The SSIM

index by Wang et al. [103] has been proposed as an alternative approach for quality

assessment of image similarity. The SSIM index is able to capture the distortion of

image structure, which is asserted to be crucial for human visual perception [103].

In our test, we adopt both saliency distortion and TMQI in the optimization frame-

work to search for optimal results. Then, by comparing with the reference images,

the performance of the optimized and default parameter settings are calculated in

terms of PSNR and SSIM index. Considering the stochastic nature of the search, we
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Table 5.2: Comparison between visual saliency based optimized parameter settings
and default parameter settings.

TMO
PSNR SSIM

Optimized Default p Value Optimized Default p Value

Schlick 56 49 0.315 61 44 0.001
Ashikhmin 105 0 0.000 86 19 0.000

Reinhard & Devlin 105 0 0.000 82 23 0.000

cannot guarantee the exact same output from each parameter tuning process. We

thus conduct five independent runs for each image in the database.

Three experiments2 are carried out to analyze the performance of the proposed

approach and compare VSDP with TMQI for parameter tuning. In the first one, we

conduct a paired difference test between the average performance of optimized param-

eter settings and the performance of default settings to measure the improvement of

saliency based parameter tuning. A Wilcoxon signed-rank test is adopted to compare

the matched samples and assess whether they differ from each other. Table 5.2 shows

the numbers of images for which optimized parameter settings perform better than

default settings and vice versa, and the asymptotic significance (two-tailed), which is

also known as p value. If the p value is less than 0.05, the test groups are deemed

to have statistically significant difference. According to PSNR, optimized parameter

settings perform significantly better than default parameter settings for Ashikhmin’s

and Reinhard and Devlin’s operators, but not for Schlick’s operator. Based on the

SSIM index, optimized parameter settings perform better than default settings for all

three operators.

In the second experiment, we perform a comparison for various TMOs using a

Friedman test. The Friedman test ranks the performance of operators for each image,

and calculates the mean ranks to detect differences. The mean ranks of each operator

and the p value are given in Table 5.3, which indicates that the ranks of operators can

be greatly changed with parameter tuning. Since higher values of mean ranks imply

better performance, Schlick’s operator is preferable to the other two operators for

2Some other experiments are provided in Appendix B. They are used to prove that the virtual
photograph based method used in parameter optimization cannot be simply replaced by computing
visual saliency on log-HDR values.
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Table 5.3: Comparison among TMOs.

TMO
PSNR SSIM

Optimized Default Optimized Default

Schlick 1.79 3.00 2.14 2.36
Ashikhmin 2.21 1.30 1.94 1.58

Reinhard & Devlin 2.00 1.70 1.91 2.06

p value 0.010 0.000 0.196 0.000

Table 5.4: Comparison between VSDP and TMQI for parameter tuning.

TMO
PSNR SSIM

VSDP TMQI Ties p Value VSDP TMQI Ties p Value

Schlick 49 24 32 0.003 43 26 36 0.020
Ashikhmin 42 17 46 0.001 41 15 49 0.001

Reinhard & Devlin 45 32 28 0.138 37 36 32 0.907

default parameter settings in terms of both PSNR and SSIM index. However, after

parameter tuning, those two operators can exhibit performance similar to Schlick’s

operator in terms of SSIM index, and even better results in terms of PSNR. Some

current assessments of TMOs only consider default parameter settings [51, 55], and

different rankings might be arrived at by considering the potential of operators for

parameter tuning.

The third experiment is a comparison between parameter tuning based on VSDP

and parameter tuning based on TMQI. Rather than simply averaging the perfor-

mance, we use ten samples for each image in a Mann-Whitney U test to determine

if the two sets of data are significantly different from each other. Then, the output

of the Mann-Whitney U test, including both wins and ties, is further analyzed with

a Wilcoxon signed-rank test for measuring the overall difference. Table 5.4 lists the

numbers of images, for which VSDP performs better than TMQI, TMQI performs

better than VSDP, and they have similar performance, as well as the p values. For all

three TMOs, VSDP results in visual appearance closer to the reference images than

TMQI for a greater number of images. The difference is statistically significant for

Schlick’s and Ashikhmin’s operators.
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Reference image

Schlick, default

Saliency Distortion: 0.9740

Ashikhmin, default

Saliency Distortion: 2.2195

Reinhard and Devlin, default

Saliency Distortion: 0.4871

Schlick, optimized

Saliency Distortion: 0.3101

Ashikhmin, optimized

Saliency Distortion: 0.2676

Reinhard and Devlin, optimized

Saliency Distortion: 0.2406

Figure 5.2: Results of the parameter tuning algorithm on HDR image “Bandon Sun-
set (1)”. Shown are the reference image tone mapped with manual manipulation
(provided at [26]), images tone mapped with Schlick’s, Ashikhmin’s, and Reinhard
and Devlin’s operators and default parameter settings, and images tone mapped with
optimized parameter settings. The HDR image is from Mark D. Fairchild’s HDR
Photographic Survey and c© 2006-2007 Mark D. Fairchild.
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Reference image

Schlick, default

Saliency Distortion: 1.5237

Ashikhmin, default

Saliency Distortion: 1.2039

Reinhard and Devlin, default

Saliency Distortion: 0.6871

Schlick, optimized

Saliency Distortion: 0.3948

Ashikhmin, optimized

Saliency Distortion: 0.3905

Reinhard and Devlin, optimized

Saliency Distortion: 0.3303

Figure 5.3: Results of the parameter tuning algorithm on HDR image “Redwood
Sunset”. Shown are the reference image tone mapped with manual manipulation
(provided at [26]), images tone mapped with Schlick’s, Ashikhmin’s, and Reinhard
and Devlin’s operators and default parameter settings, and images tone mapped with
optimized parameter settings. The HDR image is from Mark D. Fairchild’s HDR
Photographic Survey and c© 2006-2007 Mark D. Fairchild.
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Reference image

Schlick, default

Saliency Distortion: 0.4423

Ashikhmin, default

Saliency Distortion: 3.7844

Reinhard and Devlin, default

Saliency Distortion: 1.3999

Schlick, optimized

Saliency Distortion: 0.3366

Ashikhmin, optimized

Saliency Distortion: 0.4608

Reinhard and Devlin, optimized

Saliency Distortion: 0.2617

Figure 5.4: Results of the parameter tuning algorithm on HDR image “Luxo Double
Checker”. Shown are the reference image tone mapped with manual manipulation
(provided at [26]), images tone mapped with Schlick’s, Ashikhmin’s, and Reinhard
and Devlin’s operators and default parameter settings, and images tone mapped with
optimized parameter settings. The HDR image is from Mark D. Fairchild’s HDR
Photographic Survey and c© 2006-2007 Mark D. Fairchild.
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Reference image

Schlick, default

Saliency Distortion: 0.8270

Ashikhmin, default

Saliency Distortion: 1.3593

Reinhard and Devlin, default

Saliency Distortion: 1.1225

Schlick, optimized

Saliency Distortion: 0.4416

Ashikhmin, optimized

Saliency Distortion: 0.5996

Reinhard and Devlin, optimized

Saliency Distortion: 0.2636

Figure 5.5: Results of the parameter tuning algorithm on HDR image “Ahwahnee
Great Lounge”. Shown are the reference image tone mapped with manual manipula-
tion (provided at [26]), images tone mapped with Schlick’s, Ashikhmin’s, and Rein-
hard and Devlin’s operators and default parameter settings, and images tone mapped
with optimized parameter settings. The HDR image is from Mark D. Fairchild’s HDR
Photographic Survey and c© 2006-2007 Mark D. Fairchild.
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Reference image

Schlick,
default

Saliency Distortion:
0.2419

Schlick,
optimized

Saliency Distortion:
0.1937

Ashikhmin,
default

Saliency Distortion:
1.2571

Ashikhmin,
optimized

Saliency Distortion:
0.2155

Reinhard and
Devlin, default

Saliency Distortion:
0.5940

Reinhard and
Devlin, optimized

Saliency Distortion:
0.2026

Figure 5.6: Results of the parameter tuning algorithm on HDR image “Round Barn
Inside”. Shown are the reference image tone mapped with manual manipulation
(provided at [26]), images tone mapped with Schlick’s, Ashikhmin’s, and Reinhard
and Devlin’s operators and default parameter settings, and images tone mapped with
optimized parameter settings. The HDR image is from Mark D. Fairchild’s HDR
Photographic Survey and c© 2006-2007 Mark D. Fairchild.
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5.3 Blended Tone Mapping

During the last two decades, a large number of TMOs have been proposed. How-

ever, the performance of TMOs are image-dependent [55, 52], and there is no single

“best” operator that yields optimal results under all conditions. With a limited pa-

rameter space for tone mapping, a single operator could be insufficient to generate

satisfying results for all HDR images. The limitation of an individual operator is

demonstrated in Figures 5.7 and 5.8 using Schlick’s operator [88] and Kuang et al.’s

operator (iCAM06) [51]. As shown in the first example, Schlick’s operator [88] can

only provide a limited solution space and it does not offer good detail reproduction in

both bright and dark areas at the same time. Even the best image that is subjectively

selected fails to maintain the details in the relatively bright areas such as the distant

woods. As for the second example, iCAM06 [51] does not grant sufficient flexibility

to reproduce the luminance of the original HDR scene, and the subjectively-selected

best image still appears too dim especially in the interior of the room, which can

cause inaccurate perception for human observers.

By searching for the optimal results in a larger solution space, blending images

from a number of commonly-used operators can overcome the limitations of each

single operator. The process is referred to as blended tone mapping in the current

context. Blended tone mapping has the potential to achieve results that cannot be

produced by any individual operator. Chisholm et al. [16] proposed an interactive

blended tone mapping and they demonstrate that good tone mapped images can often

be obtained within a small number of iterations. With an user interface, people can

select the best image from a set of blended tone mapped images, and an evolution

strategy iteratively improves the appearance of the images until a satisfying result

is found. Their work enables rapid manual manipulation but user interaction is still

needed in the optimization process.

Objective image quality measures for tone mapped images makes it feasible to

replace manual user interaction with an automatic assessment. In this section, we

propose an automated blended tone mapping algorithm guided by the perceptual dis-

tortion predictor (PDP). The quality metric assesses tone mapped images in terms of

brightness distortion, visual saliency distortion, and detail distortion in light and dark

areas. With the quality metric, blended tone mapping can be automatically solved in
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Figure 5.7: Tone mapped images across parameter space and the subjectively-selected
best one of Schlick’s operator [88] on HDR image “Tree”. The images are generated
with parameter setting for just noticeable difference which is provided by the original
author of the operator. The HDR image is from Industrial Light & Magic.

Figure 5.8: Tone mapped images across parameter space and the subjectively-selected
best one of Kuang’s operator [51] on HDR images “Lab Windows”. The images are
generated with parameter settings of overall contrast and gamma value respectively
where the ranges are provided by the original author of the operator. The HDR image
is from Mark D. Fairchild’s HDR Photographic Survey and c© 2006-2007 Mark D.
Fairchild.

an optimization framework, where the parameters of TMOs and the weights that de-

termine the relative influence of each operator are tuned to generate images with the

least perceptual distortion. We validate the performance of the proposed algorithm

with three commonly used TMOs and a large number of test images from various

sources. There results show that the blending tone mapping algorithm can generate

visual appealing tone mapped images without the requirement of user interaction.
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5.3.1 Search Space

We select three TMOs for blended tone mapping to establish the viability of the

approach: the operators proposed by Schlick [88], Kuang et al. [51], and Drago et

al. [23]. Schlick’s operator [88] provides a simple but effective scheme for tone mapping

with a small number of user parameters. Kuang et al.’s operator [51], which is referred

to as iCAM06, incorporates an edge-preserving filter with light adaptation functions

modelled on the human visual system, and uses the modified color appearance model

for HDR images rendering. Based on the logarithmic compression of luminance that

imitates the human response to light, Drago et al.’s operator [23] introduces a bias

power function to adaptively adjust logarithmic bases for good preservation of detail

and contrast. In order to set up an efficient solution space that can produce good

images with a relatively small number of parameters, several aspects, such as the

diversity of operators that can enlarge the solution space, existence of parameters,

and computational speed, were considered for the selection of operators.

For the selected operators, iCAM06 belongs to local operators, while the others

are global operators. Any finite set of operators could be employed instead. The

implementation of iCAM06 was provided by the original authors, and the implemen-

tation of Schlick’s operator and of the operator by Drago et al. are due to Banterle [9].

The search space of blended tone mapping is composed of the parameters of TMOs

and the weights that determine the relative contributions in the blending process

and the user parameters provided by the individual TMOs. The ranges and initial

values of parameters are from the recommendations of the original papers. In order

to avoid the multiple applications of gamma correction, we do not use gamma as an

extra parameter unless it is used by the authors of the TMO. As for the weights,

they are real-valued variables within the range of 0 to 1, and the initial value is set

to 1/3. The user parameters and weights of TMOs are summarized in Table 5.2.

Altogether, the search space of blended tone mapping is thus seven-dimensional, due

to four parameters and three weights.

5.3.2 Minimization of Perceptual Distortion

Blended tone mapping is optimized with the strategy (1 + λ) − ES. Candidate

solutions x ∈ R
n are real-valued vectors that consist of the user parameters and
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Table 5.5: Search space of blended tone mapping.

Parameter Default Range Description

User Parameters

n 0.18 [0.0, 1.0] just noticeable difference

p 0.7 [0.6, 0.85] overall contrast parameter

γ 1.0 [1.0, 1.2] gamma adjustment parameter

b 0.85 (0.0, 1.0] bias parameter

Weights

w1 1/3 [0.0, 1.0] weight of Schlick’s operator

w2 1/3 [0.0, 1.0] weight of iCAM06

w3 1/3 [0.0, 1.0] weight of Drago et al.’s operator

weights of the selected operators. In iteration t, we generate λ offspring from the

parent x(t), where λ and σ are set to 10 and 0.3 respectively in our implementation.

Out-of-range values of variables are clamped to the ranges of the parameters, and

weights are normalized to sum to one after mutation. With the parameters encoded in

the candidate solutions, we apply the three operators for tone mapping and blend their

results together. The tone mapped image are blended pixel-wise with contributions

from individual operator multiplied with the normalized weight. In order to avoid

undesired artifacts, the blending process is conducted in CIELab color space that

is more perceptually uniform. Then, the perceptual distortion predictor (PDP) is

employed to calculate the quality of blended images. The candidate solution that

yields the least perceptual distortion is selected and adopted as the parent x(t+1) for

the next iteration. If the parent candidate solution is superior to all of its offspring,

then it is not replaced in iteration t. As with Chisholm et al., we update the step size

in those iterations where the parent is superior to all of its offspring by multiplying it

with 0.8. If the parent has not changed for three consecutive iterations, the process

will end and the current parent will be returned. The algorithm is demonstrated in

Algorithm 3.
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Algorithm 3 Blended Tone Mapping
Set the generation counter t = 0;

Initialize the strategy parameters λ, σ;

Create the population;

Generate tone mapped images with the operators;

Blend the images in CIELab color space;

Calculate perceptual distortion with PDP;

while Stopping condition is not fulfilled do

for i ∈ {1, ..., λ} do

Generate offspring with mutation;

Generate tone mapped images with the operators;

Blend the images in CIELab color space;

Calculate perceptual distortion with PDP;

Update the population with generated offspring;

Select the individual with the least perceptual distortion;

Update the step size σ;

t = t+ 1;

Return the optimal result;

5.3.3 Experimental Results

We have tested our blended tone mapping algorithm on a variety of HDR scenes from

difference sources, including some challenging scenes with large contrast ratios. In

all cases, our algorithm can produce good results without the requirement of user

interaction. Once again, the computational cost of our algorithm is dominated by the

cost of tone mapping. For the computation of perceptual distortion, our MATLAB

implementation takes around 0.8s for a 1024 × 768 pixel image running on an Intel

Quad-Core 2.66 GHz CPU with 4 GB of RAM.

Several examples are demonstrated in Figure 5.10. Next to each image there are

thumbnail images showing some of the exposures used to construct HDR scenes. As

we can see, our blended tone mapping algorithm is capable of combining the local

details that can only be captured in various exposures in a realistic manner, such as the

foreground grasses and background woods (First row; Tree), the texture of the stone

walls and plants (Second row; Knossos Ruins), the stained glass and tables (Second
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Figure 5.9: Evolution of blending weights in a sample run of automatic blended tone
mapping on the “Waffle House” HDR image. The HDR image is from Mark D.
Fairchild’s HDR Photographic Survey and c© 2006-2007 Mark D. Fairchild.

row; Stained Glass), the scenery outside window and items on the table (Third row;

Lab Window), and the color charts (Third row; Luoxo Double Checker). Guided

by the perceptual distortion predictor, the algorithm produces visually pleasing tone

mapped images that can appear faithful in overall impression while at same time

preserving fine details in relatively bright and dark areas.

Figure 5.9 illustrates the evolution of blending weights. As we can see, the blend-

ing operation can overcome the limitations of each single TMO, and the optimization

converges within a relatively small number of iterations. In this example, Schlick’s

operator [88] and iCAM06 [51] have much higher weights than Drago et al.’s oper-

ator [23]. Schlick’s operator [88] can provide sufficient flexibility to tune the overall

light levels, while iCAM06 [51] can well preserve the details in bright areas such as the

interior of restaurant. By combining the advantages of both operators, blended tone

mapping can contribute to an overall desirable result. The weight of Drago et al.’s

operator [23] reduces markedly in the evolutionary process. We assume it is because

the operator may cause halo artifacts for this HDR image.

Figure 5.11, 5.12, 5.13 compare our algorithm with the frequently-used TMOs

using parameters recommended by the original authors. Eight TMOs are adopted in

our experiment, including the ones published by Ward [104], Schlick [88], Larson et

al. [54], Reinhard et al. [85], Durand and Dorsey [24], Ashikhmin [85], Fattal et al.[28],

and Tumblin and Turk [95], where the first three are global operators and the others
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are local operators. Generally speaking, global operators cannot perform well for

visual details reproduction especially in light and dark areas, while local operators

may produce artifacts making the image appear unnatural. The shortcomings of

global and local operators have been well addressed by the blended tone mapping

algorithm.

As shown in Figure 5.11, the tone mapped image generated by Schlick’s operator

(First row; left) provides an overall realistic appearance but the details in bright re-

gions such as the clouds in sunset are washed out. Although the results from Reinhard

et al. and Durand and Dorsey’s operators have better preservation of the details, they

suffer from overemphasized edges (First row; right) and a non-photorealistic appear-

ance (Second row; left), which could impact the overall similarity to real world scenes.

In comparison, the clouds in sunset are rather smoothly and naturally preserved in

our result without causing any undesired artifacts (Second row; right). Figure 5.12

provides an additional example with Ward’s, Ashikhmin’s, and Fattal et al.’s opera-

tors. Our algorithm can generate realistic results with rich details in light and dark

areas while the operators cannot. The same pattern occurs in Figure 5.13. Larson

et al.’s operator loses details in the areas around street light (left) and the Tumblin

and Turk’s operator introduces “embossed” and unnatural appearances (middle). In

contrast, blended tone mapping can strike a balance between overall similarity and

detail reproduction, and yield images with appealing appearance even for challenging

scenes.
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“Tree”, and “Synagogue”

“Knossos Ruins”, and “Stained Glass”

“Lab Window”, and “Luxo Double Checker”

Figure 5.10: Tone mapped images generated by our blended tone mapping algorithm
with HDR images from various sources. The HDR image “Tree” and “Stained Glass”
are from Industrial Light & Magic, the HDR image “Synagogue” is from Dani Lischin-
ski, the HDR image “Knossos Ruins” is from EMPA Media Technology, and the HDR
image “Lab Window” and “Luxo Double Checker” are from Mark D. Fairchild.
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Schlick’s operator

Perceptual Distortion: 0.1007

Durand and Dorsey’s operator

Perceptual Distortion: 0.1853

Reinhard et al.’s operator

Perceptual Distortion: 0.1216

Blended tone mapping

Perceptual Distortion: 0.0902

Figure 5.11: Comparison of blended tone mapping with TMOs on HDR image “Swiss
Sunset”. Shown are the tone mapped images generated by Schlick’s, Reinhard et
al.’s, Durand and Dorsey’s operators, and blended tone mapping. The HDR image is
from EMPA Media Technology.
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Ward’s operator

Perceptual Distortion: 0.1626

Fattal et al.’s operator

Perceptual Distortion: 0.2004

Ashikhmin’s operator

Perceptual Distortion: 0.1452

Blended tone mapping

Perceptual Distortion: 0.1064

Figure 5.12: Comparison of blended tone mapping with TMOs on HDR image “Desk
Lamp”. Shown are the tone mapped images generated by Ward’s, Ashikhmin’s, Fattal
et al.’s operators, and blended tone mapping. The HDR image is from Martin Čad́ık.
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Larson et al.’s operator

Perceptual Distortion: 0.1580

Tumblin & Turk’s operator

Perceptual Distortion: 0.1512

Blended tone mapping

Perceptual Distortion: 0.0725

Figure 5.13: Comparison of blended tone mapping with TMOs on HDR image “Foggy
Night”. Shown are the tone mapped images generated by Ward et al.’s, and Tumblin
and Turk’s operators, and blended tone mapping. The HDR image is from Jack
Tumblin.
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5.4 Conclusion and Discussion

In this chapter, we use the proposed feature-based quality metrics to address the au-

tomatic optimization problems for tone mapping. The visual saliency based parame-

ter tuning algorithm enables the automatic parameter selection within any arbitrary

TMOs. Meanwhile, the perceptual quality guided blended tone mapping algorithm

searches for the optimal solution across various TMOs for a particular HDR image.

We shows that the optimization can be accomplished by an evolution strategy. As

one of the first attempts for automated tone mapping optimization, the proposed al-

gorithms advance the application of existing TMOs and inspire further improvements

on this research topic.

The performance of the tone mapping optimization algorithms can be improved

in a number of aspects. The time complexity of the algorithms are dominated by the

running time of TMOs. Due to its requirement of independent applications of tone

mapping, we are planing to distribute the computation of the quality scores predicted

by objective quality metrics of the offspring across multiple cores to reduce the running

time. Also, considering a simple evolution strategy is used in the algorithms, it would

be interesting to further analyze the influence of strategy selections, and explore more

standard strategies such as CSA-ES for tone mapping optimization. Additionally,

the parameter space of TMOs is adopted as the solution space for tone mapping

optimization. Although it is an important component that can affect the final results,

little work has been done to exploit and compare different solution spaces. Further

studies and comparison towards solution space can be conducted in the future.



Chapter 6

Comparison of Optimization Methods

6.1 Introduction

The development of reliable image quality measures for the assessment of tone mapped

images constitutes a significant advancement in high dynamic range imaging. The

ability to objectively assess the quality of tone mapped images allows treating tone

mapping as an optimization problem that can be solved by automated algorithms,

without the need for human input. By applying evolutionary algorithms (EA) to pa-

rameter spaces of TMOs, we introduce a general framework to realize objective quality

assessment based tone mapping optimization. The framework has successfully been

used for various optimization problems, including parameter tuning of TMOs [34, 35],

and blended tone mapping [36].

More recently, Ma et al. [61] present an optimization method in connection with

the improved variant of tone mapped image quality index (TMQI-II). The proposed

method interleaves the optimization of structural fidelity using gradient ascent with

that of statistical naturalness. Experiments show that it can significantly improve the

TMQI-II scores, albeit usually at a high computational cost. Although the algorithm

is especially designed for their quality metric, it represents an alternate solution for

tone mapping optimization which makes use of gradient information of quality metrics

to search for the optimal results in image space.

Compared with Ma et al.’s method [61], EA optimizes parameters of TMOs, rather

than tone mapped images. These two approaches have been applied for different

quality metrics, and no direct comparison has been performed. In this chapter, we

compare them under a common platform [32]. To establish that, we apply the EA

for the optimization of TMQI-II addressed by Ma et al. [61]. The objective of EA is

set to TMQI-II, and the solution space is defined as the parameter space of a generic

TMO [67]. A comparison is conducted with an HDR image benchmark set and various

starting points. According to the experimental results, EA can outperform Ma et

93
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al.’s method with significantly reduced computational effort, which means it can be

more efficient and practical to perform objective quality metric based optimization

on parameter space.

6.2 Gradient-based Optimization

With TMQI-II as the objective, Ma et al. [61] solve the tone mapping optimization

in image space, whose dimensionality is equal to the number of pixels. To address

that, they conduct an iterative numerical optimization based on gradient information.

They first improve the the structural fidelity with a gradient ascent method, and then

update the statistical naturalness with a point-wise intensity transformation, where

the parameters are estimated with a gradient projection algorithm. These two steps

continue until convergence.

6.2.1 Structural Fidelity Update

Given an HDR image X and a tone mapped image Y , Ma et al. [61] calculate the

gradient of the structural fidelity S(X, Y ) with respect to Y . The updating of the

k-th iteration input image Yk is described as

Ŷk = Yk + λ∇Y S(X, Y )
∣∣∣
Y=Yk

, (6.1)

in which Ŷk denotes the output image and λ is the step size. Similar with the calcula-

tion of structural fidelity that uses a sliding window across images to predict local de-

tail preservation, they calculate the gradient of overall structural fidelity ∇Y S(X, Y )

by combining the gradient of local image patches x and y as follows:

∇Y S(X, Y ) =
1

M

M∑
i=1

RT
i ∇ySlocal(x, y)

∣∣∣
x=xi,y=yi

. (6.2)

In the equation, M is the number of local patches; xi = Ri(X) and yi = Ri(Y ) are

the i-th patches in X and Y ; Ri and RT
i are the operators that take i-th local patch

from the image and place it back respectively.
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6.2.2 Statistical Naturalness Update

With the image Ŷk from the optimization procedure of structural fidelity, the statis-

tical naturalness is improved through a three-segment equipartition monotonic piece-

wise linear function:

yik+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(3/L)aŷik 0 ≤ ŷik ≤ L/3

(3/L)(b− a)ŷik + (2a− b) L/3 ≤ ŷik ≤ 2L/3

(3/L)(L− b)ŷik + (2b− 2L) 2L/3 ≤ ŷik ≤ L,

(6.3)

where ŷik and yik+1 denote the pixels of the input and output images at i-th patch, L is

the dynamic range of a tone mapped image, and a and b are parameters to establish

the desired brightness (mean) and contrast (standard derivation).

The parameters a and b (where 0 ≤ a ≤ b ≤ L) are chosen so that the brightness

μ and contrast σ of Yk+1 = {yik+1 for all i} better approximate the brightness μe

and contrast σe of the desired image. To generate the parameters a and b, they first

estimate the brightness and contrast of Yk+1:

μe
k+1 = μ̂k + λm(μe − μ̂k)

σe
k+1 = σ̂k + λd(λe − λ̂k).

(6.4)

In the equation, μ̂k and σ̂k denote the brightness and contrast of Ŷk; λm and λd

denote the parameters that control the updating speed. Afterwards, they calculate

parameters a and b by solving the constrained optimization problem:

{a, b}opt = argmax{a,b} ‖μk+1 − μe
k+1‖2 + η‖σk+1 − σe

k+1‖2, (6.5)

in which η is the weight that adjusts the two terms. They use a gradient projection

algorithm [77] to solve the problem, and then plug the optimal values of a and b into

the equation 6.3.

The above-mentioned operations result in an image Yk+1 which is the output of

(k+1)-th iteration. The improvement of structural fidelity and statistical naturalness

alternate until the Euclidean norm of tone mapped images ‖Yk+1−Yk‖ is smaller than

a predefined threshold.
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Figure 6.1: Tone curve used in the generic TMO and its parameters (adapted
from [67]). Parameter b allows for brightness adjustment, dl and dh determine the
lower and higher midtone ranges,and c governs contrast.

6.3 Evolutionary Optimization

In our algorithm, the solution space is defined by the generic TMO, and the optimiza-

tion is accomplished with an evolution strategy. The generic TMO by Mantiuk and

Seidel [67] aims to provide the ability to emulate different TMOs using computation-

ally inexpensive image processing operations. We choose it for its low computational

cost as well as due to its capacity to generate tone mapped images with plausible

TMQI-II scores using a relatively small set of parameters. The operator maps inten-

sity values as

CLDR = fMT(fTC(LHDR)) ·
(
CHDR

LHDR

)s

, (6.6)

where CHDR and CLDR are the color channels of the HDR image and the tone mapped

image, respectively, LHDR is the luminance of the HDR image, fTC denotes the tone

curve, fMT represents the modulation transfer function, and s is a parameter used for

saturation adjustment. The tone curve is a sigmoidal function, with parameters b,

dl, dh, and c provided for tuning the curve shape as illustrated in Fig. 6.1. The mod-

ulation transfer function allows specifying several parameters that determine a 1D

function of spatial frequency and allows the tuning of blurring and sharpening opera-

tions applied to an image. The function involves band-pass filtering implemented with
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difference of Gaussian operators, with parameters m1, m2, and m3 for the adjustment

of different frequency components [67].

Since TMQI-II scores are computed on the basis of luminance values, without

taking color information into account, we choose not to modify the saturation adjust-

ment parameter s. This leaves a total of seven parameters available for tuning. We

use a (1+λ)-ES to solve the optimization of TMQI-II scores in the seven-dimensional

parameter space. The application of the evolutionary approach to optimization is

motivated by the lack of availability of analytical gradients and the potential for

ruggedness resulting from the choice of quality criterion.

There are no restrictions regarding the setting of parameters of the generic TMO.

However, we find that allowing parameters to grow without bounds may result in

very marginal changes to TMQI-II scores and thus in ill-conditioning that negatively

impacts the ability of the simple evolution strategy to optimize image quality. We

thus impose boundary constraints that prevent the parameters from moving past their

useful ranges. In order to be able to define image-independent ranges, we calibrate

the logarithmic luminance values of the pixels in an HDR image by subtracting the

mean logarithmic luminance. Ranges and short descriptions of the parameters are

listed in Table 6.1.

Candidate solutions are seven-dimensional real vectors that consist of the param-

eters of the generic TMO. In each iteration of the algorithm, λ > 1 offspring are

generated from the parental candidate solution x ∈ R
7 as

yi = x+ σzi i = 1, . . . , λ (6.7)

where σ ∈ R denotes the step size parameter and the zi ∈ R
7 are independent,

standard normally distributed mutation vectors. Out-of-range values of variables are

clamped to the boundaries. In light of potential issues with decreasing step size as

a result of constraint handling such as discussed by Arnold [3], we have also experi-

mented with an exterior penalty approach, but not observed a significant difference

in performance. In each iteration, the candidate solution that leads to the highest

TMQI-II value among the union of the parent and the set of all offspring is selected

and adopted as the parent for the next iteration. The offspring number λ is set to 10

throughout, and the step size parameter is initialized to 0.5 at the start of a run. That

parameter is decreased by multiplication with 0.8 in each iteration where the parental
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Table 6.1: Parameters of the generic TMO.

Parameter Range Description

Parameters of tone curve

b [−2.0, 2.0] brightness factor

dl [0.0, 2.5] lower midtone range factor

dh [0.0, 2.5] higher midtone range factor

c [0.2, 1.5] contrast factor

Parameters of modulation transfer function

m1 [−2.0, 2.0] high frequency factor

m2 [−2.0, 2.0] medium frequency factor

m3 [−2.0, 2.0] low frequency factor

candidate solution is superior to all of its offspring; it is unchanged in those itera-

tions where an offspring candidate solution is successful. We terminate a run when

the change in the best TMQI-II value has been less than 10−4 for six consecutive

iterations and return the best candidate solution found as the final result.

6.4 Methods Comparison

6.4.1 Experiment Settings

To evaluate the performance of the evolutionary approach, we conduct a comparison

with the algorithm by Ma et al. [61] for the optimization of TMQI-II scores. We carry

out the comparison on a set of sixteen HDR images. This set is identical with that

used by Ma et al. in the evaluation of their approach, except of that we omitted one

image to which we do not have access.

For each HDR image, we establish three starting points in the search for optimal

tone mapped images. Ma et al. use starting points generated by various TMOs

with default parameters settings, including the the logarithmic operator, Durand and

Dorsey’s operator [24], and Mantiuk’s operator [65]. In order to ensure the same

starting points for both algorithms, we determine parameter settings for the generic

TMO such that the resulting tone mapped images closely match those generated by

the various TMOs. Figure 6.2 shows a typical example of the generic TMO’s ability to
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Durand’s TMO

Mantiuk’s TMO

Generic TMO (SSIM = 0.9419)

Generic TMO (SSIM = 0.9918)

Figure 6.2: Comparison between images tone mapped using the TMOs by Durand
(top left) and Mantiuk (bottom left) using default parameter settings, and corre-
sponding images generated using the generic TMO (right) with parameters chosen to
maximize SSIM scores.

emulate other TMOs and find matches that are visually nearly indistinguishable. The

parameter settings and simulated tone mapped images are adopted as the starting

points for EA and Ma et al.’s method respectively.

We use the implementation by Ma et al. [61] for TMQI-II and their optimization

algorithm. That implementation is in Matlab and, according to the authors, not

optimized for speed. Since the same implementation of TMQI-II is used for image

quality assessment in both of the optimization algorithms, the comparison here is

meaningful for establishing relative performance. The EA as well as the generic

TMO are implemented in Matlab and not optimized for speed either. Running times

reported are for a PC with Intel Quad-Core 2.66GHz CPU with 4GB of RAM. As the

optimization approach by Ma et al. does not exploit parallelism, we have chosen not

to make use of more than one CPU core in the implementation of the EA. Making use

of parallel computational resources by evaluating offspring simultaneously on multiple

cores is straightforward. On our hardware, the computation of a single TMQI-II score
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Figure 6.3: Running times of the EA plotted against running times required by the
algorithm by Ma et al. [61] to reach equivalent TMQI-II scores. Data are shown for
starting points matching those generated by the logarithmic operator, the Durand’s
operator, and Mantiuk’s TMO. The black line indicates the identity.

for images of the size considered here (approximately 360 × 500 pixels) takes about

0.3 seconds.

For each of the sixteen HDR images and three starting points, we conduct eleven

independent runs of the EA for the optimization of TMQI-II, for a total of 528

runs. All of the TMQI-II scores are calculated from tone mapped images stored

in PNG format (i.e., with lossless compression, but with only eight bits per color

channel). Table 6.2 shows TMQI-II scores of the starting points as well as median

and standard deviation of the scores obtained after evolutionary optimization. Also

shown are median and standard deviation of the computational times. We then ran

the algorithm of Ma et al. [61] and recorded the time it requires to reach the TMQI-II

scores obtained by the EA. Median and standard deviation of those times are shown

in the last column of the table. Running time data from all 528 runs are represented

graphically in Figure 6.3.
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Table 6.2: Comparison between the EA and the algorithm of Ma et al. [61]. The ta-
ble lists TMQI-II scores of starting points, scores after evolutionary optimization, the
computational time (in seconds) required to generate those results, and the compu-
tational time (in seconds) for the algorithm of Ma et al. to reach equivalent TMQI-II
scores. The computation time is omitted (—) when an equivalent score could not be
reached within 7200 seconds. Shown are median values of eleven independent runs,
with standard deviations given in parentheses.

HDR Image
Starting Initial Optimized Running Time Running Time
Point TMQI-II Score TMQI-II Score (EA) (Ma et al.)

Foggy Night Logarithm 0.3807 0.9780 (0.0047) 58.5 (23.6) 756.0 (39.0)
340× 512 Durand 0.3844 0.9766 (0.0020) 71.0 (40.4) 1263.7 (304.9)

Mantiuk 0.9091 0.9779 (0.0011) 74.6 (26.3) 357.6 (39.2)
Clock Building Logarithm 0.4409 0.9757 (0.0029) 80.6 (22.6) 1035.7 (288.3)

384× 512 Durand 0.4415 0.9752 (0.0040) 68.4 (24.2) 5748.9 (2126.1)
Mantiuk 0.9692 0.9769 (0.0031) 38.0 (16.2) 83.9 (22.8)

Dani Cathedral Logarithm 0.3999 0.9704 (0.0099) 76.3 (27.8) 2835.3 (1079.6)
384× 512 Durand 0.4186 0.9703 (0.0011) 62.9 (17.3) — (—)

Mantiuk 0.4616 0.9700 (0.0100) 79.0 (24.4) 293.0 (46.9)
Kitchen Logarithm 0.3651 0.9714 (0.0002) 52.1 (12.0) 1756.7 (51.6)
342× 512 Durand 0.3804 0.9715 (0.0160) 73.3 (22.8) 6760.6 (2120.2)

Mantiuk 0.8896 0.9712 (0.0033) 56.9 (20.9) 147.4 (19.1)
Memorial Church Logarithm 0.4442 0.9795 (0.0041) 63.0 (20.5) 1716.9 (65.7)

340× 512 Durand 0.4520 0.9804 (0.0046) 63.7 (24.6) — (—)
Mantiuk 0.9086 0.9798 (0.0015) 43.5 (16.3) 116.0 (11.3)

Women Logarithm 0.4151 0.9806 (0.0074) 64.0 (26.1) 1015.0 (336.7)
342× 512 Durand 0.4135 0.9809 (0.0077) 96.2 (27.1) 5283.8 (1771.6)

Mantiuk 0.5189 0.9808 (0.0120) 67.4 (41.6) 299.6 (61.0)
Desk 1 Logarithm 0.3881 0.9801 (0.0002) 83.9 (8.4) 857.7 (7.9)

512× 384 Durand 0.4256 0.9800 (0.0028) 75.1 (18.0) 2079.3 (431.1)
Mantiuk 0.7600 0.9800 (0.0067) 56.2 (25.0) 192.9 (31.4)

Desk 2 Logarithm 0.3765 0.9654 (0.0045) 54.0 (17.8) 800.8 (29.9)
512× 384 Durand 0.4031 0.9655 (0.0083) 76.4 (47.9) 1088.4 (236.4)

Mantiuk 0.8178 0.9652 (0.0069) 51.5 (27.0) 102.6 (14.1)
Display1000 Logarithm 0.4004 0.9649 (0.0038) 59.6 (31.0) 2810.3 (1033.1)
512× 384 Durand 0.4220 0.9648 (0.0070) 99.3 (36.1) 6983.4 (—)

Mantiuk 0.7236 0.9649 (0.0059) 63.2 (25.3) 985.1 (351.5)
Belgium House Logarithm 0.4096 0.9778 (0.0005) 73.0 (14.3) 707.7 (19.4)

512× 384 Durand 0.4186 0.9777 (0.0030) 91.8 (20.2) 5986.0 (1400.7)
Mantiuk 0.8552 0.9774 (0.0052) 47.8 (18.8) 141.3 (25.9)

Woods Logarithm 0.0708 0.9844 (0.0056) 75.3 (24.3) — (—)
512× 340 Durand 0.3541 0.9845 (0.0069) 77.3 (30.3) — (—)

Mantiuk 0.4957 0.9843 (0.0024) 54.7 (14.7) 1078.2 (356.3)
Lawn Logarithm 0.4434 0.9864 (0.0069) 68.1 (17.8) 1318.3 (317.5)

512× 381 Durand 0.4585 0.9861 (0.0043) 89.2 (35.9) 4276.2 (1558.4)
Mantiuk 0.9689 0.9861 (0.0019) 39.3 (19.1) 278.4 (69.2)

Bristol Bridge Logarithm 0.3968 0.9843 (0.0128) 52.0 (27.0) 746.5 (191.7)
512× 384 Durand 0.3891 0.9845 (0.0001) 83.8 (23.0) — (—)

Mantiuk 0.9520 0.9841 (0.0071) 54.3 (25.7) 887.5 (364.3)
Office Logarithm 0.4477 0.9729 (0.0012) 54.3 (18.7) 368.2 (4.2)

512× 340 Durand 0.4245 0.9738 (0.0020) 71.2 (24.5) — (—)
Mantiuk 0.9503 0.9742 (0.0048) 44.1 (16.7) 158.2 (36.1)

Vine Sunset Logarithm 0.4246 0.9636 (0.0051) 50.6 (21.3) 613.3 (123.6)
512× 345 Durand 0.4440 0.9639 (0.0007) 89.7 (27.8) — (—)

Mantiuk 0.4617 0.9641 (0.0003) 73.9 (12.6) 1498.9 (56.8)
Wreathbu Logarithm 0.491 0.9652 (0.0010) 58.8 (18.0) 1204.1 (354.4)
512× 384 Durand 0.4365 0.9655 (0.0010) 88.6 (34.0) 3814.1 (716.4)

Mantiuk 0.7982 0.9660 (0.0010) 49.0 (21.0) 406.1 (82.1)
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6.4.2 Experimental Results

As shown in the Table 6.2, EA can significantly improve TMQI-II scores. Final

scores are within a narrow range, both across test images and across starting points.

Standard deviations are such that the empirical coefficient of variation of TMQI-

II scores rarely exceeds 0.01. Running times for the EA range from well under a

minute to no more than three minutes in the longest of the 528 runs. In comparison,

the algorithm of Ma et al. [61] requires significantly more time to generate tone

mapped images with equivalent TMQI-II scores, and in a number of instances remains

unsuccessful even after two hours (where runs are terminated).

It is worth noting that Ma et al. [61] report TMQI-II scores in excess of most of the

values attained by the EA and reported in Table 6.2 (running times are not reported

with the TMQI-II scores). The EA operates in a low-dimensional search space that

may implicitly limit the quality of the tone mapped images that can be achieved by

parameter optimization. However, we notice that their TMQI-II scores are reported

on floating-point image data. When storing the data into image file formats with

eight bits per colour channel and pixel, any further improvement can disappear due

to quantization noise.

Clearly, the running times of both the EA and the algorithm by Ma et al. are

impacted by the size of the images being processed. However, the approach relying on

the generic TMO and the EA for optimization admits a simple technique for reducing

running time: Rather than performing the optimization on potentially sizable images,

shrink the images before applying the EA to obtain parameter settings for the generic

TMO, and then use the parameter settings obtained on the small images to tone-map

the full-sized images. Two examples of results from this approach can be found in

Figure 6.4. The images on the left have been obtained through optimization using

the full-sized images of size 1024 × 768. The optimization took 344 seconds for the

“Bristol Bridge” image and 200 seconds for the “Belgium House” image. The images

on the right are the result of computing parameter settings on images of size 256×192

and applying those settings to the full-sized images. The TMQI-II scores decrease in

both cases, but the results are visually nearly indistinguishable, and optimization in

the latter case is accomplished in 11 and 9 seconds respectively. Another technique

for reducing running time while not having to contend with reduced TMQI-II scores
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TMQI-II: 0.9794

TMQI-II: 0.9716

TMQI-II: 0.9759

TMQI-II: 0.9660

Figure 6.4: Comparison between images with parameters of the generic TMO ob-
tained through evolutionary optimization on different sized versions of the images.
The images on the left have been obtained from optimization on the full-sized images
of size 1024× 768. The images on the right are the result of shrinking the images to
size 256 × 192, solving the optimization problem using the EA, and then using the
TMO parameter settings obtained on the full-sized images.

is to start with small images and to increase the size of the images being processed

during the run of the EA.

Finally, in addition to the reduced running time, we have found our method to

often be preferable to the algorithm by Ma et al. [61] in that it generates images with

more consistent appearance across various starting points. Figure 6.5 shows examples

where the appearance of the images generated using the algorithm by Ma et al. differs

from starting point to starting point and suffers from artifacts such as over- and under-

saturation, while the results generated using the EA look rather uniform. Further

examples can be found in the complete set of experimental data which is available at

www.cs.dal.ca/~xgao/EAdata.rar. Figure 6.6 shows an example for a deliberately

poorly chosen starting point for the search. The starting point is encoded with eight
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TMQI-II: 0.4246

TMQI-II: 0.9631

TMQI-II: 0.9631

TMQI-II: 0.4440

TMQI-II: 0.9644

TMQI-II: 0.9289

TMQI-II: 0.4617

TMQI-II: 0.9646

TMQI-II: 0.9646

Figure 6.5: Comparison of results for HDR image “Vine Sunset”. First row: starting
points for the search; second row: images optimized with the EA; third row: images
optimized with the algorithm of Ma et al. [61] (the algorithm of Ma et al. cannot
reach our TMQI-II score within 7200 seconds for the second one).

bits per colour channel and pixel, and the dark regions in it are solidly black. The

algorithm by Ma et al. is not able to restore the image content in those regions and

thus converges to a suboptimal solution while the EA generates a satisfactory solution.

6.5 Conclusion and Discussion

To conclude, we have used an EA to solve the tone mapping problem based on

maximization of TMQI-II scores. Compared to TMQI-II optimization by interleaving

gradient based maximization of structural fidelity with optimization of statistical

naturalness, we observe significantly reduced running times. Clearly, this is not to

say that the EA is the most efficient tool for the task. However, it is remarkable
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Starting Point

TMQI-II: 0.4429

EA

TMQI-II: 0.9847
Time: 49.63

Ma et al.

TMQI-II: 0.93119
Time: 43203.33

Figure 6.6: Comparison of results for HDR image “Woods” and a poorly chosen
starting point. First image: starting point for the search; second image: images
optimized with the EA; third image: images optimized with the algorithm of Ma et
al. [61].

that an algorithm as simple as the EA can obtain results much faster than a much

more sophisticated approach. By distributing the computation of the TMQI-II values

of the offspring across multiple cores or obtaining parameter settings for the generic

tone mapping operator by (initially) optimizing using reduced-size images, obtaining

optimized tone mapped images with the simple EA requires but a few seconds.

In future work, we will consider the suitability of other image quality assessment

techniques for tone mapped images as well as other image processing tasks that

are commonly performed using gradient based techniques in high-dimensional spaces,

but that may conceivably be solved using much lower-dimensional parametric models.

Also, we would like to further analyze the influence of strategy selections, and more

standard strategies such as CSA-ES will be explored.



Chapter 7

Conclusion

In this thesis, we introduced computational models of feature analysis on HDR scenes

and feature-based objective quality assessment for tone mapped images. Furthermore,

we employed the proposed quality metrics to solve tone mapping optimization prob-

lems including parameter tuning and blended tone mapping. This chapter summarizes

our contributions and discusses the potential directions for future research.

In Chapter 3, we proposed an algorithm for visual saliency analysis of HDR im-

ages. Taking virtual photographs is the inverse process of generating HDR images

from multiple LDR exposures, and the virtual photograph sequence has the capacity

to more comprehensively reveal salient content in HDR images. Our algorithm takes

variously-exposed virtual photographs and incorporates them for saliency analysis.

Experimental results show our method can more reliably characterize the salient re-

gions than existing methods. By bridging the gap between dynamic ranges, virtual

photograph based algorithm can make it possible to apply conventional feature anal-

ysis methods to HDR scenes.

In Chapter 4, we focused on objective quality assessment of tone mapped images

and proposed two feature-based quality metrics. Compared with typical IQA meth-

ods built on the magnitude of intensity and normalized contrast, the quality metrics

measure the distortion of important image features that affect the perceived quality

of human observers. Based on the assumption that regions of interest predicted by

bottom-up visual attention models should be preserved during tone mapping, we pro-

posed the visual saliency distortion predictor (VSDP) that measures the distortion in

visual saliency for quality assessment. Moreover, by combining brightness distortion,

visual saliency distortion, and detail distortion in light and dark areas, we present the

perceptual distortion predictor (PDP) for more comprehensive evaluation. The sub-

jective and numerical experiments have verified the effectiveness of the feature-based

quality metrics and their superiority to alternative works.

106
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In Chapter 5, we employed the proposed quality metrics to solve the problems

of tone mapping optimization. By minimizing visual saliency distortion, we devel-

oped an automatic parameter tuning algorithm that can optimize the parameters of

arbitrary TMOs. We showed that the minimization can be accomplished with an

evolutionary algorithm (EA) with individuals represented as parameters and the fit-

ness value as saliency distortion. Experiments show that our method can significantly

improve the quality of tone mapped images by generating results with more faithful

appearance, and the improvement is validated with systematic statistical analysis.

Also, using the perceptual distortion predictor, we introduced an automated blended

tone mapping algorithm to leverage the strengths of different operators for particular

HDR scenes. We demonstrate that the algorithm can produce compelling results in

comparison to individual global and local operators.

In Chapter 6, we compared the EA with the gradient-based optimization algo-

rithm using a common platform of tone mapping optimization. With a generic TMO,

we have used the EA for TMQI-II based optimization. Compared to the gradient-

based algorithm carried out with the introduction of TMQI-II which interleaves the

optimization of structural fidelity and statistical naturalness, we observe significantly

reduced running times and more consistent results.

7.1 Future Research Directions

The research described in the thesis represents several attempts for objective quality

metrics based tone mapping optimization, and they can be further improved and ex-

tended in many directions. In addition to the future works discussed in each chapter,

we hereby provide some more general ideas for future research.

Currently, most objective quality assessment approaches [108, 35, 61] are designed

for the general purpose of tone mapping, which could be described as reproducing

the visual appearance of HDR images during contrast compression [86]. Nevertheless,

the quality criteria should be adaptive for specialized applications. For instance, in

photograph, naturalness or overall fidelity may be more important, while for medical

images, detail preservation might be more critical. It would be useful to analyze the

requirements of different applications and incorporate them into the design of quality

metrics.
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The feature-based quality metrics are proposed for HDR images, and their ex-

tension can be the quality evaluation of tone mapped videos. In recent years, with

the development of capture techniques, HDR-video tone mapping is becoming more

and more feasible. Several several subjective studies have been conducted to evaluate

existing TMOs for HDR-video [25, 68], but there are few work that focus on objective

quality assessment and the corresponding parameter optimization [107]. Compared

with static HDR images, HDR video sequences pose new challenges for quality eval-

uation. It is necessary to carry out not only spatial measures but also temporal

measures that can capture artifacts, such as flickering, inconsistent brightness and

contrast, and noise [25].

Another interesting direction is tone mapping optimization for HDR videos. With

both spatial and temporal quality assessment available, a possible method is to collect

the key frames with unsupervised classification, apply the optimization on the key

frames with spatial quality measures, and then spread the optimized results to all the

frames by optimizing the temporal quality measures. Nevertheless, the quality eval-

uation and the algorithm details of video optimization need to be carefully addressed

in the future.
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Appendix A

Comparison of Tone Mapped Images and Their Tone

Mapping Curves

The proposed quality metric makes the quality prediction based on the distortions

in image features, and the similarity to the transfer curves used for taking virtual

photographs cannot guarantee good quality of the tone mapped images. Figure A.1

illustrates the comparison of several tone mapped images and their tone mapping

curves. The first row is the reference image generated with iterative tone mapping

optimization, which could be used as the benchmark. The second and third rows are

tone mapped images generated by the sigmoidal curves that are very similar to what

we use for taking virtual photographs. As shown in the example, these similar curves

don’t necessarily produce satisfying results. Compared with the benchmark, the tone

mapped image generated by Schlick’s operator [88] (Second row) suffers from more

distortion in all the feature-based measures, while the image generated by Reinhard

et al.’s operator [85] (Third row) does not perform well for detail reproduction in

light areas.
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Reference Image
Brightness Distortion: 0.0007
Visual Saliency Distortion: 0.0193
Detail Distortion in Light Areas: 0.5237
Detail Distortion in Dark Areas: 0.3202

Tone Mapped Image (Schlick’s Operator)
Brightness Distortion: 0.3231
Visual Saliency Distortion: 0.0994
Detail Distortion in Light Areas: 0.6951
Detail Distortion in Dark Areas: 0.3341

Tone Mapped Image (Reinhard et al.’s Operator)
Brightness Distortion: 0.0332
Visual Saliency Distortion: 0.0139
Detail Distortion in Light Areas: 0.6621
Detail Distortion in Dark Areas: 0.3271
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Figure A.1: Comparison of tone mapped images and their tone mapping curves.
First row: reference image generated with tone mapping optimization. Second row:
tone mapped image generated by Schlick’s operator with default parameter settings.
Third row: tone mapped image generated by Reinhard et al.’s operator with default
parameter settings. The HDR image is from Mark D. Fairchild’s HDR Photographic
Survey and c© 2006-2007 Mark D. Fairchild.



Appendix B

Comparison with Visual Saliency Analysis on Log-HDR

Values for Parameter Optimization

In the visual saliency based parameter optimization, we employ the virtual photo-

graph based method [35] to analyze visual saliency on HDR images, which cannot

replaced by simple computing visual saliency on log-HDR values. Figure B.1 presents

a comparison between the virtual photograph based method and applying the visual

attention model proposed by Itti and Koch [46] on log-HDR values (log-HDR method)

for parameter optimization. For each HDR image, we generate 25 visually different

tone mapped images with Schlick’s operator [88], and then use the saliency distortion

calculated from these two methods to select the best tone mapped image. As illus-

trated in the examples, saliency distortion calculated from the virtual photograph

based method yields more reliable quality predictions. We hypothesize that this is

because virtual photograph sequence has the capacity to more comprehensively and

accurately preserve image content of HDR images for visual saliency analysis than

log-HDR values.

For a thorough evaluation, we apply the parameter tuning of Schlick’s operator [88]

for the image database provided by Mark D. Fairchild [17], in which 105 HDR im-

ages and the corresponding reference images are provided. The saliency distortion

calculated from virtual photograph based method and log-HDR method are adopted

for automatic parameter tuning. With the reference images as the benchmark, the

performance of the optimized parameter settings are measured in terms of PSNR

and SSIM. We conduct a Mann-Whitney U test for each image, and then apply the

outputs for a Wilcoxon signed-rank test to measure the overall difference. As shown

in Table B.1, virtual photograph based method performs significantly better than

log-HDR method.
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Reference image

Reference image

Reference image

Reference image

Saliency Distortion: 0.1831
Log-HDR Saliency Distortion:

0.9126

Saliency Distortion: 0.5136
Log-HDR Saliency Distortion:

1.0090

Saliency Distortion: 0.4994
Log-HDR Saliency Distortion:

3.2805

Saliency Distortion: 0.2471
Log-HDR Saliency Distortion:

1.4305

Saliency Distortion: 0.3823
Log-HDR Saliency Distortion:

0.7086

Saliency Distortion: 0.5478
Log-HDR Saliency Distortion:

0.8561

Saliency Distortion: 3.3241
Log-HDR Saliency Distortion:

1.7334

Saliency Distortion: 0.2895
Log-HDR Saliency Distortion:

0.5394

Figure B.1: Comparison between virtual photograph based method and log-HDR method
for parameter optimization. First column: reference images tone mapped with manual
manipulation (provided at [17]). Second column: the best tone mapped images selected
based on saliency distortion calculated from virtual photograph based method (denoted as
saliency distortion). Third column: the best tone mapped images selected based on saliency
distortion calculated from log-HDR method (denoted as log-HDR saliency distortion). The
HDR images are from Mark D. Fairchild’s HDR Photographic Survey and c© 2006-2007
Mark D. Fairchild.
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Table B.1: Comparison between virtual photograph based method and log-HDR
method for parameter tuning.

Quality metrics Our method Log-HDR method Ties p Value
PSNR 61 19 25 0.000
SSIM 61 16 28 0.000


