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Abstract

In this thesis we study complex dynamics of the localized patterns that occur in certain
partial differential equations. We study three different types of localized patterns:
interfaces in one dimension, spots in two and three dimensions, and vortices in two
dimensions.

In the first part of the thesis, we study the oscillatory motion of multiple interfaces
in one dimension for a certain class of reaction-diffusion systems. Within that class,
we prove that the eventual fate of the system can be reduced to the study of a single
interface.

We then study a pattern consists of a single spot within a circular domain in
a two-dimensional Schnakenberg model. Depending on parameter regime, such a
spot can undergo periodic height oscillations or oscillations in its position. These
oscillations are due to the presence of two different Hopf bifurcations. We derive
explicit thresholds on the parameters which delineate these two regimes. Beyond
the Hopf bifurcation, we also study the motion of a rotating spot and characterise
explicitly the radius and frequency of its rotation. In three-dimensional context, we
derive the slow dynamics of spot patterns and extend the analysis to the spatially
varying feeding rate case.

We then study vortex dynamics in the context of Bose-Einstein Condensates
(BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-
Pitaevskii equation (GPE) , we derive a novel reduced ODE system that governs the
slow dynamics and stability of multiple co-rotating vortices. In the limit of many
vortices, we derive the effective vortex crystal density and its radius. For an anisotropic
potential, we show that a pair of vortices lying on the long (short) axis is linearly
stable (unstable), which is in agreement with full PDE simulations. We then further
investigate the many-vortex limit in the case of strong anisotropic potential. In this
limit, the vortices tend to align themselves along the long axis, and we compute the
effective one-dimensional vortex density.

In each case, extensive full numerical simulations are used to confirm our analytical
predictions.
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Chapter 1

Introduction

Formation of the localized patterns is one of the most frequently observed phenomena

in many models of physics, chemistry, and biology. Many phenomena, including, but

not limited to, cell differentiation, the reaction of chemicals, propagation of flame

fronts, laser interference patterns and sea shell patterns, fall into this category. In

(a) Interfaces (b) Spots (c) Vortices

Figure 1.1: Pattern in nature: (a) Interfaces of polymer [1]. (b) Spots on the leopard
skin [2]. (c) Vortices in Bose-Einstein Condensate [3].

this thesis, we study several classes of singularly perturbed models, exhibiting three

different types of localized structures: interfaces in one dimension, spots in two and

three dimensions, and vortices in two dimensions. These structures can exhibit very

complex dynamics, which is the main topic of investigation here.

The first type is the pattern consists of multiple back-to-back interfaces. An

example of a model exhibiting such structure is the FitzHugh Nagumo model [4]. This

system was introduced as a simplification of the Hodgkin-Huxley equation that was

derived as a model for the propagation of action potentials in the giant nerve axon of

the squid. It can be written in the form [5]:{
∂u
∂t

= Du
∂2u
∂x2 + u(1 − u)(u− a) − v

∂v
∂t

= Dv
∂2v
∂x2 + b(u− v)

(1.1)

1
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where u represents the combined membrane voltage and sodium activation, v represents

the combined sodium inactivation and potassium activation, a is the excitation

threshold, b is the ratio of time scales, and the diffusion coefficients, Du and Dv, are

constants. This model has been widely studied as a qualitative prototype for excitable

systems in many biological and chemical contexts.

The second type of patterns that we consider consist of “spikes” or “spots”, such

as shown in the figure 1.1(b). A simple model that can produce this pattern is the

Schnakenberg model [6]:⎧⎨⎩
∂v
∂t

= D1∆v + k1b− k2v + k3v
2u

∂u
∂t

= D2∆u+ k4a− k3v
2u

(1.2)

It is a particular case of the activator-substrate system, where u and v are the

concentration of two chemicals X and Y , Y is consumed by a slowly diffusing activator

X, and supplied to the system at a constant rate. At the same time, X activates

itself. This mechanism drives sharply localized spatial spots of activator coupled with

nearby shallow dips of the substrate. It was originally formulated as a simplified model

of a trimolecular autocatalytic reaction with diffusion. It is also a limiting case of

both the Gray-Scott model [7] as well as the Klausmeyer model of vegetation pattern

formation on flat ground when the water evaporation is limited [8]. Some applications

of Schnakenberg model to biology include pattern formation in embryogenesis and

skin patterns [9, 10].

The third type of pattern is a vortex pattern. A vortex is a region in a fluid in

which the flow rotates around an axis line. Vortex patterns are widely observed in

fluid dynamics. A mathematical model that can be used to describe the dynamics of

the condensate at zero temperature is the Gross–Pitaevskii equation (GPE) [11]:

ih
∂Ψ

∂t
=

(
− h

2m
∇2 + V (r) + g|Ψ(r, t)|2

)
Ψ(r, t) (1.3)

where m is the mass of the atoms of the condensate, |Ψ|2 is the atomic density,

V (r) represents an external potential and g is a parameter that measures the atomic

interactions. The GPE is effectively a mean-field approximation for the interparticle

interactions. If we consider the case of a boson in one dimension in a uniform potential,

we will get dark soliton solution or bright soliton solution depending on the type of
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interaction. Dark soliton shows a deficit of condensate in a space of nonzero density,

represented by a sharp interface. Bright soliton exhibits a concentration of condensate

in the space of zero density, represented by a spike shape. Vortex patterns emerge in

two and higher dimensions and are the analogues of bright soliton in 1-D.

A large body of literature exist, describing the formation and dynamics of localized

patterns in such models. We focus on the translation instability and the dynamics of

such patterns beyond the instability. The method of matched asymptotic expansions

is the main tool we use to solve singularly perturbed differential equations. The idea

is to reduce the original PDE system to a much simpler system by formal asymptotic

methods. Since the reduced system preserves the essential properties such as location

and mass of the localized structure, we are able to retrieve these key properties of the

initial system by a detailed analysis of the reduced system.

Many problems presented in the thesis share a common theme: moving singularities

in PDE systems. In the asymptotic limit, the localized structure reduces to a singularity

such as a delta function in case of a spot or a vortex, or a step function (i.e. the

integral of a delta function) in the case of a one-dimensional interface. We try to

understand how these singularities move and and interact with environment and

each-other. Eventually we aim at characterizing the trajectories of these singularities.

Overview of Thesis

In Chapter 2, we consider the general class of two-component reaction-diffusion systems

on a finite domain that admit interface solutions in one of their components, and we

study the dynamics of n interfaces in one dimension. In the limit where the second

component has large diffusion, we fully characterize the possible behaviours of n

interfaces. We show that after the transients die out, the motion of n interfaces is

described by the motion of a single interface on the domain that is 1/n the size of the

original domain. Depending on parameter regimes and initial conditions, one of the

following three outcomes results: (1) some interfaces collide; (2) all n interfaces reach a

symmetric steady state; (3) all n interfaces oscillate indefinitely. In the latter case, the

oscillations are described by a simple harmonic motion with even-numbered interfaces

oscillating in phase while odd-numbered interfaces are oscillating in anti-phase. The

work has been published in [19].
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In Chapter 3, we consider a single spot solution for the Schnakenberg Model in a

two-dimensional unit disk in the singularly perturbed limit of a small diffusivity ratio.

For large values of the reaction-time constant, this spot can undergo two different

types of instabilities, both due to a Hopf bifurcation. The first type induces oscillatory

instability in the height of the spot. The second type induces a periodic motion of

the spot center. We use formal asymptotics to investigate when these instabilities

are triggered, and which one dominates. In the parameter regime where spot motion

occurs, we construct a periodic solution consisting of a rotating spot, and compute its

radius of rotation and angular velocity. Detailed numerical simulations are performed

to validate the asymptotic theory, including rotating spots. More complex, non-circular

spot trajectories are also explored numerically. The results of Chapter 3 have been

published in [20]

In Chapter 4, we extend our two-dimensional calculation to a three-dimensional

context. We provide the first systematic asymptotic study of the dynamics of spot

patterns in an arbitrary bounded 3-D domain for a two-component singularly perturbed

RD system. It is shown that the locations of spots in a quasi-equilibrium configuration

evolve on a long time-scale according to an ODE system characterized by a gradient

flow of a certain discrete energy, the minima of which define stable equilibrium points

of the ODE. The theory also illustrates that new equilibrium points can be created

when the feeding rate is spatially variable, and that finite-time pinning away from

minima of the energy can occur when feeding rate is localized. These result have been

published in section 4 of the paper [21].

In Chapter 5, we use asymptotic techniques following [22] to derive a novel set

of equations which describe the distribution of vortex lattices in rotating BEC. The

equations we derive are valid for both isotropic and anisotropic case. We then use

the new equations to study the following important limits: (1) Many vortices in an

isotropic trap. By taking a continuum limit of the effective equations of motion, we

derive the effective density of the vortex crystals, as well as the size of the lattice.

In addition, this computation yields the maximum number of vortices that can form

stable lattice configurations, as a function of rotation speed. (2) Many-vortices in the

trap with high anisotrophy. When the anisotropy is sufficiently high, the vortices align

along the longer axis of the trap. In this limit, we compute the one-dimensional density
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of the resulting vortex configuration by using techniques involving the Chebyshev

polynomials. As in the isotropic case, this leads to an expression relating the maximum

number of vortices in a stable configuration and other problem parameters such as

the anisotropy and the rotation rate.

We finish in Chapter 6 with our conclusions and suggestions for future work.

Literature Review

• Oscillations In Reaction Diffusion System

The formation of Mesa patterns is one of the most prevalent phenomena observed in

reaction-diffusion systems. A sequence of highly localized interfaces that is separated

in space by regions where the solution is nearly constant constitutes such patterns. A

large body of literature have been devoted to this topic in the last three decades. See

for example [24–29] and references there in.

In this thesis, we are concerned with the following class of reaction-diffusion models:{
ut = ε2uxx + f(u,w)

τwt = Dwxx + g(u,w)
(1.4)

with homogeneous Neumann boundary conditions on a one dimensional interval.

According to Turing theory, under certain general conditions on nonlinearities f

and g, when the diffusivity ratio D/ε2 is large, the homogeneous solution becomes

unstable and a stable heterogeneous solution develops. With some specific constrains

on f and g that will be stated later, the system (1.4) admits a solution u consists

of sharp back to back interfaces, which is called the “Mesa” pattern. A typical

solution is shown in Figure 1.2. The construction of the mesa patterns and its stability

is originally done by [24], where the author presented stability theorem for large

amplitude singularly perturbed solutions (SPS) of reaction-diffusion systems on a

finite interval. In [30, 31], for a special model, the author show that a K-mesa solution

is stable under the assumption that τ = 0 and D = O(1). More specifically, if D

exceeds an exponentially large upper bound, then the number of mesas is diminished

through a coarsening process and if D is too small, then self-replication is observed

until such time that DK2 is large enough, where K is the number of the interfaces.

Then an explicit sequence of threshold values D1 > D2 > D3 > · · · , where Di is
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Figure 1.2: (a) Gierer-Meinhardt model with saturation, starting with random initial
conditions. Time evolution of u is shown; the parameter values are ε = 0.01, D =
100, τ = 0, κ = 1, domain size is 1 with Neumann boundary condition for both u
and w. (b)(c) The snapshot of u and w at t = 60000.

exponentially large, determining the stability of the K mesa solution on the domain

of a fixed size 2L, is computed in [32]. For τ > 0, It has been known for quite some

time [33] that such interfaces can undergo a transition from a stationary state to

an oscillatory motion, whereby interfaces exhibit a periodic motion in time, as the

parameter τ is increased past some threshold τhopf . This was first reported in [33] for a

system (1.4) with piecewise-linear nonlinearities f and g. Since then, similar oscillatory

behavior was reported and analyzed in many other reaction diffusion systems in one

and higher dimensions, see for example [34–39]. This change could be understood in

the following way as stated in Rozada’s thesis [40]: “when τ is small, the difference

in diffusivity marks the w(x) equation as the fast component in the system. However,

if τ grows to be O(1
ε
), or even bigger, the w equation will slow down and approach

the time scale of the u equation. When this happens, feedback will happen between the

two equations, leading to phenomena characteristic of delay differential equations such

as oscillatory instabilities.” In the paper [41], the “breather” motion of one or two

interfaces was fully characterized with additional assumption D ≫ 1. This assumption

makes a detailed analysis possible by using the method of multiple scales even for

values of τ well above the Hopf bifurcation threshold.

• Instability and Dynamics of the Schankenberg Model

The Schnakenberg model often serves as a simple prototype model for studying pattern

formation in reaction-diffusion systems: it is among the simplest class of models which
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generate stable inhomogeneous patterns. As such, the Schnakeberg and related models

such as Gray-Scott, the Brusselator, and the Gierer-Meinhardt model, have been

extensively studied (especially in one, but also and two and higher dimensions), and

phenomena such as spike formation, stability, self-replication, oscillations and motion

has been analysed in detail. A very incomplete list of references includes [42–55].

Here we specify several results that are closely related to this model. In [44–46]

the authors have found that a single spike in a one-dimensional Gray-Scott model can

undergo destabilizing oscillations in either its height or position. The height oscillations

happen on a much faster timescale when compared to the position oscillations. Which

instability is triggered first depends on the value of the feed-rate A representing the

amount of the substrate chemical that is being pumped into the system. Typically,

height oscillations were triggered at lower feed rates than the position oscillations.

Periodic spike motion in one dimensional GS model was further investigated in [54].

In one-dimensional domain, there has been much work over the past decade

in analyzing the stability, dynamics, and self-replication of spike patterns for the

Schakenberg model and related models with similar structure. The stability problem

for equilibrium spike patterns in infinite domain has been studied in [51] and [48]

following earlier work on Gierer-Meinhardt model [56]. In [57], the authors studied

Hopf bifurcations and oscillatory instabilities of spike solutions of Gierer-Meinhardt

model for various ranges of the reaction-time constant. For a recent summary on

pattern formation in GM model, see [58] and references therein. A detailed study of

self-replication, overcrowding instability, and spike height and position oscillations

for the Gray-Scott model is conducted in [43–46, 54, 59]. Self-replication in slowly

growing domains was also studied in [60] and [61].

In two dimensions, Muratov and Osipov [47] were among the first to study the

Gray-Scott model, including self-replication thresholds. Wei and Winter [49] reviewed

analytical methods for a rigorous study of the existence and stability of stationary,

multiple spots for reaction-diffusion systems and considered two classes of reaction-

diffusion systems: activator-inhibitor systems (such as the Gierer-Meinhardt system)

and activator-substrate systems (such as the Gray-Scott system or the Schnakenberg

model). In [50], spot replication for the Schnakenberg model was studied. In [53],

the authors studied multi-spot patterns including competition, spot motion, and
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self-replication, for the related Gray-Scott model.

In three dimension context, only the limiting shadow problem, derived from the

large inhibitor diffusivity limit, has been analyzed previously (cf. [62, 63]).

• Dynamics of vortices in a trapped Bose-Einstein condensate

Theoretical and experimental studies on vortices in rotating Bose-Einstein condensate

has attracted great interest in the past 20 years, see, e.g., [78], the review [79] and

the monograph [80] where extensive lists of references can be found. In most of the

theoretical research, the GP model has served to study the emergence and dynamics of

vortices. As an approximation of the quantum mechanical many-body problem, Gross-

Pitaevskii theory was rigorously established in [81] for the non-rotating case and in

[82] for rotating systems. One of the most interesting features observed experimentally

is that when the angular speed gets larger, the number of vortices increases and they

arrange themselves in a regular pattern around the center of the condensate [83, 84].

It is natural to explore the mechanism of this behavior mathematically. Under the

framework of GP theory, the critical angular velocity was rigorously computed in

[85, 86] and the distribution of the first few vortices to appear in the condensate in

the condensate was studied in [87]. Another striking observation in the experiment

is that the vortex lattices seem to be homogeneous when the matter density profile

of the condensate imposed by the trap is not homogeneous [88, 89]. The relation

between the matter density and the vortex density has been formulated and answered

by [90, 91] based on formal argument. Then the author rigorously proved in [92]

that the vortex distribution is strongly inhomogeneous close to the critical speed and

gradually homogenizes when the rotation speed is increased.

There have been two approaches to the dynamics of vortices in an trapped con-

densate. The first approach is direct, it relies on the fact that GP equation is the

Euler-Lagrange equation for the time-dependent Lagrangian functional under varia-

tion of the wave function. If the condensate wave function depends on one or more

parameters, the resulting Lagrangian functional provides approximate Lagrangian

equations of motion for these parameters [93]. Another approach is to study GP

equation itself. Due to the two length scale in the problem: the size of vortex core and

the inter-vortex distance, it is possible to employ the method of matched asymptotics
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[94–97]. However, most of the literature focuses on the dynamics of one vortex with

an isotropic potential and give a qualitative result about several vortices.



Chapter 2

Oscillation of Many Interfaces in the Near-shadow Regime of

Two Component Reaction-diffusion System

The results in this chapter have appeared in [19]. We consider the following class of

one-dimensional reaction diffusion systems:{
ut = ε2uxx + f(u,w)

τD
ϵ
wt = Dwxx + g(u,w)

. (2.1)

We are concerned with the regime:

ε≪ 1, D ≫ 1.

Suppose that there exists a constant w0 and two constants u+ ̸= u− such that

boundary value problem

U0yy + f(U0, w0) = 0 (2.2)

U0(y) → u± as y → ∓∞ (2.3)

admits a solution. Then U0(−y) also solves (2.2). The required conditions are that

u± and w0 must satisfy∫ u+

u−

f(u,w0)du = 0, f(u+, w0) = 0 = f(u−, w0), (2.4)

with u+ ̸= u−. To be concrete, consider the following system of the general form (2.1),{
ut = ε2uxx + 2(u− u3) + w

τ0
D
ε
wt = Dwxx − u+ β

. (2.5)

For this special case of f and g, we may choose w0 = 0, u± = ±1, U0(y) = − tanh(y).

As was shown in [41], this system has a solution in the form of a single interface

on a unit interval x ∈ [0, 1] with u(x, t) ∼ tanh((l(t) − x)/ε) ; w ∼ 0, where

10
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Figure 2.1: Simulation of the cubic model (2.5) with initial conditions consisting of four
interfaces. Different initial conditions have been used to conduct the simulation and all
of them show the same qualitative behaviours. Parameters are ε = 0.01, D = 50, β = 0
and with τ0 as indicated. The red lines show the locations of interfaces corresponding
to the roots of u = 0. The areas denoted by + and - correspond to the regions where
u ≈ ±1, respectively. The dotted lines correspond to the envelope computation of the
interface locations as derived in section §2.3. (a) With τ0 = 0.3, oscillations eventually
die out and four interfaces settle to a steady state. (b) With τ0 = 1, four interfaces
eventually oscillate in synchrony. (c) With τ0 = 3, the oscillations increase until the
interfaces collide resulting in the constant solution u = −1 thereafter. Asymptotics
correctly predict the time of collision.

the interface location l oscillates according to the formula l (t) = (1 + β)/2 +

A (εD−1t) cos(
√

3/τ0εD
−1/2t+ ϕ0) where the envelope A satisfies

A′(εD−1t) =

(
1

4
(1 − 3β2) − 1

8τ0

)
A− 3

4
A3.

Our goal in the chapter is to extend this computation to multiple interfaces. Our

main conclusion is succinctly summarized as follows.

Main Result. After the transients die out, the dynamics of n interfaces on the

domain of size n follow the dynamics of a single interface on the domain of size one,

copied over n times using even reflections.

Figure 2.1(b) illustrates this conclusion. At the start, the four interfaces are
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unevenly distributed. However they synchronize after a transient period, forming

two phase-locked “breathers”. In the case of two interfaces, this result was already

obtained in [41].

In § 2.1, we derive the moving boundary problem from [41].

In § 2.2, we conduct an analysis about the reduced system for n interfaces and

reach our main conclusion.

In § 2.3, we give a autonomous dynamic system to describe the the motion of n

interfaces.

2.1 The Derivation of a Moving Boundary Problem

Starting from equation (2.1), we first expand

u = u0 +
1

D
u1 + . . . , w = w0 +

1

D
w1 + . . . .

to obtain

0 = ε2u0xx + f(u0, w0), (2.6)

Du0t = ε2u1xx + fu(u0, w0)u1 + fw(u0, w0)w1, (2.7)

0 = w0xx, (2.8)

τ

ϵ
w1t = w1xx + g(u0, w0) +

1

D
gu(u0, w0)u1 +

1

D
gw(u0, w0)w1. (2.9)

In the subsequent analysis, the time scaling will be chosen in such a way that the term

Du0t is of the same order as the other terms in (2.7). Note that we also kept to O(1/D)

terms here for w1. These are not needed to compute the Hopf bifurcation threshold but

are necessary for envelope calculation. Consider a single interface located at x = ξ(t)

in the domain [0, 1], with u ∼ u+ for 0 < x < ξ and with u ∼ u− for ξ < x < 1. In

the inner region, we have

u0(x, t) = U0

(
x− ξ(t)

ε

)
= U0(y) (2.10)

where U0 is defined (2.2). Multiplying (2.6) by u0x and integrating by parts over the

domain, we obtain

− ξ′(t)

∫ 1

0

u20xdx =
1

D

∫ 1

0

fww1u0xdx. (2.11)
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where we neglected the exponentially small boundary terms. In the inner variables,

we approximate w1 ∼ w1(ξ). After rearranging, we now have an equation for the

dynamics of the interface

ξt =
ε

D

∫ u+

u−
fwdu∫∞

−∞ U2
0ydy

w1(ξ). (2.12)

Away from the interface, we neglect the diffusion term u1xx as well the left hand

side in (2.7), so that

u1 ∼ −fw(u0, w0)

fu(u0, w0)
w1.

and we obtain a moving boundary problem

τ

ϵ
w1t = w1xx + g(x) +

1

D
σ(x)w1 (2.13)

where

g(x) =

{
g(u+, w0), x < ξ

g(u−, w0), x > ξ
,

σ(x) =

⎧⎪⎨⎪⎩
(
gw − fw

fu
gu

)
u=u+,w=w0

, x < ξ(
gw − fw

fu
gu

)
u=u+,w=w0

, x > ξ
.

and with ξ controlled by (2.12). A posterior analysis suggests the following rescaling:

τ = τ0
D

ε

w1 =
√
D

∫∞
−∞ U2

0ydy∫ u+

u−
fwdu

τ0W

t =
τ0
√
D

ε
t̂

which yields the scaled system

Wxx = ε̃(Wt̃ + h(x)) − σ(x)ε̃2W,
d

dt̃
ξ = W (ξ, t̃)

where

ε̃ =
1√
D
, h(x) = −g(x)

∫ u+

u−
fwdu∫∞

−∞ U2
0ydy

τ0.

Dropping the tilde yields the system.⎧⎪⎪⎨⎪⎪⎩
Wxx = ε(Wt + h(x)) − σ(x)ε2W

d
dt
ξ = W (ξ, t)

Wx(0) = Wx(1) = 0

(2.14)
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The reduced system for multiple interfaces is readily to derived in an identical

manner. For the convenience of analysis, we will assume periodic boundary conditions

for multiple interfaces solution. The periodicity requires an even number of interfaces,

n = 2K, so that the value of u to the left of the leftmost interface is the same as its

value to the right of the rightmost interface. However the result also holds for Neumann

boundary conditions (in which case one can have an odd number of interfaces). This

can be seen as follows: take the system that has n interfaces on a bounded interval

with Neumann boundary conditions. Extend the solution using even reflection in

space about either endpoint. Then the resulting system on the domain twice the

size satisfies periodic boundary conditions and has 2n interfaces. We can then apply

our results to the extended system to show that the 2n interfaces behave just like a

single interface in the long-run. Therefore the same is true for the original system of

n interfaces. We can reduce the motion of n interfaces to the following diffusion-type

equation with n moving boundaries:

Wxx = ε(Wt + h(x)) − σ(x)ε2W (2.15a)

d

dt
xi = (−1)iW (xi), i = 1 . . . n, n even (2.15b)

W is periodic on the domain [0, n], (2.15c)

where functions h(x) and σ(x) are piecewise constant, alternating between two values

with jumps precisely at the interface locations xj, as illustrated here for h:

0 4
x

1
x

2
x

3
x

4

h
−

h
+

h
−

h
+

h
−

that is

h =

{
h− for x ∈ (0, x1) ∪ (x2, x3) ∪ . . . ∪ (x2K−2,x2K−1) ∪ (x2K , n)

h+ for x ∈ (x1, x2) ∪ (x3,x4) . . . ∪ (x2K−1,x2K)

and similarly for σ. Note that the ε and t in (2.15) are not the same as the ε and t in

(2.1). The n moving boundaries xi represent interface locations ordered in increasing

order. For the basic model (2.5), these functions are given by

h± =
3

2
τ0 (±1 + β) ; σ+ = σ− = −1

4
;
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In [25], the authors took a similar approach of reducing the dynamics of a single

interface to a free-boundary problem similar to (2.14). By solving this problem

numerically (assuming piecewise-linear nonlinearities f, g, but without assuming

that D is large), they also found that it can capture oscillatory dynamics of the

interfaces. The authors also computed the eigenvalues of the associated linear problem

analytically, showing directly the existence of the Hopf bifurcation. In a related work

[36], the authors studied the motion of two interfaces for piecewise-linear nonlinearities

f, g and without assiming large D. They showed the possibility of in-sync oscillations

when the interfaces are very close to each other.

2.2 Long Time Behaviour of N Interfaces

In this section, we prove the main conclusion about n interfaces dynamics:

Proposition 2.2.1 Consider the system (2.15) with n = 2K interfaces and with

ε ≪ 1. Suppose that the interface locations xi never cross each-other. Then in the

limit t≫ 1, we have:

x2j−1 ∼ −A cos (ω(t+ ϕ)) + (2j − 2) − l0 + x0, j = 1 . . . K

x2j ∼ A cos (ω(t+ ϕ)) + (2j − 2) + l0 + x0, j = 1 . . . K

where:

l0 = −h−/(h+ − h−)

and A is the stable equilibrium of the ODE

dA

ds
= −A

3

4
−
(

1

6
− l0 + l20 +

σ− + (σ+ − σ−) l0
2

)
A. (2.16)

The proof of Theorem 2.2.1 is given in the following subsection. It depends lemmas

2.2.2 and 2.2.4 whose proofs are also given there, as well as lemma 2.2.3 previously

proven in [41].

The proof of Theorem 2.2.1 is a direct consequence of the following two lemmas.

Lemma 2.2.2 Consider the system (2.15). Suppose that the interface locations xj(t)

never collide. Suppose that they are ordered in the increasing order 0 < x1 < x2 <

. . . < x2K < 2K. Define

m1 =
x1 + x2

2
, m2 =

x3 + x4
2

, . . . , mK =
x2K−1 + x2K

2
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and similarly, define

m̂1 =
x2 + x3

2
, m̂2 =

x4 + x5
2

, . . . m̂K =
x2K + (x1 + 2K)

2

Then in the limit t→ ∞, we have the following properties:

mj+1 −mj → 2 as t→ ∞, j = 1 . . . K − 1 (2.17)

m̂j+1 − m̂j → 2 as t→ ∞, j = 1 . . . K − 1. (2.18)

Lemma 2.2.3 Consider the system

Wxx = ε(wt + h(x; ξ)) − ε2σ(x; ξ)w (2.19a)

d

dt
ξ(t) = W (ξ, t) (2.19b)

Wx = 0 at x = 0, and x = 1 (2.19c)

h(x; ξ) =

{
h+ if 0 < x < ξ

h− if ξ < x < 1
; σ(x; ξ) =

{
σ+ if 0 < x < ξ

σ− if ξ < x < 1
. (2.19d)

In the limit ε→ 0, the system (2.15) has solution of the form

ξ(t) ∼ A(s) cos (ωt+ ϕ0) + l0

where

s = εt

ω =
√
h+ − h−;

l0 = −h−/(h+ − h−)

and A satisfies

As = −A
3

4
−
(

1

6
− l0 + l20 +

σ− + (σ+ − σ−) l0
2

)
A. (2.20)

Lemma 2.2.3 was proven in [41]; for completeness and reader’s convenience, we

include a slightly different derivation. We first prove Theorem 2.2.1 followed by the

proof of Lemma 2.2.3 and 2.2.2.

Proof of Theorem 2.2.1. For reader’s convenience, we will give the proof for

four interfaces here; the proof is similar for 2K interfaces.
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By lemma 2.2.2, there exist constants c0 and c1 such that for large t we have:

x1(t) + x2(t) ∼ 2c0 + 2 (2.21)

x2(t) + x3(t) ∼ 2c1 + 4 (2.22)

x3(t) + x4(t) ∼ 2c0 + 6 (2.23)

x4(t) + x1(t) ∼ 2c1 + 4. (2.24)

Taking (2.21)-(2.22)+(2.23)-(2.24) we obtain

c0 = c1.

By shifting xj we may assume without loss of generality that c0 = c1 = 0. The

resulting linear system (2.21-2.24) has a one-dimensional null space and its solution is

parameterized by a free parameter ξ and may be written as

x1(t) ∼ 1 − ξ(t), x2(t) ∼ 1 + ξ(t),

x3(t) ∼ 3 − ξ(t), x4(t) ∼ 3 + ξ(t).

This implies that the solution is an even periodic extension of the interval of size one

copied over n times; in particular u is even around x = 1, 2, 3, . . . n− 1. Therefore the

solution in this regime is equivalent to an oscillation of a single interface on domain of

size one with Neumann boundary conditions. This is precisely the situation captured

by lemma 2.2.3, which concludes the proof. ■

Proof of lemma 2.2.3

We perform multiple scale analysis on (2.19). Introduce a slow-time scale

s = εt, w = W (x, t, s), ξ = ξ(t, s)

Expand

W = W0 +W1δ +W2δ
2 . . .

First, we expand

H(ξ − x) = H(ξ0 + εξ1 − x) = H(ξ0 − x) + εξ1δ(ξ0 − x) +O(ε2)

where δ is the delta function. We therefore obtain

W0xx = 0 (2.25)

W1xx = W0t + c+ dH(ξ0 − x) (2.26)

W2xx = W1t +W0s + ξ1dδ(x0 − x) − σW0 (2.27)
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Similarly, expanding (2.19b) we obtain

ξ0t = W0(ξ0, t, s) (2.28)

ξ1t + ξ0s = ξ1W0x(ξ0, t, s) +W1(ξ0, t, s) (2.29)

Equation (2.25) along with the boundary conditions W0x = 0 at x = 0, 1 yields

W0(x, t, s) = W0(t, s).

Integrating equation (2.26) and using Neumann boundary conditions yields

W0t + c+ dξ0 = 0

so that the leading-order behaviour is

W0t = −c− dξ0; ξ0t = W0 (2.30)

which is a harmonic oscillator assuming d > 0, whose solution is given by

ξ0 = l0 + A(s) sin (ωt+ Φ) ,

W0 = ωA(s) cos (ωt+ Φ)

where we defined

l0 := −c/d; ω2 := d.

Substituting (2.30) into (2.26), W1 satisfies

W1xx = d (H(ξ0 − x) − ξ0) .

The solution to W1 is then given by

W1 = dF (x) + V (t) (2.31)

where F is the solution to ⎧⎪⎪⎨⎪⎪⎩
Fxx = H(ξ0 − x) − ξ0,

Fx(0) = 0 = Fx(1),∫ 1

0
F (x)dx = 0.

Explicitly we obtain

F =

{
− ξ0(x−1)2

2
+

ξ0−ξ20
2

+ A, x > ξ0
(1−ξ0)

2
x2 + A, x < ξ0

, where A :=
ξ0(2 − ξ0)(ξ0 − 1)

6
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and evaluating at x = ξ0 we have

F (ξ0) =
1

3
ξ0 (2ξ0 − 1) (1 − ξ0). (2.32)

Substituting (2.31 2.32), into (2.27) and integrating for x = 0 . . . 1 we obtain

0 = Vt +W0s + ξ1d− σ̂W0 (2.33)

where

σ̂ = (σ+ − σ−) ξ0 + σ− (2.34)

and (2.29) simplifies to

ξ1t + ξ0s = dF (ξ0) + V. (2.35)

Eliminating V and Vt from (2.33) and (2.35) yields

ξ1tt + ω2ξ1 = dF ′(ξ0)ξ
′
0 − 2W0s + {(σ+ − σ−) ξ0 + σ−}W0

where ω2 := d, so that

ξ1tt + ω2ξ1 = d (F (ξ0))t − ω [(2As − {(σ+ − σ−) ξ0 + σ−}A) cos (ωt+ Φ) − 2AΦs sin (ωt+ Φ)]

(2.36)

Multiplying both sides of (2.36) by sin(ωt+ Φ) and integrating on t = 0 . . . 2π/ω we

obtain AΦs = 0. Similarly, multiplying (2.36) by cos (ωt+ Φ) we obtain∫ 2π/ω

0

d (F (ξ0))t cos (ωt+ Φ) dt = ωd

∫ 2π/ω

0

F (ξ0) sin (ωt+ Φ) dt

= −πA
3

2
− π

3

(
1 − 6l0 + 6l20

)
A

= π [(2As − (σ− + (σ+ − σ−) l0)A)]

so that

As = −A
3

4
−
(

1

6
− l0 + l20 +

(σ− + (σ+ − σ−) l0)

2

)
A. (2.37)

Proof of Lemma 2.2.2. Define

li =
x2i − x2i−1

2
, i = 1 . . . K (2.38)
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and define a symmetric unit box of size 2l to be

B(x; l) =
1

2
(H(x− l) +H(l − x)) =

{
1 if |x| < l

0 if |x| > l

(where H is the Heaviside function) so that we may write h(x) as

h(x) = c+ d

n/2∑
j=1

B(x−mj, lj), where d = h+ − h−, c = h−. (2.39)

We perform multiple scales analysis. Introduce a slow-time scale

s = εt, w = W (x, t, s), ξj = ξj(t, s)

and expand

W (x, t) = W0 +W1ε+W2ε
2 . . .

and

xj = ξj + εηj + . . .

Expanding h to two orders, we have

h(x) = h0(x) + εh1(x)

where h0 is as given by (2.39) but with ξj replaced by ξj0, and

h1(x) =
∑

(−1)j dηjδ(x− ξj)

where δ is the delta function. We therefore obtain

W0xx = 0 (2.40)

W1xx = W0t + h0(x) (2.41)

W2xx = W1t +W0s + h1(x) − σW0 (2.42)

Similarly, expanding (2.15c) we obtain

ξjt = (−1)j W0(ξj, t, s) (2.43)

ηjt + ξjs = (−1)j ηjW0x(ξj, t, s) + (−1)j W1(ξj, t, s). (2.44)

From (2.40) and periodicity, W0 is independent of x :

W0(x, t, s) = W0(t, s)
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so that (2.43, 2.44) becomes

ξjt = (−1)j W0(t, s); ηjt + ξjs = (−1)j W1(ξj, t, s). (2.45)

Integrating (2.26) assuming periodic b.c. we get

W0t = − 1

n

∫ n

0

h0(x)dx = −c− d

n

n∑
j=1

(−1)j ξj. (2.46)

This suggests that we define a new variable

Y = c+
d

L

n∑
j=1

(−1)j ξj.

From (2.45) and (2.46) we then obtain

Yt = ω2W0; W0t = −Y where ω :=
√
d.

From this we obtain

W0 = A (s)ω cos (ωt+ Φ (s)) ; Y = A (s)ω2 sin(ωt+ Φ (s))

We can therefore write

ξj = (−1)j A(s) sin (ωt+ Φ(s)) +Bj(s)

with an additional algebraic constraint

0 = c+
d

L

n∑
j=1

(−1)j Bj.

Next let’s compute W1. We have

W1xx = h0 −
1

L

∫ L

0

h0, W1 periodic on [0, L] (2.47)

Define F̂ (x; l, L) to be the unique periodic solution to the equation

F̂xx = B(x, l) − 1

L

∫ L/2

−L/2

B(x, l)dx inside [−L/2, L/2];∫ L/2

−L/2

F̂ (x)dx = 0 and F̂ is periodic on [−L/2, L/2].
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Direct computations show that

F̂ (x; l, L) =

⎧⎪⎪⎨⎪⎪⎩
−1

6
l
L

(L− l) (L− 2l) + (1
2
− l

L
)x2, |x| < l

−1
6

l
L

(L− l) (L− 2l) +
(
− l

L
x2 + l |x| − l2

2

)
, l < |x| < L

2

F̂ (mod(x+ L
2
, L) − L

2
, l, L) otherwise

.

(2.48)

Next define

F (x; ξ1 . . . ξn) =

n/2∑
j=1

F̂ (x−mj, lj, L) (2.49)

so that

W1 = dF (x) +R(t, s)

and

ηjt + ξjs = (−1)j (dF (x) +R(t, s)) .

First, assume n = 4.. We expand (with a slight abuse of notation)

mj = mj + εMj + . . .

lj = lj + εΛj + . . .

Then

m1s +M1t =
d

2
[F (ξ2) − F (ξ1)] ;

m2s +M2t =
d

2
[F (ξ4) − F (ξ3)] .

We now explicitly compute these expressions. Recall that

ξ1 = m1 − l1; ξ2 = m1 + l1

ξ3 = m2 + l2; ξ4 = m2 − l2

and we compute

F (ξ1) = F̂ (−l1, l1, 4) + F̂ (m1 −m2 − l1, l2, 4)

= F̂ (l1, l1, 4) + F̂ (m2 −m1 + l1, l2, 4)

F (ξ2) = F̂ (−l1, l1, 4) + F̂ (m1 −m2 + l1, l2, 4)

= F̂ (l1, l1, 4) + F̂ (m2 −m1 − l1, l2, 4)
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From (2.48), note that

F̂ (x− a, l, L) − F̂ (x+ a, l, L) = la

(
2 − 4

L
x

)
provided that l < x± a < L,

from which it follows that

F (ξ2) − F (ξ1) = l2l1 (m2 −m1 − 2) .

Similarly,

F (ξ3) = F̂ (m2 −m1 − l2, l1, 4) + F̂ (l2, l2, 4)

F (ξ4) = F̂ (m2 −m1 + l2, l1, 4) + F̂ (l2, l2, 4)

so that

F (ξ4) − F (ξ3) = l1l2 (2 − (m2 −m1)) .

Change variables,

m1 = 1 + y1; m2 = 3 + y2

so that

y1s +M ′
1t =

d

2
l2l1 (y2 − y1) ;

y2s +M ′
2t =

d

2
l1l2 (y1 − y2) .

More generally, for n = 2K interfaces, we change variables mj = 2j − 1 + yj, j =

1 . . . K to obtain: ⎛⎜⎜⎜⎜⎜⎝
y1s +M1t

y2s +M2t

. . .

yKs +MKt

⎞⎟⎟⎟⎟⎟⎠ =
d

K
M

⎛⎜⎜⎜⎜⎜⎝
y1

y2

. . .

yK

⎞⎟⎟⎟⎟⎟⎠ ,

M =

⎛⎜⎜⎜⎜⎜⎝
− (l1l2 + l1l3 + . . . l1lK) l1l2 . . . l1lK

l2l1 − (l2l1 + l2l3 + . . . l1lK) . . . l2lK
...

...

lK l1 . . . lK lK−1 − (lK l1 + lK l3 + . . . lK lK−1)

⎞⎟⎟⎟⎟⎟⎠ .
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Integrating each equation from 0 to 2π/ω this yields⎛⎜⎜⎜⎜⎜⎝
y1s

y2s

. . .

yKs

⎞⎟⎟⎟⎟⎟⎠ = M̃(s)

⎛⎜⎜⎜⎜⎜⎝
y1

y2

. . .

yK

⎞⎟⎟⎟⎟⎟⎠
where M̃ij(s) = 1

2π/ω
d
K

∫ 2π/ω

0
Mij(s, t)dt. Note that assuming lj > 0 for j = 1 . . . K,

each off-diagonal entry of M̃ is positive. It follows by Lemma 2.2.4 below that yj → ȳ

as t → ∞, where ȳ = 1
K

∑K
j yj. This shows the formula (2.17) of lemma 2.2.2. To

show formula (2.18), apply exactly the same argument after shifting all of the indices

by one (so that x1 becomes x2, x2 becomes x3 ... and xn becomes x1). ■

It remains to show the following lemma.

Lemma 2.2.4 Let A(t) be an K ×K matrix with the following properties:

(a) There exists a constant m such that Aij(t) ≥ m for all t ≥ 0 and for all

off-diagonal entries i ̸= j;

(b) A is symmetric;

(c) Aii(t) = −
∑

j ̸=iAij(t).

Suppose that y solves

y′(t) = A(t)y(t). (2.50)

Then y(t) → ȳ1 as t → ∞, where ȳ is the average ȳ = 1
K

∑K
j=1 yj(0), and 1 =

(1, 1, . . . 1)T . More precisely, there there exists a constant C such that

|y(t) − ȳ1| ≤ Ce−mKt for all t ≥ 0 (2.51)

Proof. First, note that that y(t) = c1 is a solution to (2.50) for any constant

c, since A admits an eigenvalue of zero whose corresponding eigenvector is 1. Let

z(t) = y(t)− ȳ1 where ȳ = 1
K

∑K
j=1 yj(0). Then z also satisfies z′ = Az with

∑
zi = 0.

Multiply both sides by zT on the left to obtain:

(
|z|2
)′

= 2zTAz.
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Next we claim that zTAz ≤ −mK |z|2 . To see this we have

zTAz = −1

2

∑
i

∑
j

Aij (zj − zi)
2

≤ −m
2

∑
i

∑
j

(zj − zi)
2

= −m
2

∑
i

∑
j

(
z2j + z2i − 2zizj

)
= −m

2

[
2K
∑
i

z2i − 2
∑
i

zi

(∑
j

zj

)]
= −mK |z|2

so that
(
|z|2
)′ ≤ −2mK |z|2 . By Gronwall’s inequality, it follows that |z|2 ≤ Ce−2mKt

which is shows (2.51). ■

2.3 Dynamics of 2K Interfaces

Following the proof of the Lemma 2.2.2, we start from the following reduced system:

W0 = A (s)ω cos (ωt+ Φ (s)) (2.52)

Y = A (s)ω2 sin(ωt+ Φ (s)) (2.53)

ξj = (−1)j A(s) sin (ωt+ Φ(s)) +Bj(s) (2.54)

W1 = dF (x) +R(t, s) (2.55)

ηjt + ξjs = (−1)j (dF (ξj) +R(t, s)) (2.56)

2K (Rt +W0s) −W0

∫ 2K

0

σ(x)dx+
∑

(−1)j dηj = 0 (2.57)

Define

Y1 =

∑2K
j=1 (−1)j ηj

2K
.

Then Y1 satisfies

Y1t +

∑
(−1)jξjs
2K

=
d
∑2K

j=1 F (ξj)

2K
+R(s, t). (2.58)

Notice that Y = c+ d
2K

∑
(−1)jξj, which implies

∑
(−1)jξjs
2K

= Ys

d
, thus

Y1t +
Ys
d

=
d
∑2K

j=1 F (ξj)

2K
+R(s, t) (2.59)
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and ∫ 2K

0
σ(x)dx

2K
= (σ+ − σ−)

∑2K
1 (−1)jξj

2K
+ σ− = (σ+ − σ−)

Y − c

d
+ σ− (2.60)

Taking the derivative of (2.59) and combining it with (2.57), we obtain:

Y1tt + ω2Y1 =
d
∑2K

j=1 Fx(ξj)ξjt

2K
− Yst

d
−W0s +

W0

∫ 2K

0
σ(x)dx

2K
(2.61)

and also from (2.56), we obtain

R(t, s) = Y1t +
Ys
d

−
d
∑2K

j=1 F (ξj)

2K
.

Plugging it back into (2.56), we otain

ηjt + ξjs = (−1)j
(
dF (ξj) + Y1t +

Ys
d

−
d
∑2K

j=1 F (ξj)

2K

)
. (2.62)

Multiplying both sides of (2.61) by sin(ωt+ Φ) and integrating on t = 0 . . . 2π/ω we

obtain AΦs = 0. Similarly, multiplying (2.61) by cos (ωt+ Φ), we obtain∫ 2π/ω

0

(
d
∑2K

j=1 Fx(ξj)ξjt

2K
− Yst

d
−W0s +

W0

∫ 2K

0
σ(x)dx

2K

)
cos (ωt+ Φ) = 0 (2.63)

Integrating (2.62) on t = 0 . . . 2π/ω we obtain

Bjs = (−1)j
∫ 2π/ω

0

(
dF (ξj) +

Ys
d

−
d
∑2K

j=1 F (ξj)

2K

)
(2.64)

Now we have the reduced ODE systems to describe the evolution of the envelope:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W0 = A (s)ω cos (ωt+ Φ (s))

Y = A (s)ω2 sin(ωt+ Φ (s))

ξj = (−1)j A(s) sin (ωt+ Φ(s)) +Bj(s)∫ 2π/ω

0

(
d
∑2K

j=1 Fx(ξj)ξjt

2K
− Yst

d
−W0s + ( (σ

+−σ−)(Y−c)
d

+ σ−)W0

)
cos (ωt+ Φ) = 0

Bjs = (−1)j
∫ 2π/ω

0

(
dF (ξj) + Ys

d
− d

∑2K
j=1 F (ξj)

2K

)
0 = c+ d

2K

∑2K
j=1 (−1)j Bj

(2.65)

We used Maple to evaluate these integrals for the particular case of four interfaces,

resulting in a set of ODE’s for Bj and A. The right-hand side of each of these equations

involves a cubic polynomial in Bj and A with over 40 terms. These ODE’s were then

integrated numerically. The resulting numerical solution is shown using dotted lines

in Figure 2.1.
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2.4 Discussion

In this chapter we established that, the behaviour of n interfaces for the two-component

near-shadow system (2.1) on the domain of size n is fully described by a single interface

on the domain of size one. In particular, n interfaces are stable if and only if a single

interface is. In fact, one of the following three scenarios give a complete list of possible

behaviours:

1. Some interfaces eventually cross each other, leading to annihilation of the two

interfaces (Fig2(c)).

2. 2K interfaces eventually reach a steady state (Fig 2(a)).

3. 2K interfaces oscillate indefinitely. The long-time dynamics consist of K

“breathers” (see Fig 2(b)) that oscillate synchronously (in-phase).

Unlike some other literature e.g. [36, 98] which shows the presence of oscillations as a

result of a Hopf bifurcation of the ground state, our results are more “global” as they

do not rely on linearization around the steady state. For instance, our results hold

even far from the Hopf bifurcation point. In particular, it shows that even if both

in-phase and out-of-phase modes become linearly unstable, the solution with two or

more interfaces will converge to the in-phase mode. The situation can much richer if

D is not assumed to be large in (2.1) [36], or for systems consisting of more than two

equations, such as two competing species mediated by a predator [99], or a system with

one activator and two inhibitors [39]. In [36], both in-phase as well as out-of-phase

oscillations of two interfaces were observed and analysed for a two-component system

with piece-wise linear nonlinearities, and with D = O(1). Out-of-phase oscillations

were found when the two interfaces were close to each-other. In [39], in addition to

synchronous and asynchronous oscillations, the authors found regimes where chaotic

oscillations of two interfaces was observed. An interesting open question we would work

on is whether the multiple-scales type methods can be applied to the three-component

system in some sub-regime, and if so, what kind of envelope equations can be. Figure

2.2 shows the wigging behaviour of 2 interfaces in the following cubic model with 3
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Figure 2.2: (a) cubic model with three components, starting with u = tanh( (x+0.3)
ε

) −
tanh( (x−0.4)

ε
) − 1. Time evolution of u is shown. The parameter values are ε =

0.01, D = 10, τ = 16000. The domain size is 2 with Neumann boundary condition
for both u and w. (b) The middle point of 2 interfaces

components. ⎧⎪⎪⎨⎪⎪⎩
ut = ε2uxx + 2(u− u3) − v − w

τDvt = Dvxx + u

w =
∫ 1

−1
u(x, t)dx

(2.66)



Chapter 3

Moving and Jumping Spot in a Two Dimensional

Reaction-diffusion Model

The results in this chapter have appeared in [20]. We will use the following scaling of

the Schankenberg model

vt = ε2∆v − v + v2u, τut = ∆u+ A− v2u

ε2
inside Ω ⊂ R2; (3.1)

subjected to the Neumann Boundary condition ∂nv = ∂nu = 0 on ∂Ω. Throughout

this chapter, we assume Ω to be a unit disk,

Ω is a unit disk; Ω =
{
x ∈ R2 : |x| < 1

}
, (3.2)

although some of our results can be extended to more general domains.

Here, ε ≪ 1, A > 0 and τ > 0, represent diffusivity, the feed-rate and the

reaction-time constant respectively. The equations model the following process: the

fast-diffusing substrate u is consumed by a slowly diffusing activator v, which decays

in time. The substrate is being pumped into the system at a constant rate, represented

by parameter A. The reaction kinetics for u and v occur at different scales (depending

on the choice of τ). Of particular interest to us will be the regime where τ is very

large, so that u reacts much slower than v. As we will show, the oscillatory instabilities

(both for spike height and positions) are triggered when τ is very large.

In this chapter we consider the effect of increasing the parameter τ on a single spot

at the center of the unit disk. The associated linearized eigenvalue problem has eigen-

functions of the form ϕ(r)eimθ in the polar coordinates. Due to underlying translational

invariance, the eignvalues corresponding to mode m = ±1 are asymptotically small as

ε→ 0 and their instability induces a slow (possibly periodic) motion of the spot. We

refer to these eigenvalues as small eigenvalues. All other eigenvalues are referred to as

large eigenvalues. The mode m = 0 corresponds to purely radial perturbations and its

instability can induce spike oscillation or collapse, whereas the instability with respect

29
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Figure 3.1: Two types of dynamics of a single spike solution of the Schnakenberg
model. Top row: height oscillations on O(1) timescale. Three snapshots of v(x, t) are
shown at times as indicated. Parameters are ε = 0.03, A = 1, τ = 0.07. Top right
shows the height of the spike as a function of time. The spike remains at the center
of the disk. Bottom row: periodic motion of the spot on a slow timescale. Three
snapshots of u(x, t) are shown. Bottom right shows the trajectory of the spot center.
Parameters are ε = 0.02, A = 8, τ = 0.15/ε2. Dashed line shows the asymptotic
prediction for the spot trajectory (Proposition 3.7.1)
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Figure 3.2: (a) Hopf bifurcations values for height and position oscillations (τh,large and
τh,small, respectively), as a function of A, and with ε = 0.02. Theoretical predictions
given by Propositions 3.3.1 and 3.4.1 are also shown. The intersection of τh,large and
τh,small is denoted by Ac. (b) Comparison between the asymptotic value of Ac given
by (3.3) and the numerically computed value for several small ε.

to mode m = 2 eigenvalues triggers self-replication [47, 50, 53, 100]. Here, we only

concentrate on modes m = 0, 1 since τ does not appear to trigger instability of the

higher modes.

Two different types of instabilities can be triggered when τ is sufficiently increased

as illustrated in Figure 3.1: either large or small eigenvalues can undergo a Hopf

bifurcation. The former instability triggers height oscillations, whereas the latter

triggers slow translational instabilities in spike position, inducing (typically periodic)

spike motion. Which one is triggered first depends on values of ε and A.

Our main task is to classify precisely for which parameters A and ε does the spike

motion (as opposed to height oscillations) occur when τ is increased sufficiently? In

§3.6 (Proposition 3.6.1) we give a concise characterisation in terms of the following

threshold. Let

Ac ∼
6.283√

log

{
(log

1

ε
)1.010 − 0.1433

} . (3.3)
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In the limit ε → 0, for values of A bigger than Ac, spike motion is observed as τ is

sufficiently increased, whereas when A < Ac, increasing τ triggers height oscillations.

This threshold follows from computing the thresholds τh,large and τh,small, corresponding

to the Hopf bifurcation points for small and large eigenvalues, respectively. This is

done in §3.3, and §3.4 to obtain

τh,large ∼
19.929

A2ε2
exp

(
−39.474

A2

)
; τh,small ∼

1

ε2A2

19.737

log 1
ε
− 0.1419

(3.4)

in the critical regime O
(

1
log 1/ε

)
≪ A2 ≪ O(1). In fact the threshold (3.3) is obtained

from (3.4) by simply setting τh,large = τh,small.

The threshold (3.3) has a striking log log scaling. Despite such a slow convergence

rate, remarkably it agrees relatively well with numerical experiments even when

ε = 0.01 (see Figure 3.2).

In §3.7 we analyse what happens beyond the Hopf bifurcation for small eignevalues,

in the regime τh,small < τ < τh,large. In this regime, the spot starts to move and there

exists time-dependent solutions in a form of a rotating spot. We compute the radius

and speed of the rotation in Proposition 3.7.1. By computing the radius of rotation r0

as a function of τ, we find that r0 → 0 as τ → τh,small from above. In other words,

the rotating spot solution bifurcates from a stationary spot as a result of a Hopf

bifurcation. This is illustrated in Figure 3.4. We conclude with numerical experiments

demonstrating even more complex spike motion (see Figure 3.5).

3.1 Equilibrium Solution

We start by reviewing the construction of the equilibrium solution to (3.1) using the

method of matched asymptotic expansions as was previously done in [50]. At the

equilibrium, the steady state satisfies

0 = ε2∆v − v + uv2, 0 = ∆u+ A− uv2

ε2
(3.5)

with Neumann boundary conditions on Ω. We assume that Ω is a unit disk with the

spike located at the center. Near the core of the spike, we rescale:

v(x) = V (y), u(x) = U(y) , y = ε−1x (3.6)
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Then (3.5) becomes

∆yV − V + UV 2 = 0, ∆yU + Aε2 − UV 2 = 0, y ∈ R2.

where ∆y denotes the Laplacian in y. We expand

U = U0 + ε2U1 + · · · , V = V0 + ε2V1 + · · · .

To leading order, we look for a radially symmetric solution given by V0 = V0(ρ)

and U0 = U0(ρ), with ρ = |y|. It satisfies the following coupled nonlinear radially

symmetric “core problem”,

∆ρV0 − V0 + U0V
2
0 = 0, ∆ρU0 − U0V

2
0 = 0, 0 < ρ <∞ (3.7a)

V0 → 0, U0 ∼ S log ρ+ χ(S) as ρ→ ∞. (3.7b)

The core problem (3.7), was first identified in one dimension in [42]. It is closely

related to the phenomenon of self-replicating spots [47, 50, 53].

To determine the source strength S, we integrate the second equation in (3.5) to

obtain

Aπ =

∫
Ω

uv2

ε2
dx ∼

∫
R2

U0V
2
0 dy.

On the other hand integrating the second equation in (3.7a) and using the divergence

theorem, we obtain

2πS =

∫
R2

U0V
2
0 dy

so that

S =
A

2
. (3.8)

In general, the solution to (3.7a) as well as the function χ(S) in (3.7b) must be

computed numerically. This was done for example in [47, 50, 53]. Figure 3.1(b) shows

the function χ(S). However for small S, equations (3.7a) become weakly coupled since

U0 becomes nearly constant and we may estimate the solution to (3.7a) as follows.

Assume that S ≪ 1 and U0(y) ∼ U0 is constant to leading order in S. Then V0, U0

satisfy at leading order,

V0 (y) = w (y)σ; U0(y) = 1/σ (3.9)
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Figure 3.3: (a) Core problem V0, U0 and its asymptotics (Proposition 3.1.1). Good
comparison between numerics and asymptotics (3.9) is observed even for relatively
“large” A = 2. (b) A versus χ. Asymptotics denote the regime A ≪ O(1) given by
χ ≈ 9.868/A.

where w is the unique positive ground-state solution to

∆w − w + w2 = 0; w → 0 as |y| → ∞; (3.10)

and

2πS ∼ σ

∫
w2dy; χ(S) ∼ 1

σ
.

This yields an asymptotic expression

A ∼ 2σ

∫ ∞

0

w2(ρ)ρdρ, S ∼ σ

∫ ∞

0

w2(ρ)ρdρ, χ(S) ∼ 1

σ
. (3.11)

The resulting integral is evaluated numerically in the next section § 3.2. We summarize

this construction as follows.

Proposition 3.1.1 In the limit 0 < ε≪ 1, the leading order steady-state solution to

(3.5) near the origin satisfies

v(x) ∼ V0(y), u(x) ∼ U0(y) , y = ε−1x (3.12)

where V0, U0 satisfy core problem (3.7) and where the constant S is given by (3.8). In

the regime 0 < A≪ O(1), we have the asymptotics

V0(x) ∼ σw(y), y = εx (3.13a)

U0(x) ∼ 1

σ
(3.13b)
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where w (y) is the unique ground state given by (3.10) and where

σ =
1

2
∫∞
0
w2ρdρ

A ≈ A

9.868
≪ 1. (3.13c)

Figure 3.1(b) shows the graph of S versus χ(S), as well as its asymptotic approxi-

mation. While the asymptotics are formally valid in the regime A ≪ 1, they agree

well with full numerics even when A is relatively large. For example when A = 2,

full numerics yield χ ≈ 5.103 whereas formula (3.11) yields σ ≈ 0.2026, χ ≈ 4.934,

for a relative error of only 3%. Note also that this error is independent of ε to

leading order. Figure 3.1(a) gives a comparison between V0(x) and σw(y) with A = 2.

Excellent agreement is observed. This is in part because the effective small parameter

is σ ≈ 0.2 ≪ 1 when A = 2.

3.2 Some Properties of Function w

We start from the ground state w(y) = w (ρ) , ρ = |y| . It satisfies

w′′ +
w′

ρ
− w + w2 = 0, w′(0) = 0, w → 0 as ρ→ ∞ (3.14)

Multipling (3.14) by wρ and w′ρ2 respectively and integrating over the domain yields

−
∫ ∞

0

w2
ρρdρ−

∫ ∞

0

w2ρdρ+

∫ ∞

0

w3ρdρ = 0 (3.15)∫ ∞

0

w2ρdρ− 2

3

∫ ∞

0

w3ρdρ = 0 (3.16)

Combining these two equations leads to∫∞
0
w2

ρρdρ∫∞
0
w3ρdρ

=
1

3
,

∫∞
0
w2ρdρ∫∞

0
w3ρdρ

=
2

3
. (3.17)

Finally, we will use the following numerical estimate:∫ ∞

0

w2ρdρ ≈ 4.9343

It is obtained by solving (3.14) using Matlab’s boundary value problem solver bvp4c,

then using numerical quadrature for the resulting integral.
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3.3 Stability: Large (Mode Zero) Eignevalue

Having constructed the steady state, we now consider its stability. Linearizing around

the steady state in (3.1) we write.

u(x, t) = v(r) + eλtϕ(x), u(x, t) = u(r) + eλtψ(x)

The linearized system of (3.1) then becomes:⎧⎪⎪⎨⎪⎪⎩
λϕ = ε2∆ϕ− ϕ+ v2ψ + 2uvϕ

τλψ = ∆ψ − 1
ε2

(v2ψ + 2uvϕ)
x ∈ Ω

∂nϕ = 0 = ∂nψ x ∈ ∂Ω

(3.18)

In the inner region, we expand

ϕ = eimθ
(
Φ0(ρ) + ε2Φ1(ρ) + · · ·

)
ψ = eimθ

(
Ψ0(ρ) + ε2Ψ1(ρ) + · · ·

)
(3.19)

where ρ = |y| y = ε−1x. Substituting (3.19) into (3.18), then to leading order we

obtain the following radially symmetric eigenvalue problem:

λΦ0 = ∆mΦ0 − Φ0 + V 2
0 Ψ0 + 2U0V0Φ0

0 = ∆mΨ0 − (V 2
0 Ψ0 + 2U0V0Φ0)

(3.20)

Here ∆mΦ0 ≡ ∂ρρΦ0 + ρ−1∂ρΦ0 −m2ρ−2Φ0. and U0, V0 are solutions to (3.7).

Because of the decay term in the equation for Φ0, we assume that Φ0 decays

exponentially for large |y|. On the other hand, the appropriate far-field boundary

condition for Ψ0 depends on whether m = 0 or m ≧ 1.

We begin by considering the mode m = 0. In this case the far-field conditions

for Ψ0 exhibits logarithmic growth, Ψ0 ∼ C log |y| + B, |y| ≫ 1. We can scale the

eigenfunction to set C = 1, so that Ψ0 then satisfies

Ψ0 ∼ ln |y| +B, |y| ≫ 1. (3.21)

By integrating over the equation for Ψ0 and using the Divergence theorem, this

scaling is equivalent to ∫
R2

(
V 2
0 Ψ0 + 2U0V0Φ0

)
= 2π. (3.22)

The constant B is determined by matching to the outer region. Since v is assumed to

decay away from the spike, using (3.22) we have∫
Ω

1

ε2
(
v2ψ + 2uvϕ

)
dx ∼ 2π
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and the outer problem for ψ is

λτψ = ∆ψ − 2πδ(x) inside Ω; ∂nψ = 0 on ∂Ω (3.23)

whose solution is given by

ψ(x) ∼
K ′

0

(√
τλ
)

I ′0

(√
τλ
) I0 (√τλr)−K0

(√
τλr
)
, r = |x| . (3.24)

Expanding for small r we have

ψ(x) ∼ log(r) +
K ′

0(
√
τλ)

I ′0(
√
τλ)

− log(2) + γ + log(
√
λτ) as r → 0

∼ log(|y|) +
K ′

0(
√
τλ)

I ′0(
√
τλ)

+ log

(
eγ

2

√
ε2λτ

)
. (3.25)

Note that the above expansion assumes that
√
τλε ≪ 1. This will be shown to be

self-consistent later on. Then matching (3.21) and (3.25), yields

B =
K ′

0(
√
τλ)

I ′0(
√
τλ)

+ log

(
eγ

2

√
ε2λτ

)
. (3.26)

Together with (3.20), this provides a closed-system which determines the eigenvalue

λ. We summarize this construction:

Proposition 3.3.1 In the limit ε→ 0, the mode-zero eigenvalue λ of the lineraized

problem (3.18) is asymptotic to the eigenvalue problem (3.20) with m = 0 subject to

the outer condition (3.21) where B is given by (3.26), as long as
√
τλε≪ 1.

We now concentrate on the weakly-coupled regime to A ≪ 1 given by (3.13c).

Substitute the steady-state expansion (3.13) into (3.20) to obtain to leading order

λΦ0 = ∆0Φ0 − Φ0 + 2wΦ0 + w2σ2Ψ0

0 = ∆0Ψ0 − (w2σ2Ψ0 + 2wΦ0) .
(3.27)

Rescale Φ0 = σ2Φ̂0 and drop the hat to obtain

λΦ0 = ∆0Φ0 − Φ0 + 2wΦ0 + w2Ψ0

0 = ∆0Ψ0 − σ2 (w2Ψ0 + 2wΦ0) .
(3.28)
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whereas (3.22) becomes ∫
R2

(
w2Ψ0 + 2wΦ0

)
dy = 2πσ−2. (3.29)

In addition, we will assume à-priori that |τλ| ≫ 1 (this self-consistency of this

assumption will be verified at the end). Under this assumption, using the large-

argument expansion of the Bessel functions, the term
K′

0(
√
τλ)

I′0(
√
τλ)

is exponentially small

so that

B ∼ log

(
eγ

2

√
ε2λτ

)
.

Furthermore suppose B ≫ 1. Then we may estimate Ψ0 by a constant,

Ψ0 ∼ log

(
eγ

2

√
ε2λτ

)
.

We further rescale Φ0(y) = −Ψ0Φ(y) which leads to the reduced problem

(L0 − λ)Φ = w2; (3.30a)

−2

∫
wΦ +

∫
w2dx =

2πσ−2

log
(

eγ

2

√
ε2λτ

) . (3.30b)

where the operator L0 is defined by

L0Φ := ∆0Φ − Φ + 2wΦ. (3.31)

One of the key properties of the operator L0 is that

L0w = w2

as can be readily verified using (3.10). This suggests that we seek a Hopf bifurcation

point of (3.30) assuming λ is small. We therefore expand in λ

Φ = w + λΦ1, λ≪ 1 (3.32)

to obtain

Φ1 = L−1
0 (w).

Define

τ0 :=

(
eγ

2

)−2

ε2τ (3.33)
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and assume that λ is purely imaginary,

λ = iλI ; λI ≪ 1.

Then (3.30) becomes

− 2λIi

∫
wL−1

0 (w)dy −
∫
w2dy =

2πσ−2

log
(√

iλIτ0
) . (3.34)

Using the identity

L−1
0 w = w +

1

2
y · ∇w = w +

1

2
ρw′(ρ)

and integrating by parts, we obtain

2

∫
wL−1

0 (w)dy =

∫
w2dy (3.35)

so that (3.34) becomes

log
(√

iλIτ0

)
=

−2πσ−2∫
w2dy

1

λIi+ 1
=

2
∫
w2dy

A2π

(
iλI − 1

λ2I + 1

)
. (3.36)

Equating real and imaginary parts we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2

log (λIτ0) =
2
∫
w2dy

A2π

−1

λ2I + 1

π
4

=
2
∫
w2dy

A2π

λI
λ2I + 1

(3.37)

These equations yields, to leading order in A≪ 1,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λI ∼

π2A2

8
∫
w2dy

τ0 = exp

(
−4
∫
w2dy

A2π

)
8
∫
w2dy

π2A2

, A≪ 1 (3.38)

Using (3.33) we finally obtain the critical value of τ = τh at the Hopf bifurcation point

for large eigenvalue:

τh =
1

A2ε2
exp

(
−4
∫
w2dy

A2π

)
2e2γ

∫
w2dy

π2
.

We made three assumptions in this derivation: (i) λτ ≫ 1; (ii) ε2τλ ≪ 1 and (iii)

λ≪ 1. Assumptions (ii) and (iii) are satisfied since A≪ 1 (see (3.38), (3.33)). On the

other hand, assumption (i) is equivalent to exp
(

−4
∫
w2dy

A2π

)
≫ ε2, or A2 ≫ O

(
1

log ε−1

)
.

In summary, we have:
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Proposition 3.3.2 Suppose that

1

log 1/ε
≪ A2 ≪ 1.

Then the spike solution from Proposition 3.1.1 undergoes a Hopf bifurcation as τ is

increased past τ = τh,large where

τh,large ∼
1

A2ε2
a0 exp

(
−a1
A2

)
(3.39)

and

a0 =
4e2γ

∫∞
0
w2(ρ)ρdρ

π
≈ 19.929, a1 = 8

∫ ∞

0

w2(ρ)ρdρ ≈ 39.474.

3.4 Small Eigenvalues

We study the Hopf bifurcation in the small eigenvalue problem corresponding to the

mode m = 1 in (3.20). A posteriori analysis reveals that the relevant scaling is

λ = λ0ε
2 τ = τ0ε

−2

where λ0 and τ0 are O(1) with respect to ε. The leading order eigenvalue problem is

0 = Φ′′
0 +

1

ρ
Φ′

0 −
1

ρ2
Φ0 − Φ0 + V 2

0 Ψ0 + 2U0V0Φ0 (3.40a)

0 = Ψ′′
0 +

1

ρ
Ψ′

0 −
1

ρ2
Ψ0 −

(
V 2
0 Ψ0 + 2U0V0Φ0

)
(3.40b)

where ρ = |y| = |x| /ε. The solution to (3.40) is given by:

Φ0 =
C

S
V0ρ Ψ0 =

C

S
U0ρ. (3.41)

and satisfies the far field condition given by

Φ0 → 0, Ψ0 ∼
C

ρ
, as ρ→ ∞. (3.42)

The constant C will be obtained through matching to the outer solution. The outer

problem for ψ is

τ0λψ = ∆ψ, r ̸= 0
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subject to
∂ψ

∂r
(1) = 0 and ψ ∼ Cεeiθ

r
as r → 0. This yields an explicit solution

ψ = Cε
√
τ0λ0

(
−K

′
1(
√
τ0λ0)

I ′1(
√
τ0λ0)

I1(
√
τ0λ0r) +K1(

√
τ0λ0r)

)
eiθ. (3.43)

Recall the small-argument expansion for K1 and I1 is given by

K1(z) ∼ 1

z
+

1

2
z (log z + b0) +O(z2 ln z), where b0 = γ − 1

2
− ln 2. (3.44a)

I1(z) ∼ 1

2
z +O(z3) (3.44b)

Writing (3.43) in inner variables r = ρε and using expansions (3.44) we then obtain

ψ ∼
(
C

ρ
+ ε2

1

2
Cτ0λ0ρ

{
log
(√

τ0λ0ρε
)
− K ′

1(
√
τ0λ0)

I ′1(
√
τ0λ0)

+ b0

})
eiθ

∼ eiθ (Ψ0(ρ) + εΨ1(ρ))

The O(1) terms yields the far-field behaviour for Ψ(ρ) given by (3.42). The O(ε2)

terms yield the far-field behaviour for Ψ1(ρ),

Ψ1 ∼
1

2
Cτ0λ0ρ

{
log ρ+ log

(√
τ0λ0ε

)
− K ′

1(
√
τ0λ0)

I ′1(
√
τ0λ0)

+ b0

}
, ρ≫ 1. (3.45)

To determine λ0 requires an expansion at the next order. The steady state satisfies

∆V1 − V1 + 2U0V0V1 + U1V
2
0 = 0, (3.46a)

∆U1 + A− U1V
2
0 − 2U0V0V1 = 0, (3.46b)

and the corresponding eigenvalue problem is

λ0Φ0 = ∆1Φ1 − Φ1 + V 2
0 Ψ1 + 2U0V0Φ1 + 2(V0U1 + U0V1)Φ0 + 2V0V1Ψ0 (3.47a)

τ0λ0Ψ0 = ∆1Ψ1 −
(
V 2
0 Ψ1 + 2U0V0Φ1

)
− 2(V0U1 + U0V1)Φ0 − 2V0V1Ψ0 (3.47b)

subject to the far field condition (3.45).

We express (3.47) in matrix form as

∆1W +MW = Ef1 + f2 , 0 < ρ <∞ (3.48a)

W ∼

(
0,

C1ρ ln |ρ| + C2ρ

)
, as ρ→ ∞ (3.48b)
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where:

M =

(
−1 + 2U0V0 V 2

0

−2U0V0 −V 2
0

)
, E =

(
−2(U0V1 + U1V0) −2V0V1

2(U0V1 + U1V0) 2V0V1

)
, (3.48c)

W =

(
Φ1

Ψ1

)
, f1 =

(
Φ0

Ψ0

)
, f2 =

(
λ0Φ0

τ0λ0Ψ0

)
, (3.48d)

C1 =
1

2
Cτ0λ0, C2 =

1

2
Cτ0λ0

{
log
(√

τ0λ0ε
)
− K ′

1(
√
τ0λ0)

I ′1(
√
τ0λ0)

+ b0

}
. (3.48e)

Let P be the solution of the adjoint problem,

∆1P +M tP = 0 (3.49a)

subjected to the far-field behaviour condition

P ∼

(
0

1
ρ

)
for ρ≫ 1. (3.49b)

We multiply (3.48a) by ρPt and integrate to obtain∫ R

0

Pt (∆1W +M ·W) ρdρ =

∫ R

0

Pt · (Ef1 + f2) ρdρ. (3.50)

Here, R is a big number which we will take to infinity later. Integrating by parts, the

left hand side becomes∫ R

0

Pt (∆1W +M ·W) ρdρ =

(
Pt ·

(
ρ
∂W

∂ρ

)
−
(
ρ
∂Pt

∂ρ

)
·W

)
ρ=R

(3.51)

= (2C1 lnR + 2C2 + C1) (3.52)

To calculate the right hand side of (3.50), we introduce N =
(

∂V1

∂ρ
, ∂U1

∂ρ

)t
. Upon

differentiating the system for V1 and U1 with respect to ρ, we obtain

∆1N +M ·N =

(
−2(U0V0)ρV1 − (V 2

0 )ρU1

2(U0V0)ρV1 + (V 2
0 )ρU1

)
.

The key observation is that

Ef1 =
C

S

(
−2(U0V0)ρV1 − (V 2

0 )ρU1

2(U0V0)ρV1 + (V 2
0 )ρU1

)
=
C

S
(∆1N +M ·N)
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It follows that∫ R

0

Pt · (E · f1) ρdρ =
C

S

∫ R

0

Pt · (∆1N +M ·N) ρdρ

=
C

S

(
Pt ·

(
ρ
∂N

∂ρ

)
−
(
ρ
∂Pt

∂ρ

)
·N
)⏐⏐⏐⏐

ρ=R

= −2C.

Next we simplify ∫ R

0

Pt · f2ρdρ =

∫ R

0

(P1Φ0 + τ0P2Ψ0)λ0ρdρ

and we further compute∫ R

0

τ0P2Ψ0λ0ρdρ =
C

S
τ0P2U0λ0ρ

⏐⏐⏐⏐R
0

− C

S

∫ R

0

τ0(P2ρ)ρU0λ0dρ

=
C

S
τ0λ0 (S log(R) + χ(S)) − C

S

∫ R

0

τ0(P2ρ)ρU0λ0dρ.

In summary, we obtain that the right hand side of (3.50) simplifies to∫ R

0

Pt · (Ef1 + f2) ρdρ = λ0

∫ R

0

P1Φ0ρdρ+ Cτ0λ0 log(R)

+
Cτ0λ0
S

χ(S) − C

S

∫ R

0

τ0(P2ρ)ρU0λ0dρ− 2C. (3.53)

Equating (3.52) and (3.53), note that the logR terms cancel each other out and after

factoring out C, and we finally obtain

λ0κ1 − τ0λ0κ2
S

= τ0λ0

(
log

(
eγ

2

√
τ0λ0ε

)
− K ′

1(
√
τ0λ0)

I ′1(
√
τ0λ0)

)
+ 2 (3.54a)

where κ1 and κ2 are given by

κ1 :=

∫ ∞

0

P1V0ρρdρ, κ2 :=

∫ ∞

0

(P2ρ)ρ [U0 − χ(S)] dρ. (3.54b)

Next, we seek a Hopf bifurcation for (3.54). Setting λ0 = iλI in (3.54a) and

equating real and imaginary parts yields τ0λI = ωc where ωc satisfies

ωc Im

(
log
(√

iωc

)
− K ′

1(
√
iωc)

I ′1(
√
iωc)

)
− 2 = 0 (3.55a)

and

τ0 =
κ1

S Re
(
−K′

1(
√
iωc)

I′1(
√
iωc)

+ log
(
eγ

2

√
iωcε

))
+ κ2

(3.55b)
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A remarkable fact is that the equation (3.55a) is independent of any parameters.

Numerical plotting shows that there is a unique solution to (3.55a) given by

ωc ≈ 3.02603687. (3.55c)

Expression (3.55b) is further simplifed by rewriting

Re

(
−K

′
1(
√
iωc)

I ′1(
√
iωc)

+ log

(
eγ

2

√
iωcε

))
= α1 + log (ε)

where

α1 := Re

(
−K

′
1(
√
iωc)

I ′1(
√
iωc)

)
+ log

(
eγ

2

√
ωc

)
= −0.14623425. (3.56)

In general, the constants κ1, κ2 must be computed numerically. However asymptotic

expansion is available in the intermediate regime, when A is small, and is given in

section § 3.5. We summarize.

Proposition 3.4.1 The translational eigenvalue corrsponding to mode m = 1 of the

steady state in Proposition 3.1.1 undergoes a Hopf bifurcation as τ is increased past

τ ∼ τh,small where

τh,small =
1

ε2
κ1

A
2

(log ε+ α1) + κ2
. (3.57)

The constants κi are independent of ε (depend only on A) and are given in (3.54b).

The constant α1 = −0.1462342 is a universal constant defined through (3.56). In the

asymptotic limit A≪ 1, the formula (3.57) simplifies to

τh,small =
1

ε2A2

2κ10
log 1

ε
− α1 − 2κ20

. (3.58)

where

κ10 ≈ 9.86855; κ20 ≈ 0.1441

whose exact value is derived in Appendix 3.5.

Figure 3.2 shows a very good agreement between the full numerical simulations of

the eigenvalue problem (3.18) and formula (3.58).
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3.5 Estimating κ1, κ2 for Small A.

In this section we compute the asymptotic expansion for κ1, κ2 given by (3.54b) for

small A. In this limit, we recall from (3.9) that U0 ∼ χ = σ−1 and V0 ∼ σw where

σ = A
2
∫∞
0 w2ρdρ

. The adjoint problem (3.49) simplifies to(
∂ρρ + ρ−1∂ρ − ρ−2

)
P1 −P1 +2wP1 − 2wP2 ∼ 0, 0 < ρ <∞, P1 ∼ 0 as ρ→ ∞ (3.59a)(

∂ρρ + ρ−1∂ρ − ρ−2
)
P2+σ

2w2(P1−P2) ∼ 0, 0 < ρ <∞, P2 ∼ ρ−1, as ρ→ ∞. (3.59b)

The solution to this limiting system is given by

P1 = σ−2

(
− 3wρ∫∞

0
w3sds

+O(σ2)

)
, P2 =

1

ρ

∫ ρ

0
w3sds∫∞

0
w3sds

+O(σ2) (3.60)

and we then obtain

κ1 ∼
−3
∫∞
0
w2

ρρdρ∫∞
0
w3ρdρ

σ−1, κ2 ∼
1∫∞

0
w3ρdρ

∫ ∞

0

[U0 − σ−1]w3ρdρ. (3.61)

To compute κ2 further, we let U0 − σ−1 = σÛ +O(σ2) where Û satisfies

∆Û = w2

subject to the far-field condition Û ∼ S log ρ+ 0, ρ≫ 1. The solution to Û is given by

Û (ρ) =

∫ ρ

0

F (s)

s
ds−

∫ ∞

1

F (s) − F (∞)

s
ds−

∫ 1

0

F (s)

s
ds

where

F (s) =

∫ s

0

w2(ρ)ρdρ;

κ2 is then given by

κ2 ∼ σ

∫∞
0
Ûw3ρdρ∫∞

0
w3ρdρ

.

The integrals
∫∞
0
Ûw3ρdρ is computed numerically. In summary, we obtain the

following expansions for κ1, κ2 :

κ1 ∼ − 1

A
κ10; κ2 ∼ Aκ20

where (using (3.17)),

κ10 = 2

∫ ∞

0

w2ρdρ; κ20 =

∫∞
0
Ûw3ρdρ

2
∫∞
0
w2ρdρ

∫∞
0
w3ρdρ

.

The numerical estimates for κ1 and κ2, computed using numerical quadrature, are

κ10 ≈ 9.8686; κ20 ≈ 0.1441.
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3.6 Threshold Crossing

As Figure 3.2 shows, the Hopf curves τh,large and τh,small intersect as A is increased at

some critical value A = Ac. Having computed asymptotically the Hopf bifurcations for

both small and large eignevalues, we are finally in position to determine this crossing

by equating τh,large = τh,small (where τh,large and τh,small are given in Propositions 3.3.2

and 3.4.1, respectively). Solving for A yields

Ac ∼
c1[

ln
(
c2 ln 1

ε
+ c3

)]1/2 (3.62)

where

c1 = a
1/2
1 ≈ 6.2828;

c2 =
e2γ

π
≈ 1.00975,

c3 =
(−α1 − 2κ20) a0

2κ10
≈ −0.14334.

From the formulas for τh,large and τh,small, it is clear that if A < Ac, the height

oscillations are triggered before position oscillations, whereas the opposite is true if

A > Ac. This is the main result of the paper. We summarize.

Proposition 3.6.1 Let Ac as given in (3.3) with ε≪ 1. Suppose that A < Ac. Then

height oscillations are triggered before the position oscillations as τ is increased just

past τh,large. Suppose that A > Ac. Then position oscillations are triggered before height

oscillations as τ is increased just past τh,small.

Note that the derivation required that O
(

1
log 1

ε

)
≪ A2 ≪ O (1) . Both of these

conditions are clearly satisfied in the critical regime A2 = O(A2
c) = O

(
1

log(log 1
ε)

)
.

Although in theory, the formula for Ac is is valid as ε→ 0, the log-log scaling has

a horrible convergence rate. It is then all the more surprising that the formula (3.3)

is able to predict the threshold within a reasonable accuracy, even when ε = 0.02.

To further validate this result, we computed Ac numerically up to ε = O(10−3). The

result is summarized in the table in Figure 3.2. Attempting to compute at such small ε

values required the use of a non-uniform grid to compute eigenvalues numerically. We

then used a numerical root solver and continuation to adjust A until τh,large = τh,small.
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Figure 3.4: Radius of rotating spot as a function of τ0 = τε2. Parameter values are
A = 8 and ε = 0.02. Dashed line is the asymptotic theory given by Proposition 3.7.1.
Circle is the average long-time radius as observed from direct numerical simulations.
Inserts show the long-time spike trajectory for τ0 as indicated (with numerical trajectory
shown in solid line and the theoretical rotating-spot trajectory of radius r0 shown in
dashed line).

We validated our computations by doubling the number of meshpoints. The prediction

given by (3.3) is increasingly accurate with each halfing of ε, although as expected

from a log-log scaling, the improvement in accuracy is very slow.

3.7 Rotating Spot

When the spike is destabilized via translational instabilities, it starts to move as

illustrated in figure 3.1, and may eventually settling into a circular orbit, rotating

with some frequency ω0 around some radius r0. The goal of this section is to compute

ω0 and r0 asymptotically. Before proceeding, it is convenient to rescale

τ =
τ0
ε2
, s = ε2t,

so that the problem (3.1) becomes

ε2vs = ε2∆v − v + v2u, τ0us = ∆u+ A− v2u

ε2
. (3.63)
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Let x0(s) be the location of the spot. To make further progress, we make the anzatz

that the spot travels along a circle of radius r0 with constant angular velocity ω0, so

that both u and v undergo a rigid rotation. That is, we assume

x0(s) = eiω0sr0 (3.64)

and u(x, s) = u(xe−iω0s), v(x, s) = v(xe−iω0s). We will estimate inner and outer region

and perform matching in order to obtain a solvability condition which will determine

the radius and the angular velocity of the spot.

Outer region. Away from spike location, we estimate the outer problem for u by

∆u+ A = 2πSδ(x− x0) + τ0us (3.65)

with Neumann boundary condition ∂nu = 0, x ∈ ∂Ω. Here, S is defined by

2πS =

∫
uv2

ε2
dx ∼

∫
R2

UV 2dy, y =
x− x0(s)

ε

The relation between S and A is determined by integrating (3.65) to obtain

πA = 2πS + τ0
d

ds

(∫
Ω

udx

)
. (3.66)

But since we assumed that u is rigidly rotating, the integral term
∫
Ω
udx is independent

of time s so that – just as for stationary spot – (3.66) simplifies to

S =
A

2
. (3.67)

We write u as

u(x, s) = 2SG(x, s) + C

where G satisfies{
∆G+ 1 = πδ(x− x0(s)) + τ0Gs

∂nG = 0, x ∈ ∂Ω;
∫
Gdx = 0

; x0(s) = eiω0sr0, (3.68)

and C is some (irrelevant for dynamics) constant. We now show that to leading order,

(3.68) has the following singularity structure

G(x) =
1

2
log |x− x0| +

τ0
4
ẋ0 · (x− x0) log |x− x0| +R0(x, x0). (3.69)
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where R0 is the “regular part”, in the sense that its gradient exists at x = x0; we give

explicit expression for R0 in section § 3.8. Note that when τ0 = 0, this corresponds to

the usual Modified Green’s function on a disk; however the non-zero τ0 induces an an

additional singularity term ẋ0 · (x− x0) log |x− x0|. This latter term is “singular” in

the sense that its gradient is infinite as x→ x0 and therefore needs to be “peeled off”.

To see where this singularity comes from, first consider the source that moves

along y-axis, with some speed c, x0(s) = (0, cs) on all of space; the free-space moving

source Green’s function then satisfies

∆G = τ0Gs + πδ(x− x0(s)); x ∈ R2 and x0(s) = (0, cs) (3.70)

In this case, transforming into co-moving coordinates x = (ξ, η) + (0, cs) yields

Gξξ +Gηη + cτ0Gη = πδ(ξ)δ(η).

This problem has an exact solution of the form

G(ξ, η) = −1

2
e

−cτ0
2

ηK0(
cτ0
2
r), r =

√
ξ2 + η2. (3.71)

We then expand for small r and y using Taylor expansions K0(z) ∼ − log z, ec/2η ∼
1 + cτ0

2
η which yields

G (ξ, η) ∼ 1

2

(
1 − cτ0

2
η
)

log r + . . . (3.72)

This also explains the choice of the constant −1
2

in (3.71) which gives the correct

leading order behaviour G ∼ 1
2

log r independent of cτ0. Replacing cη by ẋ0 · (x− x0)

and r by |x− x0| indeed yields the singularity structure (3.69). Further expanding x

near x0, the outer problem for u(x) is then given by

u(x) ∼ S log |x−x0|−
τ0S

2
ẋ0 · (x− x0) log |x−x0|+2S (x− x0) ·∇R0 +C, x→ x0.

(3.73)

where ∇R0 = ∇xR0(x, x0)|x=x0 and C is some constant.

Inner region. In the inner region near the spot, we rescale

y =
x− x0(s)

ε
; v(x, t) = V (y) u(x, t) = U(y).

Then V, U satisfies {
−ε∇yV

dx0

ds
= ∆yV − V + UV 2

−τ0ε∇yU
dx0

ds
= ∆yU + Aε2 − UV 2

(3.74)
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We then expand in ε,

U = U0 + εU1 + · · · , V = V0 + εV1 + · · · . (3.75)

At the leading order we have{
∆V0 − V0 + U0V

2
0 = 0

∆U0 − U0V
2
0 = 0

. (3.76)

At the next order we obtain{
∆V1 − V1 + 2U0V0V1 + V 2

0 U1 = −∇V0 · ẋ0
∆U1 − 2U0V0V1 − V 2

0 U1 = −τ0∇U0 · ẋ0
(3.77)

We assume that V0, V1 decays exponentially in the far field |y| ≫ 1. To obtain the

far-field behaviour for U0 and U1, we rewrite the outer expansion (3.73) in the inner

variables. This yields

u(x) = S log ε|y| +
τ0S

2
ẋ0 · yε log ε|y| + 2S∇R0 · yε+ C. (3.78)

Upon collecting like terms in ε (while treating log ε as an O(1) constant with respect

to ε), we obtain

U0 ∼ S log |y| + χ(S), |y| ≫ 1; (3.79)

The function χ(S) is the same as in (3.7) and the constant C in (3.78) determined

through the relationship χ(S) = S log ε+ C.

At the next order we obtain

U1 ∼
τ0S

2
ẋ0 · y log |y| +

(
2S∇R0 −

τ0S

2
ẋ0 log ε

)
· y, |y| ≫ 1.

Following the derivation in §3.4, we rewrite the system (3.77) as

∆W +M ·W = f , y ∈ R2 (3.80a)

W ∼ (0,−Sτ0
2
ẋ0 · y ln |y| +

−→
b · y)t, as |y| → ∞ (3.80b)

where
−→
b =

τ0S

2
ẋ0 log ε+ 2S∇R0, (3.80c)

M =

(
−1 + 2U0V0 V 2

0

−2U0V0 −V 2
0

)
, W =

(
V1

U1

)
, f =

(
−∇yV0 · ẋ0
−τ0∇yU0 · ẋ0

)
. (3.80d)
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As in §3.4, to formulate the solvability condition, we let P (ρ) = (P1(ρ), P2(ρ))t be

the solution to the homogeneous adjoint problem associated with (3.80a), given by

(3.49). Define

Pc = P (ρ) cos θ, Ps = P (ρ) sin θ (3.81)

where cos θ = y1
|y| and sin θ = y2

|y| ; note that Pc and Ps both satisfy ∆P +M tP = 0.

Multiply (3.48a) by P t
c and integrate by parts over a ball of large radius R to

obtian the solvablity condition∫
BR

P t
c · fdy =

∫
∂BR

P t
c · ∂ρW −W · ∂ρP t

cdy. (3.82)

The left hand side of (3.82) simplifies to∫
BR

P t
c · fdy = −π

∫ R

0

(P1V0ρ + τ0P2U0ρ) ẋ01ρdρ (3.83)

∼ −πẋ01π (κ1 + τ0S logR− τ0κ2) (3.84)

where κ1, κ2 are defined in (3.54b).

The right and side of (3.82) simplifies to∫
∂BR

P t
c · ∂ρW −W · ∂ρP t

cdy = π

(
−Sτ0ẋ01

[
1

2
+ lnR

]
+ 2b1

)
(3.85)

where b1 is the first component of vector b in (3.80c). Equating (3.84) and (3.85), note

that the logR terms cancel each other out and we finally obtain

− (κ1 − τ0κ2) ẋ01 = −S
2
τ0ẋ01 + 2b1.

The second solvability condition involving ẋ01 is obtained similarly by using Ps instead

of Pc. The two solvability conditions together yield

− (κ1 − τ0κ2) ẋ0 = −S
2
τ0ẋ0 + 2

(
2S∇R0 −

τ0S

2
ẋ0 log ε

)
. (3.86)

Solving for ẋ0 and using S = A/2 then yields

d

ds
x0 = β∇R0 where β =

1

τ0
(
1
4

log ε+ 1
8

+ κ2

2A

)
− κ1

2A

(3.87)

In Appendix 3.8 we derive an exact expansion for R0 in terms of an infinite series

of Bessel functions. By symmetry, we may assume without loss of generality that x0

lies on the positive x-axis (i.e. s = 0). Then d
ds
x0|s=0 = (0, ω0r0) and we write:

∇R0 (x, x0)|x0=(r0,0), x=x0
= (F1(r0, ω), F2(r0, ω)) , where ω = ω0τ0, (3.88)
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with F1, F2 given in (3.96). Equation (3.88) is then equivalent to F1 = 0, ω0r0 = F2,

or

F1(r0, ω) = 0; τ0 =
2κ1

A

(
log ε+ 1

2
− 4F2(r0, ω)

ωr0

)
+ κ2

; ω0 = ω/τ0. (3.89)

In addition, as we show in Appendix 3.8, the threshold τh,small of Proposition 3.4.1

is recovered in the limit r0 → 0. We summarize our construction as follows.

Proposition 3.7.1 The Schnakenberg model (3.1) on a unit disk admits a rotating

spot solution for τ > τh,small, where τh,small is the Hopf bifurcation value with respect to

translational eigenvalues as given in Proposition 3.4.1. The spot center x0 = r0e
iω0ε2t

rotates with angular velocity ω0ε
2 and radius r0. as determined through (3.89).

Figure 3.4 shows a comparison between the numerical simulations of the full system

(3.1) and the asymptotic prediction for the radius of the rotating spot. For example

take τ0 = 0.15, A = 8, ε = 0.02. Then using (3.54b) we first compute κ1 = −1.2938 and

κ2 = 3.54334 by solving the radial core problem and the adjoint eigenvalue problem

using a boundary value problem solver in Matlab (bvp4c). From (3.89) we then obtain

r0 = 0.669 and ω = 6.1994. Full numerical simulations of the original model (3.1)

exhibit a rotating spot whose radius is r0,numeric ≈ 0.57, in good agreement with the

theoretical prediction. Although the Proposition 3.7.1 applies for any τ > τh,small, the

rotating spot solution is not always stable as Figure 3.4 shows. For example when

τ0 = 0.11, the numerical solution appears to be in the shape of an ellipse whereas for

τ0 = 0.18 the radius is close to the theoretical prediction but appears to vary with

time, generating an annular region. More complex trajectories are possible as shown

in Figure 3.5.

3.8 Green’s Function For Rotating Spot

In this appendix we compute explicitly gradient of the regular part of the rotating

Green’s function, defined through (3.68), (3.69). In the rotating frame, the Green’s

function G from (3.68) satisfies

∂2G

∂r2
+

1

r

∂G

∂r
+

1

r2
∂2G

∂θ2
+ ω

∂G

∂θ
= 1 − πδ(r − r0)δ(θ) (3.90)

∂rG = 0 x ∈ ∂Ω. (3.91)
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where

ω = τ0ω0. (3.92)

Using separation of variable, we write G(r, θ) as

G = G0(r) +
∞∑

m=1

(
Gm(r)eimθ + c.c

)
(3.93)

where c.c refers to the complex conjugate of the term involving the summation.

Substituting (3.93) into (3.90) and recalling the Newmann boundary condition, we

obtain:

∂2G0

∂r2
+

1

r

∂G0

∂r
= 1 − πδ(r − r0)δ(θ), G0 bounded as r → 0, G′

0(1) = 0 (3.94a){
∂2Gm

∂r2
+ 1

r
Gm − m2

r2
Gm + imωGm = −πδ(r − r0)δ(θ), m > 0

Gm bounded as r → 0, G′
m(1) = 0

(3.94b)

For m > 0, the homogeneous solution of (3.94b) may be written as

Gm(r, ω) = amIm(cmr) + bmKm(cmr); cm ≡
√
−iωm

where Im(r) and Km(r) are m-th order modified Bessel functions of the first and

second kind, respectively. Solving (3.94b) separately for r < r0 and r > r0, and

applying appropriate continuity and jump conditions at r = r0, we obtain the solution

for Gm,

Gm(r) =

⎧⎨⎩
1
2

[
−K′

m(cm)
I′m(cm)

Im(cmr0) +Km(cmr0)
]
Im(cmr), 0 < r < r0

1
2

[
−K′

m(cm)
I′m(cm)

Im(cmr) +Km(cmr)
]
Im(cmr0), r0 < r < 1

where cm ≡
√
−iωm, m ̸= 0, I ′m(cm) and K ′

0(cm) denote the derivatives of Im and

Km evaluated at cm, respectively. In a similar way, we find that the solution to (3.94)

for G0(r),

G0(r) =
r2

4
+

2r20 − 3

8
−

{
1
2

log r0, 0 < r < r0
1
2

log r, r0 < r < 1
.

Recall that

R0 = G− S1 − S2

where

S1 := −1

2
log |x− x0|; S2 :=

1

4
τ0
∂x0
∂t

· (x− x0) log |x− x0|. (3.95)
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To calculate R0 and its gradient, we first expand the singular parts S1 and S2 in terms

of their Fourier series, then take the limit θ → 0, r → r−0 . We have

S1 := −1

2
log |x− x0| = −1

2
log(rM) +

1

2

∑
m≥1

ρm

2m

(
eimθ + e−imθ

)
,

where rM = max (r, r0) , ρ = min(r,r0)
max(r,r0)

;

1

4
τ0
∂x0
∂t

· (x− x0) = −ωrr0
8

(
ieiθ − ie−iθ

)
;

S2 =
ωrr0

8i

[(
log(rM) +

ρ2

4

)
eiθ − 1

2

∑
m≥2

(
1

m− 1
ρ−1 − 1

m+ 1
ρ

)
ρmeimθ

]
+ c.c.

The function F1 and F2 defined through (3.88) are then expressed in terms of polar

variables as

F1(r0, ω) = ∂rR0|r=r−0 , θ=0; F2(r0, ω) =
1

r0
∂θR0|r=r−0 , θ=0

Differentiating with respect to r and θ and then evaluating at r = r−0 and θ = 0, we

finally obtain the following expressions,

F1(r0, ω) =
r0
2

+
∑
m≥1

(
2 Re

(
G′

m(r−0 )
)
− 1

2r0

)
(3.96a)

r0F2(r0, ω) = −ωr
2
0

4

[(
log(r0) +

1

4

)]
− 2 Im

(
G1(r

−
0 )
)

+
∑
m≥2

(
−2m

(
ImGm(r−0 )

)
+
ωr20
4

m

m2 − 1

)
(3.96b)

where

Gm(r−0 ) =
1

2

[
−K

′
m(cm)

I ′m(cm)
Im(cmr0) +Km(cmr0)

]
Im(cmr0); (3.96c)

G′
m(r−0 ) =

cm
2

[
−K

′
m(cm)

I ′m(cm)
Im(cmr0) +Km(cmr0)

]
I ′m(cmr0). (3.96d)

cm ≡ −i
√
iωm

The Hopf bifurcation threshold derived in Proposition 3.4.1 corresponds to letting

r0 → 0. To establish the equivalence between the expression for r0 in Proposition

3.7.1 and the threshold τh,small in Proposition 3.4.1, we using the small-argument

expansions for Km and Im to obtain the leading-order expressions,

F1(r, ω) =
r0
2

+ 2 Re
(
G′

1(r
−
0 )
)
− 1

2r0
;
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Figure 3.5: Complex spot trajectories. Left the domain is a unit disk. Right: the
domain is a square of area π.

r0F2(r0, ω) = −2 Im (G1(r0)) −
ωr20
4

[(
log(r0) +

1

4

)]
Further simplifying, we obtain

F1(r0, ω) ∼ r0
4

(
− Im

(
K ′

1(
√
−ωi)

I ′1(
√
−ωi)

)
ω + 2 − πω

4

)
, r0 ≪ 1

F2(r0, ω) ∼ 1

4
r0ω

(
−Re

(
K ′

1(
√
−ωi)

I ′1(
√
−ωi)

)
+

1

2
log (ω/4) + γ − 1

2

)
, r0 ≪ 1

Setting F1 = 0 and letting r0 → 0, we obtain ω = ωc is the root of (3.55a). Then

setting F2 = 0 and recalling that ω = ω0τ0, one recovers Proposition 3.7.1.

3.9 Discussion

We have used formal asymptotics to compute Hopf bifurcation thresholds τ = τh,large

and τ = τh,small that induce spike oscillations in either height (τh,large) or position

(τh,small) for the Schankenberg model. These two thresholds cross at A = Ac. That

is, height oscillations dominate (τh,large < τh,small) when A < Ac whereas position

oscillations dominate (τh,small < τh,large) when A > Ac, where Ac given by (3.3) has

an O(1/ log(log ε)) scaling. Despite the extremely slow decay of Ac as ε → 0, the

asymptotically computed value of Ac agrees surprisingly well with numerics even with

ε = 0.01 (the constants in (3.3) are very important to get a good agreement). We

remark that in one dimension, a similar “double-hopf” point was found in several

papers [44–46]. However it has an algebraic scaling Ac = O(ε1/6) ([45]).
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In the regime τh,small < τ < τh,large, we have consturcted a periodic spike solution

consisting of a rotating spot inside a unit disk, and computed the radius and speed of

the rotation by expanding the underlying Green’s function in terms of complex Bessel

series. Numerical experiments suggest that the rotating solution is not always stable –

see Figure 3.4. In particular, for τ just slightly above the bifurcation point τh,small, the

spike trajectory is an ellipse, whereas for τ sufficiently large, the spot path fills out an

annulus. It would be a very interesting to study the stability of these rotating spots.

It would be interesting to study more general spot motion and for more general

domains. Figure 3.5 gives some idea of possible trajectories. A preliminary goal is

to derive and numerically simulate the reduced equations of motion. The reduced

equations of motion comprise a coupled PDE-ODE system with a moving source,

analogous to the equations derived in §3.7. The numerical difficulty is the ODE for

the source location requires an extraction of a very weakly singular part of the moving

Green’s function.

Circular spot motion is intimately related to the model of a small rotating trap

inside an insulated unit disk, which was recently studied in [23, 101]. There, the

main goal was to minimize the mean first passage time (MFPT) for a rotating trap

x0 = r0e
ωt (or several rotating traps) as a function of its radius r0 and its angular

velocity ω. It turned out that the optimal radius r0 and velocity ω have precisely the

same relation F1(r0, ω) = 0 as we found in Proposition 3.7.1. As a result, for small

angular velocity (ω < ωc), it was optimal for the trap to be located at the origin,

whereas for ω > ωc it was better for the spot to move. This is the precise analogue of

the Hopf bifurcation computed in Proposition 3.4.1.

Spot motion was also observed for a three-component gas-discharge system [102].

There, the authors also analysed complex spot dynamics, including spot collision

and splitting. The initial instability inducing spot motion in this system was further

analysed in detail in [103] where theoretical and numerical study of the bifurcation

from a stationary to a moving spot was performed. Let us also mention the work [104]

where complex motion of a self-propelled deformable particle was studied.

While in many aspects, GM, GS and Schakengerg models are very similar mathe-

matically, the oscillations of spot positions have never been observed in GM model. It

would be interesting to have a better understanding of the kind of general conditions
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that are needed to observe position oscillations.



Chapter 4

Dynamics of the Spot in Three Dimensional Schankenberg

Model

The results in this chapter have appeared in section 4 in the paper [21], which is a

joint work between myself, Justin Tzou, Theodore Kolokolnikov, and Michael Ward.

The text in this chapter is taken from [21], and was written mostly by Ward and

Tzou. The analysis in this chapter was performed mostly by myself. All numerical

computations were done by myself.

In this chapter, we study the three dimensional Schankenberg model. In dimen-

sionless form, the rescaled singularly perturbed Schnakenberg model is:

vt = ε2∆v − v + uv2 , x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω , (4.1a)

ε3ut =
D

ε
∆u+ A− uv2

ε3
, x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω . (4.1b)

When the stability condition on the source strengths holds, in §4.1 we show that

the spot locations associated with an N -spot symmetric quasi-equilibrium evolves

to a true steady-state configuration over a long O(ε−3) time-scale. To leading order

in ε, in (4.22) of Main Result 4.1.2 we show that the slow spot dynamics satisfy an

ODE system defined by a gradient flow of a certain discrete energy H(x1, . . . ,xN),

which involves the Neumann Green’s function and its regular part. Minima of this

discrete energy are stable equilibrium points of this limiting ODE spot dynamics, and

we explicitly identify certain such equilibrium spot configurations. A higher-order

analysis, leading to the ODE dynamics (4.17) coupled to the constraints (4.7), shows

that the slow spot dynamics consists of a weakly coupled differential algebraic system

(DAE) of ODEs, in which the spot source strengths depend only weakly as ε→ 0 on

the spot locations.

In comparison, in a 2-D setting, the dynamical characterization of slow spot

dynamics consists of a DAE system that couples ODEs for the spot locations to a

58
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nonlinear algebraic system for the spot source strengths defined in terms of a Green’s

matrix, which depends on the overall spot configuration (cf. [50], [53], [105]). This

DAE system of slow spot dynamics in 2-D is rather strongly coupled, owing to the

logarithmic gauge ν = O (−1/ log ε). As a result of this strong coupling in 2-D,

spot self-replication events can be triggered intrinsically during the slow dynamics

of a collection of spots whenever a particular spot source strength exceeds a critical

value (cf. [50], [53], [106]). In contrast, in our 3-D setting where the spots have an

asymptotically common source strength, with an error of only O(ε), such intrinsically

triggered spot self-replication events do not typically occur for ε small. Instead, in

3-D an external parameter such as the feed-rate, or the domain volume, needs to be

increased dynamically in order to trigger spot self-replication events.

In §4.1.1 we extend our asymptotic theory for constant A to the case of a spatially

variable feed, where A = A(x) in (4.1b). To leading order in ε, the slow spot dynamics

is characterized in Main Result 4.1.3 in terms of the discrete energy H and an additional

nonlocal term involving A(x). In the unit ball, our ODEs characterizing slow spot

dynamics are verified with full numerical FlexPDE6 simulations of (4.1). For a few

specific choices of the variable feed-rate, we illustrate from our ODEs, and from full

numerical PDE simulations, the effect of spot pinning, whereby a spot trajectory can

be pinned to a new equilibrium state created by the non-uniform feed-rate. Finally, in

§4.2 we suggest a few open problems that warrant further study.

4.1 Slow Spot Dynamics

In this section, we analyze the slow dynamics associated with an N -spot quasi-

equilibrium solution. To derive an ODE system characterizing the slow spot dynamics,

we must extend the calculation to one higher order beside the leading order. We will

proceed by the method of formal asymptotics.

In the inner region near the j-th spot, we let xj = xj(σ) where σ = ε3t, and

expand the inner solution as

y = ε−1(x− xj(σ)) , v(xj + εy) =
√
D
[
Vjε(ρ) + ε2Vj2(y) + · · ·

]
,

u(xj + εy) =
1√
D

[
Ujε(ρ) + ε2Uj2(y) + · · ·

]
, (4.2)
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with ρ ≡ |y|, where Ujε, Vjε satisfy the radially symmetric core problem

∆ρVjε − Vjε + UjεV
2
jε = 0 , V ′

jε(0) = 0 , Vjε → 0 , as ρ→ ∞ , (4.3a)

∆ρUjε − UjεV
2
jε = 0 , U ′

jε(0) = 0 , (4.3b)

with far-field behavior

Ujε ∼ µj − Sjε/ρ+ · · · , as ρ→ ∞ , (4.3c)

where µj ≡ µ0(Sjε).
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Figure 4.1: In (a), we plot the relationship µ0 = µ0(S) as obtained from a numerical
solution of the core problem (4.3). The fold point at (Scf , µ0f ) ≈ (4.52, 5.78) divides
µ0(S) into a left and right branch. In (b), we plot Vc versus ρ = |y| for S = 3.67
(dotted), S = 18.7 (dashed), and S = 29.1 (solid). For S ≳ 18.7, the profile is
volcano-shaped so that the maximum of Vc occurs at ρ > 0. When S ≲ 18.7, the
maximum of Vc is at ρ = 0. In (c), we show the corresponding profiles for Uc(ρ).

The corresponding outer solution satisfies:{
D∆u+ Aε ∼ 4πε

∑N
j=1 Sjεδ(x) − xj)

∂nu = 0, x ∈ ∂Ω
(4.4)

Impose Divergence Theorem on (4.4), we obtain:

A|Ω| = 4π
N∑
j=1

Sjε
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Define G(x, ξ) to be the unique Neumann Green’s function satisfying

∆G =
1

|Ω|
− δ(x− ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω , (4.5a)

G(x; ξ) =
1

4π|x− ξ|
+R(x; ξ) , as x → ξ ;

∫
Ω

Gdx = 0 , (4.5b)

where R(x; ξ) is smooth. In (4.5b), R(ξ; ξ) is called the regular part of G at the

singularity x = ξ.

We can solve (4.4) exactly to obtain:

u ∼ ξ − 4πε√
D

N∑
j=1

SjεG(x;xj) ,
N∑
i=1

Sjε =
A|Ω|

4π
√
D
, (4.6)

where Sjε, for j = 1, . . . , N , and ξ satisfy the N + 1 dimensional weakly coupled

nonlinear algebraic system:

ξ − 4πε√
D

(GS)j =
µ0(Sjε)√

D
, j = 1, . . . , N ;

N∑
j=1

Sjε =
A|Ω|

4π
√
D
. (4.7)

Here µ0(Sjε) is to be computed from the core problem (4.3), S ≡ (S1ε, . . . , SNε)
T ,

and G is the symmetric Neumann Green’s matrix with matrix entries (G)ij = G(xj ;xi)

for i ̸= j and (G)jj = R(xj;xj).

We first expand u as x → xj, while retaining the higher-order gradient terms

associated with the Green’s function. Upon using (4.5b), we obtain in terms of inner

variables that, as x → xj,

u ∼ ξ − Sjε√
Dρ

− 4πε√
D

(GS)j

− 4πε2√
D

y·

⎛⎜⎝Sjε∇xR(x;xj)|x=xj
+

N∑
i=1
i ̸=j

Siε∇xG(x;xi)|x=xj

⎞⎟⎠ , (4.8)

where G is the Neumann Green’s matrix. The O(ε2) term in (4.8) is the motivation for

the form of the higher-order expansion in (4.2) and the scaling for the slow time-scale

σ = ε3t.

Upon substituting (4.2) into (4.1), and matching the inner solution to the O(ε2)
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term in (4.8), we obtain that W2 = (Vj2, Uj2)
T satisfies

LW2 ≡ ∆yW2 + MεW2 = −

(
x′
j·∇yVjε

0

)
, y ∈ R2 ;

W2 ∼

(
0

bj · y

)
, as |y| → ∞ . (4.9a)

Here the 2 × 2 matrix Mε and the vector bj are defined by

Mε ≡

(
−1 + 2UjεVjε V 2

jε

−2UjεVjε −V 2
jε

)
,

bj ≡ −4πSjε∇xR(x;xj)|x=xj
− 4π

N∑
i=1
i ̸=j

Siε∇xG(x;xi)|x=xj
. (4.9b)

Let y = (y1, y2, y3)
T and Wjε ≡ (Vjε, Ujε)T . We observe upon differentiating the

core problem (4.3) with respect to i-th coordinate yi of y that

L (∂yiWjε) = 0 where ∂yiWjε ≡ ρ−1

(
V ′
jε(ρ)

U ′
jε(ρ)

)
yi , for i = 1, 2, 3 .

This shows that the dimension of the nullspace of L, and consequently L⋆, is at least

three-dimensional. We will assume that this nullspace is exactly three-dimensional,

which we can verify numerically provided that Sjε does not coincide with the critical

value Σ2 ≈ 20.16 for the peanut-splitting instability.

From a Fredholm alternative criterion, the following lemma provides a necessary

condition for (4.9) to have a solution.

Lemma 4.1.1 A necessary condition for (4.9) to have a solution is that xj(σ) satisfies

x′
j = − 3

κ1
bj , κ1 = κ1(Sjε) ≡

∫ ∞

0

ρ2P1(ρ)V ′
jε(ρ) dρ , (4.10)

where P1(ρ) is the first component of P(ρ) ≡ (P1(ρ), P2(ρ))T , which satisfies

∆ρP− 2

ρ2
P+MT

εP = 0 , 0 < ρ <∞ ; P ∼

(
0

1/ρ2

)
, as ρ→ ∞ , (4.11)

and P = O(ρ) as ρ→ 0, where ∆ρP ≡ P′′ + 2ρ−1P′.
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Proof: We first seek three independent nontrivial solutions to the homogeneous

adjoint problem L⋆Ψ ≡ ∆yΨ+MT
εΨ = 0 in the form Ψi ≡ P(ρ)yi/ρ for i = 1, . . . , 3.

Since

∆y [Pyi/ρ] =

(
∆ρP− 2

ρ2
P

)
yi
ρ
,

we readily obtain that P(ρ) satisfies ∆ρP − 2ρ−2P + MT
εP = 0. To establish the

far-field behavior of P, we obtain using (4.9b) for Mε, and the fact that Vj0 → 0

exponentially as ρ → ∞, that P2(ρ) satisfies P ′′
2 + 2ρ−1P ′

2 − 2ρ−2P2 ≈ 0 for ρ ≫ 1.

The decaying solution to this Euler’s equation implies that P2 = O(ρ−2) as ρ→ ∞,

and the eigenfunction is normalized by imposing the precise behavior that P2 ∼ 1/ρ2

as ρ→ ∞. In contrast, for P1(ρ) we obtain that P ′′
1 + 2ρ−1P ′

1 − P1 ≈ 0 as ρ→ ∞, so

that P1 decays exponentially as ρ→ ∞. In this way, we obtain that P satisfies (4.11).

Next, to derive our solvability condition we use Green’s identity over a large ball

of radius |y| = ρ0 ≫ 1 to obtain that

lim
ρ0→∞

∫
Ωρ0

(
ΨT

i LW2 −WT
2 L⋆Ψi

)
dy = lim

ρ0→∞

∫
∂Ωρ0

(
ΨT

i ∂ρW2 −WT
2 ∂ρΨi

) ⏐⏐⏐
ρ=ρ0

dS .

(4.12)

With Ψi ≡ P(ρ)yi/ρ, and for a fixed i ∈ {1, 2, 3}, we first calculate the left-hand side

of this expression using (4.9a) to obtain

lim
ρ0→∞

∫
Ωρ0

(
ΨT

i LW2 −WT
2 L⋆Ψi

)
dy = − lim

ρ0→∞

∫
Ωρ0

yi
ρ
P1(ρ)

(
x′
j·∇yVjε

)
dy ,

= −
3∑

k=1

x′jk lim
ρ0→∞

∫
Ωρ0

yiyk
ρ2

V ′
jε(ρ)P1(ρ) dy ,

(4.13)

where x′
j ≡ (x′j1, x

′
j2, x

′
j3)

T . By using symmetry considerations, we readily establish

that
∫
Ωρ0

yiykf(ρ) dy = 0 when i ̸= k and
∫
Ωρ0

y2i f(ρ) dy = 4π
3

∫ ρ0
0
ρ4f(ρ) dρ for any

radially symmetric function f(ρ). In this way, the last expression (4.13) becomes

lim
ρ0→∞

∫
Ωρ0

(
ΨT

i LW2 −WT
2 L⋆Ψi

)
dy = −4π

3
x′ji

∫ ∞

0

ρ2P1(ρ)V ′
jε(ρ) dρ . (4.14)

Next, we calculate the right-hand side of (4.12). For the first term on the right-hand
side of (4.12) we use P2(ρ) ∼ 1/ρ2, Uj1 ∼ bj·y and ∂ρUj1 ∼ bj·y/ρ as ρ → ∞, to
estimate that

lim
ρ0→∞

∫
∂Ωρ0

ΨT
i ∂ρW2|ρ=ρ0 dS = lim

ρ0→∞

∫
∂Ωρ0

P2(ρ)
yi

ρ
∂ρUj1

⏐⏐⏐
ρ=ρ0

dS = lim
ρ0→∞

∫
∂Ωρ0

yi

ρ4
(bj ·y)

⏐⏐⏐
ρ=ρ0

dS .
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Then, since
∫
∂Ωρ0

yiykf(ρ)|ρ=ρ0 dS = 0 for i ̸= k, and writing dS = ρ20dΩ0, where dΩ0

is the solid angle for the unit ball, we obtain that

lim
ρ0→∞

∫
∂Ωρ0

ΨT
i ∂ρW2|ρ=ρ0 dS = lim

ρ0→∞

∫
∂Ωρ0

y2i
ρ20
bji dΩ0 =

4π

3
bji , (4.15)

for each i = 1, 2, 3. In a similar way, we can calculate the second boundary integral in

(4.12) as

− lim
ρ0→∞

∫
∂Ωρ0

WT
2 ∂ρΨi|ρ=ρ0 dS = − lim

ρ0→∞

∫
∂Ωρ0

(bj·y) ∂ρ

[
P2(ρ)

yi
ρ

] ⏐⏐⏐
ρ=ρ0

ρ20 dΩ0 ,

= − lim
ρ0→∞

∫
∂Ωρ0

(bj·y) ∂ρ

(
yi
ρ3

) ⏐⏐⏐
ρ=ρ0

ρ20 dΩ0 ,

= lim
ρ0→∞

∫
∂Ωρ0

(bj·y)

(
2yi
ρ4

) ⏐⏐⏐
ρ=ρ0

ρ20 dΩ0 ,

= 2 lim
ρ0→∞

∫
∂Ωρ0

bji
y2i
ρ20

⏐⏐⏐
ρ=ρ0

dΩ0 =
8π

3
bji . (4.16)

By adding (4.15) and (4.16), we obtain that the right-hand side of (4.12) is 4πbji.

Finally, by equating this expression with that given in (4.14) for the left-hand side of

(4.12), we obtain that x′ji = −3bji/κ1, where κ1 is defined in (4.10). In vector form,

with i = 1, 2, 3, we obtain (4.10). ■

By combining (4.10) with our expression for bj in (4.9b), we obtain an ODE-DAE

system for the slow spot dynamics given by

dxj

dt
=

12πε3

κ1

⎛⎜⎝Sjε∇xR(x;xj)|x=xj
+

N∑
i=1
i ̸=j

Siε∇xG(x;xi)|x=xj

⎞⎟⎠ , j = 1, . . . , N ,

(4.17)

where κ1 = κ1(Sjε) and S1ε, . . . , SNε are determined from the nonlinear algebraic

system (4.7), which for ε≪ 1 depends weakly on the spot locations x1, . . . ,xN . This

ODE-DAE system is valid when the N -spot quasi-equilibrium pattern is linearly stable

to either competition or peanut-splitting instabilities. Our numerical computations of

κ1 shown in the left panel of Fig. 4.2 reveal that κ1 < 0 for 0 < Sj < Σ2 ≈ 20.16.

Numerical realizations of the ODE-DAE system (4.17) and (4.7) are readily possible

when Ω is the unit ball. In this special case, the Neumann Green’s function and its
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regular part can be given explicitly as

G(x; ξ) =
1

4π

(
1

|x− ξ|
+

1

|ξ|
1

|x− ξ′|

)
− 1

4π
log (T ) +

1

8π
|x|2 + h(ξ) ,

T ≡ (ξ′ − x) · ξ

|ξ|
+ |ξ′ − x| , (4.18)

for some h(ξ), where ξ′ ≡ ξ/|ξ|2. A simple calculation of the gradient, which is needed

in (4.17), yields

∇xG(x; ξ) = − 1

4π

(
x− ξ

|x− ξ|3
+

1

|ξ|
x− ξ′

|x− ξ′|3

)
+

1

4πT

(
ξ

|ξ|
+

ξ′ − x

|x− ξ′|

)
+

x

4π
, (4.19a)

∇xR(x; ξ) = − 1

4π

1

|ξ|
x− ξ′

|x− ξ′|3
+

1

4πT

(
ξ

|ξ|
+

ξ′ − x

|x− ξ′|

)
+

x

4π
. (4.19b)

For a particular parameter set, as described in the caption of the right panel of

Fig. 4.2, we compare results from (4.17) for a 2-spot evolution in the ball with corre-

sponding full numerical results computed from the PDE (4.1) using FlexPDE6 [107].

In our example, the two spots are initially taken to be in an antipodal configuration

so that e = (1, 1)T is an eigenvector of the Green’s matrix G. As a result, from

(4.7), we have S1ε = S2ε ≡ Sc = A/(6
√
D). The results shown in the right panel of

Fig. 4.2 show that the asymptotic result (4.17) is highly accurate in predicting the

full dynamics. For this special configuration, we obtain from (4.17) and (4.19) that

x1 = (0, 0, z0) and x2 = −x1 satisfies the explicit ODE

dz0
dt

= −3Scε
3

|κ1|
F2(z0) , F2(z0) ≡

2z30(3 − z40)

(z40 − 1)2
+ 2z0 −

1

4z20
. (4.20)

It is readily verified that there is a unique root z0e to F2(z0) = 0 on 0 < z0 < 1, and

using a root finder we get z0e ≈ 0.42885, which confirms the result shown in Fig. 4.2.

For an arbitrary initial configuration of spots, we recall from (4.7) that to leading

order in ε we have Sj = Sc + O(ε), where Sc is A|Ω|
4πN

√
D

. Then, upon introducing the

discrete energy H(x1, . . . ,xN) defined by

H(x1, . . . ,xN) ≡
N∑
i=1

R(xi;xi) + 2
N∑
i=1

N∑
j>i

G(xi;xj) , (4.21)

we can write (4.17) in the form of a gradient flow. The result is summarized as follows:
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Figure 4.2: Left panel: κ1 versus Sc computed numerically from (4.10), which shows
that κ1 < 0 for 0 < Sc < Σ2 ≈ 20.16. Right panel: plot of the z-coordinate z0(t) > 0
of two antipodal spots initially located at (0, 0,±0.1375). The other spot evolves as
−z0(t). The solid curve is obtained from numerically solving the full Schnakenberg
model (4.1) in the unit ball, while the circles are obtained from numerically solving
the ODE (4.20), as derived from (4.17), with S1ε = S2ε = A/(6

√
D). The parameters

are D = 1, A = 80, and ε = 0.02. For this parameter set, where S1ε ≈ 13.33, we get
κ1 = −2.0395.

Main Result 4.1.2 Let ε→ 0, and suppose that the N-spot quasi-equilibrium solu-

tion of (4.1) is linearly stable on an O(1) time-scale to either competition or peanut-

splitting instabilities. Then, to leading order in ε, the collection of spots evolve by the

gradient flow

dxj

dt
= −6πε3Sc

|κ1|
∇xj

H(x1, . . . ,xN) , j = 1, . . . , N ; Sc =
A|Ω|

4πN
√
D
, (4.22)

where the discrete energy H is defined in (4.21). Here κ1 = κ1(Sc) is defined in (4.10).

In terms of the spatial configuration {x1, . . . ,xN} of spots, a two-term expansion for

the spot strengths when µ′
0(Sc) ̸= 0 is

Sjε ∼ Sc +
4πεSc

µ′
0(Sc)

(
eTGe
N

− (Ge)j

)
+ · · · , j = 1, . . . , N , (4.23)

where e = (1, . . . , 1)T and G is the Neumann Green’s matrix.

We now use (4.22) to discuss possible steady-state spot configurations. It follows

from (4.22) that spatial configurations of steady-state spots are critical points of the

discrete energy H, and that patterns that are linearly stable with respect to the ODE
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dynamics (4.22) are minima of H. The discrete energy H also arises in the analysis of

the mean first passage time for a Brownian walk in a 3-D domain with small localized

spherical traps (cf. [108]). Following the decomposition in [108], we define H0 by

H(x1, . . . ,xN) =
H0

4π
− 7N2

10π
,

H0 ≡ 4π

[
N∑
i=1

(
R(xi;xi) +

7

10π

)
+ 2

N∑
i=1

N∑
j>i

(
G(xi;xj) +

7

10π

)]
. (4.24)

For the unit ball, in Table 4.1 we give some results for N = 2, . . . , 20 computed in

[108] using numerical optimization software for a restricted optimization problem

whereby H0 is minimized subject to the condition that either all N spots must be

on a single ring (second and third columns), or all N − 1 points are on a single ring

while the remaining spot is at the origin (fourth and fifth columns). From this table

we observe for N ≥ 16 that the second class of patterns gives a smaller H0. It was

found in [108] that, for N = 2, . . . , 20, an unrestricted optimization of H0 gives results

that coincide to the number of digits shown with the restricted minimum energies in

Table 4.1, with all spots being very close to, but not exactly on, a common ring of

radius rc. As a result, for N = 2, . . . , 20, the global minimum of H0 can be predicted

rather accurately from the restricted optimization results in Table 4.1.

Point configurations corresponding to such global minima of H0 are linearly stable

equilibria of the ODE dynamics (4.22). We then perform numerical simulations of

(4.22) with randomly generated initial conditions in an attempt to classify steady-states

of (4.22) with large basins of attraction of initial conditions. We find for N = 2, 3, 4, 6, 8

that the computed steady-state solutions agree precisely with those for the one-ring

patterns shown in the second and third columns in Table 4.1 and that, for these values

of N , e = (1, . . . , 1)T is an eigenvector of the Green’s matrix G at the steady-state. In

particular, for N = 2, the first row of Table 4.1 predicts that a two-spot steady-state

of (4.22) will correspond to antipodal spots on an interior ball of radius rc ≈ 0.429,

which is precisely what was observed in the results shown in the right panel of Fig. 4.2.

Moreover, our numerical results show for N = 12 that some initial conditions lead

for (4.22) lead to a steady-state where the spots are centered at the vertices of an

icosahedron with discrete energy and radius given in Table 4.1, for which e is an

eigenvector of G, while other initial conditions lead to a pattern with 11 spots nearly

on a common ring with a spot at the center. For N = 13, 14, 15, initial conditions lead
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N H(a)
0 Spherical radii H(b)

0 Spherical radii

rj = rc ∀j rj = rc ∀j , (r1 = 0)

2 7.2763 0.429 9.0316 0.563

3 18.5047 0.516 20.3664 0.601

4 34.5635 0.564 36.8817 0.626

5 56.2187 0.595 58.1823 0.645

6 82.6490 0.618 85.0825 0.659

7 115.016 0.639 116.718 0.671

8 152.349 0.648 154.311 0.680

9 195.131 0.659 196.843 0.688

10 243.373 0.668 244.824 0.694

11 297.282 0.676 297.283 0.700

12 355.920 0.683 357.371 0.705

13 420.950 0.689 421.186 0.710

14 491.011 0.694 491.415 0.713

15 566.649 0.698 566.664 0.717

16 647.738 0.702 647.489 0.720

17 734.344 0.706 733.765 0.722

18 826.459 0.709 825.556 0.725

19 924.360 0.712 922.855 0.727

20 1027.379 0.715 1025.94 0.729

Table 4.1: Numerically computed minimal values of the discrete energy function H0

for the optimal arrangement of N -traps within a unit ball where the optimization
is restricted to a one-ring configuration H(a)

0 , or to a one-ring configuration with a

center spot H(b)
0 (see [108]). The minimum of these two values is shown in bold face.

The unrestricted optimization of H0 gives results extremely close to the restricted
minimum energies in Table 4.1, but that not all spots lie exactly on a ring of a common
radius.
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either to spots nearly on a common ring or to the near-ring and center-hole pattern.

For N = 16, . . . , 20 our computations of (4.22) lead typically to the near-ring and

center-hole pattern. For N = 12, . . . , 20, we find that the discrete energies at the

steady-state coincide very closely with the restricted optimization results in Table 4.1.

For N = 5, our simulations of (4.22) with random initial conditions, shows that (4.22)

converges to a steady-state with 2 antipodal spots at a distance of 0.59279 from the

origin, and with 3 spots equally-spaced on a mid-plane with spots being at a distance

0.59605 from the origin.

4.1.1 Spot Dynamics with a Spatially Varying Feed-Rate

In this subsection we extend our previous analysis of (4.1) to the case where the

feed-rate A depends on x, with A(x) > 0 in Ω. We only briefly highlight the new

features of the analysis needed when A = A(x).

Since the inner solution near each spot does not depend on A, we can allow the

source strength Sj to depend weakly on ε, and so we write Ujε, Vjε to be the solution

to (4.3) for which Ujε ∼ µj − Sjε/ρ as ρ→ ∞, where µj ≡ µ0(Sjε). In place of (4.4),

the outer solution now satisfies

∆u ∼ −εA(x)

D
+

4πε√
D

N∑
j=1

Sjεδ(x− xj) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω . (4.25)

By the divergence theorem, we obtain that

N∑
i=1

Siε =
Ā|Ω|

4π
√
D
, Ā ≡ 1

|Ω|

∫
Ω

A(x) dx . (4.26)

The exact solution to (4.25) is simply

u = ξ +
ε

D
u1p(x) − 4πε√

D

N∑
i=1

SiεG(x;xi) , (4.27)

where ξ is a constant, G is the Neumann Green’s function of (4.5), and u1p(x) is the

unique solution to

∆u1p = −A(x) + Ā , x ∈ Ω ; ∂nu1p = 0 , x ∈ ∂Ω ;

∫
Ω

u1p dx = 0 , (4.28)

which is given explicitly by

u1p(x) =

∫
Ω

G(ξ;x)A(ξ) dξ . (4.29)
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By expanding (4.27) as x → xj we obtain in terms of inner variables that

u ∼ ξ − Sjε√
Dρ

+
ε

D
u1p(xj) −

4πε√
D

(GS)j +
ε2√
D
y·b̃j + · · · , as x → xj , (4.30)

where G is the Neumann Green’s matrix, S ≡ (S1ε, . . . , SNε)
T , and where we have

defined b̃j by

b̃j ≡
1√
D
∇xu1p|x=xj

−4π

⎛⎜⎝Sjε∇xR(x;xj)|x=xj
+

N∑
i=1
i ̸=j

Siε∇xG(x;xi)|x=xj

⎞⎟⎠ . (4.31)

Upon matching (4.30) to the far-field behavior of the j-th inner solution defined in

(4.2) we obtain, in place of (4.7), that Sjε, for j = 1, . . . , N , and ξ now satisfy

ξ − 4πε√
D

(GS)j +
ε

D
u1p(xj) =

µ0(Sjε)√
D

, j = 1, . . . , N ;

N∑
j=1

Sjε =
Ā|Ω|

4π
√
D
, (4.32)

where the graph of µ0(Sjε) versus Sjε was shown in Fig. 4.1(a). In addition, we

obtain that W2 = (Vj2, Uj2)
T now satisfies (4.9) with bj replaced by b̃j. Therefore,

by using Lemma 4.1.1 we can determine the slow spot dynamics in terms of b̃j. This

yields, in place of (4.17), that the ODE-DAE system for the slow spot dynamics when

A = A(x)

dxj
dt

= − ε3

κ1

⎡⎢⎣ 3√
D
∇xu1p|x=xj

− 12π

⎛⎜⎝Sjε∇xR(x;xj)|x=xj
+

N∑
i=1

i̸=j

Siε∇xG(x;xi)|x=xj

⎞⎟⎠
⎤⎥⎦ (4.33)

where S1ε, . . . , SNε are now determined from the nonlinear algebraic system (4.32),

and κ1 = κ1(Sjε) < 0 from Fig. 4.2(a). Finally, upon making the leading-order

approximation Sj = Sc + O(ε), for j = 1, . . . , N , where

Sc =
Ā|Ω|

4πN
√
D
, (4.34)

we can readily reduce (4.33) to the following simple result:

Main Result 4.1.3 Let ε → 0, and suppose that the N-spot quasi-equilibrium so-

lution of (4.1) with A = A(x) > 0 is linearly stable on an O(1) time-scale to ei-

ther competition or peanut-splitting instabilities. Then, to leading order in ε, for
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j = 1, . . . , N,the slow time evolution of the collection of spots satisfies

dxj

dt
= −12πScε

3

|κ1|

⎛⎜⎝∇xR(x;xj)|x=xj +
N∑
i=1
i ̸=j

∇xG(x;xi)|x=xj −
N

Ā|Ω|
∇xu1p|x=xj

⎞⎟⎠ (4.35)

where Sc is given in (4.34). In term of the discrete energy H of (4.21), we have

equivalently that

dxj

dt
= −6πScε

3

|κ1|

(
∇xj

H(x1, . . . ,xN) − 2N

Ā|Ω|
∇xu1p|x=xj

)
(4.36)

where u1p, which satisfies (4.28), is given explicitly in (4.29). Here κ1 = κ1(Sc) < 0

is defined in (4.10) (see Fig. 4.2(a)). In terms of the spatial configuration {x1, . . . ,xN}
of spots, a two-term expansion for the source strengths when µ′

0(Sc) ̸= 0, as obtained

from (4.32), is

Sjε ∼ Sc +
4πεSc

µ′
0(Sc)

(
eTGe
N

− (Ge)j

)
+

ε√
Dµ′

0(Sc)

(
u1p(xj) −

1

N

N∑
i=1

u1p(xi)

)
(4.37)

where e = (1, . . . , 1)T and G is the Neumann Green’s matrix.

We now illustrate Main Result 4.1.3 for a few choices of the variable feed A in the

unit ball.

Example 1: (Radially Symmetric Feed-Rate: A = A(r))

We first use (4.35) to derive an ODE for a one-spot solution centered at x1 = (r, 0, 0)

along the positive x axis inside a unit ball when the feed-rate A is purely radial, i.e.

A = A(r). We use Sc = Ā/(3
√
D) from (4.34), together with (4.19) and the solution

u1p to (4.28), to readily obtain that (4.35) reduces to

dr

dt
= − Āε3√

D|κ1|
F1a(r) , where F1a(r) ≡

r(2 − r2)

(1 − r2)2
+

3

Ār2

∫ r

0

A(ρ)ρ2 dρ ,

(4.38)

and Ā = 3
∫ 1

0
ρ2A(ρ) dρ. Since F1a(0) = 0, then r = 0 is always an equilibrium point.

Moreover, since F1a(r) ∼ r
[
2 + A(0)/Ā

]
> 0 as r → 0, it follows that r = 0 is a

stable equilibrium point of the ODE (4.38) for any A(r) > 0. Finally, since F1a(r) > 0

on 0 < r < 1, we conclude that there is no radially symmetric feed-rate that can lead

to the pinning of a spot at some distance re, with 0 < re < 1, from the origin.

Next, we consider a two-spot pattern in a spherical domain where the spots are

symmetrically placed at x1 = (r, 0, 0) and x2 = −x1 with 0 < r < 1. Assume that
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A = A(r) > 0. We use Sc = Ā/(6
√
D) from (4.34), together with (4.19) and the

solution u1p to (4.28), to readily obtain that (4.35) reduces to

dr

dt
= −3Scε

3

|κ1|
F2a(r) , F2a(r) ≡

2r3(3 − r4)

(r4 − 1)2
+ r − 1

4r2
+

3

r2Ā

∫ r

0

Aρ2 dρ , (4.39)

where Ā = 3
∫ 1

0
ρ2A(ρ) dρ. Any steady-state r0e of (4.39) must satisfy

2r5(3 − r4)

(r4 − 1)2
+

∫ r

0
ρ2A(ρ) dρ∫ 1

0
ρ2A(ρ) dρ

=
1

4
− r3 . (4.40)

The left-hand side of (4.40) is monotone increasing, is zero at r = 0 and is unbounded

as r → 1−. Since the right-hand side is monotone decreasing on 0 < r < 1 and has a

unique sign change at r = 4−1/3, it follows that there is a unique steady-state solution

r0e to (4.39) on 0 < r0e < 4−1/3 for any A(ρ) > 0. Therefore, the effect of the radially

symmetric feed-rate is simply to modify the location of the steady-state observed in

Fig. 4.2 for the case where A was constant.

Example 2: (Pinning of a Spot)

We consider a one-spot solution and take A(x) = A0 +Bz with 0 < B < A0, where

x = (x, y, z)T . For this case, Ā = A0, and we calculate from (4.28) that

u1p(x) =
Bz

10

(
3 − |x|2

)
, ∇xu1p(x) =

B

10

(
−2xz,−2yz, 3 − |x|2 − 2z2

)T
. (4.41)

We obtain from (4.19b) that

∇xR(x;x1)|x=x1 =
x1

4π

[
2 − r2

(1 − r2)2
+ 1

]
, (4.42)

so that (4.35) with N = 1 and u1p as in (4.41) yield that

dx1

dt
= −3ε3S1

|κ1|

[
x1

(
(2 − r2)

(1 − r2)2
+ 1

)
+

3B

10A0

(
2x1z1, 2y1z1,−3 + r2 + 2z21

)T]
,

(4.43)

where r = |x1| and S1 = A0/(3
√
D). The steady-state for (4.43) is x1e = y1e = 0, and

where z1e = re is the unique root on 0 < re < 1 of

r

(
(2 − r2)

(1 − r2)2
+ 1

)
=

9B

10A0

(1 − r2) , (4.44)

which can be found numerically. In particular, if A0 = 40 and B = 20 so that

A(x) = 40 (1 + z/2), the unique equilibrium point is (x1e, y1e, z1e)
T = (0, 0, 0.14387)T .
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Therefore, in this case we predict that the variable feed-rate leads to an equilibrium

spot solution on the positive z axis in the direction where the feed is largest. For

ε = 0.03 and the initial location x1(0) = (0.4, 0.5, 0.3)T , this is confirmed in Fig. 4.3(a)

from a FlexPDE6 [107] full numerical computation of (4.1). We remark that the full

numerical results in Fig. 4.3(a) compare very favorably with results from the ODE

(4.43).
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(b) example 3: |x1(t)− ξ| versus t

Figure 4.3: Left panel: Plot of the full numerical results (discrete points) computed
from (4.1) using FlexPDE6 [107] for the three components of the spot trajectory
x1 versus t for example 2 where A(x) = 40 + 20z, D = 1, ε = 0.03, and with
initial condition x1(0) = (0.4, 0.5, 0.3)T . The three curves are the asymptotic result
(4.43) with the labels x (dotted), y (dashed), and z (solid), where x1 = (x, y, z)T .
The results confirm that x1 → (0, 0, 0.14387)T as t → ∞. Right panel: numerical
solution of the ODE (4.46) (solid curve) for example 3 where A(x) is given in (4.45)
with D = 1 and ε = 0.03. The discrete points are full numerical results computed
from (4.1) using FlexPDE6 [107]. The parameters are A0 = 20 and B = 20|Ω|,
with |Ω| = 4π/3. The localized feed is at ξ = (0, 0, 0.5), and we plot the distance
|x1(t) − ξ| versus t for three initial conditions: x1(0) = (0, 0.7,−0.2)T (heavy solid
curve), x1(0) = (−0.7,−0.2,−0.6)T (solid curve), and x1 = (−0.5, 0.0, 0.0)T (dotted
curve).

Example 3: (Pinning of a Spot by a Localized Source of Feed)

Finally, we consider one-spot dynamics for the case where the variable feed-rate

has a background state that is augmented by a localized source where the feed is large.

As a model for this situation we take

A(x) = A0 +Bδ(x− ξ) , (4.45)
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where A0 > 0, B > 0, and ξ ∈ Ω. We calculate Ā = A0 + B/|Ω|, and the solution

to (4.28) is u1p(x) = BG(x; ξ). From (4.35) and (4.19), we obtain that the one-spot

dynamics is

dx1

dt
= −3ε3S1

|κ1|

[
x1

(
(2 − r2)

(1 − r2)2
+ 1

)
− 3B

A0 +B/|Ω|
∇xG(x; ξ)|x=x1

]
, (4.46)

with S1 = (A0 +B/|Ω|) /(3
√
D), and where ∇xG(x; ξ)|x=x1 can be calculated from

(4.19a). Due to the 1/r singularity in G, it follows from (4.46) that if the initial point

x1(0) is sufficiently close to the source ξ of the feed, then we claim that x1(T ) = ξ

at some t = T < ∞. To see this, we observe from (4.46) and (4.19a) that for x1

near ξ, we have dx1/dt ∼ −c(x1 − ξ)/|x1 − ξ|3 for some c > 0, which implies that

|x1 − ξ| ∼ (3c)1/3(T − t)1/3 for t near T .

This finite-time pinning phenomena is shown in Fig. 4.3(b) where we plot the

distance |x1(t) − ξ| versus t for a one-spot solution in the unit ball for the parameter

set A0 = 20, B = 20|Ω|, D = 1, and ε = 0.03. In this figure we show a very favorable

comparison between results computed from the asymptotic ODE (4.46) and the full

numerical solution to (4.1) using FlexPDE6 [107] for three different initial conditions

x1(0). When using FlexPDE6 on (4.1) for A(x) given in (4.45), we mollified the delta

singularity by using the following 3-D Gaussian approximation with σ = 0.005:

A(x) = A0 +BF (|x− ξ|) , where F (|x− ξ|) ≡ (πσ)−3/2 exp
(
−σ−1|x− ξ|2

)
.

4.2 Discussion

We have developed a hybrid asymptotic-numerical approach to analyze the slow dynam-

ics of quasi-equilibrium N -spot patterns for the singularly perturbed 3-D Schnakenberg

model (4.1) in the limit ε→ 0. In terms of the original model, such patterns occur in

the large diffusivity regime D = O(ε−4). Our hybrid asymptotic-numerical framework

characterizing the slow spot dynamics was implemented numerically for some spot

patterns in the unit ball. Our asymptotic predictions for the slow spot dynamics were

shown to compare very favorably with results obtained from full numerical simulations

of the 3-D Schnakenberg model (4.1) using FlexPDE6 [107].

We now briefly discuss a few open problems that warrant further study. Our

implementation of slow spot dynamics was done only for the case where Ω is the
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unit ball, for which there is an explicit analytical formula for the Neumann Green’s

function and its regular part. To leading-order in ε, the slow ODE dynamics in (4.22)

for a spatially uniform feed A, and in (4.36) for a variable feed A(x), depend on

the gradient of this Neumann Green’s function. For more complicated domains, it

would be interesting to implement the explicit ODE dynamics numerically by using

fast multipole methods (cf. [109]) to compute the required Green’s function both

accurately and rapidly. Such fast multipole methods would be highly advantageous in

this setting, since in simulating the ODE dynamics in (4.22) or (4.36) the gradients of

the Green’s function must be evaluated at each discrete point of the discretization of

the ODE dynamics. With this approach it should be tractable to numerically study

spot-dynamics and, in particular, spot-pinning effects due to either changes in the

domain geometry or spatial variations in the variable feed-rate A(x).

For the case where A > 0 is constant, a second open problem is to identify stable

equilibria of the leading-order ODE dynamics (4.22) that have large basins of attraction

for initial conditions. As N increases, the energy landscape of the discrete energy

H in (4.21) will have an increasingly large number of local minima with nearly the

same energy (cf. [108] and the references therein). These local minima are all linearly

stable equilibrium points of (4.22). A natural question is to study, as N increases,

whether most initial conditions for (4.22) tend to the global minimum point of H.

Our computations of (4.22) for random configurations of spots have suggested that

this property holds N = 2, . . . , 20. For the unit ball, the global minimum of H for

N = 2, . . . , 20 was computed using numerical optimization software in [108], but it

becomes computationally much more challenging to compute it for larger N . Therefore,

in what sense can the ODE system (4.22) be used as a regularization for computing

the global minimum point of H? From a numerical analysis viewpoint, a related ODE

regularization was used in [110] to compute a minimum energy configuration for 2-D

Coulomb particles on the surface of a ball. We remark that the identification of the

global minimum point of H also arises in other contexts. In particular, it corresponds

to the spatial configuration of the centers of small traps that minimize the average

mean first passage time for a Brownian walker in a 3-D domain [108] that has a

uniformly distributed starting point in the domain.
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Finally, we remark that it should be possible to develop a similar hybrid asymptotic-

numerical approach to study localized quasi-equilibrium spot patterns in a 3-D setting

for other well-known singularly perturbed RD systems, such as the Gierer-Meinhardt,

Gray-Scott, and Brusselator models.



Chapter 5

Multi-vortex Crystal Lattices in Bose-Einstein Condensates

with a Rotating Trap

The results of this chapter have been submitted for publication [111]. Our starting

point is the Gross-Pitaevskii equation with an inhomogeneous rotating trap in two

dimensions given by

(γ − κi)wt = ∆w +
1

ε2
(
V (x) − |w|2

)
w + iΩ (x2wx1 − x1wx2) (5.1a)

The parameter ε is assumed to be small, which corresponds to the large chemical

potential limit. Ω is the rotation rate, and V (x) is the trap potential. We consider

the general anisotropic parabolic potential V (x),

V (x) = 1 − x21 − b2x22 (5.1b)

The parameter b represents the strength of the anisotropy, with isotropic trap cor-

responding to b = 1. Finally, the ratio γ/κ represents the finite temperature effects

[112, 113]. For the purposes of numerical simulations, we mostly work in the the

overdamped regime γ/κ→ ∞, sometimes referred to as imaginary time integration

[113, 114]. While the equilibrium vortex lattice state is independent of γ, numerical

simulations are easier to perform in the overdamed regime.

Let us now summarize the main findings of this chapter.

1. Reduced equations for vortex motion. In §5.1 and §5.1.2 we extend the

asymptotic methods first developed in [22] to the case of nonconstant rotating

trap. The presence of the inhomogeneous trap introduces several complications.

The end-result is the the following system for the motion of N vortices whose

77
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Figure 5.1: Nmax as a function of Ω. “PDE” denotes the full PDE simulation (5.1)
with b = 1, ε = 0.01, κ = 0, γ = 1. We start with Ω = 125 and an initial configuration
of 80 vortices. Then Ω is gradually decreased in time according to the formula
Ω = 140− 10−4t. We count the number of vortices at each value of Ω, and this is what
is plotted. “ODE” denotes the simulation of the reduced ODE system (5.2), with the
same parameters as PDE. “Continuum” refers to formula (5.4). “Aftalion/Du” is the
formula (5.44) originally derived in [115]. Finally, “Continuum2” is formula (5.46)
first derived in [116].

positions are given by ξj, j = 1 . . . N :

γ log (1/ε) ξjt + κξ⊥jt =

(
− 2Ω

1 + b2
+

2 log (1/ε)

V (ξj)

)(
1 0

0 b2

)
ξj

+2
∑
k ̸=j

(ξj − ξk)

|ξj − ξk|2
V (ξj)

V (ξk)
. (5.2)

Here and below, we use the notation (a, b)⊥ = (−b, a).

We draw the reader’s attention to the term
V (ξj)

V (ξk)
which modifies the “classical”

Helmholtz-type vortex-to-vortex interaction of the form ξ⊥jt =
∑

k ̸=j
(ξj−ξk)

|ξj−ξk|2

(equation (5.2) reduces to the “classical” case when V = 1, γ = 0 and Ω =

0, corresponding to a constant trap, no rotation, and no damping). To our

knowledge, this is the first time that this additional term has been proposed. In

[116, 117] the same equation as (5.2) but without the term
V (ξj)

V (ξk)
was used to
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describe vortex dynamics in BEC. We show that our modified equation (5.2)

agrees with full numerical simulations of the original GPE (5.1a) much better,

particularly in the case of multiple vortices; see figures 5.1, 5.2.

The remaining results in the paper follow from the analysis of the reduced

equation (5.2).

2. Large-N vortex lattice density and radius for isotropic potential. Here,

we extend the methods reported in [116] to derive the continuum limit density

for the steady state of (5.2). In §5.2 we show that in the large-N limit, the

radius a of the vortex lattice is related to Ω,N, ε via the formula

N ∼ 1

ν

((
−1 − 1

2
Ων

)
ln(1 − a2) + 2 − 2(1 − a2)−1

)
, N ≫ 1 (5.3)

where ν = 1/ log (1/ε) . See figure 5.2, where the asymptotic radius a given by

solving (5.3) is shown in dashed curve, and a good agreement with full numerics

is observed.

3. Maximal admissable number of vortices. As we show in §5.2, an immediate

consequence of (5.3) is the existence of a fold-point bifurcation which results in

the dissapearence of some vortices as Ω is decreased, as illustrated in figure 5.1.

Stated differently, for a fixed Ω, there is a maximum Nmax such that N -vortex

lattice exists if and only if N ≤ Nmax where

Nmax =
1

ν

{
(Ων + 2)

(
1

2
ln(Ων + 2) − ln(2) − 1

2

)
+ 2

}
. (5.4)

Figure 5.1 illustrates this result.

4. Stability of two vortices in the anisotropic case. In §5.3 we study the

stability of a two-vortex steady state with respect to the ODE dynamics of

(5.50). By symmetry, there are two equilibria states: the two vortices lying on

major or minor axis. However the equilibrium along the minor axis is unstable.

Furthermore, a two vortex-state on a the major axis becomes unstable as Ω

is decreased due to a fold point bifurcation. We compute this bifurcation and

compare this to numerics. In paper [115] a similar threshold was computed for

the anisotropic case from the energy point of view.
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5. High anisotropy, large N limit (§5.4). Sufficiently high anisotropy “pushes”

all the vortices to align along the major axis (see figure 5.5). In the dual limit of

high anisotropy and large N, the steady state becomes essentially one-dimensional

and we compute the effective one-dimensional density using techniques involving

the Chebychev polynomials. As in the radially symmetric case, the vortex

“lattice” has a radius a which, in the case b≫ 1, is implicitly given via equation

N ∼ 1

ν

(
Ων

1 + b2
a2

2
√

1 − a2
− (a2 − 2)2

ν(1 − a2)
3
2

+ 1

)
. (5.5)

6 Maximal admissable number of vortices, high anisotropy (§5.4). Fi-

nally, as in the radially symmetric anisotropic case, we compute Nmax,1d, the

maximum number of vortices admissable for a given Ω when the anisotropy

is sufficiently high to align all vortices along the major axis. It is obatined by

computing maximizing (5.5) which yields

Nmax,1d =
1

ν

(
1 + 3−3/2

(
Ων

1 + b2
− 4

)√
1 + 2

Ων

1 + b2

)
, b > 1 (5.6)

There have been two approaches to the dynamics of vortices in a trapped condensate.

The first approach relies on the fact that GP equation is the Euler-Lagrange equation

for the time-dependent Lagrangian functional under variation of the wave function.

If the condensate wave function depends on one or more parameters, the resulting

Lagrangian functional provides approximate Lagrangian equations of motion for these

parameters [93, 115, 118, 119]. Another approach is to study GP equation itself, which

is the approach we take. Due to the presence of two length scales: the size of vortex

core and the inter-vortex distance, it is possible to employ the method of matched

asymptotics [22, 94–97]. Our approach results in a more precise equation of motion.

5.1 Vortex Dynamics

We now derive vortex dynamics for (5.1a), following closely the exposition in [22]. We

start by deriving the dynamics of a single vortex, then expand our calculations to

multiple vortices.
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Figure 5.2: Comparison of the steady state of PDE and ODE simulations. ‘∗’ denotes
the steady state of the ODE system (5.2) whereas ‘o’ is from the PDE system (5.1).
The parameters are chosen as: γ = 1, κ = 0 , b = 1, ε = 0.025 and Ω = 29.51 for 3 to
7 vortices and Ω = 36.89 for 8 to 10 vortices. The dashed line represents the radius
prediction a from (5.3).

5.1.1 Single Vortex

Suppose that the vortex center is located at ξ = (ζ, η) ∈ R2. Following [22], we

decompose the solution into the outer region O(ε) away from the vortex center, and

the inner region near the vortex center. We will then use matched asymptotics to

match the two regions which will yield the equation of motion.

In the outer region, outside the vortex core |x− ξ| ≫ O(ε), we decompose the

solution into phase ϕ and amplitude u:

w = ueiϕ. (5.7)

Substituting (5.7) into (5.1a) and separating the real and imaginary part, we then

obtain:

γut + κuϕt = (∆u− u|∇ϕ|2) +
1

ε2
(
V (x) − u2

)
u+ Ωuϕθ

−κut + γuϕt = u∆ϕ+ 2∇u · ∇ϕ− Ωuθ.

We then expand u and v with respect to ε: u = u0 + εu1 + · · · and ϕ = ϕ0 + εϕ1 + · · · .
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Leading order equations yield

u0 =
√
V (x) (5.8)

and

γϕ0t = ∆ϕ0 +
1

2

∇V
V

·
(
2∇ϕ0 − Ωx⊥

)
. (5.9)

Here and in the following, we use the notation (a, b)⊥ = (−b, a). Assume that a vortex

has charge +1, so that ϕ0 satisfies a point boundary condition

ϕ0 → arg (x− ξ) as x→ ξ. (5.10)

In order to match to the inner solution of the vortex inside the vortex core, we need

to understand in more detail the local behaviour of the outer solution away from the

vortex points. We first decompose ϕ0 as

ϕ0 = S + ϕ̃0 (5.11)

where S is the regular solution (without any singularities) to

0 = ∆S +
1

2

∇V
V

·
(
2∇S − Ωx⊥

)
. (5.12)

For the elliptic trap (5.1b), its solution is given by

S(x) =
Ω

2

b2 − 1

1 + b2
x1x2. (5.13)

We change to moving coordinate x̃ = x − ξ(t) and denote by (r̃, θ̃) the polar

coordinates in moving coordinate. Then (5.9) becomes:

γ
(
ϕ̃0t − ξt · ∇ϕ̃0

)
= ∆ϕ̃0 +

∇V (ξ + x̃) · ∇ϕ̃0

V (ξ + x̃)
, (5.14)

or, to leading order,

0 ∼ ∆ϕ̃0 +

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· ∇ϕ̃0. (5.15)

where we have assumed that the time-dynamics are sufficiently slow that γϕ̃0t can be

discarded. In particular this is the case near a stable equilibrium.

We now solve (5.15) iteratively near the singularity x̃ → 0. The leading-order

solution must match the point-boundary condition (5.10) which yields ϕ̃0 ∼ θ̃. Upon

substituting ϕ̃0 ∼ θ̃ + ϕ01 we obtain

0 = ∆ϕ01 +

(
γξt +

∇V (ξ)

V (ξ)

)
·
(
x̃⊥

|x̃|2
+ ∇ϕ01

)
. (5.16)
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The term ∇ϕ01 is of smaller than the other terms. A formal expansion then yields

ϕ01 =
1

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· x̃.

Finally, at the next iteration, we let ϕ̃0 ∼ θ̃ + ϕ01 + ϕ02, this yields ϕ02 ∼ K · x̃,
where the vector K depends on the vortex locations and will be determined later via

asymptotic matching. In summary, we obtain

ϕ0(x̃, t) = S + θ̃ +
1

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· x̃+K · x̃+ O(r̃2 log r̃) (5.17)

which yields the following singularity behaviour for w as x→ ξ:

w(x̃, t) = ei(θ̃+S(ξ))

(√
V (ξ) +

∇V (ξ) · x̃
2
√
V (ξ)

)
·{

1 +
i

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· x̃+ i(K + ∇S) · x̃+ O(r̃2 log r̃)

}
(5.18)

Next we consider the inner region,

y =
x− ξ

ε

and expand w = W0(y) + εW1(y) + · · · . In order to match each order of ε, W0, W1

must satisfy:

0 = ∆yW0 + V (ξ)W0 − |W0|2W0(
−(γ − κi)ξt + iΩξ⊥

)
· ∇yW0 − 2∇V (ξ) · yW0 =∆yW1 + V (ξ)W1 − |W0|2W1

−W0

(
W0W1 +W1W0

)
(5.19)

We scale out V (ξ) by changing variables

z =
√
V (ξ)y; W0(y) =

√
V (ξ)U0(z), W1(y) = U1(z)

so that U0, U1 satisfies:

0 = ∆zU0 + U0 − |U0|2U0 (5.20)(
−(γ − κi)ξt + iΩξ⊥

)
· ∇zU0 −

∇V (ξ) · z
V (ξ)

U0 = ∆yU1 + U1 − |U0|2U1

− U0

(
U0U1 + U1U0

)
. (5.21)
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We look for a vortex solution of U0 in the form of U0(z) = f0(R)ei(θ+S(ξ)), where R, θ

denote the polar coordinates of z = Reiθ. Then (5.20) reduces to

f ′′
0 +

1

R
f ′
0 −

1

R2
f0 + f0(1 − f 2

0 ) = 0 (5.22)

with the boundary condition:

f0(0) = 0, f0(+∞) = 1. (5.23)

The solution to (5.22, 5.23) is well known to be unique [120]. Large R expansion

shows that f0 satisfies

1 − f 2
0 − 1/R2 = O(1/R4), R → ∞. (5.24)

Let U1 = f1(R, θ, t)e
i(θ+S(ξ)). In terms of f1, (5.21) becomes:

(
−(γ − κi)ξt + iΩξ⊥

)
· (f ′

0∇zR + if0∇zθ) −
∇V (ξ) · z
V (ξ)

f0 = ∆zf1 + 2i (∇zf1 · ∇zθ)

− 1

R2
f1 + f1(1 − 2f 2

0 ) − f 2
0 f1.

We then decompose further f1 = A(R) cos θ + B(R) sin θ and separate real and

imaginary part:

A = Ar + iAi, B = Br + iBi

to obtain the following equations for Ar, Ai, Br, Bi:

−Vx1(ξ)R

V (ξ)
f0 − γζtf

′
0 −

Ωζ + κηt
R

f0 = A′′
r +

1

R
A′

r + (1 − 3f 2
0 − 2

R2
)Ar −

2Bi

R2

−Vx2(ξ)R

V (ξ)
f0 − γηtf

′
0 −

Ωη − κζt
R

f0 = B′′
r +

1

R
B′

r + (1 − 3f 2
0 − 2

R2
)Br +

2Ai

R2

−γηtf0
R

− Ωηf ′
0 + κζtf

′
0 = A′′

i +
1

R
Ai + (1 − f 2

0 − 2

R2
)Ai +

2Br

R2

γζtf0
R

+ Ωζf ′
0 + κηtf

′
0 = B′′

i +
1

R
Bi + (1 − f 2

0 − 2

R2
)Bi +

2Ar

R2

We are concerned about the behaviour of the solutions of these equations at infinity.
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As R → ∞, we have:

−Vx1(ξ)R

V (ξ)

(
1 − 1

R2

)
− Ωζ + κηt

R
= A′′

r +
1

R
A′

r + (−2 +
1

R2
)Ar −

2Bi

R2
+ O

(
1

R3

)
−Vx2(ξ)R

V (ξ)

(
1 − 1

R2

)
− Ωη − κζt

R
= B′′

r +
1

R
B′

r + (−2 +
1

R2
)Br +

2Ai

R2
+ O

(
1

R3

)
−γηt
R

= A′′
i +

1

R
A′

i −
1

R2
Ai +

2Br

R2
+ O

(
1

R3

)
γζt
R

= B′′
i +

1

R
B′

i −
1

R2
Bi −

2Ar

R2
+ O

(
1

R3

)
By writing solutions in power series of R and logR for large R, we obtain

Ar =
Vx1(ξ)R

2V (ξ)
−
(
γζt
2

+
Vx1(ξ)

2V (ξ)

)
logR

R
+ O(

1

R
) (5.25a)

Br =
Vx2(ξ)R

2V (ξ)
+

(
−γηt

2
− Vx2(ξ)

2V (ξ)

)
logR

R
+ O(

1

R
) (5.25b)

Ai =

(
−γηt

2
− Vx2(ξ)

2V (ξ)

)
R logR− 1

2
ΩηR +

κζtR

2
+ O(logR) (5.25c)

Bi =

(
γζt
2

+
Vx1(ξ)

2V (ξ)

)
R logR +

1

2
ΩζR +

κηtR

2
+ O(logR) (5.25d)

Putting these together, we get for R ≫ 1,

U1(z, t) = eiθ+S(ξ)

[
∇V (ξ)z

2V (ξ)
+
i

2
(logR)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· z +

i

2
Ωξ⊥ · z +

κξt
2

· z
]
.

Therefore, as R → ∞, the asymptotic behaviour of the inner solution is given by:

W0 + εW1 =eiθ+iS(ξ)

(√
V (ξ)f0(R) + ε

[
∇V (ξ)z

2V (ξ)

+
i

2
(logR)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· z +

i

2
Ωξ⊥ · z +

κξt
2

· z
])

(5.26)

To match (5.26) with (5.18), we recall that x̃ = εz√
V (ξ)

, r̃ = εR√
V (ξ)

. Asymptotic

matching then yields

i

2
Ωξ⊥ +

κξt
2

∼ i(K + ∇S) +
i

2
(log

ε√
V

)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
or

γξ⊥t − κνξt ∼ ν
(
−Ωξ⊥ + 2∇S + 2K

)
− ∇⊥V (ξ)

V (ξ)
. (5.27)

where ν = 1

log
(√

V (ξ)/ε
) ∼ 1

log(1/ε)
. The quantity K will be determined in §5.1.2 below

through asymptotic matching, and incorporates multi-vortex interactions. In the case
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of a single vortex, we will show that K is bounded and thus asymptotic small compared

with the other terms. In addition, we recall from (5.13, 5.1b) that ∇S = Ω
2
b2−1
1+b2

(η, ζ)

and ∇⊥V (ξ)
V (ξ)

=
2(b2η,−ζ)
1−ζ2−b2η2

so that (5.27) simplifies to

γξ⊥t − κνξt =

(
−2Ων

1 + b2
+

2

1 − ζ2 − b2η2

)(
−b2η, ζ

)
(5.28)

or equivalently,

γξt + κνξ⊥t =

(
−2Ων

1 + b2
+

2

1 − ζ2 − b2η2

)(
1 0

0 b2

)
ξ (5.29)

An immediate corrollary of (5.29) is that a single vortex at the center ξ = 0 is stable

if and only if Ω > Ω1 where

Ω1 =
1 + b2

ν
. (5.30)

As a consequence, no stable votices exist below the critical rotation rate Ω < Ω1. The

exact same critical rate was previously derived in [115] using energy methods, and it

also agrees well with full numerical simulations of the full PDE system (5.1).

5.1.2 Multiple Vortices

We now seek an approximate solution of (5.1a) with N vortices in the location

ξj, j = 1..N , all of the same sign +1. Proceeding in the same way as a single vortex,

we study the dynamics of N such vortices. The inner solution W0 near the core

of vortices is the same as a single vortex. In the outer region, ϕ̃0 still satisfies the

equation (5.9) but with N point boundary conditions ϕ̃0 ∼ arg (x− ξj) as x → ξj.

The singularity analysis of the outer region near ξj is identical to the derivation of

(5.17) with the end result

ϕ̃0(x̃, t) ∼ θ̃ +
1

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξj)

V (ξj)

)
· x̃+Kj · x̃ (5.31)

where x̃ = x− ξj, r̃ = |x̃| with x̃→ 0. The multi-vortex analogue for (5.29) is

γξjt + κνξ⊥jt =

(
−2Ων

1 + b2
+

2

1 − ξ2j1 − b2ξ2j2

)(
1 0

0 b2

)
ξj − ν2K⊥

j . (5.32)

It remains to determine the constants Kj via asymptotic matching. In the outer

region, ϕ̃0 satisfies 0 ∼ ∆ϕ̃0 + ∇V (x)·∇ϕ̃0

V (x)
or equivalently,

∇ ·
(
V (x)∇ϕ̃0

)
= 0, (5.33a)
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with N point-boundary conditions

ϕ̃0 ∼ arg (x− ξj) as x→ ξj, j = 1 . . . N (5.33b)

In the derivation that follows, we will assume that the vortices are close to each-

other, separated by a small distance of O(1/ log(1/ε)). Similarly to a computation in

[90], the leading-order solution to (5.33) is then given by1

∇ϕ̃ ∼
∑
k

V (ξk)

V (x)
∇ arg (x− ξk) .

Letting x→ ξj we then obtain

∇ϕ̃ ∼ ∇θ̃ +
∑
k ̸=j

V (ξk)

V (ξj)
∇ arg (ξk − ξj) .

Matching with (5.31) then yields

Kj =
∑
k ̸=j

V (ξk)

V (ξj)
∇ arg (ξk − ξj) = −

∑
k ̸=j

V (ξk)

V (ξj)

(ξj − ξk)⊥

|ξj − ξk|2
.

This yields the final result, which we summarize as follows:

γξjt + νκξ⊥jt ∼
(
− 2νΩ

1 + b2
+

2

1 − ξ2j1 − b2ξ2j2

)(
1 0

0 b2

)
ξj

+2
∑
k ̸=j

ν(ξj − ξk)

|ξj − ξk|2
V (ξj)

V (ξk)
. (5.34)

This concludes the derivation of formula (5.2), which is the starting point for all the

subsequent results of this paper.

5.2 Multi-vortex Lattice Denisty, Isotropic Trap.

We now consider the isotropic parabolic potential (b = 1) in the regime where the

number of vortices N is large. As demonstrated in experiments [83, 121], in this case

1The full solution to (5.33) is ∇ϕ̃ =
∑
k
V (ξk)
V (x) ∇ arg (x− ξk) +

∇⊥ψ
V (x)where ψ is chosen in such a

way as to satisfy the solvability condition to make ϕ̃ a true gradient. In particular, ∇⊥ψ
V (x) is zero when

V is constant. More generally, ψ satisfies ∇ ·
(

∇ψ
V (x)

)
=
∑
k∇

(
V (ξk)
V (x)

)
· ∇⊥ arg (x− ξk). In what

follows, we assume that the vortices are close to each other in which case the term ∇ arg (x− ξk)
dominates and ψ is a higher-order term which we ignore.
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the vortices settle to a hexagonal “crystal lattice” configurations such as shown in

Figure 5.1. Our goal is to estimate the asymptotic density of the resulting lattice

using techniques similar to those of [116]. As a direct consequence, this computation

will also yield the maximum allowed number Nmax of vortices as a function of system

parameters.

We start with the ODE system (5.2) that describes the evolution of multiple vortex

centers. Since we are interested in the steady state ξj (t) → ξj, we only consider

the overdamped regime (i.e. imaginary time integration) γ → ∞. Equivalently, by

rescaling the time, in the case of the isotropic potential (b = 1) the system (5.34) may

be written as

ξjτ =

(
−νΩ +

2

1 − |ξj|2

)
ξj + 2ν(1 − |ξj|2)

∑
k ̸=j

ξk − ξj
|ξk − ξj|2

1

1 − |ξk|2
. (5.35)

Following [116], we coarse-grain by defining the particle density to be

ρ(x) =
∑

δ(x− ξk). (5.36)

Equation (5.35) can then be written as ξjτ = v(ξj) where the velocity v is given by

v(x) =

(
−νΩ +

2

1 − |x|2

)
x+ 2ν(1 − |x|2)

∫
R2

x− y

|x− y|2
1

1 − |y|2
ρ(y)dy. (5.37a)

In the continuum limit N → ∞, this equation is coupled to the conservation of mass,

ρτ (x, τ) + ∇x · (v(x)ρ(x, τ)) = 0 (5.37b)

Together, (5.37) describe the vortex density evolution in the limit N → ∞ for the

overdamped regime (5.35). The density ρ is compactly supported. Assuming that the

density is radial, it is possible to compute the steady state ρ (x, t) = ρ (|x|) and its

radial support explicitly using techniques from [116], as we now show. Assume that

the density is supported on a disk of radius a, so that ρ(r) = 0 for r > a and ρ(r) > 0

for 0 ≤ r < a. A key identity is∫
R2

x− y

|x− y|2
g(|y|)dy = x

2π

r2

∫ r

0

g(s)sds, (5.38)

which holds for any integrable function g(r).

Applying (5.38) to (5.37a) then yields

v(x) =

(
−νΩ +

2

1 − r2
+

4πν(1 − r2)

r2

∫ r

0

1

1 − s2
ρ(s)sds

)
x. (5.39)
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Figure 5.3: Number of vortices N as a function the vortex lattice radius a. Note the
appearence of a maximum Nmax corresponding to the maximum admissable number
of vortices. Other parameters are as given in the title.

Inside the support r < a, we set v = 0. Upon differentiating with respect to r we

obtain

ρ(r) =
1

4πν

(
− 2Ωνr

(1 − r2)
− 4

(1 − r2)
+

8

(1 − r2)2

)
. (5.40)

Note from (5.36) that the total mass is N . Since we assumed that the density is

supported on |x| < a, this leads to an additional constraint∫ a

0

ρ(s)sds =
N

2π
. (5.41)

Combining (5.40) and (5.41), we obtain an explicit relationship between the support

radius a and N,

N =
1

ν

((
−1 − 1

2
Ων

)
ln(1 − a2) + 2 − 2(1 − a2)−1

)
(5.42)

A typical graph of N versus a is shown in Figure 5.3. Note that this graph attains the

maximum which we compute by setting ∂N/∂a = 0. This maximum Nmax is attained

at a =
√
Ων−2√
Ων+2

and has an explicit expression given by

Nmax =
1

ν

{
(Ων + 2)

(
1

2
ln(Ων + 2) − ln(2) − 1

2

)
+ 2

}
. (5.43)

We remark that Aftalion and Du [115] derived yet another formula for the threshold

Nmax but using the variational framework; see formula (3.4) in [115]. In our notation,

this formula can be rewritten as

Nmax,Aftalion/Du = 1 +

(
Ω − 2

ν

)
1

log (2/ν)
. (5.44)
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It is also shown in Figure 5.2. Unlike our formula (5.44), Aftalion/Du formula is linear

in Ω. It works reasonably well for a small number of vortices, but loses its accuracy as

the number of vortices increases.

Finally, let us mention that a similar computation was done in [116] for a simplified

version of vortex motion equations that did not incorporate the trap density in

vortex-to-vortex interactions suggested in [117], namely

zjτ =

(
−νΩ +

2

1 − |zj|2

)
zj + 2ν

∑
k ̸=j

zk − zj
|zk − zj|2

. (5.45)

For this simplified system, a similar analysis (see [116], section 4) yields the formula

Nmax ,CKK =
1

ν

(√
Ων

2
− 1

)2

. (5.46)

In fact, formulas (5.43) and (5.46) both agree near Ων = 2 as can be seen by

expanding in Taylor series around Ων = 2; in this regime, νNmax is small, the radius

a is also small and both formulas yield νNmax = 1
16

(Ων − 2)2 + O((Ων − 2)3) with

a ∼
√

Ων − 2 + o(
√

Ων − 2). However the formula (5.46) has a very poor agreement

for larger N.

5.3 Two Vortices, Anisotropic Trap

Let us now investigate in some more detail the case of two vortices in an anisotropic

trap (b ̸= 1). In the isotropic case (b = 1), a basic steady state configuration consists

of two antipodal vortices along any line through the center. However the introduction

of the anisotropy breaks the rotational symmetry, leading to two possible steady states:

either vortex centers lie on the x-axis or on the y-axis. Both configurations may be

admissable as steady states. However the stability analysis below will show that only

the the configuration with two vortices along the longest axis of the ellipse x2 + by2 = 1

is stable, the other configuration being unstable.

First, consider two votices in a stable configuration along the x-axis, with coordi-

nates ξ1 = (r, 0) and ξ2 = (−r, 0) . Upon substituting into equation of motion (5.2) we

obtain an algebraic equation for r,(
− νΩ

1 + b2
+

1

1 − r2

)
r +

ν

2r
= 0. (5.47)
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This equation is quadratic in r2, and admits two positive solutions r± with r− < r+,

provided that Ω > Ω2 where

Ω2 =
1

ν

1 + b2

2

(√
2 +

√
ν
)2
. (5.48)

There is a fold point at Ω = Ω2 and the solution disappears when Ω < Ω2. The same

formula for Ω2 holds for two vortices along the y−axis. Note that to leading order in

ν, Ω2 ∼ (1 + b2) /ν, which agrees with the stability threshold for a single spike Ω1, see

(5.30).

In a pioneering work [115], Aftalion and Du derived slightly different formula was

derived for Ω2, using a related energy method, see formula (22) there. Written in our

notation, the formula in [115] is:

Ω2,Aftalion/Du =
1 + b2

ν
+

1 + b2

2
log

(
1 + b2

ν

)
. (5.49)

While both formulas have the same leading-oder behaviour in ν, they have very different

(and large) correction terms. Figure 5.4(a) shows a direct comparison between (5.48),

(5.49) and the full numerical simulations of the PDE (5.1). Formula (5.48) appears to

be a significant improvement over (5.49).

For Ω > Ω2, the only potentially stable solution is the one corresponding to r− as

can be seen by considering perturbations along the x−axis. However this does not tell

the whole story: a solution may exist and be stable along the x-axis, but be unstable

with respect to the full spectrum of two-dimensional perturbations. To describe the

full stability, as in section 5.2, we will – for simplicity – consider the overdamed system

κ = 0, γ = 1 (it can be shown that stability properties are independent of κ as long as

γ > 0). The full equations then become

dx1
dt

=

(
−2Ω̂ +

2

1 − x21 − b2y21

)
x1 +

2ν(x1 − x2)

(x1 − x2)2 + (y1 − y2)2
1 − x21 − b2y21
1 − x22 − b2y22

dy1
dt

=

(
−2Ω̂ +

2

1 − x21 − b2y21

)
b2y1 +

2ν(y1 − y2)

(x1 − x2)2 + (y1 − y2)2
1 − x21 − b2y21
1 − x22 − b2y22

dx2
dt

=

(
−2Ω̂ +

2

1 − x22 − b2y22

)
x2 +

2ν(x2 − x1)

(x1 − x2)2 + (y1 − y2)2
1 − x22 − b2y22
1 − x21 − b2y21

(5.50)

dy2
dt

=

(
−2Ω̂ +

2

1 − x22 − b2y22

)
b2y2 +

2ν(y2 − y1)

(x1 − x2)2 + (y1 − y2)2
1 − x22 − b2y22
1 − x21 − b2y21

where we defined

Ω̂ :=
νΩ

1 + b2
. (5.51)
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Figure 5.4: (a) Ω2 as a function of b : comparison of full numerics and asymptotics.
Dots are obtained from full numerical computations of the full PDE (5.1). Dashed
line denotes the asymptotic formula (5.48). Dashed line is the formula (5.49) derived
in [115]. Parameter values are γ = 1, κ = 0, ε = 0.025. (b) Two-vortex trajectory.
Parameter values are ε = .025, Ω = 22.133 and b = 0.9535. Initial conditions consist
of two vortices along x-axis. Arrows indicate the direction of motion. At first, the
vortices approach a saddle point along the x-axis (indicated by green-black dots). But
eventually the two vortices settle along the y−axis (indicated by black dots). Solid
curve shows vortex centers from the full PDE simulation of (5.1) with γ = 1, κ = 0.
Dashed line shows the simulation of the the reduced ODE (5.50).

Linearizing around the equilibrium x1 = r, x2 = −r, y1 = y2 = 0, we obtain the

following Jacobian matrix, ⎛⎜⎜⎜⎜⎜⎝
2M1 0 2M3 0

0 2M2 0 2M4

2M3 0 2M1 0

0 2M4 0 2M2

⎞⎟⎟⎟⎟⎟⎠
where

M1 = −Ω̂ +
1

1 − r2
+

2r2

(1 − r2)2
− ν

4r2
− ν

1 − r2
, M2 = −Ω̂b2 +

b2

1 − r2
+

ν

4r2

M3 =
ν

4r2
− ν

1 − r2
, M4 = − ν

r2

The eigenvalues of this matrix are easily computed as 2M1 ± 2M3 and 2M2 ± 2M4
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which yields,

λ1 = 2M1 + 2M3 = −2̂Ω +
2

1 − r2
+

4r2

(1 − r2)2
− 4ν

1 − r2

λ2 = 2M1 − 2M3 = −2Ω̂ +
2

1 − r2
+

4r2

(1 − r2)2
− 2ν

r2

λ3 = 2M2 + 2M4 = −2Ω̂b2 +
2b2

1 − r2

λ4 = 2M2 − 2M4 = −2Ω̂b2 +
2b2

1 − r2
+
ν

r2
.

Using the relationships Ω̂ = ν
2r2

+ 1
1−r2

and Ω > Ω2, basic algebra shows that λ1,2,3 < 0.

On the other hand, λ4 becomes

λ4 = 2(−b2 + 1)
ν

r2

and goes through zero precisely at b = 1; it is stable for b > 1 and unstable for

0 < b < 1. The underlying elliptic trap has the form x2 + b2y2 = 1. When b > 1, the

x-axis is the major axis and the y-axis is the minor axis of the ellipse; the opposite is

true for b < 1. This shows that the two-vortex configuration is stable only along the

major axis.

Figure 5.4(b) illustrates this stability result. There, we took b = 0.9535, so that the

trap is nearly circular but with the y−axis slightly longer. So we expect a two-vortex

equilibrium to be unstable along the x−axis but stable along the y−axis. This is

indeed what happens. We ran the imaginary-time integration (κ = 0) for the full PDE

(5.1), starting with initial conditions consisting of two vortices along the x−axis. At

first, the two vortices approach the unstable equilibrium along the x-axis (although

unstable, it is a saddle point and initial conditions are along its stable manifold).

However eventually, since this equilibrium is unstable, they travel towards a stable

equilibrium along the y−axis.

5.4 Large N Limit with Strongly Anisotropic Trap

We now consider a strong anisotropic parabolic potential case b → ∞. Figure 5.5

illustrates this case with b = 3. For sufficiently strong anisotropy, the vortices align

along the major axis of the elliptic trap (the x-axis in the case b→ ∞). Exactly how

strong depends on the number of vortices and the exact dependence is an open question
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Figure 5.5: Comparison of the steady state of PDE and ODE simulations for N = 2 . . . 7
vortices. ‘∗’ denotes the steady state of the ODE system (5.2) whereas ‘o’ is from the
PDE system (5.1). The parameters are chosen as: γ = 1, κ = 0 , b =

√
(8), ε = 0.0083

and Ω = 57.67. The boundary of the elliptical trap x2 + b2y2 = 1 is also shown.

that we leave for future study. For now, we simply assume that the anisotropy is

sufficiently strong for the full alignment to occur, so that the steady state is effectively

one-dimensional. In this case, the ODE system (5.2) reduces motion purely along the

x−axis, leading to the following dynamical system of N variables:

xjt =

(
−2Ω̂ +

2

1 − x2j

)
xj + 2ν

∑
k ̸=j

1 − x2j
1 − x2k

xj − xk
|xj − xk|2

, (5.52a)

where

Ω̂ := ν
Ω

1 + b2
. (5.52b)

(where for simplicity we took the overdamped limit γ = 1, κ = 0). We wish to compute

the effective one-dimensional density of the resulting steady state in the continuum

limit N → ∞ of this system. As in §5.2, we define the one-dimensional density to be

ρ(x) =
∑

δ(x− xj).

The steady-state density then satisfies(
−Ω̂ +

1

1 − x2

)
z + ν

(
1 − x2

)
−
∫ a

−a

1

y − x

1

1 − y2
ρ(y)dy = 0 (5.53a)
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where −
∫ a

−a
denotes the Cauchy principal value integral. Here, a is the radius of the

vortex “lattice”. The solution to (5.53a) is subject to the additional mass constraint∫ a

−a

ρ(x)dx = N (5.53b)

Together, equations (5.53) are to be solved for both the density ρ(x) and the radius a.

A solution to (5.53) can be derived using techniques involving the Chebychev

polynomials, as suggested by [122], (see Chapter 18 there the Fourier–Chebyshev series).

We start by recalling the following basic identities between Chebyshev polynomials

Un and Tn (see, for example, the Wikipedia entry):

−
∫ 1

−1

√
1 − y2Un−1(x)

y − x
dy = −πTn(x) (5.54a)

−
∫ 1

−1

Tn(x)

(y − x)
√

1 − y2
dy = πUn−1(x) (5.54b)

−
∫ 1

−1

Tn(x)Tm(x)√
1 − y2

dy =

⎧⎪⎪⎨⎪⎪⎩
0 n ̸= m

π n = m = 0

π/2 n = m ̸= 0

(5.54c)

−
∫ 1

−1

Un(x)Um(x)
√

1 − y2dy =

{
0 n ̸= m

π/2 n = m = 0
. (5.54d)

Identity (5.54a) as well as the form of the integral equation (5.53a) motivates the

following anzatz for the density ρ :

ρ(x) = − 1

π

∞∑
i=1

ciUi−1(
x

a
)
(
1 − x2

)√
1 − x2

a2
. (5.55a)

Using (5.54d) then yields the following expression for ci in terms of a :

ci =
2

π

∫ 1

−1

(
−Ω̂ +

1

1 − a2y2

)
ay

ν (1 − a2y2)
Ti(y)

1√
1 − y2

dy. (5.55b)

Upon substituting (5.55a) into (5.53a) and using identities (5.54) we obtain∫ a

−a

ρ(x)dx = −a
2

(
c1(1 − a2

4
) − a2

4
c3

)
= N (5.55c)

Evaluating c1 and c3 using (5.55b) finally yields the following relationship between N

and a,

N =
1

ν

(
Ω̂a2

2
√

1 − a2
− (a2 − 2)2

ν(1 − a2)
3
2

+ 1

)
. (5.55d)
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Figure 5.6: (a) Steady state density of the ODE system (5.52), compared with
the continuum limit (5.55), where only eight terms of the series is used. Here,
N = 40 and Ω̂ = 10.8 (b) Maximal admissable number of vortices for the full PDE
simulation of (5.1) versus the ODE system (5.2), versus the versus continuum formula
(5.56). Both PDE and ODE simulations are fully two-dimensional. Parameters are
γ = 1, κ = 0, ε = 0.0088, b = 2.83 and Ω is slowly decreasing according to the formula
Ω = 150 − 10−4t. (c) Comparison of the ODE (5.52) and continuum limit formula
(5.56) with ODE motion restricted to the x-axis, for larger number of vortices. Same
parameters as in (b), except that Ω = 500 − 10−4t.

Note that while the expression for the radius a is explicit, the density ρ (x) itself does

not appear to have a closed form solution, having an infinite-series representation

(5.55a). However the coefficients ci in (5.55a) are easy to compute numerically, while

in practice the series representation converges very quickly. Figure 5.6(a) shows a

direct comparison between the analytical density (5.55a) and the steady state of (5.53)

with N = 40.

The function a→ N(a) has a unique maximum at a2 = 2
(

Ω̂ − 1
)
/(2Ω̂ + 1), given

by

Nmax,1d =
1

ν

(
1 + 3−3/2(Ω̂ − 4)

√
1 + 2Ω̂

)
. (5.56)

This provides the asymptotic upper bound for the number of vortices that can be

aligned along the x-axis. This is the main result of this section, concluding the

derivation of (5.6). Figure 5.6(c) shows the comparison between the formula (5.56)

and the ODE. Although it appears that the two curves diverge, their ratio approaches

1 as Ω̂ is increased.
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5.5 Discussion

In this chapter we derived a novel and more accurate set of ODE’s (5.2) for vortex

motion in BEC with an anisotropic trap. These ODE’s incorporate the effect of the

trap inhomogenuity on vortex-to-vortex interactions. In turn, the analysis of ODEs

yield an accurate analytical formula for the vortex lattice density, as well as the

maximal admissable number of vortices Nmax as a function of rotation rate Ω under

two scenarios: isotropic trap with large N, and high-anisotropy regime with large N.

Additionally, we examined existence and stability of two vortices in an anisotropic trap.

For the isotropic case, we used techniques from the swarming literature [116, 123] to

estimate the large-N vortex lattice density. In the case of high-anisotropy, we used

Chebychev expansions to obtain expansion in the density and explicitly compute the

critical thresholds.

It would be interesting to redo the analysis of [117] for the new ODE system (5.2).

For example, is there asymmetric configurations of two vortex-pairs?

Our results improve upon known results in the literature in two ways. The

reduced system of motion (5.2) is more accurate than that previously reported in, e.g.,

[116, 117]. As a consequence, we have obtained more accurate thresholds for existence

and stability, especially in the case of multiple vortices, but also in the case of two

vortices within an anisotropic trap. Numerical experiments show that these thresholds

improve upon those found in [115].

It is interesting to note that in addition to the upper bound Nmax, there is also

a lower bound on the number of vortices, Nmin, for a given rotation rate Ω. As Ω is

sufficiently increased, vortices suddenly nucleate from the Thomas-Fermi boundary.

In the case of an isotropic trap, a zero-vortex state becomes unstable as Ω increases

past Ω = 2.561ε−2/3 – see [124–126] for derivation. This computation can be extended

to a single vortex at the center of degree N. In this case, one finds that the stability

threshold is Ω = 2.53ε−2/3 + 2N. Solving for N , this in turn yields the formula

Nmin =
Ω

2
− 1.28ε−2/3. (5.57)

Assuming that the whole vortex lattice is concentrated near the origin, one can

approximate the whole lattice of N vortices by a single vortex of degree N. This

suggests that (5.57) provides an asymptotic lower bound for existence of N vortices as
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a function of Ω, so that Nmin < N < Nmax. We have verfied numerically that this is

the case as long as the vortex lattice is not too “spread-out” throughout the trap. An

open question is to extend this bound to an anisotropic trap, as well as the situation

where the vortex lattice is spread throughout the trap, and cannot be easily reduced

to a single N−degree vortex.

In conclusion, direct asymptotic reduction of the GPE, combined with coarse-

graining techniques for large number of vortices provide a powerful tool that yields

novel insights into a well-studied classical problem of Bose-Einstein Condensates.



Chapter 6

Conclusions and Future Research

In this thesis we studied the dynamics (especially oscillatory dynamics) and stability of

localized patterns in PDE’s. We employed a combination of asymptotic and numerical

methods to compute instability thresholds and describe the motion of patterns.

First, we considered the dynamics of many interfaces for a general class of reaction

diffusion systems. We showed that 2K interfaces will oscillate in-phase with a constant

amplitude like a single interface after τ in (2.1) exceeds a critical threshold. We began

with a reduced ODE-PDE coupled system that is used to capture the locations of

interfaces. Through the study of this coupled system, we showed that there are only

three possible long time behaviors for the interface locations: (1) some interfaces

collide; (2) all n interfaces reach a symmetric steady state; (3) all n interfaces oscillate

indefinitely.

Second, we studied the periodic motion of the location and height of a spot solution

in the two dimensional Schnakenberg model. These two different behaviors are due

to two different Hopf bifurcations. We determined which motion happens first by

conducting linear stability analysis of the steady state. We explicitly computed the

critical feed rate for the intersection point of these two stability thresholds. Beyond the

Hopf bifurcation, we studied the dynamics of spot location. We derived an ODE-PDE

coupled system that governs the slow dynamics of the spot position and obtained an

explicit solution to this system by using Bessel series, which is in good agreement with

the the original PDE model.

We then applied a similar method to the three-dimensional Schnakenberg system

and characterized the dynamics of spots in this case. The ODEs we derive provide

useful information for the configuration of many spot steady state. We also extend

the result to the situation of a spatially varying feed rate.

In addition, we investigated the vortex dynamics in Bose-Einstein Condensate with

a rotating trap. In the framework of Gross-Pitaveskii equation, we derived a reduced

99
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ODE system to capture the location of vortices. The votex-to-vortex interaction term

we used in our system is novel and led to a better description of the configuration

of vortex lattices. From the ODEs we derived, we showed that a pair of symmetric

vortices lying on the long (short) axis is linearly stable (unstable) for the anisotropic

potential. We then further investigated the many-vortex limit in the case of isotropic

potential and strong anisotropic potential and computed the effective vortex density

in both case, as well as Nmax, the maximum admissable number of vortices for a given

rotation rate..

There are many directions for the further work. We have mentioned some of them

in the discussion of each chapter. Let us emphasize some common themes here.

• Moving singularity problems: In chapters 2-5, we have derived a series of re-

duced systems for the slow dynamics of localized structures: (2.15,3.87,4.17,5.34).

In the context of oscillating interfaces (chapter 2) or spot (chapter 3), these

reduced systems typically consist of a PDE for the outer region coupled to an

ODE for the location of the pattern. In particular the circular motion of a spot

(chapter 3) is described by a PDE with a moving source. Due to the moving

source term in the PDE, the system could be solved explicitly or asymptotically

only under a restricted regime. Thus numerical simulation of this system is

essential for further study. The numerical difficulty is that the ODE for the

singularity location requires an extraction of a very weakly singular part of the

solution of the PDE. The analysis in chapter 3 illustrate how the singularity

can be extracted under some specific assumption. In general, how to obtain the

right form of the singular part is an open problem that needs further study.

• Distribution of many localized structures: The reduced system we derived

describing the location of local structures could be approximated by a nonlocal

PDE that describes their density when the number of localized structures

becomes large (the so-called mean-field limit). This can yield important insights

that cannot easily be obtained from looking at the finite N situation. This

analysis has been done for GPE in chapter 5 and for the Schnakenberg mode in

[128]. It would be interesting if we could apply this analysis to other systems.

• Three or more component system: All the systems we study have at most
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two components. With three components, the dynamics of localized structures

can exhibit much richer behaviors. One possible avenue of research is to carry

out the method we used in this thesis to three or more component systems, such

as the gas discharge model [129]. In particular, in [39] the authors show that

out-of-sync oscillations are possible for this system, something that we could

not observe in the two-component systems studied in chapter 3.

• Rigorous proof of the formal results The reader must have noted that

we have used methods of formal asymptotics to derive our results throughout

this thesis. Although we validate our results by comparing to full numerical

simulations, it is still important to provide rigorous proofs to the order of errors.

There are techniques available to provide formal justification such as a method

based on Liapunov-Schmidt reduction [58]. It is an open problem to apply these

rigorous methods to the problems studied in this thesis.
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M. Ray, E. Altuntaş, D. Hall, Dynamics of a few corotating vortices in bose-
einstein condensates, Physical review letters 110 (22) (2013) 225301.



110

[118] V. Schweikhard, I. Coddington, P. Engels, S. Tung, E. A. Cornell, Vortex-lattice
dynamics in rotating spinor bose-einstein condensates, Physical review letters
93 (21) (2004) 210403.

[119] K. Kasamatsu, M. Tsubota, M. Ueda, Vortices in multicomponent bose–einstein
condensates, International Journal of Modern Physics B 19 (11) (2005) 1835–
1904.
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