
ONE-CLASS LEARNING WITH AN AUTOENCODER BASED
SELF ORGANIZING MAP

by

Deepthi Rajashekar

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2017

c⃝ Copyright by Deepthi Rajashekar, 2017

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

List of Abbreviations . viii

List of Symbols . ix

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Background . 6

2.1 Machine learning in cyber-security . 6

2.2 User modelling related to smartphone usage 10

2.3 Related applications of self organizing maps 13

Chapter 3 Behaviour Modelling: under one-class learning 16

3.1 Smartphone Usage Datasets . 18
3.1.1 Rice Live Lab Traces . 19
3.1.2 GCU version 1 . 22
3.1.3 GCU version 2 . 23

3.2 Representation to learning algorithms 24
3.2.1 Discrete sensor information 24
3.2.2 Continuous sensor information 24

3.3 K-means . 25
3.3.1 Theory . 25
3.3.2 Practice . 26
3.3.3 Results & Discussion . 26

3.4 Self-Organizing Maps . 28
3.4.1 Theory . 29
3.4.2 Utility . 30
3.4.3 Practice . 30
3.4.4 Results & Discussion . 32

ii

3.5 Summary . 36

Chapter 4 Proposed Method: AESOM framework 37

4.1 Theory of Autoencoder . 37

4.2 Procedure . 39

4.3 Patterns identified: inspection . 42

4.4 Heat Maps of User Dissimilarities . 49

4.5 Contribution of the AE: Improvement in detection rates 53

4.6 Summary of results . 55

Chapter 5 Conclusion and Future work 56

Bibliography . 62

Appendix A SOMs from other datasets 67

A.1 Rice LiveLab . 67

A.2 GCU version 1 . 72

iii

List of Tables

3.1 Duration (in days) of logged sensor data for all users in Rice
LiveLab dataset. 22

3.2 Duration (in days) of logged sensor data for all users in GCU
version 1. 23

3.3 Duration (in days) of logged sensor data for all users in GCU
version 2. 24

3.4 ERs from K-means on all datasets. 28

3.5 ERs from SOM on all datasets 33

4.1 Parameter configurations for the proposed framework. 43

4.2 Results of dissimilarity from the proposed AESOM framework
across all the 3 datasets. 55

iv

List of Figures

1.1 Illustration of analyzing the threat surface for similar user be-
haviours. 4

2.1 Bi-dimensional convex hull . 9

2.2 Projections of the inclass convex model onto 2D space 9

3.1 LiveLab statistics of applications and cell towers 20

3.2 LiveLab statistics of websites revisited 21

3.3 Silhouette score to choose optimal number of clusters 27

3.4 Reduced topographic error when neurons initialized along the
space spanned by two greatest eigenvectors. 31

3.5 SOM hits . 33

3.6 SOM coarse training . 34

3.7 SOM fine training . 35

4.1 Proposed AESOM framework 40

4.2 Obtaining the autoencoder architecture 41

4.3 GCU-V2 user 1 model and responses: discrete sensors 44

4.4 GCU-V2 user 2 model and responses: discrete sensors 45

4.5 GCU-V3 user 3 model and responses: discrete sensors 46

4.6 GCU-V2 user 4 model and responses: discrete sensors 47

4.7 GCU-V2 user 1 model and responses: continuous sensors . . . 48

4.8 GCU-V2 user 2 model and responses: continuous sensors . . . 48

4.9 GCU-V2 user 3 model and responses: continuous sensors . . . 48

4.10 GCU-V2 user 4 model and responses: continuous sensors . . . 49

4.11 Heat maps of average ERs (among any two users) across 20
runs of the AESOM framework 52

v

4.12 Box plots of ERs comparing SOM and AESOM framework:
GCU-V1 discrete sensors. 53

4.13 Box plots of ERs comparing SOM and AESOM framework:
GCU-V2 dataset . 54

4.14 Box plots of ERs comparing SOM and AESOM framework:
LiveLab traces . 54

5.1 Improvement in average ER across similar users as detected by
SOM indepedently. 57

5.2 Visual inspection of SOM cluster with shift registers 59

5.3 Empirical study with different sampling intervals and top N
features. 60

A.1 Most exclusive user in LiveLab dataset (discrete): (a) inclass
(b-c) sample outclass response 68

A.2 Least exclusive user in LiveLab dataset (discrete): (a) inclass
(b-c) sample outclass response 69

A.3 Most exclusive user in LiveLab dataset (continuous): (a) inclass
(b-c) sample outclass response 70

A.4 Least exclusive user in LiveLab dataset (continuous): (a) inclass
(b-c) sample outclass response 71

A.5 U1: (a) inclass (b) outclass . 72

A.6 U4: (a) inclass (b) outclass . 72

A.7 U2: (a) inclass (b) outclass . 73

A.8 U7: (a) inclass (b) outclass . 73

A.9 U3: (a) inclass (b) outclass . 74

A.10 U5: (a) inclass (b) outclass . 75

A.11 U6: (a) inclass (b) outclass . 76

vi

Abstract

Cyber-security defense techniques have begun to transcend from one-size fits all ap-

proach to personalized solutions. These techniques factor in user autonomy by mon-

itoring the temporal and spatial changes in the user’s behaviour. With time, such a

system is known to develop a comfort to the user’s interaction with the device. The

motivation of this research is to enable a device to differentiate its owner from another

user, by discovering behavioural patterns in the contextual and physiological infor-

mation of smartphone usage. Naturally, this poses a one-class learning constraint.

The proposed framework quantifies: (i) the dissimilarity in behaviours among any

two users; (ii) the exclusivity of each users behaviour (inclass) from the world (out-

class). The crucial aspect of this framework is to construct a representation of the

most important properties of each user. To this end, the utility of a feed forward

multilayer perceptron (MLP) in identifying an encoding that rebuilds the input data

with least loss is examined. The claim is that such an encoding step poses improved

data representations prior to clustering, a data description technique. However, both

the encoding and clustering steps respect the one-class learning restriction i.e., rel-

ative to a single user. The evaluations on publicly available smartphone datasets,

show that the resulting (user specific) behavioural models are capable of uniquely

identifying each user. In particular, encoded contextual information are better an-

chors to behaviour modelling in comparison with encoded physiological information

of smartphone data.

vii

List of Abbreviations

AE Autoencdoer.

AESOM Autoencoder based Self Organizing Map.

BMU Best Matching Unit.

ER Exclusivity Rate.

GCU Glasgow Caledonian University.

ML Machine Learning.

MLP Multilayer Perceptron.

MSE Mean Squared Error.

NMI Normalized Mutual Information.

PCI Principal Component Initialization.

SOM Self Organizing map.

SVM Support Vector Machine.

viii

List of Symbols

Cmaxi Radius of the ith cluster Ci.

D Decoding function.

E Encoding function.

K Number of clusters.

N Number of input samples.

Nc Coarse neighourhood function.

Nf Fine neighourhood function.

b⃗ Bias terms to the encoder.

w⃗ Weight vector of neurons in the encoder.

ix

Acknowledgements

My sincere gratitude to my supervisors Dr. Nur Zincir-Heywood and Dr. Malcolm I

Heywood for granting me the opportunity to higher education. My heartfelt thanks

to Appa, Amma and Guru for shaping my self-worth regardless of my successes and

despite my failures.

x

Chapter 1

Introduction

A significant growth has been witnessed in the ability of a mobile device to be con-

nected to the internet, personal computers, other hand-held devices and presumably

any computing device. Along with the increase in the available number of interactive

devices, mobile phones now house small programs a.k.a applications that enable its

user to connect to their banking server, search engines, cloud based storage reposi-

tories, email servers etc. This added computational ability, allows users to perform

online banking, browsing, email, and remain connected to social media anywhere

and at anytime. Thus improving the usability scope of mobile devices and, mark-

ing the transition from granular calling devices to ‘smartphones’. As a consequence,

smartphones host a huge amount of the user’s personal, social, financial and private

information. Andersson et.al., confirm that users hold perceived value in using these

smartphone application in relevance to [1]:

1. Convenience: banking, maps, radio, email etc.

2. Control: calendar, alarm, fitness trackers etc.

3. Motivation and inspiration: social media, news etc.

4. Monetary savings: expense trackers etc.

5. Entertainment: news media, gaming, social media, music etc.

6. Knowledge: news media, on-line course content etc.

Despite its implications to security management and risk mitigation, users find this

arrangement convenient because their mobile phones are with them all the time.

However, these personal devices pose security risks through which the user’s privacy

can be compromised. Malicious softwares a.k.a. malwares are one of the prominent

ways in which user confidentiality and security is threatened. These programs are

known to disrupt regular operations on the mobile device and/or misuse sensitive

information such as user/device identity, by gaining unauthorized remote access to

the smartphone [15].

1

2

A study confirming the usage of malwares as privacy attack vectors across smart-

phone platforms viz., Android, iOS, Blackberry, Symbian and Windows, also con-

cludes that successful malwares can be built by Bachelors of Computer Science stu-

dents without any rigorous training. This is indicative of the ease with which im-

plementation specific vulnerabilities of a smartphone can be exploited [35]. Another

study on 30 randomly chosen applications in the Android market, found that 15

of them sent location information to advertisement servers, 7 sent the device ID to

content servers and 2 sent the phone number to a remote server. This was done

without obtaining direct or indirect consent from the user [14]. In the recent years,

several researchers have aimed to detect malicious applications from legitimate ones,

as discussed further below.

AppInspector is an automated tool to inspect and report applications involved in

security breaches, privacy violation or both [16]. This tool uses system-wide taint

tracking. Taint tracking is a technique of tracking the flow of data from its source to

its sink. If the sink results in an outgoing network transmission to an unauthorized

or illegal destination, then the application is said to violate user privacy. If the

tracked data is collected without explicit user consent, then the application is said to

breach security. This established technique was seconded by many other researchers

[37, 14]. Rastogi et.al., advance this technique with API and kernel-level monitoring

to automatically detect privacy leaks and nefarious applications [42, 46]. However,

most of those works have focused on free applications from the third-party application

markets without specific categories. They have not investigated the potential for

threat analysis of mobile malwares or applications related to malicious functionality

and high-risk user behaviours [41]. This is important because an application can be

made to misbehave as discussed further below.

Smartphone vulnerabilities not only arise from the external environment, but are

also internal to the phone. These include implementation, incompatibility and user

related vulnerabilities. Of these, a majority of security threats are known to occur

in the ‘userland’, as a result of user unawareness (or ignorance) [24, 17]. Typical

situations of user unawareness include [20]:

• loss of the smartphone,

• insider exploits through social engineering attacks

3

• improper smartphone settings (such as browser settings)

• connecting to un-trusted WiFi and/or installing applications from un-trusted

sources

Each of these channels of exploitation lead to loss of crucial information assets. My-

lonas et.al., study quality metrics that assess the awareness and impact of security

threats among Android and iOS users. To this end, subjects are grouped into security

savvy and non-savvy categories. Their research goal was to establish whether, being

aware of security threats and the corresponding mitigation strategies, forced users to

interact cautiously with their devices. The study ends concluding that neither cate-

gories of users took protective measures to avert the threat of devices being exposed

to unauthorized physical access and remote access [36]. Furthermore, unauthorized

physical access demands efficient authentication strategies. Some prior works on mo-

bile device security have focused on physical aspects and/or access control methods

such as strong passwords, voice recognition, or fingerprints [43, 21]. However, such

approaches do not continue to protect the mobile device user from malicious attacks

in the post-authentication state. These solutions belong to the class of static defense

strategies.

The limitation of these static defense strategies (automated malware detection

methods is a part of them) is that they do not factor in user autonomy. That is,

the interaction between the user and the device or applications in the device largely

(also) depend on the the end user. However these methods assume that end user

behaviours are, for the most part, consistent. This approach to security offers a

‘one-size-fits-all’ solution which lacks reliability and scalability. Alternatively, the so-

cial cognitive theory can be used to hypothesize unconventional security assurance

techniques. Lawerence et.al., posit that users are likely to approximate their peer’s

behaviours [40]. That is, victim users can be subjected to learning secure behaviour

amidst a group of security practicing personnel’. Along similar lines, it can also

be inferred that there exist patterns of similar thought processes amongst offenders

(while the attacker builds his/her malware or during his interaction with the smart-

phone). Then, it is very likely that patterns of similar high-risk user behaviour will

emerge. This notion opens a new possibility of analyzing the entire threat surface,

4

Figure 1.1: Illustration of analyzing the threat surface for similar user behaviours.

in particular, that of a smartphone. The goal is to group patterns of similar be-

haviour. It must be noticed how this perspective can be applied to grouping similar

malwares as well as similar users. This steers the research to finding more dynamic

solutions that ensure two key aspects of cyberspace risk management: (i) categoriza-

tion of similar behaviours across threat surface (see Figure 1.1); (ii) continued even

in post-authentication stage.

The continuous and ubiquitous security mechanisms post-authentication are of

utmost importance in the current cyberspace situation. To this end, one might ask

questions such as the following to identify and quantify different user behaviours:

1. What are the obvious patterns of behaviour that emerge in one user’s interaction

with his/her smartphone?

2. How similar are the discovered patterns of any two users (say userA and userB)?

3. Given the quantification in step (2), can userA and userB be labelled to belong

to the same ‘group’?

4. After repeating steps (1-3) for everyone in the user community, how many

‘groups’ of users do we obtain overall?

In short, there is still a need to model and analyze different user (and/or applica-

tion) behaviours for cyber-security purposes. Within this context, this thesis focuses

on mining user behaviours by studying the extent to which phone behaviours can be

associated with a single user. Formally, it is required to build a model for each user

5

summarizing patterns in his/her phone usage. A particular class of pattern recog-

nition that is meant to discover previously unknown patterns in the data, is called

unsupervised learning. For the purposes of this research, it is necessary to conduct

unsupervised learning exclusively for each user. This constraint is termed as one-class

learning in the Machine Learning (ML) fraternity.

In summary, this thesis targets user behaviour mining, under the context of one-

class unsupervised learning. The aim is that, learning frameworks of this nature,

can begin to address the consistent challenge of factoring user autonomy in defense

mechanisms. To this end, the use of a multilayer perceptron configured to act as

an Autoencdoer (AE), prior to the application of a Self Organizing map (SOM), an

unsupervised learning approach is explored. Such a configuration operates under a

one-class learning constraint, with the objective of providing a unique characterization

of user behaviour. The evaluations on publicly available datasets show that it is

possible to identify patterns to characterize each user’s behaviours using the proposed

one-class learning approach.

The upcoming chapters in the thesis are organized as follows: research previously

conducted in the field of behaviour analysis, using machine learning algorithms are

summarized in Chapter 2. The adaptation of known clustering methods to smart-

phone datasets, thereby quantifying a similarity metric among users is presented in

Chapter 3. The main contribution of this thesis i.e., the utility of Autoencoders to

obtain a discriminating representation of each user is detailed in Chapter 4, along with

the visualizations from resulting SOMs. Chapter 5 draws conclusions of the research

by providing inference from the results of the proposed framework; and discusses

future research directions.

Chapter 2

Background

The discussion in this chapter begins with previous works in the cyber-security for

mobile phones using machine learning techniques. This provides validation that ML

methods are adopted in the security domain. Furthermore, the chapter also summa-

rizes the research conducted to model users using smartphone datasets. Applications

of SOMs related to behaviour modelling are then detailed. The chapter concludes by

summarizing all the challenges faced thus far in the field of behaviour analysis using

smartphone sensor information.

2.1 Machine learning in cyber-security

Clarke et.al., investigate the feasibility of using keystroke information to improve

authentication of mobile phone users using feed forward Multilayer Perceptron (MLP)

[7]. A Nokia phone was modified to retain only the keypad interface and the data

was collected in-house. The two cases of this study was: (i) text based input and

(ii) number based input. At the time of enrolment, each participant was required to

provide 30 repeated inputs from 32 users, two-thirds of which was used to create a

template of the user’s typing characteristic. This signature was quantified in terms

of the keystroke latency and hold-time characteristic respectively. A feed forward

MLP is employed to classify user input as ‘authentic’. The MLP was given authentic

ans imposter data as input to enable classification i.e, this method is not one-class.

The authors acknowledge that (i) the performance of the MLP varies for each user;

(ii) a reduction in the performance of the framework was noticed when dynamic

authentication was attempted; and (iii) data collection was laborious, in that, filtering

outliers (typing mistakes), in each of the 30 inputs per user was time consuming, yet

important for research.

Alternatively, to aid keystroke analysis, smartphone sensor readings were used

from the start to finish of the touch-based keystroke [4]. The authors posit that while

6

7

it might be easy to replicate authentic content i.e., password PIN, it remains unlikely

and near impossible to mimic the posture of the authentic user. To this end, in built

sensors from Android smartphone were used to record the acceleration, orientation,

magnetometer and gyroscope readings. They also use template-matching style, su-

pervised, binary Bayes classifiers to classify an PIN input as authentic bio-metrically.

TouchStroke was the android application developed to collect training data from 12

participants.

The approach to multi-sensor based authentication was seconded recently by Lee

et.al., [25]. This study incorporates the accelerometer, magnetometer and orientation

sensors to provide continuous verification of the current user after he/she has been

successfully authenticated using the traditional password mechanism. To this end, a

Support Vector Machine (SVM) is employed to train the user’s profile using one day’s

sensor data. Each day the SVM model is re-trained to update genuine variation in

the user’s typing behaviour. For classification, one user’s data samples are labelled

positive, all other user’s data samples are marked negative and both classes are sam-

pled uniformly. The authors evaluate their system on their in-house PU dataset and

the publicly available GCU version 2 dataset. Both datasets contain 4 users each

using android smartphones. Many other researchers have used Android smartphone

sensors to classify users as authentic or imposters [38, 26, 5, 50, 55, 18].

These studies vary in the considered set of sensors, their sampling frequency,

choice of classification algorithm and the datasets being evaluated on. The common-

ality across all the aforementioned studies is that, none of them investigate one-class

learning. That is, all these classifiers require the negative and the positive class during

training (model generation). Furthermore, they are all supervised learning methods

and it is well established that finding labelled data is very challenging (and/or is

expensive) in real life.

Three notable research works stand out in utilizing human-gait as a behaviour-

based metric for authorizing users, of which one study employs a one-class learning

framework. Derawi et.al, investigated the utility of low-grade accelerometer read-

ings to authenticate smartphone users [9]. This study was performed by placing an

Android mobile device on the hip of a 51 participants, that measured accelorometer

readings across the x-axis as the volunteers walked 4 times up and down a hallway.

8

One of these 4 measurements was used to create a reference template, while the re-

maining were used to obtain features for comparing against the user’s reference walk.

Since walking duration varied, the resulting input instances were of varying length.

In order to compute similarity between these input patterns and the pre-computed

reference walk, Dynamic Time Warping was the chosen distance metric. The authors

confirm a 50% improvement in error rate in comparison to previous works. They also

acknowledge that this method is sensitive to: (i) placement of the mobile phone; and

(ii) choice of sensors chosen to profile human-gait wrt the sensor placement.

Later, Wei et.al., demonstrate that derived features such as average, standard

deviation, variance, skew, kurtosis and correlation are preferred to raw accelorome-

ter readings, to summarize human-gait [54]. Furthermore, they employ graph-based

clustering mechanism i.e., unsupervised learning to identify walking patterns amongst

users. Their solution was evaluated on a study group of 4 users, each resulting in 3

repeated samples for walking, race-walking and running. These authors also resort

to a custom built smartphone application, and device placed on the participants’ S1

vetebra, to obtain accelerometer readings. They acknowledge that their study is sen-

sitive to sampling rates and the window size used to engineer features, but conclude

that higher the sampling rates yield better recognition.

Casale et.al., investigate the use of a one-class learner to enhance user authentica-

tion after training a multi-class AdaBoost classifier to discern user activities [6]. User

activities such as walking, running, sitting etc are fed as input with ground-truth to

the ensemble AdaBoost classifier. Only those patterns that are validated to belong to

the ‘walking’ class are given to the one-class classifier for user-authentication. It is to

be noticed that the one-class learner builds over the pre-trained supervised activity

classification system. All the walking instances from a user is projected onto a sub-

space. However, the method of projection/ dimensionality reduction is not discussed

in the study. A convex hull is built around all the inclass user’s input as shown in

Figure 2.1. During the user verification process, the binary one-class classification

(belongs to authentic user or not) is reduced to estimating if the unseen input sample

lies within the inclass convex hull. Removal of outliers and approximating convex hull

to non-convex projections are done until linearly separable convex hulls are obtained.

Going forward, an input sample is said to not belong to the inclass user, if it does

9

Figure 2.1: Bi-dimensional convex hull from 2D projections of inclass user samples
[6].

Figure 2.2: Projections of the inclass convex model onto 2D space: in this case, the
input sample (denoted by circle) is said to belong to the inclass user, because it lies

within the 2nd projection of the convex hull [6].

not lie within either of the projections of the inclass’ convex hull (see Figure 2.2).

The authors acknowledge that obtaining characteristic reference walk patterns (in the

wild) is challenging, owing to the variations in a subject’s walking styles when faced

with an obstacle, walking on rough terrain, in crowded places etc..

In summary, literature suggests the following main take-aways for future research

when adopting smartphone based sensors that capture the physical attributes of the

phone, thus its legitimate owner:

1. Data collection and preprocessing is laborious.

2. Quality of data is highly sensitive to placement of the mobile phone on the

human body.

3. Labelled data for human activity modelling rarely exists.

10

4. Developing templates of sensor profiles (as a surrogate ground-truth) is non-

trivial.

5. Choice of sensors to best model a user’s physical interaction with the phone is

non-trivial.

6. Difficult to maintain the performance of the ML based user recognition method

when transitioned from a static solution to a dynamic framework.

2.2 User modelling related to smartphone usage

Eagle and Pentland, from MIT Media Labs collected (and made publicly available)

one of the earliest mobile phone datasets capturing Cell tower, bluetooth, application

usage, calling and SMS logs from a 100 participants (students and faculty included)

[12]. The posit that regardless of the variation in human behaviour, one could arrive

at predictive models of user routine patterns. To this end, they begin by separating

users with high entropy i.e., less routine from those who exhibit low entropy. An

example of users with low entropy are professors who maintain a consistent work-

ethic; while freshman year students are typical examples of high entropy users (as they

are likely to change their locations based on class hours). Entropy is measured using

the probability density function (PDF). The slightest variation in amount of time

spent connected to a cell tower can hugely impact the cell tower PDFs for two very

similarly positioned users. Thereby the PDFs ensure discriminative representations

for each user within the same demographics. In addition, the PDFs (of cell tower

and bluetooth IDs) serve as inputs to Hidden Markov Model, conditioned on hour of

the day and if the day was weekend or not. Subsequently clustering was performed to

distinguish users from one another with accuracies >95%. The authors acknowledge

that: (i) using non-linear techniques will provide higher accuracy; and (ii) learning a

user’s application usage routines will yield better models of the user’s spatio-temporal

‘behaviour’.

Noticing the difficulty in incorporating temporal patterns across different timescales,

Eagle and Pentland proposed a new solution to behaviour modelling using mobile data

[13]. This time, principal components analysis was used as a dimensionality reduc-

tion technique. These principal components represent the most recurring behaviour

each day i.e., routine. A weighted combination of 6 most primary eigenvectors of

11

user’s data, resulted in 90% detection accuracy. Thus the name eigenbehaviours.

The authors also show that, by reducing the dimensionality of the user data, infer-

ences of how similar two users are can be drawn using a simple Euclidean distance

metric. This results in modelling a ‘behaviour space’ of users with common routine

behaviours. A user’s affiliation to a behaviour space of this nature will also allow

researchers to predict the user’s future behaviour patterns. This study is the closest

in relation to the current research topic of grouping users with similar behaviours for

cyber security purposes.

A study that best utilized smartphone application data to model users was con-

ducted by Do and Gatica-Perez [10]. They propose a probabilistic framework that

identifies emergent patterns in an individual’s daily application usage. Using these

patters, they retrieve a list of all users that are likely to have similar daily appli-

cation usage. Each user’s application logs are initially represented in bag-of-apps

format, based on the frequency of using an application in the morning, noon, evening

and night. A set of 5 applications are considered viz., voice, SMS, internet, camera

and gallery. One row of the bag-of-apps consists of a 20D vector indicative of usage

frequencies. The resulting matrix is fed as input to a topic modelling algorithm.

The purpose of topic modelling, is to find the most frequently occurring associations

between the application and time of use (one topic). Daily usage patterns is thus

an array of user-topic tuples with respect to time. A repository of such daily ap-

plication usage patterns is built from a control group of 111 users (private dataset

collected with consent by distributing smartphones to 111 participants). These users

are ranked according to the posterior probability of containing a query usage pattern,

i.e., inclass user pattern. Using Bayes theorem with a uniform prior probability, the

framework is now able to identify users with similar application usage routines. The

current research borrows the initial representation of applications in the bag-of-words

format. However, the proposed framework refrains from adopting topic modelling

approach since, this method does not fit the one-class learning constraint.

LiKimWa et.al., study the correlation between a user’s mood and his/her in-

teraction with the device [28, 29]. In particular they factor in application usage,

phone calls, SMS,emails, web browsing history and location to engineer discriminat-

ing features for each user. Only the ten most frequently occurring values are used to

12

construct the feature vector in each category. The location feature is derived from the

result of the unsupervised DBSCAN algorithm answering, the top ten most frequently

visited ‘location cluster’. Within this context, the authors conclude that under the

supervised framework, building a ’one-size-fits-all’ mood model yields a poor accu-

racy of 61%; whereas building personalized mood models for each user improves the

prediction accuracy to 91%. However, they remark that obtaining ground-truth and

training data for each user is expensive. This study is augmented with a richer feature

vector consisting of: duration spent actively using each application (earlier only count

of launches), category of the application used, and the two previous mood averages

recorded by this user. Going forward, mood averages of each user per day is computed

that serves as labels to a linear regression model that infers the current mood of the

user using the input feature set. Sequential feature selection was used to select the

most distinguishing feature descriptor for each user. The authors conclude that: (i)

each user used a different dimensionality of features; (ii) mood modelling works better

for some users than others; (iii) personalized models report high accuracy but demand

extended training duration (2 months of training resulting in 85-93% accuracy); (iv)

selection of sensors is imperative yet empirical.

Stöber et.al., associate a user with the nature of traffic created as he interacts

with applications installed on his phone [49]. This is achieved using traffic features

engineered from the tcpdump logs from Android smartphones. Furthermore, the na-

ture of the traffic created by the applications (due to background processes such as

sync) is said to vary with respect to the combination of active applications running on

the user’s handset. A kNN classifier and SVM are employed to conduct a supervised

binary classification (user or not-user) task. The training set consists of equal pro-

portions of the user’s fingerprints and those from other users. The authors show that

SVM outperforms kNN in terms of accuracy in classifying unseen data by nearly 4%

drop in error rates. In summary, the authors indicate a new avenue i.e., network ap-

plications traffic to improve user identification under a multi-class supervised learning

framework. This study was performed with a control group of 20 participants.

Following are the observations from literature review in the field of modelling

smartphone users, as a characteristic of their device interactions:

1. Majority of the studies are conducted on private datasets that are not publicly

13

available.

2. The number of users in each dataset is varying viz., 4, 20 and 111.

3. Application usage, cell tower information and website browsing behaviour has

gained lesser research attention in comparison to sensor based user modelling

methods.

4. All learning algorithms investigated thus far are supervised in nature, although

they build personalized user models.

5. No study is akin to clustering groups of similar users and/or applications.

From the research opportunities outlined in this section, my study investigates user

behaviour modelling using both contextual information i.e., application usage, cell

tower information and website browsing history as well as physiological information

namely, accelerometer, magnetometer, orientation, and sensors alike. The central

idea is to attempt behaviour modelling as a one-class unsupervised learning problem

devoid of labels and non-user information during the training phase of the model.

To this end, the utility of a vector quantisation based neural network, namely SOM,

solution is to be investigated. The next section details established uses of SOM in

behaviour modelling.

2.3 Related applications of self organizing maps

This section discusses the use of SOMs to discover underlying patterns in the data.

While the scope of SOMs used in this type of research is huge, the focus of this section

remains within the realm of application or user behaviour clustering.

Barrera et al. employed SOMs to analyze permission-based security models for

Android platforms [3]. In this study, 1100 applications most frequently downloaded

in the Android market were analyzed. The research intention was to understand

the patterns of usage of the Android permission model, by application developers.

To this end, a 2D hexagonal SOM was employed in order to discover clusters of

applications that requested the same set of permissions. To the SOM, each application

is represented as a bit vector, where each bit location corresponds to whether that

permission was requested or not. The authors acknowledge that SOM is a suitable

approach to analyze bit vector based representation of data. The study concludes

with inferences such as: “Given that SOM places similar input patterns in the same

14

region, this indicates that applications from the same category do not necessarily

behave similarly (i.e., do not request similar permissions). This reflects the fact

that the categories defined by Google are based on semantic activity classes rather

than the technical features used to implement them”[3]. Furthermore, the ability to

visualize the permission usage pattern in a 2D plane allowed researchers to verify

the frequency of usage of each permission across the application space. This study is

indicative of: (i) ability of SOM to group bit vectors by similarities on a 2D space;

and (ii) importance of visual inspection of the trained SOM model.

Literature suggests the use of SOM to categorize different high-level behaviours,

Stevanovic et al., use a simple SOM to detect malicious web-crawlers [48]. Specifically,

the SOM successfully differentiates malicious and non-malicious internet users. In

that, the trained SOM is also able to delineate crawling behaviours of automated

web crawlers: well-behaved or malicious. A 10D feature vector is engineered from

web-server logs, fed as input to a 2D dimension of 10x10 size, trained for 200 epochs.

The authors verify SOM is sensitive to the density distribution of training data. That

is to say, a relatively larger number of neurons are likely to respond to the majority

class in the data.

Drachen et al. used an emergent SOM to model player behaviours in a game [11].

A toroid shaped map of 50x100 dimension was employed to discover patterns in player

behaviour. The toroid map was preferred over the 2D sheet, in order to overcome

border effects. Post training (100 epochs), 4 non-overlapping clusters emerged. To

verify the cluster separation, density-based SOM visualization was used. The clusters

separated: skilled players who die very few times; players who die very frequently from

falling but, never ask for hints during a puzzle; players often killed by opponents and

take long time to finish the game; and players who die often but finish the game

quickly. These insights from SOM are said to be useful when analyzing whether the

game is being played as intended or if any surprising playing behaviours emerge. It

is noteworthy that an unsupervised learning solution results in well characterized

clusters, ensuring a reasonable trade of between computational effort (map size) and

training time (epochs required for convergence). This study is also an evidence of

how the topology preserving attribute of SOMs results in coherent clusters.

15

Verdu et al. study the application of SOM in filtering anomalous electrical de-

mand behaviours . [52]. Firstly, the SOM results in discerning typical demands from

reduced demands (exam season) and demands during holidays (less people occupying

university, where electrical consumption was studied). For all typical demands, SOM

based clustering is re-employed to classify the customers to different categories (uni-

versity, residential, commercial etc,) based on their load profiles. K-means clustering

of the resulting SOM optimized for the least Davies-Bouldin (DB) index results in

the final categorization of customers. The trained SOM was tested with two new

unseen customer load profiles. It was found that the quality of the resulting SOM

map was better when frequency domain data was used as input (in comparison to

time domain).

In summary, SOMs have been used to model behaviours in various fields, using

binary vector based features, small map sizes and reduced training time. The clusters

thus obtained possess unique characteristics due to the topology preserving nature of

SOMs. The 2D ‘projections’ of data allows visual inspection of clusters formed using

high-dimensional input data. SOMs can be used both as a standalone clustering

technique or as an entity of a clustering ensemble. Several different data mining

approaches are used for understanding user behaviour in wired and wireless networks

as well as smart phones. However, to the best of my knowledge none of these works

explored the usage of an autoencoder based SOM to encode and cluster data to

characterize mobile phone user behaviours.

Chapter 3

Behaviour Modelling: under one-class learning

The trivial solution to group similar user behaviours without a-priori information of

the context of each user’s smartphone usage, is to employ an unsupervised clustering

paradigm. Given the task to identify patterns of behaviour in each user, it demands us

to build a cluster model for each user independently. That is, the system is expected

to learn the user’s behaviour by continuously being exposed to one user only, the

positive class. Formally, this machine learning approach is referred to as a one-class

learning setup. We refer to the positive class i.e. the user being modelled, as the

inclass user. All non-positive classes i.e. other users in the dataset, are referred to

as outclass users. The user specific model is learned from data pertaining exclusively

to the inclass user, no outclass data is made available at the training stage (one-class

learning).

The focus of this thesis is to investigate:

• the use of partitioning and model based clustering methods that borrow prin-

ciples of competitive learning as well known examples of unsupervised learning

algorithms;

• the feasibility of pattern mining under a one-class learning constraint.

Through competitive learning, input data is summarized by a group of prototype

vectors. A finite number of randomly initialized prototypes, compete to respond

to an input vector. The prototype that responds most strongly is referred to as

the ‘winner’. Through training, each prototype specializes to respond to a ‘type’ of

input data. This leads to formation of clusters. The algorithms that use competitive

learning principles are self-organizing maps (prototypes are neuronal weights) and

vector quantization (prototypes are cluster centroids). The aim of vector (samples)

quantization (grouping/binning) is to discover/build a representative vector for each

input datum such that distortion is minimized. Distortion is defined as sum of all

16

17

absolute differences between each sample and its associated centroid (representative

vector). The aim of self-organizing maps is to train a set of similar neurons, such

that each neuron organizes its synaptic weights towards representing a particular

input pattern.

In this chapter, clustering solutions from K-means, a well known quantization al-

gorithm; and Self Organizing Maps (SOM) are discussed. The theory, adaptation and

results from both algorithms are detailed. A statistical significance test is conducted

to choose the better learning paradigm for further improvisation. These results act

as a benchmark to develop the contribution of this research.

18

3.1 Smartphone Usage Datasets

These datasets are derived from re-programmable applications that log sensor usage

in the device that houses the application. All datasets used in this theis are made

publicly available for research purposes. It is ensured that the traces are anonymized

(dataset contains no identifying information about subjects participating in the data

collection process) and hashed (website URLs for example). However, the datasets

vary in the total logged duration, sensor specific sampling frequency and the set of

sensors monitored.

The applicability of this research is, to model user behaviours despite their simi-

larities (a phenomenon that also manifests in the real world). For example, students

attending the same university would by and large connect to the same cell tower

during work hours, visit the university website every so often, and given that each

dataset was built on a particular firmware, there will be a set of common pre-installed

applications. Nonetheless, phone interactions vary in terms of third party applica-

tions used, periodic visits to a favourite news channel, routine check-ins to a cafe at a

specific time of the day and thereby connecting to a different cell tower and/or WiFi

access point etc.

For the purposes of this research, I classify the set of sensors into two broad cate-

gories viz. discrete and continuous. Discrete sensors are those that provide contextual

information about the user’s location, most browsed websites, preferred applications

etc. This is usually represented in binary: 0 representing ‘not-connected/launched’

and 1 representing ’connected/launched successfully’, hence the name discrete. Con-

tinuous sensors are those that provide information about the way the user physically

handles the devices or the user’s physiology such as, height, gait, walking profile,

speed with which a phone is grabbed to answer a call etc. These sensors log real

valued sensor information across the physical axes, hence the name continuous. To

substantiate, foreground applications, web histories, associated WiFi and cell tower

data are categorized as discrete. Sensors that capture real valued information such

as acceleration, rotation, system state are categorized as continuous. The subsequent

goal of this research is, to establish which of the two sets of sensors are most suitable

for modelling a user’s interaction with his/ her device. The sensor subset that yields

19

maximum dissimilarity for each user is deemed to best suit behaviour modelling. Intu-

itively, this translates to asking questions such as the following: Does internet surfing

pattern better summarize a user-device interaction, in comparison to accelerometer

readings?

3.1.1 Rice Live Lab Traces

In this thesis, I envisaged building a system that is exposed to real world situations

such as:

• encrypted web history,

• user clearing application logs,

• similar correspondence with the mobile device across different geographical lo-

cations.

I thus choose event driven logs of running applications, periodic logs of connected

cell tower and hashed web browsing history, from the LiveLab dataset [45]. These

traces contain 23 users. Figure 3.1 and Figure 3.2 shows the usage of, the 20 most

frequently used applications, cell towers and websites. It is worth noticing that there

are a few applications and cell towers that belong to the Top20 set of all participants

in the dataset. For the continuous sensor subset, a 12D feature vector was built

using the following sensors:

• Acceleration: measured acceleration logged along the x,y, and z axes, once every

15 minutes when the phone is active.

• Charge duration: the amount of time spent in charging (1) state and not-

charging (0) state, logged periodically i.e., interrupt driven.

• Display duration: the amount of time spent in display-on (1) state and display-

off (0) state, logged when state changes i.e., event driven.

• Power: percentage of battery level, battery voltage in milivolts, and amount

current flowing into the battery in miliampers, event driven logging.

• Sleep duration: the amount of time spent in low power mode asleep (1) and

awake (0) despite the display status.

20

(a)

(b)

Figure 3.1: Dataset statistics (per-user) for LiveLab traces. (a) Applications used;
(b) Cell towers connected

21

Figure 3.2: Dataset statistics (per-user) for LiveLab traces: Websites visited.

22

User ID No. of days

A00 375

A01 365

A02 378

A03 368

A04 368

A05 383

A06 376

A07 413

A08 434

A09 280

A10 366

A11 369

User ID No. of days

A12 343

B00 283

B02 366

B03 372

B04 399

B05 365

B06 366

B07 367

B08 366

B09 390

B10 304

B11 363

Table 3.1: Duration (in days) of logged sensor data for all users in Rice LiveLab

dataset.

3.1.2 GCU version 1

The GCU version 1 dataset is collected from 7 different users, on Android devices

in the year 2013 at Glasgow Caledonian University (GCU) [2]. It contains data

pertaining to the discrete sensor category:

• Applications: list of all active applications at a particular timestamp. The raw

data consists of one entry for each functionality of the application used. The

data has been preprocessed to account for the same application. For instance,

com.google.android.location.geocode.GeocodeService and

com.google.android.location.fused.FusedLocationService are both represented by

com.google.android.location.

• Cell tower: the connected cell tower ID

• WiFi network: list of all WiFi signals detected at a particular timestamp.

The duration of the data varies from 2 weeks to 14 weeks per user (see Table 3.2).

To ensure consistency, earliest available data for a period of 14 days is used for each

23

user.

User ID No. of days

U1 81
U2 69
U3 14
U4 16
U5 22
U6 15
U7 17

Table 3.2: Duration (in days) of logged sensor data for all users in GCU version 1.

3.1.3 GCU version 2

The GCU version 2 dataset consists of smartphone data collected from android devices

in the year 2014 [2]. It contains data pertaining to application usage, cell towers

connected to, WiFi networks used, acceleration, rotation, noise and magnetic field

statistics, logged over a period of 3 weeks. This second version of the dataset includes

4 users. However, the authors of the dataset do not comment on which of these 4

users (if any) are the same with the 7 users of the GCU version 1 dataset.

The nature of the sensor information under the discrete categorization is akin

to that explained in subsection 3.1.2. The dataset consists of the following sensors

under the continuous categorization, resulting in a 16D feature vector.

• Acceleration: measure of the acceleration force in ms−2 that is applied to a

device on all three physical axes (x, y, z)

• Magnetic field: measure of the ambient geomagnetic field for all three physical

axes (x, y, z) in µτ .

• Noise: the minimum, mean and maximum noise levels (in decibels).

• Rotation: measures of the degrees of rotation that a device makes around all

three physical axes (x, y, z).

• System: CPU usage by the user, CPU usage of the system, and number of

active processes.

• Light: binary value to represent the ambient light level: on (1) or off (0).

24

User ID No. of days

U1 21
U2 25
U3 30
U4 16

Table 3.3: Duration (in days) of logged sensor data for all users in GCU version 2.

3.2 Representation to learning algorithms

This section discusses the manner in which all three datasets viz., Rice LiveLab

traces, GCU version 1 and GCU version 2 are represented to the learning algorithms.

The resulting user matrices from the discrete and the continuous set, are linearly

normalized to the [−1,+1] interval.

3.2.1 Discrete sensor information

With this feature subset, user behaviours are characterized by the most frequent

applications, the most frequent web sites and the cell tower information for each user

over a given time interval. To this end, a fixed length representation is employed

for each observed time interval. I consider only the N most frequently used and/or

visited applications, websites and cell towers to represent each user. In a way, this is

similar to a bag-of-words representation for the three categories of features as follows:

samplei = [app1, app2, ..., appN , web1, web2...webN , tower1, tower2...towerN]

where, app1, web1 and tower1 indicate the (first) most frequently used application,

website and cell tower (respectively) by useri.

3.2.2 Continuous sensor information

In the continuous domain, user behaviours are characterized by sensor values across

the x, y, z axes and their active/inactive state. The feature vector thus comprises of

3D vectors for accelerometer, gyroscope, rotation and magnetometer readings; and

2D vectors that log the duration the sensor spent in active mode and the duration

spent in inactive or sleep mode.

In summary, the discrete sensors are those that contain binary information (0 or

25

1) about the contextual usage of the device. On the contrary, the continuous sensors

are those that log real valued data pertaining to the user-device interaction.

3.3 K-means

The most well known partitioning method is the centroid based K-means algorithm.

In order to group N exemplars, K-means requires K initial seeds. These seeds repre-

sent the centroid of the k th cluster. The samples are grouped such that the distance

(euclidean) of each sample within the cluster is less than intra-cluster distances.

3.3.1 Theory

The algorithm begins by calculating the pairwise distance from each exemplar to all

the cluster seeds. The exemplar is assigned to the closest cluster (hard clustering).

The position of the cluster centroid is updated by a factor of the mean of all the

exemplars that belong to that cluster. These updates continue until the distance

function of interest has been optimized. Formally, consider a training set of N sam-

ples: x1...xi..xn. Assuming c1...ck initial centroids such that, xi, ci ∈ IRn, the label

assignment and centroid updates are as follows:

li = argmin
j

||xi − cj||2 (3.1)

cj =

∑m
i=1(li = j).xi∑m

i=1 li = j
(3.2)

where li is the cluster label assigned to the ith exemplar. Consequently, the efficacy of

such a clustering solution depends heavily on the choice of the K initial seeds and the

distance function. The quality of clustering is measured based on the cohesiveness

and separation among the clusters. It is possible to estimate the optimum number of

clusters i.e., K by empirically testing the cluster qualities on a range of desired number

of clusters. To this end, a high silhouette score of +1 indicates well separated clusters

containing very similar samples from the training set. Conversely, a silhouette score

of -1 is indicative of cluster overlaps [44]. Finally, in order to address the initial seed

value of the highest silhouette K, the algorithm is run multiple times with varying

random seeds and the average of cluster centroids is considered.

26

3.3.2 Practice

The adaptation of K-means to a one-class learning scenario is as follows:

1. Obtain optimum number of clusters for inclass data by silhouette scoring (say

K).

2. Re-initialize K random cluster seeds through multiple runs of K-means (say 20).

3. Calculate the farthest distance from each of the resulting cluster centroids to

samples that belong to that cluster (say Cmaxi).

4. Compute pairwise distances from all samples in outclass data to each of the

cluster centroids and identify the closest centroid.

Measure of exclusivity

Following the nomenclature in subsection 3.3.2, the ratio of samples in outclass data

that are within the distance Cmaxi for each cluster i ∈ range(K). The resulting ratio

is an approximate measure of dissimilarity.

Ideally two very similar behaviours would result in all samples belonging to either

of the inclass clusters i.e., dissimilarity ≈ 0 and 1 otherwise. The average dissimilarity

of one user with respect to all other users in the dataset is termed as Exclusivity Rate

(ER). The average of per-user ER across 20 runs is called the average ER.

3.3.3 Results & Discussion

The silhouette scores for a sample inclass user from each dataset is shown in Fig-

ure 3.3. The number of clusters tested were in the range [2-10]. The cluster count with

the maximum silhouette indicative of optimum separation was chosen as the inclass

cluster ‘model’. No user in the GCU set (version 1 and 2) ever attained a negative

silhouette score. 8 users from the Rice LiveLab dataset obtained scores in the range

≈ [−0.02 : +0.88] for the discrete subset. These 8 users obtained improved scores in

the range ≈ [0.6 : 0.8] for the continuous set. However, the measure of dissimilarity

is very poor for the discrete sensor information and zero for the continuous sensor

information. Table 3.4 contains the results for all 3 datasets.

27

(a) (b)

(c)

Figure 3.3: Varying silhouette score for each user’s discrete sensor data: (a) Rice
Live Lab sample: K = 4; (b) GCU V2 sample: K=6; GCU V1 sample: K=10.

28

Dataset Subset Average ER

Rice LiveLab
Discrete 2.25

Continuous 7e−4

GCU Version 2
Discrete 19.94

Continuous 2.63e−2

GCU Version 1 Discrete 29.51

Table 3.4: ERs from K-means on all datasets.

The poor performance in K-means can be attributed to the spherical nature of

clusters, the possibility of obtaining local optimums and the algorithm’s sensitivity to

noise. It is not trivial to tune the parameters for ‘big data’ and that questions scala-

bility. Furthermore, it is difficult to verify and/or interpret high dimensional clusters.

Despite the plethora of dimensionality reduction techniques, inferences drawn from

K-means clusters at lower dimensions cannot be extended to higher dimensions. This

is because there is no intermediate procedure that preserves the topology of high

dimensional data in partitioning based clustering techniques.

In order to compute clusters on large datasets, K-means requires batch updates

which in turn necessitates training data to be available in advance. Given that the

scope of behaviour mining projects lies in the realm of security systems, a near real

time learning model is preferred. In the next section, the use of an online and topology

preserving model-based clustering technique is investigated.

3.4 Self-Organizing Maps

Self organizing maps (SOM) belong to a model-based data analysis method in which,

similar input samples are grouped to belong to similar models (a.k.a, map units)

SOMs summarize the distribution of data following a framework for unsupervised

learning. Moreover, the topology of the resulting neurons resembles that of the orig-

inal data care of the interaction between: ‘best matching’ unit, updating neighbour-

hood and annealing schedule (for the neighbourhood); albeit as projected into a

typically 1 or 2D topology. SOMs have been used to provide intuitive descriptions of

data over a wide range of applications and dimensions. Formally, the SOM algorithm

for an n-dimensional input D, can be summarized as follows [34, 23]:

29

3.4.1 Theory

1. Initialize a 2D lattice of neurons (map unit) such that the position of each

neuron is described by n-dimensional weight vector whereas each neighbour

of the lattice is predefined. The lattice defines the concept of a map/map

neighbours and the weight vector defines the location and therefore distance to

an exemplar.

M = {mi | mi ∈ IRn }

2. Begin coarse training of the SOM to establish a high-level ordering of the ‘neural

map’

(a) For each training exemplar dj ∈ {d }, find the Best Matching Unit (BMU)

w.r.t. the Euclidean distance metric. Create a list of all BMU’s and

corresponding data instance in M.

BM(mi) = { dj ∈ {d } | argmin
i

(| |dj −mi||2) } (3.3)

(b) Update the weight vector in a batch mode within the neighbourhood func-

tion Nc which decreases linearly at each iteration. For neurons outside the

neighbourhood, the weight vectors remain unchanged.

w⃗t
mi

= w⃗t−1
mi

+ α ∗ ||BM(mi)− w⃗t−1
mi

||2 (3.4)

where BM(mi) is the average of all data samples that are associated with

each BMU mi ∈ Nc. Thus, for each BMU all neurons within the lattice

neighbourhood are updated. The size of the neighbourhood is subject to an

annealing schedule (incrementally decreases as training epochs increase).

3. Repeat Step (item 2) for fine training the SOM lattice with neighbourhood

function Nf given that Nf<Nc.

4. Repeat Step (item 3) with the recent scalar neighbourhood radius (Rs) until

convergence, i.e. weight changes below some minimal threshold.

Post training, the resulting vector of all BMUs obtained for the entire training set

is referred to as ‘SOM hits’ from which the most frequently ‘hit’ neurons can be

identified.

30

3.4.2 Utility

The similarity in the objective function of K-means and SOM can be observed in Equa-

tion 3.1 and Equation 3.3. Both of the algorithms have the same notion of updating

centroids (K-means) and/or map units (SOM) by a factor of the average of all sam-

ples closest to it. This implies, that SOM is similar to traditional vector quantization

techniques. The benefit of employing SOM over K-means is to ensure that the simi-

larity of the map units (lower dimension, 1D, 2D or 3D) approximate the similarities

in the feature space (high dimension). This is referred to as SOM’s ability to maintain

the topographic order of map units (models) through the learning process. Conse-

quently, it is also possible to visualize, interpret and verify the clusters thus formed.

Essentially, SOM results in mapping groups of similar inputs (behaviours) to one

model (pattern) on a lower dimension. Thereby establishing the utility of SOM in

clustering, for the purpose of this research.

3.4.3 Practice

A 2D hexagonal lattice of neurons (map units) is created. Initialization of the SOM

can be done randomly and linearly. In particular, linear initialization is done along the

two greatest eigenvectors of the inclass data, thus Principal Component Initialization

(PCI). With the batch training learning algorithm, these weights converge earlier in

comparison with a randomly initialized map[23]. The usefulness of PCI has been

tested empirically using topographic error (TE), a measure to asses the quality of

resulting SOMs. It is the percentage of input data having non-adjacent 1st and 2nd

BMUs. Figure 3.4 presents the TE for the two different initialization methods of

the SOM. It is clear that the map topology is well preserved with PCI. The training

cycle for the SOM occurs in two stages. In order to obtain a global order of map

units in the SOM codebook (w.r.t. the inclass data), a monotonically decreasing

neighborhood radius is used. Once complete, the most recent Gaussian function is

employed for stage two viz., fine training. The training cycle continues until all the

map units in the SOM codebook cease to change. Finally, the absolute count of how

often each neuron in the codebook was fired as BMU in ‘response’ to inclass data is

termed as the inclass hit response. The parameters used in configuring the AE and

SOM are listed in Table 4.1.

31

Figure 3.4: Reduced topographic error when neurons initialized along the space
spanned by two greatest eigenvectors.

Measure of exclusivity

As stated earlier, when outclass data is given as input to a pre-trained inclass SOM,

the result is a hit response array. Ideally, the inclass and outclass hit responses

should have different distributions, for two unique users. To quantify the extent of

dissimilarity from one user, we use the Normalized Mutual Information (NMI) metric.

NMI by entropy for each labelling. This is done by calculating the expected value for

the MI [47] [39].

Therefore, if the clustering responses of two users results in a NMI of 1, they

represent the same behaviour patterns. Alternatively, if the NMI is close to 0, it is

said that the two users have very distinctive behaviours. Given that, dissimilarity is

32

defined as the inverse of NMI.

Dij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if i = j; same user

<1, if i ≃ j; users with some similarity

1, if i ̸= j; distinct users

(3.5)

One run of the SOM results in a n-dimensional matrix representing user dissimilari-

ties. Its principal diagonals represent dissimilarity of a user with himself/ herself; and

thus it is ideally zero. Given that all of us will have common websites we frequent

(Google, Facebook etc.), or connect to the same WiFi (university access points), or

use standard applications (alarm, FM radio, gallery etc.), it is unlikely to ever obtain

an ideal dissimilarity of 1 for any two users.

It is also important to quantify the extent of exclusivity for each user’s behaviour.

For an inclass user, exclusivity is defined as the average dissimilarity from all other

users in the dataset. The degree of uniqueness is termed as ER.

ERi =
n∑

j=1

Dij; n=total number of users (3.6)

This is analogous to answering: “How different (or exclusive) is the inclass user from

every other user tested against?”.

3.4.4 Results & Discussion

SOMs provide a visual aid to the data in high-dimensional space, called the uni-

fied distance matrix or U-matrix. Distance between neighboring map units of the

SOM codebook are quantized in grayscale. The neurons responding to similar inclass

samples, will converge to have similar neuronal weights. Thus, the distance between

similar neurons on the SOM map is small, represented by grayscale value ≈ 0 (black).

Whereas, map units with very different weight vectors shall have a greater distance,

represented by grayscale value ≈ 255 (white). Intuitively, the white demarcations

on the U-matrix, correspond to regions of similarity of the inclass data ‘projected’

onto the SOM. The diagonal subplots of Figure 3.6 are the U-matrices indicative of

cluster separation ordered by color for each similarity group. It is worth noticing the

updated map vectors per variable after the fine training stage of the SOM (compare

upper right subplots of Figure 3.6 and Figure 3.7).

33

Dataset Subset Average ER Friedman’s test
(from SOM) (K-means v/s

SOM)

Rice LiveLab
Discrete 25.98 2.7754e−07

Continuous 23.30 1.6200e−06

GCU Version 2
Discrete 37.92 0.0455

Continuous 48.32 0.0455

GCU Version 1 Discrete 45.72 0.0253

Table 3.5: ERs from SOM on all datasets

(a)

(b)

Figure 3.5: SOM hits: (a) sample inclass SOM model; (b) sample outclass response.

34

F
ig
u
re

3.
6:

V
is
u
al
iz
at
io
n
s
fr
om

so
m
to
ol
b
ox
:
re
su
lt
fr
om

co
ar
se

u
p
d
at
es

35

F
ig
u
re

3.
7:

V
is
u
al
iz
at
io
n
s
fr
om

so
m
to
ol
b
ox
:
re
su
lt
fr
om

fi
n
e
u
p
d
at
es
.

36

On the smartphone datasets, the resulting SOM clusters are as shown in Fig-

ure 3.5. To assist visual inspection of the clustering process, the somtoolbox contains

APIs that allow for us to plot the hit response from each neuron normalized by the

ratio of samples they ‘respond to’ [51, 53]. It is easy to see that the most respon-

sive model for the outclass data, i.e., the blue hexagon is one of the least responsive

neuron models in the learned inclass model.

Table 3.5 summarizes the detection rates from SOM. The Friedman’s test is

performed to identify whether there is any statistical significant difference between

the performances of K-means and SOM learning techniques across multiple runs.

Friedman’s test is a non-parametric statistical significance test, used to validate the

differences in treatments to a set of samples [8]. For the purpose of this research,

treatments refer to the clustering techniques and samples are the derived ERs per

user. If the p − values are <0.05, it is concluded that the improvement in ERs is

statistically significant. The results in Table 3.5 demonstrate that the performance

of the SOM is statistically significantly better than the performance of the K-means

learning algorithm.

3.5 Summary

Henceforth in this research, SOM is continued to be used as the clustering method.

In order to improve the detection ability of the high dimensional smart phone logs,

the use of encoding is investigated.

Chapter 4

Proposed Method: AESOM framework

In this chapter, the proposed framework to improve the detection of behavioural

patterns under one-class learning by using an encoding mechanism is explained. Two

learning algorithms are used to build the inclass user behaviour model: autoencoder

and self organizing map. The autoencoder is used to encode a ‘signature’ of the inclass

behaviour. Self organizing map builds the data description against which anomalous

behaviour will be characterized. The two neural networks are trained independently,

but employ only the ‘inclass’ (user) data. The uniqueness of this approach is to drop

the output layer of the autoencoder post training, and introduce self organizing map

for expressing the user behaviour in a meaningful way without stepping outside the

one-class learning constraint. The corresponding mind map is illustrated below:

To what extent phone behaviours can be associated with a single user?

User behaviour modelling: one class learning

Feature Construction

Autoencoder (AE)

Description

K-means Self-Organizing Map (SOM)

4.1 Theory of Autoencoder

An autoencoder (AE) is a multilayer perceptron (MLP) with a bottleneck topology

[30]. The input and output layers are of the same dimensionality, whereas the number

of neurons in the hidden layers successively decreases. An iterative process might

be adopted to incrementally construct steadily more complex AE. The goal is to

identify the minimal topology to support a prior error goal. During training the

input and output are simultaneously presented with the same exemplar, or one-class

37

38

learning [30]. Naturally, the AE attempts to find a representation that ‘autoencodes’

the underlying properties of the data; care of the bottleneck topology. Such an

architecture has been shown to be more robust (less sensitive) to parameter choices

than ‘one-class’ SVMs [30]. The AE learning algorithm for a n-dimensional input D,

can be summarized as follows:

1. Initialize random weights to the network.

2. Define encoding function E as a mapping from IRn to IRh, such that h<n.

Let the encoding take place across two consecutive hidden layers of decreasing

dimension. Each layer assumes neurons defined by:

E = f(w⃗ · d⃗ + b⃗), where f(x) = 2
(1+e−2x)

− 1, d⃗ is the neuron input vector, w⃗

is the vector of weights between two consecutive layers of the MLP, and b⃗ is a

vector of bias terms (one per neuron).

3. Define decoding function D that maps E(d) to d. Such a function is merely the

neurons from hidden to output layer.

4. The weight (w⃗) and bias terms (⃗b) are identified using the back propagation

algorithm with learning rate for each neuron adapted using conjugate gradi-

ent/scaled conjugate gradient information.1

5. Learning continues either until a minima is obtained or a maximum number of

training epochs is encountered.

The most important design decisions take the form of establishing the number of

hidden layers (generally two) and the corresponding number of hidden layer neurons.

For this purpose, a greedy search for number of neurons in the hidden layer is per-

formed under the contraint that, that hidden layer 1 > hidden layer 2 and hidden

layer 1 < the n-dimensional input. The preferred architecture is that which encodes

the training data with a minimal neuron count while also satisfying the training error

goal. Post training, the output layer is dropped (it just recreates the input) and the

1Conjugate gradient (CG) optimization ensures that all previously computed ‘descents’ (albeit
less steep) are toward the global minima [33]. This translates to no descent being ‘discarded’ during
optimization, deeming it to be computationally less expensive in comparison to the steepest descent
approach.

39

‘exposed’ hidden layer employed as the ‘output’ (to the self organizing map) fulfilling

the one-class learning constraint [19, 30, 31, 32].

The feasibility of scaling the proposed solution on a mobile platform largely de-

pends on the computational cost of the encoding step. This is due to the greedy search

employed to design each layer of the AE. Empirically, two hidden layers balanced the

trade-off between sufficient encoding and the computational cost in arriving at the

minimal AE architecture.

4.2 Procedure

As discussed earlier, the aim is to explore the use of the AE and SOM pairing for

user behaviour characterization based on smart phone usage information. The pro-

posed approach is shown in Figure 4.1. The autoencoder, AE, reconstructs the data

through a MLP configured in a bottleneck topology thereby encoding the most im-

portant properties of the users behaviour. The resulting feature encoding is then

input to the SOM, so potentially establishing a set of signatures for the encoded user

behaviours. The hypothesis of this research is that the use of the AE provides a

more robust representation for characterizing user behaviours than would applying

the SOM without the AE. Thus, a better discrimination should appear between dif-

ferent user behaviours under the architecture employing the AE step. Note that in

both cases the AE does not require any additional training data than the SOM, or a

one-class learning constraint.

40

Figure 4.1: The proposed autoencoder based self organizing map approach for user
behaviour characterization.

41

Figure 4.2: Obtaining the autoencoder architecture: (a) Elbow graphs for first and
second hidden layers respectively; (b) Performance plot of the chosen architecture.

As mentioned in section 4.1, the autoencoder runs a greedy search to empirically

42

fix the number of neurons in both the hidden layers. The size of the first hidden

layer is the number of neurons that yield the least Mean Squared Error (MSE) in

the Input-Hidden Layer-Output design, i.e. one hidden layer only. Using this as the

upper bound, another search is performed to estimate the number of neurons in the

second hidden layer that result in the least MSE. Figure 4.2 is illustrative of this

process.

As shown in Figure 4.1, the encoded representation of inclass data is fed in to

the SOM. The Table 4.1 details all the platforms and algorithm plugins used in this

research.

4.3 Patterns identified: inspection

The proposed system was able to discover patterns of similar user behaviours. In

the interest of space, the SOMs for GCU version 2 have been shown in the following

subsection. However, all the SOMs for all the data sets can be found in the Appendix

at the end of this thesis.

Discrete sensors

A behaviour model i.e., SOM was built for each inclass user (one class learning).

The resulting inclass SOM was subjected to outclass user data. Intuitively, similar

behaviours are to receive similar responses from the SOM. This can be visually in-

spected in the Figure 4.3. The first subfigure represents the learned SOM model for

the inclass user 1 and the corresponding SOM responses for the outclass users 2, 3,

and 4. The Figure 4.4(b) is the response from the 2nd user’s SOM model, and so on.

The consistent observation from all the models is that, there are 2 distinctive clusters

of SOM responses viz. pink-red and cyan-blue response patterns (see center of the

SOM map).

Continuous sensors

The similarity in patterns detected with this sensor subset is shown in Figure 4.7, Fig-

ure 4.8, Figure 4.9 and Figure 4.10. With these sensors the 2 distinctive clusters of

SOM responses are the pink-cyan and blue-red response patterns. Intuitively, it is

43

Module Software Parameter List Parameter Value

Preprocessing Python
Sampling Frequency

LiveLab: top 20
features, 15 minutes

GCU: top 10
features, 15 minutes

Normalization [-1 +1]

Encoding
MATLAB Neu-
ral Network
Toolbox

Epochs; Number of
hidden layers

500; 2

Activation function tansig

Back propagation Scaled conjugate
gradient

Error Mean squared error

Self Orga-
nizing Map

MATLAB som-
toolbox [53]

Initial weights Principal
components
initialization

Lattice size 5
√
No. of samples

Neighbourhood
radius

Nc: [0.2*long edge,
0.05*short edge]

Nf : [0.05*short edge,
0.05*short edge]

Convergence
Until codebook
ceases to change; Ns:
0.5*short edge

Table 4.1: Parameter configurations for the proposed framework.

44

(a)

(b)

(c)

(d)

Figure 4.3: GCU version 2, discrete sensor subset: (a) U1 as inclass; (b-d) ¬ U1 as
outclass.

45

(a)

(b)

(c)

(d)

Figure 4.4: GCU version 2, discrete sensor subset: (a) U2 as inclass; (b-d) ¬ U2 as
outclass.

46

(a)

(b)

(c)

(d)

Figure 4.5: GCU version 2, discrete sensor subset: (a) U3 as inclass; (b-d) ¬ U3 as
outclass.

47

(a)

(b)

(c)

(d)

Figure 4.6: GCU version 2, discrete sensor subset: (a) U4 as inclass; (b-d) ¬ U4 as
outclass.

48

(a) (b) (c) (d)

Figure 4.7: GCU version 2, continuous sensor subset: (a) U1 as inclass; (b-d) ¬ U1
as outclass.

(a) (b) (c) (d)

Figure 4.8: GCU version 2, continuous sensor subset: (a) U2 as inclass; (b-d) ¬ U2
as outclass.

(a) (b) (c) (d)

Figure 4.9: GCU version 2, continuous sensor subset: (a) U3 as inclass; (b-d) ¬ U3
as outclass.

safe to presume that the framework is able to discover similarities in user behaviour

regardless of the chosen sensor subset.

49

(a) (b) (c) (d)

Figure 4.10: GCU version 2, continuous sensor subset: (a) U4 as inclass; (b-d) ¬ U4
as outclass.

4.4 Heat Maps of User Dissimilarities

Heat maps are a 2D graphical representation of data contained in a matrix format.

Each row-column indexed value of the data matrix is organized by a color scale. The

darker shades of the color bar are used to represent higher numeric values and the

lighter shades are used to represent the lesser values. This type of visualization helps

to acknowledge that user exclusivity is not symmetric especially, in the one-class

learning paradigm. Furthermore, the heat maps are perceptually more convenient (in

comparison to bar plots) for visualizing results for large datasets.

Figure 4.11 illustrates the heat map of average user dissimilarities from 20 runs of

the proposed method for all the 3 datasets. The discrete sensor subset (applications,

cell tower and websites) yield a higher rate of user exclusivity, in comparison to the

continuous sensor subset. From the continuous sensor subset, the framework is able

to discern two users at 56% in the LiveLab dataset and at 64% using the GCU data

set. On the contrary, discrete sensor subset allows for 90% and 80% dissimilarity

detection respectively. It is to be noted that, under the one-class learning constraint,

the learning of inclass user behaviour begins without any prior information. Dissimi-

larity is only attributed to how differently the trained SOM responds to unseen data

(outclass), and that no a-priori information about behaviour patterns are forced in

the quantification.

50

(a)

Figure 4.11

51

(a)

(b)

Figure 4.11

52

(a)

(b)

Figure 4.11: Average ERs (among any two users) across 20 runs of the AESOM
framework: (a) GCU-V1 Discrete sensors; (b) GCU-V2: Continuous sensors; (c)
GCU-V2: Discrete sensors; (d) LiveLab traces: Continuous sensors; (e) LiveLab

traces: Discrete sensors.

53

4.5 Contribution of the AE: Improvement in detection rates

The average of all per-user dissimilarity rate (as reported in the previous section),

results in the per-user exclusivity rate (ER). Figure 4.12, Figure 4.13, Figure 4.14

show the distribution of average ERs across 20 runs of the model; with and without

the encoding step. The improvement in ERs from the autoencoder remains consistent

across both sensor subsets for the LiveLab and GCU datasets. T-test and Friedman’s

test results summarized in Table 4.2.

Figure 4.12: Box plots of ERs comparing SOM and AESOM framework: GCU-V1
discrete sensors.

54

(a) (b)

Figure 4.13: Box plots of ERs comparing SOM and AESOM framework: (a)
GCU-V2: Continuous sensors; (b) GCU-V2: Discrete sensors.

(a) (b)

Figure 4.14: Box plots of ERs comparing SOM and AESOM framework:(a) LiveLab
traces: Continuous sensors; (b) LiveLab traces: Discrete sensors.

55

4.6 Summary of results

In order to demonstrate the reliability of the behaviour mining framework on smart-

phone usage datasets, it is necessary to test the statistical significance of our results.

To this end, we assess the following:

1. Variation in ERs across multiple runs of the Autoencoder based Self Organizing

Map (AESOM) framework.

2. Improvement in ERs from encoding the features of the data.

We employ the two tailed T-test and Friedman’s test to understand whether the

improvement in the results of the AE based SOM are statistically significant or not,

in terms of increasing the detection rates across multiple runs. The results show that

the performance improvement of the AESOM is statistically significant compared to

the SOM.

Dataset Sensor
subset

SOM AESOM T-test Friedman’s
test

Overall
benefit

LiveLab
Continuous 23.30 46.81 1.32e−25 1.62e−6

23.5
Discrete 25.98 63.31 3.94e−32 1.62e−6

GCU-V2
Continuous 48.32 54.85 0.117 0.0455

2.11
Discrete 37.92 56.74 0.00326 0.0455

GCU-V1 Discrete 45.72 55.91 0.00259 0.0073 10.19

Table 4.2: Results of dissimilarity from the proposed AESOM framework across all
the 3 datasets.

Chapter 5

Conclusion and Future work

In summary, the focus of this thesis was to model user behaviour using smartphone

data. To this end, an autoencoder was used to build a descriptive representation

of each user’s behavioural signatures. Then, an unsupervised SOM was employed

as the descriptive clustering solution. Various initialization and training modes for

the SOM were investigated. A linearly initialized SOM, w.r.t. principal components

of the encoded data, was finalized using topographic error to measure the resulting

map qualities. Both the AE and SOM modules are trained under a one-class learning

constraint. This proposed framework was evaluated on 3 publicly available datasets

under two use cases viz, contextual (discrete) and physiological (continuous).

The LiveLab traces get the highest per user average ER, 90% in the discrete

sensors set. This can be attributed to nearly 1 year long usage trace in the LiveLab

dataset. The improvement in using the discrete sensor set (in comparison to the

continuous set) is recorded as 23.5% for LiveLab and 2.11% for GCU (see Table 4.2).

However, it is to be noted that the GCU version 2 datasets consists of similar users

behaviours. Analysing the improvements among ‘similar’ and ’dissimilar’ users in the

continuous sensor subset of GCU version2, shows an improvement of 12% from the

autoencoder (see Figure 5.1). Evaluation on GCU version 1 reports an improvement

of 10.19% from using the autoencoder. The results from SOM across all the datasets

show that, a user is better modelled using his/her contextual information such as

application/ website usage and cell tower/ WiFi connectivity.

Since the smartphone is always exposed to interaction with its owner only under

normal situations, any outclass data would be suspicious behaviour. Hence the one-

class learning constraint and its usage for security domain. In the realm of single user

interacting with his/her own device, it is safe to conclude that the AESOM framework

is able to identify similar users, within the one-class learning restriction.

56

57

Figure 5.1: Improvement in average ER across similar users as detected by SOM
indepedently.

Extending the current scope of AESOM framework

The following key inferences are drawn from this research:

• Phone behaviours can be associated to a large extent to a single user.

• An encoding of input data improves the quality of the data description i.e.,

clustering solution.

• Any user is better profiled by subliminal engagement with the device (via ap-

plications and internet usage) in comparison to the user’s gait, posture or how

the phone is physically handled (via the continuous sensors).

However, a major reservation in the current scope of the research is, the temporal

sequence in smartphone usage. The standard SOM does not have the ability to

‘remember’ a sequence (or historic) events. Research has shown that a sequence

of events is a better temporal anchor in comparison to a snapshot of events at a

particular time namely, timestamp information [22, 27]. The suggested solution to

enhance the ability of the AESOM framework is to incorporate shift registers. The

resulting inclass data frame takes the following form.

t4, t3, t2, t1, t0

58

t5, t4, t3, t2, t1

t6, t5, t4, t3, t2

t7, t6, t5, t4, t3

and so on..

where, ti : encoded (s1, s2, s3,sn) at ith minute for all n sensors. Therefore, each

shift is the estimated change in behaviour every minute. The window of the shift

register is to be parameterized empirically. Figure 5.2 shows the SOM responses of

the two similar users from GCU version 2 data set. It is evident (albeit visually) that,

incorporating sequence information to summarize change in behaviour allows SOM

to better distinguish even the very similar user behaviours.

Consider the case of two users who might use the same set of applications, connect

to the same WiFi access points and/or be located in the same neighbourhood, thus

using the same cell towers. Although these users seem to be similar by the content

of phone usage, they may vary substantially by the sequence of use, i.e., history

of behaviour. Therefore, employing shift registers to the encoded feature map will

instigate a temporal pattern of user-device interaction. As a result, isolated changes

in the user behaviour will not belong to any historic behaviour sequence. Therefore,

the shift register is better able to differentiate ‘shift’ in the inclass user’s behaviour

from the rarely occurring abnormal activity. Furthermore, the ability of embedding

temporal sequences to the clustering, reduces the need for frequent re-training of the

model.

Sampling frequency and adaptive sampling

One of the important parameters in this study is the rate at which the features are

sampled/monitored through the day. To understand the effect of the sampling interval

on the performance, the system was using data sampled at every 5, 15 and 30 minute

intervals. For each sampling interval, the N most frequently used applications, cell

towers, websites are also empirically analyzed. To this end, I tested N = 5, 10, 20

features. Figure 5.3 shows the results of this analysis. Based on these results, I

suggest to use the sampling frequency of 15 minutes with 20 features. Indeed, a

periodic assessment of the nature of usage traces/logs sensor logs would also improve

the efficiency of the deployed system. For example, once the user model has been

59

(a)

(b)

Figure 5.2: Visual inspection of SOM clusters after embedding sequence information
of behaviour: (a) Highly correlated neuronal responses from inclass user2 SOM

model, to the outclass user1 data; (b) Neuronal responses very strongly correlated
for BMUs only, intensity of hits vary in less active neurons from inclass user2 model

to outclass user1 data.

60

Figure 5.3: Empirical study with different sampling intervals and top N features.

learned by the system, reducing the sampling frequency for model updates could be

a possible way to taper down the consumption of smart phone resources.

Sequential feature selection (SFS) can be employed to answer either of the follow-

ing questions:

• Leave one out analysis: Which sensor is not important to be profiles for each

user?

• Combinatorial analysis: Which combination of sensors best model each user?

In particular, forward SFS starts with an empty sensor set. It continues to add a

sensor to the study if and only if, the addition improves the overall ER of an user.

Although this increases the initial training time, it reduces the computational cost of

the proposed framework in the deployment stage. This approch to user representation

is particularly beneficial in the case of insider attacks wherefore, subtle changes in

user behaviour have to be identified.

The limitation of this thesis arises when multiple users interact with a single mobile

device. Such is the case when faculty use a registered mobile device to take classroom

attendance, or when a waitress at a resturant uses the same iPad device to take food

orders. When the AESOM framwork is deployed on a mutli-user platform, it can be

configured to detect abnormal usage and quantify similariites in the ‘communities’ of

users interacting with this device. Futhermore, cyber security policies can be used

61

as guidance in order to establish ‘normal’ usage thresholds. An upper limit on the

amount of data transmitted over the internet through the day is a good example.

Lastly, the discussion on security of smart devices is not complete without the use

of such techniques in resolving security breaches on the Internet of Things. Consider

the vulnerability posed by APIs used in the IoT devices for data transmission (for

instance). Within this context, the proposed AESOM framework can be adapted to

monitor high risk application behaviour. This is possible by logging the sequence and

frequency of APIs and other system level function calls invoked within the firmware

of the smart device. Wherefore, inclass translates to respresent the baseline appli-

cation behaviour. On the contrary, a bizzare sequence of API calls may result in a

new ’pattern’ in the application’s behaviour. Thereby increasing the amount of dis-

similarity from the inclass patterns, modelled under the one-class learning constraint.

This flexibility in modelling behaviour, either user, device or application, allows the

proposed AESOM framework to be used in improving various security mechanisms

in IoT.

Bibliography

[1] Emelie Andersson and Frida Frost. The use values of smartphone apps-a quali-
tative study. 2013.

[2] Gunes Kayacik Mike Just Lynne Baillie and David Aspinall Nicholas Micallef.
Data driven authentication: On the effectiveness of user behaviour modelling
with mobile device sensors.

[3] David Barrera, H Güneş Kayacik, Paul C van Oorschot, and Anil Somayaji. A
methodology for empirical analysis of permission-based security models and its
application to android. In Proceedings of the 17th ACM conference on Computer
and communications security, pages 73–84. ACM, 2010.

[4] Attaullah Buriro, Bruno Crispo, Filippo Del Frari, and Konrad Wrona. Touch-
stroke: smartphone user authentication based on touch-typing biometrics. In In-
ternational Conference on Image Analysis and Processing, pages 27–34. Springer,
2015.

[5] Senaka Buthpitiya, Ying Zhang, Anind K Dey, and Martin Griss. N-gram geo-
trace modeling. In International Conference on Pervasive Computing, pages
97–114. Springer, 2011.

[6] Pierluigi Casale, Oriol Pujol, and Petia Radeva. Personalization and user ver-
ification in wearable systems using biometric walking patterns. Personal and
Ubiquitous Computing, 16(5):563–580, 2012.

[7] Nathan L Clarke and Steven M Furnell. Authenticating mobile phone users
using keystroke analysis. International Journal of Information Security, 6(1):1–
14, 2007.

[8] Wayne W Daniel et al. Applied nonparametric statistics. 1990.

[9] Mohammad Omar Derawi, Claudia Nickel, Patrick Bours, and Christoph Busch.
Unobtrusive user-authentication on mobile phones using biometric gait recogni-
tion. In Intelligent Information Hiding and Multimedia Signal Processing (IIH-
MSP), 2010 Sixth International Conference on, pages 306–311. IEEE, 2010.

[10] Trinh-Minh-Tri Do and Daniel Gatica-Perez. By their apps you shall understand
them: mining large-scale patterns of mobile phone usage. In Proceedings of the
9th International Conference on Mobile and Ubiquitous Multimedia, page 27.
ACM, 2010.

62

63

[11] Anders Drachen, Alessandro Canossa, and Georgios N Yannakakis. Player model-
ing using self-organization in tomb raider: Underworld. In 2009 IEEE symposium
on computational intelligence and games, pages 1–8. IEEE, 2009.

[12] Nathan Eagle and Alex Sandy Pentland. Reality mining: sensing complex social
systems. Personal and ubiquitous computing, 10(4):255–268, 2006.

[13] Nathan Eagle and Alex Sandy Pentland. Eigenbehaviors: Identifying structure
in routine. Behavioral Ecology and Sociobiology, 63(7):1057–1066, 2009.

[14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS), 32(2):5,
2014.

[15] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. A survey of mobile malware in the wild. In Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices, pages 3–14.
ACM, 2011.

[16] Peter Gilbert, Byung-Gon Chun, Landon P Cox, and Jaeyeon Jung. Vision:
automated security validation of mobile apps at app markets. In Proceedings
of the second international workshop on Mobile cloud computing and services,
pages 21–26. ACM, 2011.

[17] Nathaniel Husted, Hassen Säıdi, and Ashish Gehani. Smartphone security limita-
tions: conflicting traditions. In Proceedings of the 2011 Workshop on Governance
of Technology, Information, and Policies, pages 5–12. ACM, 2011.

[18] Ankita Jain and Vivek Kanhangad. Exploring orientation and accelerometer sen-
sor data for personal authentication in smartphones using touchscreen gestures.
Pattern Recognition Letters, 68:351–360, 2015.

[19] N. Japkowicz, C. Myers, and M. Gluck. A novelty detection approach to classi-
fication. In Proceeding of the Fourteenth International Conference On Artificial
Intelligence, pages 518–523, 1995.

[20] Woongryul Jeon, Jeeyeon Kim, Youngsook Lee, and Dongho Won. A practical
analysis of smartphone security. In Symposium on Human Interface, pages 311–
320. Springer, 2011.

[21] RC Johnson, Walter J Scheirer, and Terrance E Boult. Secure voice-based au-
thentication for mobile devices: vaulted voice verification. In SPIE Defense,
Security, and Sensing, pages 87120P–87120P. International Society for Optics
and Photonics, 2013.

64

[22] H Gunes Kayacik, A Nur Zincir-Heywood, and Malcolm I Heywood. A hierarchi-
cal som-based intrusion detection system. Engineering Applications of Artificial
Intelligence, 20(4):439–451, 2007.

[23] Teuvo Kohonen. Essentials of the self-organizing map. Neural Networks, 37:52–
65, 2013.

[24] Max Landman. Managing smart phone security risks. In 2010 Information
Security Curriculum Development Conference, pages 145–155. ACM, 2010.

[25] Wei-Han Lee and Ruby B Lee. Multi-sensor authentication to improve smart-
phone security. In Conference on Information Systems Security and Privacy,
pages 1–11, 2015.

[26] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable re-authentication for
smartphones. In NDSS, 2013.

[27] Peter Lichodzijewski, A Nur Zincir-Heywood, and Malcolm I Heywood. Host-
based intrusion detection using self-organizing maps. In Neural Networks, 2002.
IJCNN’02. Proceedings of the 2002 International Joint Conference on, volume 2,
pages 1714–1719. IEEE, 2002.

[28] Robert LiKamWa, Yunxin Liu, Nicholas D Lane, and Lin Zhong. Can your
smartphone infer your mood. In PhoneSense workshop, pages 1–5, 2011.

[29] Robert LiKamWa, Yunxin Liu, Nicholas D Lane, and Lin Zhong. Moodscope:
Building a mood sensor from smartphone usage patterns. In Proceeding of the
11th annual international conference on Mobile systems, applications, and ser-
vices, pages 389–402. ACM, 2013.

[30] L. M. Manevitz and M. Yousef. One-class svms for document classification.
Journal of Machine Learning Research, 2:139–154, 2001.

[31] M. Markou and S. Singh. Novelty detection: a review – part 1: statistical
approaches. Signal Processing, 83:2481–2497, 2003.

[32] M. Markou and S. Singh. Novelty detection: a review – part 2: neural network
approaches. Signal Processing, 83:2499–2521, 2003.

[33] Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast super-
vised learning. Neural networks, 6(4):525–533, 1993.

[34] F Murtagh and M Hernández-Pajares. The kohonen self-organizing map method:
an assessment. Journal of Classification, 12(2):165–190.

[35] Alexios Mylonas, Stelios Dritsas, Bill Tsoumas, and Dimitris Gritzalis. Smart-
phone security evaluation the malware attack case. In Security and Cryptography
(SECRYPT), 2011 Proceedings of the International Conference on, pages 25–36.
IEEE, 2011.

65

[36] Alexios Mylonas, Dimitris Gritzalis, Bill Tsoumas, and Theodore Apostolopou-
los. A qualitative metrics vector for the awareness of smartphone security users.
In International Conference on Trust, Privacy and Security in Digital Business,
pages 173–184. Springer, 2013.

[37] James Newsome and Dawn Song. Dynamic taint analysis: Automatic detection,
analysis, and signature generation of exploit attacks on commodity software. In
In In Proceedings of the 12th Network and Distributed Systems Security Sympo-
sium. Citeseer, 2005.

[38] Claudia Nickel, Tobias Wirtl, and Christoph Busch. Authentication of smart-
phone users based on the way they walk using k-nn algorithm. In Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP), 2012 Eighth
International Conference on, pages 16–20. IEEE, 2012.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[40] Shari Lawrence Pfleeger and Deanna D Caputo. Leveraging behavioral science
to mitigate cyber security risk. Computers & security, 31(4):597–611, 2012.

[41] Bahman Rashidi, Carol Fung, and Tam Vu. Dude, ask the experts!: Android
resource access permission recommendation with recdroid. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pages 296–
304. IEEE, 2015.

[42] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: automatic
security analysis of smartphone applications. In Proceedings of the third ACM
conference on Data and application security and privacy, pages 209–220. ACM,
2013.

[43] Partha Pratim Ray. Rays scheme: graphical password based hybrid authenti-
cation system for smart hand held devices. International journal of computer
trends and technology, 3:235–241, 2012.

[44] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and val-
idation of cluster analysis. Journal of computational and applied mathematics,
20:53–65, 1987.

[45] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kor-
tum. Livelab: measuring wireless networks and smartphone users in the field.
ACM SIGMETRICS Performance Evaluation Review, 38(3):15–20, 2011.

[46] Anastasia Skovoroda and Dennis Gamayunov. Review of the mobile malware
detection approaches. In Parallel, Distributed and Network-Based Processing

66

(PDP), 2015 23rd Euromicro International Conference on, pages 600–603. IEEE,
2015.

[47] Ralf Steuer, Jürgen Kurths, Carsten O Daub, Janko Weise, and Joachim Sel-
big. The mutual information: detecting and evaluating dependencies between
variables. Bioinformatics, 18(suppl 2):S231–S240, 2002.

[48] Dusan Stevanovic, Natalija Vlajic, and Aijun An. Detection of malicious and
non-malicious website visitors using unsupervised neural network learning. Ap-
plied Soft Computing, 13(1):698–708, 2013.

[49] Tim Stöber, Mario Frank, Jens Schmitt, and Ivan Martinovic. Who do you sync
you are?: smartphone fingerprinting via application behaviour. In Proceedings
of the sixth ACM conference on Security and privacy in wireless and mobile
networks, pages 7–12. ACM, 2013.

[50] Matthias Trojahn and Frank Ortmeier. Toward mobile authentication with
keystroke dynamics on mobile phones and tablets. In Advanced Information Net-
working and Applications Workshops (WAINA), 2013 27th International Con-
ference on, pages 697–702. IEEE, 2013.

[51] Tommi Vatanen, Maria Osmala, Tapani Raiko, Krista Lagus, Marko Sysi-Aho,
M Orešič, Timo Honkela, and Harri Lähdesmäki. Self-organization and missing
values in som and gtm. Neurocomputing, 147:60–70, 2015.

[52] Sergio Valero Verdú, Mario Ortiz Garcia, Carolina Senabre, A Gabaldón Maŕın,
and Francisco J Garcıa Franco. Classification, filtering, and identification of
electrical customer load patterns through the use of self-organizing maps. IEEE
Transactions on Power Systems, 21(4):1672–1682, 2006.

[53] Juha Vesanto, Johan Himberg, Esa Alhoniemi, Juha Parhankangas, et al. Self-
organizing map in matlab: the som toolbox. In Proceedings of the Matlab DSP
conference, volume 99, pages 16–17, 1999.

[54] Ye Wei, Li Liu, Jun Zhong, Yonggang Lu, and Letian Sun. Unsupervised race
walking recognition using smartphone accelerometers. In International Con-
ference on Knowledge Science, Engineering and Management, pages 691–702.
Springer, 2015.

[55] Jiang Zhu, Pang Wu, Xiao Wang, and Joy Zhang. Sensec: Mobile secu-
rity through passive sensing. In Computing, Networking and Communications
(ICNC), 2013 International Conference on, pages 1128–1133. IEEE, 2013.

Appendix A

SOMs from other datasets

A.1 Rice LiveLab

Following are the visualizations (one per user) from evaluation of the proposed frame-

work on the LiveLab dataset.

Discrete

In total, 529 SOMs have been obtained. For purposes of illustration, the most ex-

clusive and least exclusive user models are shown below, with their corresponding

outclass responses.

67

68

(a) (b)

(c)

Figure A.1: Most exclusive user in LiveLab dataset (discrete): (a) inclass (b-c)
sample outclass response

69

(a) (b)

(c)

Figure A.2: Least exclusive user in LiveLab dataset (discrete): (a) inclass (b-c)
sample outclass response

70

Continuous

(a) (b)

(c)

Figure A.3: Most exclusive user in LiveLab dataset (continuous): (a) inclass (b-c)
sample outclass response

71

(a) (b)

(c)

Figure A.4: Least exclusive user in LiveLab dataset (continuous): (a) inclass (b-c)
sample outclass response

72

A.2 GCU version 1

Following are the visualizations (one per user) from evaluation of the proposed frame-

work on the GCU version 1 dataset.

(a)

(b)

Figure A.5: U1: (a) inclass (b) outclass

(a)

(b)

Figure A.6: U4: (a) inclass (b) outclass

73

(a) (b)

Figure A.7: U2: (a) inclass (b) outclass

(a)

(b)

Figure A.8: U7: (a) inclass (b) outclass

74

(a) (b)

Figure A.9: U3: (a) inclass (b) outclass

75

(a) (b)

Figure A.10: U5: (a) inclass (b) outclass

76

(a)

(b)

Figure A.11: U6: (a) inclass (b) outclass

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations
	List of Symbols
	Acknowledgements
	Introduction
	Background
	Machine learning in cyber-security
	User modelling related to smartphone usage
	Related applications of self organizing maps

	Behaviour Modelling: under one-class learning
	Smartphone Usage Datasets
	Rice Live Lab Traces
	GCU version 1
	GCU version 2

	Representation to learning algorithms
	Discrete sensor information
	Continuous sensor information

	K-means
	Theory
	Practice
	Results & Discussion

	Self-Organizing Maps
	Theory
	Utility
	Practice
	Results & Discussion

	Summary

	Proposed Method: AESOM framework
	Theory of Autoencoder
	Procedure
	Patterns identified: inspection
	Heat Maps of User Dissimilarities
	Contribution of the AE: Improvement in detection rates
	Summary of results

	Conclusion and Future work
	Bibliography
	SOMs from other datasets
	Rice LiveLab
	GCU version 1

