
ON THE USE OF VECTOR REPRESENTATION FOR IMPROVED
ACCURACY AND CURRENCY OF TWITTER POS TAGGING

by

David Sampson Samuel

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2016

c© Copyright by David Sampson Samuel, 2016

To Mom and Dad

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . vii

List of Abbreviations and Symbols Used viii

Glossary of Terms . ix

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Aims and Objectives . 4

1.2 Research Methodology . 4

1.3 Scientific Contribution . 5

1.4 Thesis Outline . 5

Chapter 2 Related Work . 7

2.1 Word Representation . 7

2.2 POS Tagging . 11

2.3 Twitter POS Tagging . 13

Chapter 3 Data and Word Representation 14

3.1 Corpus Treatment . 14

3.2 Word Representation . 17

Chapter 4 Nlpnet Tagger Architecture 27

4.1 Mathematical Notation . 27

4.2 Word Transformation . 29

4.3 From Word Vectors to Higher Level Features 30

4.4 Training . 32

iii

Chapter 5 Evaluation and Discussion 34

5.1 Twitter-based Vectors . 34

5.2 Tagger Performance . 39

5.3 Discussion . 41

Chapter 6 Conclusion . 42

6.1 Future Work . 42

Bibliography . 44

Appendices . 50

iv

List of Tables

Table 5.1 The 10 closest contemporary slang expressions to the considered
slang terms and their similarity measures 38

Table 5.2 The 10 closest celebrity names to the considered celebrities and
their similarity measures . 38

Table 5.3 Tagger Performance in per-word-accuracy percentage. 40

Table 1 POS Tag Descriptions . 51

Table 2 POS Tag Descriptions cont’d 52

Table 3 Distribution of POS Tags for all 269 sentences of our chosen
Twitter test set. Tags with frequency ‘-’ indicate the tags not
considered during testing. 53

Table 4 Distribution of POS Tags for entire WSJ dataset 54

Table 5 Twitter, sms and text top 10 similarities 54

Table 6 iPhone and email top 10 similarities 55

v

List of Figures

1.1 Countries and Capitals mapped as vectors in R
n 2

3.1 Sample tweet showing typical constituent elements of Twitter
text . 15

3.2 Sample tweet example of URI usage 15

3.3 Neural Language model structure [26] 19

3.4 Bengio [26] language model 20

3.5 Collobert et. al [13] architecture 22

3.6 Continuous Bag-of-Words (CBOW) model [1] 24

3.7 Skip-gram model [1] . 25

4.1 Basic Tagger Architecture . 28

5.1 Word clusters identified in vector space representation 37

1 Word clusters identified in vector space representation 56

vi

Abstract

The scarcity of labelled text corpora has inspired alternative methods for harnessing

data for training and development of Natural Language Processing systems geared

toward tasks such as Part-of-Speech (POS) tagging, Chunking and Semantic Role

Labelling. Of particular interest is the performance of POS taggers on corpora which

are largely informal and unstructured such as Twitter posts. In modern business

activity, the expansion of social media networks has led to increased ’lead generation’

activity; POS taggers form a significant part of such activities. We have trained a

neural network based POS tagger using commercially available, labelled Penn Tree-

bank data together with Twitter word embeddings. Word embeddings (or vector

representations) are generated from tweets and used for training of the POS tagger.

We illustrate the value of harnessing tweets as an unlimited, freely available data

source by demonstration of improved performance on tagging of twitter text.

vii

List of Abbreviations and Symbols Used

R
n The space of all ordered n-tuples of real numbers

POS Part-of-speech

LSA Latent Semantic Analysis

SRL Semantic Role Labelling

NER Named Entity Recognition

JSON JavaScript Object Notation

URI Uniform Resource Identifier

HAL Hyperspace Analogue to Language

PCA Principal Components Analysis

PPMI Positive Pointwise Mutual Information

WSJ Wall Street Journal

PWA Per-word-Accuracy

NN Neural Network

θ Model parameters to be adjusted during training

V Vocabulary list

d Dimension of word vector

p Probability

viii

Glossary of Terms

Corpus A collection of written text

Part-of-speech Word category based on its syntactic function

Semantic Role Label Detection of verb/predicate arguments

Chunking Detection of parts-of-speech and short phrases

JSON JavaScript Object Notation

Lead Person with an interest in a product or service

Lead generation Initiation of lead

Word embedding Vector of real numbers representing a word

Twitter Social media / microblogging platform

Tweet Twitter post/microblog

Emoticon Facial expression created from keyboard symbols

Tokenize Splitting of a sequence of strings into individual parts/tokens

Language model A statistical distribution over a sequence of words

ix

Acknowledgements

My first note of thanks goes to my supervisor, Prof. Stan J. Matwin, for his patience,

understanding and support during my time as a graduate student at the Institute of

Big Data Analytics. With respect to basis of this work, I owe a tremendous debt of

gratitude to, Dr. Jacek Wolkowicz, whose advice and guidance during my internship

at LeadSift Inc. was invaluable. In addition, my fellow classmates deserve my thanks

for making these past two years vibrant and enjoyable. Last but not least, I wish to

thank my father and mother for their unwavering dedication and sacrifice that has

directly and permanently impacted my life and helped guide me toward every success

that I have ever achieved.

x

Chapter 1

Introduction

Natural language processing systems of the past have taken an atomic approach

to word representation in that, each word was given some unique identifier which

conveyed little, if anything, about the relationships between the words under consid-

eration. As a prime example, the sentence ’Cherries are a highly anticipated summer

fruit while December brings us blueberries’ among a given corpus would yield no rela-

tionships such as that between cherries and blueberries (ie. that they are both fruits

and thus are closer conceptually to each other than to the word December). The

usage of vector space models whereby words are each associated with a vector (ie. a

member of Rn), enables us to capture such relationships and can also mitigate the

problem of data sparsity that stems from older methods that assign unique identifiers

to words in an effort to construct and train language models.

In considering a distributed representation of words, we may consider the words

in a corpus as a sequence of discrete states, each of which may be transformed into

vectors of real numbers (also called weights). One might first opt for the simplest

’present or not present’ encoding of a word whereby each vector has length equal

to vocabulary size and a given word has a 1 in the corresponding element position

and zeros elsewhere. As obvious as such an encoding may be, it is equally weak

if we consider modelling comparisons other than word equality. We may instead

consider a distributed representation of words whereby each word vector has some

desired number of dimensions (50 for our purposes) and there is some distribution

of real valued weights across all vector elements. This representation therefore yields

vectors in which by the distributed nature of the elements, they each contribute to the

definition of other words (not only their corresponding word). The underlying goal of

word vector construction is then to learn word vectors that capture useful syntactic

and semantic relationships that might not be otherwise achieved by using simpler

representations. It is also worth noting that word vectors may be used as inputs to

1

2

Figure 1.1: Countries and Capitals mapped as vectors in R
n

neural network architectures for tasks such as Part of Speech Tagging and Semantic

Role Labelling. This allows for the utilization of potentially unlimited amounts of

unlabelled data for training of systems for various NLP tasks.

We refer to word vectors (or interchangeably, distributed representations) as word

embeddings when we consider the fact that each vector can be located and visualized

in multidimensional space. In particular, it is useful to think of the transformation

of words to vectors as a mapping from a high dimensional space (where each word

corresponds to one dimension) to a correspondingly more dense representation in

lower dimensional space. The success of word embeddings learned in an unsupervised

manner (such as those obtained via neural network architectures) in various NLP

tasks has dwarfed older methods for achieving distributed representations, such as

LSA (Latent Semantic Analysis).

The embedding of words in mathematical space (or more precisely, vector spaces)

yields models that place words closer together that are more semantically similar and

further away if they are not. We might imagine an example of such an embedding

whereby countries are closer in distance (and therefore semantically) to their capitals

than to other countries’ capitals.

The linguistic principle known as the distributional hypothesis [56][57] (which the-

orizes that words used in the same contexts purport similar meanings), has fed various

3

approaches to language modelling that are largely grouped under predictive meth-

ods (which predict words based on context, that is, based on surrounding words)

and count-based methods (which count the number of times words co-occur with

neighbouring words). We discuss word representation in greater detail later in this

work.

In considering applications of word embeddings, many important NLP tasks in-

cluding but not limited to, POS Tagging, Semantic Role Labelling (SRL), Named

Entity Recognition (NER) and Sentiment Analysis, may be mentioned. In this work,

we focus on Part of Speech (POS) tagging of Twitter text data. Twitter is a vir-

tually unlimited source of text and has the added benefit of being as current and

contemporary as we may choose during data collection. With over 300 million users

active worldwide generating thousands of messages with each passing second, Twit-

ter posts are characteristic of high velocity data. Twitter data has been used for

various applications (e.g. monitoring earthquakes [35] and predicting flu outbreaks

[36]). However, given that machine learning techniques constitute the frontier of ad-

vancements in NLP and such methods typically require large sets of labelled text

corpora for training, the clear issue is the absence of such labelled datasets for Twit-

ter microblogs. Such text constitutes the text field of tweets where this field typically

comprises: short messages; inclusion of URIs; username mentions; topic markers; and

threaded conversations. The nature of expressions in such messages is largely collo-

quial, meaning that there may be significant usage of abbreviated forms (eg. ftw (for

the win), omg (Oh my gosh) etc) and forms of sentences/phrases that do not conform

to established grammatical rules. In layman’s terms, we may say that Twitter data

frequently consists of broken speech. Such lack of adherence to formal grammati-

cal rules, coupled with the lack of available labelled corpora and the 140 character

limit results in great difficulty in achieving higher accuracy for part-of-speech taggers.

In order to circumvent the lack of unlabelled Twitter text corpora but yet harness

the potential for learning meaningful semantic relationships between words in con-

temporary speech, we use distributed word representations for training of our neural

network based POS tagger.

4

1.1 Aims and Objectives

We note that POS Tagging of Twitter sentences is a challenging task in natural lan-

guage processing. Traditional part-of-speech taggers trained on currently available

labelled data do not exhibit good performance on labelled twitter data. Our claim is

that harnessing a large set of unlabelled data might yield better tagger performance

on Twitter sentences as compared to traditional POS Taggers trained only labelled

data. Based on the above introduction to the background of word vector representa-

tion and POS Tagging, the overall research aim of this thesis can be stated as:

To train a POS Tagging system in a supervised fashion using Twitter word embeddings

and labelled text data to obtain improved tagging performance on Twitter sentences.

In order to address the aim, the following objectives are identified:

1. Investigate and survey the related approaches proposed for word vector gener-

ation (or, distributed word representation) and POS Tagging.

2. Propose new approach to improved tagging performance via the use of a part-of-

speech tagging system (nlpnet[4]) and word vectors generated from unlabelled

Twitter text data. Nlpnet is a multilayer perceptron based classifier for POS

Tagging inspired by an architecture [13] that achieves state-of-the-art results in

English. It uses as input vectors built through Vector Space Models and can

perform POS tagging, Semantic Role Labelling (SRL) and dependency parsing.

3. Demonstrate the effectiveness of word vector usage on POS tagging of Twitter

tweets. We note that scalability is of concern with larger datasets.

1.2 Research Methodology

We have previously trained a POS Tagging system based on neural networks with

the use of a labelled dataset from the Wall Street Journal [46]. In this work, we

incorporate the use of 3 months worth of Twitter tweets constituting a large body

of unlabelled text from everyday social network activity. In order to use this data

5

to train our system, it must be cleaned and a suitable representation constructed.

To that end, we employ a single layer neural network architecture[1] that learns a

distributed representation for each word in our twitter dataset in an unsupervised

manner. These representations can then be used directly as input to the chosen POS

tagger [4] for training and subsequent testing against a labelled set of twitter text.

This work is undertaken with the goal of demonstrating superior performance with

the use of word embeddings constructed from a large, current, unlabelled dataset in

comparison with our previous system trained solely on a relatively dated, labelled

corpus of news media, as well as in comparison with the OpenNLP POS Tagging

system.

1.3 Scientific Contribution

The empirical results of our training and testing of chosen systems are presented in

this work. The main contributions of this thesis are as follows:

1. Twitter data collected in a streaming fashion over a period of 3 months is

used as a source of unlabelled data at a large scale (ie. millions of tweets) for

unsupervised learning of word embeddings using word2vec[1]. To the best of

our knowledge, word2vec has never been coupled with Twitter data in order to

obtain word embeddings.

2. We obtain improved POS Tagging performance on Twitter sentences using the

previously unexplored technique of training nlpnet [4] initialized with pre-

trained word embeddings at the input layer (learned from Twitter data using

word2vec) and with labelled Wall Street Journal data as our ’supervising’

examples.

1.4 Thesis Outline

Chapter 2 discusses related work in each of 3 relevant categories (Word Representa-

tion, POS Tagging and Twitter Tagging).

Chapter 3 describes the chosen data and preprocessing tasks as well as models used

for obtaining word representations. Chapter 4 presents a detailed overview of the

6

nlpnet[4] tagger architecture. Chapter 5 is a description and discussion of our em-

pirical results. Our conclusion and directions for future work are given in Chapter

6.

Chapter 2

Related Work

2.1 Word Representation

Among measures of interest in Natural Language processing, semantic similarity of

documents/terms is fundamental. Intuitively, if some group of words or documents

(say, elements for the sake of brevity) are given unique numerical representations (such

as vectors of real numbers) and some distance metric is defined, we then associate

smaller distances between elements with greater similarity of those elements with

each other than with others at a greater distance away. Semantic similarity is used

to represent ’is a’ relations between elements. For example, among the words apples,

fruit and gardens, there is no ’is a’ relation between gardens and the other words,

but an apple is indeed a fruit. This distinction is important in understanding that

semantic similarity ought not to be interchanged with the more general semantic

relatedness (which is not used in this work). Word vectors/embeddings are at the

forefront of contemporary methods of word representations in NLP due to the rising

need for modelling of semantic similarity among words. Such representations are

useful in and of themselves as inputs for further tasks including but not limited

to information retrieval, sentiment analysis, POS tagging, Semantic Role Labelling

(SRL) and Chunking. The computation of distance-based similarity measures is also

a basic application of such vectors.

Given the mathematical basis of approaches to word representation in NLP and

in keeping with current trends (especially among the Deep Learning research commu-

nity), we use word embedding we use word embeddings/vectors as our terms of choice

to describe our distributed word representations in this work. Natural Language Pro-

cessing deviates from the field of formal linguistics in some sense since it considers

a word’s context to be the sole source upon which word representations should be

built. In practice, this is taken to be some threshold value of words before, after or

both with respect to some target word.

7

8

We use a real-valued vector for each word of a given vocabulary and refer to these

asword embeddings, which can in turn be used as features for training algorithms in

a variety of tasks, including but not limited to parsing [16], named entity recognition

[17] and document classification [18]. In the work of Bengio [19], a multi-clustering

idea of distributed representations has been put forward and can be captured by

models that produce dimensions of meaning rather than simply relying on distance

or angle between word vectors as a method of evaluating quality of word representa-

tions. Mikolov et. al [1] has developed such a model that probes various dimensions

of difference between word vectors as a means of evaluation. In general, two major

approaches for learning word vectors are, in temporal order: 1) global methods and

2) local methods. The main difference (and source of sub-par performance for certain

tasks) between these models is in the information maintained by each method. Global

methods make use of statistical information at the document level (ie, such methods

take a global view to vector generation) whereas local methods rely on some small

window of context that largely neglects statistical information provided outside of

the chosen window. We consider works on each method in finer detail but digress to

say that the pitfalls of each method have driven the efforts of Pennington et. al [20]

to develop a new log-bilinear regression model that achieves superior performance on

similarity and named entity recognition tasks via a combination of advantages from

both varieties of approaches.

Matrix Factorization Methods.

Global approaches produce large matrices as a result of entire documents being taken

as word context. Matrix factorization methods were developed for generating low-

dimensional word representations from such large matrices. Global approaches to

vector generation can be seen in early works such as (Hyperspace Analogue to Lan-

guage) HAL [22] and Latent Semantic Analysis [21]. A matrix produced by HAL

has elements corresponding to the number of times a word occurs in the context of

another word, in contrast to matrices produced via LSA which considers the number

of times a word occurs in a given document. In consideration of word co-occurence, it

is useful to recall that ’stop-words’ (ie. commonly used words) such as determiners

9

(like a, an), prepositions (eg. so, but, for and yet) and even some coordinating con-

junctions may frequently occur in the context of more important/interesting words

but do not contribute much information about co-occurrences between important

words. We may therefore find for instance, that the word ’an’ occurs more frequently

with ’apple’ than does ’apple’ with ’orchard’ even though we are likely to be more

interested in examining potential relations between the latter two words. Clearly,

methods that rely on word co-occurrence can potentially suffer from disproportionate

contributions (to similarity measures) by stop-words thereby giving much weight to

similarity based on co-occurrence and virtually no information about the semantic

relationship between two given words. Several works [23][24][25] demonstrate a so-

lution to this issue by showing that word co-occurrence counts may be transformed

in such a way that they are more evenly spread across some smaller interval. In the

most recent of these works, Lebret et. al [25] use the Hellinger PCA (that is, Prin-

cipal Component Analysis performed using the Hellinger distance [58]) approach to

achieving good word representations.

10

Shallow Window-Based Methods.

Instead of considering an entire document as a word’s context, we may instead re-

strict the context to some smaller sized window of words around the target word to

be predicted. The use of neural networks for language modeling has been pushed to

large scale application by the work of [26] where instead of focusing on the role of

words in a sentence (as in the work of Miikkulainen et. al [30]), a word sequence

based statistical distribution is learned. Bengio et al. [26] in addition to coining the

term word embeddings, train such representations in a neural language model jointly

with the model’s parameters. However, the utility of pre-trained embeddings was first

demonstrated by Collobert et. al [27] and their neural network architecture has been

the basis of many current approaches to NLP tasks. In an effort to avoid using a full

neural network architecture (and therefore to reduce computational complexity) for

learning word representations, the skip-gram and continuous bag-of-words (CBOW)

models of Mikolov et al. [1] utilize the inner product of word vectors in a simple

single-layer architecture. The PPMI (Positive Pointwise Mutual Information) metric

has been employed [29] for obtaining word vectors and log-bilinear models [28] have

been developed for this task. In the words of Jurafsky [59], the PMI measure ’is a

measure of how often two pointwise mutual information events x and y occur, com-

pared with what we would expect if they were independent’. PPMI is obtained by

replacing all negative PMI values with zero. The word analogy task has been used as

a prominent test case to demonstrate the capacity of these models to learn complex

semantic relationships as linear relationships between the word vectors.

GloVe

In the work of Pennington et. al [20], a log-bilinear regression model is proposed

as a way of bridging the gap between shallow window-based methods and global ap-

proaches. Namely, it is found to be useful to exploit document-wide information (such

as largely repetitive occurrences) that has only been available with global approaches.

Pennington et. al. present an analysis of model properties deemed essential for the

production of linear directions of meaning. Specifically, a weighted least squares

model trained on global word-word co-occurrence counts is proposed, which achieves

11

an accuracy of 75% for word analogy tasks. Their log-bilinear model has also been

tested on NER and word similarity tasks. Intuitively, GloVe passes over a given cor-

pus once and constructs a matrix X, of co-occurrence counts whereby element xij of

X gives the number of times the represented by row i occurs in the context of the

word represented by column j. Their model is then constructed to use X in the course

of obtaining distributed word representations that retain at least some information

supplied by the co-occurrence values in X.

The gap exploited by our work is given by the fact that Pennington et. al’s

(currently state-of-the-art) Twitter embeddings and the embeddings of prior works

have not been coupled with a neural network model for tagging of Twitter tweets.

2.2 POS Tagging

Part-of-Speech (POS) tagging has been widely instrumental both as a task in its

own right as well as for use within systems for Named Entity Recognition, Sentiment

Analysis, Question Answering, Information retrieval and others. Various approaches

to this task have been proposed with varying degrees of success and complexity. Early

work such as that of [8] has given an automatic tagging system based on developed

’rules’ but methods from the machine learning community have come to be at the

forefront of developments in NLP for POS tagging. A major challenge for users

of machine learning techniques for this task is availability of training data. Sliding

window based methods for part-of-speech tagging have enjoyed great success. Taggers

based on this approach assign a single part-of-speech tag to a given word, by looking

at a fixed sized ”window” of words around the word (for example, 5 words before

and after the target word). Motivation for this approach can be attributed to the

observation that large proportions of words (estimated to be 30% or more, language

dependent [9]) may be assigned more than one possible POS tag when considered out

of context. The sliding window provides a fixed context for each word. Toutanova

et al. [10] have presented a benchmark setup consisting of Wall Street Journal data.

Previous works [13] suggest that systems where bidirectional decoding algorithms

coupled with windows of text context give superior POS tagging performance. Some

features may include suffix, prefix, capitalization and multiple words (n-grams). In

12

[10], 97.24% per word accuracy (PWA) is achieved with the use of maximum entropy

classifiers together with a bidirectional dependency network [39]. An approach using

SVM trained on text windows achieved 97.16% PWA by employing Viterbi decoding

for bidirectional inference. In [12], 97.33% PWA was obtained using guided learning.

Collobert et. al. [13] have presented a unified neural network architecture which

learns internal representations using mostly unlabeled training data and surpasses

the benchmark in [10] achieving a PWA of 97.29%.

13

2.3 Twitter POS Tagging

In considering the generation of POS tags for Twitter text data, two clustering based

taggers [40][41] are among the earliest works. Gimpel et. all [40] achieves 92.8% PWA

and Ritter et. al [41] achieves 88.4%. Both use clustering, existing (non-Twitter)

labelled corpora and hand labelled tweets but only Ritter et. al. used Penn Treebank

tags. In [42], Foster et. al. presents results for POS tagging but place greater emphasis

on parsing. In [43], POS tagging where noise was a significant factor (noisy tokens)

was done by performing extra pre-/post-processing to fine tune the tagger. Clark

et. al in [53] present an approach for improving tagging performance with the use

of unlabelled data and bootstrap techniques. Finally, [44] propose a novel approach

using unlabelled data which involved different POS tagging systems (using different

tagsets) coupled with bootstrap techniques. Derczynski et. al. identify errors in

existing taggers and make their augmented tagging system [45] publicly available;

this system achieves per-word-accuracy of 88.7%.

Chapter 3

Data and Word Representation

3.1 Corpus Treatment

In our pursuit of improved POS Tagging performance on Twitter sentences, we have

utilized two sets of data (labelled and unlabelled respectively). Our unlabelled data is

fed into word2vec[1] for generation of word vectors and subsequently, the generated

vectors are used as inputs to nlpnet[4] (our POS Tagger) which is trained in a

supervised manner using our chosen labelled dataset. We briefly describe our labelled

sentences before giving a detailed description of the unlabelled Twitter data that has

been leveraged in this work.

Labelled Data

The Penn Treebank (PTB) project has provided 2,499 syntactically labelled (tagged)

98,732 Wall Street Journal (WSJ) stories collected over a period of three years. The

corpus contains overall 1147617 tokens and 21717 vocabulary words. This dataset

is commercially available and access has been provided for purposes of this work by

LeadSift Inc., Halifax NS.

Unlabelled Data

Currently, around 500 million tweets per day (about 200 billion annually)[47] are gen-

erated worldwide. We have collected Twitter text data (or, tweets) spanning the dates

01−March−2016 through 31−May−2016 amounting to approximately 400, 000, 000

samples of tweets from users worldwide. This immensely valuable source of data

opens a channel through which the thoughts and opinions of millions of persons are

made immediately available. Our data is obtained and archived daily in a real-time

streaming fashion via the Twitter API. Twitter provides RESTful APIs which allow

access to core Twitter data, including user info, locations, update timelines and sta-

tus data. The API presently supports various data formats such as RSS, XML and

14

16

As shown in the above figures depicting representative tweet examples, our Twitter

text frequently contains hashtags, URLs and username handles as well as twitter at-

mentions whereby a username handle is referred to within a given tweet. Tweets are

also frequently populated with ’emoticons’ represented in unicode as well as emoticon

approximations composed of ordinary ascii symbols (eg. :) for smiles or * * as another

facial expression). Various preprocessing steps were therefore taken to bring our raw

data to usable form. We have

1. Replaced username handles with the token ’USER’

2. Replaced URLs with the token ’URL’ (however, in further work, it may be of

use to use extract TLD(Top Level Domains) from URLs to be used as entities

such as Nouns as they frequently occupy such roles in social media text)

3. Removed all ’#’ symbols from hashtags and marked our data instead with the

tag ’HT’.

4. Removed all unicode emoticons and emoticon ’approximations’

5. Split sentences into tokens using the NLTK tokenizer Python library

17

3.2 Word Representation

Overview

The typical ANN (Artificial Neural Network) generates embeddings from a vocabu-

lary list of words as an intermediate step in its training. Specifically, each word in

some dictionary are assigned to rows of a weight matrix whose columns correspond

to the dimensions of each word vector. This matrix is randomly initialized with real

values and each row is then used as the numerical representation of the corresponding

vocabulary word. These embeddings (or vectors) are then iteratively improved via

back-propagation. There are networks that are constructed and trained with the aim

of word vector/embedding generation (call this Type I) and some merely produce

such representations as a by-product (Type II). The ’breakthrough’ impact of sys-

tems such as word2vec[1] and GloVe[20] lies merely in the difference between it as a

Type I system having much lower computational complexity than its Type II counter-

parts. Large vocabularies and Deep Neural Networks have made for computationally

intensive (sometimes prohibitively so) systems, and this has fuelled advancement in

embedding technologies as the demand for systems with lower computational com-

plexity rises.

With respect to the training objective, word2vec and GloVe differ from regular

neural networks since they are designed with the aim of encoding general semantic

relationships in their resulting embeddings. Models that utilize regular neural net-

work typically produce embeddings (as an intermediate step) relevant to the specific

task for which the network is being used.

Remark: Semantically coherent word representations are relied on by tasks such as

language modelling and can be produced as such in a similar way as compared to Type

I models.

Given that models (such as word2vec [4]) for learning of distributed word represen-

tations have evolved from earlier approaches known collectively as language models,

we give an explanation of such models before addressing the structure of word2vec.

18

Notation

Since models are to be compared in this section, we assume the following notational

standards: Let there be a training corpus containing a sequence of T training words

w1, w2, ..., wT from a vocabulary V of cardinality |V |. Also let n be the number of

context words with respect to some target word w. Each word is to be associated

with an input embedding ww having d dimensions and an output embedding v′w.

The objective function Jθ (where θ represents the parameters of the model) is to be

optimized with respect to θ and for each input x, the score fθ(x) will be produced as

output.

Language Modelling

Definition: A language model is an algorithm for learning a function, that ’captures

the important statistical characteristics of the distribution of sequences of words in a

natural language, typically allowing one to make probabilistic predictions of the next

word given preceding ones’ [60].

The relation between language models and word embedding models is a close one.

Language model quality is typically evaluated based on the ability to learn a probabil-

ity distribution over words in V . Numerous state-of-the-art word embedding models

try to predict the next word in a sequence to some extent. In addition, word embed-

ding models are often assessed using perplexity. Perplexity is a cross-entropy based

measure also used in language modelling.

Computation of the probability probability of a word wt given its n previous

words, i.e. p(wt|wt−1, ..., wt−n+1) is the general objective of language models. The

Markov Property in conjunction with the Chain Rule for Derivatives can be used to

obtain the product of probabilities of each word given its n previous words which can

then be used as an approximation of the probability of an entire sentence. Such a

probability product can be expressed as:

p(w1, ..., wT) =
∏

i

p(wi|wi−1, ..., wi−n+1) (3.1)

20

Figure 3.4: Bengio [26] language model

Jθ =
1

T

T
∑

t=1

log p(wt|wt−1, ..., wt−n+1) (3.4)

Equation (3.3) is obtained from (3.4) by application of the chain rule since p(w1, ..., wT)

is given by Πip(wt|wt−1, ..., wt−n+1). Word sampling at test time can be done by choos-

ing the highest probability word p(wt|wt1, ..., wtn+1) for each t.

Classic Neural Language Models

The proposed neural language model by Bengio et al. [26] consists of a one-hidden

layer feed-forward neural network and predicts the next word in a sequence as in

Figure 3.4.

This model maximizes the neural language model objective function:

Jθ =
1

T

T
∑

t=1

log f(wt|wt−1, ..., wt−n+1) (3.5)

f(wt, wt1, ..., wtn+1) is the output of the model, i.e. the probability p(wt|wt1, ..., wtn+1)

as computed by the softmax layer, and n is the number of previous words fed into

21

the model.

The architecture presented in [26] forms the basis upon which current approaches

have gradually improved. The general building blocks of their model, however, are

still found in all current neural language and word embedding models. These are:

• Embedding Layer: a layer that generates word embeddings by multiplying

an index vector with a word embedding matrix;

• Intermediate Layer(s): one or more layers that produce an intermediate

representation of the input, e.g. a fully-connected layer that applies a non-

linearity to the concatenation of word embeddings of n previous words;

• Softmax Layer: the final layer that produces a probability distribution over

words in V .

Bengio et. al have pointed out that the intermediate layer may be replaced by an

LSTM (Long Short Term Memory) model, which is used by state-of-the-art neural

language models [32][33]. In their work, the final softmax layer is identified as the

network’s main computational bottleneck, since there is a proportional relationship

between vocabulary size |V | and the softmax computation. After Bengio et al.’s pi-

oneering work in neural language models, the limits of computing power slowed the

progress of model construction for large vocabularies. The work of Collobert and We-

ston [34] avoids computing the expensive softmax by employing a different objective

function. They use a pairwise ranking criterion as follows:

Jθ =
∑

x∈X

∑

w∈V

max{0, 1− fθ(x) + fθ(x
(w))} (3.6)

Collobert and Weston sample correct windows x containing n words from the set

of all possible windows X in their corpus. For each window x, they then produce a

corrupted, incorrect version x(w) by replacing x’s centre word with another word w

from V . Their objective now maximises the distance between the scores output by

the model for the correct and the incorrect window with a margin of 1. Collobert

et. al.’s model architecture, depicted in Figure 3.5, is analogous to Bengio et al.’s[26]

model.

23

Word2Vec

Given the reduction in computational complexity offered by our chosen embedding

model (the subject of two papers by Mikolov et al. in 2013 [1][2]), and its the demon-

strably superior performance of its embeddings on word similarity and word analogy

tasks as compared with embeddings from older models, we use word2vec for unsu-

pervised learning of vectors from our unlabelled data. Since embeddings are a key

building block of deep learning models for NLP, word2vec is often assumed to belong

to the same group. Technically though, word2vec’s architecture is neither deep nor

uses non-linearities (in contrast to Bengio’s model and Collobert’s model).

Mikolov et al. in [1] propose two architectures for learning word embeddings that

are less computationally expensive than previous models. In the work of [2], addi-

tional strategies for enhanced training speed and accuracy are proposed. The major

benefits of these architectures by Mikolov et. al. are:

• Eradication of the hidden layer bottleneck.

• Allowing the model to consider additional context.

Their model’s success can be particularly attributed to certain training strategies.

We examine both architectures in detail:

Continuous bag-of-words (CBOW)

Language models look only at the past words for their predictions, as it is evaluated on

its ability to predict each next word in the corpus, but a model constructed with the

primary goal of generating accurate word embeddings does not have this restriction.

Mikolov et al. thus use words both before and after the target word wt to predict it

as depicted in Figure 3.6. This is called the continuous bag-of-words (CBOW), as it

uses continuous representations.

The objective function of CBOW in turn is only slightly different from the lan-

guage model one:

Jθ =
1

T

T
∑

t=1

log p(wt|wt−n, ..., wt−1, wt+1, ..., wt+n) (3.7)

26

As the skip-gram architecture does not contain a hidden layer that produces an

intermediate state vector h, h is simply the word embedding vwt of the input word

wt. This also makes it clearer why we want to have different representations for input

embeddings vw and output embeddings vw, as we would otherwise multiply the word

embedding by itself. Replacing h with vwt yields:

p(wt+j|wt) =
exp(vTwt

v′wt+j
)

∑

wi∈V
exp(vTwt

v′wi
)

(3.11)

Note that the notation in Mikolov’s paper differs slightly from this thesis, as they

denote the centre word with wI and the surrounding words with wO. If we replace

wt with wI , wt+j with wO, and swap the vectors in the inner product due to its

commutativity, we arrive at the softmax notation in their paper:

p(wO|wI) =
exp(v′TwO

v′wI
)

∑V
w=1 exp(v

′T
w vwI

)
(3.12)

Chapter 4

Nlpnet Tagger Architecture

The POS tagger used in this work is implemented by E. Fonseca [4] and similar to

the work in [13]. This tagger (nlpnet) multiperceptron neural network based clas-

sifier used for POS Tagging, Chunking, Semantic Role Labelling and Parsing. In

its operation, nlpnet takes a window (of user-defined size) of tokens which are each

mapped to vectors of real values. The middle word of this token window is desig-

nated as our ’target word’ to be tagged. These vectors are our ’feature vectors’ which

are subsequently concatenated and fed to further layers of the neural network. Each

vector element requires one corresponding neuron in the input layer of nlpnet in

order to be received. The weighted output of the input (or ’embedding’) layer is fed

to the non-linear hidden layer which produces output that is carried forward to the

final (softmax) layer. The softmax layer consists of a number of neurons equal to the

size of our part-of-speech tag set. The score at each output neuron determines the

probability that the corresponding tag will be assigned to the target word.

The nlpnet tagger is available online. We use Fonseca’s implemented model initial-

ized with embeddings trained using unlabelled data and model described in Chapter

3. Nlpnet also utilizes WSJ data as its labelled data since training of this model is

done in supervised manner. This chapter examines the internal tagger architecture.

4.1 Mathematical Notation

This architecture learns various layers of representations (higher levels of represen-

tations as we move through each layer) using only sentences as inputs. We use

backpropagation to train the network parameters as the deep layers of the network

compute task relevant features. In general terms each word is considered by the first

layer for feature extraction. The second (hidden) layer considers word context win-

dows (5 windows before and after each target word in our case)in order to extract

27

29

i and j represent row and column indexes respectively. The concatenation of dwin

column vectors around the ith column of our real-valued matrix A (ie. A ∈ R
d1×d2)

is represented as

[〈A〉dwin

i]T = ([A]1,i−dwin/2
, ...[A]d1,i−dwin/2

, ...[A]1,i+dwin/2
, ...[A]d1,i+dwin/2

) (4.1)

4.2 Word Transformation

A major advantage of this architecture is its low preprocessing requirement of words.

That is, we may use words that are closer to raw text so that our method can learn

good word representations. Let D be some dictionary of size |D| where each word

has an index. The purpose of the first network layer if to map each word index

into a feature vector, via a lookup table operation. At first, our lookup table is

a matrix initialized randomly with real numbers and then trained iteratively via

backpropagation. For purposes of this thesis, we make use of unlabelled data obtained

from Twitter microblogs (ie. text portions of Tweets). Instead of using randomly

initialized vectors, we may populate our lookup table with our own pre-trained word

vectors, as is the case with our usage of word2vec for construction of Twitter-based

embeddings. Specifically, for each word w ∈ D, an internal dwrd-dimensional feature

vector representation is given by the lookup table layer LTW (·):

LTW (w) = 〈W 〉1w (4.2)

where W ∈ R
dwrd×|D| represents a matrix of parameters which must be learned

during training, 〈W 〉 ∈ R
dwrd is the wth column of W and dwrd is the user defined

word vector size. We consider sentences as sequences of T words [w]T1 in D from

which a matrix is produced as below:

LTW ([w]T1) = (〈W 〉1[w]1
〈W 〉1[w]2

... 〈W 〉1[w]T
) (4.3)

We use this matrix as input to further neural network layers.

30

4.3 From Word Vectors to Higher Level Features

Learning higher levels of representation (or in more intuitive terms, learning greater

levels of abstraction) is achieved by combination of feature vectors (from the lookup

table (3.16)) in subsequent neural network layers and finally, tag decisions for all

words are to be produced. The production to tags for each word of a given sentence

is a standard problem in machine-learning and natural language processing.

Two main approaches are presented in [13]; the first of these approaches being the

word window approach and the second being a sentence level, convolutional approach.

Given that our chosen task is POS Tagging, we focus only on the Word Window Ap-

proach in greater detail. For purposes of Semantic Role Labelling, the convolutional

approach may be considered.

Word Window Approach

This method assumes that the context of a target word is the ideal source of informa-

tion in predicting an appropriate tag for the target. For a given target word, a fixed

size ksz window of words around (ie. before and after) this word is considered. We

pass each word in the window, through the lookup table layer, and obtain a matrix

of word features of fixed size dwrd × ksz. Consider the resulting matrix as a dwrdksz-

dimensional vector obtained by concatenating each column vector, which can be fed

to further neural network layers. Specifically, first network layer gives a word feature

window as follows:

f 1
θ =

〈

LTW ([w]T1)
〉dwin

t
= (〈W 〉1wt−dwin/2

, ..., 〈W 〉1t , ..., 〈W 〉
1
wt+dwin/2

) (4.4)

31

Linear Layer.

We may input the fixed size vector f l
θ into one or more neural network layers which

perform affine transformations over their inputs:

f l
θ = W lf l−1

θ + bl (4.5)

where W l ∈ R
nl
hu×nl−1

hu and bl ∈ R
nl
hu are the network parameters to be trained by

backpropagation. Note that the number of hidden units of the lth layer is represented

by nl
hu. Given that we use nlpnet (the implementation provided by [4]), we instead

use the sigmoid function

σ(z) =
1

1 + e−z

where σ(z) is a given hidden layer neuron.

Scoring. The last layer L of our network is of size 44 given that the number of POS

tags defined according to our gold dataset (WSJ Penn Treebank data) has defined

such tags. We may then consider the output each neuron in L as representing the

score for each of our 44 part-of-speech tags. A given target word is therefore tagged

according to the layer L neuron with the highest score.

32

4.4 Training

By ’training’, we mean the use of stochastic gradient ascent for maximizing the like-

lihood over the training data. θ represents the trainable network parameters. The

training set T is used for training and tuning of parameters in order to maximize the

log-likelihood:

θ →
∑

(x,y)∈T

log p(y|x, θ) (4.6)

where x is a training word window or sentence and related features, and y is the

corresponding tag. We use the neural network outputs to compute p(·).

Word-Level Log-Likelihood

Upon consideration of an input example x, the network with parameters θ produces

a score for each word (of the input sentence) in turn. Specifically, the ith tag is given

a score [fθ(x)]i which is then taken to be the conditional tag probability p(i|x, θ) if

the softmax [37] operation is performed over all the tags:

p(i|x, θ) =
e[fθ]i

∑

j e
[fθ]j

(4.7)

Collobert et. al.[13] defines the logadd operation as:

logaddzi = log(
∑

i

ezi) (4.8)

so as to obtain the log-likelihood for one training example (x, y) as:

log p(y|x, θ) = [fθ]y − logadd[fθ]j (4.9)

Given the prevalence of correlations between neighbouring word tags in sentences,

another approach for neural networks maybe used that takes such dependencies into

consideration.

33

Maximizing Log-Likelihood

If we randomly choose some example (x, y) (where x and y are the training ex-

ample and tags respectively), we can maximize (3.19) using stochastic gradient [38]

as follows:

θ ← θ + λ
∂ log p(y|x, θ)

∂θ
(4.10)

where λ is a user specified parameter called the learning rate. Recall that the composi-

tion of functions fθ(·) = fL
θ (f

L−1
θ (...f 1

θ (·))) can then be interpreted as a representation

of multiple network layers, where L is the total number of layers. Out neural net-

work composed with the word-level log-likelihood (3.22). We can therefore obtain the

derivative via the chain rule being applied through the network and the word-level

log-likelihood (3.22).

Chapter 5

Evaluation and Discussion

In this chapter, we evaluate the effectiveness of our proposed word vector approach

to the chosen task. Firstly, in section 4.1, we demonstrate the our choices and results

with respect to vector generation. Section 4.2 focuses exclusively on part-of-speech

tagging performance comparisons and we present tagged sample tweets deemed in-

teresting with respect to our objectives.

5.1 Twitter-based Vectors

As specified in Section 3.1, we have obtained our word representations from approxi-

mately 60 million English language tweets using the Gensim Python implementation

[48] of word2vec. Before delving into our usage of this model, it was mentioned

earlier in Chapter 3 that computational ’bottleneck’ for word embedding models has

been the complexity of the calculations of the final softmax layer. Different methods

of reducing the softmax complexity have been proposed and can be largely categorized

as either sampling-based or softmax-based. It is worth noting that sampling-based

methods make a difference to our bottleneck at training time but during evaluation

of a normalised probability, the full softmax must be computed. Softmax-based ap-

proaches such as Hierarchical Softmax have been promoted by Morin et. al [52].

Softmax-based approaches keep the softmax layer intact, but achieve some increase

in efficiency by modification of the softmax architecture. Sampling-based methods

such as Negative Sampling [51] optimise some another loss function (ie. not softmax

but something different) that approximates the softmax. Such optimization is achived

though replacement of the normalization term in the softmax denominator with a less

complex loss function.

A Word on Negative Sampling

Noise Contrastive Estimation(NCE)[50] yields an approximation of the softmax loss

34

35

as sample size grows. The method of Negative Sampling (NeS), can be formulated

as an approximation to NCE. Specifically, NeS dispenses with the NCE guarantee,

since we would like to obtain high-quality word representations but have no concern

for lowering perplexity on some test data.

NeS minimizes the negative log-likelihood of training set words via a logistic loss

function. From [50], we have that the probability that a word w comes from the

empirical training distribution Ptrain given a context c is calculated by NCE as follows:

P (y = 1|w, c) =
exp(hTv

′

w)

exp(hTv
′

w) + kQ(w)
(5.1)

NeS takes kQ(w) (where Q represents the noise distribution) to be 1, thereby

avoiding the biggest part of computational cost, which gives:

P (y = 1|w, c) =
exp(hTv

′

w)

exp(hTv
′

w) + 1
(5.2)

Note that if Q is uniform and k is 1, then kQ(w) = 1. NEG is shown to be

equivalent to NCE when these assumptions are true. Consider (after setting kQ(w))

to 1, that P (y = 1|w, c) can be transformed into the sigmoid function:

P (y = 1|w, c) =
1

1 + exp(−hTv
′

w)
(5.3)

Using this in our logistic regression loss gives:

Jθ = −
∑

wi∈V

[log
1

1 + exp(−hTv
′

wi
)
+

k
∑

j=1

log(1−
1

1 + exp(−hTv
′

ŵij
)
)] (5.4)

Which can be converted to:

Jθ = −
∑

wi∈V

[log
1

1 + exp(−hTv
′

wi
)
+

k
∑

j=1

log(
1

1 + exp(hTv
′

ŵij
)
)] (5.5)

And when σ(x) = 1 + exp(x) , the NeS loss is:

Jθ = −
∑

wi∈V

[log σ(hTv
′

wi
) +

k
∑

j=1

log σ(−hTv
′

ŵij
)] (5.6)

From [1], we can let h = vwI
, vwi

= vwO
and vŵij

= vwij
.

36

As discussed, if k = |V | and Q is uniform, NEC and NeS are deemed equivalent. If

these assumptions cannot be made, NeS is just an approximation of NCE, so it does

not offer a direct optimization of correct word likelihood. This would be detrimental

to language modelling tasks but is a plus for learning word embeddings.

We list the chosen parameters for running Gensim word2vec:

1. Number of features - the dimension of generated word vectors; 50 in our usage.

2. Minimum word count - ignores words that appear less than this number of

times. We choose 10 as our cutoff.

3. Context - the maximum distance between the current and predicted word within

a sentence. Our window is set to 5.

4. Down sampling - threshold for negative sampling taken as 1e-3

5. Number of epochs - In practice, for word2vec, this has been set anywhere from

3 to 50. We use Gensim’s [48] default of 5 and note that further variation of

this quantity may lead to even better word representations.

6. CBOW or Skip-gram - According to Mikolov et. al [1], CBOW is faster to

train especially when coupled with negative sampling as an approximation of

softmax. This choice is also appropriate given that our dataset is relatively

large.

Given our parameter choices, we generate vectors for our Twitter vocabulary of size

348197. In Figure 4.1, we show the result of generating vectors on just 1 million tweets

(for simplicity of representation) where this plot (and Figure 1 of the Appendix) was

obtained via the use of tSNE (t-distributed Stochastic Neighbour Embedding) [49].

We show that social networking terms (tweet, followers, facebook etc.) are clustered

together and so are a range of interjections (yeah, heyy, haha etc.). The ability to

identify and utilize semantic similarities between such contemporary terminology is

invaluable for various NLP tasks, including our chosen tagging objective.

38

Twitter Slang Similarities

ikr Similarity ftw Similarity
Ikr 0.8678 FTW 0.7139
yess 0.8266 rox 0.6979
IKR 0.8131 comon 0.6825
nooo 0.8114 deym 0.6790
yesss 0.7947 Kreygasm 0.6702
srsly 0.7890 stronk 0.6653
ofc 0.7878 hooo 0.6545
hahaha 0.7878 lookit 0.6479
ahaha 0.7795 arghhhh 0.6432
hahahah 0.7777 ohmy 0.6432

Table 5.1: The 10 closest contemporary slang expressions to the considered slang
terms and their similarity measures

Celebrity Similarities

bieber Similarity trump Similarity
timberlake 0.9434 bernie 0.9072
beiber 0.9246 hillary 0.9063
mendes 0.8537 sanders 0.8776
Beiber 0.7989 cruz 0.8768
gomez 0.7955 clinton 0.8672
biebers 0.7924 romney 0.8635
sivan 0.7808 drumpf 0.8628
malik 0.7719 obama 0.8469
cabello 0.7716 rubio 0.8401
grande 0.7692 kasich 0.8371

Table 5.2: The 10 closest celebrity names to the considered celebrities and their
similarity measures

39

5.2 Tagger Performance

Our chosen taggers were evaluated on 269 tagged Twitter sentences provided as a

development set in the work of Derczynski et. al. in [44]. In keeping with the ex-

ample of [4], we have chosen a maximum entropy model (the OpenNLP tagger [15])

as a suitable candidate for performance comparison since other POS Tagging models

employ different tagsets and different test data. Our undertaking of this work is mod-

estly aimed at demonstrating some improvement to our known tagger performance

using vectors from a previously untapped source (Twitter).

In testing nlpnet[4] POS tagging performance, we have taken a simplified approach:

1. Since our base case (usage at LeadSift) tagging has been done without emphasis

on prefix/suffix features, we do not consider such features in this work. How-

ever, we include capitalization in training our network. This feature yields 5

additional vector dimensions.

2. For training of the OpenNLP tagger, we use the labelled WSJ dataset and then

a combination of WSJ with 551 labelled Twitter sentences from [41].

3. In our calculation of per-word-accuracy, we consider only the first 36 tokens

(Penn Treebank token list) presented in the Tag Description tables provided

in the Appendix. The justification for such an exclusion lies in our observa-

tion that punctuation marks, hashtags and quotes are accurately recognized

and tagged regardless of training method and therefore, such tags are deemed

inconsequential to our ultimate result.

4. Using the recommendation of [4], we also choose a word window size of 5 and

use the learning rates 10−3 for two epochs and 10−4 for a further 100 epochs.

A larger number of epochs and subsequent learning rate changes may be con-

sidered. However, we limit the number of passes over our data so as to avoid

lengthy training times but yet obtain satisfactory tagger performance.

5. In determining the precise form of our target outcome, we demonstrate ‘what

tags are given to our Twitter sentences before training with embeddings (ie.

training on WSJ data only) and after our embeddings are included.’

40

Approach

Tagger Labelled Data Twitter Embeddings
POS

(PWA %)
Nlpnet (100 hln) WSJ No 81.09
Nlpnet (500 hln) WSJ No 81.77
Nlpnet (100 hln) WSJ Yes 84.40
Nlpnet (500 hln) WSJ Yes 85.03
OpenNLP WSJ N/A 67.94
OpenNLP WSJ + Twitter N/A 74.28

Table 5.3: Tagger Performance in per-word-accuracy percentage. Embeddings are
not applicable (N/A) to OpenNLP.

We have utilized their industry standard numbers of hidden layer neurons (hln) in

nlpnet for comparison on the POS tagging task. In particular, the major resulting

factor from variation of this quantity has been the observed difference in rate of

tagging. Specifically, our model when trained with 500 hln tags 293 sentences per

second (sps) while 100 hln yields 606 tagged sps.) Some difference in per-word-

accuracy PWA is observed and reported; though we note that the disparity between

our results of interest (PWA with embeddings vs. without embeddings) is emphasized.

In consideration of testing statistical significance (or lack thereof), we use the

approach of Fonseca et. al. in [7]. We shuffle the outputs of both models in bold in

Table 4.3 and estimate the likelihood that two random partitions (each containing all

269 test sentences) have an accuracy difference greater than or equal to that of our

observed results. We take the null hypothesis to be that the results of both tagging

models are from the same distribution and estimate the probability p that some actual

accuracy difference will be obtained. As in the Fonseca et. al’s approach we tag each

of our 269 sentences and assign the tagged (each sentence is tagged with both models)

sequences to two sets with equal probability of assignment. If we repeat this process

Y times and let the number y of times in which the difference in accuracy between

our sets exceeds or matches the difference in the actual results, we then let p = y+1
Y+1

.

Using Y = 1000 we conclude that there is a statistically significant difference between

Nlpnet (500 hln) + WSJ without embeddings and Nlpnet (500 hln) + WSJ

with embeddings given that p < 0.05.

41

5.3 Discussion

Upon our review of existing systems for Tweet tagging, we have seen two clustering

based taggers; Gimpel et. al. [40] achieve 92.8% accuracy after training on labelled

Twitter text and Ritter et. al. [41] obtain 88.4% tag accuracy using labelled and

unlabelled Twitter data for training. Derczynski et. al. [44] identify errors in ex-

isting taggers and obtain 88.7% per-word-accuracy from their system [45] trained

using unlabelled Twitter text and bootstrapping techniques. After evaluating the

OpenNLP POS tagger performance on our Twitter test sentences, we attain a max-

imum accuracy of 74.28% when the labelled Wall Street Journal data is combined

with 551 tagged Twitter sentences for training. The newly trained model (based on

nlpnet) exceeds its own prior performance on Twitter sentence tagging by 3.26%

when Twitter embeddings are used. We note that scalability is of concern given

the sheer size of data and corresponding lengths of training time involved in using

such systems as have been demonstrated in this work. However, we do not attempt

to demonstrate computational gains from parallel/distributed approaches to training

word2vec and/or nlpnet but we refer to works such as that of Ji et. al [54] and

Sierra-Canto et. al [55] for methods of parallelizing our architectures of interest when

needed. Our simple approach to Twitter POS tagging is empirically shown to be pos-

itively impacted by our incorporation of word2vec trained embeddings in nlpnet.

Nevertheless, our approach is yet to meet the performance achieved by previously

discussed models.

Chapter 6

Conclusion

We have seen that traditional part-of-speech taggers such as nlpnet[4],OpenNLP[15]

(trained on currently available labelled data) do not achieve good performance on

Twitter sentences (or more generally, we may say, sentences of the type frequently

generated via social media activity). We have attempted to improve upon the perfor-

mance of our existing nlpnet tagger which was trained solely on labelled non-Twitter

data.

It has been shown that Twitter data spanning a relatively short time period (3

months) yields a large enough collection of sample sentences of sufficient variety to

allow for unsupervised learning of word embeddings that can be used for word similar-

ity/analogy tasks as well as in development/training of systems for other downstream

NLP tasks such as Part-of-speech tagging. The sheer size of our leveraged Twitter

dataset serves as but one demonstration of the virtually unlimited access to up-to-date

(albeit unlabelled) data made possible by high velocity social media traffic generated

daily.

The positive change in POS tagging performance on Twitter sentences gives valid-

ity to our claim that the inclusion of Twitter-based word embeddings may yield better

tagged sentences when used to train systems designed for downstream (ie. beyond

simple generation of word embeddings) NLP tasks.

6.1 Future Work

Given the improvements made by our current word embeddings, we propose firstly

to expand our Twitter dataset considerably. The current state-of-the-art word em-

bedding algorithm, Glove [20], has been shown to generate vectors of superior quality

in various dimensions based on 2 billion tweets. The demonstrated success of their

approach through evaluation on Similarity and Named Entity Recognition tasks offers

an open challenge to enhance the tagging performance of nlpnet [4]. It may be of

42

43

interest to

(a) Use even larger (eg. 1 billion sentences) samples of Twitter data for training of

Word2vec thereby learning word vectors for a larger vocabulary of words. The

performance increase from our inclusion of Twitter embeddings indicates that

possibly even better POS Tagging performance may be obtained using vectors

trained on more data. We also expect to obtain better tagger performance by

including labelled Tweets in our supervised approach to training nlpnet given

that OpenNLP has benefited from the inclusion of a small number of such labelled

Tweets.

(b) Compare nlpnet performance on Twitter dataset via initialization of lookup table

with vectors generated by GloVe vs Word2Vec.

(c) Use generated vectors to investigate possible performance increases for Chunking

(Giving labels to ”segments of a sentence with syntactic constituents such as

noun or verb phrases (NP or VP)”.[13]) We note that this task may present a

significant challenge given the 140 character limitation on Twitter posts.

(d) Produce semantic role labels (SRL) for constituent parts of Twitter sentences

using vector trained models. We note that currently, nlpnet[4] assigns the tag

’unknown’ to words that it has not previously ’seen’ in training when generating

SRLs for a given sentence. This effect is minimized for each new term introduced

in our vocabulary list (and corresponding lookup table of vectors).

Bibliography

[1] Tomas Mikolov, Kai Chen, Greg Corrado and Jeffery Dean. Efficient Estimation
of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781, 2013.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado and Jeffery Dean. Dis-
tributed Representations of Words and Phrases and their Compositionality. Ad-
vances in neural information processing systems 26, pp 3111–3119, Stateline,
Nevada USA, Dec 10 2013.

[3] Tomas Mikolov, Wen-tau Tih and Geoffrey Zweig. Linguistic Regularities in Con-
tinuous Space Word Representations. HLT-NAACL. Vol. 13, pp 746–751, Atlanta,
GA USA, June 10—12, 2013.

[4] Fonseca, Erick Rocha, and Joao Lus G. Rosa. Mac-Morpho revisited: Towards
robust part-of-speech tagging. In Proceedings of the 9th Brazilian Symposium in
Information and Human Language Technology, pp. 98–107. Ceara, Brazil, Oct
21–23, 2013.

[5] Fonseca, Erick and Alusio, Sandra M. A Deep Architecture for Non-Projective
Dependency Parsing. Proceedings of the 1st Workshop on Vector Space Modeling
for Natural Language Processing, pp 56–61, NAACL-HLT, June 5, 2015, Denver,
Colorado, USA. May 31 —June 05, 2015.

[6] Fonseca, Erick and Rosa, Joo Lus G. A Two-Step Convolutional Neural Network
Approach for Semantic Role Labeling. The 2013 International Joint Conference on
Neural Networks, pp 1–7, Dallas, TX, USA, August 4—9, 2013.

[7] Fonseca ER, Rosa JL, Alusio SM. Evaluating word embeddings and a revised cor-
pus for part-of-speech tagging in Portuguese. Journal of the Brazilian Computer
Society. Vol 21, Issue 1, pp. 2:1–2:14, Feb 06 2015.

[8] Bick, E. The parsing system PALAVRAS: automatic grammatical analysis of Por-
tuguese in a constraint grammar framework. PhD thesis, Department of Linguis-
tics, Aarhus University, Jan 2000.

[9] Enrique Sanchez-Villamil, Mikel L. Forcada, and Rafael C. Carrasco. Unsupervised
Training of a Finite-State Sliding-Window Part-of-Speech Tagger. J. L. Vicedo et
al. (Eds.): EsTAL 2004, LNAI 3230, pp. 454-463, 2004. Springer-Verlag Berlin
Heidelberg 2004.

[10] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-
speech tagging with a cyclic dependency network. In Conference of the North
American Chapter of the Association for Computational Linguistics & Human

44

45

Language Technologies (NAACL-HLT), Edmonton, Canada, May 27—June 01,
2003.

[11] J. Gimenez and L. M‘arquez. SVMTool: A general POS tagger generator based
on support vector machines. In Conference on Language Resources and Evaluation
(LREC), Lisbon, Portugal, May 26—28, 2004.

[12] L. Shen, G. Satta, and A. K. Joshi. Guided learning for bidirectional sequence
classification. In Meeting of the Association for Computational Linguistics (ACL),
Prague, Czech Republic, June 25—27, 2007.

[13] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa,
P. P. Natural language processing (almost) from scratch. Journal of Machine Learn-
ing Research, Vol 12, pp 2493—2537, 2011.

[14] Fonseca, E.R., Ao Lus, G., Rosa, J. Mac-morpho revisited: Towards robust part-
of-speech tagging. In: Proceedings of the 9th Brazilian Symposium in Information
and Human Language Technology, pp. 98—107, Oct 21—23, 2013.

[15] The Apache software foundation. URL http://opennlp.apache.org, Accessed
on 10 Sept 2016.

[16] Richard Socher, John Bauer, Christopher D. Manning,and Andrew Y. Ng. Pars-
ing With Compositional Vector Grammars. Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics, Sofia, Bulgaria, Volume 1:
Long Papers, pp 455–465, Aug 4–9 2013.

[17] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple
and general method for semi-supervised learning. In Proceedings of ACL, pages
384—394, Uppsala, Sweden, July 11—16, 2010.

[18] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, Vol 34, pp. 1-47, 2002.

[19] Bengio, Yoshua. ”Learning deep architectures for AI.” Foundations and trends
in Machine Learning Vol 2, Issue 1, pp. 1—127, Jan 01 2009.

[20] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. Glove: Global
Vectors for Word Representation. EMNLP. Vol. 14., pp 1532–43, Doha, Qatar, Oct
29 2014.

[21] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the Amer-
ican Society for Information Science, Vol 41, Issue 6, pp 391–407, Sep 01 1990.

[22] Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instrumentation, and Comput-
ers, Vol 28, pp. 203—208, 1996.

46

[23] Douglas L. T. Rohde, Laura M. Gonnerman, and David C. Plaut. An improved
model of semantic similarity based on lexical co-occurence. Communications of the
ACM, Vol 8, pp. 627—633, 2006.

[24] John A. Bullinaria and Joseph P. Levy. Extracting semantic representations from
word cooccurrence statistics: A computational study. Behavior Research Methods,
Vol 39, Issue 3, pp 510—526, 2007.

[25] Remi Lebret and Ronan Collobert. Word embeddings through Hellinger PCA.
In Proceedings of the European Chapter for the Association of Computational
Linguistics, pp 482–490, Gothenburg, Sweden, April 26—30, 2014.

[26] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Janvin. A neu-
ral probabilistic language model. Journal of Machine Learing Research, Vol. 3, pp
1137—1155, 2003.

[27] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: deep neural networks with multitask learning. In Proceedings of ICML,
pages 160—167, 2008.

[28] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with
noise-contrastive estimation. Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems, pp 2265–
2273 .December 5-8, 2013, Lake Tahoe, Nevada, United States.

[29] Omer Levy, Yoav Goldberg, and Israel RamatGan. Linguistic regularities in
sparse and explicit word representations. Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning, pp 171–180, CoNLL 2014,
Baltimore, Maryland, USA, June 26-27, 2014.

[30] R. Miikkulainen and M.G. Dyer. Natural language processing with modular neural
networks and distributed lexicon. Cognitive Science, 15, pp 343–399, 1991.

[31] Teh, Yee Whye. A Bayesian interpretation of interpolated Kneser-Ney, School of
Computing, National University of Singapore, Technical Report TRA2, 2006.

[32] Kim, Yoon, et al. Character-aware neural language models. Proceedings of the
Thirtieth Conference on Artificial Intelligence, pp 2741–2749, Phoenix, Arizona,
USA. , February 12-17 2016.

[33] Jozefowicz, Rafal, et al. Exploring the limits of language modeling. arXiv preprint
arXiv:1602.02410, 2016.

[34] Collobert, Ronan, and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. Machine Learning, Pro-
ceedings of the Twenty-Fifth International Conference, pp 160–167, Helsinki, Fin-
land, June 5-9, 2008.

47

[35] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes Twitter users: real-
time event detection by social sensors. In Proceedings of the 19th international
conference on World Wide Web (WWW), pages 851—860. ACM, April 26—30,
2010.

[36] A. Culotta. Towards detecting influenza epidemics by analyzing twitter messages.
In Proceedings of the First Workshop on Social Media Analytics, pages 115—122.
ACM,Washington DC, USA, July 25—28, 2010.

[37] J. S. Bridle. Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition. In F. Fogelman Soulie and
J. Herault, editors, Neurocomputing: Algorithms, Architectures and Applications,
pages 227—236. NATO ASI Series, 1990.

[38] L. Bottou. Stochastic gradient learning in neural networks. Fourth International
Conference Neural Networks & their Applications, Nimes, France, November 4—8,
1991 : proceedings & exhibition catalog = Neuro-Nimes ’91 : Journées interna-
tionales Les réseaux neuro-mimétiques & leurs applications, Nimes, France, 4-8
novembre 1991 : actes et catalogue de l’exposition sponsored by ARC, JSAI, &
SEE ; with the support of EERIE & Multipôle régional du Languedoc-Roussillon.
Published 1991 by EC2 in Nanterre . Written in French.

[39] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie.
Dependency networks for inference, collaborative filtering, and data visualization.
Journal of Machine Learning Research (JMLR), Vo1, pp 49—75, Oct 2001.

[40] K. Gimpel, N. Schneider, B. OConnor, D. Das, D. Mills, J. Eisenstein, M. Heil-
man, D. Yogatama, J. Flanigan, and N. Smith. Part-of-speech tagging for twitter:
annotation, features, and experiments. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
pages 42—47. ACL, Oregon, USA, June 19—24, 2011.

[41] A. Ritter, S. Clark, O. Etzioni, et al. Named entity recognition in tweets: an
experimental study. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1524—1534. ACL, Oregon, USA, June 27—
31, 2011.

[42] J. Foster, O. Cetinoglu, J. Wagner, J. Le Roux, S. Hogan, J. Nivre, D. Hogan,
and J. van Genabith. # hardtoparse: POS Tagging and Parsing the Twitterverse.
In Proceedings of the AAAI Workshop on Analyzing Microtext, San Francisco,
California USA, Aug 07—11, 2011.

[43] P. Gadde, L. Subramaniam, and T. Faruquie. Adapting a wsj trained part-of-
speech tagger to noisy text: preliminary results. In Proceedings of the Joint Work-
shop on Multilingual OCR and Analytics for Noisy Unstructured Text Data, pages
5:15:8. ACM, Sept 17, 2011.

48

[44] Derczynski, Leon, et al. Twitter Part-of-Speech Tagging for All: Overcoming
Sparse and Noisy Data. Recent Advances in Natural Language Processing, pp
198–206 , Hissar, Bulgaria, Sep 9-11, 2013,

[45] GATE Twitter Part-of-Speech Tagger. University of Sheffield, https://gate.
ac.uk/wiki/twitter-postagger.html, Accessed on Sept 28 2016.

[46] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Mareinkiewicz. Building a
large annotated corpus of English: the Penn Treebank. Computational Linguistics,
19(2) pp 313-330, 1994.

[47] Internet Live Statistics, Real Time Statistics Project. http://www.

internetlivestats.com/twitter-statistics/ Accessed on 20 Oct 2016.

[48] Rehurek, Rahim. Gensim Word2Vec. Gensim Topic Modelling for Humans,
https://radimrehurek.com/gensim/models/word2vec.html Accessed on 05
Oct 2016.

[49] Maaten, Laurens van der, and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research Vol 9, pp. 2579—2605, Nov 2008.

[50] Gutmann, Michael, and Aapo Hyvrinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models.Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics, pp 297–
304, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010.

[51] Rong, Xin. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

[52] Morin, Frederic, and Yoshua Bengio. Hierarchical Probabilistic Neural Network
Language Mode. In Artifical Intelligence and Statistics Conference. Vol. 5, pp
246—252, Barbados, Jan 06 2005.

[53] Clark, A. Combining distributional and morphological information for part of
speech induction. In Proceedings of the tenth conference of the European chapter
of the Association for Computational Linguistics, pages 5966. ACL, Budapest,
Hungary, April 12—17, 2003.

[54] Ji, Shihao, Nadathur Satish, Sheng Li, and Pradeep Dubey. Parallelizing
Word2Vec in Shared and Distributed Memory. arXiv preprint arXiv:1604.04661,
2016.

[55] Sierra-Canto, Xavier, Francisco Madera-Ramirez, and Victor Uc-Cetina. Parallel
training of a back-propagation neural network using CUDA. The Ninth Interna-
tional Conference on Machine Learning and Applications, pp 307–312 , Washing-
ton, DC, USA, 12-14 December 2010.

[56] Rubenstein, Herbert, and Goodenough. Contextual correlates of synonymy. Com-
munications of the ACM 8.10, pp 627-633, 1965.

49

[57] Schtze, Hinrich, and Jan O. Pedersen. Information retrieval based on word senses.
In Proceedings of SDAIR’95, Las Vegas, Nevada, April 24—26, 1995.

[58] Hellinger distance. M.S. Nikulin (originator), Encyclopedia of Mathe-
matics. URL: https://www.encyclopediaofmath.org/index.php/Hellinger\
_distance, Accessed 28 Nov 2016.

[59] Martin, James H., and Daniel Jurafsky. Speech and language processing. Inter-
national Edition 710, 2000.

[60] Yoshua Bengio. Neural Net Language Models. URL: http://www.scholarpedia.
org/article/Neural_net_language_models, Accessed on 29 Nov 2016.

Appendices

50

51

Number Tag Description
1 CC Coordinating Conjuction
2 CD Cardinal Number
3 DT Determiner
4 EX Existential
5 FW Foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, omparative
9 JJS Adjective, superlative
10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NNP Proper noun, singular
15 NNPS Proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PRP Personal pronoun
19 PRP$ Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative

Table 1: POS Tag Descriptions

52

Number Tag Description
23 RP Particle
24 SYM Symbol
25 TO To
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or past participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WP$ Wh-pronoun
36 WRB Wh-adverb
37 OQUOT -
38 COMMA comma
39 COLON colon
40 DOLLAR dollar sign
41 PERIOD period
42 HASH hashtag
43 QUOT -
44 LBR -

Table 2: POS Tag Descriptions cont’d

53

Twitter Test Set POS Tag Distribution
Tag Frequency Tag Frequency
VBG 71 NNP 467
VBD 44 VB 453
VBN 34 WRB 10
VBP 67 CC 38
WDT 1 RBS 1
OQUOT - PDT 1
JJ 141 DOLLAR -
WP 10 RBR 2
VBZ 115 PERIOD -
DT 173 EX 0
LBR 0 IN 248
RP 18 HASH -
NN 902 CD 31
FW 1 MD 31
POS 17 PRPD 0
TO 72 NNPS 15
COMMA - QUOT -
PRP 167 JJS 3
RB 133 JJR 5
WPD 0 SYM -
COLON - UH 26
NNS 84 LS 0

Table 3: Distribution of POS Tags for all 269 sentences of our chosen Twitter test
set. Tags with frequency ‘-’ indicate the tags not considered during testing.

54

WSJ POS Tag Distribution
Tag Frequency Tag Frequency
VBG 17863 NNP 114942
VBD 36993 VB 151736
VBN 24264 WRB 2555
VBP 14943 CC 28696
WDT 5205 RBS 516
OQUOT 8636 PDT 434
JJ 79924 DOLLAR 8835
WP 3034 RBR 3683
VBZ 25882 PERIOD 47557
DT 99270 EX 1038
LBR 1719 IN 120226
RP 2042 HASH 180
NN 348180 CD 44321
FW 262 MD 11748
POS 10593 PRPD 10044
TO 27020 NNPS 3020
COMMA 58935 QUOT 6606
PRP 30927 JJS 2345
RB 41690 JJR 3942
WPD 203 SYM 62
COLON 6050 UH 104
NNS 72445 LS 32

Table 4: Distribution of POS Tags for entire WSJ dataset

Messaging Technology Similarities

sms Similarity text Similarity
SMS 0.7638 reply 0.8854
aadhar 0.7637 txt 0.8721
hotmail 0.7572 FaceTime 0.8076
debits 0.7449 unfollow 0.8009
airtel 0.7399 stalk 0.7980
mpesa 0.7398 delete 0.7835
Whatsapp 0.7362 facetime 0.7647
M-PESA 0.7314 texting 0.7596
irctc 0.7309 subtweet 0.7476
sbi 0.7266 txts 0.7436

Table 5: Twitter, sms and text top 10 similarities

55

Mobile and Email Technology Similarities

iphone Similarity email Similarity
macbook 0.8589 e-mail 0.9354
imac 0.7948 query 0.8471
Iphone 0.7932 invoice 0.8203
iPhone 0.7882 address 0.8135
samsung 0.7822 request 0.8099
blackberry 0.7749 msg 0.8057
IPhone 0.7671 website 0.8023
ios 0.7640 acct 0.8006
6plus 0.7529 inbox 0.7951
acer 0.7506 message 0.7911

Table 6: iPhone and email top 10 similarities

