
AN ENSEMBLE REGRESSION APPROACH FOR OCR ERROR
CORRECTION

by

Jie Mei

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2017

© Copyright by Jie Mei, 2017

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

List of Symbols Used . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Problem Statement . 1

1.2 Proposed Model . 2

1.3 Contributions . 2

1.4 Outline . 3

Chapter 2 Background . 5

2.1 OCR Procedure . 5

2.2 OCR-Error Characteristics . 6

2.3 Modern Post-Processing Models . 7

Chapter 3 Compositional Correction Frameworks 9

3.1 Noisy Channel . 11

3.1.1 Error Correction Models . 12

3.1.2 Correction Inferences . 13

3.2 Confidence Analysis . 16

3.2.1 Error Correction Models . 16

3.2.2 Correction Inferences . 17

3.3 Framework Comparison . 18

ii

Chapter 4 Proposed Model . 21

4.1 Error Detection . 22

4.2 Candidate Search . 22

4.3 Feature Scoring . 24

4.3.1 Edit Distance Family . 26

4.3.2 Character n-Gram Family . 30

4.3.3 Contextual word n-Gram Family 34

4.4 Candidate Ranking . 36

Chapter 5 Evaluation . 38

5.1 Experimental Setup . 38

5.1.1 OCR Dataset . 38

5.1.2 Evaluation Setup . 39

5.2 Detection Evaluation . 43

5.2.1 Detection Recall . 43

5.2.2 Word Boundary Detection Recall 43

5.3 Correction Evaluation . 46

5.3.1 Selected Features Evaluation 46

5.3.2 Ranking Method Selection . 46

5.3.3 Error Correction Model Comparsion 47

5.3.4 Overall Performance . 48

Chapter 6 Conclusion . 50

Bibliography . 51

Appendix A Theories and Definitions 59

A.1 Edit Distance . 59

Appendix B Evaluation Dataset Preprocessing 61

iii

List of Tables

3.1 Correction inferences adopted by models under noisy channel

framework . 14

3.2 Weighting schemes and correction inferences adopted by models

under confidence analysis framework 18

4.1 Overview of applied features in feature families 27

4.2 List of applied edit distance measures and according edit oper-

ation sets. 28

5.1 Precision and recall of OCR on evaluation image files 40

5.2 The Levenshtein edit distance distribution of errors in the ex-

perimental dataset. 40

5.3 The type distribution of error in the experimental dataset. . . . 40

5.4 Overview of applied evaluation measures and their according

feature families . 42

5.5 Confusion matrix for error detection 43

5.6 The number of detected errors and recall of bounded and un-

bounded detections . 44

5.7 The number and the percentage of errors, where correction ex-

ists among the top 10 candidates of any applied feature. 45

5.8 Candidate ranking models comparsion 47

5.9 Correction models comparsion 48

5.10 The percentage of errors in the proposed OCR dataset, where

correction exists among top 1, 3, 5, and 10 candidates suggested

by the proposed model. 49

A.1 List of applied edit distance measures and according edit oper-

ation sets. 60

B.1 Character substitutions in preprocessing the ground truth. . . . 62

iv

List of Figures

2.1 Four major processing steps in a typical OCR procedure. . . . 6

3.1 A simple diagram of the noisy channel model 11

4.1 Proposed model overview. 23

4.2 Examples of edit distance family 31

4.3 Examples of character n-gram family 33

4.4 Examples of context generation 37

5.1 A image segment (a) and its according OCR-generated text

(b) of the evaluation dataset. The recognition errors are high-

lighted in red. 41

5.2 Feature distinctiveness evaluation 45

B.1 The comparison between U+00B0 and U+02DA. 62

v

Abstract

This thesis deals with the problem of error correction for Optical Character Recog-

nition (OCR) generated text, or OCR-postprocessing: how to detect error words in

a text generated from OCR process and to suggest the most appropriate candidates

to correct such errors. The thesis demonstrates that OCR errors are inherently

more protean and volatile than handwriting or typing errors, while existing OCR-

postprocessing approaches have different limitations. Through analyzing the recent

development of error correction techniques, we illustrate that the compositional ap-

proach incorporating correction inferences is broadly researched and practically use-

ful. Thus, we propose an ensemble regression approach that composite correction

inferences for ranking correction candidates of complex OCR errors. On practical

side, we make available a benchmark dataset for this task and conduct a comprehen-

sive study on performance analysis with different correction inferences and ensemble

algorithms. In particular, the experimental results show that the proposed ensem-

ble method is a robust approach that is able to handle complex OCR errors and

outperform various baselines.

vi

List of Symbols Used

Constants

Z a normalization constant

Λ an empty symbol, Λ /∈ Σ

Functions

g a general math function

δ an edit distance measure

φ a correction likelihood inference function

f a frequency lookup function

p a probability function

Sequences

S = {si}n, s.t.si ∈ Σ, n ≥ 0, a string

S<i,j> = {si, . . . , sj}, a substring of S

Σ∗ a symbol sequences of any length

Sets

R real numbers

Σ finite set of symbols

Σ+ = Σ ∪ {Λ}

vii

Acknowledgements

I would like to give sincere thanks to my supervisor Evangelos E. Milios and advisors

Aminul Islam and Abidalrahman Moh’d, for their continued support and encourage-

ment. I would like to dedicate this thesis to my parents, whose love accompanied me

through every step of my way.

viii

Chapter 1

Introduction

1.1 Problem Statement

An increasing amount of data is produced and transformed into the digital form

these days, including magazines, books, and scientific articles. Using the graphic

formats, like Portable Document Format (PDF) or Joint Picture Group (JPG), is a

comprehensive solution for efficient digitization as well as better preserving the page

layout and the graphical information (i.e., charts and figures). Since information

in such formats is not machine-readable, analyzing such data relies heavily on the

accuracy of Optical Character Recognition (OCR) (Doermann, 1998). However,

OCR systems are imperfect and prone to errors.

Post-processing is an important step in improving the quality of OCR output,

which is crucial to the success of any text analyzing system in pipeline. An OCR

post-processing model attempts to detect misspellings in noisy OCR output and

correct such errors to their intended representations. Many machine learning ap-

proaches (Lund and Ringger, 2009; Lund et al., 2011, 2013a,b) correct the OCR-

generated errors by selecting the most appropriate correction among candidates.

OCR-generated errors are more diverse than handwriting errors in many aspects (Jones

et al., 1991; Kukich, 1992b). For example, <Lanius → Lioiiits> is a typical OCR

error, of which is hard to guess the according correct form given the error word. Ma-

chine learning approaches incorporate different features enabling more robust can-

didate selection, instead of inferring from limited observations, for example, using a

probabilistic-based model (Taghva and Stofsky, 2001).

While machine learning approach exhibits advantages in correcting OCR-generated

1

2

texts, two problems emerge from the existing models: First, some models (Lund

and Ringger, 2009; Lund et al., 2011, 2013a,b; Kissos and Dershowitz, 2016) limit

candidate suggestions from the recognition output of OCR engines. The errors un-

recognized by all OCR engines are thus unable to be corrected. This issue can be

problematic especially when original input suffers from degradation, for example,

historical documents (Ntirogiannis et al., 2013). Secondly, another class of mod-

els (Kissos and Dershowitz, 2016) uses the frequencies of both candidate and related

n-grams from corpus as features for training. Although n-gram statistics is shown to

be effective in correcting real-word spelling errors (Islam and Inkpen, 2009c), train-

ing with only n-gram features does not capture the diverse nature of OCR errors and

may lead to a biased model where candidates with low frequency in the corpus tend

to be not selected.

1.2 Proposed Model

In this thesis, we propose an OCR post-processing error correction model that lever-

ages different features through a learning process. Our model applies different fea-

tures to avoid bias and improve the correction accuracy. To address the limitation of

candidate suggestion, we enhance the scope of the candidates of an error by consider-

ing all the words available in the vocabulary within a limited Damerau-Levenshtein

distance (Damerau, 1964) and then use features to narrow down the candidates num-

ber. The proposed model ranks the candidates by a regression model and shows that

more than 71.2% of the errors can be corrected on a ground truth dataset. For

25.9% of the uncorrected errors, our model could provide the correction in top five

suggestions.

1.3 Contributions

To sum up, our contributions are as follows:

3

– We design a set of OCR-specific features that quantify the likelihood of a can-

didate word being an error correction. These features search lexical, semantic,

and contextual clues from exteral resoureces to evaluate each candidate.

– We propose an OCR post-processing model which integrates OCR-specific fea-

tures in a ensemble regression approach. The evaluation result shows that

the proposed model is capable of providing high quality candidates in the top

suggested list.

– We make available a ground truth OCR-error dataset, which is generated from

a book in Biodiversity Heritage Library. This dataset lists the mappings from

OCR-generated errors to their intended representations and, as far as we know,

is the first for this task to use directly for benchmark testing.

1.4 Outline

The rest of the thesis is structured as follows:

Chapter 2 We introduce the background knowledge with the focus on describing

the challenges of OCR-error correction and limitations on existing approaches. We

first analyze how the OCR error is different from other natural language errors, i.e.

spelling error or grammar error, and why correcting such error is a hard task remain

unsolved. Then, we discuss the gist and limitations of the proposed attempts on

correction of OCR-errors in last two decades.

Chapter 3 We claim that two influential error correction approaches – noisy chan-

nel and similarity analysis – are essentially analogous compositional frameworks in-

corporating correction inferences. In this chapter, we introduce the compositive form

and correction models of these two compositional frameworks. Then, through com-

parison and analysis, we illustrate the similarities and differences between these two

frameworks.

4

Chapter 4 We propose and introduce a regression framework that has a stronger

fitting capability than two previously introduced compositional frameworks. In ad-

dition, we describe in detail the procedure and setup of using this framework on

OCR-postprocessing task.

Chapter 5 We conduct an evaluation on analyzing the performance of each step

of the proposed regression framework. Then, we use some distinct output records to

discuss the overall result and the framework characteristic.

Chapter 2

Background

Optical character recognition (OCR) is the process of converting images of typed,

handwritten or printed text into machine-readable text, where text can be retrieved

from a scanned document, an electronic signature, or signs and billboards in a land-

scape photo. It is a technique that widely used for digitizing printed texts so that

contents can be electronically edit, searched, stored, and used in a text analytics and

data mining pipline.

Although recognition techniques are ever improving, the OCR engines are less

than perfect in handling real-world document image. To improve the recognition

accuracy, modern OCR engines involves an intelligent post-processing step after the

standard recognition procedure. Different from OCR as an image pattern recog-

nition technique, OCR post-processing is usually considered as a natural language

processing task utilizing lexical and contextual information. Although the task of

correcting OCR-generated errors can be categorized as a subtask of automatic text

correction, the unique generative mechanism of OCR error makes it different from

and more challenging than spelling or grammar errors in detection and correction.

2.1 OCR Procedure

As shown in Figure 2.1, a typical OCR procedure involves the following four major

steps:

– Scanning: scan the paper document and produce an electronic image. The

quality of the image is determined by the document and scanner.

5

6

– Zoning: order the various regions of text in the image. This step may contains

optional image analysis operations, including image quality assessment, text

line detection, and noise removal.

– Segmentation: breaks the various zones into their respective components (zones

are decomposed into words and words are decomposed into characters).

– Classification: classify the segmented images into their respective ASCII char-

acters.

2.2 OCR-Error Characteristics

The word error rate of OCR engines, in practice, is in the range of 7-16% (Santos

et al., 1992; Jones et al., 1991), which is significantly higher than the 1.5-2.5% for

Handwriting (Wing and Baddeley, 1980; Mitton, 1987) and the 0.2-0.05% for the

edited newswire (Pollock and Zamora, 1984; Church and Gale, 1991). The patterns of

OCR-generated errors tend to vary for different OCR engines and type fonts (Kukich,

1992b). We summarize some distinct characteristics of the OCR-generated errors,

which make the correction task different from and more challenging than spell and

grammar error correction:

Complex non-standard edits The human-generated misspellings are character-

level edits, which can be categorized into one of the following four standard types:

insertion, deletion, substitution, and transposition. The majority of spell correction

errors, roughly 80%, is single edit from the intended word (Damerau, 1964) and tend

Figure 2.1: Four major processing steps in a typical OCR procedure.

7

to be within one length difference (Kukich, 1992b). However, a significant fraction

of OCR-generated errors are not one-to-one character-level edit (e.g., ri → n or m

→ iii) (Jones et al., 1991).

Multi-factor error generation OCR errors are generated in different processing

steps due to various factors. Taghva and Stofsky (2001) trace the errors associated

with the primary OCR steps involved in the conversion process: (1) scanning error

caused by the low paper/print quality of the original document or the pool condition

of the scanning equipment. (2) zoning error caused by incorrect decolumnization

or complex page layout. (3) segmentation error caused by the broken characters,

overlapping characters, and nonstandard fonts in the document. (4) classification

error caused by the incorrect mapping from segmented pixels to a single character.

Multi-source dependent The characteristics of OCR-generated errors vary ac-

cording to not only human reasons (e.g., publishers or authors) but also non-human

causes (e.g., text font or input quality) (Jones et al., 1991). These are especially

sensitive between OCR engines. Because different OCR engines use different tech-

niques and features for recognition leads to a different confusion probability distri-

bution (Kukich, 1992b).

2.3 Modern Post-Processing Models

The literature of OCR post-processing research exhibits a rich family of models

for correcting OCR-generated errors. The post-processing model is an integrated

system, which detects and corrects misspellings of both non-word and real-word in

the OCR-generated text.

Some studies view the post-processing as the initial step in a correction pipeline

and involve continuous human intervention afterwards (Taghva et al., 1994; Taghva

and Stofsky, 2001; Mühlberger et al., 2014). These models are designed to reduce the

human effort in correcting errors manually. Taghva et al. (1994) integrate dictionaries

8

and heuristics to correct as many OCR errors as possible before these are given to

human correctors. Their subsequent work, Taghva and Stofsky (2001), records the

previous human corrections to update the underlying Bayesian model for automatic

correction. Mühlberger et al. (2014), as an extreme case, build a full-text search tool

to retrieve all occurrences of original images given a text query, which fully relies on

the user to validate and correct the errors.

One direction of work ensembles outputs from multiple OCR engines for the same

input and selects the best word recognition as the final output (Klein et al., 2002;

Cecotti and Belayd, 2005; Lund and Ringger, 2009; Lund et al., 2011, 2013a,b). Klein

et al. (2002) show that combining complementary results from different OCR models

leads to a better output. Lund et al. (2011) demonstrate that the overall error rate

decreases with the addition of different OCR models, regardless of the performance

of each added model. Lund et al. (2013a) use machine learning techniques to select

the best word recognitions among different OCR outputs. Lund et al. (2013b) apply

both OCR recognition votes and lexical features to train a Conditional Random

Field model and evaluate the test set in a different domain. While such models have

proved useful, they select words only among OCR model recognitions and are blind

to other candidates. Besides, they require the presence of the original OCR input

and effort of multiple OCR processing.

Another class of post-processing models abstracts from OCR engines and lever-

ages statistics from external resources (Bassil and Alwani, 2012; Kissos and Der-

showitz, 2016). Kissos and Dershowitz (2016) use three n-gram statistical features

extracted from three million documents to train a linear regressor for candidate rank-

ing. Bassil and Alwani (2012) make use of the frequencies in the Google Web 1T

n-gram corpus (Brants and Franz, 2006) for candidate suggestion and ranking. Can-

didates suggested from these models are not restricted to exist in OCR recognitions.

However, existing methods make use of solely n-gram frequencies without knowing

the characteristics of OCR errors and are, thus, bias to select common words from

the n-gram corpus.

Chapter 3

Compositional Correction Frameworks

Most of the techniques for correcting OCR errors spring from the experience of

general error correction. To improve the state-of-the-art in OCR-postprocessing, we

should look at the development and evolution of the correction models in a bigger

scope.

The research for automatic text correction techniques has a history more than

a half century, where a large number of methods have been proposed. Throughout

this broad literature, we can see some correction techniques have been continuously

investigated and extended by many works in the last century (Kukich, 1992b). These

chains of researches have built solid foundations for error correction, and the main

idea of these techniques have kept influencing the leading developments in this re-

search domain.

Meanwhile, the recent development of correction models in past two decades wit-

ness a tendency of inference composition, where a correction model combines multiple

correction techniques as inferences to improve the overall performance. Composit-

ing measures is serverd as an performance optimization technique and have been

proved to be effective in estimating text semantic similarity (Bär et al., 2012; Mei

et al., 2016). We categorize recently developed models into two major compositional

frameworks: noisy channel and similarity analysis. Beside the different normaliza-

tion restrictions to the inferences, we argue that the composition strategy of two

frameworks are analogous. Indeed, a correction model built upon noisy channel can

be represented in similarity analysis framework and vice versa.

In this chapter, we will review two compositional frameworks in error correction

9

10

with the focus on their compositive form, correction applications, and applied infer-

ences. With above knowledge, we made a comparison and illustrate the similarities

and differences between these two frameworks.

11

3.1 Noisy Channel

The noisy channel, first introduced by Shannon (1948a,b) in his famous information

theory, is a message communication framework modeling the information distortion

during transmission. Shown in Figure 3.1, this framework simulates the information

generation, distortion, and observation separately, and models each procedure in a

probabilistic manner. Using Bayes’ rule, predicting the original information relies

only on the product of two independent models: the channel model and the source

model.1

x̂ = arg max
x

p(x|y)

= arg max
x

p(y|x) p(x)

p(y)

= arg max
x

p(y|x)︸ ︷︷ ︸
channel
model

p(x)︸︷︷︸
source
model

(3.1)

Figure 3.1: A simple diagram of the noisy channel model. The information trans-
misstion is separated into three procedures controlled by different models:

– The source model produce a message x of probability p(x).

– The channel model transmit and modify the message into another message y
with probability p(y|x).

– The receive model get the message y with the observation probability p(y).

1source model is also called language model in the literature of NLP.

12

The intuitive simplification and straightforward decomposition make the noisy

channel a robust theoretic framework widely used in spell correction, question an-

swering, speech recognition, and machine translation. This framework allows dif-

ferent inferences to be merged into one correction model, where the collaborated

inferences are carried out in the product space

x̂ = arg max
x∈X

Y∏
yi

p(yi|x) p(x). (3.2)

There are two types of collaboration semantics: first, a channel model can further

decompose into submodels that handle different parts of the correction. For ex-

ample, Segaran and Hammerbacher (2009) applied different probabilistic inferences

for different edit operations in a Damerau-Levenshtein edit transformation. Second,

different noisy channels that using different correction inference can be used combi-

natorially. For example, combining character edit probabilities with contextual word

n-gram probabilities (Pirinen et al., 2012).

3.1.1 Error Correction Models

Kernighan et al. (1990) made an early attempt to use noisy channel upon Damerau-

Levenshtein distance measures (Damerau, 1964) in spell correction task. Given a

word list corrected from external resources, he searched candidates that differ from

the typo by one single edit operation: insertion, deletion, substitution, or reversal.

The probability of each character and edit operation are computed as the source and

channel model. Later models considered candidates that require multiple edit oper-

ations transforming from the typo, where the channel model is the product of edit

operations in the transformation. Pirinen et al. (2010) wrapped the noisy channel

into a finite-state transducer, which transition weights are trained from word fre-

quencies. Brill and Moore (2000) suggested that a correction should be inferred by

not only the characters that were modified in the edit operation but also the context

defined by the neighboring characters. For example, to correct a misspelling word

13

confidant, model should use p(ant|ent) rather than p(a|e). Therefore, he proposed an

improved noisy channel model that partitions the error word into non-overlapping

substrings and estimates the channel model of each paired partition. The chan-

nel model of the entire string is the product of channel models from all partitions.

Whitelaw et al. (2009) and Cucerzan and Brill (2004) applied this improved model

on web data. In addition, Cucerzan and Brill (2004) proposed an iterative correction

process, where the correction model is used in each iteration. This iterative process

terminates when the correction model predicts the input string as the correction.

Context words are the major inference in correcting real word errors, since char-

acter mismatch is not the reason for making such errors. Mays et al. (1991) use

trigram language model to approximate the probability of a sentence, where error

word is substituted by a candidate. The sentence probability is used as the source

model to infer the coherence of using such candidate in a specific context. Pirinen

et al. (2012) considered the part of speech (POS) tags of the preceding words in a

hidden Markov model in estimating p(x). He also experimentally shows that using

context improves the performance of noisy channel in both English and Finnish.

3.1.2 Correction Inferences

Correction inference refers to a quantitative measure that supports decision making

in the correction task. Some influential inferences are extensively researched and well

developed in the early literature (Kukich, 1992b). Although these inferences are no

longer used as a standalone correction model, they are components widely adopted

in modern correction models under compositional frameworks.

In Table 3.1, we summarize the correction inferences used in models that have

been described previously in building the noisy channel, where each type of inference

is annotated as φ with subscripts.
∏

Y indicates that the inference for objectives y ∈

Y is ensembled in the product space, where Y can be either E for edit transformation,

W for word string, or C for preceding context words.

14

Table 3.1: The correction inferences adopted by models under noisy channel frame-
work using Eqn. 3.2.

Model channel model source model

Kernighan et al. (1990) φedit φwp

Mays et al. (1991) φuni
∏
C φw3g

Brill and Moore (2000)
∏
W

∏
E φedit φwp

Cucerzan and Brill (2004)
∏
W

∏
E φedit φwp

Segaran and Hammerbacher (2009)
∏
E φedit φwp

Whitelaw et al. (2009)
∏
W

∏
E φedit φwp

Pirinen et al. (2010)
∏
E φedit φwp

Pirinen et al. (2012)
∏
E φedit φhmm

Inferences are categorized based on their dependencies, regardless of the addi-

tional transformation or smoothing function on their representation. For example,

the source model p(x) is f(x)+0.5
N

in Kernighan et al. (1990), (f(x)
N

)λ in Whitelaw et al.

(2009), and − log(f(x)
N

) in Pirinen et al. (2010). These representations refer to the

same type of inference that relies on the unigram frequency in a corpus. Here, we

brief the general form of the inference types that has been used:

Weighted elementary edit operation φedit, depend on the frequency of related

character unigram and bigrams. Given an error word S = {si}n, the probability

of Damerau-Levenshtein edit operations is given by:

φedit ∝

fadd(<si,c>)
f(<si,c>)

if insert a character c after i-th position

fdel(<si−1,si>)
f(si)

if delete the character at i-th position

f sub(<si,c>)
f(si)

if substitute the character at i-th to a different character c

f tan(<si−1,si>)
f(<si−1,si>)

if transpose two characters at i-th and (i+1)-th position

where f(·) indicates the frequency count in the training data, and function

with subscripts refers to the frequency count in the corresponding confusion

matrix. A confusion matrix records how many times different types of edit

operations appears in a character bigram in the dataset. For example, f add(<

15

a, b >) indicates the number of character bigram < a, b > exists in the dataset,

where b is a inserted character in the transformation from an error word to

its correction. With an exception of Kernighan et al. (1990) that selected

candidates with only one edit operation to the error word, other models take

the product of the weight of multiple edit operations in a string transformation.

Cucerzan and Brill (2004) iteratively partitioned the error string into non-

overlapping substrings and estimated weighted edit transformation on each

substring.

Uniform error rate φuni, proposed by Mays et al. (1991), is a simple approxima-

tion without statistics from a training dataset. It set up a fixed error rate (1−α)

for any word and the probability for any candidate is uniformly distributed

among all candidates with Damerau-Levenshtein edit distance 1. Given a set

of candidates C that is 1 distance to y, the channel model is

p(y|x) ∝

α if x = y

1−α
|C| if x ∈ C

0 otherwise.

Word probability φwp, given by p(x) ∝ f(x)
N

, where N is the size of the training

data or an external corpus. Besides using smoothing techniques to deal with

the out-of-vocabulary word, Whitelaw et al. (2009) take the λ-th power of the

word probability to adjust the degree of dependency on the word popularity.

For example, with the increasing of λ, the correction model will bias to select

the candidate with high frequency.

n-gram Language Model φwng, approximates the probability of a word sequence

{xi}m as n-th order Markov model, that is

p({xi}m) ∝
∏

j∈[n,m]

p(xj|xj−(n−1), . . . , xj−1).

16

Mays et al. (1991) used the sentence probability measured by trigram language

model as the source model.

POS hidden Markov model φhmm, assums that the word probability is deter-

mined by a Markov process with POS tags as the hidden states, that is

p(xi) ∝ p(xi|ti)p(ti|ti−1, ti−2, . . .),

where xi is the i-th word in a text and ti is the according POS tag of the i-th

word.

3.2 Confidence Analysis

Confidence analysis is a quantitative approach that rate the correction confidence

of candidate words. A confidence measure, deduce from one or more correction

inferences, usually assigns each candidate a non-negative score. Existing correction

models of this approach, listed in Table 3.2, usually combine multiple confidence

measures and take the weighted sum as the final score:

x̂ = arg max
x∈X

n∑
i

wiφi(x, y), (3.3)

where φi(x, y) for i ∈ n is one of n confidence measures that evaluate candidate x to

error y.

3.2.1 Error Correction Models

Islam and Inkpen (2009a,b,c) proposed a type of confidence models that uses con-

textual and lexical inferences for correcting real-word errors. One applied confidence

measure considers the popularity of using a candidate in the given context. It sub-

stitutes the error word by candidate words and constructs word trigrams with a

candidate and neighboring words in the text. The confidence of a candidate with

17

according trigrams t1 is calculated as f(ti)
maxt∈T f(t)

, where f(·) is the frequency of a

trigram in Google Web 1T n-gram corpus (Brants and Franz, 2006) and T is a set

of trigrams constructed by different candidates of this error word. The other mea-

sure uses the weighted sum of four modified LCS measures to evaluate the lexical

similarity between a candidate and the error word.

Islam and Inkpen (2011) described another correction model that rates the gen-

erated candidate texts, where each candidate text is a candidate correction for the

entire input text. This model combines three measures: two pairwise text similarity

measures that calculate the degree of word alignment and misalignment; and a text

popularity measure that considers the frequencies of the consisting word 5-grams in

Google Web 1T n-gram corpus.

Schaback and Li (2007) and Bao et al. (2011) introduced two models that learned

weighting scheme using Support Vector Machine (Joachims, 1999). Kissos and Der-

showitz (2016) proposed an OCR correction model that learned weights using logistic

regression. Benefitting from the learning approach, these models are flexible in dis-

tributing weights among confidence measures. Thus, these two models separated

the same type of correction inference into different confidence measures, where each

measure with a different focus. For example, Schaback and Li (2007) adopted three

measures of context bigram coocurrence popularity, where two use f(xi,xi+1)
f(xi)

with

different neighboring words and the last one takes the product of the previous two.

To correct errors in email, Bao et al. (2011) made three different binary measure

for identifying whether a candidate word exists in “Subject”, “From”, or “X-From”

field. 2

3.2.2 Correction Inferences

Inferences are categorized by the statistics used in the calculation and are annotated

as φ with subscripts, including φedit uses character edits, φwng uses word n-gram

statistics (e.g. φw1g, φw2g), φph uses phonetic information, φlex uses lexicons, and

2More to read: (Gao et al., 2010; Sun et al., 2010; Flor)

18

Table 3.2: Weighting schemes and correction inferences adopted by models under
noisy confidence analysis framework using Eqn. 3.3.

model weighting scheme correction inferences

Schaback and Li (2007) SVM φw1g +
∑
φw2g +

∑
φctxt

Islam and Inkpen (2009a,b,c) huristics
∑
φLCS + φw3g

Gao et al. (2010) averaged
∑
φLCS + φw3g

Islam and Inkpen (2011) huristics φw5g +
∑
φctxt

Bao et al. (2011) SVM φedit + φph + φw1g +
∑
φlex

Kissos and Dershowitz (2016) logistic regression φedit + φw1g +
∑
φw2g

φctxt uses statistics of context words (excluded by φwng).
∑

indicates that there are

multiple measures of the same inference type are applied in the model.

3.3 Framework Comparison

A compositional correction frameworks that combine correction inferences are broadly

researched in recent literature. Noisy channel interprets the likelihood under proba-

bilistic and decomposes using Bayes’s rule, while the confidence analysis summates

different similarity measures between the error and candidate words. The intuitive

and straightforward decompositions of both frameworks benefit the modeling in many

aspects for the error correction task.

First of all, the correction model in this approach is easy to build from data. For

the noisy channel, given a specific environment, for example handwriting documents

or OCR-generated texts, the behavior of error generation p(y|x) is fixed, thus can

be directly estimated by a set of erroneous observations. The source model p(x) is

unconditional so that can be estimated from unlabeled data set. On the other hand,

confidence analysis relies on independent correction inferences, where inferences are

similarity measures that computed from corpus statistics, such as, word or n-gram

frequencies.

Secondly, different correction inferences can be merged into one model, where

the collaborated inferences are carried out in the summation or production space.

19

There are two types of collaboration semantics: first, a channel model can further

decompose into submodels that handle different parts of the correction. For example,

Kernighan et al. (1990) applied different probabilistic inferences for different edit

operations in a Damerau-Levenshtein edit transformation. Second, noisy channels

using different correction inference can be used combinatory. For example, combining

character edit probabilities with contextual word n-gram probabilities (Pirinen et al.,

2012).

It is easy to observe that the compositional forms of two frameworks are anal-

ogous. The compositional form of the noisy channel, in Eqn. 3.2, is able to be

transformed to summation in a log space

x̂ = arg max
x∈X

(Y∑
yi

log p(yi|x) + log p(x)
)
. (3.4)

Comparing with another summation form, which is Eqn. 3.3 for confidence analysis,

there are some differences in compositing correction inferences. We analyze merit

and demerit along with the differences between two frameworks as follows:

– Noisy channel restricts the adopted inferences to be probability measures, while

confidence analysis accepts any quantitative measure. For some correction in-

ferences, this difference may only lead to different normalization factors. For

example, an inference given by word frequency in a corpus is f(x)
Z

, where Z can

be any variable to use in confidence analysis, but ought to be the corpus size

in order to be a probability measure and adopted in the noisy channel. More

importantly, this restriction rejects some inferences. For example, probabili-

ties of edit operations in an edit transformation is a common channel model,

however, the unit-cost edit distance value is hardly being directly considered.

– confidence analysis involves weighting schemes, while noisy channel does not.

This feature let confidence analysis be more expressive in reasoning a selection

decision by composition. It is also a reason why confidence analysis accepts

inferences that do not directly infer a correction probability – a weak inference

20

will have lower weight and vice versa – the contribution to the decision making

is being considered in the weighting scheme. In this regard, noisy channel is

an over-simplification since inferences are equally weighted.

On practical side, the distinction between two frameworks is getting blurred on some

proposed correction models (Gao et al., 2010; Bao et al., 2011). Although claimed

to use noisy channel framework, some models are actually beyond its paradigm and

involve above features from confidence analysis.

Chapter 4

Proposed Model

In the previous chapter, we illustrated that the inference composition is an influential

correction approach, which is easy to build from data and to expand with multiple

inferences. Comparative analysis of two compositional frameworks shows that using

a weighting scheme is more plausible in reasoning contributions among generalize

inferences, which are quantitative measures of lexical or contextual similarity and

their importance to the decision making are varied.

For OCR postprocessing task, the generation of OCR error are complex, and

hence the effectiveness of some widely adopted inferences is ambiguous. For example,

the error 〈da}’→ day〉 caused by segmentation issue during OCR procedure, which

incorrectly separate “y” into “}’”. It takes two dependent edit operations. However,

the correlation of these two operations cannot be considered in simple composition.

Simply extend the edit operation into character n-gram is likely to get overfit to the

training data.

Another issue is the limit amount of the labeled OCR error records. It is prob-

lematic when correction models rely on inferences from error patterns and some

error patterns are not observed in the training data. Such case is likely to happen

considering the protean natural of OCR errors.

In this chapter, we propose an ensemble regression approach for correction OCR

errors. Ensemble method is the learning algorithm that combines multiple predictors

to improve the overall prediction result. Empirically, ensembles tend to yield better

performance when there is high diversity among the models (Kuncheva and Whitaker,

2003; Sollich and Krogh, 1996) and to reduce the generalization error. Different

from confidence analysis models that learn a weighing scheme among features, the

21

22

ensemble method is adopted to learn to rank the candidates for an error according

to the confidence as an intended correction. Given these problems that make OCR

correction hard to be modeled directly, the proposed approach uses inferences that

describe the different aspects of lexical or contextual features on candidates. Consider

the limited amount of data that makes supervised correction models less accurate,

the training process involves not only the correct candidates but also the rejected

ones. Figure 4.1 shows the overview of the proposed model. The details of each

processing steps will be introduced in the following sections.

4.1 Error Detection

Error detection step identifies errors in the tokenized text, which is the first step

in the correction procedure. Since a correct word will not proceed to the further

correction steps, we want to set a weak detection restriction to filter only highly

confident words. We rely on the n-gram frequency to determine the correctness of a

word. A word is detected as an error if any one of the following conditions does not

fulfill.

– Consider a common word is less likely to be an error word, the 1-gram fre-

quency of a word should be greater than a frequency threshold. The frequency

threshold varies with different word length.

– A word is likely to be correct if this word with its context occurs in other

places. We use a sliding window to construct n-gram contexts for a word. The

frequency of one of the context in the n-gram corpus should be greater than a

frequency threshold.

4.2 Candidate Search

We select a candidate set for each error, which contains all the words in the vocabu-

lary within a limited number of character modifications. To be specific, let Σ be the

23

symbol set, L ∈ Σ∗ be a language lexicon. The candidate set for a detected error we

is:

{ wc |wc ∈ L, dist(wc, we) ≤ δ}, (4.1)

Figure 4.1: Proposed model overview.

24

where dist(∗) is the minimum edit distance and δ is a distance threshold. Damerau-

Levenshtein distance (Damerau, 1964), which is used in most of the spell correction

models for locating the candidates, considers all four character-level editing types.

Since transposition errors are common in human-generated text but rarely occur in

the OCR-generated text, we apply Levenshtein distance (Levenshtein, 1966), which

uses a simpler operation set without transposition.

4.3 Feature Scoring

We discuss different features that can be used to quantify the likelihood of a candidate

word being an error correction. From the mathematical point of view, each candidate

evaluation feature is a function

φ : Σ∗ × Σ∗ → R (4.2)

that receives two strings – an error word and a candidate word – and produces a

quantitative degree of likelihood that the given candidate is an expected correction.

With the focus on evaluating correction candidates, we modify and adopt devel-

oped measures from correction inferences used in the error correction literature as

well as some closely related NLP tasks:

Approximate String Mathing The general goal of this task is to evaluate the

degree of lexical differences between two sequential patterns. A typically usage

scenario compares a corrupted sequence with a correct seqeunce, and model

the divergence as the minimum effort to align two sequences. The application

of this task including detecting mutations in DNA sequences (Sellers, 1980;

Needleman and Wunsch, 1970; Sankoff and Kruskal, 1983; Altschul et al., 1990;

Myers, 1991, 1994; Waterman, 1995; Yap et al., 1996; Gusfield, 1997), correct-

ing error for natural language texts (Wagner and Fischer, 1974; Nesbit, 1986;

Owolabi and McGregor, 1988; Kukich, 1992b; Zobel and Dart, 1996; French

25

et al., 1997; Gonnet and Baeza-Yates, 1991), recovering signals that transmit-

ted via noisy channels (Levenshtein, 1965, 1966; Vintsyuk, 1968; Dixon and

Martin, 1979), and many more mentioned in Sankoff and Kruskal (1983) as

well as Kukich (1992b).

Word Similarity This task evaluates the degree of semantic relatedness between

two words. The models of this task infer pairwise word similarities from lexi-

cal (Kondrak, 2005; Islam and Inkpen, 2008), semantic (Strube and Ponzetto,

2006; Gabrilovich and Markovitch, 2007), and contextual corelations (Finkel-

stein et al., 2002; Islam and Inkpen, 2006; Jarmasz and Szpakowicz, 2012; Islam

et al., 2012).

These adopted measures calculate the lexical, semantic, or contextual related-

ness between two strings. Note that some measures proposed in the above tasks that

makes use of the semantic relations are not suitable for this problem. For example,

Jarmasz and Szpakowicz (2012) represent the given word as a TF-IDF (Salton and

McGill, 1986) vector of the closely related concepts in Wikipedia and estimate pair-

wise word similarity using cosine measure (Zobel and Moffat, 1998). This measure

is not useable for representing error word and such semantic clue is irrelevent to

evaluate correction candidate.

To increase the adaptiveness of feature values in learning models (Juszczak et al.,

2002; Mohamad and Usman, 2013), we linearly rescale each feature value into range

[0, 1]

φ(S1, S2) =
g(S1, S2)− gmin

gmax − gmin

, (4.3)

where g(·) and φ(·) are the feature values before and after the rescaling procedure.

gmin and gmax are the minimum and maximum values computed using this feature in

a processing batch. For feature function that has gmin ≡ 0, we can simplify Eqn. 4.3

26

as

φ(S1, S2) =
1

Zf

g(S1, S2), (4.4)

where Zf = gmax is a feature specific constant. We do not apply standarization

since the feature values, from either a string similarity measure or a string distance

measure, are not Gaussian distributed. Considering the long tail distribution of word

(n-gram) distribution, for measures that take advantage of aggregated frequencies

from corpus, the feature values are mapped to the log space with add-one smooth

before rescaling.

φ(S1, S2) =
log g(S1, S2)− log gmin

log gmax − log gmin

≈ log
g(S1, S2) + 1

gmax

. (4.5)

We classify the candidate evaluation features into three families: edit distance

family, character n-gram family, and contextual word n-gram family. The measure

classification is base on the principles in similarity/dissimilarity computation, where

edit distance family considers the single character modification, character n-gram

family makes uses of the string subsequences, and contextual word n-gram family

infers correction confidence from neighboring words. Table 5.4 lists all the measures

that are considered in this thesis. We will elaborate each of these three families on

the following subsections.

4.3.1 Edit Distance Family

Edit distance family refers to a set of string simlarity/dissimilarity measures that

take advantage of edit operations. An edit operations is a character level modifica-

tion, which contains four types – insertion, deletion, substitution one character into

another, transposition between two consequtive characters – different measures allow

only a subset of edit operations to be used, which are listed in Table 4.2. Some

measures calculate the standard edit distance between two strings – the minimum

27

Table 4.1: Overview of applied features in feature families

Feature Family Feature Measure Score Function

Edit Distance

Hamming Distance Eqn. 4.6

Longest Common Subsequence Distance Eqn. 4.6

Levenshtein Distance Eqn. 4.6

Damerau-Levenshtein Distance Eqn. 4.6

Optimal String Alignment Eqn. 4.6

Jaro-Winkler Distance Eqn. 4.7

Longest Common Subsequence Similarity Eqn. 4.8

Character n-Gram

n-gram Jaccard Coefficient Eqn. 4.9

q-Grams Distance Eqn. 4.10

n-Grams Distance Eqn. 4.11

Contextual Word n-Gram

Language popularity Eqn. 4.12

Lexicon existence Eqn. 4.13

Context Coherence Eqn. 4.14

Approximate Context Matching Eqn. 4.14

number of edit operations required to transfrom one string to another1 – includ-

ing Hamming distance, longest common subsequence distance, Levenshtein distance,

Damerau-Levenshtein distance, and Optimal String Alignment. The scoring function

of these standard edit distance measures is

φdist(S1, S2) =
δdist(S1, S2)

Zdist

, (4.6)

while other measures use distinct formulas to capture lexical characteristics in dif-

ferent apects.

Hamming Distance (Hamming, 1950) is the edit distance allowing only substitu-

tion operation and |S1| = |S2|. The Hamming distance was developed for error

detecting and correcting codes. It is used to define some important notions

in disciplines including information theory, coding theory, and cryptography.

1See Appendix A.1 for the definition of edit distance measuring.

28

Table 4.2: List of applied feature measures and according edit operation sets. The
measure name that annotated with * indicates its compuatation procedure does not
follow the standard edit distance.

Feature Measure Edit Operation Set

Hamming Distance subsubsection

Jaro-Winkler Distance∗ transposition

Longest Common Subsequence Distance insertion, deletion

Longest Common Subsequence Similarity∗ insertion, deletion

Levenshtein Distance subsubsection, insertion, deletion

Damerau-Levenshtein Distance subsubsection, insertion, deletion, transposition

Optimal String Alignment subsubsection, insertion, deletion, transposition

Hamming distence is limited in comparing strings with the equal length. Thus,

it is not able to be applied as a metric for general string comparison.

Longest Common Subsequence Distance (Navarro, 2001) is the edit distance

allowing insertion and deletion operations. Longest common subsequence (LCS)

(Sankoff, 1972) algorithm measure the length of the ordered character pairs be-

tween two strings. LCS distance is a distance metrics based on LCS, which

measures the number of unpaired characters.

Levenshtein Distance (Levenshtein, 1966) is the edit distance allowing substitu-

tion, insertion, and deletion operations. Levenshtein distance was first pro-

posed in the context of binary error-correcting codes, which allows three types

of edit operations: reversal, deletion, and insertion. Wagner and Fischer (1974)

generalized this work with finite alphabet, w.l.o.g, reversal operation became

substitution which denotes a character changes into another one.

Damerau-Levenshtein Distance (Damerau, 1964) is the edit distance allowing

substitution, insertion, deletion, and transposition operations. Compare with

Levenshtein distance, Damerau-Levenshtein distance considers transposition

operation and is able to includes 80% of human misspellings within distance 1

(Damerau, 1964).

29

Optimal String Alignment (Boytsov, 2011) add an addition restriction to Damerau-

Levenshtein Distance that there allows only one edit operation performed on

a substring.

Jaro-Winkler Jaro distance (Jaro, 1989) is a metric that suitable for measuring

phrases such as person or place names

φJaro(S1, S2) =
1

3
(
m

|S1|
+

m

|S2|
+
m− t
m

), if m > 0 or 0 otherwise,

where t refers to the number of transposition operation between two strings

and m is the number of aligned characters. The character alignment is defined

as two identical characters from two strings s1 and s2 respectively and the

difference of character index is no more than bmax(|s1,s2)
2

c − 1. Jaro-Winkler

distance (Jaro, 1990) is a variation of Jaro distance (Jaro, 1989), which is

favourable to string pairs with common prefix

φJaro-Winkler(S1, S2) = φJaro(S1, S2) + l · p · (1− φJaro(S1, S2)) (4.7)

where l is the length of the common prefix and p is a constant scaling factor

which is set to 0.1 in the proposed paper.

LCS Similarity (Allison and Dix, 1986) (LCS) is an alternative approach than edit

distance in matching similar strings. There are variations of LCS: Normalized

Longest Common Subsequence (NLCS), which take into account the length of

both the shorter and the longer string for normalization.

φNLCS(S1, S2) =
2 · φLCS(S1, S2)

2

|S1|+ |S2|
.

Normalized Maximal Consecutive Longest Common Subsequence (MCLCS),

which limits the common subsequence to be consecutive. There are three types

of modifications with different additional conditions: NLCS 1 and NLCSn use

the subsequences starting at the first and the n-th character, respectively;

30

NLCS z takes the subsequences ending at the last character. They apply the

same normalization as NLCS.

φNMNLCS1(S1, S2) =
2 · φMCLCS1(S1, S2)

2

|S1|+ |S2|

φNMNLCSn(S1, S2) =
2 · φMCLCSn(S1, S2)

2

|S1|+ |S2|

φNMNLCSz(S1, S2) =
2 · φMCLCSz(S1, S2)

2

|S1|+ |S2|
.

We apply the measure proposed in (Islam and Inkpen, 2009b) for scoring, which

takes the weighted sum of the above LCS variations:

φLCS-Sim(S1, S2) = α1 · φNLCS(S1, S2) + α2 · φNMNLCS1(S1, S2)

+ α3 · φNMNLCSn(S1, S2) + α4 · φNMNLCSz(S1, S2). (4.8)

4.3.2 Character n-Gram Family

Another family of string comparison measures represents string as a list of overlap-

ping character n-grams, which is also called the string n-gram profile and annotated

as

S<n> = {S<i,i+n−1>}m−n+1

for string S of length m. For example, the bigram profile for string family is

{fa, am, mi, il, ly}. Measures in this family evaluate the lexical similarity between

strings using their n-gram profiles. Figure. 4.4 gives an examples for each introduced

measure.

n-Gram Jaccard Jaccard coefficient (Jaccard, 1908) is a widely used similarity

measures between finite sets. We use this coefficient to evaluate the similarity

between string n-gram profiles

φn-Jac(S1, S2) =
|S1<n> ∩ S2<n>|
|S1<n> ∪ S2<n>|

. (4.9)

31

(a) An example edit transformation leading to Hamming distance (Hamming, 1950).

(b) An example edit transformation leading to LCS distance (Navarro, 2001).

(c) An example edit transformation leading to Levenshtein distance (Levenshtein, 1966).

(d) An example edit transformation leading to Damerau-Levenshtein distance (Damerau,
1964).

Figure 4.2: Examples of edit distance family. Distance calculation is performed
between mississippi and misiisspipi. Different edit operations are notated as
follows:

– a one-way arrow indicates an insertion operation for an character to a position;

– a shaded character indicates a deletion operation on this character;

– a two-way arrow that points to a character in string and a character outside
indicates a substitution operation between two characters;

– a two-way arrow that points to two successive characters in string indicates a
transposition operation between two characters.

32

q-Grams Distance q-grams distance (Ukkonen, 1992) is a distance measure that

calculates the total number of unmatching n-grams in both string n-gram pro-

files. We scale the q-grams distance with a function specific normalization

factor, Zn-qGrams, which is the maximum q-grams distance in the processing

batch. This feature function is

φn-qGrams(S1, S2) =
1

Zn-qGrams

|S1<n> ∪ S2<n>|. (4.10)

n-Gram Distance Kondrak (2005) introduced an extension of Levenshtein distance

that each edit operation modifies n consequtive characters instand of a single

character. To enphasize the initial characters in computation, Kondrak (2005)

affix n − 1 null-symbols to the head of the orignal string, which increases the

occurrence of initial characters in n-gram profile. There are three proposed

cost functions to measure edit cost with n-grams:

– binary cost gives 1 to a pair of exactly matched n-gram pairs and 0 oth-

erwise;

– positional cost gives 1
n

to each matching character pair in the given n-

gram pairs and 0 otherwise, where character pairs are constructed with

characters of the same index from both n-grams.

– comprehensive cost is the same as positional cost, except character pair

can be constructed with character of different indices.

Kondrak (2005) normalize the transformation cost by the lenght of the longer

input string, which breaks the triangle inequality. Thus, we get the feature

value by scaling the minimum transformation cost

φn-nGrams(S1, S2) =
1

Zn-nGrams

min
ES1,S2

∈ES1,S2

γE(ES1,S2). (4.11)

33

(a) Example using Jaccard Similarity Coefficient (Jaccard, 1908) to compare two string
n-gram profiles. The binary value indicates the existance of a character bigram in a string.
The bigram Jaccard similarity of these two strings is 1/11 ≈ 0.09.

(b) Example alignment of q-gram distance (Ukkonen, 1992). A solid link donotes a matched
bigram pair. Unmatched bigrams are highlighted. The q-gram distance (q = 2) of this two
strings is 10.

(c) Example alignment of n-gram distance (Kondrak, 2005). Symbol ^ denotes a null-
character prefix that increase the weight of the heading character in distance calculation.
There are three line types indicating different categories of bigram matchings:

– a solid link denotes a fully matched bigram pair,

– a dash line denotes a positionally partially matched pair, and

– a dot line denotes a partially matched pair that the matching character are not in
the same position of crossponding bigrams.

Without normalization, the binary, positional, and comprehensive n-gram distance (n = 2)
of these two strings are 6, 4.5, and 4, respectively.

Figure 4.3: Examples of character n-gram family. Distance calculation is performed
between family and fain1l}’ using their string bigram profiles.

34

4.3.3 Contextual word n-Gram Family

In addition to the lexical relations between two given words, we also evaluate candi-

date with external resources using the word itself and its neighboring words. Features

in this family quantify the likelihood of using a candidates in scenario, with respect

to the langage in general, professional domains, or a specific usage case. Their func-

tions, as a simplified form of Eqn. 4.2, takes only the candidate word as input

φ : Σ∗ → R.

There are two types of external resources being used: lexicon and n-gram corpus.

Lexicon, interchangeably with “dictionary” and “word list” in the literature, is a list

of language’s words. n-gram corpus is a list of word n-gram, n ∈ R, that each n-gram

has a observed frequency counts. For all features that make use of n-gram statistics

in this these, we adopt Web 1T 5-gram corpus (Brants and Franz, 2006). Web 1T

5-gram corpus, contributed by Google Inc., contains English word n-grams ranging

from unigrams to five-grams which are generated from approximately 1 trillion word

tokens of text from publicly accessible web pages.

Language popularity We evaluate the likelihood of using a candidate in English

language. With the English word distribution estimated by unigram frequen-

cies, the language popularity feature is

φlang(S) =
f(S)

Z lang

, (4.12)

where c(·) is a function that finds the frequency count of the given unigram.

Lexicon existence We use domain lexicons to detect the existence of an candidate

in a specific subject matter. This feature helps to capture domain specific

35

terminologies, which may not be popular in general usage.

φlex(S) =

1 if S exists in the lexicon

0 otherwise

(4.13)

Context Coherence An appropriate correction candidate should be coherent in

context. Using word n-gram for context analysis is a broadly researched ap-

proach in correcting real-word errors (Islam and Inkpen, 2009b). Given an

error word we in a text, we have its n-gram contexts G constructed using a

sliding window (see Figure 4.4). To score a candidate wc of this error, we first

substitute the error word from each of its n-gram contexts by such candidate

and create a new set of contexts Gc. Let C be all candidates suggested for we,

and freqn(·) be the n-gram frequency, which gives 0 to a non-existing n-gram.

The score function is given as:

φ(S) =

∑
c∈Gc fn(c)

maxw′c∈C{
∑

c′∈G′c
fn(c′)}

(4.14)

Approximate Context Matching A context with longer n-gram size defines a

more specific use case for a given word, where its existence in the corpus shows

higher confidence for a candidate. In general, an n-gram corpus has limited

coverage for all possible n-grams in the language, especially for the emerging

words in the language. Candidates of a rare word can barely be suggested

from its contexts because of the limited coverage in the n-gram corpus. We

deal with such issue by relaxing the context matching condition to allow one

mismatching context word. For example, in Figure 4.4, we consider only the

first 5-gram context given “which” be the candidate. We need the frequency

of “brightly coloured birds in which” for computing exact context popularity.

As for the relaxed context popularity, we need to sum up the frequencies of

four types of 5-grams: “* coloured birds in which”, “brightly * birds in which”,

“brightly coloured * in which”, and “brightly coloured birds * which”, where

36

* matches any valid unigram. The scoring function is the same as the exact

context matching (Eq. 4.14), except for the candidate set and the context set

are larger in the relaxed case.

4.4 Candidate Ranking

We formulate the confidence prediction task as a regression problem. Given candidate

feature scores, we predict the confidence of each candidate being a correction for the

error word. The confidence is used for ranking among candidates of one error.

To train a regressor for correction, we label candidate features with 1 if a candi-

date is the intended correction, or 0 otherwise. The training data contains candidates

from different errors, and there are more candidates labeled 0 than 1. To deal with

the unbalanced nature of the candidates, we weight the samples when computing the

training loss

loss(D) =
∑
e∈E

∑
c∈CFe

wc · loss(xc, yc). (4.15)

We count the number of samples with label 1 and 0, respectively. Then, we use the

ratio to weight for samples labeled 1, and 1 for samples labeled 0.

We applied different ensamble methods and evaluated their performance in the

next Chapter.

37

Figure 4.4: Examples of exact and relaxed word 5-gram context generation. * denotes
a related word position.

Chapter 5

Evaluation

To better describe the error sample, we use the annotation <wt→we> to represent

the intended word wt being recognized as the error word we.

5.1 Experimental Setup

5.1.1 OCR Dataset

We made available a dataset with 2910 OCR-generated errors along with the ground

truth and OCR text for benchmark testing1. The OCR text was generated from the

book titled “Birds of Great Britain and Ireland (Volumn II)” (Butler et al., 1907)

and made publicly available by the Biodiversity Heritage Library (BHL) for Europe2

using Tesseract 3.0.23. The ground truth text is based on an improved OCR output4

and adjusted manually to match with the original content of the whole book.5

This source image data of the book contains 460 page-separated files, where the

the main content is included in 211 pages. Table 5.1 shows the OCR performance,

measured by precision and recall, indicating a typical OCR output with high error

rate. The statistical analysis on these errors confirmes my inductive arguments in

Section 2.2 and demonstrates that correction for this dataset is a complicated task:

First of all, some complex errors that has large edit distance away from their correct

from in ground truth. The distribution of error words with respect to edit distance

shown in Table. 5.2. Secondly, this book combines different font types and layouts in

1https://github.com/jmei91/MiBio-OCR-dataset
2http://www.biodiversitylibrary.org/item/35947#page/13/mode/1up
3https://github.com/tesseract-ocr/tesseract
4http://www.bhle.eu/en/results-of-the-collaboration-of-bhl-europe-and-impact
5See Appendix B for the preprocessing details in generating the evaluation dataset.

38

https://github.com/jmei91/MiBio-OCR-dataset
http://www.biodiversitylibrary.org/item/35947#page/13/mode/1up
https://github.com/tesseract-ocr/tesseract
http://www.bhle.eu/en/results-of-the-collaboration-of-bhl-europe-and-impact

39

main text, which example shown in Figure. 5.1, leading to erroneous results caused

by multiple reasons. More importantly, the correction of some types of errors, for

example errors on punctuation or onomatopoeia word in Table. 5.3, can hardly been

inferred from lexical or contextual informations.

5.1.2 Evaluation Setup

Walker and Amsler (2014) claim that the lexicon from a published dictionary has

limited coverage on newswire vocabulary, and vice versa. Thus, we construct a

language lexicon with unigrams in the Google Web 1T n-gram corpus6. This corpus

contains the frequencies of unigrams (single words) to five-grams, which is generated

from approximately 1 trillion word tokens extracted from publicly accessible Web

pages. Its unigram corpus is filtered with the frequency no less than 200. We use

five-grams in Google Web 1T corpus on contextual features.

For lexicon existence feature, we use three lexicons to build three features in-

stances: (1) Wikipedia entities extracted from article names in Wikipedia. This

feature gives credit to common terminologies. (1) Terminology list that contains a

comprehensive terminologies from different domains. (2) Biodiversity terminologies

collected from biodiversity digital library to capture the domain specific terms, which

may not be contained in Wikipedia.

The proposed model receives OCR-generated plain text as input. We apply the

Penn Treebank tokenization with the additional rules from Google7 to tokenize the

input text. This tokenization method is consistent with the Google Web 1T n-gram

corpus. The frequency and existence of rarely hyphenated words can be poorly esti-

mated using external resources. Thus we split the hyphenated word by the internal

hyphen.

Experimentally, we filter tokens of the following types after tokenization: (1)

punctuations ; (2) numeric tokens, which contains only numeric characters (i.e., 0-

9); (3) common English words. We apply a lexicon of frequent English words for

6https://catalog.ldc.upenn.edu/LDC2006T13
7https://catalog.ldc.upenn.edu/docs/LDC2006T13/readme.txt

https://catalog.ldc.upenn.edu/LDC2006T13
https://catalog.ldc.upenn.edu/docs/LDC2006T13/readme.txt

40

Table 5.1: Prcision and recall of OCR on evaluation image files, where measures are
defined as:

OCR precision =
number of correct items

number of items in OCR output

OCR recall =
number of correct items

number of items in ground truth

Measure Character-wise Word-wise

Precision 6563 / 497275 = 1.28% 2904 / 100033 = 6.36%

Recall 6563 / 492584 = 1.29% 2904 / 98097 = 6.49%

Table 5.2: The Levenshtein edit distance distribution of errors in the experimental
dataset.

Edit distance Error Statistics Sample Error

Number Percentage Intended Word Error Word

1 872 30.03% galbula ga/bula

2 1397 47.49% yellowish jˆellowish

3 298 10.26% bents Ijcnts

4 155 5.34% my ni}’
5 74 2.55% Lanius Lioiiits

6 57 1.96% minor)iii>iof

7 27 0.93% garrulus f;ay>///us

8 16 0.55% curvirostra iUi’7’iyosira

9 7 0.24% Nucifraga Aiiii/rutˆd

≥ 10 19 0.65% pomeranus poiiui-iVtiis

total 2904 100%

Table 5.3: The type distribution of error in the experimental dataset.

Type Error Statistics Sample Error

Number Percentage Intended Word Error Word

puntutaion 122 4.20% - ˆ

onomatopoeia 61 2.10% füid fnid

unicode error 11 0.38% Zippammer Zippa�n>icr

unicode word 237 8.16% ni}’ my

41

(a)

Faiuiiv^LAXIILKl-:.

The Great Grey Shrh^e.

Lauius txciibilor, LiNN.

ORNITHOLOGISTS differ in opinion as to whether this biixl is distinct from

Pallas's Grey Shrike (with the single white bar on the wing) : Seebohm con-

sidered the two forms as distinct as the Carrion and Hooded Crows, but

Mr. Howard Saunders brought forward sufficient evidence to show that they had

but little claim to the title of separate species. In his Manual we read : - " Many

of the specimens obtained in winter have a white bar on the primaries only, the

bases of tlie secondaries being black ; whereas in the typical L. cxcubitor the

bases of the secondaries are white, and the wing exhibits a double bar. The form

with only one bar is the L. viajor, of Pallas, and, as shown by Prof. Collett (Ibis,

1886, pp. 30-40) it meets and interbreeds with L. exaibiior in Scandinavia, t3’pical

examples of both races being actually found in the same brood, while intermediate

forms are not uncommon. Where the sexes have been determined, the double-

barred bird has generally proved to be a male, and the single-barred a female.

(b)

Figure 5.1: A image segment (a) and its according OCR-generated text (b) of the
evaluation dataset. The recognition errors are highlighted in red.

42

Table 5.4: Overview of applied evaluation measures and their according feature
families

Family Feature

LCS Distance

Levenshtein Distance

Optimal String Alignment

LCS Similarity

Jaro-Winkler

n-gram Jaccard Coefficient size = {2, 3, 4, 5}
q-Grams Distance size = {2, 3, 4, 5}

n-Grams Distance
size = {2, 3, 4, 5}
type = {binary, positional, comprehensive}

Language popularity

Lexicon existence lexicon = {Wikipedia, Term, Biodiversity}
Context Coherence size = {2, 3, 4, 5}
Approximate Context Matching size = {2, 3, 4, 5}

filtering. For each candidate being suggested to a potential error word, the proposed

model computes all feature scores and searches contexts in a web-scale n-gram corpus.

Although efficiency optimization techniques (Mei et al., 2015; Kou et al., 2015) have

been adopted to accelerate the computational procedure, the computation is still

computationally expensive and thus requiring necessary trade-offs between accuracy

and efficiency. The accuracy of the system will increase with more relaxed filtering

conditions on English words, for example, filtering only English stop words or even no

filtering, but the computation time increases as the trade-off. Similarly for reducing

the candidate detection time in Eq. 4.1, we set the maximum Levenshtein distance

δ for candidate search to be 3.

43

Table 5.5: Confusion matrix for error detection

G
ro

u
n
d

T
ru

th
C
o
rr
e
c
tn

e
ss

Model Detection

Error Correct total

E
rr
o
r 2457

(TN)
241
(FP) 2698

C
o
rr
e
c
t

1273
(FN)

80523
(TP) 81794

total 3730 80764

5.2 Detection Evaluation

5.2.1 Detection Recall

We evaluate error detection as a recall oriented task, which focus on finding all

possible errors. In all error correction techniques, an undetected error will not get

into the correction phase.

We report the confusion matrix for error detection in Table 5.5. The proposed

model achieves 91.07% detection recall. There are considerable number of ture-

positive errors, which are correct words but detected as errors. When using this

type of errors for training or testing, We use the word itself as the intended word

for each error. The correction results regarding to all types of errors are reported in

Section 5.3.

5.2.2 Word Boundary Detection Recall

For tokenizing the noisy text, any tokenization approach is inevitably involved in

the common word boundary problem (Kukich, 1992b), the correct boundary of the

errors are not properly identified, in both human-generated (Kukich, 1992a) and

OCR-generated text (Jones et al., 1991). Such problem can be caused by the split-

ting (e.g., <spend→sp end>) and merging (e.g., <in form→infrom>) mistakes. It

44

Table 5.6: The number of detected errors and recall of bounded and unbounded
detections

Detection Category Number Recall

Bounded 1995 73.94%

Unbounded 462 17.12%

Total (True-Positive) 2457 91.07%

is especially problematic in OCR-generated text, where words containing characters

are recognized as punctuation and are thus splitted by the tokenization heuristics.

Most error detection and correction techniques define token as character sequence

separated by white space characters (e.g., blanks, tabs, carriage returns, etc.) (Ku-

kich, 1992b), which do not split the error token by punctuations. However, this

approach cannot distinguish between true punctuation and misrecognized trailing

punctuation (e.g., <family→famil}ˆ>).

An error may be “partially” detected if an overlapped but non-identical character

sequence is treated as an error. For example, if an error <spend→sp end> is detected

as end, sp will exists in the context and candidate edit distance will be computed with

end instead of sp end. We call this “partially” detected case as a success unbounded

detection, where the correct recognition of the character sequence as success bounded

detection. Unbounded detection can potentially be corrected, but it has inaccurate

features scores that will influence the correction accuracy. In addition, there may

exist multiple unbounded errors detected for one ground truth error, because of the

splitting mistakes. For every ground truth error, We count at most one successful

unbounded detection. Our model achieves the 73.51% bounded detection recall and

90.51% total detection recall (i.e., sum of bounded and unbounded detection) shown

in Table 5.6.

45

Table 5.7: The number and the percentage of errors, where correction exists among
the top 10 candidates of any applied feature.

Detection Category
Correct Candidates

Number Percentage Among All Percentage in Search Scope

Bounded 1540 77.19% 84.71%

Unbounded 108 23.38% 47.58%

True-Positive 1648 67.07% 78.66%

False-Positive 1273 100.00% 100.00%

Total 2627 66.15% 78.00%

Exact

Relax

Lexcon

Lang

Sim

Distance

1,462

T
o
p

3

Bounded

99

Unbounded

977

False-Positive

0 500 1,0001,500

Exact

Relax

Lexcon

Lang

Sim

Distance

1,540

T
o
p

1
0

0 100 200

108

6, 5, 4, 3, 2, 1

0 500 1,000

979

Figure 5.2: The distinctiveness of features in locating error corrections. A bar of a
feature represents the number of error corrections located by this feature. The color
of a bar indicates the number of features that locates these errors. i.e., white bar
indicates a portion of error corrections located by all the features, while black bar
indicates error corrections located by only one feature.

46

5.3 Correction Evaluation

5.3.1 Selected Features Evaluation

We want to study the contribution of features to candidate suggestion. We first

explore how well the scoring functions could rank the intended words to the top

without predicting by the regressor. For each detected error, we construct a candi-

date set containing top 3 candidates scored by each feature and check whether this

candidate set contains a correction. Note that candidate search scope is limited by

the number of edit distance δ (in Eq. 4.1 by default), thus the intended words wt

for we cannot be found if distlev(wt,we) > δ. Results are shown in Table 5.7. The

model could locate most of the correction in top candidates with the collaboration

of all applied features. We observe that performance varies drastically for bounded

and unbounded errors, presumably because the feature score for unbounded errors

is inaccurate (e.g., the split part of a splitting error is counted as the context word

in context search).

To get a better intuition for the contribution of individual feature, we plot the

distinctiveness of the located error corrections by each feature in Figure 5.2. For

bounded detected errors, context-based features are able to locate some distinctive

corrections, which can rarely be found by other features. In addition, top candidates

suggested from approximate context matching feature show better coverage than

ones from context coherence feature. On the other hand, the other four features are

important for false-positive errors, where context-based features provide little help.

5.3.2 Ranking Method Selection

We report candidate ranking performance of different regression models in Table 5.8.

The same training and testing dataset, described in Section 5.3, are used for all

models.

Given the upperbound of correction rate within edit distance three is 78% (in

Table 5.7), all regressors achieve good results. As can be seen, ensemble methods, like

47

Table 5.8: The percentage of errors, where correction exists among top 1, 3, 5, and
10 candidates suggested by Support Vector regressor (SVR), Rigid Linear regressor
(RL), Multiple Layer Perceptron with rectified linear unit (MLP.ReLU), Random
Forest (RF), Randoized Decision Trees (RDT), and AdaBoost.R2

Ranking Model
All Errors

P@1 P@3 P@5 P@10

RL 0.5637 0.6817 0.7020 0.7313

SVR 0.6060 0.6060 0.7113 0.7230

MLP.ReLU + BFGS 0.6095 0.7025 0.7283 0.7604

AdaBoost.R2 + DT 0.6125 0.6125 0.7113 0.7347

RF 0.6827 0.6827 0.7378 0.7662

RDT 0.7126 0.7126 0.8023 0.8635

Random Forest and AdaBoost, are more robust than others in suggesting appropriate

candidates.

5.3.3 Error Correction Model Comparsion

We compares the proposed correction approach with various baseline correction mod-

els in Table 5.9. Aspell8 is an open-source spell checker preinstalled in Linux distribu-

tions, which has different modes (ultra, fast, normal, bad-spellers) in seeking different

balance points between runing speed and candidate coverage. We use Aspell version

0.60.7 with updated dictionaries from SCOWL9 Version 2017.01.22 (Spell Checker

Oriented Word Lists). Although Aspell contains a comprehensive dictionary, it sug-

gests candidates only within a very limited Damerau-Levenshtein distance, which is

suitable for correcting spelling errors. Segaran and Hammerbacher (2009) is a noisy

channel correction model and Kissos and Dershowitz (2016) is one of the most recent

developed correction model using confidence analysis framework. The same training

and testing dataset, described in Section 5.3, are used for all these models. To make

a fair comparison, the same tokenization and candidate sets are given to all models as

8http://aspell.net/
9http://wordlist.aspell.net/

http://aspell.net/
http://wordlist.aspell.net/

48

Table 5.9: Correction models comparsion

Error Correction Model
All Errors

P@1 P@3 P@5 P@10

Aspell(bad-spellers) 0.2364 0.2364 0.2364 0.2364

Aspell(normal) 0.2403 0.2403 0.2403 0.2403

Aspell(fast|ultra) 0.2583 0.2583 0.2583 0.2583

Segaran and Hammerbacher (2009) 0.5581 0.5581 0.5581 0.5581

Kissos and Dershowitz (2016) 0.6071 0.7145 0.7378 0.7516

proposed approach (RDT) 0.7126 0.7126 0.8023 0.8635

input and models are only responsible for ranking candidates for correction. The re-

sults show that the proposed ensemble regression approach significantly outperforms

other models.

5.3.4 Overall Performance

We take the following steps to build a training dataset: First, we construct a candi-

date set for each error containing top 3 candidates scored by each feature. Then, we

select a subset of errors, whose intended word exists in the candidate set. Finally,

we randomly select 80% errors and use their candidates sets for training.

We train multiple AdaBoost regressors with different settings and apply 10-fold

cross-validation to select the best setting for evaluating the rest of the errors. We

report the correction results regarding different error categories in Table 5.10. P@n

represents precision at top n candidate suggestions, which calculate the ratio of the

existence of intended words in top n candidates. The proposed model rank the

candidates by a regression model and show that more than 71.26% of the errors can

be corrected. For 80.23% of the uncorrected errors, our model could provide the

correction in the top five suggestions.

49

Table 5.10: The percentage of errors in the proposed OCR dataset, where correction
exists among top 1, 3, 5, and 10 candidates suggested by the proposed model.

Error Categories P@1 P@3 P@5 P@10

Bounded 0.7369 0.7710 0.8628 0.9405

Unbounded 0.6637 0.6417 0.7220 0.7823

True-Positive 0.7095 0.7025 0.7838 0.8604

False-Positive 0.7971 0.7145 0.8338 0.8942

Total 0.7126 0.7126 0.8023 0.8635

Chapter 6

Conclusion

We introduce a statistical learning model for correcting OCR-generated errors. By

integrating different features in a ensemble regression process, the correction model

able to select candidates that are similar to the error, suitable for the domain, and

coherent to the context. The evaluation results show that the proposed approach can

correct 71.3% of the errors and could provide a correction on top three suggestions for

31.2% of the uncorrected errors, which significantly outperforms various baselines.

i.e., by suggesting five candidate corrections for each error, our model can correct

80.23% of the error cases in a theoretical correction upper bound of 87.78%.

50

Bibliography

L Allison and T I Dix. A bit-string longest-common-subsequence algorithm. Inf.
Process. Lett., 23(6):305–310, December 1986.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic local alignment search tool. Journal of Molecular Biology, 215(3):
403 – 410, 1990.

Zhuowei Bao, Benny Kimelfeld, and Yunyao Li. A graph approach to spelling cor-
rection in domain-centric search. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies -
Volume 1, HLT ’11, pages 905–914, Stroudsburg, PA, USA, 2011. Association for
Computational Linguistics.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten Zesch. Ukp: Computing
semantic textual similarity by combining multiple content similarity measures. In
Proceedings of the First Joint Conference on Lexical and Computational Seman-
tics - Volume 1: Proceedings of the Main Conference and the Shared Task, and
Volume 2: Proceedings of the Sixth International Workshop on Semantic Evalua-
tion, SemEval ’12, pages 435–440, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics.

Youssef Bassil and Mohammad Alwani. Context-sensitive spelling correction using
google web 1t 5-gram information. Computer and Information Science, 5(3):37–48,
2012.

Leonid Boytsov. Indexing methods for approximate dictionary searching: Compar-
ative analysis. J. Exp. Algorithmics, 16:1.1:1.1–1.1:1.91, May 2011.

Thorsten Brants and Alex Franz. Web 1t 5-gram corpus version 1 ldc2006t13, 2006.
Philadelphia: Linguistic Data Consortium.

Eric Brill and Robert C. Moore. An improved error model for noisy channel spelling
correction. In Proceedings of the 38th Annual Meeting on Association for Com-
putational Linguistics, ACL ’00, pages 286–293, Stroudsburg, PA, USA, 2000.
Association for Computational Linguistics.

Arthur G. Butler, William Frohawk, Frederick, and H. Grönvold. Birds of Great
Britain and Ireland. by Arthur G. Butler ; illustrated by H. Grönvold and F.W.
Frohawk. Order Passeres, volume 2. Hull; Brumby & Clarke, 1907.

51

https://doi.org/http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dl.acm.org/citation.cfm?id=2002472.2002587
http://dl.acm.org/citation.cfm?id=2002472.2002587
http://dl.acm.org/citation.cfm?id=2387636.2387707
http://dl.acm.org/citation.cfm?id=2387636.2387707
https://doi.org/10.5539/cis.v5n3p37
https://doi.org/10.5539/cis.v5n3p37
https://doi.org/10.1145/1963190.1963191
https://doi.org/10.1145/1963190.1963191
https://doi.org/10.3115/1075218.1075255
https://doi.org/10.3115/1075218.1075255

52

Hubert Cecotti and Abdel Belayd. Hybrid ocr combination approach complemented
by a specialized icr applied on ancient documents. In Proceedings of the Eighth In-
ternational Conference on Document Analysis and Recognition, ICDAR ’05, pages
1045–1049, Washington, DC, USA, 2005. IEEE Computer Society.

Kenneth W. Church and William A. Gale. Probability scoring for spelling correction.
Statistics and Computing, 1(2):93–103, 1991.

Silviu Cucerzan and Eric Brill. Spelling correction as an iterative process that exploits
the collective knowledge of web users. 2004.

Fred J. Damerau. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7(3):171–176, March 1964.

N. Rex Dixon and Thomas B. Martin. Automatic Speech and Speaker Recognition.
John Wiley & Sons, Inc., New York, NY, USA, 1979.

David Doermann. The indexing and retrieval of document images. Comput. Vis.
Image Underst., 70(3):287–298, June 1998.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited.
ACM Trans. Inf. Syst., 20(1):116–131, January 2002.

Michael Flor. Four types of context for automatic spelling correction.

James C. French, Allison L. Powell, and Eric Schulman. Applications of approximate
word matching in information retrieval. In Proceedings of the Sixth International
Conference on Information and Knowledge Management, CIKM ’97, pages 9–15,
New York, NY, USA, 1997. ACM.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence, IJCAI’07, pages 1606–1611, San
Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

Jianfeng Gao, Xiaolong Li, Daniel Micol, Chris Quirk, and Xu Sun. A large scale
ranker-based system for search query spelling correction. In Proceedings of the
23rd International Conference on Computational Linguistics, COLING ’10, pages
358–366, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures: In
Pascal and C (2Nd Ed.). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1991.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

https://doi.org/10.1109/ICDAR.2005.130
https://doi.org/10.1109/ICDAR.2005.130
https://doi.org/10.1007/BF01889984
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.1006/cviu.1998.0692
https://doi.org/10.1145/503104.503110
https://doi.org/10.1145/266714.266721
https://doi.org/10.1145/266714.266721
http://dl.acm.org/citation.cfm?id=1625275.1625535
http://dl.acm.org/citation.cfm?id=1625275.1625535
http://dl.acm.org/citation.cfm?id=1873781.1873822
http://dl.acm.org/citation.cfm?id=1873781.1873822

53

R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, April 1950.

A. Islam and D. Inkpen. Real-word spelling correction using google web 1t n-gram
with backoff. In Natural Language Processing and Knowledge Engineering, 2009.
NLP-KE 2009. International Conference on, pages 1–8, Sept 2009a.

Aminul Islam and Diana Inkpen. Second order co-occurrence pmi for determining
the semantic similarity of words. In Proceedings of the International Conference
on Language Resources and Evaluation, Genoa, Italy, 2006. Citeseer.

Aminul Islam and Diana Inkpen. Semantic text similarity using corpus-based word
similarity and string similarity. ACM Trans. Knowl. Discov. Data, 2(2):10:1–10:25,
July 2008.

Aminul Islam and Diana Inkpen. Real-word spelling correction using google web
1tn-gram data set. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management, CIKM ’09, pages 1689–1692, New York, NY, USA,
2009b. ACM.

Aminul Islam and Diana Inkpen. Real-word spelling correction using google web it
3-grams. In Proceedings of the 2009 Conference on Empirical Methods in Natu-
ral Language Processing: Volume 3 - Volume 3, EMNLP ’09, pages 1241–1249,
Stroudsburg, PA, USA, 2009c. Association for Computational Linguistics.

Aminul Islam and Diana Inkpen. Advances in Artificial Intelligence: 24th Canadian
Conference on Artificial Intelligence, Canadian AI 2011, St. John’s, Canada, May
25-27, 2011. Proceedings, chapter Correcting Different Types of Errors in Texts,
pages 192–203. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

Aminul Islam, Evangelos Milios, and Vlado Kešelj. Text similarity using google
tri-grams. In Leila Kosseim and Diana Inkpen, editors, Advances in Artificial
Intelligence: 25th Canadian Conference on Artificial Intelligence, Canadian AI
2012, Toronto, ON, Canada, May 28-30, 2012. Proceedings, pages 312–317, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

P. Jaccard. Nouvelles recherches sur la distribution florale. Bulletin de la Société
vaudoise des sciences naturelles. Impr. Réunies, 1908.

Mario Jarmasz and Stan Szpakowicz. Roget’s thesaurus and semantic similarity.
CoRR, abs/1204.0245, 2012.

Matthew A. Jaro. Advances in record-linkage methodology as applied to matching
the 1985 census of tampa, florida. Journal of the American Statistical Association,
84(406):414–420, 1989.

Matthew A. Jaro. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. pages 354–359, 1990.

https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/NLPKE.2009.5313823
https://doi.org/10.1109/NLPKE.2009.5313823
https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1145/1645953.1646205
https://doi.org/10.1145/1645953.1646205
http://dl.acm.org/citation.cfm?id=1699648.1699670
http://dl.acm.org/citation.cfm?id=1699648.1699670
https://doi.org/10.1007/978-3-642-30353-1_29
https://doi.org/10.1007/978-3-642-30353-1_29
http://arxiv.org/abs/1204.0245
https://doi.org/10.1080/01621459.1989.10478785
https://doi.org/10.1080/01621459.1989.10478785
http://www.amstat.org/sections/srms/Proceedings/papers/1990_056.pdf
http://www.amstat.org/sections/srms/Proceedings/papers/1990_056.pdf

54

Thorsten Joachims. Advances in kernel methods. chapter Making Large-scale Sup-
port Vector Machine Learning Practical, pages 169–184. MIT Press, Cambridge,
MA, USA, 1999.

M. A. Jones, G. A. Story, and B. W. Ballard. Interating multiple knowledge sources
in a bayesian ocr post-processor. International Journal on Document Analysis and
Recognition, pages 925–933, 1991.

P Juszczak, D Tax, and Robert PW Duin. Feature scaling in support vector data
description. In Proceedings of the 8th Annual Conf. of the Advanced School for
Computing and Imaging, pages 95–102. Citeseer, 2002.

Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction
program based on a noisy channel model. In Proceedings of the 13th Conference on
Computational Linguistics - Volume 2, COLING ’90, pages 205–210, Stroudsburg,
PA, USA, 1990. Association for Computational Linguistics.

I. Kissos and N. Dershowitz. Ocr error correction using character correction and
feature-based word classification. In 2016 12th IAPR Workshop on Document
Analysis Systems (DAS), pages 198–203, April 2016.

Shmuel T Klein, M Ben-Nissan, and M Kopel. A voting system for automatic ocr
correction. August 2002.

Grzegorz Kondrak. N-gram similarity and distance. In Proceedings of the 12th Inter-
national Conference on String Processing and Information Retrieval, SPIRE’05,
pages 115–126, Berlin, Heidelberg, 2005. Springer-Verlag.

X. Kou, J. Mei, Z. Yao, A. Rau-Chaplin, A. Islam, A. Moh’d, and E. Milios. Efficient
parallelization of the google trigram method for document relatedness computa-
tion. In 2015 44th International Conference on Parallel Processing Workshops,
pages 98–104, Sept 2015.

Karen Kukich. Spelling correction for the telecommunications network for the deaf.
Commun. ACM, 35(5):80–90, May 1992a.

Karen Kukich. Techniques for automatically correcting words in text. ACM Comput.
Surv., 24(4):377–439, December 1992b.

Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Mach. Learn., 51
(2):181–207, May 2003.

V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions
of ones. Problems of Information Transmission, 1:8–17, 1965.

V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, February 1966.

http://dl.acm.org/citation.cfm?id=299094.299104
https://doi.org/10.3115/997939.997975
https://doi.org/10.3115/997939.997975
https://doi.org/10.1109/DAS.2016.44
https://doi.org/10.1109/DAS.2016.44
https://doi.org/10.1007/11575832_13
https://doi.org/10.1109/ICPPW.2015.42
https://doi.org/10.1109/ICPPW.2015.42
https://doi.org/10.1109/ICPPW.2015.42
https://doi.org/10.1145/129875.129882
https://doi.org/10.1145/146370.146380
https://doi.org/10.1023/A:1022859003006
https://doi.org/10.1023/A:1022859003006

55

W. B. Lund, D. D. Walker, and E. K. Ringger. Progressive alignment and discrimi-
native error correction for multiple ocr engines. In 2011 International Conference
on Document Analysis and Recognition, pages 764–768, Sept 2011.

William B. Lund and Eric K. Ringger. Improving optical character recognition
through efficient multiple system alignment. In Proceedings of the 9th ACM/IEEE-
CS Joint Conference on Digital Libraries, JCDL ’09, pages 231–240, New York,
NY, USA, 2009. ACM.

William B. Lund, Douglas J. Kennard, and Eric K. Ringger. Combining multiple
thresholding binarization values to improve ocr output. In Proc. SPIE, volume
8658, pages 86580R–86580R–11, 2013a.

William B. Lund, Eric K. Ringger, and Daniel D. Walker. How well does multiple ocr
error correction generalize? In Proc. SPIE, volume 9021, pages 90210A–90210A–
13, 2013b.

Eric Mays, Fred J. Damerau, and Robert L. Mercer. Context based spelling correc-
tion. Inf. Process. Manage., 27(5):517–522, September 1991.

Jie Mei, Xinxin Kou, Zhimin Yao, Andrew Rau-Chaplin, Aminul Islam, Abidal-
rahman Moh’d, and Evangelos E. Milios. Efficient computation of co-occurrence
based word relatedness. In Proceedings of the 2015 ACM Symposium on Document
Engineering, DocEng ’15, pages 43–46, New York, NY, USA, 2015. ACM.

Jie Mei, Aminul Islam, and Evangelos Milios. Dalgtm at semeval-2016 task 1:
Importance-aware compositional approach to short text similarity. In Proceed-
ings of the 10th International Workshop on Semantic Evaluation (SemEval-2016),
pages 765–770, San Diego, California, June 2016. Association for Computational
Linguistics.

Roger Mitton. Spelling checkers,spelling correctors and the misspellings of poor
spellers. Inf. Process. Manage., 23(5):495–505, September 1987.

Ismail Bin Mohamad and Dauda Usman. Standardization and its effects on k-means
clustering algorithm. Research Journal of Applied Sciences, Engineering and Tech-
nology, 6(17):3299–3303, 2013.

Günter Mühlberger, Johannes Zelger, and David Sagmeister. User-driven correction
of ocr errors: Combining crowdsourcing and information retrieval technology. In
Proceedings of the First International Conference on Digital Access to Textual
Cultural Heritage, DATeCH ’14, pages 53–56, New York, NY, USA, 2014. ACM.

Eugene W Myers. An overview of sequence comparison algorithms in molecular
biology. Technical report, Max-Planck Institute for Molecular Cell Biology &
Genetics, 1991.

https://doi.org/10.1109/ICDAR.2011.303
https://doi.org/10.1109/ICDAR.2011.303
https://doi.org/10.1145/1555400.1555437
https://doi.org/10.1145/1555400.1555437
https://doi.org/10.1117/12.2006228
https://doi.org/10.1117/12.2006228
https://doi.org/10.1117/12.2042502
https://doi.org/10.1117/12.2042502
https://doi.org/10.1016/0306-4573(91)90066-U
https://doi.org/10.1016/0306-4573(91)90066-U
https://doi.org/10.1145/2682571.2797088
https://doi.org/10.1145/2682571.2797088
http://www.aclweb.org/anthology/S16-1118
http://www.aclweb.org/anthology/S16-1118
https://doi.org/10.1016/0306-4573(87)90116-6
https://doi.org/10.1016/0306-4573(87)90116-6
https://doi.org/10.1145/2595188.2595212
https://doi.org/10.1145/2595188.2595212

56

Eugene W. Myers. Algorithmic advances for searching biosequence databases. In
Sándor Suhai, editor, Computational Methods in Genome Research, pages 121–
135. Springer US, Boston, MA, 1994.

Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31–88, March 2001.

Saul B. Needleman and Christian D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443 – 453, 1970.

John C Nesbit. The accuracy of approximate string matching algorithms. J. Comput.
Based Instruct., 13(3):80–83, August 1986.

Konstantinos Ntirogiannis, Basilios Gatos, and Ioannis Pratikakis. Performance eval-
uation methodology for historical document image binarization. IEEE Trans. Im-
age Processing, 22(2):595–609, 2013.

O. Owolabi and D. R. McGregor. Fast approximate string matching. Softw. Pract.
Exper., 18(4):387–393, April 1988.

Tommi Pirinen, Krister Lindén, et al. Finite-state spell-checking with weighted
language and error models. In Proceedings of LREC 2010 Workshop on creation
and use of basic lexical resources for less-resourced languages, 2010.

Tommi Pirinen, Miikka Silfverberg, Krister Linden, et al. Improving finite-state spell-
checker suggestions with part of speech n-grams. In Computational Linguistics and
Intelligent Text Processing 13th International Conference, CICLing 2012, 2012.

Joseph J. Pollock and Antonio Zamora. Automatic spelling correction in scientific
and scholarly text. Commun. ACM, 27(4):358–368, April 1984.

Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986.

D. Sankoff and J.B. Kruskal. Time warps, string edits, and macromolecules: the
theory and practice of sequence comparison. Addison-Wesley Pub. Co., Advanced
Book Program, 1983.

David Sankoff. Matching sequences under deletion/insertion constraints. Proceedings
of the National Academy of Sciences, 69(1):4–6, 1972.

Paulo J. Santos, Amy J. Baltzer, Albert N. Badre, Richard L. Henneman, and
Michael S. Miller. On handwriting recognition system performance: Some ex-
perimental results. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 36(4):283–287, 1992.

https://doi.org/10.1007/978-1-4615-2451-9_10
https://doi.org/10.1145/375360.375365
https://doi.org/http://dx.doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dl.acm.org/citation.cfm?id=15451.15455
https://doi.org/10.1109/TIP.2012.2219550
https://doi.org/10.1109/TIP.2012.2219550
https://doi.org/10.1002/spe.4380180407
https://doi.org/10.1145/358027.358048
https://doi.org/10.1145/358027.358048
https://doi.org/10.1177/154193129203600405
https://doi.org/10.1177/154193129203600405

57

Johannes Schaback and Fang Li. Multi-level feature extraction for spelling correction.
In IJCAI-2007 Workshop on Analytics for Noisy Unstructured Text Data, pages
79–86, 2007.

T. Segaran and J. Hammerbacher. Beautiful Data: The Stories Behind Elegant Data
Solutions. Theory in practice. O’Reilly Media, 2009.

Peter H Sellers. The theory and computation of evolutionary distances: Pattern
recognition. Journal of Algorithms, 1(4):359 – 373, 1980.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, July 1948a.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(4):623–656, Oct 1948b.

Peter Sollich and Anders Krogh. Learning with ensembles: How overfitting can be
useful. Advances in neural information processing systems, pages 190–196, 1996.

Michael Strube and Simone Paolo Ponzetto. Wikirelate! computing semantic related-
ness using wikipedia. In Proceedings of the 21st National Conference on Artificial
Intelligence - Volume 2, AAAI’06, pages 1419–1424. AAAI Press, 2006.

Xu Sun, Jianfeng Gao, Daniel Micol, and Chris Quirk. Learning phrase-based spelling
error models from clickthrough data. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, ACL ’10, pages 266–274, Strouds-
burg, PA, USA, 2010. Association for Computational Linguistics.

Kazem Taghva and Eric Stofsky. Ocrspell: an interactive spelling correction system
for ocr errors in text. International Journal on Document Analysis and Recognition,
3(3):125–137, 2001.

Kazem Taghva, Julie Borsack, and Allen Condit. Expert system for automatically
correcting ocr output. volume 2181, pages 270–278, 1994.

Esko Ukkonen. Approximate string-matching with q-grams and maximal matches.
Theoretical Computer Science, 92(1):191 – 211, 1992.

T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):
52–58, 1968.

Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168–173, January 1974.

Donald E Walker and Robert A Amsler. The use of machine-readable dictionaries
in sublanguage analysis. Analyzing Language in Restricted Domains: Sublanguage
Description and Processing, page 69, 2014.

https://doi.org/http://dx.doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/http://dx.doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dl.acm.org/citation.cfm?id=1597348.1597414
http://dl.acm.org/citation.cfm?id=1597348.1597414
http://dl.acm.org/citation.cfm?id=1858681.1858709
http://dl.acm.org/citation.cfm?id=1858681.1858709
https://doi.org/10.1007/PL00013558
https://doi.org/10.1007/PL00013558
https://doi.org/10.1117/12.171114
https://doi.org/10.1117/12.171114
https://doi.org/http://dx.doi.org/10.1016/0304-3975(92)90143-4
https://doi.org/10.1145/321796.321811

58

M.S. Waterman. Introduction to Computational Biology: Maps, Sequences and
Genomes. Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis,
1995.

Casey Whitelaw, Ben Hutchinson, Grace Y. Chung, and Gerard Ellis. Using the web
for language independent spellchecking and autocorrection. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume 2
- Volume 2, EMNLP ’09, pages 890–899, Stroudsburg, PA, USA, 2009. Association
for Computational Linguistics.

Alan M Wing and Alan Baddeley. Spelling errors in handwriting: a corpus and a
distributional analysis., pages 251–285. Academic Press, 1980.

Tieng K. Yap, Ophir Frieder, and Robert L. Martino. High Performance Compu-
tational Methods for Biological Sequence Analysis. Kluwer Academic Publishers,
Norwell, MA, USA, 1st edition, 1996.

Justin Zobel and Philip Dart. Phonetic string matching: Lessons from information
retrieval. In Proceedings of the 19th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’96, pages 166–172,
New York, NY, USA, 1996. ACM.

Justin Zobel and Alistair Moffat. Exploring the similarity space. SIGIR Forum, 32
(1):18–34, April 1998.

http://dl.acm.org/citation.cfm?id=1699571.1699629
http://dl.acm.org/citation.cfm?id=1699571.1699629
https://doi.org/10.1145/243199.243258
https://doi.org/10.1145/243199.243258
https://doi.org/10.1145/281250.281256

Appendix A

Theories and Definitions

A.1 Edit Distance

Definition A.1 (elementary edit operation). An elementary edit operation (x, y)

that converts x to y is an ordered pair of characters ∀x, y ∈ Σ+, (x, y) 6= (Λ,Λ).

Remark 1 (insertion, deletion, and substitution operation). Given definition A.1, we

can directly formalize three types of elementary edit operations:

– insertion {(x, y)|x = Λ},

– deletion {(x, y)|y = Λ}.

– substitution {(x, y)|x 6= Λ, y 6= Λ},

Remark 2 (transposition operation). The transposition operation, first introduced by

Damerau (1964) and used in many edit distance metrics, that exchanges two adjacent

characters is not an elementary edit operation. Transposition operation is not an

elementary, i.e. atomic, edit operation. We define transposition as an composed edit

operation that consists of elementary operations that swap two adjacent characters,

for example, two substitution operations.

Definition A.2 (edit transformation). An edit transformation ES1,S2 that converts

S1 to S2 is an sequence of edit operations

ES1,S2 = {(xi, yi)}m. (A.1)

There are infinite number of transformations available between two strings. We

denote ES1,S2 as the set of all edit transformations that make a valid transposition

from S1 to S2.

59

60

Table A.1: List of applied edit distance measures and according edit operation sets.

Distance Metrics Edit Operation Set

Hamming Distance substitution

Longest Common Subsequence Distance insertion, deletion

Levenshtein Distance subsubsection, insertion, deletion

Damerau-Levenshtein Distance subsubsection, insertion, deletion, transposition

Definition A.3 (transformation cost). Let γ : Σ+ × Σ+ → R be a cost function

that transform an edit operation into a nonnegative real number. The cost of an edit

transformation, γE, is the cumulative sum of all edit operations in this transformation

γE(ES1,S2) =
∑

(xi,yi)∈ES1,S2
γ(xi, yi). (A.2)

Definition A.4 (edit distance). The edit distance δ(S1, S2) is the minimum cost

required to transform S1 to S2

δ(S1, S2) = minES1,S2
∈ES1,S2

γE(ES1,S2). (A.3)

Remark 3 (unit-cost edit distance). Many applications simplify the definition of edit

distance as the minimum number of edit operations required for a transformation

between two strings. Edit distance metrics follow this simplification is called unit-

cost edit distances in the literature. Without loss of generality, we can achieve this

simplification by adopting γ ≡ 1 for all edit operations.

For feature functions of this family, we apply the unit-cost edit distances and

rescale using Eqn. 4.3. Different distance measures allow only a subset of edit oper-

ations to be used, which are listed in Table A.1.

Appendix B

Evaluation Dataset Preprocessing

The dataset we used in evaluation are generated from two OCR outputs for book

“Birds of Great Britain and Ireland (Volumn II)” (Butler et al., 1907). One ver-

sion is generated from the standard BHL-Europe recognition workflow, which OCR

technique is based on Tesseract 3.0.21. Another version is generated primarily in the

Abbyy Fine Reader 10 workflow with improvements developed within the IMPACT

project2. We parsed the page separated content from the former version as the input

text for evaluating OCR post-processing task and modified the latter version to get

the ground truth content. For analysis, we also generated a list of ground truth error

by comparing the input and the ground truth content.

Given that the ground truth is also generated from the OCR workflow, the errors

need to be corrected to match the original book content. In addition, the content

lines in the ground truth text should be aligned with the input text. We adopted

the following rules in generating the ground truth text:

– The footnotes and page numbers are removed. Consider inferences using con-

textual words are used in many correction models, the purpose of removing

those texts is to keep the content fluency.

– Characters with multiple representations are standardized. There are different

unicode representations indicating the same character. For example, U+00B0

and U+02DA both look similar to the degree sign. It is hard to identify which

one is the correct recognition result to the original image. In order to reduce

the confusion in further error identification and correction, we selected one of

1https://github.com/tesseract-ocr/tesseract
2http://www.bhle.eu/en/results-of-the-collaboration-of-bhl-europe-and-impact

61

https://github.com/tesseract-ocr/tesseract
http://www.bhle.eu/en/results-of-the-collaboration-of-bhl-europe-and-impact

62

Table B.1: Character substitutions in preprocessing the ground truth.

Type Standard representation Substituted representations

Latin ligature

ff U+FB00

fi U+FB01

fl U+FB02

ffi U+FB03

ffl U+FB04

punctuation
- U+2010, U+2014, U+2015

’ U+2018, U+2019

" U+201C, U+201D

special modifier ◦ (U+00B0) U+00B0, U+02DA

the representations as the substitution for all other representations. Table B.1

lists all the substitutions in preprocessing the ground truth.

To generate the error list, we adopted the following rules in identifying the errors

in aligned contents from input and the ground truth:

– The punctuations in the ground truth text are separate tokens in error iden-

tification. For example, an aligned string pair “fFrinˆHluurJ” in input text

aligns with “(Fringillinæ)” in the ground truth text. According to this rule,

this aligned pair is separated into three errors: < f →) >, < FrinˆHluurJ →

Fringillinæ >, and < J →) >. The above example shows the simplification

that this rule may involve: when segmenting an OCR-generated string into

substrings that match with tokens in the ground truth text, the seperating po-

sitions are approximated manually to make the best guess. In another example,

where we have two aligned strings “countr}ˆ” and “country,”, the according

Figure B.1: The comparison between U+00B0 and U+02DA.

63

errors are < countr}ˆ→ country > and < → , >.

– The aligned two characters are different representations of the same character

is not treated as an error.

– Two ASCII subsititution of unicode characters are allowed: (æ, ae) and (Æ,

AE). Note that the dataset is generated from a biodiversity book, which con-

tains terminologies with non-English characters, for example, Corvidæ or ORI-

OLIDÆ. We accept these two ASCII subsititutions in order to match the

original terminologies to their English counterparts.

– The aligned two words with different cases is not treated as an error. Observed

that the standard BHL-Europe recognition workflow is tend to lowercase the

non-heading characters in some entirely capitalized words. Thus, we do not

categorized this type of mismatchings as error. Such change in capitalization

form is also hard to detect by human readers with only input text, where page

layout is eliminated.

– The extra whitespaces between tokens are allowed. It is also observed that the

standard BHL-Europe recognition workflow sometimes generate extra whites-

paces between tokens. We do not categorize this type of mismatch as error

unless the inserted whichspace leads to a splitting or merging error.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Symbols Used
	Acknowledgements
	Chapter 1 Introduction
	1.1 Problem Statement
	1.2 Proposed Model
	1.3 Contributions
	1.4 Outline

	Chapter 2 Background
	2.1 OCR Procedure
	2.2 OCR-Error Characteristics
	2.3 Modern Post-Processing Models

	Chapter 3 Compositional Correction Frameworks
	3.1 Noisy Channel
	3.1.1 Error Correction Models
	3.1.2 Correction Inferences

	3.2 Confidence Analysis
	3.2.1 Error Correction Models
	3.2.2 Correction Inferences

	3.3 Framework Comparison

	Chapter 4 Proposed Model
	4.1 Error Detection
	4.2 Candidate Search
	4.3 Feature Scoring
	4.3.1 Edit Distance Family
	4.3.2 Character n-Gram Family
	4.3.3 Contextual word n-Gram Family

	4.4 Candidate Ranking

	Chapter 5 Evaluation
	5.1 Experimental Setup
	5.1.1 OCR Dataset
	5.1.2 Evaluation Setup

	5.2 Detection Evaluation
	5.2.1 Detection Recall
	5.2.2 Word Boundary Detection Recall

	5.3 Correction Evaluation
	5.3.1 Selected Features Evaluation
	5.3.2 Ranking Method Selection
	5.3.3 Error Correction Model Comparsion
	5.3.4 Overall Performance

	Chapter 6 Conclusion
	Bibliography
	Appendix A Theories and Definitions
	A.1 Edit Distance

	Appendix B Evaluation Dataset Preprocessing

