

THREE PARTY AUTHENTICATION SCHEME FOR RFID SYSTEMS

IN IoT

by

Virlla Devi Soothar

Submitted in partial fulfillment of the requirements

for the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

July 2017

© Copyright by Virlla Devi Soothar 2017

ii

This work is dedicated to

My beloved parents Dr. Bhamro and Devi Soothar for their trust and love,

My Supervisor Dr. Srinivas Sampalli for his support and encouragement through out the

research,

My Sibblings Rohin Roy and Shirlla Devi who believed in me

And

To all my friends who stood by my side.

iii

Table of Contents

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT ... x

LIST OF ABBREVIATIONS USED .. xi

ACKNOWLEDGEMENTS ... xii

CHAPTER 1 INTRODUCTION ... 1

1.1. Brief introduction of terms and concepts ... 1

1.1.1. Internet of Things(IoT) ... 1

1.1.2. RFID System ... 2

1.1.3. Pseudo-Random Number Generator ... 3

1.2. Brief Introduction to proposed approach ... 3

1.3. Outline of Thesis .. 5

CHAPTER 2 BACKGROUND .. 7

2.1. Internet of Things (IoT).. 7

2.1.1. Enabling technologies for IoT ... 7

2.1.2 Elements of IoT .. 10

2.2. RFID Systems .. 12

2.2.1. RFID Tags ... 12

2.2.2. RFID Reader (Interrogator) ... 14

2.2.3 RFID Backend Server ... 14

2.3 RFID Systems for IoT ... 14

2.4. Computations capabilities and security risks ... 15

2.5. Security Requirements ... 16

2.6. Major Security Threats in RFID systems ... 17

Conclusion ... 18

CHAPTER 3 RELATED WORK.. 19

3.1 Literature Survey on Internet of Things .. 19

3.1.1. The architecture of IoT .. 19

3.1.2. Communication Stack and Standards for IoT.. 23

3.2 Literature Survey on RFID Systems ... 25

iv

3.2.1. Standards for RFID System ... 26

3.2.2. Mutual Authentication Protocols in RFID systems ... 27

3.3. Lightweight Hash Functions For RFID .. 40

3.3.1. SPONGE Construction .. 41

3.3.2. QUARK Hash Family ... 42

3.3.3. PHOTON Hash Family ... 42

3.3.4. Spongent Hash Family ... 43

3.3.5. Comparison .. 44

3.4. Key establishment protocols using tree data structure ... 46

3.5. Motivation and Research Objective ... 47

Chapter 4: PROPOSED AUTHENTIATION SCHEME .. 49

4.1. Brief Overview of Proposed Approach .. 49

4.2. The architecture of the proposed approach .. 51

4.3. Detailed Description of proposed approach ... 53

4.3.1. Binary Key Traversal Approach for Key Derivation .. 53

4.3.2. Mutual Authentication Protocol .. 57

Chapter 5: IMPLEMENTATION ... 67

5.1 DEVELOPMENT ENVIRONMENT ... 67

5.1.1 Program Architecture: .. 67

5.1.2 Java Environment and Libraries used: .. 67

5.2. Implementation Details of the phases in proposed approach ... 69

Summary ... 74

Chapter 6: EXPERIMENTAL RESULTS AND ANALYSIS .. 75

6.1. Experimental Setup and Data Management ... 75

6.2. Evaluation using WireShark: ... 78

6.2.1. Registration Phase ... 79

6.2.2 Reader-Server Authentication .. 80

6.2.3 Tag-Server Authentication via Reader ... 81

6.3 Security Evaluation Using Scyther ... 85

6.4. Randomness Testing Using NIST .. 88

6.5. Security Analysis of Proposed Approach .. 90

6.6. Computation Analysis .. 92

v

6.7. Comparison with Existing Approaches .. 94

Summary ... 95

Chapter 7 CONCLUSION AND FUTURE WORK .. 97

7.1. Limitations ... 98

7.2. Future Work ... 99

References .. 101

APPENDIX A .. 110

APPENDIX B .. 113

vi

LIST OF TABLES

Table 1 Types of RFID Tags [12] .. 13

Table 2 Standards for IoT ... 25

Table 3 EPCglobal Tag classes ... 27

Table 4 Performance Comparison of lightweight hash functions. 46

Table 5 Information table for each entity in RFID system ... 53

Table 6 Nonce values along with the next node index. .. 55

Table 7 Development Environment .. 67

Table 8 GE used by each operation ... 93

Table 9 Operations in each message along with GE ... 93

Table 10 Comparison with existing approaches ... 95

vii

LIST OF FIGURES

Figure 1 Basic IoT Structure [1] ... 2

Figure 2 Basic architecture of RFID System [2] .. 3

Figure 3 IoT Elements [11] ... 11

Figure 4 RFID-based IoT [14] .. 15

Figure 5 Internet of Things Applications and Backbone [19] .. 20

Figure 6 Tan and Wang 's IoT architecture [19] ... 21

Figure 7 Architecture for IoT presented by Wu et al. [20] ... 21

Figure 8 Generic Architecture of IoT [21] .. 23

Figure 9 ECC based high-level authentication protocol [38] ... 29

Figure 10 IPv6 based RFID Authentication [46] .. 31

Figure 11 Hash-based scheme for RFID system [51] ... 34

Figure 12 Mutual authentication protocol based on Keccak Algorithm [52] 35

Figure 13 The LMAP, M2AP and EMAP protocol from The UMAP Family. 39

Figure 14 Sponge Function [23] ... 42

Figure 15 One round of photon permutation [77] ... 43

Figure 16 Binary Tree Traversing [91] ... 54

Figure 17 Node A and Node B ... 56

Figure 18 Registration Phase. ... 58

Figure 19 Reader-Server Authentication Phase .. 60

Figure 20 Tag-Server Authentication via Reader ... 62

Figure 21 Signature generation and validation ... 72

Figure 22 Data Storage folders for each entity. .. 76

file:///C:/Users/VirllaDevi/Documents/Thesis.docx%23_Toc487658421
file:///C:/Users/VirllaDevi/Documents/Thesis.docx%23_Toc487658422

viii

Figure 23 Nonce values table along with next node index for r traversing. 77

Figure 24 Data packages exchanged between Reader and Server. 79

Figure 25 Registration Phase messages send in plain text. .. 79

Figure 26 Message (4) Server sent encrypted seed value. .. 80

Figure 27 Reader reply with Pr and Qr value in the encrypted form. 80

Figure 28 Message (6) Signature generated by server along with new Pr and Qr values 81

Figure 29 Message (7) sent from reader to server containing a signature, Pr and Qr. 81

Figure 30 Message (8) Server sent signature and secret value. .. 82

Figure 31 Message (9) from reader to tag. .. 82

Figure 32 Message (10) tag sends an identification nonce to server via reader. 83

Figure 33 Message (11) sent by the reader to the server after interacting tag. 83

Figure 34 Message (12) sent by the server to the reader after identifying the tag. 83

Figure 35 Message (13) Reader forwards server’s signature to tag.................................. 84

Figure 36 Message (14) Tag sends the signature to the reader. .. 84

Figure 37 Message (15) Reader sends tag’s signature with its own signature to server. . 84

Figure 38 Scyther Testing Environment ... 86

Figure 39 Scyther Results for Phase Two Reader-Server Authentication 87

Figure 40 Scyther Results for Phase Three Tag-Server Authentication Via Reader. 87

Figure 41 NIST STS results. ... 90

Figure 42 Randomness test with block size 256 and sample data size 2560000 110

Figure 43 Randomness test for block size 128 and sample data size 33000 110

Figure 44 Randomness Test for block size 256-bits and sample data of 1280000-bits .. 111

Figure 45 Randomness Test for block size 16-bits and sample size 160000 bits. 112

ix

Figure 46 Randomness Testing using Dieharder for sample size 160000 bits 113

x

ABSTRACT

Radio Frequency Identification (RFID) systems have become a significant part of

Internet of Things(IoT) ever since its emergence. RFID systems have been used for

identifying objects, tracking assets and remote monitoring in various application areas of

IoT such as healthcare, automated homes, and smart retail management. Before being

deployed in IoT, traditional RFID systems were mainly used in supply chain management

where the RFID reader and server had a secure connection. Hence the reader was always

considered legitimate and there was no need of authentication between the reader and

server. However, in IoT, the RFID reader can be any mobile device like a cell phone or a

smart object which do not necessarily have a secure connection with the server. The

primary objective of this thesis is to introduce a three-party authentication scheme in

which the reader and server authenticate each other followed by the mutual authentication

between the tag and server via the reader. For achieving this goal, we have used a

lightweight hash function and a binary tree traversal based key derivation approach. We

have also considered basic security goals for RFID systems in IoT in general. We have

evaluated security of our authentication scheme using protocol analyzing tool ‘Scyther’

and randomness of our key generation scheme is tested on Statistical Test Suite(STS) by

National Institute of Standards and Technology(NIST). Our test results illustrate that the

proposed authentication scheme is secure and keys generated are random.

xi

LIST OF ABBREVIATIONS USED

IoT Internet of Things

RFID Radio Frequency Identification

BLE Bluetooth Low Energy

Wi-Fi Wireless Fidelity

Li-Fi Light Fidelity

EPC Electronic Product Code

PRNG Pseudo Random Number Generator

OTP One Time Password

WSN Wireless Sensor Network

CoAP Constrained Application Protocol

MQTT Message Queuing Telemetry Transport

XMPP Extensible Messaging and Presence Protocol

AMQP Advance Message Queuing Protocol

6LowPAN Internet Protocol (IPv6) and Low-power Wireless Personal Area

Networks

GE Gate Equivalent

RDF Resource Description Framework

OWL Web Ontology Language

FPGA Field Programmable Gate Array

STS Statistical Test Suite

xii

ACKNOWLEDGEMENTS

Foremost I would like to thank my supervisor Dr. Srinivas Sampalli for his continuous

support and patience during my research. Without his help and guidance, this work would

not have been completed.

I would also like to express my sincere gratitude to my Research Labmates: Saurabh Dey,

Sridhar Matta and Trishla Shah who helped me in times when I was stuck and needed some

guidance.

I am grateful to my family: my parent Dr. Bhamro and Devi Soothar for their spiritual

support in all walks of my life, My siblings Rohin Roy and Shirlla Devi for their love and

trust.

I would also like to thank my friends Harman Khara, Malik Nabeel, Laraib Shafi and

Shahtaj Jawed who were always there for cheering me up and stood with me in my good

and bad times.

Finally, I would like to appreciate all my great teachers and mentors throughout my

academic career without whom I would not have achieved this milestone.

1

CHAPTER 1 INTRODUCTION

We are moving towards an era of the smart world where we don’t explicitly have to

perform certain tasks as per the current situation. Instead, the environment around us and

things we own execute necessary tasks for us on their own. This has become possible

with the advent of IoT. IoT is one of the most prevalent technologies that has potential to

impact our lives. As the name suggests IoT is about making a network of things in such a

way that things are capable to interact with each other using various communication

mediums and technologies. One of the basic technologies being used in IoT is RFID. In

IoT, RFID systems are not only used for identifying objects but have more critical uses

like remote monitoring and tracking. With each communication technology, there are

certain challenges associated with it which should be addressed to provide secure and

reliable communication. This thesis is an effort to address issues related to the usage of

RFID technology in IoT.

Before getting into further detail we first provide a brief description of terms used in the

thesis followed by the proposed approach and outline of the thesis.

1.1. Brief introduction of terms and concepts

1.1.1. Internet of Things(IoT)

IoT is an evaluation of internet of humans in which not only humans but also things can

communicate with each other. It is about connecting everyone and everything. IoT

consists of sensor devices, objects, communication infrastructure, computational and

processing unit. These elements of IoT that are stored on the cloud, decision making and

2

action invoking systems [1]. Enabling technologies for IoT include Bluetooth Low

Energy(BLE), RFID, Wi-Fi, Li-Fi, ZigBee, Z-Wave, Long Term Evaluation(LTE), IP6

over Low Power Wireless Personal Area Network(6LoPWAN) etc.

Figure 1 Basic IoT Structure [1]

1.1.2. RFID System

RFID is one of the enabling technologies for IoT. RFID systems consist of a RFID

reader, backend server and RFID tag. It first appeared in 1945, as an espionage tool for

the Soviet Union, which re-transmitted incident radio waves with audio information [2].

Similarly, the Identification Friend or Foe(IFF) transponder developed in the United

Kingdom was used by the allies in World War II to identify aircraft as friend or foe.

3

Figure 2 Basic architecture of RFID System [2]

1.1.3. Pseudo-Random Number Generator

All the EPCglobal Gen2 RFID tags are equipped with an on-chip 16-bit Pseudo-Random

Number Generator (PRNG) which generates a sequence of random numbers. PRNG-

generated sequence is not truly random because it is completely determined by a

relatively small set of initial values, called seed values. PRNG plays a significant role in

various security protocols for RFID systems because of its randomness and the limited

computation capabilities of RFID tags.

1.2. Brief Introduction to proposed approach

This thesis focuses on improving the security of RFID systems in IoT. RFID technology

is an automatic data capturing technology which uses radio frequency to identify objects.

Previously its application range was limited to management systems to identify the

product, object or person and some payment systems. However, with the emergence of

the smart world and IoT, the application areas of RFID technology have been spread

widely. Now it is considered as one of the strong candidates for automating environment.

With the increase in the use of RFID technology, reliability and security of the

4

communication have become one of hot research topics. There have been many

authentication protocols proposed for the secure communication in RFID systems.

However, most of the approaches were presented when RFID tags were purely used in

supply chain management as replacement of the bar-code. So, these protocols assume that

the communication medium between the server and reader is always secure. In IoT-based

RFID systems such assumption is not always valid. In the smart world, every person has

smart-phone or smart devices which also come with mobile RFID readers. These mobile

readers can use various communication mediums to interact with the server which are not

always secure. In this thesis, we have considered this factor and have proposed a three-

party authentication protocol for RFID systems in IoT. In the proposed scheme, the

reader is first authenticated by the server before it queries the tag. Once the reader is

authenticated only then is the authentication between the tag and server carried out via

the legitimate reader. In order to make the proposed scheme more secure binary tree

traversal concept is used to derive random keys.

The proposed approach has three phases: registration, reader-server authentication and

tag-server authentication via reader. In the first phase, the reader is registered at server’s

end and the encryption key is generated using the Diffie-Hellman Key Exchange

approach. In the second phase, the reader and server authenticate each other after

exchanging some information. Once the reader and server authenticate each other, the

server generates a one-time-password(OTP). The OTP is associated with the reader and

specific tag for the current session. The final phase is the tag-server authentication, where

the tag and server authenticate each other. Since the tag and server have no direct

connection, they communicate via an authenticated reader.

5

To authenticate each other in the 2nd and 3rd phases each party must generate a signature

and send it to the other entity who verifies the signature. A new signature is generated

and sent in each message to avoid the replay attack. In order to generate the signature

both parties use the common information each of them already have. Once the signature

is generated, it is sent to another party along with the additional information required to

generate the next signature. The receiving party also generates a signature to verify the

signature sent by the other entity. If both signatures match, then the signature and

message both are considered as authentic.

In the proposed approach, we have used keyed hash functions to generate the signature.

Due to limited computational capabilities of the RFID tags, we have used a lightweight

hash function that is spongent hash. The key for keyed hash function is generated using

our proposed binary tree traversal key derivation method. In binary tree traversal key

derivation method, random values are generated using PRNG and are stored in form of

tree data structure. Based on some random values and tree traversing techniques a new

key is extracted each time for hashing.

1.3. Outline of Thesis

The organization of the rest of the thesis is as follows: an overview of the IoT, RFID

technology, along with security goals and challenges are provided in Chapter 2. We have

presented literature review of IoT, RFID Systems, Lightweight Hash Functions and Key

Derivation schemes using Binary Tree in Chapter 3. Chapter 4 discusses the proposed

three-party authentication scheme in detail which is followed by the explanation of the

implementation in Chapter 5. We have presented the in-depth description of experiments

6

we have conducted and evaluated results supporting our proposed approach are in

Chapter 6. Chapter 7 discusses the conclusion of the thesis along with limitations and

possible enhancements.

7

CHAPTER 2 BACKGROUND

In this chapter, we have presented a brief overview of terms and concepts that have been

used throughout this thesis to have a better understanding of the proposed approach. Later

we have also discussed security requirements and major security threats for RFID

systems.

2.1. Internet of Things (IoT)

The term IoT was first coined by Kavin Austin from the MIT Auto-ID Center [3]. He

used the term IoT to refer the binding of RFID information to the internet. After Austin’s

introduction to the idea of IoT, the concept of interconnected objects gained interest of IT

companies and government organizations.

The term IoT is now days used widely in the era of the smart world. In the literature

many definitions and concept can be found related to IoT. In [4] authors Huang and Li

explain semantic meanings of IoT as: “the Internet relating to information of things”.

Authors of [5] define IoT as: “a world-wide network of interconnected objects uniquely

addressable, based on standard communication protocols”. In [6] the concept of IoT is

given a wide meaning; it describes IoT as a technology which enables physical objects to

talk to each other, share information and knowledge with each other, think, see, hear and

coordinate for decision making.

2.1.1. Enabling technologies for IoT

There have been various enabling technologies for IoT which have made the transition of

traditional physical objects into smart objects possible. In this section, we have briefly

8

discussed attributes of each technology such as wireless sensor networks(WSN), RFID,

6LoWPAN, ZigBee, Z-wave etc.

Wireless Sensor Networks (WSN): Wireless sensor networks consist of one or more

base stations and tons of sensor nodes. Sensor nodes can sense physical information from

the environment, communicate wirelessly, perform crude processing on information and

report them to the base station [7]. Each node in WSN has various parts including a radio

transceiver, an antenna, a microcontroller, an electronic circuit and a battery. Topologies

used by the WSN varies from application to application; it can be a simple star network

or an advance multi-hop mesh network.

Radio Frequency Identification(RFID): RFID is used to identify the objects without

contact. It consists of a RFID tag, a RFID reader and a server. The RFID tag is a

microchip that is attached to an object and has a unique identification code. The RFID

reader can identify an object based on that code and get corresponding information

regarding the tag from the server. RFID systems use radio signals over a short distance

for data exchange between the reader and tag.

IPv6 over Low-power wireless personal area networks: One of the challenges in IoT

is to integrate low-cost devices into the network and have a secure and reliable

communication. 6LoWPAN [8] is one of the key components to achieve this goal. It has

been designed by combining Low-power Wireless Personal Area Networks (LoWPAN)

and IPv6 so that it can be used in resource-constrained and low-cost devices. In

6LoWPAN the packet size is smaller and it uses lower bandwidth. 6LoWPAN also

provides connectivity and compatibility with the legacy architecture.

9

ZigBee: ZigBee is the wireless communication standard based on IEEE 802.15.4 for

implementing low-cost, and short-range wireless networks [9]. ZigBee operates in the

frequency band of 868 MHz, 915 MHz and 2.4 GHz. It is usually used in battery powered

applications to achieve low energy consumption, low complexity, low data rate, security

and reliability. It also supports multiple network topologies like star, mesh and tree

topologies. Wireless devices that use ZigBee remain in the power-saving mode most of

the time and become active only when they need to perform some tasks hence the battery

lives of such devices are fairly long. [9]

Z-Wave: Like ZigBee, Z-wave is also used for short-term wireless communication

because of having benefits like low cost and low energy consumption. It can have up to

232 nodes in the network, each of which is a slave node and is controlled using a

controller. The frequency band in Z-wave is less than 1GHz (908.42MHz ∼ 868.42MHz).

[10]

Addressing scheme: Uniform Resource Name (URN) system is one of the fundamental

aspects of IoT used to uniquely identify objects. One of the other options that are

considered in IoT for addressing things is IPv6 which also allows accessing resources

remotely and uniquely. However, considering memory and resources constraints of things

(sensor devices and tags) in IoT, the IPv6 doesn’t seem a good fit. To solve the

addressing issue for resource constrained and low-cost devices IPv6 over Low-power

Wireless Personal Area Networks (6LoWPAN) [8] is used.

10

Along with technologies mentioned above, there are some more technologies for IoT

such as Bluetooth, BLE, Wi-Fi, Li-Fi, LTE, cellular, Thread, Near-Field

Communication(NFC), SigFox, Neul and LoRaWAN.

2.1.2 Elements of IoT

Researchers in [11] have illustrated six main elements that are needed to deliver

functionalities in IoT. These elements are as follows: Identification, Sensing,

Communication, Computation, Services and Semantics. Below is the description of each

element.

Identification: Identification is the basic element that allows naming objects uniquely so

that they can be addressed in a network. In IoT ubiquitous codes (uCode) or Electronic

Product Codes (EPC) are used to identify an object along with the IPv4, IPv6 and

6LoWPAN.

Sensing: IoT network contains smart objects that can gather data from surrounding and

communicate with each other. Sensors enable the collection of data and transfer it to the

data-centric units like the database or cloud from where it can be accessed. Sensors may

include smart-sensors, actuators or wearable devices equipped with sensors.

Communication: This element includes all the communication technologies being used

in a heterogeneus network of smart objects. IoT nodes have lossy and noisy

communication links and use various communication technologies like WiFi, Bluetooth,

IEEE 802.15.4, Z-wave, LTE, RFID and NFC.

11

Computation: Various hardware platforms such as Arduino, UDOO, FriendlyARM,

Intel Galileo and Raspberry PI are available to run IoT applications. Along with hardware

platforms, there are some software platforms such as Operating systems or Real Time

Operating Systems that are required to provide IoT functionalities. Contiki, Tiny OS,

LiteOS and RioT OS are some examples of operating systems for IoT-based devices.

Cloud platforms allow IoT to store the data sent by smart objects and process it for

extracting knowledge using big data concepts.

Services: IoT provides various services for identifying and addressing objects, collecting

raw data from the real world, using data for decision making and ubiquitous services.

Semantics: Authors in [11] describes semantics as the brain of IoT. Semantics assists in

providing required services like knowledge extraction, resource discovery, resource

utilization, data analysis and decision making. For performing these tasks, it uses the

Resource Description Framework (RDF) and Web Ontology Language (OWL).

Figure 3 IoT Elements [11]

12

2.2. RFID Systems

When RFID was first developed as an identification system, it was aimed to replace the

traditional bar-code system, but the development of the smart world and IoT has made it

much more than just an identification scheme. RFID systems consist of a Radio

Frequency (RF) tag (transponder), RF reader (interrogator) and server (Responder).

These Radio frequencies have a wavelength value between 0.1 cm to 1000 km and

frequency range varying from 30 Hz to 300 GHz [12].

2.2.1. RFID Tags

RFID tags are equipped with integrated circuits connected to an antenna [13]. Antennas

in RFID tags collect and store energy to activate tags. Tags can perform various functions

ranging from the simple read/write to the complex encryption and access control

depending on its class. These tags are chipped into objects for identification, monitoring

and tracking. The cost of a RFID tag depends upon the computational capabilities of the

tag. Each tag has a unique identification number usually the electronic product code

(EPC) based on which the object owning the tag is identified.

Types of RFID Tags:

RFID tags can be categorized into three main categories based on frequency ranges in

which they can communicate with the reader [12]. Table 1 illustrates each type of tags

along with their frequency ranges and application areas in which they can be used.

13

Type Frequency Range Read Range Standards Application

Low-Frequency

RFID Tags

30 KHz to 300 KHz Up to 10cm ISO 14223 and

ISO/IEC 18000-2

Access

control

Livestock

tracking

Identification

High-Frequency

RFID Tags

3 MHz to 30 MHz 10cm to 1 m ISO 15693

ECMA-340,

ISO/IEC 18092

ISO/IEC 14443A

ISO/IEC 14443

Electronic

ticketing

Electronic

payment

Ultra-High

Frequency RFID

Tags

 300 MHz and 3

GHz

12 m EPCglobalGen2/

ISO 18000-6C

Inventory

tracking

Table 1 Types of RFID Tags [12]

Tags can also be classified into three other categories based on how they communicate

with the reader. That are as follows:

i) Passive tags: In passive RFID tags when a reader antenna sends a signal to

the tag, the signal provides power to the tag. Using this power the tag wakes

up, performs desired operations and reflects energy back to the reader. Passive

RFID tags are cheaper and smaller in size.

14

ii) Active Tags: Active tags have a built-in power source (battery), often

equipped with some sensors that can be used to measure and transmit

environmental factors such as temperature or humidity. Read ranges of these

types of tags are higher than that of passive tags, but they are more expensive

and larger in size.

iii) Semi-Passive Tags: These are a hybrid type of tags that are mainly passive

tags equipped with a battery. Batteries in tags make sure that they store

maximum power received from the reader’s signal and the read range of semi-

passive RFID systems is better than passive RFID systems.

2.2.2. RFID Reader

The RFID reader which is also called the interrogator is the device that is used to read the

information from RFID tags. Some readers not only just read the tag but also have the

permission to access the memory of the tag and rewrite the content of the memory. A

RFID reader can be either stationary or mobile depending on the type of application.

2.2.3 RFID Backend Server

The RFID Backend Server simply holds the information about all RFID tags within an

application scenario. A RFID reader forwards an identification number to the backend

server to get corresponding information after getting an identification number from the

tag.

2.3 RFID Systems for IoT

RFID based IoT system contains three major parts [14]:

15

i) RFID System: It consists of one or more interrogators and RFID tags. The reader

queries the tags to get an identification code that can be EPC.

ii) Middleware: EPC is sent to middleware system in IoT.

iii) Internet System: RFID system is connected to the internet using computer

systems and network servers.

Figure 4 RFID-based IoT [14]

2.4. Computational capabilities and security risks

RFID technology has made the idea of automating the world possible. In the smart world,

everything you own can be chipped with a RFID tag so that it can communicate with

other objects in its surroundings and perform certain tasks as per scenarios and situations.

One of the major issues with this idea is to make objects smart without influencing the

cost of the object. In order to do so low-cost RFID tags are used. Class 0 and Class 1 tags

are considered low-cost RFID tags.

As per EPCglobal standards, a passive tag (Class1 Gen2V2) can have up to 7-15K Gate

Equivalent (GE) out of which only upto 2-5K [15] can be used for the security purpose.

16

These passive RFID tags have minimum computational power and cannot perform highly

complex tasks, which raise security and privacy issues.

2.5. Security Requirements

Before proceeding further into details of the proposed approach and related work it is

necessary to analyze security requirements of any RFID system. In this section, we would

analyze the basic security needs of RFID systems.

Three main pillars of network security are confidentiality, integrity, and availability also

known as CIA triad described as follow:

Confidentiality: Information should only be accessible to those who have authorized

access. Any information given away by parties involved in the communication should not

compromise user’s privacy.

Integrity: Integrity can be described as the assurance that any message which is sent or

received is not modified during the transmission. This can be achieved by using message

authentication schemes such that the receiver can make sure that received message is

originated by the sender.

Availability: It means how often the system is available to the desired user. One of the

major threats to the availability of any system is Denial of Service (DoS) attacks.

Other major security goals that should be considered during the network security research

are Authentication, Anonymity, Non-Repudiation, Forward Security, Backward Security,

and Access Control. Authentication is the process of how an entity proves who it is as

who it says it is, Anonymity means that the information about the sending party should

17

remain anonymous to an eavesdropper who has been capturing all packets. Non-

Repudiation means that the received message contains some attributes which prove that

the message has been sent by the sender so that the sender cannot deny it later. Forward

Security means that if a hacker or illegitimate person gets the knowledge of previously

used keys in the communication it should not be able to infer keys that might be used for

future communication. Backward Security implies that if an illegitimate user gets the

current encryption keys it should not be able to deduce any previous key information

from it. Access control is about who can access what and when.

2.6. Major Security Threats in RFID systems

Major Security threats faced by RFID systems, explained by authors of [17] are

highlighted below:

Cloning: When a reader queries a RFID tag, the tag is supposed to return some

information so that server can identify the tag. That information can be an identification

number such as the electronic product code (EPC). One of the major issues with this is

that an attacker can clone a tag by simply querying tag as a reader and save its EPC. Once

an adversary gets the EPC it can act as a RFID tag to legitimate readers.

Tracking and privacy invasion: This thread is also related to the static EPC emitted by

the RFID tag when it is queried by the RFID reader. Since EPC is a unique code and each

tag has an EPC if the tag always replies with the same unique code than it is easy to track

the tag (and user who owns the tag) with the help of fixed stationary reader that are

located in different locations. This issue is not restricted to person’s location tracking but

it can also reveal certain information related to one’s lifestyle and preferences. Lets say a

18

person carries different DVDs tracking information about DVDs may reveal one’s

political or religious views which one might not be willing to share.

Eavesdropping and Replay Attack: An unauthorized reader can listen to the

conversation among reader, server, and tag and sniff some information (messages) which

it can later use to perform the replay attack.

Denial of Service(DoS) Attack: As the name suggests DoS attacks are carried out by

interrupting a legitimate user(device) to access system which means it affects the

availability of the system. In RFID system DoS can be carried out by simply cloning a

large number of fake tags for the reader to read. Along with that jamming RFID reader

signal can also prevent a legitimate tag to be read by the reader. Desynchronization attack

is also a form of DoS attack in RFID scenario where the server is not able to identify a

legitimate tag because of the corrupted database.

Conclusion

In this chapter, we have provided an overview of the basic terms and concepts important

to understand the research work that has been done in this thesis. Along with that, we

have also discussed major security challenges that need to be addressed followed by

security goals that should be achieved to have a secure and reliable communication in a

RFID system.

19

CHAPTER 3 RELATED WORK

In this chapter, we have presented the previous research work that has been done in the

same stream as my thesis and has directly or indirectly influenced my research work.

Literature survey of this thesis can be divided into four subparts that are IoT, RFID

systems, lightweight hash functions and key generation protocols using tree data

structure. This chapter is organized as follow: Section 3.1 throws light on the literature

of Internet of Things followed by section 3.2 in which we have discussed research work

that has been done in the stream of RFID Systems. Literature survey on lightweight hash

functions is given in section 3.3 whereas section 3.4 presents the literature of the key

establishment protocols using the tree data structure. In section 3.5 we have presented the

motivation and research objective of my thesis.

3.1 Literature Survey on Internet of Things

IoT can transform traditional objects into smart objects by using technologies like

ubiquitous computing, communication protocols, embedded devices etc. It can have a

remarkable impact on various domains to improve the quality of our lives. There has

been a great amount of research work done to adopt the idea of IoT in the practical world.

In this section, we would have an overview of the architecture, requirement for the

communication stack and protocols used in IoT.

3.1.1. The architecture of IoT

Various researchers and authors have proposed architectures [18], [19], [20], [21] for IoT.

In this section, we have discussed these architectural designs.

20

Furness [18] proposed a five-layer architecture which allows objects to connect and

exchange information among themselves. Tan and Wang [19] pointed out an underlying

issue in Furness’s architecture which is an exponential increase in network traffic and

storage. They highlighted the fact that only objects that share similar application domain

should communicate with each other to avoid network traffic and storage overhead.

Authors also proposed an architecture where an IoT system consists of a backbone and

several IoT applications as shown in Figure 5.

Figure 5 Internet of Things Applications and Backbone [19]

Each IoT application system works on their own but in the smart world, it is necessary to

connect all application systems together. Various independent IoT applications may be

using same or different communication standards. To enable the communication among

independent IoT applications authors in [19] introduced a Co-ordination layer into the

IoT architectural design. This layer is responsible for processing response packages from

each application system. This layer also re-assembles response packages from various

21

applications into a unified structure so that it can be processed by all application systems.

Figure 6 shows the proposed architecture.

Figure 6 Tan and Wang 's IoT architecture [19]

Wu et al. [20] integrated architecture of the Internet (OSI model), the structure of

Telecommunications Management Network and specific features of Internet of Things to

introduce a new five-layer architecture for IoT. It is shown in Figure 7.

 Figure 7 Architecture for IoT presented by Wu et al. [20]

22

Khan et al. [21] have summarized various architectures [18], [19], [20] into a general

five-layer architecture. Below is the description of each layer along with the

functionalities each layer provides.

• Perception Layer: It contains physical objects and sensors. The main task of this

layer is to perceive physical objects by various sensors and transfer this

information after converting it into digital signals. Technologies used in this layer

includes RFID, 2-D barcodes, GPS etc.

• Network Layer: This layer is also called transport layer that is responsible for

receiving data from the perception layer. It transmits the received data to the

processing center via various networks that can be wired or wireless.

Technologies used to perform these tasks include 3G, Wi-Fi, Bluetooth, ZigBee,

infrared etc. Protocols like IPv4 or IPv6 are also used in this layer to address the

objects.

• Middleware Layer: The main purpose of this layer is to store, analyze and

process the data and information received from upper layers. It uses techniques

like the database, intelligent processing, cloud computing etc. to provide services.

• Application Layer: Application layer is responsible for providing application-

based functionalities. It uses the data processed by the middleware to provide

services like logistic management, location based services, and safety. It plays a

significant role in pushing IoT to a larger scale.

• Business Layer: This layer manages all the applications along with the business

models. It is also responsible for performing in-depth analysis on the various

23

business models, construct flow charts and graphs to assist the business in

decision making.

Figure 8 Generic Architecture of IoT [21]

3.1.2. Communication Stack and Standards for IoT

One of the major challenges in IoT is that the objects in IoT should have low power

consumptions so that it can use the Internet while using power resources like batteries.

Using protocols that are being used in the traditional internet can result in a waste of

energy in the transmission of unnecessary data, protocol overheads and non-optimized

communications [22]. For interconnecting objects and enable them to communicate,

authors of [22] have enlisted three core requirements for the communication stack in

IoT:

i) A Low Power Communication Stack: Most of the objects in the IoT gets

their power from batteries hence such objects have a limited resource of

power. This means it is difficult to communicate using a high-power

24

communication stack as changing batteries of millions of objects on daily

basis seems infeasible and expensive. Hence the communication stack and

standards for IoT should be designed to meet this need.

ii) A Highly Reliable Communication Stack: A reliable end to end

communication is an important element of all types of networking protocols.

In IoT, the key challenge is to achieve the highest reliability in an efficient

way.

iii) Internet-Enabled Communication Stack: Since the basic idea behind IoT is

to allow the things to talk, hear and respond, which means a bidirectional

communication medium is needed to facilitate it. One of the available medium

is the internet that uses IP (Internet Protocol) to carry out the bidirectional

communication. Since the standards and protocols being used in the

traditional internet are not feasible for the constrained resource devices it is

necessary for the IoT to have an IP enabled communication stack that satisfies

the need of resource constrained devices.

Starting from 2003 standard governing organizations like World Wide Web Consortium

(W3C), Internet Engineering Task Force (IETF), EPCglobal, Institute of Electrical and

Electronics Engineers (IEEE) and the European Telecommunications Standards Institute

(ETSI) have sat together to provide standards and protocols for IoT. These protocols can

be categorized into application protocols, routing protocols, network layer protocols,

physical layer protocols. Table 3 illustrates protocols in each category:

25

Category Protocols

Application Protocols Constrained Application Protocol (CoAP) [23] [24]

Message Queue Telemetry Transport(MQTT) [25]

Extensible Messaging and Presence Protocol (XMPP)

[26] [27]

Advanced Message Queuing Protocol (AMQP) [28]

Data Distribution Service (DDS) [29]

Routing Protocols Routing Protocol for Low Power and Lossy

Networks(RPL) [30]

Network Protocols 6LowPAN [31]

IPv4

IPv6

Link/Device Layer

Protocols

IEEE 802.15.

Bluetooth Low-Energy (BLE)

 EPCglobal

Service Discovery

Protocols

DNS Service Discovery (DNS-SD) [32]

Multicast DNS (mDNS) [33]

 Table 2 Standards for IoT

3.2 Literature Survey on RFID Systems

RFID systems were first commercially used in the railroad industry for tracking and

managing the assets like cargo containers and rail cars in the 1980s. Later it was adapted

26

by supply chain management and retail industry as the replacement of the barcode. The

RFID has an ease over the barcode since RFID tag does not require a direct line of sight

to the reader. In RFID systems, multiple tags can be scanned simultaneously due to which

it can operate efficiently in harsh environments like moist or dusty atmosphere, unlike

barcodes. Ever since the RFID has been used in supply chain management great amount

of research work has done in various areas of RFID technology that includes standard

governing, collision detection and mutual authentication. Since our research work is

related to the mutual authentication we have carried an in-depth literature review of the

mutual authentication protocols that have been proposed for RFID systems along with the

standards for RFID systems.

3.2.1. Standards for RFID Systems

 Standard governing organization EPCglobal [34] is working on the development of

standards for use of RFID technology in the paradigm of IoT. It introduced the use of

Electronic Product Code (EPC) for the RFID tags and has also categorized the tags into

various classes which are summarized in Table 2 [35]. EPCglobal has also released

documents regarding specification of tags for each class, it has released the second

generation of class 1(referred as EPCglobal Class 1 Gen2V2) tag along with its

specification document [36] in which adoption of the cryptographic suite (optional) is

made possible for the class 1 tags. According to that specification document, a RFID tag

can generate a response of maximum 32 Kbits and can have a 16 bit RNG (PRNG) for

inventory and password related operations.

27

Class Type Features

0-Read Only Tag Passive Read only Memory.

1-Identity Tag Passive Read only Memory.

2-Higher

Functionality Tag

Passive Read and write memory up to 64KB.

3-Semi-Passive

Tags

Semi-

Passive

Read and write up to 64KB.

Built in battery to improve read range.

4-Active Tags Active Built in battery to improve read range.

Allows tags to be networked with each other.

5-Active Tags Active Built in battery to improve read range.

Allows tag to tag communication (class 4 and class 5

tags only).

Table 3 EPCglobal Tag classes

3.2.2. Mutual Authentication Protocols in RFID systems

There have been many papers that have tried to address the security concerned raised by

low-cost RFID tags and have proposed various mutual authentication protocols to solve

these issues. All the proposed protocols can be classified into various classes based on

their computation cost. First class is “Full-Fledged Class” in which protocols that need

the support of conventional cryptographic functions like symmetric key encryption, hash

functions, and even public key algorithms are included. The second class is the “simple”

class that includes those protocols which use random number generators and one-way

28

hash functions on tags. Another class is “lightweight” and “ultralightweight” which

includes protocols that only use bitwise operations along with the Random Number

Generator (RNG) and Cyclic Redundancy Check (CRC) functions.

Further, in this section, we will discuss protocols in each class along with their

limitations.

Full-Fledged Authentication protocols:

In this section, we will look into Full-Fledged Authentication protocols that have been

proposed and how these protocols can be adopted in IoT and what are major risks

associated with each protocol. Most of the protocols in this class are only feasible in

RFID tags with high computational capabilities like active tags and are not feasible for

low-cost passive RFID tags.

First protocol in this category was proposed by Kinoshita et al. [37] in 2005. The main

focus of this paper was to eliminate threats related to the tag tracking and user privacy, in

order to mitigate these risks an idea of the anonymous ID was proposed. Whenever a tag

is queried by the reader it instead of replying with a fixed ID (usually EPC) tag outputs a

temporary ID called Anonymous-ID which is different each time. Secure server uses this

Anonymous-ID to identify the tag. Hence if eavesdropper captures the packet that is sent

by a tag containing Anonymous-ID it is not able to identify the tag because of its

randomness.

Bock et al. [38] proposed high-level tag authentication protocol which is a challenge-

response procedure based on an Elliptic Curve Cryptosystem (ECC) and Diffie-Hellman

key exchange. Tags using this protocol need to be initialized with a random private key 0

29

< ξT < q and a certificate (xT , sT) which contains its corresponding public key(xT) that

is x-coordinate of point T= ξT · P and also uses a signature generation algorithm. The

reader also contains a public key(pubKey). Using ECC knowledge reader picks up a

random ephemeral key 0 < µ < q, calculates the x-coordinate xA of the point A = µ ·P

and sends xA to the tag. On receiving the challenge the tag computes (XB, ZB) ←

Mul(ξT, xA) which is x-coordinate XB/ZB of the point B = ξT · (µ · P) and transmits it

to the reader along with its signature. Reader verifies the signature and calculates the

projective coordinates itself. If coordinates calculated by the reader are same as sent by

the tag then the tag is accepted otherwise it is rejected. The major drawback of this

approach is the assumption that the reader and server are same entity which does not

seem right in IoT because of which this approach cannot be used in RFID-based IoT.

Figure 9 ECC based high-level authentication protocol [38]

30

Liao and Hsiao [39] presented an ECC based scheme for mutual authentication of the tag

and server via a reader in IoT. Zhao [40] proved how this approach is vulnerable to

impersonate attack. Along with [38] and [39],there are other similar ECC based

authentications schemes [41], [42], [43], [44] and [45] have been proposed to improve

but most of are not able to withstand the replay attack.

Gross et al. [46] proposed an authenticated key exchange (AKE) protocol for RFID

technology which made one of the initial steps to explain how RFID systems can be

adopted in IoT. In this paper, authors focused on implementing IPsec on an EPC Gen2

Class1 tag to allow tags and the things associated with tags to become part of the internet

of things. In order to use IPsec, it used the Advanced Encryption Standard (AES), and the

Diffie-Hellman key exchange over an Elliptic Curve (ECP/ECCDH). The communication

between an initiator sends an IP/UDP packet that contains IKE Security Association (SA)

message to the reader. The reader upon reception of that message sends a challenge to tag

which contains IKE SA_INIT message and a Diffie-Hellman value (ECC point), the

initiator nonce and proposals for crypto suite. If any of the proposal in the crypto suite is

acceptable for the tag it creates an initial Security Association (SA). Tag also generates

its own Diffie-Hellman value, nonce and key material (seven keys) from received Diffie-

Hellman value and the nonce. The first key from the derived seven keys is used to create

new key material for future child SAs and moreover for each direction of communication

a symmetric encryption and decryption key is generated.

Tag in response replies with accepted SA proposal and generated Diffie-Hellman value

and the nonce. Tag also calculates an Auth-Value by signing IKE_SA_INIT response,

31

initiator nonce and a unique ID (IPv6 address of tag) and stores it into ResponseBuffer.

The reader either receives challenge response along with the EPC or ResponseBuffer of

the tag is read by a reader which further encapsulate the response into an IP/UDP packet

and forward it to the initiator who performs same calculation to obtain SA. For further

steps, IKE_Auth payload is used along with SA to perform authentication between the

tag and initiator. After that authentication key updating step is used to update keys and

create child SA.

Figure 10 IPv6 based RFID Authentication [46]

This approach seems a perfect fit in terms of using RFID systems in IoT but considering

the computation cost used in this protocol makes it infeasible for low-cost RFID tags.

Although authors claim this protocols to be fully complimented with RFID EPC Gen2

Class1 tags but it requires about 52k GE along with all components to establish a secure

IPsec tunnel between an Internet client and a RFID tag which makes it more complex.

Another similar protocol that tried to use IPsec type key exchange scheme for the mutual

32

authentication was presented in [47] but major flaw of that scheme is the assumption that

reader and backend server are the same entity.

Zhu [48] authors proposed Authentic Key Exchange based mobile RFID (AKE-MRFID)

protocol which considers the fact that that there can be multiple readers that can be

dishonest or compromised. The backend server generates a pair of public and private key

(PKDB, SKDB) that is used for the encryption and decryption. Each reader has an

identification RID and a secret key (Kr). Each tag is also associated with an identification

and secret key TID and Kt respectively. This scheme focuses on the access-type-based

authentication of the reader. A reader sends a hello to the tag with a random value Nr, in

response tag replies with a random value Nti, TIDi and C1 = Hash (TIDi, Nt, Nr, Kti).

The reader appends this message with the Nr, Access-type, and RID and sends it to the

server. The server checks for the tag and look into the access list for the tag and

authenticates the reader only if the access-type it provides is correct. If the reader is

authenticated, server computes the session key sk = Hash (NR, NT , KTi), C3 =

Hash(TIDi, KTi) ⊕ TIDnew I, C4 = Hash (TIDnew i , sk) , C5 = EKRj (RIDj, NR, TIDi,

sk, C3, C4) and sends C5 to the reader. Reader upon reception of the C5 decrypts it and

extracts the information to authenticate the server if TID and Nr are correct. It forwards

the C3 and C4 to the tag if the server is authenticated. The tag computes Hash (TIDnew i,

sk) to verify C4. If the equality holds, then it accepts the reader, the back-end system, and

the session key, and then updates TIDi and KTi with TIDnew i and K new Ti = Hash

(NT, KTi) respectively. Authors of [49] have illustrated the scenarios in which various

attacks like replay attack, desynchronization attack, and reader impersonation attack can

be launched on this scheme.

33

Simple Authentication Protocols

There is a wide range of protocols that have been proposed which can be categorized as

simple authentication protocols because they do not use complex cryptographic functions

like ECC or public key infrastructure instead they rely on the random number generator

(RNG) and one-way hash functions to carry out authentication among communicating

parties. Further, in this section, we will look into these protocols and their limitations.

Hash-based authentication protocols are popular because of their one-way nature. One of

the earliest hash-based schemes for RFID system was proposed in [50] and [51]. Weis et

al. [50] presented a protocol in which when a tag is queried by a reader it replies with a

message (r, hash (ID, r)), where r is a random number. Upon receiving tag’s response, the

reader that contains a list of IDs, calculates hash of r with each of the ID in the list to find

out the tag. Weis et al. [50] also presented another version of the protocol where each tag

has a shared key for the communication with the server (reader) assuming that reader and

server are one entity or reader is always legitimate. Chien’s proposed approach in [51]

tried to extend the approach used in [50] by introducing one master key for backend

server to reduce the load on the server and tag response involves the current date stamp.

The major drawback in Chein’s approach is the lack of mutual authentication among the

reader and tag along with the assumption of reader always being an honest participant.

Another assumption made in this approach is that a passive tag can generate date stamp

which seems infeasible to the date as a RFID tag do not have the functionality to compute

current date or time.

34

Figure 11 Hash-based scheme for RFID system [51]

In [52] both the tag and the backend server use Keccak algorithm to perform hash. The

RFID tag contains IDT and an authentication key(KeyT) along with the PRNG. The

backend server stores the ID, authentication key along with the hash of the authentication

key for all tags. The basic flow of the proposed protocol is explained in Figure 12. The

reader initiates the communication by querying tag with a random number R1. The tag

upon reception of the query generates a random number R2 and performs a hash of KeyT

and sends it to the reader along with random values R1 and R2. The reader forwards the

message to the server and server checks for the tag, if the tag is found hash values of

KeyT (KeyDB) and keyPre are stored along with keys. The tag gets KeyPre by

computing Hash(R2||KEYDB), KEYPRE, Hash(R2||KEYT) and verifies it and update its

keys.

35

Figure 12 Mutual authentication protocol based on Keccak Algorithm

[52]

Other hash based mutual authentication protocols were proposed by Dehkordi and

Farzaneh [53], Khedr [54]and Habibi [55]. Each of these protocols are subjected to

traceability attacks [56]. Authors of [56] have performed in-depth traceability analysis on

these three protocols which indicates weaknesses of each of the above approaches.

Successful forward and backward traceability attacks were made on Dehkordi’s protocol

whereas Khedr and Habibi’s approaches proved good against backward traceability

attack but failed against forward traceability attack.

Cho et al. [57] also presented a hash based authentication scheme and claim it to be

secure against all types of privacy and security issues. For each session in this

authentication scheme, both the reader and tag use nonce values Rr and Rt respectively

and two fresh values are generated from each of the nonces that are RIDti and RIDri. For

authentication tag generates α = hash (IDk ⊕Rt ⊕R ⊕RIDti) and sends it to the reader

36

along with the nonce Rt. The reader passes the information to the backend server which

uses Rt to generate α ′ and checks if α= α’ to authenticate tag. If the tag is authenticated

by the server, it generates response message DATAk∥Hash(RIDr i ⊕ RIDti)∥RIDri ⊕sti+1

∥RIDt i ⊕ s r i+1 and forward this message to the reader. The reader transmits the message

to tag who verifies server’s response by generating its own RIDr i as RIDr i = Fs r i (R r) =

(R r − R r mod s r + 1) ∥(R t + s r − R r mod sr) to authenticate backend server. After each

successful session, current session secret values are updated to the new one.

Although Cho et al. [57] claim this approach to be safe against the most common type of

security attacks in RFID system like desynchronization and tag impersonation attack,

Peris-Lopez et al. [58] have falsified these claims by performing cryptanalysis. In [58]

authors have presented cases in which successful desynchronization attack can be made

by eavesdropping one session and altering the last message sent by the reader to the tag.

The paper [58] also discussed scenarios to launch impersonation attacks onto the tag and

reader.

Song and Mitchell [59] proposed a hash-based mutual authentication approach in 2008

which has been analyzed by Cai et al. [60] and is found vulnerable to the

desynchronization and reader impersonation attacks. Cai et al [60] also provided

suggestions to improve Song and Mitchell’s approach. Tsudik [61] presented a single

round protocol for authentication that uses monotonically increasing timestamp for

authentication. The reader first sends the current timestamp to the tag and tag checks the

validity of the timestamp by comparing it with the previously received timestamp. If the

timestamp is newer than the previous timestamp, the tag records the timestamp and

compute the hash of it with a secret key. This approach cannot resist tag impersonation

37

attack as an adversary can send a large number of future timestamps to the tag and record

tag’s responses so that if any request comes in future with the same timestamp it can

impersonate as the tag and sends the response to the reader.

There has been a bunch of other similar hash-based approaches to providing security

against attacks on RFID systems but none of them has been proved to be completely

secure. J.H. Ha and S.J. Moon’s protocol [62] tried to provide security against forward

tracing attack but failed to make it as secure as claimed[63]. Authors of [63] pointed out

the cases in which the tag tracking is made possible by simply observing previous

unsuccessful sessions. Similarly, G-I protocol proposed in [64] which is a hash based

low-cost RFID mutual authentication approach. In [64] tags have secret keys k1 and k2

that is shared secret value between the tag and reader/backend server. Along with secret

keys of tags the backend server also have their hashes stored. The backend server/reader

and the tag can implement the Hash function and pseudorandom number generating

operation. Despite all the claims made by authors, this protocol is vulnerable to tracking

and desynchronization attack. An attacker can act as a legitimate server and sends a query

to tag and in response tag replies with Hash(k1) and stops the authentication process

further. Now, whenever next time tag is queried by the server it response with the same

Hash(k1) which makes it vulnerable to the tracking and cloning as an attacker can also

act as the tag since it knows tag’s response already.

Lightweight and Ultra Lightweight Authentication Protocols:

There have been a plethora of protocols proposed to the date that can be categorized as

lightweight or ultra-lightweight in terms of the computation cost. Most of the protocols in

38

this category use pseudonyms (an authorized changing of IDs with the help of PRNG or

other techniques) along with lightweight bitwise operations such as XOR, OR, AND. In

this section, we have considered protocols that have been proposed so far in these

categories along with their security analysis and weaknesses.

There is a family of three Ultra-Light Weight Mutual Authentication Protocols (UMAP)

that includes EMAP [65], M2AP [66] and LMAP [67] proposed in 2006. In LMAP the

RFID tag has a static ID that is tag ID and a dynamic pseudonym along with four subkeys

(K = k1||k2||k3||k4). First, the reader sends a hello message to the tag to which the tag

replies with the IDS. Upon reception of the IDS, the reader sends some values A, B, C (A

= IDS ⊕k1 ⊕n1, B = (IDS∨k2) + n2, C = IDS + k3 + n2 where n1 and n2 are random

number picked by the reader) to the tag. The tag authenticates the reader based on these

values and if the reader is authenticated, tag updates its IDS and sub keys (K) with new

values and replies the reader with nonce value D (D = (IDS+ID) ⊕n1⊕n2) so that reader

can validate the response and authenticate the tag. M2AP also has similar structure as

LMAP, only difference is that value of B (i.e. (IDSΛk2) + n2) is computed differently

and after authenticating the reader tag responses with different values that are D and E

(i.e. D = (IDS∨K4) Λ n2, E = (IDS +ID) ⊕ n1). Last protocol in this family is EMAP

which is also like two previously mentioned protocol. Figure 13 shows each of the three

protocols. The basic flaw in this approach is that they are vulnerable to desynchronization

attack as when tag authenticates the reader it immediately updates its IDS and keys

regardless of the fact whether the reader has also authenticated it or not. Along with that

protocols in this family are also vulnerable to the traceability attack, if an adversary sends

a Hello message to the tag and do not proceed with the rest of the steps, tag does not

39

change its IDS and hence will reply with same the IDS when queried next time.

Figure 13 The LMAP, M2AP and EMAP protocol from The UMAP

Family.

There are other ultra-lightweight protocols SASI [68], KMAP [69], RCIA [70] and SLAP

[71], all of these protocols have similar design as UMAP family and have been proved to

be vulnerable to desynchronization attack by authors of [72] and since all these

approaches have similar structures as UMAP family traceability attacks can also be made

to these protocols.

One of the recent lightweight authentication protocol has been presented by Chen et al.

[73] which is the dynamic token-based authentication scheme where the tag upon being

queried by the reader sends a token value to the reader and update its key. The reader

requests the central server for the tag token and matches the received token. If token sent

by the tag matches the original token of the tag in server’s database, it identifies tag as

authentic and transmits a newly generated token to authenticate itself. The major

40

drawback of this approach is that it is not resistant to desynchronization and replay

attack. The tag updates its key soon after transmitting token to the reader and an

unauthorized reader can desynchronize the tag and server by sending the hello request

and not proceeding ahead. An unauthorized reader can also use tag’s response to perform

replay attack for later sessions. Authors of [73] have also presented an improved version

of this protocol in [74] to avoid these attacks.

Sampangi et al. [75] proposed a secure authentication scheme that is secure against

desynchronization attack as there is no key updation included in this scheme. In this

scheme, the reader registers itself to the server and upon registration, the reader queries

the server for the seed value of the tag. Once the seed value is issued, the reader use this

value to generate different nonce values for carrying out the authentication process. This

scheme is simple and lightweight as it does not make use of any complex operations or

does not even lightweight bitwise operations, it only uses the PRNG to generate nonce

values. The major drawback of this approach is that when the reader is registered to the

server, it is issued a seed value of the tag, in case if that reader is compromised in future

then it can impersonate as a tag since it has all the information (i.e. IDt and seed value)

which is required by a tag to carry out an authentication process.

3.3. Lightweight Hash Functions For RFID

One of the major challenges in using low-cost RFID in IoT is the security of the

communication channel with limited computation capabilities of low-cost RFID tags

(passive tags). Many protocols have been proposed for the secure communication

assuming that traditional hash functions like MD5 and SHA-128 and SHA-256 can be

computed by the tag. However, that is not the case, a RFID tag has only 2-5K GE

41

available for security [15] which makes it computationally infeasible for the tag to

perform these complex hash operations. To solve this issues researchers have come up

with the idea of lightweight hash functions that are suitable the constraint devices like the

passive RFID tag. In this section, we will discuss the existing lightweight hash functions

and compare their performance and efficiency.

3.3.1. SPONGE Construction

Most of the existing lightweight hash functions [76] [77] and [78]are based on sponge

construction. It was first proposed in [79] to build hash functions in a new way by using

fixed permutation. It consists of three major components that are; state memory (S), a

fixed length permutation function (f) and a padding function (p). The state memory is

composed of c-bit capacity and r-bit bitrate and some fixed initialization value.

The sponge function has two main phases:

i) Absorbing: Firstly the message is padded such that total bits of the message

become multiple of r, then it is divided into n-blocks of r-bit. Each message

block is iteratively XORed with the bitrate part of the internal state and then

the permutation function of fixed length (c+r) bits is applied.

ii) Squeezing: Once all blocks of the message are processed by the absorbing

phase, r bits are extracted from the bitrate part of the internal state and the

permutation p is applied onto it to generate a fixed r bit hash value.

42

 Figure 14 Sponge Function [23]

3.3.2. QUARK Hash Family

In [76] authors proposed three versions of QUARK hash functions based on sponge

construction: U-QUARK (128-bit preimage resistance and at least 64-bit security against

all other attacks), D-QUARK (160-bit preimage resistance and at least 80-bit security

against all other attacks) and S-QUARK (24-bit preimage resistance and at least 112-bit

security against all other attacks). U-QUARK is lightest among three. Like the sponge

function, these hash functions contain the same absorbing and squeezing phase to extract

a r-bit hash value. The permutation function P in QUARK is inspired by the stream

cipher Grain and by the block cipher KATAN [24].

 3.3.3. PHOTON Hash Family

 Photon Hash Family [77] consist of five different variants of lightweight hash functions

based on sponge construction. It defined an AES-like function to be a fixed key

permutation P which contains Nr rounds and each round contains has four layers:

AddConstants (AC): Adds fixed values to the cells of internal state

43

 SubCells (SC): For applying s-bits S-box to each of the cell.

ShiftRows (ShR): For rotating positions of cells in each row.

MixColumnsSerial (MCS): For linearly mixing all columns independently.

Figure 15 One round of photon permutation [77]

3.3.4. Spongent Hash Family

Spongent Hash Family [78] also have 5 different variations [spongent-88 spongent-128

spongent-160 spongent-224 spongent-256] each of them is constructed using the sponge

function. It uses Present-80 like permutation P that consists of the S-BoxLayer, P-Layer

and ICounter.

S-BoxLayer: This denotes the use of a 4-bit to 4-bit S-box S: F4 2 → F4 2 which is

applied b/4 times in parallel.

P-Layer: This is an extension of the (inverse) present bit-permutation.

ICounter: This is one of the three [log2 R]-bit LFSRs. The LFSR is clocked once every

time its state has been used and its final value is all ones.

Other lightweight hash functions available to the date are DM-PRESENT family [80],

KECCAK-f family [81] , SHA-1 [82] and BLAKE [83].

44

3.3.5. Comparison

Out of all the existing lightweight hash functions, spongent hash functions is lightest one

and suits best for RFID tags. Table 4 illustrate a comparison of different versions of each

the lightweight function in terms of security and computation cost.

Hash

Function

 Security bits Hash

length

Cycles Area(GE)

Preimage Collision PreImage2

SPONGENT-

88

80 40 40 88 990

45

738

1127

SPONGENT-

128

120 64 64 128 2380

70

1060

1687

SPONGENT-

160

144 80 80 144 3960

90

1329

2190

SPONGENT-

224

208 112 112 208 7200

120

1728

2903

SPONGENT-

256

240 128 128 240 9520

140

1950

3281

Photon 80 64 40 40 80 708

132

865

1168

Photon 128 112 64 64 128 996

156

1122

1708

Photon 160 124 80 80 160 1332

180

1396

2117

45

Hash

Function

Security Bits Hash

length

Cycles Area(GE)

Preimage Collision PreImage2

Photon 224 192 112 112 224 1716

204

1736

2786

Photon 256 224 128 128 256 996

156

2177

4362

U-QUARK 120 64 64 128 544

68

1379

2392

D-QUARK 144 80 80 160 704

88

1702

2819

S-QUARK 192 112 112 224 1024

64

2296

4640

KECACAK-f

[400]

160 80 160 160 1000

20

5090

10560

KECCAK-f

[200]

128 64 128 128 900

18

2520

4900

SHA-1 160 80 160 160 450

490

6812

8588

DM-

PRESENT-80

64 32 64 64 547

33

1600

2212

46

Hash

Function

Security Bits Hash

length

Cycles Area(GE)

Preimage Collision PreImage2

DM-

PRESENT-

128

64 32 64 64 559

33

1886

2530

H-

PRESENT-

128

128 64 64 128 559

32

2330

4256

C-PRESENT-

192

192 96 192 192 3338

108

4600

8048

Table 4 Performance Comparison of lightweight hash functions.

3.4. Key establishment protocols using tree data structure

In the proposed approach, we tried to generate a random key from the random values

stored in binary tree data structure. This work is inspired by key establishment

approaches presented in [84] and [85] that uses tree data structure for generating the key.

In [84] authors presented a Hierarchical Identity-Based Encryption (HIBE) that has 4

phases: Setup, KeyGen, Encrypt and Decrypt. In the setup phase the master key is

generated that is stored at depth 0 of the tree, the second phase involves key generation

for other nodes of the system, it takes input from all the nodes at depth k and the private

key of the parent node at depth k-1 and outputs private key for the node. Other two

phases are related to encryption and decryption of the text using master key and the

private key of the node. Another approach presented in [85] is Binary Tree Encryption

47

that is a relaxed version of HIBE [84]. It also has same four phases but the method of the

driving the key is different. In the first phase, it takes security parameters as input and

returns an initial secret key and a public key of the current node. In the second phase, it

takes to input the node and its associated secret key and outputs two secret keys for two

child nodes (there can be only two child nodes as binary tree data structure is used).

Along with above two key generations schemes there is also a similar key derivation

algorithm A8 [100] used in GSM security which makes use of secrete key and random

number to drive session key.

3.5. Motivation and Research Objective

In this chapter, we have presented the literature survey for IoT and RFID systems along

with an in-depth analysis of the existing mutual authentication protocols. Based on the

literature survey performed in this chapter we can conclude that most of the protocols

were designed with an assumption that the reader cannot be dishonest or always have a

secure communication channel with the server. Since RFID systems are being used in IoT

which tends to make objects smart this assumption is not always true. There can be

scenarios when the reader is not directly connected to a server or an attacker can

impersonate as a reader. Along with this major assumption, most of the protocols have

failed to provide protection against basic attacks in RFID systems like desynchronization

attack, replay attack, and tag tracking. We also considered the lightweight hash schemes

suitable for RFID tags. The main focus of this research work is to design an

authentication protocol which is in compliance with industry standards. EPCglobal

Class1 Gen2 standard [36] have specified the number of gates that a tag can use for

security operation that is up to 5k. Hence using approaches like ECC that needs up to 8.2-

48

15 K logic gates [86], RSA that needs upto 10K logic gates [87] or other lightweight hash

functions like SHA-1 or MD5 which needs 15 -20 K gates [88] does not seems

practically feasible. Along with that we also need to design a solution that can eliminate

the assumption made by previous researchers regarding always having a secure

communication channel between the reader and server and provide a mutual

authentication protocol that can protect against major security attacks.

49

Chapter 4: PROPOSED AUTHENTIATION

SCHEME
4.1. Brief Overview of Proposed Approach

Most of the traditional RFID authentication protocols makes assumption that the RFID

reader and server always have a secure communication channel or reader is always

honest. With the advent of IoT this assumption is no more valid. In IoT, we have network

of things that are smart enough to communicate with each other, any smart object can be

equipped with an RFID reader which does not necessarily have a secure communication

channel with server or whose security can be compromised in future. In our proposed

approach, we have eliminated the assumption that reader is always honest by introducing

reader-server authentication.

In the proposed approach, we used three party authentication scheme for RFID systems in

IoT. The proposed scheme is designed in such a way that the RFID tag can only respond

to a legitimate RFID reader so that if an attacker tries to impersonate as a reader, RFID

tag will not identify it as a valid reader. Along with that we also used the lightweight hash

function: Spongent [78] which is computationally feasible for resource constrained

devices. Spongent lightweight hash is used to generate authentication signatures. In order

to make signatures more secure, we have used the sandwich-keying methodology [89] .

The key for hashing is generated using our newly proposed binary tree traversal key

derivation approach. In the binary tree traversal key derivation approach, we have stored

‘n’ number of nonce values in a binary tree data structure and derived the key from it

after applying bitwise operations and tree traversal approaches.

50

From here onwards, in order to make the approach easy to understand we have used

‘reader’ for RFID reader and ‘tag’ for RFID tag. Our proposed scheme has following

three phases:

i) Registration: In registration phase, the reader first registers its self to the

server, it sends a hello message to the backend server. Both reader and server

use the Diffie-Hellman key exhange method [90] for generating the

encryption key to encrypt messages in the communication.

ii) Reader- Server Authentication: After registering the reader, server shares a

seed value with the reader. Both the server and reader can use seed value to

generate a set of random values which are stored in form of a binary tree data

structure. This binary tree is used to derive keys for generating signatures

using keyed-hash mechanism. Once the reader and server have generated the

same binary tree from which keys for generating signatures can be derived.

The first the reader sends two random values pr1, qr1 based on which server

drives the key k1 and uses this key to perform keyed-hash on RID ,X1 =

Hash(RID,k1) . The server sends X1 to the reader along with two random

numbers pr2, qr2. The reader computes its own key k1 and generates X1`. If X1`

= X1 reader authenticates the server. The reader then generates X2 using the

same approach that is driving k2 from pr2 and qr2 and perform keyed hash to

generate X2. The reader sends the signature X2 = Hash(X1,k2) along with new

random values pr3 and qr3 to the server. Server upon verifying signature creates

a secret value Z and sends it to the reader along with the new signature X3.

51

Reader upon receiving the message generates X3` and validate the server’s

signature.

iii) Server-Reader-Tag Authentication: Once the server verifies and

authenticate the reader as a legitimate entity it issues some secret value Y to

the reader. The reader queries the tag with the value of Y. The tag analysis Y

and based on common information it has with the server and checks for

validity of the Y. The tag responses to the reader only if the value of Y is valid

which means the reader is legitimate. If the reader is legitimate, the tag and

server mutually authenticate each other using the same authentication

mechanism via the reader.

In order to drive the key for hashing, we have used a binary tree traversing approach

for making keys more random and unpredictable.

4.2. Architecture of the proposed approach

Our RFID system contains basic three components the RFID tag (EPCglobal Class1

Gen2V2), RFID reader (that can be resource constrained) and a backend server. The

reader and server do not have any secure channel of communication. EPCglobal Class1

Gen2 V2 includes ultra-high frequency passive RFID tags that can have up-to 512 KB of

the user memory block which can be re write by the reader which has permission to write

on the tag.

The reader can be attached to any mobile device like a cellular phone or smart key chain

or smart car. It can communicate with the server using any available wireless technology

like Wi-Fi or LTE or Bluetooth. In order to initiate the communication with the tag, the

reader needs to register itself with a backend server. Upon the registration, the backend

52

server issues a secret value to the reader with the help of that value the tag can identify

whether the reader is legitimate or not. The RFID reader has a 96-bit ID referred as RID

from now onwards. The backend-server contains a 96-bit server ID along with a database

that holds information about all tags. The database contains 96-bit tag IDs of each tag

associated with the server, binary tree data structure to store nonce values for the key

derivation for each tag (along with the latest table it holds two recent copies of tables to

avoid desynchronization attack). The server also holds the information about the reader

that tries to access some tag and the one-time password issued for the reader to read any

tag. A RFID tag also has the binary tree data structure to store nonce values for the key

derivation along with the 96-bit tag ID referred as TID and server ID.

Table 5 shows the information each entity in the RFID system contains along with the

notation used to refer them.

Entity Information Notation

Reader Reader ID (96-bits) RID

Server, Tag Server ID (96-bits) SID

Tag, Server Tag ID (96-bits) TID

Reader, Server Session Key for

encryption (96-256 bits)

Kr

Tag, Server Nonce Values to drive

Key for hash (16-bits)

M1, M2, M3,…..Mi

Reader, Server Nonce Values to drive

Key for hash (16-bits)

N1, N2, N3……Ni

53

Entity Information Notation

Tag, Server Current Key for hashing

(16-bits)

Ktsi

Reader, Server Current Key for hashing

(16bits)

Krsi

Reader, Server Random values to drive

key for hash

Pr(2-bit), Qr(4-bit)

Server, Tag Random values to drive

key for hash

Pr(2-bit), Qr(4-bit)

Table 5 Information table for each entity in RFID system

4.3. Detailed Description of proposed approach

In this section, we will analyze the proposed approach message by message and look into

small details to have a better understanding of the flow of the authentication protocol.

Before going into the authentication protocol, we will first look into the key derivation

approach.

4.3.1. Binary Key Traversal Approach for Key Derivation

A binary tree is the tree data structure in which each parent has exactly 2 children. To

traverse the tree there are two main approaches that are breadth first and depth first. We

have considered a depth-first approach which further has three methods.

I) Pre-order: In pre-order approach, the parent node is visited first followed by

left and then right child node.

54

II) Post-order: Post order approach is that first the left child with the highest

depth is visited followed by right child including all the depths and finally the

parent is visited.

III) In-order: In order,in this approach the order of visiting node is as a left child,

parent, and right child.

Figure 16 Binary Tree Traversing [91]

Each tag can have a 16-bit PRNG that can be used to drive random values of 16 bits, we

have used this PRNG along with some data structure knowledge to keep keys more

unpredictable.

This logic is not only used by the tag but also the reader and server which makes it more

generalized. Two involve parties have PRNG and a shared seed value to derive the same

set same random values from it. Both parties in setup mode use PRNG to derive ‘n’

random value (in our case we have chosen n as 16 considering the constrained resource

55

devices like tag). The value of ‘n’ should be in power of 2 such that n=2m. Once n

random values are derived from the PRNG it is stored in form of binary tree data

structure along with their corresponding next nodes index for each traversing approach,

as shown in Table 6.

Table 6 Nonce values along with the next node index.

Once both involved parties have the common nonce value table, it can generate same

keys from this table, based on values of p and q, which is sent to the other party to derive

the key where p is the random value that point to the index of the table p ∈ {0,1, 2,.15}

and q indicates the type of traversing technique to be used, q ∈ {0,1,2}. Upon receiving p

and q, we can go the index p of the table and get values of m-1 nodes based on the value

of q and XOR them together.

index Node NextIndex(Pre-Order) Next(Post-order) Next(in-order)

0 N0 1 7 11

1 N1 3 11 9

2 N2 5 0 13

3 N3 7 9 8

. .

7 N7 11 4 4

.

11 N11 0 2 7

15 N15 0 6 7

56

Figure 17 Node A and Node B

Node B take p= p mod(n -1) and q = q mod (3-1), here ‘n’ is the size of the table. The

value of q decides which traversal technique to choose. It goes on index p and finds next

m-1 values of N. Now the derived key let say Knew will be:

Knew = Ni ⊕ Nnext1⊕ Nnext2 ⊕ … ⊕Nnext m-2

Replace Ni with Knew and use Knew as key for hashing.

Example:

Let say p=1 and q=1 so we choose post order traverse (0 = pre-order, 1 = post-order and 2

= in-order), for value of p we go to the index 1 and take N1 and next m-2 (4-2 = 2)

nodes that are N3 and N7.

Knew = N1⊕ N3 ⊕ N7

In the table, we replace N1 by Knew for the next time and use Knew for keying hash

function.

Parameters to use Binary tree key derivation in RFID system

RFID tag has 4 memory banks: EPC, User, Reserved, Tag ID. We can only use the User

memory bank which is only up to 512-bits, so in RFID ideal size for n (i.e. table size) is

16 which is 2^4 and since n = 2^4, m will be 4. Instead of using all three traversing

Node A Node B
P||q

57

approaches in option we use only two of them to minimize the storage area needed to

store the binary tree data.

Table size = 16*(16 bit nodes + 4-bit index + 2*(4bit next Indexes))

 = 16*(12+16)

 =448 bits

4.3.2. Mutual Authentication Protocol

Proposed mutual authentication approach contains three phases, each phase is discussed

in detail below:

Registration Phase:

To access the information about any tag or query any tag the reader first needs to register

itself to the server. A reader sends a Hello message to the server along with its 96-bits

RID. In response to that, the server and reader establish the Diffie-Hellman key exchange

algorithm to generate a session key for the encryption.

58

• In message (1) reader sends a hello message with its RID to the server.

• The server in response chooses a random number r2 and generates Ta for the

Diffie-Hellman key exchange and sends it to the reader in (2).

• Reader upon receiving (2) chooses a random number r1 to generate Tb and sends

it to a server in the message (3).

After an exchange of first three messages now the reader and server can generate an

encryption key Kr for the further communication using the Diffie-Hellman approach.

 Reader Server

(1) Hello (RID)
P , q values

Choose a

random value

say r1

Tb= qr1modp

Calculate

Key

Kr =

Tar1modp

P , q values

Choses a random

value say r2

Ta = qr2modp

Calculate Kr

Kr = Tbr2modp

(2) Ta

(3) Tb

Figure 18 Registration Phase.

59

Reader-Server Authentication:

Once the reader is registered with the server and both have an encryption key, the server

sends the reader a seed value Seedr for PRNG. Both the reader and server use Seedr to

generate a common set of nonce values {N0, N1, N2……. N15}and store them into binary

tree data structure along with their corresponding next node indexes. After that the reader

sends pr1 and qr1 to the server, using which the server drives a key from the binary tree.

This key is used to generate a signature X1 = hash (RID, Krs1). The server sends that to

the reader along with new values for pr1 and qr1. The reader generates its own X1’ and

matches it with the server’s response if X1=X1’ the reader authenticates the server. In the

next message, the reader sends its signature X2 = hash (Krs2, X1) to the server along with

new random values pr2 and qr2 where Krs2 is new key generated using values of pr2 and

qr2. The server upon receiving that signature from the reader generates its own X2`and

verifies the reader response by comparing the reader sent signature X2 with X2`. If both

signature matches than the server consider the reader as authentic.

60

• In (4) after establishing an encryption key Kr the server the sends encrypted seed

value Seedr to the reader. Along with that it also generates a set of nonce {N0, N1,

N2…N15} using Seedr and PRNG.

• The reader decrypts (Seedr)Kr using same key Kr and generates the same set of

nonce values as the server {N0, N1, N2…. N15}. The set of nonce values is stored in

into the binary tree data structure and calculates next node indexes using pre-order

and post-order traversing techniques. Now reader generates two random values Pr1

 Server Reader

(4) (Seedr)Kr Uses Seedr to

generate set of

nonce values

{N0,N1,N2…N15}

Uses pr1 and qr1

 To get Krs1,

X1=hash(RID,Krs1)

X2’==X2 ?

If yes reader

authenticated.

Uses Seedr to

generate set of

nonce values

{N0,N1,N2…N15}

Sends random

values Pr1 and Qr1

X1’ == X1 ?

If yes Server

authenticated.

Derive Krs2 using

Pr2 and Qr2.

Generate X2 =

hash(X1,Krs2)

And Pr3 and Qr3

Calculate Kr

Kr = Tbr2modp

(5) (Pr1||Qr1)Kr

(6) (Pr2||Qr2||X1)Kr

(7) (Pr3||Qr3||X2)Kr

Figure 19 Reader-Server Authentication Phase

61

and Qr1 for deriving the key from the set of nonce values. The reader sends pr1 and

qr1 to the server in encrypted form in the message (5).

• The server upon receiving (5), decrypts it and gets pr1 and qr1 values from it to

generate the key Krs1 as explained in binary tree traversal key derivation approach in

the previous section. Using the key Krs1 it generates the keyed hash of RID that is

referred as X1. X1 is used as a signature to authenticate the server at the reader’s end.

Along with X1 the server also generates pr2 and qr2. The server then encrypts

X1||pr2||qr2 with Kr and sends it to the reader in (6).

• The reader decrypts (6) to extract X1, Pr2, and Qr2. Based on the prior knowledge of

Pr1 and Qr1 the reader derives the key Krs1 and generates X1` = Hash (RID, Krs1). If

X1`= X1 the server is authenticated. The reader uses pr2 and qr2 to generate the key

Krs2 and computes X2 = Hash (X1, Krs2) along with pr3 and qr3. The reader will

encrypt the next message X2||Pr3||Qr3 and sends it to the server in the message (7).

• Server upon reception of (7) decrypts it and computes X2' = Hash (X1, Krs2). If X2'=

X2 the server authenticates the reader.

Tag -Server Authentication Via Reader:

This phase includes two main parts, in the first part, the server issues a secret value to the

reader based on which the tag can find out whether the reader is legitimate or not. In the

second part, the server identifies which tag the reader is trying to read and issues a one-

time-password(OTP) to the reader. Using OTP and the previously used signature based

authentication mechanism along the tag and server authenticate each other via reader.

Below is the description of each message exchanged during this phase.

62

Figure 20 Tag-Server Authentication via Reader

• After authenticating the reader as valid, the server generates a secret nonce Y based

on which a reader can be considered as legitimate by the tag. Y = Hash (SID, T)

where T is the current timestamp. Server sends (X3||Pr4||Qr4||Y||T) Kr to the reader

as message (8).

63

• Upon receiving the message (8), the reader checks whether the response is from the

legitimate server or not by computing X3' = Hash (X2, Krs3) where Krs3 is generated

using pr3 and qr3. If X3'= X3 then it uses Y||T to interrogate the tag. The reader sends

Y||T in (9) to tag.

• As the tag is queried by the reader it first checks the timestamp T it received which

should be greater than the previous timestamp that the tag had in its memory. If

Told < T it computes Y`= Hash (SID, T) where SID is the server ID that the tag

already has. If Y’ = Y then the tag can conclude that the interrogating reader is a

legitimate reader and is registered by the server. The tag uses Y and XORs it with

TID to generate Z1 and sends it to the reader along with pt1 and qt1 in the message

(10).

• Upon reception of the message (10), the reader concatenates its signature X4 =

Hash (X3, Krs4) along with Pr5 and Qr5 and encrypts the message to transmit it to the

server

• The server receives the message (11) and validates the authenticity of the message

by computing its own X4`. It compares X4` with the received value of X4. If both

signatures match, the message is authentic. The server further checks for the tag

that the reader is interrogating by hashing the Y with the tag IDs it has in the

database. When it finds out the tag it extracts its corresponding nonce values set

{M0, M1, M2,.. Mn} to derive the key Kt1 from it by using pt1 and qt2. After deriving

the key Kt1 it uses this key to compute Z2 = Hash (Z1, Kt1) and send it to the reader

along with Pr6, Qr6 and X5 = Hash (X4, Krs5) where Krs5 is extracted using pr5 and

64

qr5. The server also sends a 96-bits OTP XORed with its SID that is W =

OTP⊕SID to the reader.

• The reader decrypts (12) and checks if the message is authentic or not by

computing signature X5` and matching it with the server’s X5. If signatures match,

it forwards the (Z2||Pt2||Qt2) ⊕OTP and W to tag.

• The tag upon receiving (13) extracts Z2 and compares it with Z2’ = Hash (Z1, Kt1).

If Z2`=Z2 it authenticates the server. The tag then generates Z3 = Hash (Z3, Kt2)

where Kt2 is derived from the set of nonce values {M0, M1,…Mn} using Pt2 and Qt2.

Tag now sends Z3||Pt3||Qt3 to the reader in the message (14) after XORing it with

OTP.

• The reader after receiving the tag’s response (14), appends its new signature X6 =

Hash (X5, Krs6) and encrypts the message with Kr to transmit it to the server.

• The server receives reader’s response (15) and checks for the authenticity of the

message by computing X6’ = Hash (X5, Krs6) and matching it with X6. If both are

equal then it extracts tag’s response and validates it again in the same way by

calculating Z3` = Hash (Z2, Kt3) and matching it with received Z3.

After the last message (15) we can say that all three involved parties have authenticated

each other using signatures and nonce values. With each message a new signature is

generated which is different from the previous signature which makes this approach safe

against the replay attack. An illegitimate reader cannot get a tag’s response because of

timestamp-based secret value generated by the server that is used by the tag to

authenticate a reader. The proposed approach is also successful in avoiding tracking as

65

every time tag’s response is generated from the hashed value it received from a reader

which should be different from the previous signature. To avoid desynchronization the

server keeps a copy of two recent tables from which the key is generated which is the

only thing that is changing. In order to make protocol more secure the tag ID is never

exposed in plain text only the hash of tag ID XORed with a secret nonce (i.e. Z1) is used

in the message (10).

The main focus of the proposed approach is to design a mutual authentication protocol

that does not allow a dishonest reader to read the tag in future and access the information

regarding the tag. Bellow we have discussed the scenarios how the dishonest reader is

dealt in each phase.

Reader Dishonest in Registration Phase : If reader is dishonest from the start, then the

proposed scheme cannot detect the trustworthiness of the reader. But in order to make

success full attach reader should also have access to tag’s internal memory which is not

possible until tag is tampered. The dishonest reader after successfully being registered by

the server. It establishes an authenticated communication with the server.

Dishonest Reader in Authentication Phase: Even dishonest reader is authenticated by

the server the proposed approach is designed in such a way that a reader is never issued a

tag specific information it only gets the secret value Y which has no meaning for reader

as value of Y is used by the tag to verify whether reader is registered and authenticated

by the server or not.

Dishonest Reader in Tag-Server Authentication via Reader Phase: The following

can be two possible scenarios:

66

i) In final phase if registered and authenticated reader is not honest even then the

reader cannot get any meaning full information from the tag or server as all

the information between tag and server is encrypted using OTP. And shared

information only contains the signature values for tag and server to

authenticate each other. The dishonest reader cannot extract any information

from tag or server to launch successful attacks like replay attack or

desynchronization attack or tag impersonation attacks.

ii) If a dishonest reader that is not registered and authenticated by the tag it can

never get a tag’s response as it needs a valid value of Y which is only issued

to the authenticated reader.

We can conclude that although the proposed approach allows the dishonest reader to

register and authenticate itself with the server but the approach is designed in such a way

that even if the reader is fraud from start it cannot launch any attacks which compromise

the security of the tag or server.

67

Chapter 5: IMPLEMENTATION

5.1 DEVELOPMENT ENVIRONMENT

The proposed approach is implemented using Java platform on a Windows operating

system. Table 7 shows the details about the version of Java used along with the IDE and

operating system version.

Programming Language Java 1.8.0_65

Operation System Windows 10.1

IDE Eclipse Luna Version (4.0.4)

Table 7 Development Environment

5.1.1 Program Architecture:

In order to simulate RFID systems in IoT, we have used the client-server architecture.

There are three parties involved in the communication that are the RFID tag, RFID

reader, and backend server. The reader and server use one port for the communication

whereas the reader and tag use another. There is no direct communication between the

server and tag hence they can only communicate via reader.

5.1.2 Java Environment and Libraries used:

Java is the platform independent and easy to execute programming language which

makes it one of the popular choices of programmers. For the implementation of the

proposed approach, we have used many built-in libraries and packages such as

java.security, java.crypto and java.net. In this section, we will discuss these libraries and

their usage in our protocol.

68

i) java.security: This package includes a wide range of classes that provides

security services and security providers such as MD5, SHA-256 and AES etc. It

allows you to choose security options of your choice as per need [92]. In our

implementation, the basic purpose of the java.security package is to provide the

secure random number generator.

ii) java.crypto: This package provides cryptographic serveries including the message

digest, key generations, digital signatures, symmetric and asymmetric encryption.

We have included this package in our code to use the DES symmetric encryption

and decryption to secure the communication channel between the reader and

server.

iii) java.net: This package provides interfaces and classes to implement the network

communication processes which involve the data transfer from one channel to

another channel or from one machine to another machine. We have used some

classes of this package to enable the reader, tag, and backend-server

communication.

iv) ServerSocket: This class allows to accept the incoming connection requests from

other sockets and data can be transferred using it. It needs a port number to open a

socket for the communication. Once a socket is open, it listens to all the requests

that are made to that port number and can send a response to the requesting party.

To send and receive the data it uses various methods like dataOutputStream (),

getInputStream etc.

69

Other packages used in the implementation are java.util and java.io. Java.util package

provides interfaces for collections like Vector, ArrayList, TreeSet etc. whereas java.io is

used to perform file read and write operations.

5.2. Implementation Details of the phases in proposed

approach

In this section, we would discuss the implementation details of three major phases of

proposed protocol. In chapter 4 we have presented message by message description of

each, in this section, we would look how each message is generated and sent. We would

first look into the major classes and their functionalities.

i) RFIDReader: As the name suggests this class is the reader class that provides the

reader object to perform all major functions for the reader. It initiates a session

with the server by sending a hello message to the server port. It can also

interrogate a RFID tag. It has two open channels to listen, one with the server and

other with the tag. It listens to both sockets and responses with appropriate replies.

ii) RFIDServer: This class acts as a backend server of a RFID system. It can

communicate to any reader that sends requests to it. The major purpose of this

server class is to listen to the socket channel and authenticate the requesting

reader, register it and issues a One-Time-Password to it. It also has methods to

validate reader’s responses and tag’s signature.

iii) RFIDTag: This class depicts all the functionalities that a RFID tag has. It can

listen to the reader, checks if the reader is legitimate or not. It replies a legitimate

reader with a signature so that a server can authenticate and identify a tag.

70

iv) BinaryTreeTraversing: The major purpose of this class is to provide

functionalities needed to implement the binary tree traversal key derivation

approach explained in section 4.3.1. The reader, server and tag class can access

this class using public method GetKeys which takes the file name that holds the

set of nonce values along with P and Q values and returns the key for hashing.

v) Diffie-Hellman; This class is used to provide the reader and server with methods

for generating the key for encryption and decryption using the Diffie-Hellman

approach, along with that it also includes some general functions needed by all

other classes like getHexString (String str) to convert string into the hexadecimal,

getStringFromHex (String Hex) to convert the hexadecimal string into the simple

string, encrypt and decrypt method to perform symmetric encryption and

decryption respectively. For the simplicity, we have used DES algorithm for

encryption and decryption between reader and server.

vi) Spongent: This class is designed to compute the lightweight hash proposed in

[78]. The main reason to design this class was that there is no built-in library in

Java that for the lightweight hash function based on the sponge construction. The

code for some methods of this class can be found on Google sites [93] which was

written in the programming language C++ so we have rewrite whole code into

Java. This class is accessible to the classes like the reader, server and tag via

public function getHashValue (String str) that takes string value of any length as

input and returns fixed 88 bit Hash value. Other methods of this class that is used

in computing hash are Absorb (), Permute (), PLayer (), ICounter (), Sponge (),

but these are private methods.

71

These major classes are linked with one another in terms of functionality. Objects of the

RFIDReader, RFIDTag and RFIDServer act as parties involved in communication.

Spongent, Diffie-Hellman and BinaryTreeKeyTraversing assist these three entities with

functionalities that are needed to perform important tasks. Along with these classes there

are some main methods used by objects of reader, server and tag classes to perform

certain operations;

i) XOR operations: XOR is one of the basic bitwise operation used various time in

the proposed approach. It is a lightweight operation that is used in most of the

protocols for resource constrained devices like RFID tags. In the proposed

approach, we have used XOR operation to minimize computation overhead at the

tag’s end and to secure the information. XOR operations are used in the message

(8) to securely transfer OTP to the tag via the reader. OTP is XORed with server

ID which is not known to reader hence reader cannot extract OTP but since the

tag has the server ID it can derive OTP. OTP is later used to XOR the tag and

server’s signature values sent in (12) and (14) via reader. To compute XOR of two

string we have converted strings into a character array and performed bitwise

XOR on each character. A snippet of the code is given bellow:

 Result_String [pos] = (char) (Operand1[pos] ^ Operand2[pos]);

ii) Signature Generation and Validation: Since this is an authentication protocol

our main focus throughout this approach is to come up with a secure solution that

allows all involved parties to authenticate each other and verify messages received

by each other. To achieve this goal, we used signature based authentication

scheme in which each message has a signature that is generated using a

72

lightweight keyed hash function. A new key is generated for each signature using

the common information shared by involved entities. With every message the

receiving party receives a signature value (Xn). Since this signature is generated

based on some commonly shared information the receiving party can generate the

signature (Xn`) and compare it with the received signature. If the signature is

validated, then the message is considered authentic.

Figure 21 Signature generation and validation

iii) Generating Random Number: In this approach, all three parties: the reader,

server and tag needs a random number generator to get a random sequence. For

this purpose, we have used the SecureRandom that is a subclass of the Random

class. SecureRandom can generate random bit streams in a secure manner.

Random numbers generated by this class are not only cryptographically strong but

also satisfies tests specified in FIPS 140-2, Security Requirements for

Cryptographic Module [94]. Below is the code snippet used to generate a random

number:

SecureRandom prng_generator = new SecureRandom(seed_Value);

 int rand = prng_generator.nextInt():

73

iv) Socket Connections: We have used sockets to establish two connections, one

between the reader and server and second between the reader and tag. Each party

listens to their corresponding sockets; validates the requests it receives and

responds with appropriate replies. To perform all these tasks, we have used

java.net package. For the communication between the reader and server, a socket

object is created at port 19 whereas for the communication between the reader and

tag a socket object is created at port 20.

Code snippet to create socket object is below:

 ServerSocket tag_Socket = new ServerSocket(20);

Code snippet to listen to the channel for upcoming requests is:

 Socket channel_Socket = tag_Socket.accept();

Once the connection is established successfully, the BufferedReader class is used to

receive the incoming message. The BufferedReader class takes an object of the

InputStreamReader class as an input which further needs an instance of the

getInputStream class as an argument.

BufferedReader tag_receiver = new BufferedReader (new InputStreamReader

(tag_socket. getInputStream(),"UTF-8"));

To send data over the socket channel we need an ObjectOutputStream class which takes a

getOutputStream function as an argument.

DataOutputStream sender = new

DataOutputStream(reader_Socket.getOutputStream());

74

Summary

We have used Java platform to simulate the communication flow of the proposed

authentication scheme for RFID systems in IoT. We have created our own classes and

have also used some built-in libraries and packages to implement the proposed approach.

75

Chapter 6: EXPERIMENTAL RESULTS AND

ANALYSIS

In this chapter, we have discussed the experimental setup and results along with the

comparison of the proposed approach with existing protocols. The major focus of the

proposed approach is to provide a secure authentication protocol for RFID systems such

that it can be adopted in IoT. In order to achieve this goal, we have used three party

authentication scheme in which each party authenticate other party. This chapter is

organized as follow: In section 6.1 we have discussed the experimental setup, how data

is being collected and stored in each entity involved in the authentication process. Later

in section 6.2 we have presented evaluation results achieved by performing traffic

analyses via Wireshark. Section 6.3 deals with the security evaluation performed using

the Scyther tool. We have also discussed the randomness testing performed on our key

generation approach using NIST in section 6.4, which is followed by section 6.5 that

presents security analysis of the proposed scheme. Section 6.6 presents the computation

analysis on the proposed scheme and section 6.7 deals with the comparison of the

proposed scheme with existing protocols.

6.1. Experimental Setup and Data Management

RFID system is simulated using the client-server architecture of Java programming

language in a personal laptop with the following specification:

i) Operating System: Windows OS 10

ii) Processor: Intel® Core™ i7-4510U- CPU @ 2.00 GHz 2.6 GHz

iii) Internal Memory(RAM): 8.00 GB

76

iv) System Type: 64-bit Operating System, x64-Jbased processor

v) Java Version: 1.8.0_65

vi) Hard Disk: 1 TB

In order to store data each entity have used the internal space of a personal laptop. For

organizing the data stored and used by each node, we have made separate folders for each

instance in our Java project.

Figure 22 Data Storage folders for each entity.

Data for the reader involves the reader nonce value table used by our binary tree traversal

key derivation approach along with the corresponding index of the next node for each

traversing approach. Figure 23 illustrates an example of piece of data. Each record is

separated by a new line and in each record, values are separated by a space. The first

column represents the index value; the second column contains the nonce value whereas

third and fourth column are next node indexes for the pre-order and post order traversing

respectively. Similar files are also stored at the tag’s end for their keys, whereas server

holds the information of both the reader and tag key tables. For avoiding the

desynchronization attack the server holds two recent copies of the tag’s key table along

with the latest copy. The tag also stores the data about the TagID, ServerID along with

77

the last timestamp it received from the reader. The server on other hand has various data,

it stores the information about the registered reader, the OTP issued for the reader, tag

information table where it stores all the tag IDs for the tags with the nonce value table of

each tag.

Figure 23 Nonce values table along with next node index for

traversing.

To perform the randomness test on keys generated using the binary tree traversal key

derivation scheme we have stored all keys generated by it into a separate file. This file is

later provided as an input to the NIST-STS, results obtained are discussed in section 6.4.

All messages sent over from one party to another party over the network are encrypted.

Data packets sent or received on the channel between reader and server are encrypted

using DES (just for example, one can use any other symmetric key encryption) except for

the registration phase where messages are not encrypted. Messages exchanged between

78

the reader and tag are encrypted using one-time password (OTP). In order to perform

traffic analyses, we have used the RawCap version 0.1.5.0 [95] that captures loopback

packets generated by the code. Later we have analyzed captured packets using the

Wireshark version 1.12.11 [96].

Security of the proposed approach is tested using the protocol verification tool Scyther.

We have used version 1.1.3 of Scyther [97].

6.2. Evaluation using WireShark:

In the proposed approach, messages exchanged among involved parties are encrypted

throughout the protocol except for the registration phase between the reader and server,

where the reader first registers itself with the server and uses Diffie-Hellman approach to

establish the encryption key. In order to differentiate messages sent at different points in

the protocol we have appended a plain text string at the start of each message between the

reader and server, rest of the message is encrypted.

We will analyze packets captured during each phase of the protocol in this section.

79

Figure 24 Data packages exchanged between Reader and Server.

6.2.1. Registration Phase

This phase involves two parties, that are the reader and server. The reader sends a hello

message to the server and in response, both the reader and server use the Diffie-Hellman

approach to generate the key. For using Diffie-Hellman they exchange a couple of

messages that can be seen in the screenshot of packets captured via WireShark.

Figure 25 Registration Phase messages send in plain text.

80

6.2.2 Reader-Server Authentication

In this phase, the reader and server have already established a symmetric encryption key

so now onwards data transferred between the reader and server is encrypted. We will go

message by message and see the content of the messages visible for traffic analysis. As

discussed above, in order to differentiate message from one another we have appended an

identifying string in the start of each message. This plane text string is not part of the

information (data) that need to be transferred in the actual protocol.

Figure 26 Message (4) Server sent encrypted seed value.

In message (4), the server has sent a seed value to the reader, the plain text ‘~~Seedr~~’

is added just to identify the message.

Figure 27 Reader reply with Pr and Qr value in the encrypted form.

Figure 27 is a snapshot of the message (5) sent by the reader to the server which includes

Pr and Qr values needed to extract the hashing key. Figure 28 and 29 below display

messages exchanged between the reader and the server to carry out the mutual

authentication. We can analyze the packet content that all the data is in encrypted form

and no third party can extract information from data without knowledge of the encryption

key.

81

Figure 28 Message (6) Signature generated by server along with new Pr

and Qr values

Figure 29 Message (7) sent from reader to server containing a

signature, Pr and Qr.

6.2.3 Tag-Server Authentication via Reader

In this phase the tag and server authenticate each other after server identifies the tag with

which the reader is interacting. This authentication between the tag and server is carried

out via the legitimate reader. Once the server and reader mutually authenticate each other

server sends some secret value to the reader that would be forwarded to the tag based on

which the tag identifies if the reader is legitimate or not. This phase involves message-

exchange between three parties as the tag and server cannot communicate directly so they

exchange messages via the reader. Figure 30 shows the data packet sent by the server to

the reader after mutual authentication. This packet contains a signature to verify the

authenticity of the message along with some secret value that the server issues for the tag

to identify the reader as legitimate and the OTP XORed with the server ID. As we can see

82

in the snapshot of the packet no information is in plain text all the data in encrypted.

Figure 30 Message (8) Server sent signature and secret value.

Once the reader receives the message (8) it decrypts the message and checks the signature

sent by the server to verify the authenticity of the message. If the message is authentic it

then extracts the information sent to the reader for the tag and sends a hello message to

the tag which is shown in Figure 31. The reader appends the secret value sent by server

that is indicated as Y in the Figure 26 along with the timestamp and value of W, where W

is XOR of the server ID and OTP. We can see in the Figure 31 that this message is not

encrypted because the reader and tag do not have any key. One important fact to be

considered here is that all the information sent in this message have no impact on the

security of the protocol because the value of Y is exposed along with the timestamp but

in order to compute a new value of Y, any eavesdropper will need the server ID which is

not known. Other values exposed in this message is the value of W which is not in

plaintext as it is XOR of serverID and OTP. Only the entity that has the serverID can

extract OTP from it.

Figure 31 Message (9) from reader to tag.

83

Figure 32 Message (10) tag sends an identification nonce to server via

reader.

Figure 32 shows the message (10) that the tag sends to the reader only if it identifies it as

a legitimate reader. In the message (10) tag has generated an identification secret value

and encrypted it using OTP before sending it to the reader. The reader upon receiving this

message will forward it to the server along with a new signature. Figure 33 represents the

message sent to the server by reader and Figure 34 shows server’s response after

identifying the tag.

Figure 33 Message (11) sent by the reader to the server after interacting

tag.

Figure 34 Message (12) sent by the server to the reader after

identifying the tag.

84

After verifying the authenticity of message (12), the reader extracts the tag’s part that is

the server’s signature which is already encrypted using OTP and send it to the tag in the

message (13) shown in Figure 35. Tag upon receiving the message verifies the signature

sent by the server via the reader and generates its own signature using Pt and Qt values

sent by the server which is sent to the reader in the message (14). The reader forwards

that message to the server along with its signature. The server first verifies the reader’s

signature to make sure that the message is received from a valid reader and then checks

for tag’s signature. If tag’s signature is authentic it authenticates the tag as legitimate.

Figure 35 Message (13) Reader forwards server’s signature to tag.

Figure 36 Message (14) Tag sends the signature to the reader.

Figure 37 Message (15) Reader sends tag’s signature with its own signature to server.

85

6.3 Security Evaluation Using Scyther

Scyther is a protocol verification tool, which analysis the security of the protocol and test

is against most of the possible attacks that can be launched on it. Three main tasks

performed by Scyther are as follow: First, it guarantees to prove the correctness of the

protocol in an unbound number of sessions and provides the option of using a proof tree.

Secondly, it provides classes of the protocol behavior to analyze the protocol. And

finally, it also allows multi-protocol analysis that is in- parallel analysis of two sub-

protocols [97].

For testing a protocol Scyther assumes that an adversary has full access to the contents of

the communication channel. In order to test the proposed approach, we used following

parameter for Scyther testing environment:

• Maximum number of runs: 5

• Matching Type: typed matching

• Search Pruning: Find all attacks

• Maximum number of patterns per claim: 10

86

Figure 38 Scyther Testing Environment

We have tested two out of three phases of the proposed approach on the Scyther because

the first phase is using the Diffie-Hellman approach for establishing a key and registering

the reader. The second phase is a major part of the protocol where the reader and server

authenticate each other. We have used various claims for the secrecy of the information

shared during message exchange along with claims of the aliveness and synchronization.

Results achieved from the Scyther analysis for the phase two are shown in Figure 39. The

Scyther results show that all the information shared during this phase is secure from all

types of attacks. For the tag-server authentication via reader results of the Scyther are

pretty match same. It has verified the security of the protocol against all possible attacks

based on all claims made in the protocol, Figure 40 shows the Scyther results for the third

phase.

87

Figure 39 Scyther Results for Phase Two Reader-Server Authentication

Figure 40 Scyther Results for Phase Three Tag-Server Authentication Via Reader.

88

6.4. Randomness Testing Using NIST

In the proposed approach, we have used a binary tree traversal key derivation approach to

extract keys for the hashing. The main goal of using this method is to derive random and

unpredicted keys. In order to evaluate the randomness and unpredictability of keys

generated we have used the Statistical Test Suite (STS) for random and pseudorandom

number generator for cryptographic applications specified by National Institute of

Standards and Technology(NIST) [98].

To perform the randomness testing via STS we have generated a ten thousand 16-bit keys

and saved it in form of continues binary stream that is 160000 bits. Since in our case the

key size is only 16 bits and STS do not support that smaller size of bit stream we have

used the block size 256 for testing. The test suite assesses the randomness of each bit

using a variety of statistical tests. For each test, the STS computes a p_value which is a

measure of the probability that the sequence being tested is more random than that

generated by a perfect PRNG. The p-value typically ranges from 0 to 1, higher the

p_value more random the sequence is. In order to pass a test the p_value should be

greater than 0.01. The set of sequences are considered random if the minimum number

that is 98.7 % of sequences passes the test. Below is the description of randomness test

that we have performed over the binary sequence.

Frequency (Monobit) Test:

89

This test computes the proportion of 1s and 0s in the input sequence, the purpose of this

test is to find out whether the entire sequence has an equal number of 1s and 0s. If the

number of 1s and 0s are almost equal the resulting p_value is high.

Frequency Test within a Block:

This test checks whether the number of 1s and 0s within an M-bit blocks in the sequence

are approximately equal or not. If the proportion of 1s and 0s are approximately same,

then the sequence is random.

Runs Test:

This test checks for a total number of the uninterrupted sequence of identical bits (run) in

a sequence, which determines whether oscillation between zeros and ones is too slow or

too fast.

Longest Run of One's Test:

This test is carried out on the sequence to determine whether the longest run of ones in an

M-bit block of the sequence is consistent with the length of the longest run of one

expected in a random sequence. Any irregularity in the longest length of ones will result

in irregularity in the length of longest run of zeros too.

Results obtained running statistical tests are given in Figure 41 with the sequence

1600000 bits, block size of 256-bit and total 500 sequences. Since we have 500 binary

sequences minimum pass rate for each statistical test is 488. The sequence generated by

proposed scheme passes all four tests.

90

Figure 41 NIST STS results.

We have run statistical tests using different parameters like the greater size of sequence

and various block sizes, results attained after running those tests are given in the

appendix. Most of the tests are passed in terms of the proportion of binary sequences

passing the test but p_values are not uniformly distributed hence are less than passing

criteria of 0.01.

6.5. Security Analysis of Proposed Approach

In this section, we have performed the security analysis of the proposed approach

whether it meets security requirement and resists major security attacks.

Confidentiality, Integrity, and Authentication:

The proposed approach provides the confidentiality and integrity by using the encryption.

The reader and server use the asymmetric encryption technique to secure the information

91

exchanged between them. The communication between the tag and reader is secured

using OTP to encrypt the data via XOR operations. The proposed scheme’s basic purpose

is to authenticate involved parties, so this requirement is achieved in this approach.

Forward Secrecy:

 Due to updating keys for hashing and a new OTP for each session, even if a tag is

compromised in future, previous keys and secrets cannot be found by an adversary. So,

the previously shared information between the tag and reader is still secure.

Non-Repudiation:

Non-Repudiation is achieved by using a signature with each message. Both the reader

and server send a signature with each message even after authenticating each other which

verifies the authenticity of the message. None of the parties can later deny sending that

message because the signature can only be generated by the party that has a previous

signature and the common key for hashing.

Tag Cloning and Tag Tracking:

Tag cloning and tag tracking attacks are avoided as each time the tag replies to user query

with a different signature based on its current key state and the previous signature, since

the tag ID is never exposed in plain text (only hash of the tag ID along with some nonce

value is sent in the message) the tag cloning and tracking attacks can be resisted.

Replay Attack:

92

The replay attack is also avoided in the proposed approach as if some previous message

is sent again by an adversary at some point the signature sent with the message would not

be authentic hence the message will be discarded and the session would be terminated.

De-synchronization Attack:

This attack occurs when the tag and server are not synchronized which means that both

have different common knowledge (keys or IDs etc.). In the proposed approach, the only

thing that is changing with each message is the hashing key and the table from which that

key is derived. In order to avoid the desynchronization, the server keeps two previous

copies of the key table. If an adversary tries to corrupt the data and interrupts the

communication channel in such a way that the server’s key table is updated but the tag has

some old table server can still identify the tag. In order to avoid the similar scenario where

tag’s table is updated and the server’s table remains un-updated, the server keeps values of

previously sent Pt and Qt on the base of which the tag might have updated table so that

server can update its table.

The Scyther evaluation, in Section 6.4, shows that attacks such as modification and

fabrication are not possible on data packets exchanged in proposed approach.

6.6. Computation Analysis

The proposed approach is designed for the EPCglobal class1 Gen2V2 RFID tags, that has

limited computation capabilities. It has up to 7-15K GE out of which only from 250 to 5k

can be used for the security purpose [15]. In this section, we analyze total computation cost

of the proposed approach in terms of the GE. For each message, we will calculate the GE

required by tag to respond to the reader. In [99] authors have presented a table that states

93

GE required for each bitwise operation. Table 8 shows the operations used in the approach

and GE used to perform these operations.

Operation GE

96-bits XOR 254.4

16-bits XOR 42.4

Spongent Hash 738[23]

Table 8 GE used by each operation

 Table 9 shows the operation used in each message computed at tag’s, GE used by each

message and total GE used throughout the protocol.

Message Operations Used GE for each Operation Total GE

Message

()

Hash(SID,T)

OTP =SIDxorW

Hash(TID,Y)

Z1=Hash(TID,y) xor OTP

738

254.4

738

212

1942.4

Message() Z2 = Received xor OTP

Z2=Hash(Z1,kti)

Z3=Hash(Z2,kti)

(Z3||pt||Qt) xor OTP

Key extraction (2 16 bit xors)

254.4

738

738

254.4

84.8

2069.6

Total

4012.0

Table 9 Operations in each message along with GE

94

Total GE used by the proposed approach is 4012 which is still feasible for the EPCglobal

Class1 Gen2V2 tags. For minimizing the computation cost and making the proposed

scheme more low-cost and lightweight size of the key (16 bit) and IDS (96-bits TID, SID

and RID) can be reduced.

6.7. Comparison with Existing Approaches

In this section, we will consider comparing our proposed approach with various existing

schemes in term of the security. There has been a plethora of RFID authentication

protocol proposed so far which has been discussed in chapter 3. Since our research work

is contributed towards using RFID in IoT and there are numerous existing approaches we

have only chosen some of the recent RFID authentication schemes that can be potentially

used for RFID systems in IoT. Table 10 illustrates existing schemes and the proposed

approache along with the capability of each approach to provide security against

corresponding attacks or security issues.

Existing

Approaches

Replay

Attack

De-

synchronization

Forward

Secrecy

Traceability Reader-Server

Authentication

AKE-

MRFID

NO NO YES YES YES

SHA-3

RFID

YES YES YES NO NO

SLAP YES NO YES NO NO

Dehkorki YES YES NO YES NO

Khedr YES YES NO YES NO

95

Existing

Approaches

Replay

Attack

De-

synchronization

Forward

Secrecy

Traceability Reader-Server

Authentication

Habibie YES YES NO YES NO

R. V.

Sampangi

YES YES YES YES NO

Our

Protocol

YES YES YES YES YES

Table 10 Comparison with existing approaches

Summary

The evaluation done using the WireShark provides the traffic analysis of the proposed

approach that shows each information shared in the protocol is encrypted except for the

registration phase. However, in the registration phase, both the reader and server use the

Diffie-Hellman key exchange algorithm it is not possible to derive the key as the

adversary has no knowledge of p and g. Another message that is sent in plain text is the

first message sent by the reader to the tag in order to query the tag, this message contains

a secret value sent by the server to the tag via the reader to identify whether the reader is

legitimate or not. That secrete value can only be useful for he entity that already has a

SID which only tags and the server have. The Scyther evaluation is carried out to test the

protocol against different attacks and results shows protocol is free from most of the

major attacks. The Scyther results also prove that all the data transferred over the

communication channel is secure. We have also analyzed the randomness of keys

extracted using the proposed binary tree traversal key derivation approach. Finally, we

96

have performed the security and computation cost analyze for the proposed protocol.

Security analysis shows proposed approach satisfies major security requirements like

confidentiality, integrity, authentication, non-repudiation and forward secrecy. It can also

resist most of the major attacks that can be done on RFID system like replay attack,

desynchronization attack, cloning and location tracking etc.

97

Chapter 7 CONCLUSION AND FUTURE WORK

The proposed three-party authentication scheme is an attempt to increase the security of

RFID systems in IoT. This research work was motivated by the need of an authentication

scheme that eliminates the assumption that a reader and backend-server always have a

secure communication channel.

The authentication scheme presented in this paper has three main phases: the Registration

phase where the reader registers itself to the server, the Reader-Server authentication

phase in which the reader and server authenticate each other, the Tag-Server

authentication via the reader where a server identifies the tag and both parties

authenticate each other.

The proposed scheme needs a RFID reader to first register itself with the server before

querying any RFID tag. It is designed in such a way that a RFID tag only replies to a

legitimate reader based on the secret value that server issues to the reader. The

communication between RFID reader and server is made secure by using symmetric key

encryption along with that, messages exchanged between the RFID reader and the tag are

also encrypted using OTP.

The proposed approach also uses the signature based message authentication to verify the

authenticity of each message. With each message the involved party appends a signature

based on which the receiving entity makes sure that the message is sent by the legitimate

party.

98

The Wireshark traffic analysis proves that the data transferred do not expose key

information, Tag ID or Server ID in plain text. All the information shared including

signatures and parameters required to generate the key for hashing are encrypted. Thus,

we can say that even if an adversary intercepts the communication channel he cannot get

any meaning full information out of it without knowledge of the key.

The Scyther results show that there are no possible attacks that can compromise the

security of the proposed protocol. All the information shared throughout the

authentication scheme is secure.

For generating signatures, we have used the lightweight hash function Spongent [78]

which is the most lightweight hashing scheme available till date. Instead of using simple

hash we have used the keyed hash to make the signature more unpredictable. Keys for

hashing are extracted using our proposed binary tree traversal key derivation approach.

The randomness and uniqueness of keys generated using this approach are tested via STS

by NIST.

7.1. Limitations

The proposed approach is tested on protocol verification tool called Scyther that checks

whether the protocol is resistant to major security attacks but there is a limitation of using

Scyther as it cannot test any protocol against replay and desynchronization attacks.

Although in order to avoid the replay attack in the proposed approach, we have used a

new signature with each message. If some adversary tries to resend the packet captured

some time before in the communication channel, the signature will be outdated by that

time, as the key state of the involved party would have changed. For avoiding the

99

desynchronization attack, the server is required to keep the copies of two previously used

key states along with P and Q values sent. If the server and tag (or reader) get out of sync

the server can extract the possible keys that other party may have. Despite these

mechanisms, we have not tested the proposed scheme with some verification tool that can

test the protocol against replay and desynchronization attack.

 Keys generated using the binary tree traversal approach for key derivation have been

tested for the randomness and uniqueness but for the 1600000-bit sequence it passes four

basic test but when the size of the sequence is increased it fails to satisfy randomness

criteria of having p_value greater than 0.01.

For security purpose the proposed scheme needs tag to come with server ID associated

with it which limits the application areas of the proposed scheme to personal IoT based

application only where there is always only one designated server associated with each

object. Examples of such applications are smart homes, smart office and smart cars where

we already have list of smart objects and a dedicated server.

7.2. Future Work

For this research work, we have implemented our proposed approach using Java

programming language on a personal laptop and tested its security using the protocol

verification tool Scyther. We have not implemented the logic on actual integrated circuits

of RFID tags using digital logic hardware implementing platforms like Field-

Programmable Gate Arrays (FPGA). FPGA does not have any specific functions we can

program the integrated circuits as per the application requirement to attain the desired

functionality.

100

For the randomness testing of the proposed binary tree traversal key derivation approach,

the sample of size 1600000 bits passes randomness tests but when the size of data

increases the tests does not show expected p_values (which should be less than 0.01). In

future, we should find out the reason of lower p_values and improve the key generation

scheme.

101

References

[1] "IoT Basics | opentechdiary," 2017. [Online]. Available:

https://opentechdiary.wordpress.com/category/iot-basics/. [Accessed 25 Marchi

2017].

[2] "Radio Frequency Identification - Ethicalhavoc.net," 2017. [Online]. Available:

http://www.ethicalhavoc.net/Thread-Radio-Frequency-Identification-RFID.

[Accessed 25 March 2017].

[3] "Auto-ID Labs," [Online]. Available: http://www.autoidlabs.org.. [Accessed 1

April 2017].

[4] Y. Huang and G. Li, "Descriptive Models for Internet of Things," in Proc.

International Conference on Intelligent Control anf Information Processing,

ICICIP, 2010, pp. 483-486.

[5] A. Bassi and G. Horn, "Internet of Things in 2020: A Roadmap for the Future,"

European Commission: Information Society and Media., 2008.

[6] L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A survey," Computer

Networks, vol. 54, pp. 2787–2805, 2010.

[7] V. Potdar, A. Sharif and E. Chang, "Wireless Sensor Networks: A Survey," in

Proc. International Conference on Advanced Information Networking and

Applications Workshops, 2009, pp. 393-422.

[8] "Internet Engineering Task Force, RFC 4944," 2007. [Online]. Available:

https://tools.ietf.org/html/rfc4944. [Accessed 1 April 2017].

[9] S. Farahani, ZigBee wireless networks and transceivers, newnes, 2011, pp. 1-23.

[10] B. Fouladi and S. Ghanoun, "Security Evaluation of the Z-Wave Wireless

Protocol" Black hat USA , 2013, pp. 1-6.

[11] A. Al-Fuqaha, M. Guizani and Mohammed Aledhari, "Internet of Things: A

Survey on Enabling Technologies, Protocols, and Applications" IEEE

COMMUNICATION SURVEYS & TUTORIALS, vol. 17, no. 4, pp. 2347-2376,

2015.

[12] "Radio Frequency Identification," En.wekipedia.org, 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Radio-frequency_identification. [Accessed 4 April

2017].

102

[13] K. Finkenzeller, RFID Handbook, John Wiley & Sons, 1999.

[14] D. Vuković, "Security Issues in Internet of Things(IoT) related passive RFID

tags", Facta Universitatis, Series: Automatic Control and Robotics, vol.13, no. 2, p.

97-105, 2014.

[15] M. Chen and S. Chen, " Lightweight Anonymous RFID Authentication " in RFID

technologies for Internet of Things, 2016, pp. 39-65.

[16] L. Soo-Young, K.-Y. Kang, Soo-Young and I.-Y. Lee., "A Study on low-cost

RFID system management with mutual authentication scheme in ubiquitous," in

Proc. Managing Next Generation Networks and Services. APNOMS, 2007, pp.

492-502.

[17] Peris-Lopez, A. Mitrokotsa, M. Beye and Pedro, "Classification of RFID Threats

based on Security Principles", Security Lab, Faculty of Electrical Engineering,

Mathematics and Computer Science, Delft University of Technology (TU Delft),

2011.

[18] A. Furness, "CASAGRAS and the Internet of Things" in GRIFS/CASAGRAS

Workshop, 2008.

[19] L. Tan and N. Wang, "Future Internet: The Internet of Things" in Proc. 3rd

International Conference on Advanced Computer Theory and Engineering

(ICACTE), 2010, pp. V5-376-V5-380 .

[20] M. Wu, T. Lu, F. Ling, J. Sun and H. Du, "Research on the Architecture of Internet

of Things" in Proc. International Conference on Advanced Computer Theory and

Engineering (ICACTE), 2010, pp. V5-484-V5-487 .

[21] R. Khan, S. U. Khan, R. Zaheer and S. Khan, "Future Internet: The Internet of

Things Architecture" in Proc. 10th International Conference on Frontiers of

Information Technology, 2012, pp. 257-260.

[22] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G.

Boggia and Mischa Dohler, "Standardized Protocol Stack for the Internet of

(Important) Things," IEEE COMMUNICATIONS SURVEYS & TUTORIALS, vol.

13, no. 3, pp. 1389-1405, 2013.

[23] Z. Shelby, K. Hartke, C. Bormann and B. Frank, "Constrained Application

Protocol (CoAP).draft-ietf-core-coap-18" Internet Eng. Task Force, 2013.

103

[24] C. Bormann, A. P. Castellani and Z. Shelby, "CoAP: An application protocol for

billions of tiny Internet nodes" IEEE Internet Computing, vol. 16, no. 2, p. 62-67,

2012.

[25] D. Locke, "MQ telemetry transport (MQTT) v3. 1 protocol specification" IBM

DeveloperWork, 2010. [Online]. Available:

http://www.Ibm.Com/Developerworks/Webservices/Library/Ws-Mqtt/Index.html.

[Accessed 12 12 2016].

[26] P. Saint-Andre, "Extensible messaging and presence protocol (XMPP): Core"

Internet Eng. Task Force (IETF), 2011.

[27] M. T. Jones, "Meet the Extensible Messaging and Presence Protocol," IBM

DeveloperWorks, 2009.

[28] "OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0,”," Adv. Open

Std. Inf. Soc. (OASIS), 2012.

[29] "Data distribution services specification, V1.2, Object Manage. Group," April

2015. [Online]. Available: www.omg.org/spec/DDS/1.2/.

[30] J. Vasseur, "RPL: The IP routing protocol designed for low," Internet Protocol for

Smart Objects (IPSO), 2011.

[31] N. Kushalnagar, G. Montenegro and C. Schumacher, "IPv6 over low-power

wireless personal area networks (6LoWPANs): overview, assumptions, problem

statement, and goals," No. RFC 4919, 2007.

[32] M. Krochmal and S. Cheshire, "DNS-based service discovery," International Eng.

Task Force (IETF), 2013.

[33] S. Cheshire and M. Krochmal, "Multicast DNS," Internet Eng. Task Force (IETF),

2013.

[34] "[EPCglobal | GS1," Gs1.org, 2017. [Online]. Available:

http://www.gs1.org/epcglobal. [Accessed 4 April 2017].

[35] EPCglobal, "EPCglobal Class Definations," 2007.

[36] EPCglobal, "EPC Compliant Class-1 Generation-2 UHF," 2015.

[37] S. Kinoshita, M. Ohkubo, F. Hoshino, G. Morohashi, O. Shionoiri and A. Kanai,

"Privacy Enhanced Active RFID Tag", Cognitive Science Research Paper-

University of Sussex, 2005.

104

[38] H. Bock, M. B. M. Dichtl, E. Hess, J. Heyszl, W. Kargl, H. Koroschetz, B. Meyer

and H-. Seuschek, "A milestone towards RFID products offering asymmetric

authentication based on elliptic curve cryptography", Invited talk at RFIDsec,

2008.

[39] Y.-P. Liao and C.-M. Hsiao, "A secure ECC-based RFID authentication scheme",

Ad Hoc Networks, vol. 18, pp. 133-146, 2014.

[40] Z. Zhao, "A Secure RFID Authentication Protocol for Healthcare," Journal of

Medical Systems, 2014.

[41] Y. K. Lee, L. Batina and I. Verbauwhede, "EC-RAC (ECDLP Based Randomized

Access Control): Provably Secure RFID authentication protocol" in Proc. IEEE

International Conference on RFID, 2008, pp. 97-104.

[42] J. Bringer, T. Icart and H. Chabanne, "Cryptanalysis of EC-RAC, a RFID

Identification Protocol." in Cryptology and Network Security. CANS , pp. 149-161,

2008.

[43] Y. K. Lee, L. Batina and I. Verbauwhede, "Untraceable RFID authentication

protocols: Revision of EC-RAC," in Proc. IEEE International Conference on

RFID, 2009, pp. 178-185 .

[44] M. Sandhya and T. R. Rangaswamy, "A Combined Approach of Elliptic Curve and

Zero Knowledge base Forward Security Protocol," World Academy of Science,

Engineering and Technology , p. 847-852, 2009.

[45] S. Martínez, M. Valls, C. Roig, J. M. Miret and F. Giné., "A secure elliptic curve-

based RFID protocol," Journal of Computer Science and Technology, vol. 24, p.

309-318, 2009.

[46] H. Gross, E. Wenger, H. Martín and M. Hutter, "PIONEER—a prototype for the

internet of things based on an extendable EPC Gen2 RFID tag," in Proc.

International Workshop on Radio Frequency Identification: Security and Privacy

Issues, 2014, pp. 54-73.

[47] H. Gross, M. Hölbl, D. Slamanig and R. Spreitzer, "Privacy-Aware Authentication

in the Internet of Things," in Proc. International Conference on Cryptology and

Network Security, 2015, pp. 32-39.

[48] W. Zhu, J. Yu and T. Wang, "A security and privacy model for mobile RFID

systems in the internet of things," in Proc. IEEE 14th International Conference on

Communication Technology, 2012., pp. 726-732.

105

[49] I. Erguler, "A potential weakness in RFID-based Internet-of-things systems,"

Pervasive and Mobile Computing, vol. 20, pp. 115-126, 2015.

[50] S. A. Weis, S. E. Sarma, R. L. Rivest and D. W. Engels, "Security and privacy on

low-cost Radio Frequency Identification systems," International Journal of

Security and Networks, vol. 5, no. 2-3, pp. 128-134, 2010.

[51] H.-Y. Chien, "Secure Access Control Schemes for RFID Systems with

Anonymity," in Proc. 7th International Conference on Mobile Data Management,

IEEE, 2006, pp. 10-12.

[52] Q. Dong, J. Zhan and L. Wei, "A SHA-3 Based RFID Mutual Authentication," in

Proc. IEEE International Conference on Signal Processing, Communication and

Computing, 2013, pp. 1-5.

[53] M. H. Dehkordi and Y. Farzaneh, "Improvement of the Hash-Based RFID Mutual

Authentication Protocol," Wireless Personal Communications, vol. 75, no. 1, pp.

219-232, March 2014.

[54] W. I. Khedr, "SRFID: A hash-based security scheme for low cost RFID systems,"

Egyptian Informatics Journal, vol. 14, no. 1, pp. 89-98, 2013.

[55] M. H. Habibi and M. Gardeshi, "Cryptanalysis and improvement on a new RFID

mutual authentication protocol compatible with EPC standard," in 8th

International ISC Conference on Information Security and Cryptology, 2011.

[56] S. M. Alavi, K. Baghery, B. Abdolmaleki and M. R. Aref, "Traceability Analysis

of Recent RFID Authentication Protocols," Wireless Personal Communications,

vol. 83, no. 3, pp. 1663-1682, 2015.

[57] J.-S. Cho, Y.-S. Jeongb and S. O. Park, "Consideration on the brute-force attack

cost and retrieval cost: A hash-based radio-frequency identification (RFID) tag

mutual authentication protocol," Computers & Mathematics with Applications, vol.

69, no. 1, pp. 58-65, 2015.

[58] M. Safkhani, P. Peris-Lopez, J. C. Hernandez-Castro and N. Bagheri,

"Cryptanalysis of the Cho et al. protocol: A hash-based RFID tag mutual

authentication protocol," Journal of Computational and Applied Mathematics, vol.

259, pp. 571-577, 2014.

[59] B. Song and C. J. Mitchell, "RFID Authentication Protocol for Low-cost Tags," in

Proc. ACM conference on Wireless network security, 2008, pp. 140-147.

106

[60] S. Cai, Y. L. Li and R. H. Deng, "Attacks and Improvements to an RFID Mutual

authentication Protocol," in Proc. ACM conference on Wireless network security,

2009, pp.51-58.

[61] G. Tsudik, "YA-TRAP: Yet another trivial RFID authentication protocol," in Proc.

4th Annual IEEE International Conference Pervasive Computing and

Communications Workshops, PerCom Workshops, 2006, pp. 4 pp.-643.

[62] J. Ha, S. Moon, J. Zhou and J. Ha, "A New Formal Proof Model for RFID

Location Privacy," in Proc. European Symposium on Research in Computer

Security, 2008, pp. 267-281.

[63] D.-Z. Sun and J.-D. Zhong, "A Hash-Based RFID Security Protocol for Strong

Privacy Protection," IEEE Transactions on Consumer Electronics, vol. 58, no. 4,

November 2012.

[64] G. Gódor and S. Imre, "Hash-Based Mutual Authentication Protocol for Low-Cost

RFID Systems," in Meeting of the European Network of Universities and

Companies in Information and Communication Engineering, 2012, pp. 76-87.

[65] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda,

"EMAP: An Efficient Mutual-Authentication Protocol for Low-Cost RFID Tags,"

in Proc. OTM Confederated International Conferences "On the Move to

Meaningful Internet Systems" 2006, pp. 352-361.

[66] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda,

"M2AP: A Minimalist Mutual-Authentication Protocol for Low-Cost RFID Tags"

in Proc. International Conference on Ubiquitous Intelligence and Computing,

2006, pp. 919-923.

[67] P. Peris-Lopez, J. C. Hernandez-Castro and J. M. E. Tapiador, "LMAP: A Real

Lightweight Mutual," in Proc. 2nd Workshop on RFID security, 2006, pp, 06.

[68] H.-Y. Chien, "SASI: A New Ultralightweight RFID Authentication Protocol

Providing Strong Authentication and Strong Integrity," IEEE Transactions on

Dependable and Secure Computing, vol. 4, no. 4, pp. 337 - 340, November 2007.

[69] U. Mujahid, r. Najam-ul-Islam and S. Sarwar, "A New Ultralightweight RFID

Authentication Protocol for Passive Low Cost Tags: KMAP," Wireless Personal

Communications, pp. 1-20, 2016.

[70] U. Mujahid, M. Najam-ul-Islam and M. A. Shami, "RCIA: A new ultralightweight

RFID authentication," International Journal Of Distributed Sensor Networks,

January 2015.

107

[71] H. Luo, G. Wen, J. Su and Z. Huang., "SLAP: Succinct and lightweight

authentication protocol for low-cost," Wireless Networks, vol. 94, no 23, pp. 1-10,

2016.

[72] M. Safkhani and N. Bagheri, "Generalized Desynchronization Attack on UMAP

Application to RCIA, KMAP, SLAP and SASI+ protocols," IACR Cryptology

ePrint Archive, 2014.

[73] M. Chen and S. Chen, "An Efficient Anonymous Authentication Protocol for

RFID Systems Using Dynamic Tokens," in Proc. IEEE 35th International

Conference on Distributed Computing Systems, 2015, pp. 756-757.

[74] M. a. S. C. Chen, "ETAP: Enable Lightweight Anonymous RFID authentication

with O (1) overhead," in Proc. IEEE 23rd International Conference on Network

Protocols (ICNP), 2015, pp. 267-278.

[75] M. Rahman, R. V. Sampangi and S. Sampalli, "Lightweight Protocol for

Anonymity and Mutual," in Proc. IEEE 12th Consumer Communications and

Networking Conference (CCNC): CCNC 2015 Workshops - IEEE CCAN, 2015,

pp. 910-915.

[76] J.-P. Aumasson, L. H. Meier and M. Naya-Plasencia, "Quark: A Lightweight

Hash," Journal of Cryptology, vol. 26, no. 2, pp. 313-339, 2013.

[77] J. Guo, T. Peyrin and A. Poschmann, "The PHOTON Family of Lightweight Hash

Functions," in Proc. Annual Cryptology Conference, 2011, pp. 222-239.

[78] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici and I. Verbauwhede,

"SPONGENT: The Design Space of Lightweight Cryptographic Hashing," IEEE

Transactions on Computers, vol. 62, no. 10, pp. 2041 - 2053, 2011.

[79] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "Sponge Functions,"

ECRYPT hash workshop, 2007.

[80] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw and Y.

Seurin, "Hash Functions and RFID Tags: Mind the Gap," in Proc. International

Workshop on Cryptographic Hardware and Embedded Systems , 2008, pp. 283-

299.

[81] E. B. Kavun and T. Yalcin, "A Lightweight Implementation of Keccak Hash

Function for Radio-Frequency Identification Applications," in Proc. International

Workshop on Radio Frequency Identification: Security and Privacy Issues 2010,

pp. 258-269.

108

[82] M. Kim and J. Ryou, "Power Efficient Hardware Architecture of SHA-1

Algorithm for Trusted Mobile Computing," in Proc. International Conference on

Information and Communications Security, 2007, pp. 375-385.

[83] L. Henzen, J.-P. Aumasson, W. Meier and R. C.-W. Phan, "VLSI Characterization

of the Cryptographic Hash Function BLAKE," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 19, no. 10, pp. 1746 - 1754, 2011.

[84] D. Boneh, X. Boyen and E.-J. Goh, "Hierarchical Identity Based Encryption with

Constant Size Ciphertext," in Proc. Annual International Conference on the Theory

and Applications of Cryptographic Techniques, 2005, pp. 440-456.

[85] R. Canetti, S. Halevi and J. Katz, "A Forward-Secure Public-Key Encryption

Scheme.," Journal of Cryptology , vol. 20, no. 3, pp. 265-294, 2007.

[86] L. Batina, J. Guajardo and T. Kerins, An Elliptic Curve Processor Suitable For

RFID-Tags, IACR Cryptology ePrint Archive, 2006.

[87] Y. Chen, J.-S. Chou and Hung-Min Sun, "A novel mutual authentication scheme

based on quadratic residues for RFID systems," Computer Networks, vol. 52, no.

12, p. 2373–2380, 2008.

[88] A. Juels and S. A. Weis, "Authenticating Pervasive Devices with Human

Protocols," in Proc. Annual International Cryptology Conference, 2005, pp. 293-

308.

[89] Y. Naito, "Sandwich Construction for Keyed Sponges: Independence Between

Capacity and Online Queries," in Proc. International Conference on Cryptology

and Network Security, 2016, pp. 245-261.

[90] W. Diffie and M.- . Hellman, "Multiuser cryptographic techniques," in Proc.

National Computer Conference and Exposition, New York, 1976, pp. 109-112.

[91] "Tree Traversals (Inorder, Preorder and Postorder)," 2017. [Online]. Available:

http://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/.

[Accessed 17 April 2017].

[92] "Overview of Java SE Security," Docs.oracle.com, 2017. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsovervie

w.html. [Accessed 09 05 2017].

[93] "SPONGENT," sites.google, 2017. [Online]. Available:

https://sites.google.com/site/spongenthash/. [Accessed 25 02 2017].

109

[94] "Oracle- Class Secure Random," Oracle, 2017. [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html.

[Accessed 09 05 2017].

[95] "RawCap," Netresec, [Online]. Available:

http://www.netresec.com/?page=RawCap.

[96] "WireShark," 2017. [Online]. Available: https://www.wireshark.org/. [Accessed 02

02 2017].

[97] C. Cremers, "The Scyther Tool: Verification, Falsification,," 2008.

[98] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh and M. Levenson,

"A Statistical Test Suite for the Validation of Random Number Generators and

Pseudo Random Number Generators for Cryptographic Applications," NIST

Special Publication, 2010.

[99] C. Paar, A. Poschmann and M. Robshaw, "New Designs in Lightweight

Symmetric encryption," in RFID security, Springer US, 2008, pp. 349-371.

[100

]

M. Mouly and M.-B. Pautet, " The GSM system for mobile communications",

Telecom Publishing, 1992.

110

APPENDIX A

Figure 42 Randomness test using STS with block size 256 and sample data size 2560000

Figure 43 Randomness test using STS for block size 128 and sample data size 33000

111

Figure 44 Randomness Test using STS for block size 256-bits and sample data of

1280000-bits

112

Figure 45 Randomness Test using STS for block size 16-bits and sample size 160000

bits.

113

APPENDIX B

Figure 46 Randomness Testing using Dieharder testing tool for sample size 160000 bits

