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Abstract

Labeled datasets are limited even though data nowadays are produced with an incred-

ible speed. This affects automatic machine learning methods, especially supervised

learning, which requires labels to generate valuable information. However, active

learning algorithms help to achieve good analytic models with the least labeling ef-

forts, by querying data points to an oracle, which can provide labels. However, users

have no control on the instances to be labeled, and for text data, the annotation

interface is usually document only. Both of them decrease user experience, and thus,

affect the performance of a learning model. Visualization techniques, particularly

interactive ones, help to solve this problem. In this thesis, we study the role of visual-

ization in active learning for text classification with an interactive labelling interface.

We compare the results of three experiments to show that visualization accelerates

high-performance machine learning model constructions with an active learning algo-

rithm.
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Chapter 1

Introduction

This chapter explores the motivation of the thesis work, explains the contributions of

our study, and goes through the organization of this thesis.

1.1 Motivation and Contribution

“Big data” notion has been mentioned more and more frequently in people’s life

nowadays, and an increasing number of innovative applications based on this have

emerged. As studied in [Hilbert and López, 2011], human history started to enter

the “digital age” from 2002, when analog storage and digital storage shared the same

amount of global information. Until 2007, 94% of all technological memory was in

digital format. Meanwhile, data increments at an incredible speed. As presented

in [Turner et al., 2014], if digital data have their own universe, this digital universe

grows at an exponential speed, and by 2020 the data people generate annually will

reach 44 zettabytes, as many as the star numbers in our physical universe. Figure

1.1 describes the prediction made in [Turner et al., 2014]. The data are obtained

from sources such as embedded sensors of software, RFID tags, trackers of moving

equipments, and social media applications. Valuable information can be found from

the data, but to make the best use of these digitalized data, we need supports from

computers. Machine learning in computer science is a suitable approach for this. It

helps to make sense of the raw data tsunami for human beings by extracting valuable

information using special algorithms. Predictive model and pattern recognition are

two popular analyses carried out for huge datasets, and can inspire good business

decisions or improvements. This category of machine learning is defined as supervised

learning [Russell et al., 2003]. In supervised learning, one necessary element is the

labels of obtained data instances. However, in real world, attaining the label datasets

is very expensive in terms of time and labor. This is one of the reasons why efficiency

of data utilization is not as desired. [Turner et al., 2014] even claims that only 22%

1
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Figure 1.1: Data increasing prediction from IDC [Turner et al., 2014]. The digital
universe will grow exponentially from 4.4ZB in 2013 to 44ZB in 2020

of the information out of all digital data, became the candidate for analysis in 2013,

but the harsh reality also shows that the actual analyzed data are no more than 5%,

and by 2020, useful data will increase to 37% mainly with the contribution from data

in embedded systems.

To resolve this problem, active learning has been proposed. As discussed, labels of

datasets are not always fully available or cheap to collect, and there are often limited

resources for purchasing the labels. So when a small subset of data has labels, we

want to make use of these existing labels as much as possible. An active learning al-

gorithm is a tool for evaluating the informativeness of unlabeled data instances based

on a small labeled data group [Settles, 2009]. Compared to most supervised learning

algorithms, active learning trains a learning model in a less passive manner. Instead

of relying on all labeled data instances for model training, as most supervised learn-

ing algorithms, active learning takes a few labeled data instances, trains a classifier,

iterates the unlabeled data pool, and requests a label of one instance from the unla-

beled data pool. Ideally, active learning can achieve a machine learning model with
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considerable performance and much lesser training data amount than that required

by usual machine learning methods.

An essential step of active learning is annotation. If the annotator of an active learn-

ing system is a human being, it is particularly valuable to obtain a user-friendly

interface, especially for text data. This demands assistance from visualization tech-

niques. After all, “a picture is worth a thousand words”, and comfortable visual

interfaces encourage high-quality labels from human annotators. Visualization is an-

other rising technique that supports effective use of the data flood in this digital

age. It can convert complex raw data into intuitive facts. For instance, people can

easily recognize the distribution of a data table in a scatter plot, while they may

need some time to figure out by just reading the numbers in the table. The better

communication provided by visualization technique is a relief for human annotators.

Today, there are still people who spend hours and days on heavy-duty labeling work,

and high demands of annotations remain in the fields of science to daily businesses.

The data can be virus streams, feedback from commercial applications, or genome

sequences in health studies. Their labels are all meaningful and precious in corre-

sponding fields. The Human and Vertebrate Analysis and Annotation (HAVANA)

team [Lagarde et al., 2016], which wants to contribute golden standard labels for gene

sequences, is an example.

Though active learning, as well as visualizations, has been proposed for a long while,

annotation tools for text data are still limited, and the role of visualization in active

learning for text data has not been studied deeply. We thus develop our system to

first learn the role of visualization in active learning for text classification problems,

and second, to provide an annotation interface for text data. The problem associated

with active learning is binary class text classification. To evaluate our interface, we

set up three experiments and asked six colleagues to perform all these. Experiment 1

provides visual representation for data, while experiment 3 has only text. Experiment

2 has the same visualization setting as in experiment 1, but with random selection as

in the active learning query strategy, where both experiments 1 and 3 have typical

active learning query strategies. Accuracy of a classifier is the performance indica-

tor for evaluation purpose. We find that in all experiments, accuracies increase via
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human annotators’ inputs. Meanwhile, accuracy variances from each user in exper-

iments 1 and 2, where document visual representation is available, are higher than

the one from experiment 3, where document visual representation is unavailable. In

addition, accuracy variances from each user in experiment 1 are greater than those in

experiment 2. This proves that visualization benefits the text classifier’s construction

with active learning, since greater variances for an incrementing number set stand for

more significant improvements in a learning model.

Moreover, for visualization of text documents, we find that the bag-of-words (BOW)

model is not always illustrative. Take the force-layout diagram as an example. Each

document is represented by a point in the visualization, and the distance between

two points is determined by the similarity level between them. Here comes the issue.

If we have three documents, as follows:

d1 I like this book
d2 I don’t like this book
d3 a waste of money

In the interface, we like to see documents with different sentiments lying away from

each other. In terms of these three documents here, the ideal result is that d2 and

d3 are close to each other, and d1 is located away from the cluster comprising d2

and d3. However, if documents are represented by vectors that contain frequency of

terms in these three sentences. d2 is closer to d1, other than d3, because d1 and d2

share the terms “I,” “like,” “this,” “book,” while d3 does not have any of the terms

in d2. Considering blue as positive and red as negative, the bag-of-words model will

generate a force-layout diagram with mixed red and blue points, which confuses users,

and is undesired. We utilized the BOW model, and the bag-of-aspects (BOA) model

to investigate if the latter model can produce better segregation for training text data.

Concepts and entities embedded in the documents are the aspect notion we mean here.

To estimate effectiveness of the BOW model, we align visualizations based on the

BOW and BOA models in each available diagram panel. Our test data demonstrates

that though these two model-based visualizations fail to keep different class instances

apart in a global scope, the BOA-based model can capture local scenarios that BOW-

based visualization neglects, while the BOW-based model can show more relationships
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to other documents than the BOA model, due to the larger feature numbers in the

model.

1.2 Overview

We organize the rest of the thesis in the following order. In chapter 2, background

information is introduced. The theoretical foundation of our work includes a brief

machine learning description; an active learning algorithm overview, with its scenarios

and query strategies; and the visualization techniques. Related work has also been

mentioned in this chapter. In chapter 3, we propose our work model by presenting

the approach, applied algorithms, evaluation method, and interface design. Chapter 4

puts the theory and proposed work into practice. Dataset is first introduced, followed

by technical details before the experiment. Three experiments and user study results

are then explained, which form the basis of the later discussion section. Finally,

chapter 5 concludes our work and discusses future work.



Chapter 2

Background

2.1 Machine Learning

Machine Learning has come to pervade every aspect of life due to the increasing flood

of data. It intends to learn computational models that best fit the existing data, and

keep improving their performances with experiments [Mitchell, 1997]. These models

can then make high-quality predictions and decisions, or provide solutions to a range

of other learning problems. Common machine learning algorithms can be catego-

rized into three groups [Russell et al., 2003, Section VI]. The first group is supervised

learning, where datasets contain the category information that observations belong

to. The task of supervised learning is usually to identify the class of new unlabeled

data instances. Decision tree learning is one of the representative supervised learn-

ing algorithms. The predictive tree model built from training dataset map unseen

data to their corresponding category. In contrast, in the second group, unsupervised

learning, there is no prior knowledge about the categories of data observations for

learners. It attempts to conclude hidden patterns within the dataset. For example,

clustering algorithms segregate objects into different groups, so that objects are sim-

ilar within the group, and different between the groups. The last group of machine

learning is Reinforcement Learning. Learners of this groups “learn behaviors through

trial-and-error interactions with an environment” [Kaelbling et al., 1996]

The significance of Machine Learning is proved by its number of current applications.

It is present in almost every domain, from science to business. Bio-informatics for

example, which has been a major in many universities, assists to interpret and clarify

biology data. Human beings benefit from it by understanding unknown patterns,

which could be related to diseases that are currently difficult to handle. Recommen-

dation system is a case close to daily life. If a user purchases items on-line, related

products will be displayed. For instance, a universal adapter plug could be shown if a

user buys a suitcase from Amazon. Companies earn profit from this since it stimulates

6
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the growth of their trades. Text and speech recognition is another practical utiliza-

tion of machine learning. Siri in Apple products is a well-known application that

provides voice assistance for any operations with natural language processing inter-

faces. In the field of finance, predictive tools are applied to forecast trends of stocks.

Thus, machine learning has come into every aspect of life. It helps to understand big

datasets, and dive into poorly understood domains and dynamic situations.

2.2 Active Learning

Active learning is a branch of machine learning that attempts to reach a better per-

formance of learning algorithms with less annotation costs [Settles, 2009]. It assumes

that learning algorithms can choose objects they are going to learn, so that sim-

ilar performances or accuracies can be achieved with less training or labeled data

instances. Intuitively, if there are more representative data objects in the training

dataset, less learning effort is required.

Figure 2.1: The pool-based active learning cycle, where a learning modelM is initially
built on the original small set of labeled training dataset L, and then runs active
learning strategy in the large unlabeled data pool U for the human annotator to
label. The new labeled instance updates L, following the learning model M, which
reruns active learning for a new queried instance.

For example, if a movie recommendation system knows the favorite and least liked

movies of a user, it can make better suggestions for the user. Active learning completes

the task by querying unlabeled data records for an oracle to label. An oracle can be

a human annotator or a powerful machine. Figure 2.1 is an example of the active

learning procedure. The machine learning model is constructed from a small set of
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labeled training set L , when an active learner selects the most informative data items

from unlabeled dataset U for a human annotator to label. These labeled instances

directly join the labeled training set L. After that, the machine learning model is

updated with the new labeled training set. This circle continues until some criteria are

met. Figure 2.2 is a graph from [Settles, 2009, Chapter 1.1], which visually illustrates

the benefits of active learning.

Figure 2.2: Active learning performance example from [Settles, 2009, Chapter 1.1]
(a)displays 400 points evenly from two Gaussians; (b) a logistic regression model,
indicated by the blue line, constructed on 30 instances from the whole area, achieves
70% accuracy; (c) a regression model, indicated by the blue line, trained on 30 actively
queried instances, achieved 90% accuracy.

The dataset of Figure 2.2 is “a toy dataset generated from two Gaussians centered

at (-2,0) and (2,0) with standard deviation = 1, each representing a different class

distribution [Settles, 2009, Chapter 1.1]. Figure 2.2a presents 400 instances from the

sample in two-dimensional space, where 200 of them are class green and 200 class are

red; Figure 2.2b displays the blue linear regression boundary built from 30 randomly

selected samples, which are evenly distributed in the whole area. This regression

model reaches an accuracy of 70%. Meanwhile, Figure 2.2c obtains a linear regression

from 30 instances from the active learner, and the accuracy rate is 90%. From Figures

2.2b and 2.2c, the quality of training samples is crucial for a good learning model.

Instead of instances across the dataset, trickier instances like the ones around the

class boundary are chosen for model construction with active learning. This proves

that supervised learning models can gain a better performance with the same amount

of training data via active learning algorithms.
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2.2.1 Scenarios

There are different scenarios where active learning is demanded. Pool-based active

learning in Figure 2.1 is one of the main scenarios, and the other two scenarios

in the literature are membership query synthesis, and stream-based selective sam-

pling [Settles, 2009, Chapter 2]. Figure 2.3 shows the differences among these three

cases. From top to bottom flows, they are, respectively, membership query, synthe-

sis, stream-based selective sampling, and pool-based sampling. All of them need to

start from an input data resource, and query samples for an oracle to label, which is

the end part of Figure 2.3. Membership query in the first row selects any unlabeled

instances from the input space, including ones the learner generates anew. It does

not bias towards querying instances from potential distributions of the dataset, in

which way the solution is great for automated pattern discovery, but inadequate for

large-scaled data learning.

Figure 2.3: Three active learning scenarios – schematic illustration

Stream-based selective sampling, as the second scenario, considers the data input

to arrive one at a time. A real-life example is Twitter data. Tweets are retrieved

when they occur, so intuitively, they appear one at a time. The active learner in this

scenario plays the role of a judge who determines if a data instance is going to be sent

to oracles or removed according to the measurements mentioned in the next section.

These measurements can be the ones indicating how informative a data sample is, or

if an uncategorized dataset is in an explicit region of uncertainty [Cohn et al., 1994]

for a machine learning model. Moreover, stream-based selective sampling presumes

that it is cheap to get unlabeled data streams, by which real data distribution can be
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learned.

Pool-based sampling, in the bottom of Figure 2.3, is the third main active learning

scenario. As shown in the figure, compared to the previous two scenarios, pool-based

sampling owns a unique unlabeled data pool U in the flow, which contains all unla-

beled data and a small group of labeled data. This brings out the most important

hypothesis of pool-based sampling that data collection is performed in the beginning,

which contains a small set of labeled data L and a large group of unlabeled data U ,

so no unobserved data samples will appear in the learning procedure, just like the ex-

ample in Figure 2.2. Algorithm 1 below is the pseudo-code of a generic pool-based

sampling. The active learner in this scenario draws a sample d from the unlabeled

Algorithm 1: Pool-based sampling algorithm

Input : U is a pool of unlabeled data samples; L is a small group of labeled

data samples; M is a selected machine learning method; S is an

active learning query strategy; C is a stop criterion

Output: A machine learning model or a labeled dataset

1 while C is not satisfied do

2 M = train(L)

3 Query the most informative instance d using model M with strategy S

4 Obtain label of d from an oracle

5 Update L by adding d together with its label, and U by eliminating d

6 end

data pool U , depending on the applied evaluation measurement S. When the label

is provided by oracle, the instance will be removed from U data pool, and added

to the labeled data pool L. This process continues until certain stop criteria C are

met. Compared to stream-based selective sampling, pool-based Sampling produces a

priority queue for all unlabeled data, and then chooses the most appropriate instance

for oracles. Since the input data are available from the beginning, which is more real-

istic in real-life situations, pool-based Sampling is popular in practical applications.

Our work is applying pool-based sampling active learning, as our text datasets are

available, and no changes will happen to the dataset.
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2.2.2 Query Strategies

No matter which active learning scenario, there is a need for criteria to evaluate

how informative an unlabeled data point is. These criteria are specified as query

strategies in the literature. Uncertainty sampling, query-by-committee (QBC), and

variance reduction [Settles, 2009, Chapter 3] are three strategies utilized in our work.

Uncertainty sampling is a well-known strategy that selects instances about which a

machine learning model is uncertain, especially a probabilistic model. Intuitively,

uncertainty sampling sends instances that lie close to a classification decision bound-

ary. So in a two-class classification problem, points around the boundary that obtain

a probability close or equal to 0.5 for each class are the group a machine learning

model has difficulties to make a decision, thus are the ones queried. As for multi-

class problems, uncertainty sampling gets more general measurements, namely least

confident, margin, and entropy.

Least confident measurement is the basic strategy that queries the instances with the

least prediction confidence of a learning model. It can be presented by the following

equation:

xtarget = argmax
x

1− PM(ŷ|x)

where the queried data instance xtarget owns an estimated class label ŷ = argmaxy PM(y|x)

under the learning model M [Settles, 2009]. Margin measurement focuses on the two

most possible class labels of a data instance. If instance d holds y1 and y2 as the first

and second probable class labels,

Pintermediate = PM(ŷ1|x)− PM(ŷ2|x)

is about to be calculated. Margin measurement tries to retrieve instances with small

Pintermediate, since a large Pintermediate denotes light work for a learning model to decide

which class an instance belongs to, whereas a small Pintermediate declares a difficult

situation for the learner to distinguish. Margin measurement was put forward be-

cause the least confident measurement only focuses on the most probable class label,

while margin measurement takes the second most possible label into consideration.

However, both of them neglect the distribution of other labels, where entropy mea-

surement can take care. Entropy [Shannon, 1948] is a measurement of uncertainty

in information theory. If H stands for entropy, it can be computed by the following



12

formula: H = −

∑
i
pi log2(pi), where pi is the probability of the current instance

being class i. So higher probability of one event pi leads to lower entropy. In active

learning, points with high entropy are the targets, since it claims the ambiguous situ-

ation a classifier meets. With labels of these instances, learners can discriminate data

instances better.

QBC is another query strategy in active learning that queries instances by a voting

system. It keeps a group of committee models C = M1,M2, ...,Mn that have right

to vote on the label of a data instance. Targets are the ones that maintain the most

disagreements among the committee models. Variance reduction, as another methods

in our study, tries to query instances that minimizes the output variance after the

application of the instance.

2.3 Visualization

Visualization has become a common tool for users to understand huge datasets. It

is a way of information exchange using graphical representation [Ward et al., 2010].

Human beings have the ability to process images faster than words, since words

understanding is bound with reading speed and image analysis is executed in the

human perceptual system [Ward et al., 2010]. Intuitively, people take longer to read

a page of explanation about a diagram than studying a diagram. Thus, an effective

visualization is a crucial for a learning process.

Figure 2.4: Connection operators in a linked brushing example. Selections (red lines)
in the left parallel coordinate will update highlighted areas (red boxes) in the right
scatter plot matrix.

However, learning purposes vary from situations to situations. It can be the trend
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of sale numbers, the difference between groups, the most important factor, and so

on. Interactive visualization is one solution, for it adjusts the way and the content

of one visualization to a user [Ward et al., 2010, Chapter 10]. For example, filtering

is an option for users to find a more specific detail via trimming down data amount

on the screen according to factors, dimensions, or other constraints. With filters,

users are exposed to less data, or less noisy environment, which alleviates the work-

load. Connecting is another useful interaction technique. With this operation, users

get control of links between data features, so the relation between objects can be

realized. Figure 2.4 [Ward et al., 2010, Chapter 10.1.6] is an example of applying

connecting interactive techniques. This is a linked brushing example, where data

selection can be controlled by users. When a user changes the selection in one view,

corresponding linked data in another view are highlighted. In Figure 2.4, parallel

coordinates, indicated by red lines, are the selected objects. The linked objects in the

right scatter plot matrix are highlighted by red boxes. Selections in any view update

the highlighted area in the other view. These two linked graphs enable users to find

information about changes. Interaction components are commonly included in well-

organized visualization systems such as D3 data-driven documents [Bostock, 2012].

Visualization for unstructured data such as texts, documents, images, and videos, is

different from structured ones, which is mainly numerical data. Our study focuses on

text data, so numbers of text visualization techniques are introduced here. The vector

space model [Salton et al., 1975] is fundamental for many text visualizations. A term

vector for a text record contains the weight of a word in the record. A basic weight

is the term frequency or the number of times a term appears in the record. Term

frequency inverse document frequency (Tf-Idf) is another popular weight, which is

calculated by

tf − idf = tf(t, d)× idf(t,D) (2.1)

where tf(t, d) stands for frequency of a term t in the doc d, and idf(t,D) represents

inverse document frequency, defined as idf(t,D) = ln N

|d∈D:t∈d|
. |d ∈ D : t ∈ d|is the

number of documents that contains term t, and N is the number of documents. Tf-Idf

leverages weights of the number of times a word appears in documents and frequency

of a word in the whole corpus [Manning et al., 2008], which helps to achieve a better

performance of models. With the vector space model, an unstructured text file can
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be converted into structured data format, and subsequently, data cleaning and model

constructions are enabled.

2.4 Related Works

Active learning, which helps the text classification process with the SVM module, has

been studied in [Tong and Koller, 2001]. They proved that with active learning, the

SVM module can reach good performance with less labeled training data instances

instead of large random training data instances.

Among the large volume of work for text visualization, such as Jigsaw [Stasko et al., 2008],

we mainly focus on introducing text visualization interfaces for active learning tasks.

[Settles, 2011] presented an annotation interface DUALIST, shown in Figure 2.5. In-

stead of traditional document-only interfaces, both factors (informative terms) and

document are presented. The left-hand side of the figure contains the data instance,

available label options, and skip button, while the right-hand side contains important

features of a certain class. Users can add or remove features as per their under-

standing. The grey button in the top enables users to submit their results. Once

all processes are complete, a final page with model accuracy, lists of data instances,

and corresponding label are presented to users. A similar graphic user interface is

put forward in [Arora et al., 2009]. The documents, discriminant features, and green

patterns, are highlighted in Figure 2.6 to support a human annotator’s decision.

Figure 2.5: DUALIST [Settles, 2011]
user interface. Users label instances
with highlighted feature list in the
right.

Figure 2.6: GUI in
[Arora et al., 2009]. Users label
instances with highlighted informative
patterns in the document.
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Another annotation interface with intuitive clues is shown by [Liao et al., 2015].

Though the data object in the study is video instead of text, the scatter plot of

the video data( blue areas in Figure 2.7), has a concept very similar to that of our

work. Their work demonstrates that visualization supports and enhances the sample

selection of active learning in video annotation.

Figure 2.7: Video annotation interface in [Liao et al., 2015]. Blue areas indicate iso-
contour-based scatter plots for video data. Each point represents a video. Users can
label the video base on the points around.

We are not aware of visualizations of active learning for text classification so far with

the clues shown in [Liao et al., 2015]. In this study, we try to integrate active learning

for text classification and visualization that contains good indication for annotation

via several projections of text data.



Chapter 3

Model

This chapter focuses on the explanation of our active learning work flow, involved

machine learning algorithms, and our labeling interface.

3.1 Model Overview

Figure 3.1: Active learning workflow. Starting from the input data pool D, an initial

text classifier is trained on labeled dataset L with performance P1. This classifier runs

an active learning algorithm on the unlabeled data pool U . A human annotator labels

queries from three settings. These three experiments generate different influence to

the classifier: P2, P3, and P4, which are applied to compare the roles of visualization

and active learning.

Figure 3.1 exhibits the overall idea of our work. This is a typical pool-based active

learning scenario, where input space is available at the beginning and no more new

data instances will enter the circle. The input dataset D consists of a small group

of labeled data instances L for the initial machine learning model construction and

a large pool of unlabeled dataset U . As we concentrate on the text classification

problem, a classifier is trained with L, the labeled dataset. The performance P1 of

16
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this classifier can be calculated subsequently. With this classifier and the unlabeled

data pool U , the active leaner can select queries for oracles to label.

To prove our hypothesis, three annotation scenarios are designed, as Figure 3.1:

1. An oracle labels instances suggested by the active learner with only document

presentation

2. An oracle labels instances taking the advantage of two-dimensional visual rep-

resentation of data record

3. An oracle labels unlabeled instances that are randomly selected by the active

learner with visual aids

No matter how oracles get the unlabeled instances, new labels are bound to arise.

We take D2, D3, and D4 as tags for results of these three experiments respectively.

Specifically, D2, D3, and D4 consist of selected queries and corresponding class labels

provided by oracles. These new labeled instances are then added to the small labeled

data pool L, following updates of both unlabeled data pool U and the text classifier.

Spontaneously, the revised classifier exhibits a new performance. For instance, P2

is the performance of the classifier retrained on the updated L with D2. Similarly,

P3 and P4 are the performances of the classifiers with L updated with D3 and D4.

These performance values are compared to each other to indicate factors that enhance

the active learning procedures.

Nevertheless, getting P2, P3, and P4 is not the end point of the work loop. Active

learning continues getting queries for oracles, more new labels are produced, and

both unlabeled data pool U and labeled data pool L, as well as the classifier, are kept

updated. This goes on until oracle terminates the annotation interface.

3.2 Algorithms and Model Details

This section gives more details of our model, mainly about machine learning algo-

rithms, text representations, and visualization interface.
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3.2.1 Algorithms

As illustrated in 3.1, text classification is the machine learning technique involved

in the model. Text classification assumes a group of documents with classes or la-

bels. With the help of specific learning algorithms, a classifier or a function is trained

to map documents to classes [Manning et al., 2008]. Spam detection and sentiment

analysis are two common applications. Classifiers of these two applications are both

trained on existing labeled data instances; in other words, it is the supervisor who

directs the learning. After that, classifiers make decisions on whether a new arrival

email is a spam, or a new comment is positive or negative. Support vector ma-

chine (SVM) [Vapnik and Kotz, 1982] and Naive Bayes [Nigam et al., 1998] are two

learning algorithms in our work.

Figure 3.2: SVM on binary class problem.

s is the ideal hyperplane of SVM, since

it achieves the largest margin among the

training data. a and b can separate the

training set, but both of them have smaller

margin values than the one from s.

SVM as a well-known learning algorithm

experiences success in information re-

trieval problems [Manning et al., 2008].

For a binary class problem, SVM tries

to define a decision boundary that best

segregates two class objects from each

other. These boundaries achieve the

maximum margin (blue margin in Fig-

ure 3.2) among the training data. Mar-

gin in the SVMmodel stands for distance

from the SVM boundary to the closest

data instances, which are also called sup-

port vectors. In Figure 3.2, the red cir-

cles and black triangles on the dashed

lines indecate support vectors. With the

help of support vectors, there are infinite

number of surfaces that can separate the

training data, such as a,b, and s in Fig-

ure 3.2. However, only s obtains the best margin value. This determines s as the

ideal output of the algorithm.

If all data points are represented by X = {x1, ..., xn} and corresponding label by
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Y = {y1, ..., yn}, where yi ∈ {0, 1}, the target classifier can be written as

f(x) = sign(wx+ b) (3.1)

[Manning et al., 2008]. Points lying on one side of the boundary are classified as

class 0, and those lying on the other side as class 1. In a linearly separable case,

this boundary is a hyperplane with a normal vector w and an interception b. To

achieve the maximum margin value, w should be perpendicular to the hyperplane;

otherwise, the hyperplane will be closer to the data point to either class, which leads

to a smaller margin value. This w is regarded as the weight vector of the hyperplane

[Manning et al., 2008]. In addition, b determines the specific hyperplane among the

ones that are perpendicular to the normal vector. Figure 3.3a is an example of

1 2 3 4

1

2

3

4

(a) SVM sample training data

1 2 3 4

1

2

3

4

s

(b) SVM solution for sample data

Figure 3.3: SVM application with toy data.

applying the SVM classifier with a toy dataset in two dimensions. This dataset

consists of three data points, (1,1), (2,0) and (2,3), where (1,1) and (2,0) belong to

gray class and (2,3) belongs to red class. This is a linear separable situation, and

the solution can be calculated geometrically. As mentioned above, margin is the

distance from SVM boundary to the closest data instances, which also means that

the margin weight vector is perpendicular to the boundary and parallel to the shortest

line connecting data points from two classes. So in the toy example here, the margin

weight is parallel to the line passing through (1,1) and (2,3), and the SVM boundary

crosses the middle point of (1,1) and (2,3), which is (1.5,2). Thus, we can get the
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result line s in Figure 3.3b as: x+ 2y − 5.5 = 0. To get formula such as formula 3.1,

we need more calculations. If (1,1) and (2,0) are class -1 and (2,3) is class 1, given w

is (k,2k), we will have two equations:

w · (1, 1) + b = −1

⇒ k + 2k + b = −1

and

w · (2, 3) + b = 1

⇒ 2k + 6k + b = 1

Accordingly, k = 0.4, w = (0.4, 0.8), and b = −2.2. The SVM classifier of these three

points is sign((0.4,0.8) · x− 2.2), and the margin value is 2/‖w‖ =
√
5.

The Naive Bayes classifier is another classifier highly popular for classification prob-

lems. It is a probabilistic method for deciding the category of a text document, given

a list of feature words and corresponding weight information. The algorithm is called

“naive” because of its assumption of the Bayes’ theorem that all attributes of an in-

stance are independent of each other [McCallum et al., 1998]. The Bayes rule states

that the joint probability of events A and B is:

P (AB) = P (A|B)P (B)

= P (B|A)P (A)

or the conditional probability P (A|B) (the probability of event A, given event B) is

P (A|B) =
P (B|A)P (A)

P (B)
(3.2)

In Bayesian interpretation [Berger, 2013], P (A|B) in equation3.2 is defined as the

posterior probability, the probability of event A given the evidence B; P (B|A) is the

likelihood probability, the probability of the evidence B given the parameter A; P (A)

is the prior probability, the initial probability of event A; and P (B) is the observation.

So the Bayes rule can be converted to:

posterior =
likelihood× prior

evidence

The Naive Bayes algorithm classifies documents according to the Bayes rule:

P (c|B) =
P (B|c)P (c)

P (B)
(3.3)
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where c is the class variable; B is a vector consisting of all independent variables, which

can also be written as B = {b1, ..., bn}; P (c) is the probability of a document being

class c; P (B) is the probability of vector B, which is the observed data; P (B|c) stands

for probability of a document with vector B being class c; and P (c|B) represents the

probability of being class c given attribute vector B [Manning et al., 2008]. Since

P (B) is constant for all documents, the probability equation3.3 can be reformed into

P (c|B) ∝ P (B|c) ∗ P (c) (3.4)

The simple assumption that all attributes are independent of each other, means

P (bj|c, b1, ..., bj−1, bj+1, ..., bn) = P (bj|c)

So for all j, the estimated class label c can be calculated by

c = argmax
c

P (c)
n∏

j=1

P (bj|c) (3.5)

Table 3.1 is a small sample data of spam detection. The class column indicates if an

email is spam or not; free and today columns show if an email has these two words.

free today class
1 yes yes spam
2 no yes ham
3 yes no ham
4 yes no spam

Table 3.1: Naive Bayes application with sample email data

Suppose there is a new coming email containing both “free” and “today.” Is this

email a spam or ham? According to Naive Bayes, we are trying to find the val-

ues of P (spam|free = yes, today = yes) and P (ham|free = yes, today = yes).

P (spam|free = yes, today = yes), with the help of Bayes rule, it can be computed

via:

P (spam|free = yes, today = yes) =
P (free = yes, today = yes|spam)P (spam)

P (free = yes, today = yes)

To get the value of P (free = yes, today = yes|spam), we can check emails that

are labeled as spam, and have both “free” and “today.” From Table 3.1, there are
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two spams, one of which gets both of them, so the likelihood probability P (free =

yes, today = yes|spam) = 1/2. Similarly, P (free = yes, today = yes|ham) = 0.

Prior P (spam) = 1/2 since two of the four emails are spam. Though the observation

P (free = yes, today = yes) = 1/4 is easy to fit, it is not necessary for Naive Bayes,

which is proved in equation 3.5. For all variables are available, we are able to deter-

mine the new email’s label. P (spam|free = yes, today = yes) = (1/2) ∗ (1/2) = 1/4

and P (ham|free = yes, today = yes) = 0 ∗ (1/2) = 0. The email is certainly a spam

since P (spam|free = yes, today = yes) is larger than P (ham|free = yes, today =

yes). Naive Bayes is computational fast compared to other complex models, for

the strong assumption allows the individual computation for parameters of every at-

tribute [McCallum et al., 1998], which is also illustrated in the example above. This

is beneficial to data with a large number of attributes, such as text documents.

To evaluate the performance of algorithms, we apply accuracy, the proportion of

right predictions among total predictions [Manning et al., 2008]. Confusion matrix,

the matrix with the number of correct and incorrect predictions made by the classifier

compared to the actual outcomes (target value) in the data, is usually employed to

get accuracy value. It consists of n ∗ n values, where n is the number of values of a

target class. Table 3.2 is a confusion matrix of a two-class classification problem.

Confusion Matrix
Actual

positive negative

Prediction
positive a b
negative c d

Table 3.2: Confusion matrix for two-class

In the matrix, rows depict the predicted results from a learning model, while columns

display actual distributions. a and d in the table indicate the correct predictions

made by the classifier. Specifically, both a positive instances and d positive instances

are classified as positive, while b negative instances are classified as positive, which is

not expected. a/(a + b) is referred as precision, the proportion of positive instances

that are correctly classified, and c/(a+d) is referred as recall, the percentage of actual

positive instances that are correctly classified. With the confusion matrix in Table

3.2, accuracy = (a+ d)/(a+ b+ c+ d). So if we have a = 60, b = 20, c = 30, d = 50,

the accuracy will be (60 + 50)/(60 + 20 + 30 + 50) = 0.6875.
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3.2.2 Text Representation

As mentioned in section 2.3, text documents are represented by the vector space

model. However, before building a vector space model, the BOW model [Harris, 1954]

is applied to extract valuable information, i.e., mainly features from the document.

Figure 3.3 presents a transformation process of a toy text dataset. d1 stands for “The

book arrived fast, thanks!” and d2 for “The book arrived in a terrible shape!.” d1 and

d2, the group of documents, is usually called corpus in the literature [Manning et al., 2008].

The BOW model can then generate a list of words from the corpus: [“the,” “book,”

“arrived,” “fast,” “in,” “a,” “terrible,” “shape,” “thanks”]. With this list, weight

information can be computed. If term frequency is the chosen weight, the following

two weight lists are the value in the vector space model: [1, 1, 1, 1, 0, 0, 0, 0, 1]

and [1, 1, 1, 0, 1, 1, 1, 1, 0]. The vector space model can be illustrated by a matrix

containing both features in the bag-of-model and the weight information. This matrix

is also named term document matrix (TDM). The matrix on the right end of Figure

3.4 shows the vector space model for the toy dataset.

Figure 3.4: Text representation. The transformation from text document of a corpus
comprising d1 and d2 to a vector space model using the BOW model

However, the BOW model only works on single terms from a data corpus, which

causes neglect of some important information. For example, bag-of-words result of

the corpus in Figure 3.4 will not reveal that “arrived” is always dominated by “the

book” or “shape” is in a “terrible” condition. N-gram, a continuous sequence of N

characters from a given text [Manning et al., 2008], is a solution for this issue. 2-

gram, or bigram of d1, is [”the book,” ”book arrived,” ”arrived fast,” ”fast thanks”],

which captures the stated missing information. In practice, the vector space model is

not limited to single-term features; in contrast, it can own features consisting of any
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N-gram. In addition, vector space models are usually refined before machine learning.

One modification is that terms that appear too frequently and are meaningless, the so

called stopwords, are removed from the matrix. “a,” “the,” “who,” and “at” are some

typical examples. Another operation is applying a stemming algorithm [Lovins, 1968],

which aims to convert words to their stem. For example, “get” has simple present

Simple Present Past Tense Past Participle Present Participle
get gets got gotten getting

Table 3.3: Different tenses of verb “get”

tense “gets,” past tense “got,” past participle tense “gotten,” and present participle

tense “getting,” as listed in Table 3.3. If a vector space model has all tenses of a verb,

it leads to duplicate situations. Stemming enables less features in the vector space

model without any loss of contents.

In our work, we also investigate “aspects” in data instances. We consider aspects

as informative features of an object within a document. For example, if a document

is“The city has tremendous sightseeing sites, but narrow roads,” the author of this

sentence conveys his or her opinion about the “city” via two aspects: “tremendous

sightseeing sites” and “narrow roads.” These detailed aspects assist readers to own a

thorough understanding. Besides, compared to a list of unigram, bigram or even high

grams, aspects of a document make the learning process more precise and less chaotic,

just like the examples “tremendous sightseeing sites” and “narrow road” are the most

important points. Meanwhile, bag of aspects or concepts is also proved to achieve

good performance in text classification problems [Sahlgren and Cöster, 2004]. Intu-

itively, the vector space model of aspects from text document-only reserves features

meet certain criteria. These features can be chosen via statistic measurements such as

term frequency and information gain, as well as machine learning techniques like clus-

tering. In our work, we extract noun phrases in a document as our aspects with the

help of Part-of-Speech tagger [Marcus et al., 1993], which annotates words’ roles in a

speech. For the example sentence above, “city” is assigned with “NN,” which stands

for a noun term, either singular or mass; “tremendous” is tagged with “JJ,” which

represents adjectives. Similarly, the rest is about to be categorized as verbs, determin-

ers, coordinating conjunction, and other tags introduced in [Marcus et al., 1993]. The
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vector space model of aspects is mainly used for the visualization interface presented

below.

3.2.3 Visualization Interface Details

Figure 3.5: Active learning annotation interface. Sections 1 and 2 contain labeled
documents from corresponding class; Section 3 is the actively selected query for a
human annotator to label; Section 4 is the text visualization areas, where documents
are represented by points, colored ones are labeled instances, gray ones are unlabeled,
and the yellow point is the actively selected document. Force-layout, t-distributed
stochastic neighbor embedding (T-SNE), and chord diagrams are three available vi-
sualizations; navigation bar enables users to change active learning strategies and
classification models. Right top corner displays the label amount already provided
by a user. The “Done” button leads a user to the result page.

In active learning, oracle’s labelling is a crucial step. Published annotation interfaces

of active learning for text documents usually contain only text, as discussed in chapter

2.4. We propose our own interactive visualization interface with both text documents

and document projections. Figure 3.5 exhibits our annotation interface. As shown in

the image, there are four main visualization sections. Panels 1 and 2 are containers

for objects of two classes. In our case, panel 1 is for negative data instances, and

panel 2 is for positive data instances. Panel 3 is the area presenting the document

that needs to be labeled. These three panels primarily provide users text only infor-

mation, while panel 4 contains document projection as a visual aid for users. There
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are three main projection methods in panel 4: force-layout [Bostock et al., 2011],

T-SNE (Figure 3.7a) [Maaten and Hinton, 2008], and chord diagram (Figure 3.7b)

[Bostock et al., 2011]. All of them have a BOW and a BOA model perspective. The

text in panel 3 is highlighted in these projections, which visually is a yellow point

with black stroke. This makes the target clear among the group of data that are

shown in the project. The initial projection after loading the page is force-layout.

Figure 3.6 demonstrates the interactions in both force-layout and T-SNE projections.

(a) Mouse over effect in force-layout (b) Selection operation in force-layout

Figure 3.6: Interactions of force layout diagram in annotation interface

When users move their mouse to the highlighted point, as shown in Figure 3.6a, cor-

responding text will appear on the screen. Besides, if users single-click the point, as

shown in Figure 3.6b paths to similar points or documents will show up. Double-click

in any other spot helps to clean the paths if users want to go back to the overview.

Users can move to T-SNE and the chord diagram panel if they think the force-layout

is not helpful. Figure 3.7 presents a typical image a users is about to get when they

enter these two panels. T-SNE is a technique to present data with high dimensions in

two-dimensional space. The method achieves significantly better performance than

other visualization techniques in the field [Maaten and Hinton, 2008]. Text data usu-

ally owns a large number of features, so for visually friendly projections, we use

T-SNE in our interface. Moreover, the chord diagram is involved in the annota-

tion system as well. Though it is designed for showing dependencies between clusters

[Bostock et al., 2011], it is still applicable for explaining the relationships between dif-

ferent documents. To make chord diagram fully functional, users can single-click the

target text representation point. Figure 3.8 reveals the effect after clicking operation.

Curves to other data points will be marked out if the document has any relationships
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(a) T-SNE panel in the interface (b) Chord diagram panel in the interface

Figure 3.7: T-SNE and chord diagram panels in active learning annotation interface

to other documents. Similarly, corresponding text information will appear if users

hover the target point in the interface. In all these three projection panels, users are

allowed to double-click any grey points to change the labelling object, through which

they can be more involved in the system.

Figure 3.8: Interactions in chord diagram of annotation interface

In addition to all panels mentioned above, there is a hidden panel, called option panel.

It unfolds when users click the “Options” section in the interface. Figure 3.9 is what

users are exposed to after choosing “Options.” This division basically enables users

to select methodologies they want for their experiences. In the Query Strategies sec-

tion, there are uncertainty sampling, QBC, variance reduction, and random sampling

choices, which are all introduced in chapter 2. As for the machine learning models,

SVM and Naive Bayes explained in the start of this chapter are included. Users can

simply click the radio button before the methods to get desired algorithms to function.
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Figure 3.9: Option panel in navigation bar of the annotation interface.

Figure 3.10: Result page of the annotation

system. A bar chart with value of accuracy

through annotations made by a human an-

notator. This is a bar chart for accuracy

change of five annotations.

To annotate data instances, users can

drag the text in the middle to the class

it belongs to, and wait for the next text

document. The number in the top right

corner indicates the number of instances

the oracle has labeled. Whenever users

want to terminate the labelling task,

they can finish by clicking the “Done”

button in the top left corner. This but-

ton navigates to the result page. Figure

3.10 is an sample result page. It is a page

with a bar chart of accuracy changes dur-

ing input from users.



Chapter 4

Experiments, Results, and Analysis

This chapter first describes the standard dataset used for our active learning sys-

tem, then introduces three experiment settings for participants together with some

implementation details, and finally discusses the result of each experiment.

4.1 Dataset

Our test dataset is an Amazon Review set shared by [Blitzer et al., 2007]. This multi-

domain sentiment dataset consists of product reviews from Amazon.com, which are

mainly in four domains: Book, DVD, Electronic, and Kitchen. Each category has

its own directory, and reviews are organized into three files: negative.review, posi-

tive.review, and unlabeled.review. negative.review and positive.review are utilized in

our work, since we need ground truth to evaluate the performance of a learning model.

Figure 4.1: An Amazon Review Example

So the ultimate dataset we get is 8000

reviews from the initial downloaded file,

and each type has 2000 reviews, where

1000 are positive and 1000 are negative.

The review files negative.review and posi-

tive.review initially arrives with a pseudo

XML scheme; the details are listed in

XML tags. Generally, each review

has unique id, asin, product name,

product type, helpful, rating, title,

date, reviewer, reviewer location,

review text attributes. Figure 4.1

shows a positive book review from the dataset. For our experiments, only two at-

tributes are selected, as highlighted by the red box in Figure 4.1: asin and re-

view text . As declared by the owner of the dataset that the unique id attribute is

29
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not unique all the time, we edit the asin attribute by adding numbers from 1 to

8000 in a string format with a length of 4. The particular number string added to

asin depends on the order in which the review is read by the compiler. This modified

asin attribute is then able to point to a unique review text. As for the label value,

we simply assign reviews from negative.review as -1 and the ones from positive.review

as 1.

4.2 Experiments and Results

The first step for our experiments is to clean the extracted review data from Sec-

tion 4.1. Cleaning pipeline is listed in Figure 4.2. Python programming language

[Van Rossum et al., 2007] is the main tool to complete the data pre-processing task.

As the texts are originally in XML format, the first step of data pre-processing is

to escape HTML characters such as “&amp;” and “&lt;.” With regular expressions,

“&amp;” is translated to “&” and “&lt;” to “<.” Then, with the appropriate encod-

ing setting, usually “UTF-8,” HTML-character-free reviews are tokenized into tokens.

Figure 4.2: Text pre-processing Pipeline.

Detailed steps for text data cleaning

Tokenization is a process for compilers to

convert input characters into a meaning-

ful sequence of tokens [Aho et al., 1986],

and the tool that accomplishes tokeniza-

tion is called a tokenizer. A tokenizer fol-

lows certain patterns to recognize expres-

sive tokens from input characters, where

a token is “a pair consisting of a token

name and an optional attribute value”

[Aho et al., 1986]. The token name can

be a keyword, an operator, an identifier,

or any other semantic unit. For example,

if an input string is “Active learning is

helpful,” the output of a word tokenizer

will be “Active,” “learning,” “is,” “help-

ful,” “!.” Once the tokenization is done,

which means each review is divided into sections with semantical value, stopwords
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and punctuations are about to be removed. As mentioned in the previous chapter,

stopwords are usually very common in a document, but can not signify any valuable

information; the removal operation creates a less noisy corpus for data analysis. Af-

ter that, a stemmer will identify the stems of each string. After the stemming, we

will build two vector space models: one based on BOW and the other on BOA. This

finishes our preparation step of the experiment setup.

The next step for the experiment is to construct the front-end interface and back-end

machine learning algorithms. The front-end web interface mentioned in Figure 3.5

is built with HTML, CSS, and JavaScript, where d3.js [Bostock, 2012] is the main

JavaScript package utilized for document projections. As for the back-end machine

learning algorithms, they are implemented in Python programming language. Since

our work is pool-based active learning, it is essential to have an initial labeled data

set L. For training purpose, we split the 8000 reviews into two groups: 33% set as

the test data and the rest as training data. As a start, the program randomly selects

50 data records to create a classifier. Besides, SVM and uncertainty measurement are

set as the default classifier and active learning query strategy, respectively. However,

users can always switch the classifier to Naive Bayes, and query strategy to QBC,

variance reduction, or random sampling. To manage the data communication between

front-end interface and back-end python program, Common Gateway Interface (CGI)

[Graham, 1995] is put into use. Figure 4.3 explains how the annotation system runs.

Figure 4.3: System working architecture, which describes system’s data communica-
tion between front-end and back-end.

There are basically two working scenarios. The first one is when a user initially

enters or reloads the web interface. This triggers the script to get 50 randomly

labeled instances from the corpus, and trains a classification model, following the

active learning query making. The chosen query, 50 labeled data instances, another
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100 random unlabeled instances, and their corresponding distance matrices are packed

to send to the front end for visualization purpose. A distance matrix retains distances

between documents. Table 4.1 is an example distance matrix, where d1, d2, ...dn are

documents of a corpus. From the table, we can obtain that documents have no

instances to themselves, and distance from di to dj is always the same as that from

dj to di. With regard to the value in distance matrix, the standard cosine similarity

d1 d2 ... dn
d1 0 0.2 ... 0.8
d2 0.2 0 ... 0.3
... ... ... ... ...
dn 0.8 0.3 ... 0

Table 4.1: Distance matrix example for a corpus consists of n documents

is adopted. Cosine similarity is a typical measurement for similarity between two

documents d1 and d2 [Manning et al., 2008]. If !d1 and !d2 are vector representations

of d1 and d2, the cosine similarity can be written in

cos sim(!d1, !d2) =
!d1 · !d2

‖!d1‖‖!d2‖
(4.1)

The numerator is the inner product result of two vectors, which can be calculated with
∑N

j=1
xjyj, where xj and yj are feature values of documents d1 and d2, and N is the

number of features of these two documents. The denominator is the multiplication

result of the documents’ Euclidean length. For example, if d1 and d2 have attributes

“free,” “call,” and “cost,” and corresponding values are listed in Table 4.2, their

cosine similarity will be (5*0 + 4*1 + 3*0) / (
√
52 + 42 + 32

√
02 + 12 + 02) = 2

√
2/5

≈ 0.57. With the sent distance matrices, we can draw visualizations in the interface.

d1 d2
free 5 0
call 4 1
cost 3 0

Table 4.2: Document distance calculation example with sample email data. For
documents d1 and d2, distance is computed with corresponding value of three features
“free,” “call,” and “cost.”

Moreover, we define at most 200 points in each panel. One important reason is, as



33

shown in Figure 3.5, that the projections attain a limited space; meanwhile, it is

unrealistic to show all document points in a single panel. However, 200 points avoids

visual clutter, and are efficient to reflect valuable information. Therefore, the initial

load of the interface notifies the server, and then the server sends signals to activate

back-end Python scripts to generate a data group for original model training, get

an active query, and calculate distance matrices of BOW model and BOA model.

Server-side working flow of the first scenario is colored in green in Figure 4.3. After

the Python back-end calculation, the front end will display the text contents and

project distance matrices into corresponding force-layout panel, T-SNE panel, and

chord diagram panel. The second scenario occurs when oracles provide labels for

active queries. Once a user starts annotation by dragging an active query to the class

it belongs to, the label message is delivered to the server, and then the server will

be alerted to wake back-end Python scripts up for classifier retraining, for labeled

and unlabeled data pool updates, and for a new active query. This working pipeline

is colored in orange in Figure 4.3. To respond to the request, Python scripts will

perform the calculations in the first setting again, and reply with the new active

sample, and updated distance matrices. When the front-end interface receives the

latest information, it makes a refreshment to itself since the new sample changes the

distribution of the whole data group, which leads to different distance matrices. This

reply pipeline is the blue working line in Figure 4.3.

With cleaned dataset and working system, experiments will be carried out to prove

our hypothesis that visualization can accelerate good classifier construction. As in-

troduced in chapter3.1, there are three annotation scenarios.

1. Log into the main interface, and then label 20–50 instances.

2. Log into the main interface, in the Option panel, choose “Random Sampling”

as the query strategy, and then label 20–50 instances.

3. Log into the interface that has no projections, and then label 20–50 instances

Six colleagues from the Big Data Analytics Institute participated in the user study.

They were instructed with this user study purpose, interface functions, three ex-

periment settings, and what they should do and submit. For experiments 1 and
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(a) User1
(b) User2

(c) User3 (d) User4

(e) User5 (f) User6

Figure 4.4: Accuracy change over the experiment of six users.
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2, participants were highly recommended to take advantage of the visual aid pro-

vided in the interface. For all these three experiments, users were suggested to

stick to one classifier, which is beneficial for comparisons. Figure 4.4 above ex-

hibits the accuracy changes during annotations. X-axes in the sub-figures indi-

cates the number of annotations made by users, and Y-axes indicates the value of

Accuracy − Accuracy Mean. Y-axis is set to this value due to the different starting

model accuracy. With Accuracy−Accuracy Mean values, model performance differ-

ences are easier to find out visually. Red lines in the figure are the accuracy change in

experiment 1, where documentation projections are available to users; green lines are

the accuracy change in experiment 2, where random sampling is taken as the query

strategy; blue lines, the last color category, denote accuracy change in experiment 3,

the test without visualization. From Figures 4.4b, 4.4c, and 4.4f, which are produced

by User2, User3, and User6, respectively, we can find, blue lines have milder fluctua-

tions than green and red lines, while red lines usually obtain the most volatility. This

firstly verifies the value of inputs from human annotators, since their efforts improve

the performance of the selected classifier. This also proves that through visualiza-

tion, users can make better decisions, and no matter which active learning query

strategy is enrolled, visualization boosts the performance of the classifier. Moreover,

comparing red lines to green lines, variation in red lines is usually more considerable,

which confirms that the active learning query strategy is more efficient than random

selection.

test1 test2 test3

user1 0.00049 0.00025 0.00056

user2 0.00099 0.00011 0.00008

user3 0.00019 0.00017 0.00003

user4 0.00010 0.00005 0.00014

user5 0.00040 0.00069 0.00005

user6 0.00086 0.00053 0.00016

Table 4.3: Accuracy variance values of each user in the three experiments

Table 4.3 contains the variance in accuracy changes of the three experiments from six

users. Likewise, for user2, user3, user5, and user6, test3’s variances are the smallest

among the three numbers, which is consistent with fluctuation situations in Figure

4.4, since large variance indicates large difference among numbers of one group. Data
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in column test1 and test2 also confirms the above statement that active learning query

strategies win more improvements for classifiers.

Figure 4.5: Accuracy variance bar chart of

each user in the three experiments. Each

bar chart group is from one user. Y-axis is

the accuracy variance value.

Figure 4.5 is the clustered columns chart

of numbers in Table 4.3. This graph

better illustrates the values in the table.

Though highest value in different groups

vary a lot, patterns in these groups are

similar to each other.

However, data from user1 and user4 are

a bit unlike statistics from other partic-

ipants. User1 claimed that at the begin-

ning of the last experiment, queries were

easier to make judgement since interest-

ing topics came into sight, which drew

more attention though there was no vi-

sual aid during the experiment. Besides,

in user1’s third experiment, the initial model had a low performance. So with high-

quality labels, the classifier can develop faster and becomes more fair. Nevertheless,

from Figure 4.4a, it is not difficult to figure out that after around 12 annotations,

the blue line tends to grow slower, and the performance improvement is not as sig-

nificant as the red and green lines. Accordingly, this still supports our assumption

that visualizations benefit classifiers that are built with active learning. In terms of

user4, a different judgement method from that in the case of other participants was

taken during the annotation procedure. Though more long reviews appeared in the

annotation group, User4 tried not to spend time on visualizations, but to label fast

by scanning the whole paragraph via searching some sentiment indicators such as

“good,” “terrible,” “boring,” and “waste” since the target class value of the dataset

is “positive” or “negative.” So this case is special, and is not appropriate for the

evaluation of visualizations. However, the data are still valuable, because they at

least, to some extent, confirms the feasibility of the BOW model due to performance

improvements of all classifiers from user4’s experiments.

Aggregating the whole performance data, we get Figure 4.6, where all data are plotted
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Figure 4.6: Performance from all users. Accuracy of classifiers from all the users in
the three experiments; X-axis is the annotation amount contributed by users, and
Y-axis is the value of Accuracy − Accuracy Mean; Red lines are accuracy changes
of experiment 1, green lines are accuracy changes of experiment 2, and blue lines are
accuracy changes of experiment 3.

according to the experiments. Red lines indicate accuracy changes in experiment1

from all participants, green lines indicate performance changes in experiment2, and

blue lines represent dynamic accuracies during experiment3. The values in the graph

are accuracy minus mean value of all accuracies in one experiment. This makes all

lines comparable in the same coordinate. Again, three group lines in figure 4.6 cater

to the conclusions drawn before. Despite the blue line that passes through the point

around (0, -0.08), coming from test 3 of user 1, a situation which is explained above,

fluctuation level of the red group beats those of the other two groups. The green

group is in the middle, while the blue group owns the mildest fluctuations.

4.3 Discussions

In addition to the conclusions summarized from all performance data, we also harvest

other valuable information from our user studies. As commented by all participants,

the first experiment is the most difficult test, the second experiment provides obvious

sentiment reviews, and the third experiment, though offers tricky reviews as the first
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test, participants in this experiment get more familiar with the system and all review

contexts. The second experiment is relatively easy for participants, because of the ran-

dom sampling query strategy

Figure 4.7: The case where visualization

fails to provide accurate suggestions

applied in the Python script. Random

sampling does not pay attention to the

influence of the new label; instead, it

just grabs instances that are still unla-

beled. This also explains why the growth

of green lines in Figure 4.4 is gentler than

that of red lines. The selected samples

may only from one class, either the pos-

itive or the negative, and may also are

ones lying far away from decision bound-

ary, which have no significant contribu-

tion to improve the classifier. As to the

first comment that test 1 asks for more

efforts, there are a couple of reasons.

On the one hand, the initial classifier is

trained on 50 data samples. It is not pos-

sible to retrieve great performance by ap-

plying this model to over-2500-record test data. The model could have strong bias

on either class. Consequently, the visualizations in force layout, T-SNE, and chord

diagram lead users to a hard situation. Figure 4.7 is a screen shot of the case where

visualization fails. In the chord diagram, the highlighted curves indicate the close

relationship between the active query and positive samples, while the content, “I was

disappointed in this video” reveals user’s discontent with the product. This is the

second query in the experiment, which can be found at the top right corner of the

screen. The classifier now is probably more against the negative class. This inac-

curate visualization, as a result, pushes participants not to think as highly of the

role of the visual aid tool as they expected.However, participants also stated that

visualizations turned better through the whole experiment, as evidenced in Figure

4.8. This is the 12th active query in the experiment, shown in Figure 4.8. The re-
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(a) Review Content (b) Force Layout

(c) T-SNE plot (d) Chord Diagram

Figure 4.8: Sample review with better visualization. Screen shot of a queried text in (a)
and corresponding force-layout diagrams in (b), T-SNE in (c) and chord diagram in (d).
The visualization becomes suggestive when the machine learning model becomes mature
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view describes the user’s high evaluation of the DVD, in comparison to the other two

DVDs. Figure 4.8d is quite straightforward by the number of links to positive class

samples. Figure 4.8b’s aspect-based force-layout plot suggests positive label with sur-

rounding blue points. Its BOW force-layout plot is not very informative due to too

many grey points mapped around. Figure 4.8c’s BOW force-layout plot, similarly,

advocates positive label by blue points laying back. Its aspect-based force-layout plot

gathers unknown points around, so it will be ignored by users easily. Hence, to some

degree, the efficiency change of visualization is also the performance improvement of

a classifier.

On the other hand, for the comment that experiment 1 requires hard work, the active

learning algorithm tends to choose difficult instances that is hard for itself. Like the

review in Figure 4.8a, a lot of reviewers compare the product with others they know,

especially books and DVDs. Figure 4.8a is a user-friendly review, for many long

reviews only focus on chapters from other books, or actors from other DVDs. This

causes more workload from participants. Meanwhile, sarcasm is also present in the

dataset. One example phrase our participant met is: if you are going to watch

these two incredible movies in one day, you will definitely die . Sarcasm is

challenging for classifiers to detect or for the visualization interface to interpret. To

realize the sentiment of these reviews is time-consuming for our participants. Another

group of reviews contain both complains and compliments. Take the following review

from our participant for example: The larger of the bowls was broken when I

received it, so it was not packed very well. I had to use the smaller bowl

and loved it. When the participant raised this issue, other participants expressed

diverse opinions. This group data furthermore affect input from users.

Figure 4.9: The case where chord diagram is not sufficient for decision making due

to the similar amount of highlighted points from each class.
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Moreover, all participants agree that the chord diagram is the most helpful visualiza-

tion among the three projections, since the highlighted linking curves offer informative

clues. However, chord diagram is not always useful. Figure 4.9 is a situation users

will run into. It is not difficult to find that the numbers of marked points from the

blue and red groups are comparable. Under this circumstance, chord diagram is not

reliable as before, and users tend to shift back to force-layout and T-SNE panel. The

example in Figure 4.8 mentioned above illustrates how users can determine the label

by surrounding points. However, users stay more on the chord diagram panel than

others during all three experiments.

(a) Review Content (b) Force Layout

(c) T-SNE Plot (d) Chord Diagram

Figure 4.10: Common sample review. Screen shot of a queried text in (a) and corresponding
force-layout diagrams in (b), T-SNE in (c) and chord diagram in (d). This is a case a user
is more frequently exposed to.

Besides, we find that BOA and BOW models work in different local scenarios though

neither can segregates two classes perfectly in the global scope. Aspect-based chord

diagram in Figure 4.8d owns two additional link curves to negative samples. This

happens again in Figure 4.10d, a more common case appearing during annotation.

Though in many long reviews, BOW-based chord diagrams capture more connections
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to other files, BOA model detects more relationships with other files when the BOW

model meets with issues, like the ones in Figure 4.8d and 4.10d. BOAmodel projection

provides valuable suggestion for the review in Figure 4.10. The text shown in Figure

4.10a, is a negative review, but refers to another movie the writer prefers. So both

negative and positive features show up in the document. From the BOA-based force-

layout plot in Figure 4.10b, our target point is encircled by red points, while in the

BOW force-layout, it lays away from other documents. However, in the T-SNE plot,

as shown in Figure 4.10c, both of them are closer to red class, which supports the

right label. Though users are prone to chord diagram, cooperating with all plots is

more beneficial to the decision making.

One more thing we found during the user study is that our Amazon dataset is not

totally in English. Spanish exists in the review set. This is a noise for both English

annotator and the classifier, because no relationships are found in chord diagram, and

it lies away from all other points in both force-layout and T-SNE diagrams. However,

Figure 4.11: Spanish review in corpus met by a user during user study

detecting this reminds us to perform the language check before training the classifier.

Figure 4.11 is the screen shot of the user who encountered the special case.
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Lessons Learned and Limitations

Our thesis work is a pilot study on the role of visualization in active learning with

text classification problems. We believe that active learning can be further assisted

by visualization techniques, especially interactive ones. Specifically, we see a role for

the user in making an informed selection of instances from the list provided by the

active learning system. Visualization can give the user an additional insight about the

potential contribution of an active instance towards a “sharpening” of the inductive

hypothesis. But we only had access to very limited resources including the pool of

human users therefore, there are limitations. This chapter discusses lessons we learned

from the existing work, and improvements in the settings for both visualization and

learning algorithm.

5.1 Visualization

In chapter 4, we listed the user study tasks and corresponding results. Six participants

were invited to perform the tasks. Though the results for the tasks were consistent, it

is valuable to enroll more participants for the user study. Six is not a good number for

a statistical significance study, but the results will be more reliable if the number of

participants is increased. Moreover, these six participants are from Institute for Big

Data Analytics, and are professionals in machine learning. A potential bias might

exist among this group, which can be eliminated with more participants. Besides,

users were instructed to do the tasks in the same order, which brings the influences

of users’ learning curves. In Figure 4.4, almost all lines fluctuate widely in the first

20 annotation efforts. This confirms the effects of the users’ learning curves. One

possible method to address the issue is that users can complete tasks in different

orders. In addition, the main interface in Figure 3.5 only provides the force-layout

diagram for users. This limits the amount of visual information a user can obtain

each time. Aligning all visual aids in the interface can be a solution; this enhances

43



44

the brushing and linking effect, so that users can realize the changes and relations

between instances during interactions with lesser efforts. Moreover, if the interface

is extended for a multi-class classification task, aligning all document projections in

the interface instead of the way it is now is more informative.

5.2 Machine Learning

The main task we study in the thesis is a two-class classification problem, which is

a limit. It will be valuable if the same framework can be applied to a multi-class

problem. The tool will be more robust, and the results will be more reliable if more

classes are involved, which naturally triggers improvements in the interface mentioned

in section 5.1. Another limitation of our study is the evaluation methods. In Figure

4.6, we presented results with all lines aggregated in the coordinate. Apparently,

Figure 5.1: Performance from all users after the 20th annotation. Accuracy change
of classifiers from all users in the three experiments; X-axis is the annotation effort
contributed by users(how many annotations have been labeled at the given point),
and Y-axis is the value of Accuracy−Accuracy Mean; Red lines are accuracy changes
of experiment 1, green lines are accuracy changes of experiment 2, and blue lines are
accuracy changes of experiment 3.

the slopes of red lines are sharper than those of the rest of the lines. But due to

limited experiment data, the tendency is difficult to observe, thus we applied accuracy

variance to illustrate the increasing scale of red lines and use it as the evaluation

measurement, which is still not strong enough for the proof. One possible solution
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is to focus on accuracy changes after the 20th label from users, which is displayed

in Figure 5.1. As discussed in the previous section, from Figure 4.4 and 4.6, we can

find that oftentimes, accuracy fluctuates widely when a user annotates the first 20

selected instances, which is caused by users’ learning curves. Obtaining accuracies

from the 20th annotation helps to get rid of influences from users learning curves.

Indeed, slopes of red lines in Figure 5.1 are sharper than those of the rest of the

lines. A time variable can be another solution for a more persuasive conclusion. For

example, instead of annotation efforts from users, we can record the time users take

for a certain task, so that the annotation speed of users can be calculated for the

evaluation. If the visualizations provided by our system help the process, a user

can complete a task faster than the the time required for the task without visual

aids. Alternatively, we can also constrain the time that a user can spend on each

task. In this case, the annotation amount will be the indicator of the conclusion. If

visualization helps active learning, a user can label more instances than in a setting

without visualizations.



Chapter 6

Conclusion and Future Work

We live in a data explosion age, where data analysis is predominantly important. In

data analysis, supervised learning is the main part, which tries to infer a mapping

pattern from labeled data. However, labeled data are very limited no matter how

fast data increments these days. In the meantime, obtaining labels is very expensive.

This effects the efficiency of data utilization. This motivates our work. We believe

that the emerging visualization techniques can provide a hand for the annotation cost

reduction.

In this thesis, we have investigated the role of visualization in binary class text classi-

fication with active learning problems. To evaluate this, we have proposed our system

which involves both machine learning and visualization techniques. SVM and Naive

Bayes classifiers are learning models we used, for the good performances they have

achieved in the field. Accuracy of one classifier is the chosen measurement that re-

flects the performance of the classifier in our work. In the settings of active learning,

we enroll pool-based active learning because of the static experiment dataset we own.

The involved active query strategies are uncertainty measurement, QBC, and vari-

ance reduction. Random sampling is also employed for comparisons of experiments.

For the visualization side, we propose our annotation interface. In addition to doc-

ument visualization as in previous work, we add document projects. Documents are

symbolized by points, and the relationship between documents is illustrated by dis-

tances between points in the plot. Force-layout, T-SNE, and chord diagram are three

projections in our interface. In each projection section, we draw two visual diagrams,

one based on the BOW model and the other on the BOA model.

Our dataset is multi-domain sentiment data from [Blitzer et al., 2007], which contains

product reviews from Amazon.com on four domains: Book, DVD, Electronic, and

Kitchen. Essential cleaning processes are performed with the dataset. To evaluate our

hypothesis, we invited six colleagues to perform the user study. Results in chapter4
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prove that given the same active learning settings, human annotators’ inputs with

visual aids boost the performance of the selected classifier. In addition, given the

same visualization settings, active learning algorithms support improvements of the

selected classifier. Moreover, visualization built from BOA is complementary to that

on BOW. Though neither of them can achieve perfect global segregation for instances

in different classes, BOA works better in local areas.

For the future work, it would be valuable to test our interface with other text datasets.

Aspects-based visualization can possibly reach good performance for a non-sentiment

dataset. Moreover, so far, our annotation interface has had a slow processing time,

since our web interface applies python CGI service. With python CGI, requesting a

service with ajax call from front end basically invokes a new process on the server.

Starting new process, getting python scripts compiled, and receiving interruptions

from users are very time-consuming, while our interface is very interactive. Thus, in

the future, switching to another web service will make the system more user friendly.
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