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Abstract

Virtual surgical training simulators are an exciting opportunity to improve surgical

training, especially in challenging fields like minimally invasive surgery. Virtual sur-

gical training requires highly accurate haptic feedback to provide effective training,

however, accurate human tissue models are computationally intensive and update too

slowly. This work investigates a method of improving the haptic feedback realism (or

transparency) from slowly updating virtual environments by designing a control struc-

ture that takes advantage of higher update rates outside of the virtual environment.

The current state of the art in surgical training and controls research is identified

through a review of the relevant literature. The contributions of this work are as

follows. A predictor is designed for an unknown linear-time invariant system using

Lyapunov-based methods to provide an estimate of the ideal virtual environment out-

put at a higher output rate. The predictor design is extended to a gain-scheduled

predictor using linear parameter-varying systems analysis. The resulting haptic sy-

stem is tested both in simulation and experiment. For linear-time invariant systems

the predictor provides excellent performance, leading to experimental improvements

in transparency of up to 40%. For nonlinear systems the predictor provides mixed

results, ranging from negligible results to improvements of approximately 20%.
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Chapter 1

Introduction

Haptic interfaces are devices that produce force or touch sensations, creating the

illusion that the operator is physically interacting with an object or environment.

They may be as simple as the vibration feedback from a smartphone keyboard or as

complex as a glove that allows the operator to touch a remote or virtual object [1].

Haptic interfaces are being used in an increasing number of applications, including

entertainment, remote control of robots (or teleoperation), and training simulators

for aerospace and surgery [2]. Training simulators are an area of particular interest,

as haptic interfaces open the possibility of virtual reality that not only looks real, but

feels real.

Virtual surgical training simulators allow surgeons to learn and practice a variety of

skills, but they need to be very realistic to provide effective training. One major

limitation to creating realistic virtual training simulators is the computational diffi-

culty of simulating a realistic virtual environment. Virtual environments in surgical

training simulators can be quite complex, involving multiple bodies that must be able

to deform and be cut. Such complex models often use some form of finite element

model in order to simulate their properties realistically [3]. Expensive, specialized

hardware is needed to simulate these models at high update rates. Haptic feedback

requires high update rates in order to provide realistic feedback. Low update rates

can result in noticeable delay in the feedback, undesirable vibrations or ‘buzzing’,

and/or instability. Is there a way to provide higher-quality feedback without having

to purchase expensive computer hardware?

1.1 Problem Definition

Consider the scenario shown in Fig. 1.1. The operator and haptic device operate in

continuous time, and ideally the operator would perceive a continuous-time virtual

environment through the haptic device. A controller, running at a high enough update

1
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rate that it is approximately continuous, mediates the interaction between the haptic

device and the virtual environment running at a slow update rate. The key concept is

that the controller and virtual environment operate at different update rates. There

are many situations where this scenario could exist. For example, a single Personal

computer (PC) runs the controller and virtual environment on separate processors,

or a dedicated control board runs the control software while a PC simulates the

virtual environment. Given the rise in popularity of cloud-based computing, another

possibility would be a local PC running the control software while a server simulates

the virtual environment.

Operator Haptic 
Device Controller Virtual

Environment

Figure 1.1: Main concept

The objective is to design the controller to take advantage of the increased update

rate to provide higher-quality haptic feedback from the slowly updating environment.

1.2 Literature Review

This section presents an overview of the literature relevant to this work.

1.2.1 Virtual Surgical Training

Minimally invasive surgery (MIS) involves the insertion of tools and a video camera

through small incisions in a patient’s body, allowing the surgeon to access and view the

surgery from outside. The tools are placed at the end of long slender rods and actuated

via grips and levers outside of the patient’s body. The ability of the surgeon to perceive

forces from tissue is greatly diminished compared to open surgery, therefore MIS is

very challenging and requires extensive training [4]. This training has been performed

using cadavers, mannequins and physical simulators, but in the past couple decades

virtual simulators have become increasingly common [5].
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Virtual training simulators allow the trainee to practice procedures on a virtual pa-

tient. The simulator may provide visual feedback to the operator in the form of a

television screen or virtual reality goggles, and haptic feedback in the form of mock

surgical tools connected to a robotic actuator [4]. Virtual surgical training simula-

tors provide the advantage of allowing surgeons to train without the potential ethical

implications of practising on humans or animals [5]. They are also capable of provi-

ding useful feedback to the trainee and instructor. For example, the forces a trainee

applies during surgery are indicative of their skill level, with more skilled surgeons

applying smaller, more accurate forces [6]. A virtual surgical training simulator can

easily record a trainee’s motions, forces, and actions to provide a detailed report on

their performance and help the instructor determine areas for improvement. Vir-

tual surgical training simulators also provide novel approaches to training, such as

a "shared-control" approach where an instructor and trainee operate simultaneously

and the instructor can help guide the trainee’s actions [7]. Virtual training simulators

can also easily present a variety of scenarios, from standard procedures to complex

problem solving or high intensity situations, such as a mistakenly severed artery.

They also allow trainees to be exposed to variations in patient anatomy, which is

difficult for traditional methods to do [8].

Although there are many potential benefits to using virtual surgical training simu-

lators, there are still concerns about the effectiveness of this type of training. The

primary concern in the medical community is the ability of the virtual simulators to

accurately reproduce the surgical environment [9]. There is a great need for highly

realistic virtual training simulators, as well as detailed studies regarding their ef-

fectiveness at transferring useful skills to trainees. Although there have been many

small-scale studies of the effectiveness of virtual surgical training simulators that sug-

gest they are effective, there have not been any large-scale randomized controlled

trials that confirm that this type of training results in improved performance in the

operating room [10].

1.2.2 Motivation

Virtual surgical training simulators require accurate haptic feedback to provide ef-

fective training [11], particularly for forces perpendicular to the axis of the virtual
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tool [12]. The ability to simulate realistic virtual tissue models (or virtual environ-

ments) that are capable of deformation and cutting is crucial to providing accurate

feedback. Realistic deformable and cut-able tissues are difficult to model explicitly,

therefore many models are based on finite element methods [3]. These models are

computationally-intensive and require expensive, high-end computer hardware such

as a dedicated graphics processing unit [13, 14]. Even using high-end computer har-

dware can result in slow update rates, especially for virtual environments with a large

number of deformable bodies. A simulation involving a single deformable but not cut-

able body interacting with several rigid bodies could run at 1700 Hz on specialized

hardware [14]. For lower-end hardware and more complex virtual environments the

update rate could drop below the ideal update rate of 1000 Hz for haptic feedback.

1.2.3 Control of Haptic Interfaces

There are two primary concerns when considering the control of haptic interfaces:

stability and transparency. A haptic system is stable if its error is bounded, and it is

transparent if its feedback forces are accurate. The stability of a haptic interface inte-

racting with a linear time-invariant (LTI) virtual environment has been investigated

extensively in literature. Colgate [15] showed that the stability of a discrete-time LTI

virtual environment interacting with an LTI haptic device depends on the sampling

rate and the damping of the haptic device. Increasing the stiffness or damping, or

decreasing the sampling rate, leads to a less stable system. This stability criterion was

extended to consider the effects of quantization and Coulomb friction in the haptic

device dynamics [16]. The stability criterion guarantees a stable system, but it does

not consider the transparency of the system.

The virtual coupler method is one approach to design a haptic interface that is both

stable and transparent. A virtual coupler introduces artificial dynamics between the

haptic display and the virtual environment, allowing the haptic interface to represent

a wider range of environment parameters and sampling rates [17]. The design of the

virtual coupler can incorporate a transparency criterion to maximize the transparency

over the stable range of the haptic interface [18]. The concept of virtual couplers

was extended to maintain stability and transparency for virtual environments with

multiple materials of different stiffness [19]. A major limitation of virtual couplers is
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that their design process is only valid for LTI virtual environments and haptic device

dynamics. Many haptic devices have nonlinear dynamics, and many tissue models

are nonlinear as well [20, 21] They also do not consider the effect of sampling on the

transparency of the system.

Another method of ensuring the stability of a haptic interface while maintaining

transparency is to use a time-domain passivity control approach. The passivity control

approach ignores the dynamics of the systems being controlled and instead considers

the energy content of the input and output ports of the system. If the energy in

the system is increasing in an unstable fashion an artificial damping is applied to

dissipate the energy. Transparency is maintained by only applying the damping

when it is necessary to ensure stability [22]. The advantage of this method is that it

is independent of the system dynamics. The disadvantage is that it may be overly

conservative by not taking advantage of inherent dissipation in the system.

Another approach to designing haptic interfaces is to treat the haptic system as a

tracking problem using a coupling controller. The virtual environment is treated as

the desired system dynamics and generates a trajectory according to the operator

input force. The coupling controller tracks the output trajectory of the virtual en-

vironment, resulting in the desired dynamics being displayed to the operator [23].

The advantage to this approach is that the design of the virtual environment and the

coupling controller are separated: as long as the virtual environment outputs a stable

trajectory, and the coupling controller can stably follow that stable trajectory, then

the whole system is stable. The disadvantage to this approach is that it requires accu-

rate operator force measurements both to generate the correct virtual environment

trajectory and to allow the coupling controller to track that trajectory.

The controller selection for the haptic device depends on the device dynamics. For a

linear device methods such as PID or pole-placement may be appropriate. However,

most haptic devices have nonlinear dynamics. In that case a passivity-based controller

may be used to ensure stability and desired reference tracking. For haptic devices with

unknown parameters an adaptive control law may be added to improve tracking [24].
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1.2.4 Control of Time-Delay Systems

The control of time-delay systems is a problem that has been covered extensively for

networked control systems and robotic teleoperation. The stability of LTI time-delay

systems may be analysed using Lyapunov-based methods. Lyapunov-based analysis

of time-delay systems leads to a large, non-convex matrix inequality. The non-convex

matrix inequality can be linearized to form a linear matrix inequality (LMI) which

can be solved numerically [25]. Lyapunov-based methods can also be applied to

linear parameter-varying (LPV) systems, however this results in an infinite number of

potentially feasible solutions to the LMI. Therefore the LMI is relaxed by imposing a

structure on the Lyapunov function’s parameter dependence, or for a less conservative

but more complex solution, expressing the LMI in terms of B-splines [26,27].

Providing transparent haptic feedback in a delayed system is challenging. One method

of improving haptic feedback in a time-delay system is through the use of a predictor.

A predictor is similar to an observer or a Kalman filter, except that it predicts a future

value of a delayed signal rather than just providing an estimation of an unmeasurable

state. The error between the predicted signal and the delayed signal can be used to

improve the prediction. Predictors are used in teleoperation to improve performance

[28].

There are two primary prediction methods: signal-based prediction and model-based

prediction. Signal-based prediction uses past outputs, rather than a model of the

system, to estimate future outputs of the system. Signal-based predictors use extra-

polation and interpolation [29], autoregressive models [30], or Smith predictors [31]

to generate predictions. Model-based prediction uses the known dynamic model of

the system combined with a measurement of the system input to predict future out-

puts. Model-based predictors are used in LTI systems to reduce the effect of delay in

the control input [32,33], and to handle long sampling delay in feedback signals [34].

There are also "hybrid predictors" which generate predictions using several signal-

based and model-based predictors simultaneously, and switch between predictors to

minimize the error [35]. The advantage of signal-based prediction is that it can be used

to predict the output of any system. The advantage of model-based prediction is that,

if the model is accurate, the output of the predictor is more accurate. Model-based

predictors have not been used to predict the output of LPV or nonlinear systems.
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Accurate models are necessary for model-based prediction. For systems where the

model parameters are unknown a parameter adaptation law can be used to estimate

the parameters online. For LTI systems a least-squares adaptation law can be used

to estimate the parameters [36]. For systems with bounded, slowly-varying, unknown

parameters a projection-type least-squares adaptation law can be used to provide an

estimate of the parameters [37].

1.3 Thesis Contributions

This work contains the following contributions:

1. A model-based predictor is applied to improve the transparency of a slowly up-

dating virtual environment with unknown nonlinear dynamics. Both a constant-

gain and gain-scheduled (LPV) predictor are designed using Lyapunov-based

methods.

2. The stability problem of the predictor interacting with the virtual environment

is formulated as a linear matrix inequality using Lyapunov-based methods.

3. The resulting haptic system is simulated and its performance with and without

the predictor is quantified and analysed.

4. The resulting haptic system is tested experimentally and its performance with

and without the predictor is quantified and analysed.

Other works have either assumed the virtual environment dynamics are known and

LTI, or have used signal-based prediction strategies. The model-based predictor ap-

proach has been applied to teleoperation, but the virtual environment case presents

a different set of challenges. For example in teleoperation the predicted signal and

delayed signals are usually updated at close to the same rate. Unlike in the teleopera-

tion case the predictor in the virtual environment case can operate at a much higher

sampling rate than the dynamics that are being predicted.
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1.4 Thesis Organization

The rest of this work is organized as follows. Chapter 2 describes the robotics and

controls terminology and theory used in this work. Chapter 3 gives a detailed over-

view of the problem scope and describes the mathematical models used in this work.

Chapter 4 gives a detailed description of the control design for both the haptic de-

vice controller and the predictor for increasingly complex cases. Chapter 5 describes

the control hardware and software used to perform the simulations and experimental

work. It also describes the calibration of the control hardware. Chapter 6 descri-

bes the results for simulations of the haptic system and discusses their implications.

Chapter 7 describes the experimental performance of the haptic system, and discus-

ses the advantages and limitations of using the predictor. Chapter 8 summarizes the

conclusions of this work and suggests areas for future research.



Chapter 2

Background Theory

This section describes the terminology and theoretical concepts used in this work.

The main focus is to explain the essential concepts, while specific derivations are

introduced in Chapter 3.

2.1 Robotics Theory

This section explains the essential information needed to understand the derivations

of kinematic and dynamic models used in this work.

2.1.1 Robotics Terminology

A manipulator is a type of robot commonly referred to as a ‘robot arm.’ It generally

consists of a set of rigid bodies, called ‘links,’ joined together by a set of connections,

called ‘joints.’ The part of the robot connected to the ground is called the ‘base’,

and the free end is called the ‘end-effector.’ The end effector may hold a gripper for

lifting objects, a tool for performing some work, or a handle for interacting with an

operator [38]. Fig. 2.1 shows an example schematic of a manipulator with each part

labelled.

The joints constrain the motion of the links. Revolute joints allow the links to rotate

about the center of the joint. The state of the joints is described by the ‘joint variable’

vector, denoted q. The joint variable for a revolute joint is its joint angle.

A serial chain manipulator is a manipulator that does not contain any parallel con-

nections of links, i.e. there is only one path along the links from the base to the

end-effector.

9
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End-Effector

GroundBase

JointLink

Figure 2.1: A schematic of a robot manipulator illustrating the robotics terminology.

2.1.2 Robot Kinematics

Forward Kinematics

The forward kinematic equations express the pose of a point on the manipulator,

normally the end-effector, as a function of the joint variables of the manipulator. The

forward kinematics can be systematically derived by expressing the manipulator as

a series of homogeneous transformations using the Denavit-Hartenberg convention.

For a manipulator with revolute joints, the resulting equations are nonlinear [39].

Inverse Kinematics

The inverse kinematic equations express the joint variables as a function of the pose

of the end-effector. Unlike the forward kinematics, the inverse kinematics cannot

be derived through a specific algorithm. This is because there may be no solutions,

multiple solutions, or even infinite solutions to the inverse kinematics problem. For

simple systems with a small number of degrees of freedom it is often possible to derive

a closed form solution using geometry by applying additional constraints to remove

multiple solutions. More complex systems may use numerical methods to solve the

inverse kinematics [39].
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Differential Kinematics

The differential kinematic equations relate the velocity and acceleration of the end-

effector to the rate of change of the joint variables. The forward differential kinematics

express the velocity of the end-effector as a linear matrix function of the joint rates

of change. Therefore the inverse differential kinematics are easily derived from the

forward kinematics [39].

2.1.3 Robot Dynamics

The dynamics relate the acceleration of the robot to the applied forces and torques.

The dynamics of manipulators are normally expressed in joint space, i.e. relating the

joint angular acceleration to the motor torque and other applied loads. The dynamics

of a robot may be derived systematically by deriving the total energy of the robotic

system and applying Lagrange’s Equation [40].

2.2 Control Theory

This section explains the essential control-theory concepts.

2.2.1 Lyapunov-Based Methods

Lyapunov-based methods are used to develop sufficient (but not necessary) conditions

for the stability of a system. This means that Lyapunov-based methods are inherently

conservative: a system may be stable even if it does not meet the criteria specified

by the Lyapunov-based methods. Lyapunov-based methods are based on Lyapunov’s

Stability Theorem, which is paraphrased as follows. Define a continuously differenti-

able function V (x) known as a ‘Lyapunov Function.’ If it can be demonstrated that

V (0) = 0, V (x) > 0 ∀x �= 0, and V̇ (x) ≤ 0 (where V̇ (x) is the time derivative of

V (x)), then x = 0 is a stable equilibrium point, i.e. x is bounded. If it can addi-

tionally be shown that V̇ (x) < 0 ∀x �= 0, then x = 0 is an asymptotically stable

equilibrium point, i.e. limt→∞ x = 0 [41].

The idea behind Lyapunov-based methods is to define a Lyapunov function for the

error which proves that the error converges towards zero. If a function cannot be
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found to prove that the error converges towards zero, at the very least it can be

shown that the error is bounded and that the bound is sufficiently small.

For example, the simplest case would be an LTI system described by

ẋ = Ax,

where x ∈ �n×1 is the state vector and A ∈ �n×n is a matrix. The Lyapunov function

may be defined as

V (x) =
1

2
xTx,

which satisfies V (0) = 0 and V (x) > 0 ∀x �= 0. Taking the time derivative results

in

V̇ (x) =
1

2

(
ẋTx+ xT ẋ

)
,

V̇ (x) =
1

2

(
xTATx+ xTAx

)
,

V̇ (x) = xTAx.

For the system to be asymptotically stable V̇ (x) < 0 ∀x �= 0, therefore the matrix

A must be negative definite. Not coincidentally, this is the same stability condition

that one would arrive at from linear systems theory.

Barbalat’s Lemma

For nonautonomous systems, i.e. in cases where the Lyapunov function is not only

dependent on the error, but also on time, Lyapunov’s stability theorem is insufficient

to prove stability. Another property, known as Barbalat’s Lemma, is needed.

Lemma 1 (Barbalat’s Lemma). [41] Let φ be a uniformly continuous function on

[0,∞), whose inputs and outputs are real numbers. Suppose that limt→∞
∫ t

0
φ(τ)dτ

exists and is finite. Then,

φ(t)→ 0 as t→∞.

This is necessary to prove that not only does a stable equilibrium point exist, but

that the system approaches that equilibrium over time.
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2.2.2 Linear Matrix Inequalities

For systems more complicated than the example given in Section 2.2.1, verifying

Lyapunov stability may require finding values for variables that satisfy a large set of

simultaneous equations, rather than simply checking that a single matrix is negative

definite. The variables that are being solved for are called the decision variables. In

those cases it is convenient to express the set of equations as a single symmetric matrix

that must meet a criterion such as negative definiteness. If the matrix equations can

be made linear in terms of the decision variables the whole system can be expressed

as a linear matrix inequality (LMI). The LMI may be solved numerically as a convex

optimization problem. Fortunately MATLAB has LMI solvers that can be used to

solve these problems [42].

The Schur Complement

The Schur Complement formula is often used to transform a nonconvex matrix ine-

quality into a convex matrix inequality. The Schur Complement formula states that

the following matrix inequality, [
A B

BT C

]
< 0, (2.1)

is true if and only if C < 0 and A − BC−1BT < 0. This is useful because if B is a

matrix of decision variables, A−BC−1BT < 0 is nonconvex, but (2.1) is convex [42].



Chapter 3

Problem Formulation

3.1 Problem Scope

The problem of accurate haptic feedback for virtual surgical training simulators is

quite broad. A surgeon performs many different tasks during an operation that each

provide their own challenges. In order to constrain the scope to a more manageable

scale, this work will only consider the stability and transparency of a haptic system

for a palpation task during a MIS procedure.

There are many advantages to constraining the problem scope to a MIS palpation

task. First, high-quality force feedback is essential to a palpation task because the

surgeon is investigating subtle changes in the tissue properties to identify a region of

interest. Second, all interactions between the surgeon and the patient are performed

through the surgical tools. Third, palpation does not involve any cutting or perma-

nent deformations of the tissue, therefore the environment can be simulated using a

static model. Fourth, the applied force, velocity, and acceleration involved with a

palpation task are low compared to free motion or other tasks.

The virtual environment will be treated as an unknown nonlinear function that

accepts an operator force input and outputs the virtual environment force and the

virtual tool position and velocity.

The scope of the problem may be expressed by the following set of constraints:

1. The geometry of the virtual environment model is static. The position and

orientation of the virtual environment surface does not change, nor does it

permanently deform.

2. Contact between the virtual surgical tool and environment is uninterrupted.

Therefore the energy effects of the initial contact/collision with the environment

will not be considered.

14
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3. The virtual interaction forces and virtual tool position, velocity and acceleration

are all bounded and the bounds are known. The bounds may be introduced by

hardware limitations, or artificially prescribed in software.

4. The bounds on the parameters used to approximate the virtual environment

are known or may be accurately estimated.

3.2 System Overview

The system that will be considered is shown in Fig. 3.1. The operator applies a force

F h(t) that is measured by a force sensor. The measured operator force is used to

calculate the ideal virtual tool trajectory xe(t) and the ideal virtual environment force

F e(t). The complex virtual environment (VE) running in discrete time is approxima-

ted as a continuous-time system that is being sampled, delayed by one sampling time

(Td), and then run through a zero-order hold, resulting in xe,z(t−Td) and F e,z(t−Td).

This approximation assumes that the VE produces a stable output (such as by run-

ning a batch calculation based on a buffered F h). The predictor uses the operator

force, sampled position and velocity, and sampled environment force to generate a

predicted trajectory x̂e. The predicted trajectory is tracked by the controller, which

uses the operator force and haptic device joint position and velocity q and q̇ to ge-

nerate the control torque. The haptic device applies the control torque and interacts

with the operator.

3.3 System Modelling

This section describes the kinematic and dynamic models used in the haptic system.

For ease of representation the following substitutions are used:

ci = cos(qi) si = sin(qi)

cij = cos(qi + qj) sij = sin(qi + qj)

The Phantom Omni® Haptic Device will be used for experimental testing (see 5.2).

The Phantom Omni® is a 3-DOF serial-link manipulator, however the kinematic

and dynamic models could be extended for an n-DOF serial-link manipulator.
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Operator Haptic Device
(Phantom Omni)

Tool Dynamics
+

Virtual Environment

Controller

ZOH

Predictor

Figure 3.1: Haptic surgical simulator control system diagram

3.3.1 Phantom Omni® Kinematic Model

The forward, inverse, and differential kinematics of the Phantom Omni® can be

derived explicitly. The vector q ∈ �3×1 represents the joint variables, specifically the

joint angles, and the vector x ∈ �3×1 represents the position of the end-effector in

Cartesian coordinates.

Fig. 3.2 shows a schematic of the reference frames used in the derivation of the

kinematic model. Four reference frames, numbered from 0 to 3, are shown. The base

frame (Frame 0) is selected to be at the joint between the first and second links, with

the z0-axis vertical and the x0-axis pointing toward the front of the device. Frame 3

is located at the joint between the stylus and the third link, with the x3-axis along

the length of the stylus toward the operator.

Forward Kinematics

A vector in Frame 3 can be expressed in the base frame using a linear transformation

as follows,
0
x′ = 0

3T (q)
3
x′. (3.1)

The transformation matrix is derived systematically from each reference frame to the

next using the standardized Denavit-Hartenberg (DH) convention. Table 3.1 shows
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z0,z1

y0,x1

q1

y2
x2

q3
y3

x3

q2

Figure 3.2: Schematic of the Phantom Omni device, establishing the nomenclature
and reference frames used in the derivation of the device kinematics.

Table 3.1: Denavit-Hartenberg parameters of the Phantom Omni device.
Link di ϑi ai αi

1 l1 q1 0 π/2
2 0 q2 l2 0
3 0 q3 l3 0

the DH parameters for the Phantom Omni. Since l1 = 0, it is omitted in the following

derivation:

0
1T =

⎡
⎢⎢⎢⎢⎢⎣
c1 0 s1 0

s1 0 −c1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

1
2T =

⎡
⎢⎢⎢⎢⎢⎣
c2 −s2 0 l2c2

s2 c2 0 l2s2

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

2
3T =

⎡
⎢⎢⎢⎢⎢⎣
c3 −s3 0 l3c3

s3 c3 0 l3s3

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

where, as previously mentioned, ci = cos qi and si = sin qi.

0
3T = 0

1T
1
2T

2
3T =

⎡
⎢⎢⎢⎢⎢⎣
c1c23 −c1s23 s1 (l2c2 + l3c23)c1

s1c23 −s1s23 −c1 (l2c2 + l3c23)s1

s23 c23 0 l2s2 + l3s23

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

The position of the end-effector can be extracted from the fourth column of 0
3T ,

resulting in (3.2).
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Figure 3.3: A schematic illustrating the geometry used in the inverse kinematics.

x = 0x =

⎡
⎢⎢⎣
x

y

z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
(l2 cos q2 + l3 cos (q2 + q3)) cos q1

(l2 cos q2 + l3 cos (q2 + q3)) sin q1

l2 sin q2 + l3 sin (q2 + q3)

⎤
⎥⎥⎦ . (3.2)

Inverse Kinematics

The joint variables can be derived geometrically for a given end-effector position. Fig.

3.3 shows the geometry used to solve the inverse kinematics of the Phantom Omni®.

The position of the first joint, q1, can be determined from the x-y position of the

end-effector using (3.3),

q1 = tan−1
(y
x

)
. (3.3)

To solve for the positions of the second and third joints, q2 and q3, it is easier to

consider the geometry in Frame 1. The distance along the x1 axis, denoted by r in

Fig. 3.3, can be calculated using (3.4). Using the cosine law and solving for q3 leads

to (3.5). Note that the cosine law would result in two possible solutions for q3, one

positive and one negative. However, due to the physical constraints of the Phantom

Omni®, only the negative solution is feasible.
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r =
√

x2 + y2, (3.4)

q3 = cos−1

(
l22 + l23 − r2 − z2

2l2l3

)
− π. (3.5)

Finally, the position of the second joint can be solved based on the known angles in

the triangle formed by Link 2, Link 3, and r, resulting in (3.6).

q2 = tan−1
(z
r

)
+ tan−1

( −l3 sin q3
l2 + l3 cos q3

)
. (3.6)

Differential Kinematics

The velocity of the end-effector ẋ is linearly related to the joint angular velocities q̇

by the Jacobian matrix J ∈ �3×3, as shown in (3.7). The Jacobian can be calculated

using (3.8), where ẑi ∈ �3×1 is the unit vector along the axis of joint i, and pi ∈ �3×1

is the vector from the base frame to the position of joint i. The resulting matrix is

given in (3.9).

ẋ = J(x, q)q̇, (3.7)

J =
[
ẑ1 × (x− p1) ẑ2 × (x− p2) ẑ3 × (x− p3)

]
, (3.8)

J =

⎡
⎢⎢⎣
−rs1 −zc1 −l3c1s23
rc1 −zs1 −l3s1s23
0 r l3c23

⎤
⎥⎥⎦ . (3.9)

The acceleration of the end-effector ẍ is influenced by both the joint angular velocity

q̇ (the centripetal component) as well as the joint angular acceleration q̈, as shown

in (3.10).

ẍ = J̇ q̇ + J q̈. (3.10)

The derivative of the Jacobian is given in (3.11). The bold zeros represent appropri-

ately sized zero vectors.
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J̇ =

⎡
⎢⎢⎣
q̇T 0 0

0 −q̇T 0

0 0 −q̇T

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−rc1 zs1 l3s1s23

zs1 −rc1 −l3c1c23
l3s1s23 −l3c1c23 −l3c1c23
rs1 zc1 l3c1s23

zc1 rs1 l3s1c23

l3c1s23 l3s1c23 l3s1c23

0 0 0

0 z l3s23

0 l3s23 l3s23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.11)

Inverse Differential Kinematics

Since the relationship between ẋ and q̇ is linear it is straightforward to derive the

inverse equation given in (3.12) by rearranging (3.7). The analytical expression of

the inverse Jacobian is given in (3.13).

q̇ = J−1ẋ, (3.12)

J−1 =

⎡
⎢⎢⎣
− s1

r
c1
r

0

c1c23
l2s3

s1c23
l2s3

s23
l2s3

− rc1
l2l3s3

− rs1
l2l3s3

− z
l2l3s3

⎤
⎥⎥⎦ . (3.13)

Similarly, the equation for angular joint acceleration can be derived by rearranging

(3.10), resulting in (3.14).

q̈ = J−1
(
ẍ− J̇ q̇

)
. (3.14)

3.3.2 Phantom Omni® Dynamic Model

The generalized joint space dynamic model of a serial-link manipulator is shown in

(3.15).

H(q)q̈ + (C(q, q̇) + B)q̇ + τ g(q) = τ c + JTF h, (3.15)

where H ∈ �3×3 is the inertia matrix, C ∈ �3×3 is the Coriolis and centrifugal torque

matrix, B ∈ �3×3 is the viscous friction matrix, τ g ∈ �3×1 is the gravity torque

vector, τ c ∈ �3×1 is the control input torque, and F h ∈ �3×1 is the human operator

force applied to the haptic device.
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Dynamic Properties

The dynamic model of the haptic device has several useful properties that will be

used in the design of the control algorithm.

Property 1. The inertia matrix H is symmetric and positive-definite.

H = HT > 0.

Property 2. The inertia and Coriolis force matrices have the following skew-

symmetry property:

ξT
(
Ḣ − 2C

)
ξ = 0,

for any vector ξ of appropriate dimensions.

Property 3. The dynamic model can be represented in a linear parametric form in

terms of the constant parameter vector θ. This form is given in (3.16).

ϕ(q, q̇, q̈)θ = H(q)q̈ + (C(q, q̇) + B)q̇ + τ g(q), (3.16)

where ϕ is a matrix function containing the states and any known parameters.

Derivation

The matrices H and C, and the vector τ g are derived from the Lagrangian L ∈ � of

the haptic device [40], given in (3.17), where T ∈ � and U ∈ � are the total kinetic

and potential energy of the haptic device, respectively,

L = T− U. (3.17)

The total kinetic and potential energy is derived by considering each link as a rod

with mass mi, a center of mass located at lc,i from the base of the link, and a moment

of inertia Ii about the center of mass. Therefore, the total kinetic and potential

energy are expressed by (3.18) and (3.19).

T =
3∑

i=1

Ti =
3∑

i=1

(
1

2
miv

2
c,i +

1

2
Iiω2

i

)
, (3.18)

U =
3∑

i=1

Ui =
3∑

i=1

migzc,i, (3.19)
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where g is the acceleration due to gravity, and vc,i, ωi, and zc,i are the center of mass

velocity, angular velocity, and center of mass z position, of link i, respectively. Those

variables can be expressed in terms of q using forward kinematics.

The dynamic equations are derived from Lagrange’s Equation, as

d

dt
∇q̇L−∇qL = H(q)q̈ + C(q, q̇)q̇ + τ g(q), (3.20)

where ∇q̇ =
[

d
dq̇1

d
dq̇2

d
dq̇3

]T
and ∇q =

[
d
dq1

d
dq2

d
dq3

]T
. Lagrange’s equation does

not result in a unique expression of C, therefore C is selected so that it meets Property

2. The resulting H and C matrices, and τ g vector, are given in (3.21), (3.22), and

(3.23).

H =

⎡
⎢⎢⎣
h11 0 0

0 h22 h23

0 h32 h33

⎤
⎥⎥⎦ , (3.21)

h11 = (m21
2
c2 + I2 +m3l

2
2)c

2
2 + (m3l

2
c3 + I3)c223 + 2m3l2lc3c2c23 + I1,

h22 = m21
2
c2 + I2 +m3l

2
c3 + I3 +m3l

2
2 + 2m3l2lc3c3,

h23 = m3l
2
c3 + I3 +m3l2lc3c3,

h32 = h23,

h33 = m3l
2
c3 + I3,

C =

⎡
⎢⎢⎣
−(a1q̇2 + a2q̇3) −a1q̇1 −a2q̇1

a1q̇1 −a3q̇3 −a3(q̇2 + q̇3)

a2q̇1 a3q̇2 0

⎤
⎥⎥⎦ , (3.22)

a1 = (m2l
2
c2 + I2 +m3l

2
2)c2s2 +m3l2lc3 sin(2q2 + q3) + (m3l

2
c3 + I3)c23s23,

a2 = m3l2lc3c2s23 + (m3l
2
c3 + I3)c23s23,

a3 = m3l2lc3s3,

τ g = g

⎡
⎢⎢⎣

0

(m2lc2 +m3l2)c2 +m3lc3c23

m3lc3c23

⎤
⎥⎥⎦ . (3.23)

The viscous friction matrix is selected so that friction acts independently on each

joint, as shown in (3.24), where bi > 0 is the friction associated with joint i,



23

B =

⎡
⎢⎢⎣
b1 0 0

0 b2 0

0 0 b3

⎤
⎥⎥⎦ . (3.24)

Parameterized Dynamics

The dynamics of the haptic device must be represented in a form that separates the

dynamic parameters from the state variables to develop an adaptation law for the

adaptive control of the Phantom Omni. The parameterized dynamics are given in

(3.16). There are nine independent unknown parameters in the dynamic model. The

parameter vector θ ∈ �9×1 is given by (3.25).

θ =
[
I1 m2l

2
c2 + I2 +m3l

2
2 m3l

2
c3 + I3 m3l2lc3 m2lc2 +m3l2 m3lc3 b1 b2 b3

]T
.

(3.25)

Expressing the elements of the dynamic matrices in terms of θ results in:

h11 = θ1 + θ2c
2
2 + θ3c

2
23 + 2θ4c2c23,

h22 = θ2 + θ3 + 2θ4c3,

h23 = θ3 + θ4c3,

h33 = θ3,

a1 = θ2c2s2 + θ3c23s23 + θ4s223,

a2 = θ3c23s23 + θ4c2s23,

a3 = θ4s3,

τ g =

⎡
⎢⎢⎣

0

θ5gc2 + θ6gc23

θ6gc23

⎤
⎥⎥⎦ .

Therefore, ϕ ∈ �3×9 is given by (3.26).

ϕ =

⎡
⎢⎢⎣
q̈1 c22q̈1 − 2c2s2q̇1q̇2 c223q̈1 − c23s23(2q̇2 + 2q̇3)q̇1 · · ·
0 q̈2 + c2s2q̇

2
1 q̈2 + q̈3 + c23s23q̇

2
1 · · ·

0 0 q̈2 + q̈3 + c23s23q̇
2
1 · · ·

· · · 2c2c23 − 2(s223q̇2 + c2s23q̇3)q̇1 0 0 q̇1 0 0

· · · 2c3q̈2 + c3q̈3 + s223q̇
2
1 − s3(2q̇2 + q̇3)q̇3 gc2 gc23 0 q̇2 0

· · · c3q̈2 + c2s23q̇
2
1 + s3q̇

2
2 0 gc23 0 0 q̇3

⎤
⎥⎥⎦

(3.26)
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Controller Parameterized Dynamics

The acceleration of the haptic device is not measurable, therefore another paramete-

rization of the dynamics will be necessary for the design of the nonlinear controller.

Let q̇r and q̈r be the velocity and acceleration of a reference signal. The dynamics

of the haptic device can be expressed in terms of the reference signal, as shown in

(3.27),

ϕr(q, q̇, q̇r, q̈r)θ = H(q)q̈r + (C(q, q̇) + B)q̇r + τ g(q). (3.27)

The resulting expression for ϕr ∈ �3×9 is,

ϕr =

⎡
⎢⎢⎣
q̈r1 c22q̈r1 − c2s2(q̇2q̇r1 + q̇1q̇r2) c223q̈r1 − c23s23 (q̇r1(q̇2 + q̇3) + q̇1(q̇r2 + q̇r3)) · · ·
0 q̈r2 + c2s2q̇1q̇r1 q̈r2 + q̈r3 + c23s23q̇1q̇r1 · · ·
0 0 q̈r2 + q̈r3 + c23s23q̇1q̇r1 · · ·
· · · 2c2c23q̈r1 − s223(q̇r1q̇2 + q̇1q̇r2)− c2s23(q̇r1q̇3 + q̇1q̇r3) 0 0 · · ·
· · · 2c3q̈r2 + c3q̈r3 + s223q̇1q̇r1 − s3((q̇r2 + q̇r3)q̇3 + q̇2q̇r3) gc2 gc23 · · ·
· · · c3q̈r2 + c2s23q̇1q̇r1 + s3q̇2q̇r2 0 gc23 · · ·
· · · q̇r1 0 0

· · · 0 q̇r2 0

· · · 0 0 q̇r3

⎤
⎥⎥⎦

.

(3.28)

3.3.3 Tool Dynamics

The general dynamics for the tool are given in (3.29),

mtẍe(t) + btẋe(t) + ktxe(t) = F h(t)− F e(t). (3.29)

where xe ∈ �3×1 and ẋe are the position and velocity of the virtual tool, and mt ∈ �,

bt ∈ �, and kt ∈ � are the mass, damping, and stiffness of the tool, respectively,

F h ∈ �3×1 is the operator input force, and F e ∈ �3×1 is the virtual environment

force. The mass, stiffness, and damping of the tool are known and constant since the

tool itself does not change during a task.

3.3.4 Virtual Environment Dynamics

The virtual environment is a nonlinear system with unknown dynamics, however it is

assumed that the unknown dynamics can be expressed in a pseudo-linear parameter
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varying form. The environment dynamics are given in (3.30),

F e = Be(t,xe, ẋe)ẋe(t) +Ke(t,xe, ẋe)xe(t), (3.30)

where Be ∈ �3×3 and Ke ∈ �3×3 are unknown nonlinear functions representing the

damping and stiffness, respectively, associated with the environment.

Assuming that the damping and stiffness forces are independent for each degree of

freedom, the environment force can be considered in a single degree of freedom as

Fe = be(t, xe, ẋe)ẋe(t) + ke(t, xe, ẋe)xe(t), (3.31)

where Fe ∈ �, xe ∈ �, ke ∈ �, and be ∈ � are the virtual environment force,

virtual tool position, virtual environment stiffness, and virtual environment damping,

respectively, expressed in 1-DOF.

The 1-DOF virtual environment dynamics may be expressed in a parameterized form

as,

Fe = ϕT
e θe (3.32)

where ϕe = [xe ẋe]
T and θe = [ke be]

T .

Alternative Virtual Environment Model

For some virtual environments it may be more accurate to include a force ‘offset’

term, such as

Fe = ce(t, xe, ẋe) + ke(t, xe, ẋe)xe + be(t, xe, ẋe)ẋe, (3.33)

where ce ∈ � is the force offset. This model expresses the dynamics as a tangent line

to the actual nonlinear force function.

This virtual environment force model may also be parameterized as in (3.32), where

ϕe = [xe ẋe 1]T and θe = [ke be ce]
T .

Continuous Approximation of Piecewise Stiffness

Human soft tissue exhibits a nonlinear stiffness, so that in some cases the restoring

force can be described by a piecewise linear function of penetration depth [43]. For

the virtual environment it would be convenient to have a continuous and continuously
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Figure 3.4: Comparison of the piecewise linear and continuous approximation of the
virtual environment force.

differentiable function that approximates this behaviour. This function will be used

to generate the virtual environment force, it will not be used in the predictor.

The desired behaviour is to have an initial stiffness (slope) ke,1, that at a penetration

depth xs transitions to a higher stiffness (slope) ke,2. The designed function is,

Fk(x) = ke,1x+ (ke,2 − ke,1)
xs

R
ln
(
1 + eR(

x
xs

−1)
)

(3.34)

where x is the penetration depth and R affects the rate of transition from one slope to

the next, with larger R values resulting in a sharper transition. Fig. 3.4 shows a com-

parison of the force generated by (3.34) compared to the piecewise linear equivalent

for ke,1 = 200 N/m, ke,1 = 2000 N/m, xs = 0.00284 m, and R = 20.

3.4 Performance Metrics

The performance of a haptic system is described by transparency. Since in the ideal

case the virtual environment would output a trajectory that would be perfectly trac-

ked by the haptic device, the transparency of the haptic system will be measured by

comparing the actual trajectory tracked by the haptic device to the ideal trajectory.

In a real system the ideal trajectory would not be available, but it is available in the

test system.
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The total error is defined by (3.35), where x is the position of the end-effector of the

haptic device and xe is the ideal position of the virtual tool.

etot =

[
x− xe

ẋ− ẋe

]
. (3.35)

An increase in the total error corresponds to a decrease in transparency, and vice-

versa.

The effect of sampling appears as a 1/Td Hz noise in the error signal making it difficult

to visually compare two error signals. Therefore two scalar measurements of the total

error are used to describe the performance of the system. In order to determine the

effective bound on the error, the first performance metric is the maximum of the

2-norm of the total error, given in (3.36),

‖etot‖max = max
(√

eT
totetot

)
. (3.36)

In order to measure the average trend of the error, the L2 norm of the error will be

considered, as defined by (3.37),

‖etot‖L2 =

√∫ ∞

0

eT
totetotdt. (3.37)

In particular we are interested in the change in error between a system with the

predictor and a system without the predictor. Therefore in some cases the relative

error change, given by (3.38), will be considered.

Relative Error Change =
Error with prediction− Error without prediction

Error without prediction
(3.38)

3.5 Control Objectives

The control objective is to design the haptic controller and predictor such that the

following requirements are met:

1. Stability : The stability of the closed loop system must be maintained for a

passive operator, bounded virtual environment parameters, and in the presence

of computational delay and sampling in the feedback.
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2. Transparency : The haptic device must provide the human operator with im-

pedance behaviour similar to the actual feeling of interacting with the virtual

environment via a surgical tool. In other words, the controller will cancel the

haptic device dynamics and display the virtual environment dynamics instead.

The transparency of the haptic system can be guaranteed if the end-effector of the

haptic device asymptotically tracks the trajectory of the simulated surgical instru-

ment. The stability of the system can be guaranteed if the stability of the virtual

environment is guaranteed for any operator force input. Therefore this project addres-

ses two problems: asymptotic tracking of a reference signal generated by the virtual

environment and stability of the virtual environment in the presence of delays.

The transparency condition is considered met if either ‖etot‖max or ‖etot‖L2 is lower for

a system with the predictor than for a system without the predictor. The performance

improvement is considered significant if (3.38) exceeds 7%, i.e. the Weber fraction

for force detection [43].



Chapter 4

Controller and Predictor Design

4.1 Nonlinear PD Controller Design for Known Parameters

The haptic device is controlled by a nonlinear controller, designed so that the haptic

device end-effector tracks a desired trajectory. The controller will be designed in the

joint space since the Phantom Omni® uses joint torque as its control input. The

Phantom Omni® measures the joint positions through encoders; the velocity can be

calculated through a numerical difference method. The acceleration is unmeasurable

since the numerical difference method amplifies the signal noise. Therefore the refe-

rence signal is chosen to avoid the use of q̈. The selected reference signal is defined

as

q̇r = q̇e − Λ(q − qe), (4.1)

where qe and q̇e are the desired joint position and velocity calculated from the VE

trajectory using inverse kinematics, and Λ > 0 is a control gain matrix.

The controller is designed as

τ c = ϕr(q, q̇, q̇r, q̈r)θ −Kdδ − JTF h, (4.2)

where Kd > 0 is a control gain matrix and δ is the controller error defined as

δ = q̇ − q̇r. (4.3)

The closed-loop dynamics given in (4.4) can be derived by inserting (4.2) into (3.15)

and using (3.27).

H(q)q̈ + (C(q, q̇) + B)q̇ + τ g(q) = ϕr(q, q̇, q̇r, q̈r)θ −Kdδ − JTF h + JTF h,

H(q)q̈ + (C(q, q̇) + B)q̇ + τ g(q) = H(q)q̈r + (C(q, q̇) + B)q̇r + τ g(q)−Kdδ,

H(q)δ̇ + (C(q, q̇) + B +Kd) δ = 0. (4.4)

29
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Stability Analysis

The stability of the closed loop system can be shown by defining the following Lya-

punov function:

V =
1

2
δTHδ > 0 ∀δ �= 0. (4.5)

Taking the derivative of (4.5) and using the symmetry of H leads to

V̇ =
1

2

(
δTHδ̇ + δ̇

T
Hδ + δT Ḣδ

)
,

= δTHδ̇ +
1

2
δT Ḣδ.

Rearranging (4.4) for Hδ̇ and substituting into the previous equation,

V̇ = −δT (C +B +Kd) δ +
1

2
δT Ḣδ,

=
1

2
δT
(
Ḣ − 2C

)
δ − δT (Kd +B)δ.

Finally, using Property 2, and given that Kd and B are positive definite results in

V̇ = −δT (Kd +B)δ < 0, ∀δ �= 0. (4.6)

Considering (4.5) and (4.6) and applying Barbalat’s Lemma [41], it is shown that the

closed-loop system regulates the controller error δ to zero and the control gain Kd

affects the rate of convergence.

4.2 Nonlinear Adaptive Controller Design

During experimental testing it was found that the offline measurements of the

Phantom Omni® dynamic parameters are not sufficiently accurate to provide a stable

controller. An adaptive controller was designed to estimate the parameters online.

The adaptive controller has a similar structure to the controller in (4.2), except that

the estimated parameter vector, θ̂, is used. The adaptive controller is given by (4.7).

τ c = ϕr(q, q̇, q̇r, q̈r)θ̂ −Kdδ − JTF h. (4.7)

The adaptive controller uses an adaptation law to provide an online estimate of the

haptic device’s dynamic parameters. The adaptation law is given in (4.8), where

Γ > 0 is the symmetric adaptation gain matrix,
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˙̂
θ = −ΓϕT

r δ. (4.8)

The closed-loop dynamics change accordingly, as

H(q)δ̇ + (C(q, q̇) +Kd) δ = ϕr(q, q̇, q̇r, q̈r)θ̃, (4.9)

where θ̃ = θ̂ − θ is the parameter adaptation error.

Stability Analysis

The stability of the closed loop system can be shown by defining the following Lya-

punov function, similar to (4.5),

V =
1

2
δTHδ +

1

2
θ̃
T
Γ−1θ̃ > 0, ∀δ �= 0, θ̃ �= 0. (4.10)

Taking the derivative of (4.10) leads to

V̇ = δTHδ̇ +
1

2
δT Ḣδ +

1

2
( ˙̃θTΓ−1θ̃ + θ̃

T
Γ−1 ˙̃θ).

Using the property that Γ, and therefore Γ−1, is symmetric,

V̇ = δTHδ̇ +
1

2
δT Ḣδ + θ̃

T
Γ−1 ˙̃θ.

Rearranging (4.9) and substituting into the previous equation, and noting that since

θ is constant, ˙̃θ =
˙̂
θ,

V̇ = −δT (C +Kd) δ +
1

2
δT Ḣδ + δTϕrθ̃ + θ̃

T
Γ−1 ˙̂θ.

Substituting (4.8) into the previous equation, as well as rearranging and applying

Property 2 as before,

V̇ = −δTKdδ + δTϕrθ̃ − θ̃
T
ϕT

r δ,

V̇ = −δTKdδ < 0, ∀δ �= 0. (4.11)

The result is the same as in the previous section: considering (4.10) and (4.11), and

applying Barbalat’s Lemma [41], it is shown that the controller error converges to

zero.
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Table 4.1: Cases considered in predictor design
Case Environment Type Sampled? Known Parameters?

1 Linear No Yes
2 Linear Yes Yes
3 Linear Yes No
4 Nonlinear Yes No

4.3 Virtual Environment Predictor Design

A predictor is proposed in order to compensate for the computational delay and

sampling of the environment. The predictor will allow the haptic device to track a

continuous trajectory approximating the true trajectory of the environment without

delay or sampling. The predictor will be designed for four cases, outlined in Table

4.1. All four cases involve time delay, while only the last three involve the sampling

of the feedback signal. The first two cases are intended to illustrate the design of

the predictor, while the last two cases demonstrate the robustness of the predictor to

handle unknown parameters and nonlinearities.

4.3.1 Known Linear Virtual Environment with Delay

From this point onward all signals lacking (t) can be assumed to occur at time t, such

as xe = xe(t). The subscript d will be used to indicate a signal delayed by Td, such

as xe,d = xe(t − Td). Let x̂e and x̃e = x̂e − xe represent the predicted tool position

and the difference between the predicted and actual tool position, respectively. The

prediction error is defined as e = [x̃e
˙̃xe]

T .

The predictor is defined in (4.12) and (4.13), with predictor gain L ∈ �1×2.

mt
¨̂xe + bt ˙̂xe + ktx̂e = Fh − F̂e + Led, (4.12)

F̂e = be ˙̂xe + kex̂e. (4.13)

Subtracting a single degree of freedom expression of (3.29) from (4.12) results in the

error dynamics as

mt
¨̃xe + bt ˙̃xe + ktx̃e = Fe − F̂e + Led. (4.14)

Substituting (3.31) and (4.13) into (4.14) and rearranging, we have

mt
¨̃xe + (bt + be) ˙̃xe + (kt + ke)x̃e = Led. (4.15)
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The state space representation of the error dynamics is given in (4.16).

ė =

[
0 1

−kt+ke
mt

− b+be
mt

]
e+

[
0

1
mt

]
Led = Ae+BLed. (4.16)

Theorem 2. For the given nonzero scalars a2, a3, and Td, if there exists symmetric

positive definite matrices P̄ , Q̄, and R̄, as well as matrices N̄1, N̄2, N̄3, and Y , and

a non-singular matrix X such that⎡
⎢⎢⎢⎢⎢⎣

Φ11 ΦT
21 ΦT

31 TdN̄1

Φ21 Φ22 ΦT
32 TdN̄2

Φ31 Φ32 Φ33 TdN̄3

TdN̄
T
1 TdN̄

T
2 TdN̄

T
3 −TdR̄

⎤
⎥⎥⎥⎥⎥⎦ < 0, (4.17)

where

Φ11 = Q̄+ N̄1 + N̄T
1 − AXT −XAT ,

Φ21 = N̄2 − a2AX
T − N̄T

1 − Y TBT ,

Φ22 = −Q̄− N̄2 − N̄T
2 − a2BY − a2Y

TBT ,

Φ31 = P̄ + N̄3 − a3AX
T +X,

Φ32 = −N̄3 − a3BY + a2X,

Φ33 = a3X
T + a3X + TdR̄,

then the system given in (4.16) is stable for L = Y (XT )−1 and the error, e, is

regulated to zero.

Proof. A proof of stability for a similar system is given in [25]. Selecting the Lya-

punov function given in (4.18), where P,R,Q ∈ �2×2 are symmetric positive definite

matrices.

V = eTPe+

∫ t

t−Td

eT (s)Qe(s)ds+

∫ 0

−Td

∫ t

t+δ

ėT (s)Rė(s)dsdδ ≥ 0. (4.18)

Taking the time derivative of (4.18) results in (4.19).

V̇ = ėTPe+ eTP ė+ eTQe− eT
dQed + Tdė

TRė−
∫ t

t−Td

ėT (s)Rė(s)ds. (4.19)
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Since the control gain does not appear in (4.19), it will be included using the zero

equations (4.20) and (4.21), where Mi, Ni ∈ �2×2.

ψ0 = 2
[
eTN1 + eT

dN2 + ėTN3

] [
e− ed −

∫ t

t−Td

ė(s)ds

]
, (4.20)

ψ1 = 2
[
eTM1 + eT

dM2 + ėTM3

]
[ė− Ae− BLed] . (4.21)

To simplify (4.20) and (4.21), defining the augmented state variable z =
[
e ed ė

]T
and the following matrices:

N =

⎡
⎢⎢⎣
N1

N2

N3

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎣
M1

M2

M3

⎤
⎥⎥⎦ .

Now adding (4.20) and (4.21) to (4.19).

V̇ = ėTPe+ eTP ė+ eTQe− eT
dQed + Tdė

TRė−
∫ t

t−Td

ėT (s)Rė(s)ds

+ 2zTN

[
e− ed −

∫ t

t−Td

ė(s)ds

]
+ 2zTM [ė− Ae− BLed]

The inequality (4.22) can be used to cancel the integral term.

− 2zN

∫ t

t−Td

ė(s)ds ≤ Tdz
TNR−1NTz +

∫ t

t−Td

ėT (s)Rė(s)ds. (4.22)

This results in the inequality given in (4.23).

V̇ ≤ zT

⎛
⎜⎜⎝
⎡
⎢⎢⎣
Ξ11 ΞT

21 ΞT
31

Ξ21 Ξ22 ΞT
32

Ξ31 Ξ32 Ξ33

⎤
⎥⎥⎦+ TdNR−1NT

⎞
⎟⎟⎠ z = zTΨz (4.23)

Ξ11 = Q+N1 +NT
1 −M1A− ATMT

1

Ξ21 = N2 −M2A−NT
1 − LTBTMT

1

Ξ22 = −Q−N2 −NT
2 −M2BL− LTBTMT

2

Ξ31 = P +N3 −M3A+MT
1

Ξ32 = −N3 −M3BL+MT
2

Ξ33 = M3 +MT
3 + TdR
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If Ψ < 0 then V̇ < 0, ∀z �= 0. Using the Schur complement, Ψ < 0 is equivalent to

the following matrix inequality,⎡
⎢⎢⎢⎢⎢⎣

Ξ11 ΞT
21 ΞT

31 TdN1

Ξ21 Ξ22 ΞT
32 TdN2

Ξ31 Ξ32 Ξ33 TdN3

TdN
T
1 TdN

T
2 TdN

T
3 −TdR

⎤
⎥⎥⎥⎥⎥⎦ < 0 (4.24)

The matrix inequality given in (4.24) is nonconvex with respect to the decision vari-

ables M1, M2, M3, and L, therefore it must be linearized to solve using LMI techni-

ques. First M2 and M3 are expressed as scalar multiples of M1 (i.e. M2 = a2M1

and M3 = a3M1, where ai ∈ �). Second, (4.24) is pre- and post-multiplied by

W = diag(X,X,X,X) and W T , respectively, where X = M−1
1 . Third, let Y = LXT

and (̄·) = X(·)XT . The final LMI is given by (4.17).

If the LMI given by (4.17) is satisfied, then V̇ < 0, ∀z �= 0. Therefore, considering

(4.17), the system is stable.

4.3.2 Known Linear Virtual Environment with Delay and Sampling

By sampling the environment position signal, the continuous signal xe,d is no longer

available to the predictor. Instead, the predictor uses the sampled signal, resulting

from a zero-order hold (ZOH) applied to xe,d. The subscript z will be used to denote

signals that have been sampled and then run through a ZOH. In order to reduce

chattering in the feedback error signal, the estimated states are sampled and delayed

before being subtracted with xe,zd. Therefore the feedback error is

ezd =

[
x̂e,zd − xe,zd

ˆ̇xe,zd − ẋe,zd

]
.

The new predictor is given in (4.25) and (4.26).

mt
¨̂xe + bt ˙̂xe + ktx̂e = Fh − F̂e + Lezd, (4.25)

F̂e = be ˙̂xe + kex̂e. (4.26)

The error dynamics of this new predictor are similar to (4.15), with an additional

bounded disturbance term ΔT so that ez = e+ΔT :

ΔT =

[
x̂e,z − x̂e

˙̂xe,z − ˙̂xe

]
−
[
xe,z − xe

ẋe,z − ẋe

]
. (4.27)
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Remark. Since the sampled states are constant for the sampling interval from t to

t + Td, the disturbance due to sampling is bounded by the maximum rate of change

of the actual and predicted states as

|ΔT | ≤ Td

[
|ẋe|max + | ˙̂xe|max

|ẍe|max + |¨̂xe|max

]
, (4.28)

where |·| represents the absolute value applied to each element

Therefore the new error dynamics are expressed in (4.29),

mt
¨̃xe + (bt + be) ˙̃xe + (kt + ke)x̃e = Led − LΔT,d. (4.29)

The state space representation of the error dynamics is given in (4.30),

ė = Ae+BLed +BLΔT,d. (4.30)

Theorem 3. For the given nonzero scalars a2, a3, γ, and Td, if there exists symmetric

positive definite matrices P̄ , Q̄, R̄, and S̄, as well as matrices N̄1, N̄2, N̄3, and Y ,

and a non-singular matrix X such that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 ΦT
21 ΦT

31 TdN̄1 γI

Φ21 Φ22 ΦT
32 TdN̄2 γa2I

Φ31 Φ32 Φ33 TdN̄3 γa3I

TdN̄
T
1 TdN̄

T
2 TdN̄

T
3 −TdR̄ 0

γI γa2I γa3I 0 −γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.31)

where

Φ11 = Q̄+ N̄1 + N̄T
1 − AXT −XAT + S̄,

Φ21 = N̄2 − a2AX
T − N̄T

1 − Y TBT ,

Φ22 = −Q̄− N̄2 − N̄T
2 − a2BY − a2Y

TBT ,

Φ31 = P̄ + N̄3 − a3AX
T +X,

Φ32 = −N̄3 − a3BY + a2X,

Φ33 = a3X
T + a3X + TdR̄,

then the system given in (4.30) is stable for L = Y (XT )−1 and the error is bounded

by

‖e‖2 ≤ γ−1λmax(L
TBTBL)

λmin(S)
‖ΔT‖2. (4.32)



37

Proof. The derivation of the Lyapunov function and its derivative follows the same

procedure as the proof for Theorem 2, with the only differences being the addition of

the disturbance term to ψ1, and the addition of a third zero function ψ2.

ψ1 = 2zTM [ė− Ae− BLed − BLΔT,d]

ψ2 = eTSe− eTSe S = ST > 0

The disturbance can be isolated using the inequality given by (4.33), where the pa-

rameter γ ∈ �+ specifies the disturbance rejection.

− 2zTMBLΔT,d ≤ γzTMMTz + γ−1ΔT
T,dL

TBTBLΔT,d (4.33)

These changes result in the following inequality for V̇ , where the elements of Ξ are

the same as in the proof of Theorem 2, with the exception of Ξ11.

V̇ ≤ zT
(
Ξ + TdNR−1NT + γMMT

)
z + γ−1ΔT

T,dL
TBTBLΔT,d − eTSe (4.34)

Ξ11 = Q+N1 +NT
1 −M1A− ATMT

1 + S

Using the Shur complement, Ψ = Ξ+ TdNR−1NT + γMMT < 0 is equivalent to the

matrix inequality expressed in (4.35).⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 ΞT
21 ΞT

31 TdN1 γM1

Ξ21 Ξ22 ΞT
32 TdN2 γM2

Ξ31 Ξ32 Ξ33 TdN3 γM3

TdN
T
1 TdN

T
2 TdN

T
3 −TdR 0

γMT
1 γMT

2 γMT
3 0 −γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (4.35)

Linearizing using the same method as in the previous section, but extending the

definition of W to W = diag(X,X,X,X, I), results in the LMI expressed in (4.31).

The elements of Φ are the same as in the previous section, with the exception of Φ11.

If (4.31) is satisfied, then inequality (4.36) holds.

V̇ ≤ γ−1ΔT
T,dL

TBTBLΔT,d − eTSe (4.36)

Therefore, V̇ is only guaranteed to be less than zero if

eTSe ≥ γ−1ΔT
T,dL

TBTBLΔT,d. (4.37)
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Therefore the magnitude of the error must be bounded by

‖e‖2 ≤ γ−1λmax(L
TBTBL)

λmin(S)
‖ΔT‖2,

where λmax(·) and λmin(·) are the maximum and minimum eigenvalues of a matrix,

respectively. Therefore, if the environment state signal is stable, the predictor system

is stable.

4.3.3 Unknown Linear Virtual Environment with Delay and Sampling

This case differs from the previous case in that the parameters of the virtual environ-

ment are unknown but their bounds are known. The virtual environment force given

in (3.31) can be expressed parametrically by (3.32).

Assumption: The boundedness of the parameter variation is known. This is expressed

as

θe ∈ Ωθe � {θe : θe,min ≤ θe ≤ θe,max} (4.38)

where θe,min and θe,max are known constant vectors.

The predictor in this case differs from Case 2 in that the estimated virtual environment

force is now calculated using an estimate of the virtual environment parameters θ̂e.

F̂e = ϕ̂T
e θ̂e(t). (4.39)

This changes the error dynamics to

mt
¨̃xe(t) + bt ˙̃xe(t) + ktx̃e(t) = ϕT

e θe − ϕ̂T
e θ̂e + Led − LΔT,d. (4.40)

By adding the zero expression ϕ̂T
e θe − ϕ̂T

e θe, (4.40) can be expressed as

mt
¨̃xe(t) + (bt + be) ˙̃xe(t) + (kt + ke)x̃e(t) = L(ed −ΔT,d)− ϕ̂T

e θ̃e, (4.41)

where θ̃e = θ̂e − θe.

The error dynamics can be expressed in a state space form. The parameter estimation

error can be contained in a second disturbance term: Δθ = ϕ̂T
e θ̃e. The resulting error

dynamics are then,

ė = Ae+BLed − B(LΔT,d −Δθ). (4.42)

Remark : The boundedness of the disturbance term Δθ is dependent on the bounded-

ness of ϕ̂ and θ̃e. We can determine the bounds of ϕ̂e based on the constraints of the
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workspace, but the bounds of θ̃e cannot be determined without an assumption. If

we assume that the estimate θ̂e is constrained to the known parameter range Ωθe (a

reasonable assumption, see the next subsection) then |θ̃e| ≤ θe,max−θe,min. Therefore

the bounds of Δθ can be estimated by

‖Δθ‖ ≤ |ϕe|max (θe,max − θe,min)

The predictor gain may be designed using Theorem 3, except that the disturbance

term LΔT,d must be replaced by Δtot = LΔT,d + Δθ. This means the boundary on

the prediction error will be larger when Δθ �= 0. Also, since the actual environmental

parameters are no longer known, A cannot be used in the predictor gain design.

Instead, the gain must be designed for a nominal value of environment parameters

θe,0. Once the gain is designed for the nominal set of virtual environment parameters

it must be verified that it results in a stable system for any set of parameters in the

parameter range. The system is guaranteed to be stable if there is a solution to (4.31)

for each set of possible virtual environment parameters on a sufficiently dense grid

over the range of θe for a fixed value of L.

Projection Type Adaptation Law Design

The estimated parameter vector will be generated online using a projection type least

square adaptation law. Let the adaptation error be defined by (4.43),

ε = ϕT
e,zdθ̂e − Fe,zd. (4.43)

where ϕe,zd = [xe,zd ẋe,zd]
T . Since Fe,zd = ϕT

e,zdθe, the adaptation error can be

expressed as

ε = ϕT
e,zdθ̃e.

The parameter estimate is updated by

˙̂
θe = Projθe (−Γeζe) , θ̂e(0) ∈ Ωθe , (4.44)

where Γe is a positive definite matrix and ζe is an adaptation function, forming a

recursive least square adaptation law given by

Γ̇e =

⎧⎨
⎩
αΓe − 1

1 + νϕT
e Γeϕe

Γeϕeϕ
T
e Γe, if λmax(Γe(t)) ≤ ρM ,

0 otherwise,
(4.45)
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and,

ζe =
1

1 + νϕT
e Γeϕe

ϕeε, (4.46)

where α ≥ 0 is the forgetting factor, ν ≥ 0, and ρM is a predetermined upper limit

on Γe to prevent estimator windup.

The projection mapping ensures that the parameter estimate given by the adaptation

law remains within the known boundary [44], and is defined by

Projθ̂e (•) =

⎧⎪⎪⎨
⎪⎪⎩

•, if θ̂e ∈ Ω̊θe or nT
θ̂e
• ≤ 0,(

I − Γe

nθ̂e
nT
θ̂e

nT
θ̂e
Γenθ̂e

)
• if θ̂e ∈ ∂Ωθe and nT

θ̂e
• > 0,

(4.47)

where Ω̊θe is the interior of Ωθe , ∂Ωθe is the boundary of Ωθe , and nθ̂e
is the outward

unit normal vector of the boundary at θ̂e.

Lemma 4. [44] When the adaptation law (4.44) is used with the projection mapping

(4.47) the parameter estimate is always within the known boundary. Also, if the

following persistent excitation condition is met
∫ t+T1

t

ϕT
e,zdϕe,zddt > βI, ∀t > t0, (4.48)

for some T1 > 0 and β > 0, then θ̂e converges to θe.

4.4 Linear Parameter Varying System Design

For a nonlinear virtual environment the dynamics may be approximated by a linear

time-varying system given in (3.31).

Although virtual environment parameters are time-varying, Theorem 3 could still be

used to design the predictor gain just like in the unknown parameters case. However,

rather than simply finding a solution to (4.31) for each point in the parameter range

for a given L to guarantee stability, instead a single set of decision variables must be

found which satisfies (4.31) over the entire parameter range [26].

Clearly finding a single value for L and the other decision variables for the entire

parameter range is an onerous requirement. It would be advantageous to define a

predictor gain and set of decision variables that adjust according to the current set of
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parameters. To design such a predictor, the VE and predictor system can be analyzed

using a Linear Parameter Varying (LPV) system approach [26].

The error dynamics are the same as (4.40), except that both θe and θ̂e are time-

varying, and L is now a function of the scheduling variables ρ = [ρ1 ρ2]
T =

[k̂e(t) b̂e(t)]
T . Adding the zero expression ϕT

e θe −ϕT
e θe to (4.40) results in

ė = Âe+BL(ρ)ed − B(L(ρ)ΔT,d −ϕT
e θ̃e), (4.49)

where Â is the state matrix containing estimates of the virtual environment parame-

ters. Â can be expressed using an LPV approach as

Â(ρ) =

[
0 1

−kt+ρ1
mt

− bt+ρ2
mt

]
.

The structure of this particular LPV system has the useful property that the para-

meter dependence can be expressed as a linear combination of matrices:

Â(ρ) = A0 + A1ρ1 + A2ρ2, (4.50)

where

A0 =

[
0 1

− kt
mt

− bt
mt

]
, A1 =

[
0 0

− 1
mt

0

]
, A2 =

[
0 0

0 − 1
mt

]
.

Theorem 5. For the given nonzero scalars a2, a3, γ, and Td, if there exists symmetric

positive definite matrices P̄ (ρ), Q̄, R̄, and S̄, as well as matrices N̄1, N̄2, N̄3, and

Y (ρ), and a non-singular matrix X such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 ΦT
21 ΦT

31 TdN̄1 γI

Φ21 Φ22 ΦT
32 TdN̄2 γa2I

Φ31 Φ32 Φ33 TdN̄3 γa3I

TdN̄
T
1 TdN̄

T
2 TdN̄

T
3 −TdR̄ 0

γI γa2I γa3I 0 −γI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.51)



42

where

Φ11 = Q̄+ N̄1 + N̄T
1 − Â(ρ)XT −XÂ(ρ)T + S̄ +

∑
±|ρ̇i|max

∂P̄ (ρ)

∂ρi
,

Φ21 = N̄2 − a2Â(ρ)X
T − N̄T

1 − Y (ρ)TBT ,

Φ22 = −Q̄− N̄2 − N̄T
2 − a2BY (ρ)− a2Y (ρ)TBT ,

Φ31 = P̄ (ρ) + N̄3 − a3Â(ρ)X
T +X,

Φ32 = −N̄3 − a3BY (ρ) + a2X,

Φ33 = a3X
T + a3X + TdR̄,

over the parameter range ρmin ≤ ρ ≤ ρmax, then the system given in (4.49) is stable

for L(ρ) = Y (ρ)(XT )−1 and the error is bounded by

‖e‖2 ≤ γ−1

(
λmax(L(ρ)

TBTBL(ρ))

λmin(S)
‖ΔT‖2 + BTB

λmin(S)
‖Δθ‖2

)
. (4.52)

Proof. A new Lyapunov function can be constructed, similar to (4.18), except that

the matrix P is now a function of the parameters, as P (ρ).

V = eTP (ρ)e+

∫ t

t−Td

eT (s)Qe(s)ds+

∫ 0

−Td

∫ t

t+δ

ėT (s)Rė(s)dsdδ. (4.53)

The derivation of the LMI proceeds as in the proof for Theorem 3, except that an

additional term appears during the differentiation of V due to the inclusion of the

time-varying parameters ρ in P (ρ).

d

dt

(
eTP (ρ)e

)
= ėTP (ρ)e+ eT

(
dP (ρ)

dt
e+ P (ρ)ė

)

= ėTP (ρ)e+ eTP (ρ)ė+ eT
∑

ρ̇i
∂P (ρ)

∂ρi
e.

Continuing the analysis results in a matrix inequality similar to (4.35), except that P

is replaced by P (ρ) and the term Ξ11 includes the rate of change of P (ρ). Performing

the same linearizing operations as before results in the final LMI given by (4.51).

Only the extreme values of ρ̇ (i.e. |ρ̇i|max) need to be tested since the LMI is affine

in ρ̇.

The error bound is derived by the same process as in the proof for Theorem 3.
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4.4.1 Gain-Scheduled Predictor Feedback Gain Design

In order to obtain a solution to (4.51), the dependence of P and Y on ρ must be

specified. Restricting P and Y to a specific function of ρ reduces the potential

solutions to the LMI, but is necessary to allow it to be solved. A linear function

of the elements of ρ is selected since this mirrors the state matrix A(ρ) given in

(4.50) [26].

P (ρ) = P0 + P1ρ1 + P2ρ2, Y (ρ) = Y0 + Y1ρ1 + Y2ρ2

where Pi = P T
i . Note that although P (ρ) > 0, Pi does not need to be positive

definite. Now ∂P (ρ)
∂ρi

= Pi.

The predictor feedback gain designed as follows:

1. Select nominal values of ρ = ρ0 and |ρ̇|max = ρ̇0 and solve the LMI for Y0, Y1,

and Y2. Calculate the predictor gain as:

L(ρ) = (Y0 + Y1ρ1 + Y2ρ2)(X
T )−1

2. Using the decision variables solved from Step 1, test (4.51) on a grid of points

over the range of ρ and all extreme values of ρ̇ in order to determine the range

of ρ and ρ̇ over which the system is stable. For a number of parameters nρ with

n test points per parameter, a total of (2nρn)nρ LMIs must be tested. When

testing the LMIs each instance of Y (ρ) is replaced by L(ρ)XT since L is now

known. The system stability is only guaranteed for parameter values where

(4.51) holds.

3. If the stability range found in Step 2 is insufficient, select new values of ρ0 and

ρ̇0 and return to Step 1. It is also possible to adjust the results by tuning a2,

a3, and γ.



Chapter 5

Experimental Setup

This chapter describes the preliminary work needed to set up a full-scale test of the

haptic control algorithm. This involves calibrating the Phantom Omni®, selecting

a force sensor, designing and building a custom force sensor mount, and calibrating

the force sensor.

5.1 Control Software

The control software used to implement the control algorithm is QUARC 2.4 by

Quanser, running in MATLAB R2013b (32-bit). QUARC allows real-time control to

be performed using MATLAB and Simulink. Simulink is used to design the control

algorithm, then QUARC compiles the Simulink model to create an executable that

is capable of running in real-time at an update rate of up to 1000 Hz.

QUARC also contains a library of custom Simulink blocks used to communicate with

a variety of hardware. This includes a block for communicating with the Phantom

Omni®. The block allows inputs in either the joint space (torque input) or the task

space (force input). The block can output either the joint angular positions or the

end-effector position, as well as the end-effector gimbal angles. The block’s internal

software is not documented, therefore custom kinematics software is used instead of

the unknown kinematics software of the block. The block is set to accept a torque

input and output the joint angles.

5.2 Hardware: The Phantom Omni® Haptic Device

Fig. 5.1 shows the Phantom Omni® haptic device used to test the predictor experi-

mentally. The Phantom Omni® connects to the computer via a Firewire connector.

The joint position encoder resolution is approximately 4× 10−4 rad. In order to use

the Phantom Omni® in the control algorithm, some adjustments had to be made.
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Z

X

Figure 5.1: The Phantom Omni® haptic device with a custom force sensor mount.

5.2.1 Joint Angle Conversion

The measured joint angle outputs from the Phantom Omni® QUARC block do not

match the conventions used in the kinematic model of the device. The conversion

from the angle output qOmni to the model joint variable q is given by

q =

⎡
⎢⎢⎣
−1 0 0

0 1 0

0 −1 1

⎤
⎥⎥⎦ qOmni −

⎡
⎢⎢⎣
0

0

π
2

⎤
⎥⎥⎦ . (5.1)

The measured gimbal angles from the Phantom Omni® end-effector (φOmni) can be

converted to a standard roll-pitch-yaw convention using (5.2),⎡
⎢⎢⎣
ψ

ϑ

φ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦φOmni, (5.2)

where φ, ϑ, and ψ are the roll, pitch, and yaw of the end-effector, respectively.

5.2.2 Joint Velocity Analysis

The Phantom Omni® is not capable of measuring the joint angular velocity directly,

therefore it must be calculated from the derivative of the joint positions. Since the
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Figure 5.2: Plot of the unfiltered and filtered velocity signal calculated from position

derivative is being calculated in discrete time it introduces significant noise into the

system. This noise is reduced by using a low-pass filter with a cutoff frequency of 4

Hz running at an update rate of 1000 Hz. A cutoff frequency of 4 Hz was selected as

the best tradeoff between noise reduction and phase lag. The filter has the following

transfer function,

G(s) =
s

0.0398s+ 1
. (5.3)

Fig. 5.2 shows the calculated velocity signal before and after applying the filter. The

filter leads to greatly reduced chattering in the signal, while creating a delay of less

than 50 ms in the velocity signal.

5.2.3 Position Limits

Due to the mechanical construction of the Phantom Omni® there are physical limits

to the motion of each joint. Table 5.1 shows the limits of each of the actuated joints.

Given that the limits should be avoided, the Omni is prevented from applying torque

toward the joint limit when it is within 0.1 rad of the limit.

There is also a non-constant constraint. Since the third joint is actuated via cables

that run from the base of the Phantom Omni®, there is a constraint on the sum of

the angles of joints 2 and 3, given by (5.4).
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Table 5.1: Mechanical properties of the Phantom Omni® joints
Position Limits (rad)

Joint Minimum Maximum Torque Limit (N·m) Static Friction (N·m)
1 −π

3
π
3

0.30 -
2 0 1.79 0.29 0.065
3 -2.45 -0.25 0.20 0.028

q2 + q3 ≤ 0.214 rad. (5.4)

Also, in order to prevent the end-effector from colliding with the base, the position

of the end effector should be constrained to the region√
x2 + y2 ≥ 0.12 m.

Finally, although not particularly important for safety, it is important to consider

before performing inverse kinematics calculations that the position of the end-effector

is constrained within the sphere described by√
x2 + y2 + z2 ≤ 0.26 m.

5.2.4 Torque Limits

According to the Phantom Omni® documentation, the device can exert a maximum

force of Fmax = 3.3 N when the links are in an orthogonal position. Therefore,

a conservative estimate of the maximum torque each joint can apply would be to

multiply the maximum force by the longest individual link length (l2 in this case).

τmax ≤ l2Fmax ≈ 0.446 N ·m.

However, measurements taken using the force sensor (see Section 5.3 for the force

sensor setup) show that the actual hardware torque limit is much lower. Each joint

was tested by placing the force sensor perpendicular to the end of the link and sending

a ramp input to the joint. The force sensor measured the actual force applied to the

end of the link, which is easily converted to a joint torque. The setup for testing

Joint 2 is shown in Fig. 5.3. An example of the measured output is shown in Fig.

5.4. Although the commanded torque increased linearly, the torque output had an

offset and eventually stopped increasing. The torque limits for all three joints are

summarized in Table 5.1.
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Figure 5.3: Experimental setup for measuring the output torque of Joint 2 of the
Phantom Omni®.
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Figure 5.4: Measured torque output of Joint 3 of the Phantom Omni®
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In order to ensure that the device is not damaged during testing, the applied torque

τ is constrained to be less than the maximum exert-able torque by a safety factor:

|τ | ≤ τallow =
τmax

SFτ

The safety factor was set to SFτ = 1.3.

5.2.5 Torque Conversion

The slope of the measured torque in Fig. 5.4 does not match the slope of the com-

manded torque, therefore a conversion between the commanded and actual output

torque is necessary. Applying a linear regression to the data measured during the

torque limit testing results in the conversion matrix as,

τ c =

⎡
⎢⎢⎣
−1.0 0 0

0 1.0 0

0 0 1.43

⎤
⎥⎥⎦ τ command. (5.5)

5.2.6 Static Friction

The Phantom Omni® joints experience significant static friction. A series of incre-

asing and decreasing ramp inputs are applied to the joints to generate a hysteresis

loop. The results for Joint 2 are shown in Fig. 5.5. The static friction appears as the

horizontal section of the plot, where the commanded torque changes but the measu-

red torque does not. The static friction of each joint is given in Table 5.1, except for

the static friction of Joint 1, which was not measured.

5.2.7 Adaptive Controller Tuning

The adaptive controller (4.7) was tuned experimentally. The Phantom Omni® was

commanded to track a sinusoidal reference trajectory expressed by,

qd =

⎡
⎢⎢⎣

π
8
cos (0.6πt)

π
7
cos (0.4πt) + 0.1

π
10
cos (0.46πt)

⎤
⎥⎥⎦+ q(0) rad,

and the control gains were tuned to minimize the joint tracking error q − qd while

maintaining stability. The acceptable position error is less than 0.175 rad (10 deg)

for each joint. The final control gains are given in (5.6),



50

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

Commanded Torque [N*m]

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
M

ea
su

re
d 

T
or

qu
e 

[N
*m

]

Figure 5.5: Measured versus commanded torque for Joint 2 of the Phantom Omni®
for a series of increasing and decreasing ramp inputs.

Kd =

⎡
⎢⎢⎣
0.4 0 0

0 0.28 0

0 0 0.10

⎤
⎥⎥⎦ Λ =

⎡
⎢⎢⎣
2.8 0 0

0 3.0 0

0 0 1.5

⎤
⎥⎥⎦ , (5.6)

and the parameter adaptation gain matrix is

Γ = diag (0.01, 0.002, 0.002, 0.0005, 0.001, 0.001, 0.02, 0.02, 0.02) , (5.7)

where diag(•) is a diagonal matrix with the main diagonal described by ‘•’.
The resulting joint error signals are shown in Fig. 5.6. The bounds on the position

error are 0.035 rad (2.0 deg), 0.042 rad (2.4 deg), and 0.136 rad (7.8 deg) for Joint 1,

Joint 2, and Joint 3, respectively.

5.2.8 Dynamic Parameter Identification

The dynamic parameters were estimated online by the adaptation law (4.8). The

online estimates of the parameters are shown in Fig. 5.7. The parameters do not

converge to a constant set of values due to static friction and other nonlinearities not

accounted for in the controller model. An approximate set of dynamic parameters



51

0 10 20 30 40 50 60 70

Time [s]

-0.05

0

0.05

J1
 E

rr
or

 [r
ad

]

0 10 20 30 40 50 60 70

Time [s]

-0.1

0

0.1

J2
 E

rr
or

 [r
ad

]

0 10 20 30 40 50 60 70

Time [s]

-0.2

0

0.2

J3
 E

rr
or

 [r
ad

]

Figure 5.6: Phantom Omni® joint error signals for the tuned adaptive controller.
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were selected to be used as initial estimates for the adaptation law based on the

control tuning tests. The selected parameters are given in Table 5.2.

Table 5.2: Estimates of the Phantom Omni® dynamic parameters for initializing the
adaptation law.

Parameter Value Parameter Value
l2 (m) 0.135 l3 (m) 0.130
θ1 (kg·m2) 3.7× 10−3 θ2 (kg·m2) 7.0× 10−3

θ3 (kg·m2) 8.0× 10−3 θ4 (kg·m2) 0.4× 10−3

θ5 (kg·m) 9.1× 10−3 θ6 (kg·m) 5.2× 10−3

θ7 (N·m·s/rad) 0.096 θ8 (N·m·s/rad) 0.145
θ9 (N·m·s/rad) 0.055

5.3 Force Sensor Integration

The operator input force should be measured as part of the control algorithm. This

section describes the selection of a force sensor, the installation of the sensor on the

Phantom Omni®, and the integration of the sensor with the control software.

5.3.1 Sensor Selection

A 3 DOF force sensor is necessary to measure the operator force used in the controller

given by (4.8). The force sensor must have a maximum force range greater than

±3.3 N, since that is the output range of the Phantom Omni®. It must have an

accuracy of at least 0.5 N and a resolution of at least 0.1 N. It would be preferable

to have an accuracy better than 0.2 N [45], however due to budget constraints that

accuracy may not be attainable. The force sensor should also have a mass less than

or equal to 30 g, as that is approximately the mass of the Phantom Omni® stylus.

The selected sensor is the OptoForce OMD-20-FG-100N, hereafter referred to as the

OMD-20 or ‘force sensor’. The OMD-20 has a maximum force range of ±10 N in the

x and y sensor axes and a range from 50 N (tension) to -100 N (compression) in the

z axis. It has a nonlinearity of 2-5% over the full range and less than 5% crosstalk

between axes, leading to a claimed accuracy that is close to the desired accuracy. The

OMD-20 has a 0.006 N resolution in the z axis and a 0.001 N resolution in the x and

y axes, i.e. much better than desired. It has a mass of 23 g including the attached
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Figure 5.7: Phantom Omni® parameter estimation signals during the controller
tuning test.
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Table 5.3: Comparison of the desired and actual force sensor specifications
Specification Desired Actual Sensor
Max. Force Range (N) ±3.3 ±10 or −100 to +50
Accuracy (N) 0.2 ±5-10%
Resolution (N) 0.1 0.001 - 0.006
Mass (g) 30 23

cable. A comparison of the desired and actual force sensor specifications is shown in

Table 5.3.

The OMD-20 comes with a DAQ card capable of running at a 1000 Hz sample rate,

and has an internal low-pass filter. The DAQ card connects to the computer via a

USB Type A connector and can be programmed in C++, C#, and MATLAB.

Two units were purchased by the lab with serial numbers IFG0A012 and IFG0A013,

which will be abbreviated as FS012 and FS013. FS012 was used for the experimental

work.

5.3.2 Sensor Mount Design

The OMD-20 has four threaded holes on each flange to use for mounting. The

Phantom Omni® however is not designed to allow force sensors to be mounted on

its end-effector. Therefore a custom sensor mount was designed.

Fig. 5.8 shows the end-effector of the Phantom Omni®. The stylus grip shown on

the right attaches to the end-effector via a press-fit. A keyway in the stylus grip

accommodates a key on the end-effector to synchronize the rotation of the stylus grip

and an encoder inside the end-effector. The end-effector has a 1/4 inch (6.35 mm)

jack plug which is used to receive button-press signals from the two buttons on the

stylus grip.

The custom mount is designed in two parts: a base and a handle. Detailed part

drawings for the custom mount are given in Appendix C. The base connects the end-

effector to one end of the force sensor. The end of the base that connects to the

end-effector is fixed in place using a press fit, similar to the original stylus grip. The

end of the base that connects to the force sensor has a flange that matches the flanges

on either end of the force sensor. Four clearance-fit M3 screw holes allow the force

sensor to be fastened to the base. The handle attaches to the opposite side of the
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Figure 5.8: The end-effector of the Phantom Omni® with detachable stylus grip.

force sensor using a similar flange. The operator interacts with the Phantom Omni®

via the handle so that all interaction forces pass through the force sensor.

The base and handle are 3D printed out of ABS plastic. A picture of the complete

hardware setup is shown in Fig. 5.1.

5.3.3 Sensor Calibration

The sensors have been calibrated by the supplier, OptoForce. The calibration infor-

mation of FS012 is presented in Table 5.4. However the actual output is much less

accurate, therefore the force sensor must be calibrated experimentally.

Brass weights were used to apply loads to each axis individually. Loads ranging from

-5 to 5 N were applied to the X and Y axes, and loads ranging from -5 to 8 N were

applied to the Z axis, with each load condition repeated twice. A linear model was

fit to the sensor output. The experimentally derived conversion factors and the error

between the linear model and the measured output of each axis are given in Table

5.5. The recorded data and calibration curves are shown in Fig. 5.9, Fig. 5.10, and

Fig. 5.11.

There is significant cross-talk between the sensor axes. On average the cross-talk

is within 5-10% of the applied force, at maximum it is 80-90% of the applied force

(measured on the Z axis with a load applied to the X axis).

Another cause of inaccuracy is that applying loads farther from the force sensor origin

results in an increased sensor output. This effect is shown in Fig. 5.12, where the

sensor output is normalized with respect to the initial output for the load located at
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Table 5.4: Manufacturer sensitivity information for FS012
Deformation (mm) Sensitivity (Counts/N)

Fx 1.7 955.53
Fy 1.7 962.22
Fz 1.3 162.44

Table 5.5: Experimental sensitivity information for FS012
Sensitivity (Counts/N) Linear model error (N)

Fx 1087.4 0.088
Fy -1089.1 0.176
Fz 120.5 0.808
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Figure 5.9: Calibration test data for FS012’s x-axis
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Figure 5.10: Calibration test data for FS012’s y-axis

-5 0 5 10

Applied force [N]

-1000

-500

0

500

1000

1500

S
en

so
r 

ou
tp

ut
 [C

ou
nt

s]

Measured
Fit Line

Figure 5.11: Calibration test data for FS012’s z-axis
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Figure 5.12: FS012 output normalized to the initial force applied in the positive x-axis
at different distances from the axis

the origin. The relationship between the distance and the increase in applied force

was approximated linearly with a slope of am = 39.65 m−1, such that the actual force

Factual and the measured force Fmeas are related by the following:

Factual =
Fmeas

amr
,

where r is the distance from the force sensor flange. For the current force sensor

mount design, r = 0.073 m.

5.3.4 Integration with QUARC

OptoForce provides a MATLAB API for communicating with the built-in OMD-20

DAQ card. This toolbox uses object-oriented programming, where all of the com-

mands are implemented as the methods of two classes: OptoPorts and OptoDAQ.

Instances of both classes are instantiated in MATLAB code and used to set up the

connection with the OMD-20 DAQ and to acquire force measurements. Access to the

objects is provided by MATLAB object handles.
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Figure 5.13: Plot of the time between samples for the QUARC force sensor server

The OptoForce MATLAB API uses object handles, therefore it cannot be easily used

in Simulink since Simulink does not allow object handles to be passed on signal

lines. Additionally it is important to perform error-handling and cleanup to prevent

problems with the sensor, which are difficult to implement in Simulink. Therefore

the sensor will be implemented as a QUARC Server running in a script in a separate

instance of MATLAB. The control side will be implemented as a QUARC model with

a QUARC client block receiving force measurements from the force sensor server.

Running the force sensor in a MATLAB script could introduce a delay if the script

is incapable of maintaining as high an update rate as the client QUARC model. The

force sensor server was run alongside a QUARC client to determine the maximum

delay introduced. The time between force measurements is given in Fig. 5.13. The

initial sampling interval was extremely long, around 10 ms, but quickly decreased to

a range between 1 and 3 ms. Since the QUARC model was running at 1000 Hz, the

sampling intervals would result in a delay between 1 to 3 samples.



Chapter 6

Simulation Results

This chapter describes the results of simulations performed to evaluate the perfor-

mance of the designed predictor and controller in MATLAB Simulink. Four design

cases are presented, corresponding to the design cases listed in Table 4.1.

6.1 Constant-Gain Predictor Results

The constant-gain cases are considered first. The predictor is simulated for several

different cases without considering the haptic controller and Phantom Omni® dyna-

mics. The last subsection shows the simulation results for the entire system including

the Phantom Omni®.

6.1.1 Known Linear Virtual Environment with Delay (Case 1)

The first design case is a linear environment with delay but no discretization. The

purpose of this design case is to demonstrate the effectiveness of the LMI predictor

design in the ideal case without disturbances. The simulation parameters are given

in Table 6.1. The time delay of the system is T = 1/60 s, and the initial conditions

are x̃(0) = [0.01 0]T .

The effect of the arbitrary parameters a2 and a3 in Theorem 2 from Chapter 4 is

unknown, so a variety of values are tested to determine their effect on the LMI

solution feasibility and the resulting error dynamics. Theorem 2 is used to design the

predictor gain over the range 0 < a2 ≤ 1 and 0 < a3 ≤ 0.04. For each combination

Table 6.1: Parameter values used in the predictor simulations (Design Case 1)
Parameter Value Parameter Value
mt (kg) 0.1 be (N s/m) 45
bt (N s/m) 0.1 ke (N/m) 2000
kt (N/m) 1

60
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Figure 6.1: Normalized average magnitude of the position error with varying a. Co-
lours darker than yellow indicate an improvement over no feedback.

of a2 and a3, the resulting predictor gain used in the simulation and the average

position error magnitude is calculated. The average error magnitude values are then

normalized against the average error magnitude resulting from a predictor without

feedback (since the system is stable without feedback), so that values less than 1

represent an improved tracking capability. The resulting plot is shown in Fig. 6.1.

A local minimum was found around a2 = 0.4694 and a3 = 0.008980, resulting in a

predictor gain of L = [−753.2 − 17.01]. The predictor gain at this minimum was

used in simulation, generating the error trajectory shown in Fig. 6.2.

6.1.2 Known Linear Virtual Environment with Delay and Sampling

(Case 2)

The second design case is a linear environment with delay and sampling. The initial

conditions are x̂e = 0, xe = 0.001 m, and ẋe = ˙̂xe = 0. The operator input force was
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Figure 6.2: Predictor error for optimal predictor gain of L = [−753.2 − 17.01]
(Design Case 1)
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Table 6.2: Parameter values used in the predictor simulations (Design Case 2)
Parameter Value Parameter Value
mt (kg) 0.1 be (N s/m) 25
bt (N s/m) 0.1 ke (N/m) 2000
kt (N/m) 1 γ 100
a2 0.4694 a2 0.008980

simulated as a sinusoid described by Fh(t) = 3 sin (t/π) N. The simulation parameters

are given in Table 6.2. Using Theorem 3 from Chapter 4 to design the predictor gain

results in L = [−574.1 −7.260]. Fig. 6.3 shows the predicted and actual trajectories

of the virtual tool.

The performance of the predictor is compared to the delayed and sampled signal by

comparing the predictor error e to the delay and sampling error eΔ, defined as,

eΔ =

[
xe,zd − xe

ẋe,zd − ẋe

]
. (6.1)

Fig. 6.4(a) shows a comparison of the magnitude of the predictor error (‖e‖) and the

delay and sampling error (‖eΔ‖). Fig. 6.4(b) shows a comparison of the L2 norms

of both error signals (‖e‖L2 and ‖eΔ‖L2). The error magnitudes appear to approach

zero after 0.2 seconds however only the predictor error approaches zero; the delay and

sampling error oscillates at an amplitude of around 5× 10−4.

The amplitude of the delay and sampling error becomes more significant at a lower

virtual environment stiffness since the amplitude of the virtual tool trajectory incre-

ases. Fig. 6.5 shows the error signals of the same system with ke = 200 N/m instead

of 2000 N/m. This shows that the relative performance of the predictor is heavily

influenced by the environment stiffness.

The disturbance rejection factor γ can be tuned to affect the error bound according

to (4.32). To investigate the effect of the disturbance rejection factor, the system is

simulated for a range of predictor gains designed using different values of γ. Fig. 6.6

shows the maximum of the predictor error magnitude, normalized to the maximum

of the delay and sampling error magnitude (i.e. ‖e‖max/‖eΔ‖max), over a range of

0 < γ ≤ 1000 for a virtual environment stiffness of ke = 2000 N/m. Fig. 6.7 shows

the predictor error bound over the same range as calculated by (4.32). The error

bound guaranteed by (4.32) over this range is impractically large (on the order of
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Figure 6.3: Predicted and actual virtual tool trajectories (Design Case 2)
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Figure 6.4: Comparison of the error magnitude and L2 norm of the error for the
predicted, and delayed and sampled, signals (Design Case 2)



65

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [s]

0

0.005

0.01

0.015

E
rr

or
 m

ag
ni

tu
de

Predicted
Sampled

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [s]

0

1

2

3

E
rr

or
 L

2
 n

or
m

×10-3

Figure 6.5: Comparison of the error magnitude and L2 norm of the error for a lower-
stiffness VE (Design Case 2)

1× 105 m or m/s), and does not correlate at all with the actual error bound.

Given the previously mentioned effect of the stiffness on the predictor performance,

the same set of simulations are performed for ke = 200 N/m, as shown in Fig. 6.8.

Fig. 6.6 and Fig. 6.8 show that γ does not have the same effect on the error bound for

different values of virtual environment stiffness. There is a more distinct decreasing

trend in Fig. 6.8 for γ > 200, however the change is only on the order of 2-3% of the

delay and sampling error. In both cases, γ does not seem to have a large effect on the

maximum predictor error. Since the relationship between the error bound and γ is

not clear nor very significant, the disturbance rejection factor is selected as γ = 100.

6.1.3 Unknown Linear Virtual Environment with Delay and Sampling

(Case 3)

In this design case the virtual environment parameters are unknown, therefore the

parameter adaptation law (4.44) is introduced. The simulation parameters are given

in Table 6.3. The bounds on the stiffness and damping are 200 ≤ ke ≤ 2000 N/m and
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2000 N/m (Design Case 2)
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Figure 6.8: Maximum predictor error magnitude, normalized to the maximum delay
and sampling error magnitude, for a range of disturbance rejection factors and ke =
200 N/m (Design Case 2)

20 ≤ be ≤ 40 N·s/m, respectively. The stiffness range is selected based on the soft-

tissue stiffness data from [21]. The damping range is selected to ensure the virtual

environment is near critical damping or overdamped, since tissue vibrations tend to

die out quickly. The initial adaptation gain matrix is Γ(0) = diag(1× 109, 8× 106).

The initial conditions of the states are xe(0) = x̂e(0) = ẋe(0) = ˙̂xe(0) = 0. There is

no longer an initial error because it is assumed that the state of the tool is accurately

known until it contacts the environment.

Table 6.3: Parameter values used in testing the adaptation law
Parameter Value Parameter Value
mt (kg) 0.1 kt (N/m) 1
bt (N s/m) 0.1 γ 100
a2 0.4694 a2 0.008980
ν 0.01 α 2
ρM 5× 109

To demonstrate the effectiveness of the parameter adaptation law, the predictor is

tested for the worst-case scenario where the initial parameter estimation error θ̃e is as

large as possible. The initial estimate of the virtual environment parameters is θ̂e =

[200 20]T while the actual environment parameters are θe = [2000 40]T . The mean
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Figure 6.9: Virtual tool states for the worst-case parameter estimation error with
L = [−430.6 − 11.83] (Design Case 3)

values of the virtual environment parameters (ke = 1100 N/m and be = 30 N·s/m)

are used to design the predictor gain using Theorem 3. These values are selected to

minimize the maximum possible parameter difference between the design parameters

and the true parameters. The resulting predictor gain is L = [−430.6 −11.83]. The

LMI in (4.31) was verified over the parameter range for the resulting predictor gain,

showing that the system is guaranteed to be stable over that range.

Fig. 6.9 shows the predicted and actual states of the virtual tool for the worst-

case estimation error. Since the initial parameter estimates are smaller, there is an

initial overshoot in the predicted position and velocity. The error magnitude and L2

norm are given in Fig. 6.10. The predictor error converges to zero shortly after the

stiffness estimate converges to its actual value, as shown in Fig. 6.11. The damping

estimate takes much longer to converge due to the averaging effect of the least-squares

parameter adaptation law.

A less extreme case is considered where θe = [1500 35]T and θ̂e = [1100 30]T .
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Figure 6.10: Error magnitude comparison for the worst-case parameter estimation
error (Design Case 3)
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Figure 6.11: Estimated parameters for the worst-case parameter estimation error
(Design Case 3)
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Figure 6.12: Virtual tool states for the typical parameter estimation error (Design
Case 3)

The predictor gain does not change in this case. The estimated states are shown in

Fig. 6.12, the error is shown in Fig. 6.13 and the estimated parameters are shown

in Fig. 6.14. The estimated damping converges much faster and the maximum error

magnitude is greatly reduced. The predictor easily outperforms the sampled and

delayed signal.

6.1.4 Complete System

To fully demonstrate the effectiveness of the predictor the complete haptic system,

including the controller and the Phantom Omni® dynamics, was simulated.

The predictor was simulated for constant VE parameters. Nine cases were tested, with

a different combination of VE stiffness and sampling rate for each case. Three different

stiffness values, soft (ke = 200 N/m), medium (ke = 800 N/m, and hard (ke = 1500

N/m), and three different sampling rates, fast (T = 0.016 s), medium (T = 0.032 s),

and slow (T = 0.100 s), were selected, for a total of nine test cases. Cases 1 through 3



71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

0

2

4

6

E
rr

or
 m

ag
ni

tu
de

×10-3

Estimated
Sampled

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

0

0.5

1

E
rr

or
 L

2
 N

or
m

×10-3

Figure 6.13: Error magnitude comparison for the typical parameter estimation error
(Design Case 3)
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Figure 6.14: Estimated parameters for the typical parameter estimation error (Design
Case 3)
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Table 6.4: Designed predictor gains for constant VE parameters
Cases Sampling Time Predictor Gains Full-Range Stable?

(T , s) L1 L2

1, 4, 7 0.016 −441.3 −12.12 Yes
2, 5, 8 0.032 −203.3 −5.15 Yes
3, 6, 9 0.100 −195.1 −4.89 No

have soft stiffness and increasingly slow sampling, similarly for Cases 4 through 6 and

7 through 9, except with medium and hard stiffness, respectively. The damping was

the same for all three tests (be = 30 N·s/m). The initial VE parameter estimate of

the predictor was k̂e(0) = 1100 N/m and b̂e(0) = 30 N·s/m. The designed predictor

gains are given in Table 6.4. Since the initial VE parameter estimate was the same

for all nine cases, the only parameter change that results in a different predictor gain

is the sampling time.

The designed control gain guarantees a stable predictor system over the entire para-

meter range for T = 0.016 s and T = 0.032 s, however it does not for T = 0.100 s. For

T = 0.100 s, there is a small range where the LMI in (4.31) does not have a solution

for L = [−195.1 −4.89], as shown in Fig. 6.15. Since the potentially unstable region

corresponds to a much lower stiffness than is actually being used in this simulation,

and the LMI is very conservative, the simulation was performed without changing

the predictor design. However, if necessary, the predictor gain could be redesigned

by changing the nominal stiffness and damping used to design it, or by changing a2,

a3, or γ.

The initial conditions of the simulated Phantom Omni® were q(0) = [0 π/4 −
1.25]T and q̇(0) = [0 0 0]T . The dynamic parameters of the Phantom Omni®

identified in Table 5.2 were used in the simulation, except the joint friction parameters

were set to θ7 = θ8 = θ9 = 0. The initial estimate of the dynamic parameters used in

the adaptation law was θ̂ = 1.1θ. The control and adaptation gains were set to the

values given by (5.6) and (5.7). The rest of the simulation parameters are given in

Table 6.3.

The environment was simulated as a vertical wall in the global y-z plane so that the

environment forces only act along the global x-axis. The wall was positioned so that

the end-effector started on the surface. The operator force was simulated as a sinusoid
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Figure 6.15: Stability range for the predictor when T = 0.1 s. (Yellow squares indicate
the stable region; blue squares indicate the potentially unstable region)

similar to previous case, with the operator only applying force along the global x-axis.

An example end-effector trajectory and tracking error signal are shown in Fig. 6.16

for the case where ke = 200 N/m and Td = 0.016 s. The x position of the end effector

tracks the desired trajectory well, with a position error of less than 0.5 mm after 2 s.

The tracking was similar for the other cases.

The performance results are summarized in Table 6.5. Note that a decrease in the

error indicates an increased performance. The error bound difference and the L2

norm difference are calculated based on (3.36), (3.37), and (3.38). In all cases, the

performance of the system is greatly improved by adding the predictor, resulting in

the error bound decreasing by over ten times the Weber fraction of 7%. Generally

the relative performance of the predictor increased as the sampling time increased.

This was expected given that increasing the sampling time increases the sampling

disturbance and delay. Changes in the virtual environment stiffness did not result in

significant changes in the performance.

An example of the predictor error is given in Fig. 6.17 for the case where ke = 200

N/m and Td = 0.016 s. The predictor error is consistently lower than the sampling

error, as in previous cases. Comparing it to Fig. 6.18 shows that including the

Phantom Omni® and controller dynamics results in more total error than simply

considering the output of the predictor in isolation. The total error magnitude and
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Figure 6.16: End-effector position and tracking error (x − x̂e) for a linear virtual
environment with ke = 200 N/m and Td = 0.016 s

Table 6.5: Summary of the performance of the predictor for constant VE parameters
Case Stiffness Sampling Time Error Bound L2 Norm

(ke, N/m) (Td, s) Difference Difference
1 200 0.016 −0.0123 (−69.2%) −39.7%
2 0.032 −0.0210 (−78.7%) −62.5%
3 0.100 −0.0348 (−83.9%) −85.7%
4 800 0.016 −0.0148 (−73.2%) −38.9%
5 0.032 −0.0245 (−81.9%) −62.0%
6 0.100 −0.0372 (−87.3%) −85.7%
7 1500 0.016 −0.0166 (−75.4%) −39.0%
8 0.032 −0.0255 (−82.4%) −61.9%
9 0.100 −0.0371 (−87.1%) −85.6%



75

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.005

0.01

E
rr

or
 m

ag
ni

tu
de

Estimation
Sampled

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

1

2

3

E
rr

or
 L

2
 n

or
m

×10-3

Figure 6.17: Predictor error magnitude and L2 norm for a linear virtual environment
(Test Case 1)

L2 norm of the total error for each of the nine test cases are presented in Fig. 6.18

to Fig. 6.26.

The addition of the predictor not only reduces the total error, it also reduces chat-

tering in the control torque by producing a continuous position and velocity signal.

Fig. 6.27 shows the control torque applied to each joint with the predictor, while

Fig. 6.28 shows the control torque for the same case without the predictor. The

chattering in the torque for the case without the predictor is approximately the same

order of magnitude as the ideal torque signal. A real-world system would likely be

driven unstable by such large-amplitude chattering.

The overall performance of the predictor is greatly affected by the virtual tool stiffness

kt. For example, Fig. 6.26 shows the total error for the haptic system when kt = 1

N/m, while Fig. 6.29 shows the total error for the haptic system when kt = 0

N/m. The total error magnitude decreases when kt decreases, however the difference

between the system with and without prediction decreases as well: the peak errors

are effectively the same (0.1% difference) and the L2 norm difference is just noticeable

at -7% (compared to -87.1% and -85.6% respectively, when kt = 1 N/m).
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Figure 6.18: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 1)
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Figure 6.19: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 2)
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Figure 6.20: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 3)
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Figure 6.21: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 4)
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Figure 6.22: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 5)
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Figure 6.23: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 6)
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Figure 6.24: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 7)
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Figure 6.25: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 8)
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Figure 6.26: Total error magnitude and L2 norm for a linear virtual environment
(Test Case 9)
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Figure 6.27: Control torque for a linear virtual environment with ke = 1500 N/m and
Td = 0.100 s, with prediction
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Figure 6.28: Control torque for a linear virtual environment with ke = 1500 N/m and
Td = 0.100 s, without prediction

There are several reasons why kt has such a significant effect. Firstly, when the virtual

tool stiffness is nonzero it leads to an initial force on the virtual tool at time t = 0 since

the tool does not start at the origin. The initial force causes a sudden acceleration of

the virtual tool, and larger accelerations result in higher sampling error, as stated in

(4.27). Secondly, the predictor design assumes that the virtual tool stiffness is known,

therefore the more the virtual tool stiffness dominates the virtual tool dynamics the

more of an advantage the predictor has in accurately predicting the signal.

6.2 Gain-Scheduled Predictor Results

This section shows the performance of a gain-scheduled predictor and compares it to

a constant-gain predictor.
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Figure 6.29: Total error magnitude and L2 norm for a linear virtual environment with
ke = 1500 N/m, kt = 0 N/m and Td = 0.100 s

6.2.1 Unknown Linear Virtual Environment with Delay and Sampling

The gain-scheduled predictor design was simulated for an unknown linear virtual

environment with delay and sampling. Although the gain-scheduled predictor is in-

tended to be used for nonlinear systems it is useful to compare its performance to the

constant-gain predictor in the simpler case.

The simulation parameters are the same as in Section 6.1.4, except that kt = 0.

The virtual tool stiffness was removed to investigate a ‘worst-case’ scenario for the

predictor. The predictor was designed using Theorem 5 in Chapter 4. The maximum

rate of change of the scheduling variables (ρ = θ̂e) is estimated by considering (4.44)

and (4.46) when λmax(Γe) = ρM ,

|ρ̇|max ≤ ρM
1 + νϕT

e,maxρMϕe,max

ϕe,maxϕ
T
e,max(θe,max − θe,min),

≤ 1

1/(ρM‖ϕe‖2max) + ν
(θe,max − θe,min). (6.2)

Therefore the initial parameters used to design the predictor gain are ρ0 = [1100 30]T

and ρ̇0 = [1.8× 105 2000]T . The predictor was simulated for ke = 200 N/m, be = 30
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Figure 6.30: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable. Each plot is for a different set of |ρ̇|max.

N·s/m, and T = 0.100 s. The gains for the gain scheduled predictor designed using

Theorem 5 were L0 = [−7.31×10−5 −2.5×10−8]T , L1 = [−2.61×10−3 2.75×10−4]T ,

and L2 = [−9.27 × 10−4 − 2.89 × 10−5]T . The gain for the constant-gain predictor

designed using Theorem 3 was L = [−194.8 × 10−5 − 4.89 × 10−8]T . The stability

regions of the gain-scheduled predictor are shown in Fig. 6.30 and the stability region

of the constant-gain predictor is shown in Fig. 6.31.

The gain-scheduled predictor has a much smaller guaranteed stability region, limited

to a narrow band along two extremes of |ρ̇|max. The gain-scheduled predictor has a

smaller stability region because it attempts to find a single set of decision variables to

satisfy the entire region, while the constant-gain predictor is stable as long as there

is a solution for each parameter set. However, within the region that it is stable, the

gain-scheduled predictor has a much smaller guaranteed error bound, suggesting the

gain-scheduled predictor should result in better performance within that region.

Fig. 6.32 shows the gain for the gain-scheduled predictor adjusting over time as the

virtual environment parameter estimate θ̂e changes. The gain for the gain-scheduled
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Figure 6.31: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable.

predictor is consistently smaller than the constant-gain case. A comparison of the

prediction error for both predictors is shown in Fig. 6.33, and a comparison of the

total error for both predictors is shown in Fig. 6.34. The difference in the total

error L2 norm between the two predictors is only 1%, in favour of the gain-scheduled

predictor, and the difference between their peak total error is less than 1%. In other

words, the performance difference between the two is negligible. Both predictors

result in a performance improvement compared to the system without a predictor,

with the peak total error decreasing by 7% and the L2 norm decreasing by 26%.

6.2.2 Unknown Nonlinear Virtual Environment with Delay and

Sampling

The gain-scheduled predictor design was simulated for an unknown nonlinear virtual

environment with delay and sampling. The same parameters were used as in Section

6.2.1, with the following changes.

The virtual environment is described by,

Fe = Fk(xe) + beẋe, (6.3)

where Fk is the nonlinear stiffness function described by (3.34). Two different environ-

ments were tested: Case A where ke,1 = 370 N/m, ke,2 = 1980 N/m, and xs = 0.0028
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Figure 6.33: Predictor error magnitude and L2 norm for a gain-scheduled predictor
and a constant-gain predictor for an LTI virtual environment
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Figure 6.34: Total error magnitude and L2 norm for a gain-scheduled predictor and
a constant-gain predictor for an LTI virtual environment
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Table 6.6: Designed predictor gains for constant VE parameters
Td (s) 0.016 0.032 0.100
L0 [-2.2× 10−3 -5.9× 10−5] [6.7× 10−5 2.1× 10−6] [-7.3× 10−5 -2.5× 10−7]

L1 [-3.5× 10−2 -1.0× 10−3] [-2.8× 10−3 6.0× 10−4] [-2.6× 10−3 3.0× 10−4]

L2 [-2.7× 10−2 -8.7× 10−4] [9.8× 10−4 2.2× 10−5] [-9.3× 10−4 -2.9× 10−5]

Lconst [-440.8 -12.1] [-202.6 -5.13] [-194.8 -4.89]

m; and Case B where ke,1 = 450 N/m, ke,2 = 1000 N/m, and xs = 0.005 m. Case

A and B are based on stiffness data of real human tissue [21]. In both cases R = 20

and be = 30 N·s/m. Case A and B are both tested for three different sampling times:

Td = 0.0016, 0.0032, and 0.100 s.

The linear environment model used in the predictor is changed to the alternate model

described by (3.33). The parameter estimate is now θ̂e = [k̂e b̂e ĉe]
T . The bounds

on the estimate of ce are −55 ≤ ĉe ≤ 0 N. This does not affect the design of the

predictor gain, it only affects the force estimation and parameter adaptation. Adding

a third parameter to the parameter adaptation law makes it very difficult for the

estimated parameters to converge to the actual values, especially since the parameters

are changing regularly. Therefore be is assumed to be known by the predictor and

is no longer estimated. Also, the forgetting factor α is increased to 20 to improve

the parameter adaptation law’s ability to track the frequently changing parameters.

The period of the operator input force was increased to 4 s to help reduce the rate at

which the virtual environment parameters change.

Table 6.6 shows the gains designed for the gain-scheduled predictor (L0, L1, and L2)

and for the constant-gain predictor for each sampling time. Just as in the previous

section, the gain-scheduled predictor gains are much smaller than the constant-gain

values, even after multiplying by the scheduling variables.

Fig. 6.35 to Fig. 6.40 show the stability regions for the gain-scheduled predictor

and the constant-gain predictor. In each case the gain-scheduled predictor has a

larger guaranteed stability region than the constant-gain predictor. Even though the

stability ranges of both systems do not cover the range of parameters used in the

simulation, they were simulated to see the effects of adding the predictor.

Fig. 6.41 shows the virtual environment parameters and the estimates of the para-

meters during the simulation. The estimate of the virtual environment parameters
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Figure 6.35: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.016 s.
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Figure 6.36: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.016 s.
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Figure 6.37: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.032 s.
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Figure 6.38: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.032 s.
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Figure 6.39: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.100 s.
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Figure 6.40: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.100 s.



91

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

1000

2000
k e

 [N
/m

]

Estimated
Actual

0 1 2 3 4 5 6 7 8 9 10

Time [s]

29

30

31

b
e
 [N

*s
/m

]

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

0

5

c e
 [N

*s
/m

]

Figure 6.41: Estimated parameters for Case A, with Td = 0.016 s

tended to lag by approximately 0.2 s, and only reached approximately 90% of the

maximum value.

Table 6.7 shows the performance results for the gain-scheduled predictor applied to

the nonlinear system. In all the simulations, the gain-scheduled predictor performed

effectively identically to the constant-gain predictor. In all the simulations except for

Case B when Td = 0.100 s, the predictor did not significantly outperform the sampled

signal.

Fig. 6.42 to Fig. 6.47 show the total error results for each sampling time for both

Case A and B. When the sampling time is small there is practically no difference

between the system with or without the predictors. However, when Td = 0.100 s a

clear difference emerges after the initial transient from the controller has passed.
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Table 6.7: Summary of the performance of the gain-scheduled predictor for a nonlinear
virtual environment

Case Sampling Time Error Bound L2 Norm Improvement over
(Td, s) Difference Difference CG Predictor?

A 0.016 −4× 10−6 (−0.06%) −0.34% Negligible
0.032 −1× 10−5 (−0.15%) −1.40% Negligible
0.100 −3× 10−6 (−0.05%) −6.07% Negligible

B 0.016 −3× 10−6 (−0.05%) −0.66% Negligible
0.032 −9× 10−6 (−0.13%) −2.09% Negligible
0.100 −1× 10−6 (−0.02%) −11.8% Negligible
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Figure 6.42: Total error magnitude and L2 norm for Case A with Td = 0.016 s
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Figure 6.43: Total error magnitude and L2 norm for Case A with Td = 0.032 s
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Figure 6.44: Total error magnitude and L2 norm for Case A with Td = 0.100 s
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Figure 6.45: Total error magnitude and L2 norm for Case B with Td = 0.016 s
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Figure 6.46: Total error magnitude and L2 norm for Case B with Td = 0.032 s
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Figure 6.47: Total error magnitude and L2 norm for Case B with Td = 0.100 s

6.3 Discussion

Based on the simulation results, the predictor shows some promise for reducing the

error introduced by sampling and delay. For the cases where the virtual environment

is linear but unknown the predictor leads to large increases in performance. However,

for the unknown nonlinear environment the results are much less impressive. In the

nonlinear virtual environment cases the sampling time must be equal to or larger than

0.1 s for the predictor to provide any noticeable benefit.

It is also important to consider that the predictor has many free parameters that may

be tuned. For the gain-scheduled predictor, one may choose different values of a2, a3,

γ, ke,0, be,0, and ρ̇0. The effects of some of those values have been investigated for the

simpler cases, however given the fact that the LMI in (4.51) is not affine in any of

the given parameters except ρ̇0, it may be incorrect to extrapolate the results from

the simpler cases. A more successful LPV approach could use a numerical solver to

attempt to optimize either the stability range or the error bound of the gain-scheduled

predictor over the parameter range.
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It is worth noting from the comparison of the gain-scheduled and constant-gain predic-

tors that the parameter adaptation law dominates the performance of the predictor.

Both predictors had gains that were different by an order of magnitude, yet their

performance was nearly identical and tended to improve as the parameter estimation

improved. Also, the performance of the haptic controller tends to dominate the per-

formance near the start of the simulation when the virtual tool is experiencing the

most acceleration. It may be more beneficial to the transparency to focus on impro-

ving the controller and parameter adaptation law response over tuning the predictor

gains.



Chapter 7

Experimental Results

7.1 Constant-Gain Predictor Results

As mentioned in Section 5.3.3, the nonlinearity and cross-talk in the force sensor is

high, to the point where using the force sensor with the controller leads to instability.

Therefore, in order to experimentally validate the predictor system, the force sensor

was used to measure a force signal which would be ‘played back’ during testing. The

recorded force serves as the input to the predictor, while the haptic controller receives

a signal of Fh = 0. This is approximately equivalent to having a perfect force sensor

that allows the controller to completely cancel the operator input force. The measured

force was generated by hand and is shown in Fig. 7.1 after removing the Y and Z

components and scaling the force to be within the ±10 N. This exceeds the limits of

the Phantom Omni® torque, but since the force is not actually being applied to the

Omni it is acceptable. 10 N was selected because smaller forces lead to displacements

that are too small for the Omni to measure for high-stiffness environments.

The environment was selected as a wall parallel to the Y -Z plane, located at the

initial X axis position of the Omni. Since the operator and environment forces are

only in the X axis, the predictor was set up to predict only the X axis trajectory,

while Y and Z were fed directly through to the inverse kinematics without sampling

or delay.

A constant predictor gain was designed for each test. Each experimental case involved

two tests: one where the haptic system was operated using the predictor, and the

other where the haptic system used the delayed and sampled signal from the virtual

environment. The controller ran at 500 Hz.

97
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Figure 7.1: Operator force input Fh after scaling and other adjustments.

7.1.1 Unknown Linear Virtual Environment with Delay and Sampling

The predictor was tested for constant VE parameters. Nine cases were tested, with a

different combination of VE stiffness and sampling rate for each case. Three different

stiffness values, soft (ke = 200 N/m), medium (ke = 800 N/m, and hard (ke = 1500

N/m), and three different sampling rates, fast (T = 0.016 s), medium (T = 0.032 s),

and slow (T = 0.100 s) were selected. The damping was the same for all three tests

(be = 30 N·s/m). The initial VE parameter estimate of the predictor was k̂e(0) = 600

N/m and b̂e(0) = 20 N·s/m.

The initial adaptation gain matrix was Γe(0) = diag(1×109, 2.67×106). The adaptive

controller gains are given in (5.6) and (5.7). The initial Phantom Omni® parameter

estimates are given in Table 5.2. The rest of the experiment parameters are given

in Table 7.1. Theorem 3 was used to design the predictor gains, with the nominal

environment parameters equal to θ̂e(0). The designed predictor gains are given in

Table 7.2. Since the nominal VE parameters used in the gain design are the same for

all nine cases the predictor gains only change according to the sampling time.

Table 7.3 shows the performance of the system with prediction versus the system

without prediction The error bound difference and the L2 norm difference are calcu-

lated based on (3.36), (3.37), and (3.38). For both performance metrics, a negative

value indicates a decrease in the total error and therefore an improvement in the
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Table 7.1: Virtual environment and predictor parameters used in the linear virtual
environment experiments

Parameter Value Parameter Value
mt (kg) 0.5 kt (N/m) 0
bt (N s/m) 0.1 γ 100
a2 0.4694 a2 0.008980
ν 0.01 α 1
ρM 5× 109

Table 7.2: Designed predictor gains for constant VE parameters
Cases Sampling Time Predictor Gains

(T , s) L1 L2

1, 4, 7 0.016 −241.94 −8.50
2, 5, 8 0.032 −144.47 −2.01
3, 6, 9 0.100 −108.75 −1.44

transparency of the system.

As shown in Table 7.3, the system with prediction generally outperformed the system

without prediction, except for Case 1. The predictor’s relative performance improved

as the sampling time increased, which was expected. As the sampling time increases

the error introduced by sampling increases significantly, both because the state is able

to change by a large amount in a single sampling interval and because the sampled

signal is unable to represent the higher frequencies in the original signal. The relative

performance decreases as the stiffness increases. Increased stiffness leads to smaller

displacements, therefore static friction has a much larger effect on the controller’s

Table 7.3: Summary of the performance of the predictor for constant VE parameters
Case Stiffness Sampling Time Error Bound L2 Norm

(ke, N/m) (Td, s) Difference Difference
1 200 0.016 +0.0033 (+13.1%) +0.07%
2 0.032 −0.0093 (−26.4%) −7.4%
3 0.100 −0.0598 (−68.5%) −42.0%
4 800 0.016 −0.0027 (−13.4%) −4.0%
5 0.032 −0.0051 (−24.1%) −7.1%
6 0.100 −0.0148 (−49.2%) −19.7%
7 1500 0.016 −0.0014 (−8.8%) −1.2%
8 0.032 −0.0025 (−15.9%) −5.9%
9 0.100 −0.0042 (−24.1%) −10.4%
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Figure 7.2: Predictor error compared to sampling error for the simplified system (Case
9).

ability to track the desired signal and the controller dynamics dominate the response.

For each case the predictor reduced the prediction error to near zero in less than

one second far outperforming the sampled signal. The worst case is shown in Fig.

7.2. Once the estimated VE parameters converge to the actual VE parameters the

predicted trajectory should track the ideal trajectory perfectly.

The desired trajectory was not as well followed compared to the simulations. For

the system with the predictor, Fig. 7.3 shows the end-effector trajectory and the

error between the end-effector trajectory and the predicted trajectory (x − x̂e). As

mentioned in the Chapter 5, a significant amount of error is introduced by static

friction and modelling errors.

Fig. 7.4 to Fig. 7.12 show the error magnitude and L2 norm of the error for each

case. As the sampling time increases the peaks in the error magnitude for the haptic

system without prediction increase more than for the system with prediction. The

predictor seems to have the greatest effect in decreasing the peak error, when the

system reaches a steady state the error with and without the predictor is generally
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Figure 7.3: End-effector trajectory and tracking error for the simplified system (Case
3).

similar.

7.1.2 Unknown Nonlinear Virtual Environment with Delay and

Sampling

The system was tested using a VE with constant damping but nonlinear stiffness.

The constant damping was be = 30 N·s/m. The stiffness was governed by ke = kxn
e

where k = 1500 and n = 1.3, based on the Hunt-Crossley model. The time-varying

part of the Hunt-Crossley model was not used since the parameter adaptation law

is not able to adapt to two rapidly changing parameters. The rest of the simulation

parameters, control and predictor gains were the same as in the previous section.

Three cases, following the numbering from the previous section, were tested. Case

10, 11, and 12 have the same virtual environment but sampling times of 0.016 s, 0.032

s, and 0.100 s, respectively.
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Figure 7.4: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 1).
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Figure 7.5: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 2).
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Figure 7.6: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 3).
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Figure 7.7: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 4).
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Figure 7.8: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 5).
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Figure 7.9: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 6).
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Figure 7.10: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 7).
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Figure 7.11: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 8).
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Figure 7.12: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 9).

Fig. 7.13, 7.14, and 7.15 show the guaranteed stability ranges for the predictor. The

guaranteed stability range is quite small in each case, increasing in size as the sampling

time increases. Although that seems counter-intuitive given that increased sampling

time should decrease stability, the predictor gain design becomes more conservative

as the sampling time increases, widening the range over which the LMI is feasible.

Fig. 7.16 shows an example of the parameter adaptation law output for Case 12. The

stiffness changes very rapidly as xe → 0 because the derivative of the spring force

with respect to xe approaches infinity. The parameter adaptation law estimated the

stiffness well when the rate of change was slow, but when the rate of change was high

neither the stiffness nor the damping were accurately estimated.

Although the time-varying virtual environment parameters shown in Fig. 7.16 are

outside of the guaranteed stability range of the predictor in each case, during testing

each case was stable. Table 7.4 summarizes the results of the experiments. Fig.

7.17, Fig. 7.18, and Fig. 7.19 show the total error magnitude and L2 norm of the

error for each of the experiments. At low sampling times (Td = 0.016, 0.032 s)

the predictor results in increased peaks in the total error magnitude by +62% and
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Figure 7.13: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable. (Case 10)
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Figure 7.14: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable. (Case 11)
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Figure 7.15: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable. (Case 12)
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Figure 7.16: Sample output of the parameter adaptation law, showing the estimated
and actual environment parameters (Case 12).
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Table 7.4: Summary of the performance of the predictor for time-varying VE para-
meters

Case Sampling Time Error Bound L2 Norm
(Td, s) Difference Difference

10 0.016 +0.0125 (+62.0%) −7.7%
11 0.032 +0.0062 (+19.8%) −9.7%
12 0.100 −0.0297 (−53.0%) −32.2%
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Figure 7.17: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 10).

+20%, respectively. However the chattering in the error signal decreases leading

to an overall decrease in the L2 norm of -8% and -10%, respectively. For the high

sampling time (Td = 0.100 s) the predictor lead to significantly improved performance

in both performance metrics. These results are similar to the simulation results for a

nonlinear virtual environment in Section 6.2.2, where sampling times 0.100 s or larger

were necessary for any significant performance improvement.
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Figure 7.18: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 11).
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Figure 7.19: Comparison of the total tracking error magnitude and L2 norm with and
without prediction (Case 12).
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7.2 Gain-Scheduled Predictor Results

This section gives the results for the gain-scheduled predictor. Each experiment case

involved three tests: one where the controller tracked the output of the gain-scheduled

predictor, one where it tracked the output of the constant-gain predictor, and one

where it tracked the delayed and sampled signal from the virtual environment.

7.2.1 Unknown Nonlinear Virtual Environment with Delay and

Sampling

The same cases were tested experimentally as were simulated in Section 6.2.2, with

an additional set of tests for Td = 0.200 s. The virtual environment stiffness was

nonlinear according to (3.34), and the damping was constant (be = 30 N·s/m). The

bounds on the environment parameters were θe,min = [200 1 −10.26]T and θe,max =

[2000 40 0]T . Two different sets of virtual environment parameters were tested. For

cases A1 to A4, the environment parameters were ke,1 = 370 N/m, ke,2 = 1980 N/m,

and xs = 0.0028 m. For cases B1 to B4, the environment parameters were ke,1 = 450

N/m, ke,2 = 1000 N/m, and xs = 0.005 m. In all eight cases R = 20.

The predictor used the linearized environment model given by (3.33). The gains for

the gain-scheduled predictor were designed using Theorem 5 with ρ0 = [1100 20.5]T

and ρ̇0 = [1.8× 105 3900]T . The gains designed for each case are given in 7.5. A set

of predictor gains for the constant-gain predictor were also designed using Theorem

3, and are given in 7.5. The stability range for both the gain-scheduled and constant

gain predictors are given in Fig. 7.20 to Fig. 7.27. The guaranteed stability range for

both predictors increases as Td increases from 0.016 s to 0.100 s, however it decreases

when Td increases from 0.100 s to 0.200 s.

A summary of the performance of the gain-scheduled predictor is given in Table 7.6.

In every test case the difference in the total error L2 norm is negligible. The total

error bound decreases by a significant amount for most of the tests, except for Case

A and Case B when Td = 0.200 s, in which case there are very large peaks in the total

error for the system with the predictor which are not present in the system without

the predictor. Case B4 in particular results in a very large error peak approximately

300% larger than for the system without prediction.
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Table 7.5: Designed predictor gains for constant VE parameters
Td (s) 0.016 0.032 0.100
L0 [-3.3× 10−5 -2.0× 10−6] [8.6× 10−6 4.7× 10−7] [1.4× 10−6 2.8× 10−6]

L1 [-2.6× 10−2 -1.6× 10−3] [1.1× 10−2 1.7× 10−3] [-2.5× 10−3 4.7× 10−3]

L2 [-1.1× 10−3 -4.1× 10−5] [-1.2× 10−4 3.3× 10−5] [1.1× 10−4 4.2× 10−5]

Lconst [-466.4 -9.13] [-344.5 -3.54] [-236.6 -2.37]

Td (s) 0.200
L0 [2.6× 10−5 6.8× 10−6]

L1 [1.7× 10−3 5.6× 10−3]

L2 [-1.2× 10−4 1.6× 10−4]

Lconst [-265.7 -2.54]
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Figure 7.20: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.016 s.
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Figure 7.21: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.016 s.
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Figure 7.22: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.032 s.
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Figure 7.23: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.032 s.
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Figure 7.24: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.100 s.
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Figure 7.25: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.100 s.
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Figure 7.26: Stability region for the gain-scheduled predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.200 s.
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Figure 7.27: Stability region for the constant-gain predictor, where the yellow regions
are guaranteed to be stable, for Td = 0.200 s.

The gain-scheduled predictor’s performance is not significantly different from the

constant-gain predictor, similar to the simulation results in Chapter 6. In case A2 the

total error L2 norm of the gain-scheduled predictor system was 22% higher than for

the constant-gain predictor. In case A4 the total error bound for the gain-scheduled

predictor system was 12% lower than the constant-gain system.

Fig. 7.28 to Fig. 7.43 show the predictor error and the total error for each case.

Comparing the predictor error to the sampling and delay error, the gain-scheduled

Table 7.6: Summary of the performance of the gain-scheduled predictor for a nonlinear
virtual environment

Case Sampling Time Error Bound L2 Norm Improvement over
(Td, s) Difference Difference CG Predictor?

A1 0.016 −0.00258 (−27.1%) −1.62% Negligible
A2 0.032 −0.00308 (−30.5%) −3.48% Worse
A3 0.100 −0.00224 (−24.9%) −4.67% Negligible
A4 0.200 +0.00213 (+21.0%) −2.06% Better
B1 0.016 −0.00062 (−5.32%) −4.96% Negligible
B2 0.032 −0.00231 (−15.6%) −9.04% Negligible
B3 0.100 −0.00228 (−14.1%) −5.56% Negligible
B4 0.200 +0.05135 (+318.4%) +1.81% Negligible
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Figure 7.28: Predictor error magnitude and L2 norm for Case A1

predictor results in smaller peaks and less chattering in most of the cases. The gain

scheduled predictor also leads to smaller peaks in the total error, but not as much

of a decrease in the chattering. For example, Fig. 7.28 shows that the error in the

predicted signal is greatly reduced, leading to an L2 norm that is approximately 90%

of the sampled signal’s error. However, the total error when tracking that predicted

signal, shown in Fig. 7.29, is almost identical to the total error when tracking the

sampled signal.

7.3 Summary of Results

The haptic system with the predictor performed extremely well for the unknown li-

near virtual environment. The unknown linear virtual environment is the best-case

scenario for the predictor, where the environment parameters are constant or could

be considered to be changing extremely slowly. Eight out of the nine cases show sig-

nificant improvements in the total error bound, and five out of nine show a significant

improvement in the total error L2 norm. Only one case shows a decrease in perfor-

mance, and that is for the smallest sampling time. The relative performance of the
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Figure 7.29: Total error magnitude and L2 norm for Case A1
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Figure 7.30: Predictor error magnitude and L2 norm for Case A2
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Figure 7.31: Total error magnitude and L2 norm for Case A2
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Figure 7.32: Predictor error magnitude and L2 norm for Case A3



120

0 2 4 6 8 10 12 14 16

Time [s]

0

0.005

0.01
T

ot
al

 e
rr

or
 ||

e
to

t||

0 2 4 6 8 10 12 14 16

Time [s]

0

0.005

0.01

0.015

T
ot

al
 L

2
 E

rr
or

GS Prediction
CG Prediction
Without Prediction

Figure 7.33: Total error magnitude and L2 norm for Case A3
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Figure 7.34: Predictor error magnitude and L2 norm for Case A4
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Figure 7.35: Total error magnitude and L2 norm for Case A4
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Figure 7.36: Predictor error magnitude and L2 norm for Case B1
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Figure 7.37: Total error magnitude and L2 norm for Case B1
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Figure 7.38: Predictor error magnitude and L2 norm for Case B2
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Figure 7.39: Total error magnitude and L2 norm for Case B2
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Figure 7.40: Predictor error magnitude and L2 norm for Case B3
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Figure 7.41: Total error magnitude and L2 norm for Case B3
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Figure 7.42: Predictor error magnitude and L2 norm for Case B4
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Figure 7.43: Total error magnitude and L2 norm for Case B4

system with the predictor compared to the system without the predictor improves as

the sampling time increases, although the absolute error of the system does increase.

The predictor is particularly effective at reducing the peak error.

The unknown nonlinear virtual environment is a much greater challenge. When at-

tempting to track a nonlinear environment with rapidly changing parameters as with

the Hunt-Crossley environment model, the parameter adaptation law of the predictor

does not track very well. Consequently the system sampling time must be very large

(approximately 0.1 s) before the predictor leads to a benefit for the overall system

performance. In theory there is a point at which increasing the sampling time will no

longer lead to an improvement in the relative performance, as the parameter adapta-

tion law will not have enough information to reliably track the virtual environment

parameters. The predictor does show that for a rapidly changing system it can reduce

chattering due to the sampling.

The gain-scheduled predictor’s performance was not as good as expected. Although

the theoretical guaranteed stability range of the gain-scheduled predictor tends to be

larger than that for the constant-gain predictor, it does not cover the entire range
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for the rate of change of the scheduling variables. Even so, when both predictor are

tested with parameters outside of their guaranteed stability range the haptic system

was still stable. Clearly the LMIs in Theorem 3 and Theorem 5 are very conservative,

leading to a wider stability range than expected. In terms of performance the gain-

scheduled predictor does not show any significant improvement over the constant-gain

predictor. The gain-scheduled predictor does tend to reduce the error bound slightly

more than the constant-gain predictor.

7.3.1 Limitations

The predictor is limited to virtual environments whose parameters do not change too

quickly. The parameter adaptation law used in the predictor is intended for constant

or slowly-varying parameters, therefore it is not very effective when the parameters

change rapidly. The parameter adaptation law was also limited by the number of

parameters it could estimate simultaneously. Although it theoretically could estimate

any number of parameters, increasing the number of parameters used to describe the

virtual environment makes it more difficult for the adaptation law to converge before

the parameters change again.

The overall haptic system was tested without actual human operation, as mentioned

at the start of the chapter. Generally speaking, the operator tends to introduce

a stabilizing effect to the system since their arm provides additional damping [23].

However, to fully verify the effectiveness of the system it would be important to

perform a test using a real human operator. Using a more accurate force sensor, or

limiting the system to fewer degrees of freedom to avoid sensor cross-talk could allow

an operator to test the system.

Although the performance of the predictor generally improves as the sampling time

increases, for the nonlinear virtual environment cases A4 and B4, i.e. when Td = 0.200

s, the performance decreased quite significantly. This decrease in performance may

be avoidable if the predictor design is tuned differently, for example higher sampling

times may require an increase in γ.



127

7.3.2 Advantages

The predictor is effective for reducing the peaks in the total error, which are very

important to the operator’s perception of the system. Such peaks would lead to a

‘bumping’ or ‘jostling’ sensation which would greatly reduce the realism of the system.

The performance improvement due to the predictor is larger when the virtual tool

stiffness and damping are more significant, as discussed in Chapter 6. All the expe-

riments were performed with a virtual tool stiffness of zero in order to get an idea of

the worst-case performance. In the simulation study increasing the virtual tool stif-

fness from 0 N/m to 1 N/m changed the performance improvement from essentially

0% to almost 90%. Therefore, separating the virtual tool dynamics from the virtual

environment dynamics drastically improves performance.

Although the predictor does not always produce the ideal system dynamics, it does

have the advantage of providing near-instantaneous feedback to the user. As the

sampling time of the haptic system increases, it reaches a point where the operator

can notice the delay in feedback. Even if the predictor does not provide the ideal

feedback force, it does provide the operator with a continuous, rapid response to their

motion. Maintaining a continuous sensation may be more important than providing

a perfect representation of the environment parameters at all times. It would be

interesting to investigate how this tradeoff, continuous feedback versus more accurate

environment parameters, affects the operator’s performance.

Finally, although the total error results for the nonlinear system do not show a great

performance improvement, the output of both the constant-gain and gain-scheduled

predictors were much closer to the ideal signal. For example, in case B3 the difference

between the total error of the system with and without prediction was negligible

even though the difference between predicted and sampled signals was quite large.

Therefore the effects of the predictor may be more significant if the tracking of the

controller were improved.



Chapter 8

Conclusions and Future Work

The goal of this work was to design a predictor and control system that take advan-

tage of an increased sampling rate to improve the transparency of a slowly updating

virtual environment. The final results of the simulation and experimental testing are

promising.

For an LTI virtual environment with unknown parameters, the performance of the

haptic system is excellent. The simulation results suggested significant improvements

in transparency, and that was reflected in the experimental results as well. The

transparency of the overall haptic system improved by up to 40% in experimental

tests, which would be a very noticeable improvement for a human operator.

For a nonlinear virtual environment with unknown parameters, the performance of

the haptic system is acceptable. The simulation results suggested that sampling times

at or above 0.100 s would be necessary to see improvements in transparency, which

was borne out by the experimental results. The experimental results show that the

predictor was effective at reducing the error bound, except for a couple extreme cases.

The gain-scheduled predictor resulted in a negligible change in performance compa-

red to the constant gain predictor. Even though the resulting gains from the two

design methods were very different, the resulting performance did not change signifi-

cantly. This indicates that the parameter adaptation law may dominate the predictor

response. However, the gain-scheduled predictor design relies heavily on the somew-

hat arbitrary selection of design parameters. A more rigorous approach to the LPV

system analysis could lead to improved gain-scheduled predictor performance.

Overall the effectiveness of the predictor is very situation-dependent. For systems

with low-quality haptic devices, or quickly changing parameters, the addition of the

predictor will not have a large effect on the transparency. For systems with high-

quality haptic devices (with less static friction and more accurate motor torque) and

very large computational delays, the addition of the predictor could greatly improve
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transparency.

Future Work

There are many potential opportunities to continue the research described in this

work. A detailed study of the effects of changing the LMI design parameters on the

resulting predictor performance for the complete system would lead to much better

insight in designing the predictor gain.

The LPV system analysis and subsequent gain-scheduled predictor design could be

greatly improved. There are other methods for solving LPV LMIs that were not used

in this work, such as LMI relaxation using B-splines, which could result in better pre-

dictor performance. The predictor design could also be improved by using a hybrid

predictor method rather than a strictly model-based predictor. A hybrid predictor

could change between predictor types in real time depending on the situation, or the

predictor could use a weighted average of multiple estimates similar to a Kalman

filter. Also, since the performance of the predictor is greatly affected by the parame-

ter adaptation law it would be beneficial to investigate other parameter adaptation

methods in order to improve the performance.

Another potential area for further research is to build a virtual surgical training si-

mulator and have medical trainees perform tasks with and without the predictor.

Evaluating the actual perceived performance of the predictor is important to deter-

mining if it actually meets its goal of improving performance.
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Appendix A

Simulink Model

Figure A.1: Top-level view of the Simulink model
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Figure A.2: Simulink model predictor structure

Figure A.3: Simulink model parameter adaptation algorithm
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Figure A.4: Simulink model predictor dynamics
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Appendix C

CAD Drawings of the Force Sensor Mount

Note: Drawings not to scale due to page margin restrictions.
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