
EXPLORING A MACHINE LEARNING BASED APPROACH FOR
ANALYZING ANONYMIZED DATA

by

Derek Nheiley

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2017

© Copyright by Derek Nheiley, 2017

This thesis is dedicated to my loving wife and parents who supported

my pursuit of higher education.

ii

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . viii

Glossary . ix

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Background . 3

2.1 Motivations . 3

2.2 Related Work . 4
2.2.1 Is This You? Identifying a Mobile User Using Only Diagnostic

Features . 4
2.2.2 Data Driven Authentication: On the Effectiveness of User Be-

haviour Modelling with Mobile Device Sensors 4
2.2.3 LiveLab: measuring wireless networks and smartphone users in

the field . 5
2.2.4 Device Fingerprinting . 6

Chapter 3 Methodology . 7

3.1 Algorithms . 7
3.1.1 Hashing Functions . 7
3.1.2 Decision Trees . 9

3.2 Datasets . 12
3.2.1 GCU . 12
3.2.2 GCU Fine Grain Detail . 15
3.2.3 Rice Livelab . 17
3.2.4 Comparison of Datasets . 18
3.2.5 Transforming RICE Running Applications Data 20
3.2.6 Processing Datasets . 22

3.3 Baseline Method . 24

3.4 Proposed Anonymization Method . 26

iii

Chapter 4 Dataset Challenges . 29

4.1 Variation In Source Dataset Features 29

4.2 Location vs. User Based Features . 30

4.3 Overfitting . 32

Chapter 5 Results and Evaluations 35

5.1 GCU Results . 35

5.2 RICE Results . 39

5.3 Analysis . 43

Chapter 6 Conclusion And Future Work 45

Bibliography . 47

Appendix A GCU v1 Experiments Output 49

Appendix B GCU v2 Experiments Output 52

Appendix C RICE Experiments Output 55

iv

List of Tables

3.1 GCU mobile dataset features 13

3.2 Original GCU Dataset Feature Types 14

3.3 GCU Running Application Probe 16

3.4 Selected RICE dataset features to match GCU 17

3.5 Remaining RICE dataset features 17

3.6 Example RICE mobile dataset features 18

3.7 Common Features Between Datasets 19

3.8 RICE vs GCU Dataset Formats 19

3.9 RICE vs GCU Dataset Format Wifi Example 22

3.10 RICE vs GCU Dataset Format Running Applications Example 23

3.11 Example original dataset tuples 24

3.12 Example transposed dataset tuples to feature columns 24

3.13 Reduction in Row Counts After Transposing 24

3.14 Example Transposing to Feature Column per Distinct Value . . 25

3.15 Distinct Number of Feature Values by Dataset 25

4.1 Distinct values by RICE probe vs. number of users. 30

5.1 GCU Classification Model Results 35

5.2 RICE Classification Model Results 39

5.3 Rice Classification Accuracy vs. Number of Users 40

5.4 Comparison of Classification Accuracy vs. Number of Users . . 43

5.5 RICE Classification Model With No Application List Resets . . 44

A.1 GCU V1 Experiments Output (Matlab CART) 50

A.2 GCU V1 Baseline Experiments Output (Matlab CART) 51

v

B.1 GCU V2 Experiments Output (Matlab CART) 53

B.2 GCU V2 Baseline Experiments Output (Matlab CART) 54

C.1 RICE c4.5 Experiment Output (WEKA C4.5) 57

C.4 RICE Tree Size vs. Number of Users (WEKA C4.5) 65

C.2 RICE c5.0 Decision Tree Output (WEKA C4.5) 66

C.3 RICE Baseline Experiments Output (Matlab CART) 67

vi

List of Figures

3.1 Example usage of Hashing Library in Python 8

3.2 Example decision tree visualization for 1936 Iris (plant) dataset 10

3.3 Example pruned decision tree visualization for 1936 Iris (plant)
dataset . 11

3.4 GCU timestamp and date features. 14

3.5 iOS 4.0 Multitasking [24] . 21

3.6 Example transposing and hashing original GCU tuple to feature
columns . 27

4.1 Distinct values by RICE probe vs. number of users. 31

4.2 GCU v2 Decision Tree Size (MB) vs. Min Number of Leafs . . 34

4.3 Example pruned decision tree 34

5.1 GCU decision tree confusion matrix 36

5.2 GCU v2 classification model based on all available features . . 37

5.3 GCU v2 classification model based on time and app features only 38

5.4 Rice Classification Accuracy vs. Number of Users 41

5.5 Rice Tree Size vs. Number of Users 42

vii

Abstract

Information found in log files is often stored in human readable plain text. Research

study participants do not want sensitive information recorded, and when data is

made publicly available, participants ask that they cannot be individually linked to

their data [22][10]. Researchers anonymize publicly available datasets using randomly

assigned encodings for users, and one-way hashing functions for encrypting other

human readable plain text.

This research examines the effects of concatenating and hashing a list of nominal

values to represent a single dataset feature, using password encryption as an example.

Using decision trees and classification accuracy as a measure of information leakage,

I evaluate the performance on several publicly available mobile datasets.

One of the contributions in this research identifies fine grain application usage

details as a suitable candidate for device fingerprinting, which maintains user classi-

fication accuracy even when obscuring the name and number of applications.

viii

Glossary

anonymization Type of information sanitization whose intent is privacy protection.

1, 3–5, 24–27, 44–46

digest The output from a hash function, also known as a hash. 7, 8

FHE Fully Homomorphic Encryption. 3

hash The output from a hash function, also known as a digest. 7, 8, 26, 27, 39,

44–46

hash function A one way function which maps an input value to an output value

based on a given hashing algorithm. 1, 2, 7, 8, 26, 45

MAC [address] Media access control address of a computer is a unique identifier

assigned to a network interface. 13, 23

SQL Structured Query Language. 17

SSID Informal (human) name of the basic service set in a communication network.

13, 18, 19, 23, 26

TSV Tab separated value. 13, 32

ix

Acknowledgements

Thanks to all my academic examples such as my supervisor, professors, instructors,

teaching assistants, and classmates for providing a stimulating learning environment

and a challenging but rewarding path to follow towards all my future problem solving

endeavours.

I would also like to thank 2Keys Corporation for the opportunities created by the

NSERC program.

x

Chapter 1

Introduction

Often when log files are publicly available, information that is human readable plain

text, such as usernames, application names and wifi access point names are anonymized.

The process of anonymization can be categorized in two main categories for this re-

search, encoding and encrypting.

Encoding (also known as renaming, or indexing) is the process of transforming

values using some type of legend, or key. Values in a dataset feature such as the

username “Alan Turing” could be encoded to “user4”, or more simply the number

‘4’. Here the output value can be randomly generated, as long as it is not already

used by some other value, but otherwise is not affected by the actual input value.

In order to add more data after encoding a dataset feature is complete, a copy of

the legend or key must be re-used, it lists all the input values, and the randomly

generated output value they should be replaced with. New values are then encoded

using what ever mapping is listed so that the same original data corresponds to the

same encoded data. However, the legend, or key is rarely provided when public data

has been encoded, because that would eliminate any gains in privacy achieved by

encoding the dataset. Therefore, adding new data, or combining multiple datasets

that where each individually encoded is not useful.

Similar to how passwords can be stored, plain text can be encrypted (among other

ways1) using a one way function which transforms the text into scrambled looking

output which cannot easily be transformed back into the original text (discussed

further in chapter 3: hash functions). The advantage of encrypting data using a one

way function is that the same input will always result in the same output, so more

data can be added later using the same process because the encryption method is

often publicly stated. When performing analysis on the data, encoding (usually in

the form of indexing with a new number for each unique value seen) is then applied

1Symmetric and public key cryptography are also popular methods for encrypting data.

1

2

to the scrambled outputs immediately before the dataset is processed.

The ability to add new data when datasets are encrypted using one way functions

is also its primary weakness. For example, if the plain text “password” was encrypted

using a one way function, and a dataset instead stored “a1b2c3d4”, I could try and

guess what plain text was used to generate “a1b2c3d4” by inputing my guess to

the same one way function and comparing the output values2. For features such as

“Application Name”, lists of popular applications can easily be collected from online

stores and used to guess the encrypted values in publicly available datasets.

Continuing previous research on mobile log files where users could be identified

by seemingly benign device log files [19] this research investigates how users can be

identified even when hashing is used to anonymize and encrypt log files in different

ways. Specifically, I propose a method where variable length nominal values from a

dataset feature are first concatenated to a single value, and then encrypted as a single

value to generate an encrypted output which obscures both the length, and plaintext

values and the nominal values for an individual dataset feature. I then evaluate how

information leakage is affected compared to a baseline experiment.

The remainder of this thesis is organized as follows. Chapter 2 discusses the

background and subsequent motivations for this research with comparison to related

works. Chapter 3 provides a technical background on existing methods such as hash

functions and decision trees. Dataset descriptions are provided along with some

detailed analysis about differentiating factors. After outlining a baseline method, the

proposed method is shown with examples. I have presented the challenges experienced

during this research in chapter 4. First discussing the effects of the different datasets,

and how overfitting affects this research. Chapter 5 presents and discusses the results

including how the datasets are compared with different numbers of users. Finally

chapter 6 draws conclusions and outlines options for future work.

2The process of using a list of guess inputs to generate outputs from a one way function and

comparing the results to the output that is guessed is called a dictionary attack.

Chapter 2

Background

Machine learning on encrypted data often falls into two broad categories, privacy-

preserving training, and privacy-preserving classification [6]. Under privacy preserv-

ing training, only the server should know the training data, and construction of the

predictive model, where as, privacy-preserving classification, the inputs and predic-

tion are known only to the client. In both approaches, the inputs into the model can

be encrypted using fully homomorphic encryption [6].

Until 2009 [11], homomorphic encryption had several limitations such as the num-

ber of operations, or runtime performance. Fully Homomorphic Encryption (FHE)

works with an arbitrary number of operations, and in some implementation, mitigates

the performance penalties [12].

In contrast to recent FHE advances, data mining has been exploring methods for

privacy preserving classification for ten or more years before FHE. Concepts such

as k -anonymity are still aiming to strike a balance between anonymization and data

mining utility [19] [23].

Mining boolean data values under limited interaction model of privacy-preserving

classification was presented by Yang et al. [27], where they defined privacy in a semi-

honest model stating: “no extra information about honest customers values be leaked

even if the miner receives help from corrupted customers.” [27] Yang also discusses

the randomization technique [27] further detailed by Du et al. [7], where Du explores

storing Xi + r in a database (where Xi is a private data value, and r is a random

number from a known distribution).

2.1 Motivations

Anonymized log files are offered on many devices as a method of anonymously sending

usage information to application developers. Many operating systems and applica-

tions offer options to send log files when recovering from errors in addition to sending

3

4

regular usage information such as system load and memory state.

Just as encrypted network traffic can still be differentiated using flow analysis [13],

this research investigates how compressing and encrypting log files on mobile devices

can affect the potential for being identified as an individual or user type.

Further to the discussion of restrictive access of third party applications to system

data by Shepard et al. [22], and the use of hashing for preserving privacy in logs

files, the method proposed in this research may viewed as a potential basis for an

anonymized log file API where the hardware or operating system provides anonymized

information to third party applications on security conscious devices [22].

2.2 Related Work

Previous research has examined information leakage and device fingerprinting, and

have demonstrated the possibility of information leakage, but they focused either on

mobile specific setting or attacks on encryption, and not both.

2.2.1 Is This You? Identifying a Mobile User Using Only Diagnostic

Features

Quattrone et al. [19] detail their success achieving %94 accuracy in identifying users

by way of a Naive Bayes classifier on hardware statistics and system settings from

mobile device logs. While Quattrone et al. summarize daily information as part of

their pre-processing, they do not directly attempt to use any type of anonymization,

encryption, or global recoding [26] to investigate the effects of intentionally obscuring

original data values.

2.2.2 Data Driven Authentication: On the Effectiveness of User

Behaviour Modelling with Mobile Device Sensors

The GCU datasets used in this research (see section 3.2.1) originated from Glas-

gow Caledonian University in relation to the work carried out by Kayacik et al. in

2014 [10]. In their above named publication, Kayacik et al. propose “a lightweight,

and temporally and spatially aware user behaviour modelling technique for sensor

5

based authentication” with the goal of investigating “practical aspects” [10] of incre-

mental training duration, automatic deployment on a per user basis, which allows for

variations in performance between users and addresses the impacts of behaviour drift

over time.

Using several statistical models based either on temporal or spatial data allowed

Kayacik et al. to “build comfort levels based on multiple indicators”, build the model

incrementally, and on the device because of their low computational and storage costs.

Discussing the background and motivations for implicit authentication, Kayacik et

al. note that as of 2013, “64% of users do not use authentication on their phones” [10][5].

The topic of security and privacy is further implied when they comment to the ben-

efit of a lightweight user modelling approach, “some users may prefer an on-device

modelling technique that allows them to build and deploy models without their data

ever leaving the device” [10].

Focusing on the information security aspect of the previous statement about data

leaving a mobile device, this research will aim to provide an option for anonymizing

data, while still preserving the entropy for user classification. Kayacik et al. also note

the importance of spatial information [10] to user behaviour and its contribution to

signalling deviations from baseline user behaviour on mobile devices. I will continue to

employ spatial information throughout my experiments comparing the results before

and after my proposed anonymization method.

2.2.3 LiveLab: measuring wireless networks and smartphone users in

the field

The RICE dataset also used in this research (see section 3.2.3) was made publicly

available by the LiveLab Project out of Rice University in 2010 [2]. Shepard et al.

state that one of their primary concerns was privacy, and based on pre-observation

interviews, participants stated that their “biggest concern” was they did “not want

researchers to be able to associate their identities with their data” [22].

Although participants stated they were “not concerned about some potentially sen-

sitive data being collected as long as the data is not directly linked to their identity”,

the researchers chose to use “one-way hashing to preserve the uniqueness of the data

6

entry without revealing its content” [22]. In certain implementations, the use of hash-

ing can leave data vulnerable to dictionary attacks (discussed later in section 3.1.1).

The LiveLab methodology for privacy protection using hashing was one of the

motivations for this research. Shepard et al. also demonstrate the importance of

“temporal dynamics and trends of application usage” [22] which I attempt to support

in my proposed method of anonymizing categorical data values.

2.2.4 Device Fingerprinting

“Device fingerprinting is the process by which a device or the software it is running

is identified by its externally observable characteristics” [8]. Franklin et al. discuss

wireless device driver fingerprinting, and although the concept of device fingerprinting

is not new, they discuss the details of their “timing based approach to when observing

implementation dependent differences ... [in]... inter-frame timing of transmitted

probe requests” [8].

Similar to log files, Franklin et al. note that “coarse grained timing information

is preserved despite the encryption of frame content...” [8]. A common approach to

anonymizing log files often ignores timestamps, leaving them in original form. Unfor-

tunately as discussed in section 3.2.4, the datasets used in this research are collected

primarily on set intervals. I will come back to the concept of device fingerprinting

when I identify other potential sources in section 3.2.2 that are also preserved even

when encrypted.

Chapter 3

Methodology

Existing methods such as hash functions and decision trees are reviewed in this chap-

ter before going into a detailed description of the datasets used in this research. After

outlining a baseline method to compare results, the proposed method is described,

including examples of its usage on the datasets used in this research.

3.1 Algorithms

Part of the investigation undertaken in this research involves several types of algo-

rithms which will now be reviewed.

3.1.1 Hashing Functions

Hashing is the one way process of mapping a variable length input to a fixed length

output (known as the digest, or hash) using a reproducible function (known as a hash

function).

Xdigest = hashFunction(X) (3.1)

Hashing first appeared in the early 1950’s, as detailed by Alan G. Konheim [16],

although at the time hashing was known as “scatter storage”. The term, “hashing”

appeared in relation to hash functions until several articles in 1968 [17] [18] [16].

Often hashing involves mapping a block of data from a large input space to a

specific value in the smaller output space. Because the input space is often larger

than the output space, two input values may map to the same output value, this

is known as a hashing collision. Depending on the particular implementation of the

hashing algorithm used, collisions can present a security concern.

For example, authentication systems often store the hash of a password instead

7

9

collisions.

3.1.2 Decision Trees

Decision Trees are a form of machine learning that are commonly used in data mining.

As the name implies, decision trees can be visualized as a tree style structure, for large

trees the human readable format can be large.

Wu et al. compared the performance of the top 10 algorithms for data mining,

and specifically discussed some nuances of the C4.5 decision tree algorithm used in

research [25]. In particular Wu notes that C4.5 differs from previous CART algorithms

by supporting both binary and multi-way splits at each node [25] [20].

The C4.5 algorithm uses both information gain and gain ratio [25] with the ob-

jective of minimizing entropy with each node. The splitting process begins with a

root node and continues recursively down to the final leaf nodes containing results.

Thus the root node in a C4.5 decision tree always represents the largest separation

in the dataset. Subsequent nodes down the tree become more and more specific to

classifying a smaller percentage of the data.

For example, figure 3.2 shows an example decision tree for classification generated

on a well known dataset using R (a project for statistics computing). Note how the

top most node labeled as ‘1’ is able to distinguish between ‘setosa’ and the other

two types based on the ‘petal length’ feature being less than or equal to 1.9. In this

example case, binary splits are being used, and the final classification for each data

point read by the decision tree is shown by the largest column at the bottom of the

graphic (representing the leaf). In the case that more than one class is present in

a leaf graphic, those data points would be incorrectly classified by the model as the

largest column in the leaf graphic.

To avoid overfitting (discussed later in section 4.3), pruning begins at the parents

to leaf nodes further down the decision tree and the process continues up from the

leafs to the root by accepting some predefined level of error in exchange for replacing

some part of the decision tree with a simpler and more general version. Using the

sample dataset example, figure 3.3 shows a pruned down and more general model

compared to the earlier version shown in figure 3.2.

The freely available WEKA machine learning software [4] uses J48, the open

12

source implementation of C4.5 for decision trees. By default J48 allows multiway

splits, pruning (subtree raising, collapseTree, confidence factor), and supports cross

validation (discussed in section 4.3). ‘R’[3], another freely available software pervi-

ously mentioned has several implementations of decision trees ranging from binary

trees based on CART, and implementations based on newer algorithms such as C5.0.

Matlab is also used throughout this research for verifying the results in the “fitc-

tree” implementation of CART, and the interactive visualization tools for inspecting

decision trees.

Decision trees have the advantage that they can be easy to visualize for simpler

models. The C4.5 algorithm also provides a ruleset which allows easy inspection of

rules per output class based on the logic of the unpruned decision tree.

Unlike other machine learning model types (such as SVMs, multi layer neural net-

works, and genetic programming), decision trees cannot synthesize new features to

find separation between data on some higher dimensional plane (often called hyper-

planes in SVMs [25]). The lack of feature synthesization in decision trees simplifies

the underlying classification logic but can result in models that are larger than would

be required when the data is separable when projected to a higher dimension.

3.2 Datasets

Three datasets were used during this research. The first two datasets referred to as

GCU v1, and v2 from Glasgow Caledonian University [10] collected mobile data from

7, and 4 android devices respectively providing fine grain detail of processes running

on the CPU as well as other hardware and software sensors. The third dataset referred

to as RICE originated from Rice University LiveLab [22], and provides application

level data for mobile data collected from 34 iPhone devices along with other hardware

and software sensors.

3.2.1 GCU

GCU dataset version 1 is collected from 7 users consisting of staff

and students of Glasgow Caledonian University. The data was collected

in 2013 from Android devices.... The duration of the data varies from 2

weeks to 14 weeks for different users. Compared to other publicly available

13

datasets ..., it also contains a detailed diary for each user which allows

for a detailed investigation of anomalies. [9]

GCU dataset version 2 is collected from 4 users (specifically, 2 people,

using their devices in two different periods covering different locations)

consisting of staff and students of Glasgow Caledonian University. The

data was collected in 2014 from Android devices ... The duration of the

data is approximately 3 weeks. Only wifi networks are anonymized. [9]

Table 3.1: GCU mobile dataset features

Description GCU V1 GCU V2
Rows 188,066 16,490,757
Unix timestamp 3 3

Available Probe Types Cell, Wifi Cell, Wifi
RunningApplications RunningApplications

Accel, Magnetic, Rotation
Light, Noise, System

Users 7 4
Date (YYYY-MM-DD) 3 3

Time (hh:mm:ss) 3 3

Probe Values One or more One or more

Note: ‘Date’ will be omitted from future tables for clarity.

Both versions of the GCU datasets are provided in .TSV format which allows

for simple processing with any basic scripting language. The original format can

be described by the set of features as outlined in table 3.1. In order to compare

the GCU v1 and v2 datasets, I will be restricting the features to ‘Cell’, ‘Wifi’ and

‘RunningApplications’ probe types which are common to both versions of the dataset.

Oddly, the different versions of the GCU datasets were anonymized differently.

While open applications are each individually hashed using SHA224 for GCU V1,

the applications names are human readable in GCU v2. WiFi names have been

anonymized again, by individually hashing each Wifi network for GCU v1, where as

GCU v2, shows the MAC [address] address rather than the SSID. Finally, the GCU

v2 dataset provides two values for the cell probe which appear to be indexed, where

GCU v1 only provides a single SHA224 hashed value.

15

3.2.2 GCU Fine Grain Detail

One GCU probe in particular that provides an unexpected amount of detail in the

logs is the Running Applications probe. In table 3.2 I showed a sample version of the

values returned by the Running Application probe, but these values were formatted

for demonstration purposes to fit in the table.

Table 3.3 shows the full list of values returned by a single sampling of the running

applications probe. Among the list are popular apps such as ‘Facebook ’ and ‘What-

sapp’. Notably, unless the user was using some type of split screen view, the running

application probe seems to be returning all processes running on the CPU, not just

the current open application.

Another type of value shown in the detailed list that provides more fine grained

detail is the group of applications related to widget services for news, email and

weather. As the user decides to use more widgets on their screen, this will actually

add background processes that the GCU ‘Running Applications’ probe will return in

the log files.

Looking further at the values in table 3.3 notice more background service appli-

cations such as BluetoothHeadsetService, vevo.CastService, and Google VideoChat-

Service. Presumably some of the services are running because the user; has enabled

them; installed an application that requires them; or the device came configured to

use these services out of the box.

The fine grain detail provided by the GCU running application probe may provide

the foundation for fingerprinting users based on background services as well as actual

open applications. The notion of device fingerprinting has been known for some

time. Publicly available tools such as amiunique.org, browserprint.info/ and

panopticlick.eff.org/tracker allow for finger printing based on data exposed by

web browsers. Beyond web browsers, research has shown device fingerprinting is

possible based on active and passive approaches ranging from TCP clock skew [15],

to wireless device drivers [8] just to name a few.

As with other forms of device fingerprinting, there is a considerable amount of

information being leaked in the log files that users may not wish to have collected

by third party applications ranging from application names themselves, to types of

services, some of which can actually identify that a Samsung device is being used.

16

Table 3.3: GCU Running Application Probe

Running Application Values From Single Probe Sample
am.app.secretaudiorecorder.mainservice
ccc71.bmw.lib.bmw service
com.android.exchange.security.ode.ODEService
com.android.internal.service.wallpaper.ImageWallpaper
com.android.phone.BluetoothHeadsetService
com.android.stk.StkAppService
com.android.systemui.statusbar.StatusBarService
com.facebook.analytics.service.AnalyticsService
com.facebook.fbservice.service.DefaultBlueService
com.facebook.push.c2dm.C2DMService
com.facebook.push.mqtt.MqttPushService
com.google.android.apps.youtube.core.transfer.DownloadService
com.google.android.backup.BackupTransportService
com.google.android.finsky.billing.iab.InAppBillingService
com.google.android.gm.provider.MailSyncAdapterService
com.google.android.gms.gcm.GcmService
com.google.android.gsf.gtalkservice.service.GTalkService
com.google.android.location.internal.server.GoogleLocationService
com.google.android.location.NetworkLocationService
com.google.android.videochat.VideoChatService
com.samsung.sec.android.application.csc.CscUpdateService
com.sec.android.app.FileTransferManager.FTSRunningChecker
com.sec.android.app.FileTransferServer.FTSService
com.sec.android.fotaclient.FOTAService
com.sec.android.inputmethod.axt9.AxT9IME
com.sec.android.providers.drm.OmaDrmConfigService
com.sec.android.socialhub.service.SocialHubService
com.sec.android.widgetapp.apnews.engine.WidgetService
com.sec.android.widgetapp.digitalclock.DigitalClockService
com.sec.android.widgetapp.emailwidget.EmailUpdateService
com.sec.android.widgetapp.stockclock.WidgetService
com.sec.android.widgetapp.weatherclock.WeatherService
com.seven.Z7.service.Z7Service
com.smart.monitor.appusage.AppService
com.smlds.smlStartService
com.vevo.cast.CastService
com.whatsapp.ExternalMediaManager
com.whatsapp.messaging.MessageService
com.wssyncmldm.DMService
edu.mit.media.funf.FunfManager
smsr.com.cw.TimeUpdateService

17

3.2.3 Rice Livelab

LiveLab is a methodology to measure real-world smartphone usage and

wireless networks with a reprogrammable indevice logger designed for long-

term user studies. We deployed LiveLab for a number of iPhone 3GS

users. This includes 24 Rice University students from February 2010

to February 2011, and 10 Houston Community College students from

September 2010 to February 2011. [2]

The Rice LiveLab dataset [2] is provided in a collection of SQL files, divided by

feature as described in tables 3.4 and 3.5. In order to compare results from the GCU

dataset, only a sub-set of the RICE datasets are examined for this research.

Table 3.4: Selected RICE dataset features to match GCU

Dataset Rows Trigger Description
appusage.sql 740,672 user event applications run by users
celltower.sql 321,318 periodic (15 minute) cell tower connected
availablewifi.sql 654,540 periodic (15 minute) available wifi access points

Table 3.5: Remaining RICE dataset features

Filename Trigger Description
apps.sql - list of all installed applications, among all users
call.sql event phone calls made received by users
sleep.sql event time phone spent in low power sleep mode
display.sql event display status
charging.sql event charging state of phone
power detail.sql event built-in logfile driven)
accel.sql periodic accelerometer readings
iostat.sql periodic cpu and disk utilization)
cellsignal.sql periodic cell signal strength
loggeron.sql event time that the logger was running
associatedwifi.sql periodic connection to the associated WiFi access point
web.sql event web browsing history

Table 3.4 shows mobile apps, cell tower, and available wifi features that will be

processed. As noted by the general dataset description of LiveLab [2], not all users

18

have data for all months. Since the ‘year’, ‘month’ , and ‘date’ features are not being

used for this analysis of the GCU dataset, I will process the RICE dataset in a similar

manner, only using the time of day in seconds (‘time’) feature so that I can compare

the results more readily to the GCU results.

Some experiments were also conducted by re-introducing the day of the month

feature along with ‘time’ (of day in seconds) to observe any performance differences

for the RICE dataset. This will be clearly identified and discussed later in the results

section.

Table 3.6: Example RICE mobile dataset features

Probe User Timestamp Probe Values
GeoId, TowerId

CellTower A00 1269936873 6e2a5d5e0c0963ca11ab81e24d60f77a, dbb1c...
CellTower A00 1269937616 6e2a5d5e0c0963ca11ab81e24d60f77a, dbb1c...
CellTower A00 1269938533 6e2a5d5e0c0963ca11ab81e24d60f77a, ef437...

SSID, BSSID, Channel, RSSI
Wifi A00 1266245961 61480f2dd8b2ea4283ea321f915310b9, 3a7bf..., 11, -69
Wifi A00 1266245961 f72c65b88838823c26e18332eb7a0278, b85d8..., 6, -70
Wifi A00 1266245961 61480f2dd8b2ea4283ea321f915310b9, 2864b..., 6, -68

Name, Duration
Apps B04 1287334398 com.facebook.Facebook, 126
Apps B04 1287334524 SpringBoard, 13
Apps B04 1287334634 com.apple.MobileSMS, 68

Table 3.6 shows an example of the original RICE dataset features. CellTower,

CellGeo and Wifi all use MD5 hashing to anonymize individual values such as human

readable SSIDs. Similar to the GCU v2 dataset, the application names are provided

in human readable format.

3.2.4 Comparison of Datasets

At a high level, both the GCU and RICE datasets contain information about Cell,

Wifi, and Running Applications. Table 3.7 even notes that the ‘time of day’ can be

derived from the timestamp, as well as ‘day of month’.

19

Table 3.7: Common Features Between Datasets

Dataset Users Rows Timestamp Time Cell Wifi Running Apps
GCU v1 7 188,066 NA3

3
6

3 3 3
1

GCU v2 4 16,490,757 NA3
3 3 3 3

1

RICE 34 1,716,530 NA4
3

5
3 3 3

2

Notes:
1 GCU applications include main process, and sub processes.
2 RICE applications are limited to main application process only.
3 Timestamps are not applicable due to gaps in data collection

between users in the same datasets.
4 ‘day’ can be derived from the Timestamp and reintroduced to

the RICE dataset to observe change in performance.
5 ‘time’ (of day in seconds) can be derived from the Timestamp.
6 ‘Cell’ feature for GCU v1 is provided as a single value instead

of two separate values per probe tuple.

Referring to table 3.8, observe that both GCU and RICE have comparable repre-

sentations of GeoId and TowerId comprising the ‘Cell’ feature (a single hashed column

is provided in GCU v1), and SSID and BSSID represent the ‘Wifi’ feature. However,

RICE returns a new tuple for each Wifi point collected at the same unix timestamp,

GCU lists all the probe values together in a single tuple.

Table 3.8: RICE vs GCU Dataset Formats

Dataset Probe User Timestamp Probe Format
RICE CellTower string unix GeoId, TowerId
GCU V1 Cell string unix Cell1
GCU V2 Cell string unix Cell1, Cell2

RICE Wifi string unix SSIDmd5, BSSIDmd5, Channel, RSSI
GCU Wifi string unix {MAC, MAC, MAC, ...}

RICE Apps string unix Name, Duration
GCU Apps string unix {Name, Name, Name, ...}

Notes: GCU Date and Time features have been omitted for clarity.
Cell2 feature is only available with GCU v2.

20

To align the data formats of both datasets, I will convert the RICE data format

to match the GCU data format as discussed in section 3.2.6.

Where the datasets diverge even further is in the data provided for running ap-

plications. The difference in the data collected may be attributed to the inherent

security differences, and ability to gain root access to the device on Android vs iOS

operating systems. GCU dataset was collected on the Android operating system and

as noted in section 3.2.2, the probe returns a list of processes running (including

background services). The RICE running applications probe (collected on iOS) only

provides a tuple entry for each time the user changes primary application on screen

(ie: one application at a time).

3.2.5 Transforming RICE Running Applications Data

Although I cannot accurately infer which background processes were running on the

iPhone 3GS used in the RICE dataset (to better match the level of information in

the GCU Running Application probe), I can build a running list of open applications

similar to how applications would be listed in the multitasking view that was added

in iOS 4.0.

The RICE dataset was collected on iPhone 3GS devices running a jailbroken

version of iOS 3.0 at the time. Due to the more security conscious and locked down

nature of the iOS operating system (compared to Android operating system the GCU

datasets where collected on), researchers had to make use of a jailbroken version of

the iOS operating system in order to gain root access required to run the scripts for

logging device features [22].

The apple iOS 3.0 operating system did not support multitasking which would ex-

plain the single-application-at-a-time logging in the RICE dataset. However, partway

through the Rice University study, iOS 4.0 was released and introduced the concept

of multitasking which was supported by 3GS devices [1]. Furthermore, a jailbroken

version of the iOS 4.1 operating system was available in July of 2011 [21]. The jailbro-

ken version would provide the required root access to an iPhone which would support

the installation requirements of the RICE livelab logging application [22].

Multitasking in iOS 4.0 (shown in figure 3.5) allowed the user to switch between

apps by double clicking the home button which presented the user with a list of

21

applications that the user had previously opened [1]. Similar to how appilcation

launches where collected based on a user event (interupt) during the original RICE

dataset collection [22], a double click system event would also have an interrupt that

could be captured by a jailbroken device.

Figure 3.5: iOS 4.0 Multitasking [24]

The idea I am building off is a running list of open applications could be another

way of creating a device fingerprint, one that is still available in iOS 10 as of this

writing. Based on this idea, I can simulate the list of open applications from an earlier

iOS version by keeping track of which applications a user has opened during the day.

When an application name appears in the probe value indicating it was opened, the

application name is added to the set of ‘Running Applications’, and when the date

changes, the list is reset.

In the current version of iOS 10 (as of this writing), the multitasking application

switcher will actually restore the list of past applications even after power cycling the

22

device. Users must; purposefully swipe up to clear an application from the multitask-

ing switcher; or do some form of reset on the device.

In implementing this list of running applications I will assume that users will not

clear their open applications throughout the day from the multitasking view (as this

has no performance impacts on iPhone devices). I will also assume a limited lifespan

of apps in the multitasking list, that is, the list will be reset each night to prevent

building up a permanently identifying digital fingerprint of each user over time. The

second assumption may be relaxed on future datasets when the list of applications

from the multitasking view is a recorded dataset feature, however, for this research, I

did not want to bias the dataset by increasing the entropy for log entries near the end

of the data collection period. A preview of the performance increase when relaxing

the second assumption is provided in the Analysis section for reference.

3.2.6 Processing Datasets

Original datasets contain a tuple for each reading from each probe. To facilitate

easier ingestion of datasets, the original data will be transposed into a running log

where each probe type gets a feature column. In the transposed format, past values

are shown on each row until they are updated or the date component of the input

timestamp changes. This allows simpler correlation of values. The transposing pre-

processing is accomplished using a python script which groups raw tuples based on

the timestamp before outputting the data in the desired format.

Table 3.9: RICE vs GCU Dataset Format Wifi Example

Dataset Probe User Timestamp Probe Values
SSID, BSSID, Channel, RSSI

RICE Wifi A00 1266245961 61480..., 3a7bf..., 11, -69
RICE Wifi A00 1266245961 f72c65..., b85d8..., 6, -70
RICE Wifi A00 1266245961 61480..., 2864b..., 6, -68

{MAC, MAC, MAC,...}

GCU Wifi user1 1387325654 {27:bc:... , 35:0c:... , 6a:fd:.. ,...}

In the case of the RICE Wifi probe, multiple available wireless access points are

returned as individual tuples with the same timestamp as shown in table 3.9. To

23

align the data formats between datasets, a list of SSIDs is built when processing the

RICE datasets and output as a single tuple containing all the SSID values. This will

match the GCU format where a single Wifi probe tuple contains all the available

MAC [address]s.

As discussed in section 3.2.5 the RICE ‘Running Application’ needs to be trans-

formed from a single-application-at-a-time logging style, to keeping a list of open

applications for each day. Again using python scripting to pre-process the original

data, I transform the RICE ‘Running Application’ data into a running log by keeping

a history of the applications opened by each user. To better match the stateless out-

put of the GCU ‘Running Application’ probe, the history is stored in a sorted set of

application names. The set is updated every time an application probe is processed

for a particular user, and the sorted values are output as part of the transposed tuple

as demonstrated in the Original, and Transformed sections of table 3.10.

Table 3.10: RICE vs GCU Dataset Format Running Applications Example

Dataset Probe User Timestamp Probe Values
{Name, Name, Name,...}

GCU Apps user4 1387325587 {fb.service, fb.push, ggle.backup,...}

Original Format Name, Duration
RICE Apps B04 1287334398 facebook, 126
RICE Apps B04 1287334524 SpringBoard, 13
RICE Apps B04 1287334634 SMS, 68

Transformed Format {Name, Name, Name,...}

RICE Apps B04 1287334398 {facebook}
RICE Apps B04 1287334524 {facebook, SpringBoard}
RICE Apps B04 1287334634 {facebook, SpringBoard, SMS}

Walking through the data transposition in table 3.11 to table 3.12 , input tuples

from the original dataset formats only update the relevant columns in the transposed

dataset format. As more raw tuples are read, other columns populate with values

for a given timestamp and the resulting row of feature columns output when the

timestamp from the next raw tuple format increments to the next second. All feature

value columns are then reset when the time gap between probe readings is over four

24

hours for that user.

Table 3.11: Example original dataset tuples

Timestamp Probe User Time Probe Values
1387325187 GCU.Cell user4 00:06:27 3, 254
1387325587 GCU.Apps user4 00:13:07 {fb.service, fb.push, ...}
1387325654 GCU.Wifi user4 00:14:14 {27:bc:..., 35:0c:..., ...}

Table 3.12: Example transposed dataset tuples to feature columns

Time (s) Cell1 Cell2 Wifi Apps User
387 3 254 u4
46807 3 254 {fb.service, fb.push, ...} u4
50414 3 254 {27:bc:..., 35:0c:..., ...} {fb.service, fb.push, ...} u4

One of the results of transposing the datasets is reducing the number of rows as

listed in table 3.13 (and subsequent dataset file size) due to the fact that rows store

values for multiple probes.

Table 3.13: Reduction in Row Counts After Transposing

Dataset Users Original Rows Transposed Rows
GCU v1 7 188,066 124,154
GCU v2 4 16,490,757 3,392,454
RICE 34 1,716,530 1,113,847

3.3 Baseline Method

To establish a baseline performance on the datasets without any additional anonymiza-

tion, the datasets are processed to output a simpler transposed format.

Table 3.14 shows one example of transposing three probe readings. Each distinct

feature value is assigned a feature column, boolean Y/N indicates the presence /

25

absence. This baseline is obviously quite crude, but serves to provide a basic refer-

ence point for classification model performance when no additionalanonymizationis

applied. Concerns regarding overfitting are discussed in section 4.3.

Table 3.14: Example Transposing to Feature Column per Distinct Value

Original Dataset Tuples
Timestamp Probe User Time Probe Values
1387325187 GCU.Cell user4 00:06:27 3, 254
1387325587 GCU.Apps user4 00:13:07 {fb.service, fb.push, ...}
1387325654 GCU.Wifi user4 00:14:14 {27:bc:..., 35:0c:..., ...}

Transposed Dataset Tuples for Baseline

Time (s) C
el
l1

3

C
el
l1

4

C
el
l1

..
.

C
el
l2

25
4

C
el
l2

17
2.
..

C
el
l2

..
.

W
ifi

27
:b
c:
..
.

W
ifi

35
:0
c:
..
..

W
ifi

..
.

A
p
p
s
fb
.s
er
v
ic
e

A
p
p
s
fb
.p
u
sh

A
p
p
s
gg
le
.b
ac
k
u
p

A
p
p
s
..
.

User
387 Y N ... Y N ... N N ... N N N ... u4
46807 Y N ... Y N ... N N ... Y Y Y ... u4
50414 Y N ... Y N ... Y Y ... Y Y Y ... u4

Due to the size of the datasets used, and the number of feature columns generated

from the number of distinct values for certain features, the baseline method does not

scale particularly well. Note in table 3.15 that the ‘Wifi’ feature has several orders of

magnitude more distinct feature values than the other probe types.

Table 3.15: Distinct Number of Feature Values by Dataset

Dataset Users Cell1 Cell2 Wifi Running Apps
GCU v1 7 2375 - 14095 461
GCU v2 4 76 1550 25478 252
RICE 34 6849 467 15029 2301

Chapter 5 will detail the results of the baseline experiments, however, due to the

sheer number of distinct wifi feature values and corresponding memory requirements

for building a classification model, no baseline method could be completed when the

26

‘Wifi’ feature was included. In the event that the baseline methods with ‘time’ and

‘Apps’, as well as ‘time’, ‘Cell’ and ‘Apps’ achieve greater than 90% accuracy, I will

assume that adding additional features would either boost classification performance,

or have no effect at all.

3.4 Proposed Anonymization Method

Using three datasets from two different sources summarized in table 3.7 and 3.8,

each with varying levels of pre-existing anonymization, features comprised of a set of

nominal values will be hashed to anonymize the log files.

A list of one or more; cell towers; available Wifi access points; and open applica-

tions are all nominal values that will appear identically on each mobile device. For

this research, it is assumed that the user does not wish to expose individual names,

or even how many of each attribute are present in the log files for their device.

By concatenating the list of one or more values for each of the respective nominal

features and hashing the concatenated value, I am both obscuring the concatenated

values, and obscuring the number of distinct values that were recorded for a given

sensor. Note, this method is applicable even if the original datasets have already

anonymized individual nominal names, such as was done with the WIFI SSID featue.

The hash HX is generated by concatenating a list of one or more values from feature

X, where X can be any nominal value which is consistent across mobile devices.

HX = hashFunction(X1|X2|...|Xn) (3.2)

The operation of converting a list of values for a single feature data point can be

viewed as a form of global recoding [26] since the hash function will remain constant

across all users in this research.

For example: the proposed transpose and hashing would process the original

‘WiFi’ probe from either the GCU or RICE datasets as shown in figure 3.6, using the

subscript W to denote the ‘Wifi’ probe.

To condense the datasets and models as well as speed up classification the hex-

adecimal hash can also be indexed per feature column as shown after the hashing

step in figure 3.6.

27

Raw tuple:
Timestamp Probe User Time Probe Values
1393833615 WifiProbe user2 00:00:15 { 27:bc:4d:b5:09:af

35:0c:b5:8a:71:77
6a:fd:c7:c8:1c:aa }

HW = hashFunction(27:bc:4d:b5:09:af35:0c:b5:8a:71:776a:fd:c7:c8:1c:aa)
iHW = indexHash(‘wifi’, HW)

Transposed tuple:
time cell1 cell2 wifi apps user
15 iHW u2

Figure 3.6: Example transposing and hashing original GCU tuple to feature columns

Using machine learning model performance for user classification on the trans-

posed and hashed data features, an attempt to identify individuals will be the measure

of information leakage (k-anonymity [23]) and device fingerprinting in this research.

The concatenation and hashing anonymization method I am proposing increases

the input search space for a given hashing algorithm. For example, if a malicious user

obtained some device logs, they might attempt to hash a popular application name

such as “Facebook” using MD5. Obtaining the hash ‘’d85544fce402c7a2a96a48078edaf203’

the attacker can check to see if it matches any of the hashed entries in a log file, how-

ever, they find none.

To explain why the attacker would now have to expend exponentially more time

to match entires in the log file, here is an example of where the ‘Facebook’ ap-

plication might appear in the log files and how it would be handled. Similar to

figure 3.6, ‘Facebook’ is only ever listed together with other applications, for the

purpose of our example, the shortest concatenated value that ‘Facbook’ appears in

is ‘FacebookSafariSMSYahooWeather’. The value stored in the log files would then

be the hash of ‘FacebookSafariSMSYahooWeather’, which (again using MD5) would

be ‘309d2c2ca5e4a79eb4ead142046fe84e’. The one-way nature of hashing means that

there is no way to compare two hashes for similarity of their input values.

In section3.1.1 I used passwords as an example for hashing. Quite obviously if all

passwords were only one character, or always the same number of characters, they

would not be very secure. Unlike passwords that have a limited number of possible

28

characters per position (26 lower case letters, 26 upper case letters, 10 numbers, and

approximately 32 symbols), each application name that can be concatenated for the

input to a hashing function can be composed of multiple characters. Even using the

top N popular applications, an attacker would have to expend N2 time to generate

values and compare against log files generated by concatenating and hashing.

Chapter 4

Dataset Challenges

This chapter discusses some of the challenges encountered processing different datasets,

ranging from variability of features and collection techniques, to dataset local. The

effects and steps to mitigate overfitting are also discussed as they pertain to decision

trees.

4.1 Variation In Source Dataset Features

As discussed in section 3.2.4, the GCU and RICE datasets have collected different

types of application data using different methods. The GCU datasets collected pro-

cesses running on the device at periodic intervals where as the RICE dataset collected

application names based on user events. In Section 3.2.5 I detailed the method used

in this research to attempt to match the level of entropy provided with the GCU

dataset based on some reasonable assumptions about how the iOS on the iPhone

worked at the time and continues to operate today.

However, there are two main limitations to my approach. First, the GCU ‘Run-

ning Applications’ probe provides details (see section 3.2.2) of additional background

services, and screen widget configurations which are not provided by the RICE dataset

(or iOS in general until several years later in iOS 10). Second are the limitations im-

posed by my assumptions regarding user behaviour with the multitasking list of open

applications on an iOS device. I noted in section 3.2.5, that the list of open appli-

cations is reset at each date change, and also assume that users would not otherwise

clear applications from the multitasking apps list.

Specifically regarding the assumed lifetime of open applications in the simulated

multitasking apps list, an alternate approach could have used. This alternate ap-

proach might be more inline with one type of iOS device user (such as the author of

this research), that is, a user that randomly closes some average percentage (for ex-

ample 30%-60%) of apps in the multitasking view once ever 3-5 days. There are surely

29

30

other types of users for iOS devices, some no doubt routinely keep their multitasking

view completely empty. Without adequate statistics relating to user tendencies on

iOS devices, I proceeded on the assumption that my initial ‘daily-reset’ of open apps

was a reasonable compromise within the scope of this research.

4.2 Location vs. User Based Features

When the baseline method was detailed in section 3.3, table 3.15 showed evidence that

both location based (‘Cell’ and ‘Wifi’) and user based (‘Apps’) features increased in

the number of distinct probe values as the number of users increases across datasets.

Given that there are simply a greater number of Wifi access points in most areas

than there are cellular towers, I would have presumed that the number of distinct

‘Wifi’ probe values would have been the most sensitive to user count. For example,

walking down a single different street on the way home from work or university would

pick up numerous different Wifi access points, while still remaining in the same one

or two cellular areas.

The difference between the volume of distinct ‘Wifi’ probe values between the two

GCU datasets can be attributed to data collection interval differences that unfortu-

nately are not detailed with the dataset.

Table 4.1: Distinct values by RICE probe vs. number of users.

Number of Users CellGeo Apps CellTower Wifi
4 106 389 1173 2704
7 156 680 2076 2989
14 221 1233 3213 6728
25 345 1847 5196 11415
34 442 2236 6576 14700

However, taking a closer look at the RICE dataset, figure 4.1 shows a better

representation of the correlation between the number of distinct probe values and

the number of RICE users. With a sample size of 34 users, smaller sample sizes can

be randomly selected to observe the effects of increasing the number of users on the

number of distinct probe values.

32

participate in a study will begin to become geographically limited unless the study

was conducted online, and participants were randomly selected irrespective of their

geographic location.

The distinct number of ‘Running Applications’ (labeled as ‘Apps’) also shows an

increase in relation to the number of users in each dataset. However, the rate of

increase after 14 users drops more considerably than ‘Wifi’ or ‘Cell Tower’ features.

4.3 Overfitting

In the domain of machine learning, overfitting occurs when the classification model

(in this research) has been optimized to classify only the training data. Models that

overfit their training data often perform well in the training results, for example, 90%

accuracy, but then fall suddenly to a much lower level of performance, for example,

40% when the model is used to classify a different set of previously unseen data.

There are several ways to detect and mitigate against overfitting. The main

problem with overfit models is that they are optimized for a specific set of data, this

usually results in larger model sizes, both in terms of complexity, but also in terms

of raw size compared to the dataset. For example, if the dataset is 10mb in TSV

format, and the trained model is 150mb when saved to disk, it could be an indication

that the model is overfitting the training data.

The first way to mitigate is simply partitioning the data into training, validation,

and test sets. The model is built based on the training data, and then after a set

number of iterations, the model is validated on the validation dataset. The difference

with the validation set, is the process of building the model does not receive feedback

about the accuracy of prediction on the validation data. This continues while the

validation set continues to increase in performance and halts when the model starts

to become overfit and thus lowers the performance on the validation dataset. The

final evaluation of the model is then determined by using the model to evaluate the

test dataset which has not been used up to this point. Using the training / validation

/ test dataset partitioning, the data is randomly assigned two one of the partitions,

training data usually comprises 66% to 75% of the dataset, and the remaining 33%

to 25% being roughly split into two thirds validation data, and 1/3 test data.

33

A slight improvement on the random split of data to generate a model, and sub-

sequently the method used in this research is k-fold cross validation [14]. In this

approach, the dataset is randomly assigned to k buckets, where 90% is used for train-

ing, and the final 10% is used for testing. A different 10% of the buckets is used

for testing each of the following k models until each model has been validated on a

different partition of the data. The final evaluation is the average of the k models.

For this research, 10-fold cross validation is used as implemented in Weka machine

learning software [4] when presenting model accuracy.

Decision Tree’s in particular have a number of methods for mitigating overfitting.

Limiting parameters such as tree depth; leaf count; and the minimum number of in-

stances to create a leaf node are all easily tuneable. Another parameter is adjusting

the pruning confidence which attempts to prune off branches of the tree which do

not increase the evaluation of the model based on confidence factor. Using the Weka

machine learning software in this research, pruning is enabled by default and left on

with a default confidence factor of 0.25, and only the minimum number of instances

to create a leaf node is varied along a logarithmic scale. In Matlab, the minNum-

Leafs argument was varied along a log scale with the subsequent model performance

recorded.

Figure 4.2 shows the relationship between GCU model size, and the effect of in-

creasing the minimum number of leafs required to spawn a new branch. Another

example of pruning decision trees can be done by depth. Matlab provides a visual-

ization tool that allows pruning directly in a decision tree visualization. Figure 4.3

shows decision nodes (shown in grey dashed lines) being replaced by leaf nodes with

the class that yields the lowest error if the node must be pruned. This pruning is an

example of how the decision tree would change if the minimum number of leafs value

was increased, or if another measure such as “maximum tree depth” was used with a

value of 4. The deeper parts of the decision tree would be pruned away in an attempt

to reduce the model size, and limit overfitting.

Chapter 5

Results and Evaluations

Results for both datasets are reviewed in detail, including sampling the RICE dataset

for different number of users. Results on GCU and RICE datasets are then compared

and discussed. Values presented are from the WEKA C4.5 decision three classifier

implemented in J48, and verified on Matlab using the “fitctree” implementation of

CART.

5.1 GCU Results

Using all the anonymized features (‘Cell’, ‘Wifi’, and ‘Running Applications’) which

have been hashed and indexed to a continuous integer range, the GCU mobile datasets

are nearly perfectly separable by user label. The confusion matrix from one exper-

iment in figure 5.1 shows %99.99 for accuracy, precision, and recall. These results

are further confirmed using 10 fold cross validation, on all three of the hashing algo-

rithms (MD5, SHA1, SHA256) and by varying which features are used to build the

classification model as detailed in table 5.1.

Table 5.1: GCU Classification Model Results

Dataset Users Time Apps Cell Wifi Baseline MD5 SHA1 SHA256
GCU V1 7 3 3 99% 99% 99% 99%
GCU V1 7 3 3 3 99% 99% 99% 99%
GCU V1 7 3 3 3 3 5 99% 99% 99%
GCU V2 4 3 3 99% 99% 99% 99%
GCU V2 4 3 3 3 99% 99% 99% 99%
GCU V2 4 3 3 3 3 5 99% 99% 99%

Notes 1 All hashes are indexed after hashing, per section 3.4
2 All results reported are based on 10-fold cross validated accuracy.
3 5 denotes out of memory due to number of wifi instances.

35

39

5.2 RICE Results

The classification performance of the RICE dataset varies based on the features used

to build the model. Using all the anonymized features (‘Cell’, ‘Wifi’, and ‘Running

Applications’) which have been hashed and indexed to a continuous integer range, the

RICE dataset is 13-66% separable by user label with 3% being the level of accuracy

a random choice machine would achieve on average. Reviewing table 5.2, the largest

performance decrease occurs when the ‘Cell’ feature is not part of the set of features

used to build the model. Reintroducing the ‘Day’ feature (integer day of the month)

increases classification accuracy by 2-3% in all feature combinations.

Table 5.2: RICE Classification Model Results

Users Time Day Apps Cell Wifi Baseline MD5 SHA1 SHA25
34 3 3 98.50% 13% 13% 13%
34 3 3 3 5 18% 18% 18%
34 3 3 3 99% 62% 62% 62%
34 3 3 3 3 5 65% 65% 65%
34 3 3

4
3 99.50% 16% 16% 16%

34 3 3
4

3 3 5 20% 20% 20%
34 3 3

4
3 3 99% 66% 66% 66%

34 3 3
4

3 3 3 5 68% 68% 68%

Notes 1 All hashes are indexed after hashing, per section 3.4
2 All results reported are based on 10-fold cross validated accuracy.
3 5 denotes out of memory due to number of wifi instances.
4 ‘Day’ refers to integer day of the month.

One item to note in table 5.2 are the identical results of each of the hashing

algorithms. This would seem to indicating either hashing collisions are not a concern,

or all of the hashing collisions are equally being impacted by hashing collisions yielding

the same results. The probability of the later would be extremely unlikely, therefore I

will proceed under the assumption that results will be the same regardless of hashing

algorithm used. For a full listing of results, please referrer to appendix C.

In order to compare the results from the RICE dataset directly to the GCU

datasets, classification models are also built by again randomly sampling 4 & 7 users

from the RICE dataset. Furthermore, controlling for the number of users allows for

40

observing the gradual effects of the number of users on classification accuracy for the

RICE dataset.

Random sampling of users was done three times per user sample size, the results

of the cross validation classification accuracy were averaged from the three different

user samplings.

Number (+Day) (+Day) (+Day) (+Day)
of Users Apps Apps Apps Apps Apps Apps Apps Apps

Cell Cell Wifi Wifi Cell Cell
Wifi Wifi

4 51% 53% 91% 94% 56% 55% 92% 95%
7 37% 41% 77% 85% 38% 44% 77% 86%
14 24% 26% 74% 78% 27% 28% 75% 79%
25 17% 20% 66% 70% 22% 24% 69% 72%
34 13% 16% 62% 66% 18% 20% 65% 68%

Table 5.3: Rice Classification Accuracy vs. Number of Users

The results of randomly sampling users shown in table 5.3 and figure 5.4 show a

steady correlation of decreasing classification performance as more users are sampled

to build and validate the model. The accuracy results for 4 randomly selected users

(matching the number of users for the GCU V2 dataset) ranges from 51 to 95%. For

7 randomly selected users (for comparison to the GCU v1 dataset) ranges from 37%

to 86%. The higher accuracy scores are still the result of the inclusion of the ‘Cell’

feature which has a minimum +35% effect on classification accuracy regardless of the

number of users.

Figure 5.5 takes a closer look at the effects of increasing the number of users on

the size of the decision tree model. Here size is based on the total number of nodes

(full details available in Appendix C table C.4). The models that include the ‘Cell’

feature are consistently 50% of the size of models without when randomly sampling

14 or more users. The classification accuracy of these smaller models is also higher

as previously noted in table 5.3 and figure 5.4. Also note, the size of the the model

increases proportional to the size of the dataset (shown in green and based on the

number of users). One final observation I will draw from figure 5.5 would be the

increase in model size with the addition of the ‘Day (of the month)’ feature.

43

5.3 Analysis

The results for the GCU (section 5.1) and RICE (section 5.2) datasets show different

levels of classification accuracy. By randomly sampling four and seven users from the

RICE dataset, I attempted to obtain results that were as comparable as possible to

the GCU dataset.

Dataset Number Time Apps Apps Apps Apps
of Users Cell Wifi Cell

Wifi
GCU V1 7 3 99% 99% 99% 99%
GCU V2 4 3 99% 99% 99% 99%
Rice 4 3 51% 91% 56% 92%
Rice 7 3 37% 77% 38% 77%
Rice 14 3 24% 74% 27% 75%
Rice 25 3 17% 66% 22% 69%
Rice 34 3 13% 62% 18% 65%

Gray identifies results below 60% classification accuracy.

Table 5.4: Comparison of Classification Accuracy vs. Number of Users

The GCU datasets were limited to 7 users for V1, and 4 users for V2, however both

showed 99% classification accuracy when only using the ‘Time’, and ‘Apps’ features.

The results from the same number of randomly selected users from the RICE dataset

showed 48% and 62% lower performance as outlined in the ‘Apps’ column of table 5.4.

However, adding the ‘Cell’ feature does increase the classification accuracy for the

RICE datasets to 91% for 4 users, and 77% for 7 users. Adding the ‘Wifi’ feature

provides a modest increase of 1% to 5% in classification accuracy.

The largest remaining difference between the datasets, even when comparing re-

sults for the same number of users is the different levels of entropy contained in

the ‘Running Applications’ probe. As discussed in section 3.2.2 and 3.2.5, the GCU

datasets provide a list of running processes at a given point in time. The collection of

such a level of detail provides enough entropy that not only can individual application

names be anonymized, but the entire list of applications can be anonymized, hiding

details such as the number of open applications. The proposed method of concatena-

tion and hashing greatly increases the difficulty of dictionary and brute force attacks

44

that can be carried using a list of popular applications from apps stores.

In contrast the RICE ‘Running Applications’ probe is limited to a single applica-

tion name (and duration of usage which was not used in this research). My attempt

at re-constructing a list of applications that would be shown in the iOS multi-tasking

view does not appear to provide the same level of entropy as the GCU ‘Running

Applications’ values. This could be in part due to the nightly reset of multi-tasking

list of applications. Varying the reset time of the multi-tasking list of applications for

the RICE datasets should increase the classification performance, however, the reset

interval is highly user specific statistic. As of this writing the list of applications in

the multi-tasking view is still user controllable, requiring users to swipe up to indi-

vidually clear each application from their open history. Some users may leave the list

of applications in the multi-tasking view untouched most of the time, while at the

others may swipe to clear applications immediately after use.

Going to the extreme of never reseting the list of open applications a user has used

on their mobile device, table 5.5 shows the increase in performance if a user never

cleared applications from the multi-tasking view.

Table 5.5: RICE Classification Model With No Application List Resets

Users Time Apps Cell Wifi Baseline MD5 SHA1 SHA256
34 3 3 98.50% 98.7% 98.7% 98.7%
34 3 3 3 5 98.7% 98.7% 98.7%
34 3 3 3 99% 99.4% 99.4% 99.4%
34 3 3 3 3 5 99.4% 99.4% 99.4%

Notes 1 All hashes are indexed after hashing, per section 3.4
2 All results reported are based on 10-fold cross validated accuracy.
3 5 denotes out of memory due to number of wifi instances.

Even with the differences in source data for the ‘Running Applications’ probe, the

results for the RICE dataset are still able to achieve over 60% classification accuracy

when the cell probe is used for up to 34 users using the proposed concatenation and

hashing anonymization method.

Chapter 6

Conclusion And Future Work

So how does information leakage change when varying the level of anonymization

in dataset feature values? Using three datasets from two different datasources I

attempted to answer this question.

Initially comparing encoding and encryption, I went on to discuss how hashing

algorithms are used in one way functions and the implications of using them for log

files. I defined information leakage as the user classification accuracy of log files using

decision tree implementations from Weka(C4.5), Matlab(CART), and R(C5.0).

I focused on going beyond hashing individual values. Although I made use of en-

coding by indexing values to prepare them for ingestion to machine learning software

packages, this was only done to reduce the storage size of decision tree models. The

underlying difference in my proposed method is the combination of nominal values,

plain text or already encrypted, into one concatenated value that forms the input for

a hash function. Throughout this research I showed that my results were comparable

using either MD5, SHA1 or SHA256 hashing algorithms.

The GCU datasets with 7 (V1) and 4 (V2) users showed that even when infor-

mation (consisting of several distinct values) is condensed in hash form, users can

still be distinguished with greater than %99 accuracy, precision and recall. These

findings indicate that there are ways of completely obfuscating the name and number

of, applications and Wifi access points using a single hash value that still preserve

enough entropy to identify individual users using machine learning classifiers.

The performance of the GCU datasets was in part due to the detail provided by

the ‘Running Applications’ probe values. As I discussed in section 3.2.2, the GCU

dataset contained not only foreground and background application names, but also

information regarding what types of screen widgets where configured, and application

processes that appeared to be specific to the manufacturer of the mobile device.

45

46

Validating this approach on a larger number of users with the RICE dataset pre-

sented some challenges due to the reduced amount of detail in the ‘Running Applica-

tions’ probe values. In order to compare results from the RICE dataset as directly as

possible with the GCU dataset, the ‘Running Applications’ probe was transformed

into a list of open applications that would have appeared in the multi tasking view

on iPhone devices. The results when attempting to classify the RICE dataset with

all 34 users showed greater than 60% user classification accuracy.

Users were also randomly selected from the RICE dataset to build models with

the same user count of 4 and 7 as the GCU datasets. Indeed the models built on

a smaller number of users showed higher classification accuracy (compared to all 34

users), resulting in 92% accuracy for 4 users, and 77% for 7 users.

In terms of user privacy, the proposed concatenation and hashing anonymization

method in this research is able to increase the input search space for a given hashing

algorithm. Effectively this means that even if a malicious user obtained device logs,

they would not be able to simply perform a dictionary style attack by hashing popular

applications and looking for a match in the logs. Just as a password hash conceals

the number of characters, the number of applications is also concealed, requiring

the incremental hashing of different combinations of the top N applications. An

attacker would have to expend exponentially more time to perform a dictionary attack

compared to when data values such as application names where individually hashed,

as is often done in public datasets.

Future research would validate this method on larger datasets that contain the

same level of fine grained process information as the GCU datasets. Another variation

on this method could treat the list of applications or processes as a string of words,

and generating topic models, the results of which would be encrypted and provide

some type of grouping indicator, possibly in combination with the method outlined

in this research. With regards to k-anoniminity, yet another direction would be

attempting to use fully homomorphic encryption instead of the encrypting and global

recoding technique explored in this research. In a more applied direction, a project

could attempt to fully document how a device would offer an API for user logs using

a similar type of anonymizing method as outlined in this research.

Bibliography

[1] iOS 4. en.wikipedia.org/wiki/IOS_4.

[2] The LiveLab Project. http://livelab.recg.rice.edu/.

[3] R Project for Statistical Computing. r-project.org/.

[4] Weka Cross Validation. weka.wikispaces.com/Generating+

cross-validation+folds+(Java+approach).

[5] Keep your phone safe: How to protect yourself from wireless threats, 2013. http:
//consumerreports.org/privacy0613.

[6] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
learning classification over encrypted data. NDSS, February 2015.

[7] Wenliang Du and Zhijun Zhan. Using randomized response techniques for
privacy-preserving data mining. SIGKDD, August 2013.

[8] Jason Franklin, Damon McCoy, Parisa Tabriz, Vicentiu Neagoe, Jamie Van
Randwyk, and Douglas Sicker. Passive data link layer 802.11 wireless device
driver fingerprinting. USENIX Security, July 2006.

[9] Kayacik H. G. http://www.kayacik.ca/data.html.

[10] Kayacik H. G., Just M., Baillie L., Aspinall D., and Micallef N. Data driven
authentication: On the effectiveness of user behaviour modelling with mobile
device sensors. IEEE S&P Symposium, May 2014.

[11] Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC, June
2009.

[12] Craig Gentry and Shai Halevim. Implementing gentry’s fully-homomorphic en-
cryption scheme. February 2011.

[13] Fariba Haddadi and A. Nur Zincir-Heywood. Benchmarking the effect of flow
exporters and protocol filters on botnet traffic classification. IEEE Systems Jour-
nal, 10:1390 – 1401, 2016.

[14] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

47

48

[15] T. Kohno, A. Broido, and k. claffy. Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing, 2(2):93–108, May 2005.

[16] Alan G. Konheim. Hashing in Computer Science: Fifty Years of Slicing and
Dicing. Wiley-Interscience, 1 edition, July 2010.

[17] W. D. Maurer. Programming technique: An improved hash code for scatter
storage. Commun. ACM, 11(1):35–38, January 1968. http://doi.acm.org/10.
1145/362851.362880.

[18] Robert Morris. Scatter storage techniques. Commun. ACM, 11(1):38–44, Jan-
uary 1968. http://doi.acm.org/10.1145/362851.362882.

[19] Anthony Quattrone, Tanusri Bhattacharya andLars Kulik, Egemen Tanin, and
James Bailey. Is this you? identifying a mobile user using only diagnostic fea-
tures. MUM, November 2014.

[20] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., 1993.

[21] Mathew J. Schwartz. Apples iOS Zero-Day PDF Vulnerability Exposed,
July 2011. https://web.archive.org/web/20110711002808/http://www.

informationweek.com/news/231001147.

[22] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kor-
tum. Livelab: measuring wireless networks and smartphone users in the field.
SIGMETRICS Perform. Eval. Rev., 38, no. 3, December 2010.

[23] Latanya Sweeney. k-anonymity: A model for protecting privacy. International
Journal on Uncertainty, May 2002.

[24] Brian Voo. A look Into: The History Of iOS And Its Features. hongkiat.com/
blog/ios-history/.

[25] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hi-
roshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua
Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms
in data mining. Knowl. Inf. Syst., 14:1–37, December 2007.

[26] Jian Xu, Wei Wang, Jian Pei, Xiaoyuan Wang, Baile Shi, and Ada Wai-Chee
Fu. Utility-based anonymization using local recoding. KDD, August 2006.

[27] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. Privacy-preserving classifi-
cation of customer data without loss of accuracy. SIAM International Conference
on Data Mining, April 2005.

Appendix A

GCU v1 Experiments Output

Dataset Features Min Leafs MD5 Error SHA1 Error SHA256 Error

Time,Apps 3 0.0008% 0.0008% 0.0008%

Time,Apps 5 0.0008% 0.0040% 0.0024%

Time,Apps 7 0.0024% 0.0008% 0.0008%

Time,Apps 10 0.0024% 0.0008% 0.0008%

Time,Apps 15 0.0008% 0.0008% 0.0008%

Time,Apps 22 0.0024% 0.0056% 0.0024%

Time,Apps 32 0.0040% 0.0008% 0.0008%

Time,Apps 46 0.0024% 0.0008% 0.0008%

Time,Apps 68 0.0008% 0.0008% 0.0008%

Time,Apps 100 0.0024% 0.0024% 0.0008%

Time,Cell,Apps 3 0.0000% 0.0016% 0.0000%

Time,Cell,Apps 5 0.0016% 0.0000% 0.0000%

Time,Cell,Apps 7 0.0000% 0.0016% 0.0000%

Time,Cell,Apps 10 0.0016% 0.0016% 0.0016%

Time,Cell,Apps 15 0.0016% 0.0000% 0.0000%

Time,Cell,Apps 22 0.0000% 0.0000% 0.0016%

Time,Cell,Apps 32 0.0016% 0.0000% 0.0000%

Time,Cell,Apps 46 0.0000% 0.0016% 0.0032%

Time,Cell,Apps 68 0.0000% 0.0000% 0.0000%

Time,Cell,Apps 100 0.0016% 0.0032% 0.0000%

Time,Cell,Wifi,Apps 3 0.0000% 0.0000% 0.0016%

Time,Cell,Wifi,Apps 5 0.0000% 0.0000% 0.0000%

Time,Cell,Wifi,Apps 7 0.0016% 0.0000% 0.0016%

Time,Cell,Wifi,Apps 10 0.0000% 0.0032% 0.0000%

Time,Cell,Wifi,Apps 15 0.0000% 0.0000% 0.0000%

Time,Cell,Wifi,Apps 22 0.0016% 0.0000% 0.0016%

Time,Cell,Wifi,Apps 32 0.0000% 0.0000% 0.0000%

Time,Cell,Wifi,Apps 46 0.0000% 0.0000% 0.0016%

Time,Cell,Wifi,Apps 68 0.0000% 0.0016% 0.0000%

Time,Cell,Wifi,Apps 100 0.0000% 0.0000% 0.0000%

49

50

Time,Wifi,Apps 3 0.0008% 0.0008% 0.0024%

Time,Wifi,Apps 5 0.0024% 0.0040% 0.0008%

Time,Wifi,Apps 7 0.0008% 0.0008% 0.0008%

Time,Wifi,Apps 10 0.0024% 0.0008% 0.0008%

Time,Wifi,Apps 15 0.0024% 0.0008% 0.0024%

Time,Wifi,Apps 22 0.0024% 0.0008% 0.0008%

Time,Wifi,Apps 32 0.0008% 0.0008% 0.0008%

Time,Wifi,Apps 46 0.0008% 0.0008% 0.0008%

Time,Wifi,Apps 68 0.0008% 0.0008% 0.0008%

Time,Wifi,Apps 100 0.0024% 0.0008% 0.0008%

Table A.1: GCU V1 Experiments Output (Matlab

CART)

51

Table A.2: GCU V1 Baseline Experiments Output (Matlab CART)

Dataset Features Min Leafs Error
Time,Apps 3 0.0024%
Time,Apps 5 0.0016%
Time,Apps 7 0.0016%
Time,Apps 10 0.0016%
Time,Apps 15 0.0016%
Time,Apps 22 0.0016%
Time,Apps 32 0.0016%
Time,Apps 46 0.0016%
Time,Apps 68 0.0016%
Time,Apps 100 0.0016%
Time,Cell,Apps 3 0.0805%
Time,Cell,Apps 5 0.0789%
Time,Cell,Apps 7 0.0885%
Time,Cell,Apps 10 0.0789%
Time,Cell,Apps 15 0.0845%
Time,Cell,Apps 22 0.0676%
Time,Cell,Apps 32 0.0708%
Time,Cell,Apps 46 0.0724%
Time,Cell,Apps 68 0.0893%
Time,Cell,Apps 100 0.0773%

Appendix B

GCU v2 Experiments Output

Dataset Features Min Leafs MD5 Error SHA1 Error SHA256 Error

Time,Apps 3 0.0085% 0.0085% 0.0090%

Time,Apps 5 0.0088% 0.0085% 0.0085%

Time,Apps 7 0.0083% 0.0089% 0.0081%

Time,Apps 10 0.0089% 0.0100% 0.0090%

Time,Apps 15 0.0114% 0.0121% 0.0124%

Time,Apps 22 0.0203% 0.0200% 0.0192%

Time,Apps 32 0.0451% 0.0466% 0.0443%

Time,Apps 46 0.0551% 0.0564% 0.0568%

Time,Apps 68 0.0676% 0.0681% 0.0672%

Time,Apps 100 0.0890% 0.0888% 0.0881%

Time,Cell,Apps 3 0.0000% 0.0000% 0.0000%

Time,Cell,Apps 5 0.0000% 0.0000% 0.0000%

Time,Cell,Apps 7 0.0000% 0.0000% 0.0000%

Time,Cell,Apps 10 0.0000% 0.0000% 0.0000%

Time,Cell,Apps 15 0.0000% 0.0000% 0.0000%

Time,Cell,Apps 22 0.0002% 0.0002% 0.0002%

Time,Cell,Apps 32 0.0010% 0.0011% 0.0013%

Time,Cell,Apps 46 0.0014% 0.0014% 0.0014%

Time,Cell,Apps 68 0.0014% 0.0014% 0.0014%

Time,Cell,Apps 100 0.0014% 0.0014% 0.0014%

Time,Cell,Wifi,Apps 3 0.0000% 0.0000% 0.0000%

Time,Cell,Wifi,Apps 5 0.0000% 0.0000% 0.0000%

Time,Cell,Wifi,Apps 7 0.0000% 0.0000% 0.0000%

Time,Cell,Wifi,Apps 10 0.0000% 0.0000% 0.0000%

Time,Cell,Wifi,Apps 15 0.0000% 0.0000% 0.0001%

Time,Cell,Wifi,Apps 22 0.0003% 0.0002% 0.0002%

Time,Cell,Wifi,Apps 32 0.0009% 0.0010% 0.0009%

Time,Cell,Wifi,Apps 46 0.0016% 0.0016% 0.0016%

Time,Cell,Wifi,Apps 68 0.0021% 0.0021% 0.0020%

Time,Cell,Wifi,Apps 100 0.0031% 0.0031% 0.0031%

52

53

Time,Wifi,Apps 3 0.0000% 0.0000% 0.0000%

Time,Wifi,Apps 5 0.0000% 0.0001% 0.0001%

Time,Wifi,Apps 7 0.0001% 0.0001% 0.0000%

Time,Wifi,Apps 10 0.0000% 0.0000% 0.0000%

Time,Wifi,Apps 15 0.0000% 0.0002% 0.0001%

Time,Wifi,Apps 22 0.0004% 0.0006% 0.0003%

Time,Wifi,Apps 32 0.0012% 0.0013% 0.0012%

Time,Wifi,Apps 46 0.0016% 0.0013% 0.0016%

Time,Wifi,Apps 68 0.0014% 0.0016% 0.0014%

Time,Wifi,Apps 100 0.0014% 0.0012% 0.0014%

Table B.1: GCU V2 Experiments Output (Matlab

CART)

54

Table B.2: GCU V2 Baseline Experiments Output (Matlab CART)

Dataset Features Min Leafs Error
Time,Apps 3 0.0011%
Time,Apps 5 0.0012%
Time,Apps 7 0.0011%
Time,Apps 10 0.0011%
Time,Apps 15 0.0014%
Time,Apps 22 0.0016%
Time,Apps 32 0.0015%
Time,Apps 46 0.0014%
Time,Apps 68 0.0014%
Time,Apps 100 0.0014%
Time,Cell,Apps 3 0.0019%
Time,Cell,Apps 5 0.0019%
Time,Cell,Apps 7 0.0017%
Time,Cell,Apps 10 0.0018%
Time,Cell,Apps 15 0.0017%
Time,Cell,Apps 22 0.0019%
Time,Cell,Apps 32 0.0024%
Time,Cell,Apps 46 0.0026%
Time,Cell,Apps 68 0.0026%
Time,Cell,Apps 100 0.0032%

Appendix C

RICE Experiments Output

Dataset Features Users MD5 Accuracy SHA1 Accuracy SHA256 Accuracy

day,time,apps 4 49.8698 % 49.8698 % 49.8698 %
day,time,apps 4 53.5298 % 53.5298 % 53.5298 %
day,time,apps 4 55.1926 % 55.1926 % 55.1926 %
day,time,apps 7 42.8203 % 42.8203 % 42.8203 %
day,time,apps 7 38.9298 % 38.9298 % 38.9298 %
day,time,apps 7 42.0554 % 42.0554 % 42.0554 %
day,time,apps 14 26.3153 % 26.3153 % 26.3153 %
day,time,apps 14 26.2357 % 26.2357 % 26.2357 %
day,time,apps 14 25.838 % 25.838 % 25.838 %
day,time,apps 25 19.0279 % 19.0279 % 19.0279 %
day,time,apps 25 19.2794 % 19.2794 % 19.2794 %
day,time,apps 25 20.2535 % 20.2535 % 20.2535 %
day,time,apps 34 15.7804 % 15.7804 % 15.7804 %
day,time,cell,apps 4 93.4539 % 93.4539 % 93.4539 %
day,time,cell,apps 4 96.0432 % 96.0432 % 96.0432 %
day,time,cell,apps 4 92.1222 % 92.1222 % 92.1222 %
day,time,cell,apps 7 93.8342 % 93.8342 % 93.8342 %
day,time,cell,apps 7 78.2305 % 78.2305 % 78.2305 %
day,time,cell,apps 7 82.0762 % 82.0762 % 82.0762 %
day,time,cell,apps 14 76.4301 % 76.4301 % 76.4301 %
day,time,cell,apps 14 76.3739 % 76.3739 % 76.3739 %
day,time,cell,apps 14 80.1445 % 80.1445 % 80.1445 %
day,time,cell,apps 25 69.9857 % 69.9857 % 69.9857 %
day,time,cell,apps 25 69.9028 % 69.9028 % 69.9028 %
day,time,cell,apps 25 70.3911 % 70.3911 % 70.3911 %
day,time,cell,apps 34 65.789 % 65.789 % 65.789 %
day,time,cell,wifi,apps 4 95.2834 % 95.2834 % 95.2834 %
day,time,cell,wifi,apps 4 96.0432 % 96.0432 % 96.0432 %
day,time,cell,wifi,apps 4 92.9454 % 92.9454 % 92.9454 %
day,time,cell,wifi,apps 7 94.1883 % 94.1883 % 94.1883 %
day,time,cell,wifi,apps 7 80.4689 % 80.4689 % 80.4689 %
day,time,cell,wifi,apps 7 82.0762 % 82.0762 % 82.0762 %
day,time,cell,wifi,apps 14 77.3864 % 77.3864 % 77.3864 %
day,time,cell,wifi,apps 14 77.5385 % 77.5385 % 77.5385 %

55

56

day,time,cell,wifi,apps 14 81.3085 % 81.3085 % 81.3085 %
day,time,cell,wifi,apps 25 72.3149 % 72.3149 % 72.3149 %
day,time,cell,wifi,apps 25 72.2411 % 72.2411 % 72.2411 %
day,time,cell,wifi,apps 25 72.551 % 72.551 % 72.551 %
day,time,cell,wifi,apps 34 68.2777 % 68.2777 % 68.2777 %
day,time,wifi,apps 4 54.9031 % 54.9031 % 54.9031 %
day,time,wifi,apps 4 53.5298 % 53.5298 % 53.5298 %
day,time,wifi,apps 4 57.5394 % 57.5394 % 57.5394 %
day,time,wifi,apps 7 46.2414 % 46.2414 % 46.2414 %
day,time,wifi,apps 7 43.1957 % 43.1957 % 43.1957 %
day,time,wifi,apps 7 42.0554 % 42.0554 % 42.0554 %
day,time,wifi,apps 14 27.9534 % 27.9534 % 27.9534 %
day,time,wifi,apps 14 28.7838 % 28.7838 % 28.7838 %
day,time,wifi,apps 14 27.7146 % 27.7146 % 27.7146 %
day,time,wifi,apps 25 23.1844 % 23.1844 % 23.1844 %
day,time,wifi,apps 25 23.5657 % 23.5657 % 23.5657 %
day,time,wifi,apps 25 24.3977 % 24.3977 % 24.3977 %
day,time,wifi,apps 34 19.9632 % 19.9632 % 19.9632 %
time,apps 4 49.0163 % 49.0163 % 49.0163 %
time,apps 4 50.9146 % 50.9146 % 50.9146 %
time,apps 4 52.5209 % 52.5209 % 52.5209 %
time,apps 7 34.8724 % 34.8724 % 34.8724 %
time,apps 7 37.2801 % 37.2801 % 37.2801 %
time,apps 7 38.4493 % 38.4493 % 38.4493 %
time,apps 14 25.7782 % 25.7782 % 25.7782 %
time,apps 14 23.2494 % 23.2494 % 23.2494 %
time,apps 14 23.2482 % 23.2482 % 23.2482 %
time,apps 25 16.7321 % 16.7321 % 16.7321 %
time,apps 25 16.75 % 16.75 % 16.75 %
time,apps 25 17.663 % 17.663 % 17.663 %
time,apps 34 13.279 % 13.279 % 13.279 %
time,cell,apps 4 88.2146 % 88.2146 % 88.2146 %
time,cell,apps 4 95.2407 % 95.2407 % 95.2407 %
time,cell,apps 4 90.8015 % 90.8015 % 90.8015 %
time,cell,apps 7 74.3889 % 74.3889 % 74.3889 %
time,cell,apps 7 76.2498 % 76.2498 % 76.2498 %
time,cell,apps 7 78.9663 % 78.9663 % 78.9663 %
time,cell,apps 14 70.9949 % 70.9949 % 70.9949 %
time,cell,apps 14 73.2004 % 73.2004 % 73.2004 %
time,cell,apps 14 77.5147 % 77.5147 % 77.5147 %
time,cell,apps 25 64.861 % 64.861 % 64.861 %

57

time,cell,apps 25 66.2782 % 66.2782 % 66.2782 %
time,cell,apps 25 66.4869 % 66.4869 % 66.4869 %
time,cell,apps 34 61.9527 % 61.9527 % 61.9527 %
time,cell,wifi,apps 4 89.3201 % 89.3201 % 89.3201 %
time,cell,wifi,apps 4 95.2407 % 95.2407 % 95.2407 %
time,cell,wifi,apps 4 91.6323 % 91.6323 % 91.6323 %
time,cell,wifi,apps 7 74.3889 % 74.3889 % 74.3889 %
time,cell,wifi,apps 7 78.712 % 78.712 % 78.712 %
time,cell,wifi,apps 7 78.9663 % 78.9663 % 78.9663 %
time,cell,wifi,apps 14 73.0573 % 73.0573 % 73.0573 %
time,cell,wifi,apps 14 74.3575 % 74.3575 % 74.3575 %
time,cell,wifi,apps 14 78.8166 % 78.8166 % 78.8166 %
time,cell,wifi,apps 25 68.0834 % 68.0834 % 68.0834 %
time,cell,wifi,apps 25 68.696 % 68.696 % 68.696 %
time,cell,wifi,apps 25 68.7856 % 68.7856 % 68.7856 %
time,cell,wifi,apps 34 64.5358 % 64.5358 % 64.5358 %
time,wifi,apps 4 51.2434 % 51.2434 % 51.2434 %
time,wifi,apps 4 50.9146 % 50.9146 % 50.9146 %
time,wifi,apps 4 55.0628 % 55.0628 % 55.0628 %
time,wifi,apps 7 34.8724 % 34.8724 % 34.8724 %
time,wifi,apps 7 41.6965 % 41.6965 % 41.6965 %
time,wifi,apps 7 38.4493 % 38.4493 % 38.4493 %
time,wifi,apps 14 28.472 % 28.472 % 28.472 %
time,wifi,apps 14 25.8803 % 25.8803 % 25.8803 %
time,wifi,apps 14 25.4114 % 25.4114 % 25.4114 %
time,wifi,apps 25 21.3676 % 21.3676 % 21.3676 %
time,wifi,apps 25 21.2661 % 21.2661 % 21.2661 %
time,wifi,apps 25 21.9965 % 21.9965 % 21.9965 %
time,wifi,apps 34 17.9312 % 17.9312 % 17.9312 %

Table C.1: RICE c4.5 Experiment Output (WEKA C4.5)

Hashing Data Tree
Algorithm Dataset Features Users Instances Leaves Size Accuracy

md5 day,time,apps 4 150915 1230 2459 49.8698 %
md5 day,time,apps 4 145523 1109 2217 55.1926 %
md5 day,time,apps 4 133718 1088 2175 53.5298 %
md5 day,time,apps 7 245270 2149 4297 38.9298 %
md5 day,time,apps 7 233546 2305 4609 42.8203 %

58

md5 day,time,apps 7 132801 1177 2353 42.0554 %
md5 day,time,apps 14 430033 7050 14099 26.2357 %
md5 day,time,apps 14 419843 5998 11995 25.838 %
md5 day,time,apps 14 404023 5537 11073 26.3153 %
md5 day,time,apps 25 798612 16945 33889 20.2535 %
md5 day,time,apps 25 790611 17313 34625 19.2794 %
md5 day,time,apps 25 790985 17451 34901 19.0279 %
md5 day,time,apps 34 1126520 25555 51109 15.7804 %
md5 day,time,cell,apps 4 150915 328 655 93.4539 %
md5 day,time,cell,apps 4 145523 501 1001 92.1222 %
md5 day,time,cell,apps 4 133718 347 693 96.0432 %
md5 day,time,cell,apps 7 245270 1493 2985 78.2305 %
md5 day,time,cell,apps 7 233546 752 1503 93.8342 %
md5 day,time,cell,apps 7 132801 1010 2019 82.0762 %
md5 day,time,cell,apps 14 430033 3769 7537 76.3739 %
md5 day,time,cell,apps 14 419843 3230 6459 80.1445 %
md5 day,time,cell,apps 14 404023 3261 6521 76.4301 %
md5 day,time,cell,apps 25 798612 8614 17227 70.3911 %
md5 day,time,cell,apps 25 790611 8166 16331 69.9028 %
md5 day,time,cell,apps 25 790985 7882 15763 69.9857 %
md5 day,time,cell,apps 34 1126520 12867 25733 65.789 %
md5 day,time,cell,wifi,apps 4 150915 265 529 95.2834 %
md5 day,time,cell,wifi,apps 4 145523 463 925 92.9454 %
md5 day,time,cell,wifi,apps 4 133718 347 693 96.0432 %
md5 day,time,cell,wifi,apps 7 245270 1542 3083 80.4689 %
md5 day,time,cell,wifi,apps 7 233546 754 1507 94.1883 %
md5 day,time,cell,wifi,apps 7 132801 1010 2019 82.0762 %
md5 day,time,cell,wifi,apps 14 430033 3647 7293 77.5385 %
md5 day,time,cell,wifi,apps 14 419843 3032 6063 81.3085 %
md5 day,time,cell,wifi,apps 14 404023 3224 6447 77.3864 %
md5 day,time,cell,wifi,apps 25 798612 8426 16851 72.551 %
md5 day,time,cell,wifi,apps 25 790611 7828 15655 72.2411 %
md5 day,time,cell,wifi,apps 25 790985 7804 15607 72.3149 %
md5 day,time,cell,wifi,apps 34 1126520 12343 24685 68.2777 %
md5 day,time,wifi,apps 4 150915 1225 2449 54.9031 %
md5 day,time,wifi,apps 4 145523 1052 2103 57.5394 %
md5 day,time,wifi,apps 4 133718 1088 2175 53.5298 %
md5 day,time,wifi,apps 7 245270 2168 4335 43.1957 %
md5 day,time,wifi,apps 7 233546 2244 4487 46.2414 %
md5 day,time,wifi,apps 7 132801 1177 2353 42.0554 %
md5 day,time,wifi,apps 14 430033 6420 12839 28.7838 %

59

md5 day,time,wifi,apps 14 419843 5817 11633 27.7146 %
md5 day,time,wifi,apps 14 404023 5190 10379 27.9534 %
md5 day,time,wifi,apps 25 798612 14496 28991 24.3977 %
md5 day,time,wifi,apps 25 790611 15138 30275 23.5657 %
md5 day,time,wifi,apps 25 790985 15907 31813 23.1844 %
md5 day,time,wifi,apps 34 1126520 23185 46369 19.9632 %
md5 time,apps 4 145523 181 361 52.5209 %
md5 time,apps 4 148981 168 335 49.0163 %
md5 time,apps 4 133718 173 345 50.9146 %
md5 time,apps 7 245270 473 945 37.2801 %
md5 time,apps 7 250946 739 1477 34.8724 %
md5 time,apps 7 132801 200 399 38.4493 %
md5 time,apps 14 443626 3889 7777 25.7782 %
md5 time,apps 14 430033 5054 10107 23.2494 %
md5 time,apps 14 419843 4586 9171 23.2482 %
md5 time,apps 25 798612 12609 25217 17.663 %
md5 time,apps 25 790611 12928 25855 16.75 %
md5 time,apps 25 772974 12784 25567 16.7321 %
md5 time,apps 34 1126520 19572 39143 13.279 %
md5 time,cell,apps 4 145523 244 487 90.8015 %
md5 time,cell,apps 4 148981 219 437 88.2146 %
md5 time,cell,apps 4 133718 282 563 95.2407 %
md5 time,cell,apps 7 245270 654 1307 76.2498 %
md5 time,cell,apps 7 250946 967 1933 74.3889 %
md5 time,cell,apps 7 132801 558 1115 78.9663 %
md5 time,cell,apps 14 443626 2234 4467 70.9949 %
md5 time,cell,apps 14 430033 2146 4291 73.2004 %
md5 time,cell,apps 14 419843 1962 3923 77.5147 %
md5 time,cell,apps 25 798612 5558 11115 66.4869 %
md5 time,cell,apps 25 790611 5630 11259 66.2782 %
md5 time,cell,apps 25 772974 5917 11833 64.861 %
md5 time,cell,apps 34 1126520 9826 19651 61.9527 %
md5 time,cell,wifi,apps 4 145523 244 487 91.6323 %
md5 time,cell,wifi,apps 4 148981 211 421 89.3201 %
md5 time,cell,wifi,apps 4 133718 282 563 95.2407 %
md5 time,cell,wifi,apps 7 245270 681 1361 78.712 %
md5 time,cell,wifi,apps 7 250946 967 1933 74.3889 %
md5 time,cell,wifi,apps 7 132801 558 1115 78.9663 %
md5 time,cell,wifi,apps 14 443626 2142 4283 73.0573 %
md5 time,cell,wifi,apps 14 430033 2160 4319 74.3575 %
md5 time,cell,wifi,apps 14 419843 1944 3887 78.8166 %

60

md5 time,cell,wifi,apps 25 798612 5437 10873 68.7856 %
md5 time,cell,wifi,apps 25 790611 5237 10473 68.696 %
md5 time,cell,wifi,apps 25 772974 5280 10559 68.0834 %
md5 time,cell,wifi,apps 34 1126520 9240 18479 64.5358 %
md5 time,wifi,apps 4 145523 176 351 55.0628 %
md5 time,wifi,apps 4 148981 167 333 51.2434 %
md5 time,wifi,apps 4 133718 173 345 50.9146 %
md5 time,wifi,apps 7 245270 494 987 41.6965 %
md5 time,wifi,apps 7 250946 739 1477 34.8724 %
md5 time,wifi,apps 7 132801 200 399 38.4493 %
md5 time,wifi,apps 14 443626 3496 6991 28.472 %
md5 time,wifi,apps 14 430033 4517 9033 25.8803 %
md5 time,wifi,apps 14 419843 4006 8011 25.4114 %
md5 time,wifi,apps 25 798612 11970 23939 21.9965 %
md5 time,wifi,apps 25 790611 12320 24639 21.2661 %
md5 time,wifi,apps 25 772974 12232 24463 21.3676 %
md5 time,wifi,apps 34 1126520 18997 37993 17.9312 %
sha1 day,time,apps 4 150915 1230 2459 49.8698 %
sha1 day,time,apps 4 145523 1109 2217 55.1926 %
sha1 day,time,apps 4 133718 1088 2175 53.5298 %
sha1 day,time,apps 7 245270 2149 4297 38.9298 %
sha1 day,time,apps 7 233546 2305 4609 42.8203 %
sha1 day,time,apps 7 132801 1177 2353 42.0554 %
sha1 day,time,apps 14 430033 7050 14099 26.2357 %
sha1 day,time,apps 14 419843 5998 11995 25.838 %
sha1 day,time,apps 14 404023 5537 11073 26.3153 %
sha1 day,time,apps 25 798612 16945 33889 20.2535 %
sha1 day,time,apps 25 790611 17313 34625 19.2794 %
sha1 day,time,apps 25 790985 17451 34901 19.0279 %
sha1 day,time,apps 34 1126520 25555 51109 15.7804 %
sha1 day,time,cell,apps 4 150915 328 655 93.4539 %
sha1 day,time,cell,apps 4 145523 501 1001 92.1222 %
sha1 day,time,cell,apps 4 133718 347 693 96.0432 %
sha1 day,time,cell,apps 7 245270 1493 2985 78.2305 %
sha1 day,time,cell,apps 7 233546 752 1503 93.8342 %
sha1 day,time,cell,apps 7 132801 1010 2019 82.0762 %
sha1 day,time,cell,apps 14 430033 3769 7537 76.3739 %
sha1 day,time,cell,apps 14 419843 3230 6459 80.1445 %
sha1 day,time,cell,apps 14 404023 3261 6521 76.4301 %
sha1 day,time,cell,apps 25 798612 8614 17227 70.3911 %
sha1 day,time,cell,apps 25 790611 8166 16331 69.9028 %

61

sha1 day,time,cell,apps 25 790985 7882 15763 69.9857 %
sha1 day,time,cell,apps 34 1126520 12867 25733 65.789 %
sha1 day,time,cell,wifi,apps 4 150915 265 529 95.2834 %
sha1 day,time,cell,wifi,apps 4 145523 463 925 92.9454 %
sha1 day,time,cell,wifi,apps 4 133718 347 693 96.0432 %
sha1 day,time,cell,wifi,apps 7 245270 1542 3083 80.4689 %
sha1 day,time,cell,wifi,apps 7 233546 754 1507 94.1883 %
sha1 day,time,cell,wifi,apps 7 132801 1010 2019 82.0762 %
sha1 day,time,cell,wifi,apps 14 430033 3647 7293 77.5385 %
sha1 day,time,cell,wifi,apps 14 419843 3032 6063 81.3085 %
sha1 day,time,cell,wifi,apps 14 404023 3224 6447 77.3864 %
sha1 day,time,cell,wifi,apps 25 798612 8426 16851 72.551 %
sha1 day,time,cell,wifi,apps 25 790611 7828 15655 72.2411 %
sha1 day,time,cell,wifi,apps 25 790985 7804 15607 72.3149 %
sha1 day,time,cell,wifi,apps 34 1126520 12343 24685 68.2777 %
sha1 day,time,wifi,apps 4 150915 1225 2449 54.9031 %
sha1 day,time,wifi,apps 4 145523 1052 2103 57.5394 %
sha1 day,time,wifi,apps 4 133718 1088 2175 53.5298 %
sha1 day,time,wifi,apps 7 245270 2168 4335 43.1957 %
sha1 day,time,wifi,apps 7 233546 2244 4487 46.2414 %
sha1 day,time,wifi,apps 7 132801 1177 2353 42.0554 %
sha1 day,time,wifi,apps 14 430033 6420 12839 28.7838 %
sha1 day,time,wifi,apps 14 419843 5817 11633 27.7146 %
sha1 day,time,wifi,apps 14 404023 5190 10379 27.9534 %
sha1 day,time,wifi,apps 25 798612 14496 28991 24.3977 %
sha1 day,time,wifi,apps 25 790611 15138 30275 23.5657 %
sha1 day,time,wifi,apps 25 790985 15907 31813 23.1844 %
sha1 day,time,wifi,apps 34 1126520 23185 46369 19.9632 %
sha1 time,apps 4 145523 181 361 52.5209 %
sha1 time,apps 4 148981 168 335 49.0163 %
sha1 time,apps 4 133718 173 345 50.9146 %
sha1 time,apps 7 245270 473 945 37.2801 %
sha1 time,apps 7 250946 739 1477 34.8724 %
sha1 time,apps 7 132801 200 399 38.4493 %
sha1 time,apps 14 443626 3889 7777 25.7782 %
sha1 time,apps 14 430033 5054 10107 23.2494 %
sha1 time,apps 14 419843 4586 9171 23.2482 %
sha1 time,apps 25 798612 12609 25217 17.663 %
sha1 time,apps 25 790611 12928 25855 16.75 %
sha1 time,apps 25 772974 12784 25567 16.7321 %
sha1 time,apps 34 1126520 19572 39143 13.279 %

62

sha1 time,cell,apps 4 145523 244 487 90.8015 %
sha1 time,cell,apps 4 148981 219 437 88.2146 %
sha1 time,cell,apps 4 133718 282 563 95.2407 %
sha1 time,cell,apps 7 245270 654 1307 76.2498 %
sha1 time,cell,apps 7 250946 967 1933 74.3889 %
sha1 time,cell,apps 7 132801 558 1115 78.9663 %
sha1 time,cell,apps 14 443626 2234 4467 70.9949 %
sha1 time,cell,apps 14 430033 2146 4291 73.2004 %
sha1 time,cell,apps 14 419843 1962 3923 77.5147 %
sha1 time,cell,apps 25 798612 5558 11115 66.4869 %
sha1 time,cell,apps 25 790611 5630 11259 66.2782 %
sha1 time,cell,apps 25 772974 5917 11833 64.861 %
sha1 time,cell,apps 34 1126520 9826 19651 61.9527 %
sha1 time,cell,wifi,apps 4 145523 244 487 91.6323 %
sha1 time,cell,wifi,apps 4 148981 211 421 89.3201 %
sha1 time,cell,wifi,apps 4 133718 282 563 95.2407 %
sha1 time,cell,wifi,apps 7 245270 681 1361 78.712 %
sha1 time,cell,wifi,apps 7 250946 967 1933 74.3889 %
sha1 time,cell,wifi,apps 7 132801 558 1115 78.9663 %
sha1 time,cell,wifi,apps 14 443626 2142 4283 73.0573 %
sha1 time,cell,wifi,apps 14 430033 2160 4319 74.3575 %
sha1 time,cell,wifi,apps 14 419843 1944 3887 78.8166 %
sha1 time,cell,wifi,apps 25 798612 5437 10873 68.7856 %
sha1 time,cell,wifi,apps 25 790611 5237 10473 68.696 %
sha1 time,cell,wifi,apps 25 772974 5280 10559 68.0834 %
sha1 time,cell,wifi,apps 34 1126520 9240 18479 64.5358 %
sha1 time,wifi,apps 4 145523 176 351 55.0628 %
sha1 time,wifi,apps 4 148981 167 333 51.2434 %
sha1 time,wifi,apps 4 133718 173 345 50.9146 %
sha1 time,wifi,apps 7 245270 494 987 41.6965 %
sha1 time,wifi,apps 7 250946 739 1477 34.8724 %
sha1 time,wifi,apps 7 132801 200 399 38.4493 %
sha1 time,wifi,apps 14 443626 3496 6991 28.472 %
sha1 time,wifi,apps 14 430033 4517 9033 25.8803 %
sha1 time,wifi,apps 14 419843 4006 8011 25.4114 %
sha1 time,wifi,apps 25 798612 11970 23939 21.9965 %
sha1 time,wifi,apps 25 790611 12320 24639 21.2661 %
sha1 time,wifi,apps 25 772974 12232 24463 21.3676 %
sha1 time,wifi,apps 34 1126520 18997 37993 17.9312 %
sha256 day,time,apps 4 150915 1230 2459 49.8698 %
sha256 day,time,apps 4 145523 1109 2217 55.1926 %

63

sha256 day,time,apps 4 133718 1088 2175 53.5298 %
sha256 day,time,apps 7 245270 2149 4297 38.9298 %
sha256 day,time,apps 7 233546 2305 4609 42.8203 %
sha256 day,time,apps 7 132801 1177 2353 42.0554 %
sha256 day,time,apps 14 430033 7050 14099 26.2357 %
sha256 day,time,apps 14 419843 5998 11995 25.838 %
sha256 day,time,apps 14 404023 5537 11073 26.3153 %
sha256 day,time,apps 25 798612 16945 33889 20.2535 %
sha256 day,time,apps 25 790611 17313 34625 19.2794 %
sha256 day,time,apps 25 790985 17451 34901 19.0279 %
sha256 day,time,apps 34 1126520 25555 51109 15.7804 %
sha256 day,time,cell,apps 4 150915 328 655 93.4539 %
sha256 day,time,cell,apps 4 145523 501 1001 92.1222 %
sha256 day,time,cell,apps 4 133718 347 693 96.0432 %
sha256 day,time,cell,apps 7 245270 1493 2985 78.2305 %
sha256 day,time,cell,apps 7 233546 752 1503 93.8342 %
sha256 day,time,cell,apps 7 132801 1010 2019 82.0762 %
sha256 day,time,cell,apps 14 430033 3769 7537 76.3739 %
sha256 day,time,cell,apps 14 419843 3230 6459 80.1445 %
sha256 day,time,cell,apps 14 404023 3261 6521 76.4301 %
sha256 day,time,cell,apps 25 798612 8614 17227 70.3911 %
sha256 day,time,cell,apps 25 790611 8166 16331 69.9028 %
sha256 day,time,cell,apps 25 790985 7882 15763 69.9857 %
sha256 day,time,cell,apps 34 1126520 12867 25733 65.789 %
sha256 day,time,cell,wifi,apps 4 150915 265 529 95.2834 %
sha256 day,time,cell,wifi,apps 4 145523 463 925 92.9454 %
sha256 day,time,cell,wifi,apps 4 133718 347 693 96.0432 %
sha256 day,time,cell,wifi,apps 7 245270 1542 3083 80.4689 %
sha256 day,time,cell,wifi,apps 7 233546 754 1507 94.1883 %
sha256 day,time,cell,wifi,apps 7 132801 1010 2019 82.0762 %
sha256 day,time,cell,wifi,apps 14 430033 3647 7293 77.5385 %
sha256 day,time,cell,wifi,apps 14 419843 3032 6063 81.3085 %
sha256 day,time,cell,wifi,apps 14 404023 3224 6447 77.3864 %
sha256 day,time,cell,wifi,apps 25 798612 8426 16851 72.551 %
sha256 day,time,cell,wifi,apps 25 790611 7828 15655 72.2411 %
sha256 day,time,cell,wifi,apps 25 790985 7804 15607 72.3149 %
sha256 day,time,cell,wifi,apps 34 1126520 12343 24685 68.2777 %
sha256 day,time,wifi,apps 4 150915 1225 2449 54.9031 %
sha256 day,time,wifi,apps 4 145523 1052 2103 57.5394 %
sha256 day,time,wifi,apps 4 133718 1088 2175 53.5298 %
sha256 day,time,wifi,apps 7 245270 2168 4335 43.1957 %

64

sha256 day,time,wifi,apps 7 233546 2244 4487 46.2414 %
sha256 day,time,wifi,apps 7 132801 1177 2353 42.0554 %
sha256 day,time,wifi,apps 14 430033 6420 12839 28.7838 %
sha256 day,time,wifi,apps 14 419843 5817 11633 27.7146 %
sha256 day,time,wifi,apps 14 404023 5190 10379 27.9534 %
sha256 day,time,wifi,apps 25 798612 14496 28991 24.3977 %
sha256 day,time,wifi,apps 25 790611 15138 30275 23.5657 %
sha256 day,time,wifi,apps 25 790985 15907 31813 23.1844 %
sha256 day,time,wifi,apps 34 1126520 23185 46369 19.9632 %
sha256 time,apps 4 145523 181 361 52.5209 %
sha256 time,apps 4 148981 168 335 49.0163 %
sha256 time,apps 4 133718 173 345 50.9146 %
sha256 time,apps 7 245270 473 945 37.2801 %
sha256 time,apps 7 250946 739 1477 34.8724 %
sha256 time,apps 7 132801 200 399 38.4493 %
sha256 time,apps 14 443626 3889 7777 25.7782 %
sha256 time,apps 14 430033 5054 10107 23.2494 %
sha256 time,apps 14 419843 4586 9171 23.2482 %
sha256 time,apps 25 798612 12609 25217 17.663 %
sha256 time,apps 25 790611 12928 25855 16.75 %
sha256 time,apps 25 772974 12784 25567 16.7321 %
sha256 time,apps 34 1126520 19572 39143 13.279 %
sha256 time,cell,apps 4 145523 244 487 90.8015 %
sha256 time,cell,apps 4 148981 219 437 88.2146 %
sha256 time,cell,apps 4 133718 282 563 95.2407 %
sha256 time,cell,apps 7 245270 654 1307 76.2498 %
sha256 time,cell,apps 7 250946 967 1933 74.3889 %
sha256 time,cell,apps 7 132801 558 1115 78.9663 %
sha256 time,cell,apps 14 443626 2234 4467 70.9949 %
sha256 time,cell,apps 14 430033 2146 4291 73.2004 %
sha256 time,cell,apps 14 419843 1962 3923 77.5147 %
sha256 time,cell,apps 25 798612 5558 11115 66.4869 %
sha256 time,cell,apps 25 790611 5630 11259 66.2782 %
sha256 time,cell,apps 25 772974 5917 11833 64.861 %
sha256 time,cell,apps 34 1126520 9826 19651 61.9527 %
sha256 time,cell,wifi,apps 4 145523 244 487 91.6323 %
sha256 time,cell,wifi,apps 4 148981 211 421 89.3201 %
sha256 time,cell,wifi,apps 4 133718 282 563 95.2407 %
sha256 time,cell,wifi,apps 7 245270 681 1361 78.712 %
sha256 time,cell,wifi,apps 7 250946 967 1933 74.3889 %
sha256 time,cell,wifi,apps 7 132801 558 1115 78.9663 %

65

sha256 time,cell,wifi,apps 14 443626 2142 4283 73.0573 %
sha256 time,cell,wifi,apps 14 430033 2160 4319 74.3575 %
sha256 time,cell,wifi,apps 14 419843 1944 3887 78.8166 %
sha256 time,cell,wifi,apps 25 798612 5437 10873 68.7856 %
sha256 time,cell,wifi,apps 25 790611 5237 10473 68.696 %
sha256 time,cell,wifi,apps 25 772974 5280 10559 68.0834 %
sha256 time,cell,wifi,apps 34 1126520 9240 18479 64.5358 %
sha256 time,wifi,apps 4 145523 176 351 55.0628 %
sha256 time,wifi,apps 4 148981 167 333 51.2434 %
sha256 time,wifi,apps 4 133718 173 345 50.9146 %
sha256 time,wifi,apps 7 245270 494 987 41.6965 %
sha256 time,wifi,apps 7 250946 739 1477 34.8724 %
sha256 time,wifi,apps 7 132801 200 399 38.4493 %
sha256 time,wifi,apps 14 443626 3496 6991 28.472 %
sha256 time,wifi,apps 14 430033 4517 9033 25.8803 %
sha256 time,wifi,apps 14 419843 4006 8011 25.4114 %
sha256 time,wifi,apps 25 798612 11970 23939 21.9965 %
sha256 time,wifi,apps 25 790611 12320 24639 21.2661 %
sha256 time,wifi,apps 25 772974 12232 24463 21.3676 %
sha256 time,wifi,apps 34 1126520 18997 37993 17.9312 %

Table C.4: RICE Tree Size vs. Number of Users (WEKA

C4.5)

66

Table C.2: RICE c5.0 Decision Tree Output (WEKA C4.5)

Model Training Test Dataset
Build Time Accuracy Accuracy
(seconds)
407.38 16.39% 16.42% sha256 time+wifi+apps 34 users
385.16 65.40% 65.51% sha256 time+cell+wifi+apps 34 users
358.58 62.93% 62.92% sha256 time+cell+apps 34 users
375.96 11.23% 11.27% sha256 time+apps 34 users
502.47 19.96% 20.12% sha256 day+time+wifi+apps 34 users
426.86 72.69% 73.03% sha256 day+time+cell+wifi+apps 34 users
394.16 70.63% 71.08% sha256 day+time+cell+apps 34 users
514.12 17.37% 17.99% sha256 day+time+apps 34 users
445.69 16.40% 16.42% sha1 time+wifi+apps 34 users
426.23 65.36% 65.64% sha1 time+cell+wifi+apps 34 users
393.90 62.82% 63.20% sha1 time+cell+apps 34 users
424.30 11.25% 11.27% sha1 time+apps 34 users
544.24 19.92% 20.16% sha1 day+time+wifi+apps 34 users
464.48 72.66% 73.04% sha1 day+time+cell+wifi+apps 34 users
399.56 70.64% 70.99% sha1 day+time+cell+apps 34 users
505.71 17.37% 17.85% sha1 day+time+apps 34 users
441.23 16.46% 16.36% md5 time+wifi+apps 34 users
412.50 65.44% 65.63% md5 time+cell+wifi+apps 34 users
383.52 62.89% 63.05% md5 time+cell+apps 34 users
407.10 11.26% 11.29% md5 time+apps 34 users
538.10 19.93% 20.12% md5 day+time+wifi+apps 34 users
452.79 72.73% 72.81% md5 day+time+cell+wifi+apps 34 users
426.87 70.67% 71.07% md5 day+time+cell+apps 34 users
523.90 17.36% 17.96% md5 day+time+apps 34 users

Model with ‘Year’ and ‘Month’ features included
269.65 81.73% 82.08% sha256 y+m+day+time+wifi+apps 34 users

67

Table C.3: RICE Baseline Experiments Output (Matlab CART)

Dataset Features Min Leafs Error
Time,Apps 22 1.4035%
Time,Apps 32 1.3766%
Time,Apps 46 1.3543%
Time,Apps 68 1.3490%
Time,Apps 100 1.3499%
Time,Apps 100 1.3493%
Time,Apps 158 1.3508%
Time,Apps 251 1.3525%
Time,Apps 398 1.3531%
Time,Apps 631 1.3531%
Time,Apps 1000 1.3531%
Time,Cell,Apps 100 0.7167%
Time,Cell,Apps 158 0.7624%
Time,Cell,Apps 251 0.8453%
Time,Cell,Apps 398 0.8944%
Time,Cell,Apps 631 1.0244%
Time,Cell,Apps 1000 1.2170%

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Glossary
	Acknowledgements
	Introduction
	Background
	Motivations
	Related Work
	Is This You? Identifying a Mobile User Using Only Diagnostic Features
	Data Driven Authentication: On the Effectiveness of User Behaviour Modelling with Mobile Device Sensors
	LiveLab: measuring wireless networks and smartphone users in the field
	Device Fingerprinting

	Methodology
	Algorithms
	Hashing Functions
	Decision Trees

	Datasets
	GCU
	GCU Fine Grain Detail
	Rice Livelab
	Comparison of Datasets
	Transforming RICE Running Applications Data
	Processing Datasets

	Baseline Method
	Proposed Anonymization Method

	Dataset Challenges
	Variation In Source Dataset Features
	Location vs. User Based Features
	Overfitting

	Results and Evaluations
	GCU Results
	RICE Results
	Analysis

	Conclusion And Future Work
	Bibliography
	GCU v1 Experiments Output
	GCU v2 Experiments Output
	RICE Experiments Output

