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Abstract

A mobile manipulator is a manipulator arm mounted on the mobile platform to

offer more flexibilities to reach to the target position in the space. In recent years,

research activities in this area have expanded because of the mobility merges with

the manipulation. A good amount of research and improvements have been carried

out in the field of nonholonomic control of mobile vehicles and motion control of

manipulator arms. In literatures, control methods such as state-feedback, output-

feedback, dynamic coupling, model-based, adaptive tracking control, etc. have been

applied to the control of mobile manipulators.

One of the objectives of this research work is to construct the systematic mod-

eling of kinematics and dynamics of the mobile manipulator using the Lagrangian

dynamics under the nonholonomic constraints. Then design a controller for n+m

degree of freedom mobile manipulator with the aim of simultaneous control of the

velocity of the mobile platform and the motion of the end-effector. Using the idea

of kinematic backstepping control and adaptive torque control, a two-step control is

presented for the nonholonomic mobile manipulator. The kinematic velocity control

is designed in the first step such that all the desired trajectories are achieved. In

the second step, the adaptive torque controller based on the dynamics of the mobile

manipulator is designed such that the mobile platform velocity and the end-effector

position converge to the reference trajectories designed in the first step. The parame-

ters in this case are assumed to be completely unknown. The parameter update law is

formed and used along with the designed controller to update the parameters. Those

parameters are used as the estimates of the real parameters and a control signal is

produced. This control scheme provides an efficient solution to the motion control

problem. System dynamics is modeled in the MATLAB/Simulink and an appropri-

ate controller is modelled for the specified task. Simulink results validate that the

designed control method guarantees that the mobile manipulator states converge to

the desired trajectories.
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Chapter 1

Introduction

1.1 Background

A mobile manipulator is a robotic manipulator arm mounted on the wheeled mobile

platform [6]. Generally, robotic manipulators are held in a fixed place and are not

capable of traveling from their root location. Consequently, the workspace where the

end-effector of the fixed base manipulator can reach is a limited volume of the space.

If the manipulator is mounted on a mobile base, the workspace of the manipulator

can be expanded due to the physical movement of the mobile platform along with

the manipulator arm. This capability of the mobile manipulator gives the advantages

in the different fields like military, medical, education and mining to perform the

task that can be difficult for the stationary manipulator arms. It can be useful in

the pick and place application in the small workspace like a room or at medium

warehouses to accomplish the material handling task and other similar tasks. Each

robot is different and may have problems unique to it. The robot can only do a

specific task at a time. Mobile Manipulator term here refers to the terrestrial mobile

manipulator and not the water or space locomotion. Differential-drive wheeled mobile

manipulators and car-like mobile manipulators are simple and reliable wheel-based

propulsion system which is commonly used in smaller mobile robots. When the mobile

platform is a wheeled base subjected to nonholonomic constraints, the robotic system

is called nonholonomic mobile manipulator. In most literature, mobile manipulator

control problems are treated under the assumptions that the precise knowledge of

the dynamics of the mobile manipulator is available or the kinematic constraints are

ignored or the interaction between the vehicle and manipulator is ignored.

In the past three decades, robotics control has been become more interesting field

of research. Robotic control field can be considered as a combination of multiple en-

gineering disciplines such as mechanical, electrical and electronics. It requires a wide

knowledge of the mechanics and electrical part of a robot with the strong capability to

1
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model its performance. Further, it also requires strong mathematical and computer

programming skills to achieve the control task. Therefore this inter-disciplinary field

requires a broad knowledge. The main features of mobile manipulators include that

mobile manipulators use mathematical theories. They also use coordination and kine-

matics in their operations. The next section discusses how these mobile manipulators

work and the way in which they are controlled to answer the questions like how the

mobile manipulators are designed and how is kinematics used in the control and how

mobile manipulators are controlled.

1.2 Literature Review

Mobile manipulators are advantageous because they usually adapt to the different

environments that they are provided with and that they can coordinate together to

perform hard and complex jobs [7]. Here, the robotic arms and the wheels are con-

trolled by a computer enabling them to move accordingly. Hence there is a need

for assuring stability of the mobile manipulator. In the case of problems with the

design of the mobile robot manipulator, the kinematics problem is usually altered

to enable the robot to become more efficient [8]. Kinematics is very important in

the movement process of a mobile manipulator. Because of the rolling without slip-

ping conditions, nonholonomic mobile base is subjected to nonintegrable differential

constraints [9] [10]. Planning and controlling methods have been proposed for the

nonholonomic mobile platforms in following literature [11] [12]. On the contrary,

fixed manipulators are kinematically unconstrained. However, the loss of mobility

occurs at singular configuration for the end-effector velocity of the fixed manipulator.

A prevalent approach to manage singularities is to adopt a kinematically redundant

manipulator with a number of DOFs larger than the number of variables (i.e. joints

variable) needed to achieve a given task [10]. For example, for n DOFs manipulator,

if the numbers of variables are s, then the n − s extra DOFs can be used for opti-

mization of performance criteria or may be helpful in accomplishing additional task

requirements while performing a primary task [13]. This is also called as degree of

redundancy [10]. The other approach to overcome the singularity is by adding mo-

bility to the fixed manipulator base. In inverse kinematics, analytical and numerical

approaches are used to solve problems [8]. The mathematical solution of an equation
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will not always fall in line with the physical solutions. Hence the solution for each

machine is always different. Each problem uses a specific formula for it to be solved.

Motion planning allows for robots to plan the trajectory of their manipulators.

This gets more complex when it comes to robots with greater degrees of freedom [14].

One of the first attempts to overcome this problem is aimed at maneuvering through

two-dimensional spaces where the geometrical properties of the workspace can be ex-

ploited to come up with deterministic approaches, such as vertical cell decomposition

and shortest path roadmap [15]. The vertical cell decomposition involves collision-

free path in which roadmap vertices are created within trapezoid-shaped cells. The

collision-free path can be calculated using graph-based algorithms. The shortest path

roadmap utilizes graph nodes placed at obstacle apexes and an edge exists only in

the event a pair of apexes is mutually visible. In this approach, feasible paths may

touch obstacles, already accounted for during obstacle modeling. These methods,

however, become ineffective when applied to high-dimensional configuration spaces.

Despite this, they can be used as a part of complex algorithms. Another approach

is the creation of a probabilistic roadmap (PRM). It consists of a graph with nodes

marking a point in a free space and a pair of points can be connected if a straight-line

movement between the nodes is possible without collision. With this approach, one

can find a motion plan by sampling the points in the free space to find a collision-free

connection. Sample-based planning methods mostly achieve resolution completeness

and are commonly used in industry-grade problems. They can be divided into a

multi-query and a simple query. The latter generates a roadmap at the beginning to

represent the connectivity of the configuration space then later search requests can

be processed based from this. The former dies not build a roadmap at the beginning

but generates a branched graph when searching for a solution. The graphs grow and

are able to connect the initial and final configurations of one problem presented. This

is known as the rapidly-exploring dense tree (RDT).

Mobile manipulators exhibit a profile consisting of a robotic manipulator and a

mobile platform. It utilizes the manipulation capability of a fixed-based manipulator

and mobility in utilizing a mobile platform, offering more flexible material handling.

The leader-follower mobile manipulator is a coordination scheme where one or a group

of mobile manipulators act as a leader by tracking a preplanned trajectory and the
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other mobile manipulators act as followers by moving in a coordinated fashion with

the lead mobile manipulator [16]. There may be a parameter uncertainty in the mod-

elling process of the robot which can be overcome by applying a decentralized control

law to individual robots. Hybrid position-force control can also be used in a decen-

tralized/centralized control scheme [16]. In this scheme, the object is controlled in a

certain direction of the workspace, with internal forces of the object controlled in a

small range of the origin. Robust adaptive controllers of mobile manipulators operat-

ing in a coordinated manner with a single load have been investigated with unknown

parameters and disturbances. Coupled dynamics have also been investigated, present-

ing two cooperating mobile manipulators controlling an object with relative motion.

This was performed in the presence of uncertainties and external disturbances. Cen-

tralized robust adaptive controllers are usually introduced in such a configuration to

guarantee motion and force trajectories of the load. A simulation study investigating

the decentralized dynamic control for a robot collective with non-holonomic wheeled

mobile manipulators by tracking trajectories of the load was performed. Reference

signals were used for each robot, one for the mobile platform and another for the

end-effector of the manipulating arm. Centralized control approaches may present

intrinsic problems. The main problems are the difficulty to maintain communication

between the robot and limited scalability of the configuration. Despite this, it can

prove useful and have a technical benefit when applied to a control group of robots.

This was proposed in a simulation with a centralized multi-robot system in an escort

mission. The escorted agent was placed in the centroid of a polygon of n sides sur-

rounded by n robots at the vertices of the polygon [16]. Proposed controls are flexible

and robust when exposed to uncertainty and external disturbances. There is a popu-

lar and relatively simple control technique based on feed back control, that is feedback

linearization. Moralez et. al considered a problem formulation where linearization

of a general affine nonlinear control system was attained through the change of co-

ordinates on the mobile manipulator [17]. It was generalized by Brockett to solve a

linearization problem using approaches exploit capabilities for nonholonomic mobile

manipulators [18]. One drawback of this approach is that the involutivity condition

has to be maintained throughout operation, thereby limiting the number of classes

that can utilize this model. It is also limited in its ability to ensure stable operation
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when the nonlinear system exhibits zero dynamics. Despite this, it is possible to ex-

tend the feedback linearization to nonminimum phase systems. This was illustrated in

the model based on fabricating a minimum phase approximation of the original model

using inner-outer factorization. Generalized feedback linearization (GFL) is another

non-linear control technique closely related to feedback linearization, the difference

being that it addresses the restrictions of feedback linearization [19]. The additional

denominator in the GFL control law prevents the controller from cancelling the sys-

tem zero dynamics. Backstepping is a technique that can be used in systems with a

specialized structure. It attempts to solve the nonholonomic navigation drawbacks

that prevent tracking of a reference trajectory, following a path and point stabiliza-

tion [20] [21]. It utilizes a Lyapunov design based on virtual controls [22]. Robust

backstepping leads to a quadratic robust control Lyapunov functions (rclf) in a set

of transformed coordinates [23] [24]. This type of rclf can generate control laws with

local gains that are not entirely necessary, leading to excessive control efforts such

as high magnitude chattering in the control signal. This property is amplified at

every stage in recursive backstepping design. This is evident in comparison with

simulation results of a second-order uncertain system under robust feedback control

laws created using quadratic and flattened rclf. This comparison shows that the

chattering is wasteful as the trajectories in the state space were nearly identical. As-

sumptions regarding smoothness can be made in recursive backstepping models as

there is a need to calculate function derivatives during the creation of control law

and Lyapunov function [25]. In nonlinear systems, it becomes difficult to satisfy such

assumptions. Some models using backstepping designs lead to construction of rclfs

for strict feedback systems, assuming a perfect state feedback.

A backstepping tracking controller developed using a hybrid neural network for

a nonholonomic mobile manipulator with dual arms to achieve precise velocity and

position tracking with uncertainties and disturbances was tested [26]. This configura-

tion was contained the sliding mode neural network controller, the robust controller

and the proportional controller. This is found to guarantee close-loop asymptomat-

ically stability while restraining the system behavior in the sliding surface in the

event of system uncertainties [26]. The simulation displays feasibility and effective-

ness when utilizing such a configuration. Initially, adaptive control is proposed for
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trajectory/force control of mobile manipulators with either holonomic or nonholo-

nomic constraints with unknown parameters. Researchers have investigated whether

the trajectory and force tracking controls of nonholonomic mobile manipulators with

unknown inertia parameters, constraints and disturbances are effective and achieve

the desired results [27]. Such controls ensured the output of the dynamic system

tracked the variable signals and effectively stabilized the system depending on the

desired force or motion [28]. This was further simulated on the control of a two wheel

driven mobile manipulator and indicated that the proposed model was effective.

Adaptive control schemes can be developed based on two types of designs: direct

and indirect designs [29]. The direct adaptive control system has control parameters

that are directly drawn form an adaptive law that tracks errors. An indirect adap-

tive control system, on the other hand, has controller parameters that are calculated

simultaneously using on-line estimates updated from a parameter estimator. Robust

adaptive control is proposed for mobile manipulator system in an environment ex-

hibiting parametric uncertainties and external disturbances [30]. This is created to

drive the task space desired end-effector and platform trajectories with respect to

nonholonomic constraints. Estimation of the unknown parameters and external dis-

turbances are done with the use of an update law in the adaptive control scheme [31].

The simulation of the proposed configuration proves successful, with future focus on

real implementation of the mobile manipulator system. Fang et.al proposed adap-

tive control strategies presented to control coordinated multiple mobile manipulators

carrying a common object with an external environment having uncertainties and dis-

turbances [32]. All control strategies are created to drive the system motion towards

the desired manifold. The proposal involved the development of the dynamics of

inter-connected system that included the coordinated mobile manipulator dynamics,

object dynamics and the interaction between object environments [33]. The adaptive

control law based on dynamic model and simulation lead to the conclusion that non-

regressor based controls are effective and could the configuration could be applied in

an external environment. Adaptive iterative learning control schemes have also been

proposed for trajectory tracking of robot manipulators performing repetitive tasks

under unknown parameters [34]. An iterative term is added to modify the behavior

of the configuration in the presence of unknown parameters and disturbances. This
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configuration is rigid but shows the use of adaptive control on the base of a mobile

manipulator in overcoming the position tracking problem [35]. Proof of convergence

was based on use of Lyapunov-like positive definite sequences which decreased under

the proposed control scheme [36].

PID feedback control schemes have been implemented in combination with an

input learning scheme, with proposals aiming for the learning of periodic robot mo-

tion [37]. The PID feedback controller, located in the learning controller, stabilizes

the response of robot dynamics. Simultaneously, the learning controller computes the

desired torques in the actuator for feedforward nonlinear dynamics compensation in

its steady state. The error signals in the learning control system show that the motion

trajectory converges to the desired on asymptomatically, ensuring its effectiveness in

stabilizing the mobile manipulator and having significant gains in tracking and con-

vergence rate when the learning system is implemented in such a configuration. Model

based schemes have also been explored in regards to mobile manipulators. Some re-

searchers used a model-predictive trajectory-tracking control that utilizes linearized

tracking error-dynamics predicting future system behavior [38]. The controller pro-

posed has velocity and acceleration constraints while a smith predictor was used to

compensate for vision-system dead time. Another approach involved the modelling

and control of a spatial mobile manipulator, using dynamic model based approach [39]

has been proposed. The assumption in this model is that there is a perfect contact be-

tween the wheels and the ground and model is obtained using the Lagrange-dAlembert

formulation. Kinematic redundancy in this case is resolved by decomposing the mobile

manipulator into two subsystems, namely the mobile platform and the manipulator.

This is coupled with a robust interaction control algorithm. Wheel slip is a draw-

back in this model as it can adversely affect the tracking performance but the robust

control approach is used to minimize this effect to a greater degree. Simulation of

this configuration shows its algorithm can be effective. Another simulation involved a

kinematic model and dynamic model, using this model based approach to control and

omnidirectional mobile manipulator [40]. The nonlinear control design was studied

based on these models and utilized an input-linearization method. An impedance

control is added to this configuration so as to allow for the unification of the control

structure in the main case of robot interaction within the environment. It also solves
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instability problems. Simulation presents good behavior when the system was met

with obstacles, with respect to the different values of impedance.

Typically, nonholonomic mobile manipulator systems can be described by a kine-

matic model with a velocity inputs. These velocity inputs are the available commands

when applying a closed loop controller to the robotic system. The kinematic model is

suitable for planning and control problems therefore once a kinematic controller has

been developed, it is easy to design a corresponding dynamic controller with torque

inputs [41]. Two main strategies are mostly used for the feedback control of the mo-

bile manipulators to perform a given task. Kinematic output tracking method using

the error between the actual and desired output trajectory to control the trajectory

tracking. The Jacobian is associated with the kinematic control and because the

nonholonomic mobile manipulators are redundant with respect to the given tasks,

the controller needs to include a null-space actions. This can be done by local op-

timization techniques with one of the objectives of being singularity avoidance [42].

The other method is state tracking method. In this method a reference trajectory

is associated to the desired trajectory and then the error between the actual and

desired trajectory is used to track the desired trajectory. The problem is then fixed

by using existing stabilization methods. State tracking method gives a good control

of the whole configuration of the nonholonomic mobile manipulator. Furthermore,

output tracking methods are easier to design but cannot satisfy the accurate control.

The aim of this thesis is to present a kinematic velocity control for the differential

drive nonholonomic mobile manipulators and then design a suitable dynamic torque

controller.

1.3 Thesis Contribution

The following can be expressed as novel contribution presented in this thesis:

1. This thesis presents a systematic mathematical modeling of kinematics and

dynamics of a 5-DOF mobile manipulator system.

2. This thesis presents a novel control strategy for the nonholonomic mobile ma-

nipulator for n-DOF mobile manipulator system with mathematical derivation

and simulation studies.
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1.4 Thesis Organization

The thesis is organized in 6 chapters:

Chapter 1 explains the brief background of the mobile manipulator systems. It

presents previous work in the field of modeling and control of mobile manipulators.

Different control techniques for mobile manipulators are discussed featuring kinematic

control, nonlinear control strategies, model based, backstepping, adaptive, robust

adaptive methods.

In chapter 2, the detailed kinematics and dynamics modeling of a mobile manip-

ulator is presented. The forward and inverse kinematics, Jacobian method, mobile

manipulator system description, kinematic constraints are discussed briefly. Finally,

properties of dynamic systems are mentioned.

Chapter 3 presents the details of designed control strategy for the n DOF mobile

manipulator. Firstly, the problem formulation and control objective are presented

followed by the assumptions on the system. Then the designed controller is explained

with mathematical proof. Redundancy resolution method is also introduced in the

control design.

In chapter 4, Model based control is presented for the control of holonomic con-

strained nonholonomic mobile manipulator under the assumptions of known param-

eters and no external or internal disturbance. Control strategy is presented with the

block diagram. The detailed simulation studies on model based controller is presented

with results.

Chapter 5 analyses the simulation results on the backstepping adaptive aontrol.

This chapter presents an extensive simulation work and results for the proposed con-

troller applied on a 5 DOF nonholonomic mobile manipulator. System model and

control scheme is presented in the Simulink environment. Two cases are presented

with the two different trajectories to verify the effectiveness of the proposed controller.

Plots are shown and compared to justify the results.

Chapter 6 presents the summary on the research and suggestions on future work.



Chapter 2

Modeling of Mobile Manipulators

2.1 Kinematics Fundamentals

2.1.1 Kinematics

Kinematics deals with the motion of the system without considering the forces which

are responsible for that motion. Kinematics deals with the position, velocities and

acceleration. The description of the motion is relative to the reference frame and

hence position, velocity, acceleration and other higher derivatives are defined with

respect to the reference frame.

Position and orientation of a rigid body

Position and orientation of the object or point in Cartesian coordinates or space are a

familiar mathematical concept for the design and analysis of the robotic manipulators.

Components of the manipulator like links, joints and tools as well as the objects which

are in the surrounding of the manipulator are being traced regarding to the reference

frame in order to analyze the behavior of the kinematics. Position and orientation of

a rigid body are completely described in the space with respect to a reference frame.

As shown in the Fig.2.1, let O − xyz be the reference frame and x, y and z are the

unit vectors of the reference frame axis. The position of a point A on the rigid body

with respect to the reference frame can be expressed by Eq.(2.2), where,
−→
OAx,

−→
OAy

and
−→
OAz are the x, y and z direction components of the vector

−→
OA.

−→
OA =

−→
OAx +

−→
OAy +

−→
OAz (2.1)

From the above equation, the position of
−→
OA can also be written as a (3× 1) vector

−→
OA =


−→
OAx
−→
OAy
−→
OAz

 (2.2)

10
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Figure 2.1: Position and orientation of a rigid body

The vector
−→
OA is bound as it is fixed in position. Bound vector deals with the

forces whose point of action cannot be shifted. In contemplation of describing the

rigid body orientation, it is favorable to deal with the orthonormal frame attached

to the rigid body and express their unit vectors with respect to the original reference

frame [43]. These vectors are expressed with respect to the reference frame O − xyz
by the following equations,

OAx = x
′
= x

′
xx+ x

′
yy + x

′
zz

OAy = y
′
= y

′
xx+ y

′
yy + y

′
zz

OAz = z
′
= z

′
xx+ z

′
yy + z

′
zz

(2.3)

Rotation Matrix

Simplifying Eq.(2.3) which describes the rigid body’s orientation with respect to the

reference frame in a 3× 3 matrix form,

R =
[
x

′
y

′
z
′
]

=


x

′
x y

′
x z

′
x

x
′
y y

′
y z

′
y

x
′
z y

′
z z

′
z

 =


x

′T
x y

′T
x z

′T
x

x
′T
y y

′T
y z

′T
y

x
′T
z y

′T
z z

′T
z

 (2.4)
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Eq.(2.4) is termed as the rotation matrix and it is an orthogonal matrix satisfying

RTR = I,

where I is a 3× 3 identity matrix.

2.1.2 Forward Kinematics and Inverse Kinematics

Figure 2.2: Forward and inverse kinematics [1]

The robot kinematics can be classified in two categories: forward and inverse

kinematics. The forward kinematics is straightforward and the equation derivation

is not much complex [44]. Inverse kinematics is much more difficult in deriving the

equations and it is also computationally expensive and time consuming in real time

control of robot manipulators. Nonlinearities and singularities in the model makes

the inverse kinematics more difficult. The relation between the forward and inverse

kinematics is shown in the Fig.2.2.

Forward Kinematics

As stated earlier, a manipulator is a combination of serial links jointed together

with revolute or prismatic joints from the base through end-effector. Determining

the position and orientation of the end effector in term of joint variables i.e. joint

angle, is called forward kinematics of the serial link manipulators. To obtain forward

kinematics in organized manner, one should use a suitable kinematics model of the

robotic system. The PUMA robotic arm is shown in Fig.2.3 which gives the idea of

direct kinematics of the arm to reach the specified position and orientation in terms

of joint angles.
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Figure 2.3: PUMA robotic arm [2]

Denavit-Hartenberg Method

DenavitHartenberg method is the most common method used for describing the robot

kinematics. It uses the four parameters link length, link twist, link offset and joint

angle. A classical method to find out these D-H parameters is to systematically

assign a coordinate frame to each link [45]. However there are strong constraints to

place each frame because rotation of the link must be about z-axis and translation

of the link must be in x-direction. Due to this it is difficult to find out the Denavit-

Hartenberg parameters for the totally strange mechanism. Fig.2.4 describes the 2-link

manipulator and there are four Denavit-Hartenberg parameters ai, di, θi, αi. They

are link length, link off-set, joint angle and link-twist respectively. Using Denavit-

Hartenberg approach, the resulting coordinate transformation is obtained by Eq.(2.5).
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Figure 2.4: Classic D-H Parameters [3]

Ai−1i (qi) =


cvi −svicαi

svisαi
aicvi

svi cvicαi
−cvivαi

svi

0 sαi
cαi

di

0 0 0 1

 . (2.5)

It is clear from the above equation that the transformation matrix is the function

of the joint variable, that is, either di for the prismatic joint or vi for the revolute

joint. The Denavit-Hartenberg convolution grants formulating the direct kinematics

function by the composition of each transformation expressed in Eq.(2.5) into one

homogeneous transformation matrix.

T 0
n(q) = A0

1(q1)A
1
2(q2)A

2
3(q3)....A

n−1
n (qn). (2.6)

The calculation of forward kinematics function is periodic and can be obtained in an

organized form by simple products of the all matrices. This method can be used for

any open loop serial manipulator. Eq.(2.6) is the homogeneous forward kinematics

equation.
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Inverse Kinematics

The conversion of the position and orientation of the end effector of the manipulator

from Cartesian space to the joint space is called inverse kinematics of the manipulator.

Cartesian space is the space which includes position and orientation of the end effector

whereas joint space contains the joint variables.

There are two methods to solve the inverse kinematics problem analytically. They

are geometric solution approach and algebraic solution approach. If the joint variables

are known for the particular kinematics chain, the direct kinematics from Eq.(2.6)

can be calculated easily in a unique way. However, the solution to inverse kinematics

problem is difficult to find out due to the following reasons:

• More than one solution may exist.

• Equations are non-linear in most the cases, thus it is not possible to find the

closed-loop solution all the times.

• If the manipulator is kinematically redundant, there may be infinite solutions.

2.1.3 Differential Kinematics and the Jacobians

In the above section, direct and inverse kinematics of the manipulators have been

discussed. It shows the relationship between joint variables and the tool position and

orientation. Now in this section, differential kinematics will be discussed which gives

the relationship between the joint velocity and the tool linear and angular velocity.

It is possible to calculate the Jacobian matrix via the differentiation of the direct

kinematics function with respect to joint variables.

Forward kinematics of an n-degree of freedom manipulator can be written as

Eq.(2.7)

T (q) =

[
R(q) p(q)

OT 1

]
, (2.7)

where q = [q1, q2, q3, ..., qn]T is the joint variable vector. Tool position and orientation

changes with change in the joint vectors. The main objective of the differential

kinematics is to find the relationship between the joint variable velocity and end-

effector linear and angular velocities. Consider the end-effector velocity ṗ and angular



16

velocity ω as a function of q̇ joint velocities by means of the following equations,

ṗ = Jp(q)q̇

ω = Jo(q)q̇. (2.8)

In Eq.(2.8), Jp ∈ R3×3 is relative to the contribution of the joint velocity q̇ to the

tool linear velocity ṗ while in second equation, Jo is the 3× 3 matrix relative to the

contribution of joint velocities to the tool angular velocity ω. These equations can be

written in a more compact form as below,

v =

[
ṗ

ω

]
= J(q)q̇. (2.9)

Eq.(2.9) represents the differential kinematics of the manipulator. Geometric Jaco-

bian matrix is 6×n matrix and it is a function of the joint variables. Eq.(2.10) shows

the Jacobian matrix,

J =

[
Jp

Jo

]
. (2.10)

2.2 System Description

Consider the (n+m)-DOF mobile manipulator system as shown in Fig.2.5. The mobile

platform consists of a filled rectangular or circular plate and several wheels system.

The manipulator arm consists of n numbers of links and are connected together with

the rotation joints. The first link of the manipulator can rotate around z axis and the

other links can rotate up and down. The platform of the mobile manipulator is a 2

wheeled differential drive mobile robot. The manipulator is assumed to be mounted

on the center of the platform and on the midpoint of the wheel axle.

2.2.1 Kinematic Constraint

Mechanical systems can be classified into linear and nonlinear systems; and nonlinear

systems can be further grouped as constrained holonomic systems and constrained

nonholonomic systems. Constraints play an important role in governing the motion

of the mobile manipulator systems. In Fig.2.5, the platform is used as the wheeled

mobile robot which falls under this category.
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Figure 2.5: (n+m)-DOF mobile manipulator

Holonomic Constraint

A kinematic constraint is called holonomic if it is expressed in the following form,

fc(q, t) = 0, (2.11)

where q is the vector of generalized coordinates of the system. The holonomic con-

straint reduces the system DOF. For example, if there is P number of generalized co-

ordinates and Q number of holonomic constraints in the system, there are PP = Q−P
number of independent coordinates. Thus, PP number of coordinates are required to

describe the system and the same number of inputs are required to run the system.

Nonholonomic Constraint

A kinematic constraint is called nonholonomic if it cannot be expressed in the form of

Eq.(2.11). Nonholonomic constraints cannot be reduced to that form. In the mobile

manipulator system, the wheeled mobile platform is subjected to the nonholonomic

constraints. The concept and characteristics of nonholonomic constraint is presented
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Figure 2.6: Kinematic systems

in details in [46]. In most of the general mechanical systems, nonholonomic constraints

can be described by

fc(q, q̇, t) = 0. (2.12)

Assumptions

There are several assumptions made for the wheeled mobile platform.

Wheel nonholonomic constraint

• Wheel movement is limited to horizontal plane only. It means the mobile base

can only move in the X − Y plane. Also, it cannot move sideways (in the

direction of the axle of the wheels).

• Only point contact of the wheel to the horizontal plane. Also, it is subjected to

pure rolling condition. i.e. vc = 0 at the contact point.

• The friction between axle and wheel, the friction between wheel and contact

surface are completely ignored.

• The steering axis of mobile platform is orthogonal to the horizontal plane.

• It is assumed that the platform of the mobile manipulator is driven by two

motors independently.
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2.2.2 Kinematic Modeling of Mobile Manipulator

Assuming a 2-link manipulator mounted on the differential drive mobile platform.

Suppose θ1, θ2 and l1, l2 are joint angles and link lengths of the two links of the

manipulator arm respectively.

Figure 2.7: 5-DOF mobile manipulator system

The coordinates of the end-effector can be obtained from Fig.2.7.
xEE = x− l2 sin θ2 cos(θb + θ1)

yEE = y − l2 sin θ2 sin(θb + θ1)

zEE = l1 − l2 cos θ2,

(2.13)

where x, y is the position where the manipulator arm is mounted (also the postiion of

mobile base in the coordinate system) and θb is the orientation of the mobile platform.

Now taking the first order derivative of the end-effector coordinates,
ẋEE = ẋ+ l2 sin θ2 sin(θb + θ1)θ̇b + l2 sin θ2 sin(θb + θ1)θ̇1 − l2 cos θ2 cos(θb + θ1)θ̇2

ẏEE = ẏ − l2 sin θ2 cos(θb + θ1)θ̇b − l2 sin θ2 cos(θb + θ1)θ̇1 − l2 cos θ2 sin(θb + θ1)θ̇2

żEE = l2 sin θ2θ̇2,

(2.14)
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From Eq.(2.13) and Eq.(2.14), the derivatives of the end-effector coordinates can be

written in the following form
ẋEE = v cos θb + l2 sin θ2 sin(θb + θ1)ω + l2 sin θ2 sin(θb + θ1)θ̇1 − l2 cos θ2 cos(θb + θ1)θ̇2

ẏEE = v sin θb − l2 sin θ2 cos(θb + θ1)ω − l2 sin θ2 cos(θb + θ1)θ̇1 − l2 cos θ2 sin(θb + θ1)θ̇2

żEE = l2 sin θ2θ̇2.

(2.15)

Considering the end-effector velocity Ẋ and mobile base linear and angular velocities

and joint velocities of manipulator arm as η

Ẋ =
[
ẋ ẏ ẋEE ẏEE żEE

]T
η =

[
v ω θ̇1 θ̇2

]T
. (2.16)

η can be also represented in the term of right and left wheel velocities by Eq. (2.17)

η =
[
θ̇R θ̇L θ̇1 θ̇2

]T
(2.17)

Eq.(2.15) can be expressed in the form of Eq.(2.9) in Eq.(2.18)

Ẋ = Jη, (2.18)

where J is the Jacobian matrix of the nonholonomic mobile manipulator system and

the details of J is given in Appendix A.1. Also, from Eq.(2.15), it is clear that the

end-effector velocity is not depending on the length of the first link which rotaes

around the z axis.

2.2.3 Dynamics of Mobile Manipulators

Dynamics of the manipulator plays a very important role in the design of control al-

gorithm, analysis of manipulator structure, and simulation of the motion. Simulation

of the manipulator motion grants testing control strategies. Analysis of the dynamic

model of the manipulator is very helpful in the mechanical design of the manipulator.

Computation of the forces and torques required for the execution of typical motion

provides useful information for the designing joints, transmission and actuators [43].

Two widely used methods for the derivation of the equations of the motion of a manip-

ulator in the joint space are introduced. The first method is based on the closed-form
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Euler-Lagrange formulation and it is theoretically easy and systematic. The second

method is based on the Newton-Euler formulation and allows retrieving the model in

a repetitive form. It is computationally very efficient. We used the Euler-Lagrange

formulation to derive the dynamics of the system. This method deals with both the

wheeled mobile base and the manipulator arm as a whole system and implement the

analysis using the Lagrangian function. The Lagrangian L is defined as the difference

between the total kinetic energy and total potential energy.

L(q, q̇) = K(q, q̇)− P (q), (2.19)

The n-link manipulator dynamics can be written in the form given in Eq.(2.20) using

Euler-Lagrange dynamic method [43],

du

dt

∂L
∂q̇i
− ∂L
∂qi

= τ i, (2.20)

where, τ i is the corresponding torque of the ith joint and i = 1, 2..., n. Using the

Euler-Lagrange method, the following dynamic equation of the mobile manipulator

derived for an n-DOF manipulator mounted on the nonholonomic differential drive

mobile platform, the detailed calculation of the equation is presented in Appendix

A.2.

M(q)q̈ + C(q, q̇)q̇ +G(q) + f = B(q)τ , (2.21)

where M(q) ∈ Rn×n is the inertia matrix which is symmetric bounded positive def-

inite matrix; C(q, q̇) ∈ Rn×n is the centripetal and Coriolis matrix; G(q) ∈ Rn is

the gravitational forces vector; f =
[
fTn fTh

]T
=
[
(AT (qb)λ)T 0

]T
∈ Rn is the

generalized constraint forces, where λ =
[
λn λh

]T
is the Lagrangian multiplier

with λn consider the nonholonomic constraint and λh consider the holonomic con-

straints. B(q) ∈ Rn×m is a full rank input transformation matrix and also assumed

to be known; τ ∈ Rm is the control input to the system. q =
[
qTb qTa

]T
∈ Rn is

the vector of generalized coordinates. qb denotes the generalized coordinates of the

wheeled mobile base and qa denotes the generalized coordinates of the manipulator
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arm. The terms can be further represented as Eq.(2.22)

M(q) =

[
Mb Mba

Mab Ma

]
, C(q, q̇) =

[
Cb Cba

Cab Ca

]
, G(q) =

[
Gb

Ga

]
,

B(q) =

[
Bb 0

0 Ba

]
, τ =

[
τ b

τ a

]
(2.22)

where Mb, Ma describe the inertia matrices for the mobile base and manipulator arm

respectively. Mba and Mab describe the coupling inertia matrices of the mobile base

and manipulator arm. Cb, Ca are the centripetal and Coriolis torques for the mobile

base and manipulator arm, respectively. Cba and Cab are the coupling centripetal

and Coriolis torques of the mobile base and manipulator arm. Gb and Ga are the

gravitational force of the mobile base and manipulator arm, respectively. Bb and

Ba denotes the input transformation matrices of mobile platform and manipulator

arm, respectively. τb, τa are the control input of the mobile base and robotic arm,

respectively.

Constraint Equation of Nonholonomic Mobile Plarform

Let qb ∈ Rm and qa ∈ Rn describe the coordinates of the mobile base and the

coordinates of the manipulator arm respectively. Where m and n is the DOF of the

mobile base and manipulator arm respectively. The coordinates of the mobile base

can be described by Eq.(2.23).

qb =


x

y

θb

 , (2.23)

where x, y are the coordinated of the center of the mobile base and θb is the orientation

or the heading angle of the mobile base. According to assumptions made for the

wheels of the mobile base, the mobile base only moves in the direction perpendicular

to the axis of driving wheels which means pure rolling and nonslipping movement of

the mobile base. Wheels cannot slip or move in the lateral direction of the axis of the

wheels. Therefore, the nonholonomic kinematic constraint for the mid point of the

wheel axle where the manipulator arm is mounted can be expressed as Eq.(2.24)

ẋ sin θb − ẏ cos θb = 0. (2.24)
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The constraint Eq.(2.24) can also be written in the following form,

A(qb)q̇b = 0. (2.25)

where,

A(qb) = [sin θb − cos θb 0] (2.26)

Suppose there are l numbers of non-integrable and independent velocity constraints

and it is assumed to be have full rank l. The mobile platform here is assumed to be

completely nonholonomic and we can write A(qb) matrix of Eq.(2.25) as

A(qb) =
[
AT1 (qb) AT2 (qb) AT3 (qb) ... ATl (qb)

]T
. (2.27)

The nonholonomic generalized constraint forces can be given by Eq.(2.28)

fn = (AT (qb)λn)T . (2.28)

H(qb) ∈ Rn×m is a matrix with rank being m formed by a set of smooth and linearly

independent vectors spanning the null space of matrix A(qb), i.e.

HT (qb)A
T (qb) = 0, (2.29)

where H(qb) = [H1(qb), H2(qb)..., Hnb−l(qb)]. Note that here HTH is a full rank.

According to Eqs.(2.25) and (2.29), the first order velocity kinmeatic model of a

nonholonomic mobile platform which is also called the steering system can be written

in the following form,

q̇b = H(qb)α, (2.30)

where α is an auxillary function α ∈ R2 and called steering velocity of the kinmeatic

system. α1 and α2 are linear and angular velocity of the wheeled mobile platform re-

spectively and can be written as Eq.(2.31) or α1 and α2 are the left wheel velocity and

right wheel velocity of the mobile base respectively and can be written as Eq.(2.32).

α =
[
v ω

]T
(2.31)

α =
[
θR θL

]T
(2.32)
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Rewrite Eq.(2.30) in the specific kinematic form, in terms of linear and angular ve-

locities of the wheeled mobile platform and in terms of right and left wheel velocities.

q̇b =


cos θb 0

sin θb 0

0 1


[
v

ω

]
(2.33)

q̇b =


R

2
cos θb

R

2
cos θb

R

2
sin θb

R

2
sin θb

R

2D
− R

2D


[
θr

θl

]
, (2.34)

where R is the radius of the wheels and D is the distance of the two wheels of the

mobile platform.

Let η =
[
αT q̇Ta

]T
. Due to the nonholonomic constraint defined in Eq. (2.25)

and Eq. (2.30), there is an existence of a vector η̇, such that,

q̇ = H(q)η, (2.35)

and its derivative,

q̈ = H(q)η̇ + Ḣ(q)η. (2.36)

Considering the nonholonomic constraints and its derivatives given in Eq.(2.35)

and Eq.(2.36), the dynamics of the mobile maninpulator can be expressed by Eq.(2.37)

by putting Eq.(2.35) and (2.36) into Eq.(2.21).

M̄(q)η̇ + C̄(q, q̇)η + Ḡ(q) = τ̄ . (2.37)

Eq.(2.37) is the reduced dynamic equation of the robotic system.

M̄(q) = HT (q)M(q)H(q)

C̄(q, q̇) = HT (q)[M(q)Ḣ(q) + C(q, q̇)H(q)]

Ḡ(q) = HT (q)G(q)

τ̄ = HT (q)B(q)τ

(2.38)
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A more specific dynamic model can be described by[
HTMbH HTMba

MabH Ma

][
α̈

q̈a

]
+

[
HTMbḢ +HTVbH HTCba

MabḢ + CabH Ca

][
α̇

q̇a

]
+

[
HTGb

Ga

]

=

[
HTBbτ b

Baτ a

]
(2.39)

Dynamic Properties

Eq.(2.38) is the coupled dynamics of the mobile manipulator which has several prop-

erties discussed below.

Property 1: The inertia matrix M̄(q) is symmetric and positive definite matrix

which follows the following inequality:

λminM̄(q)I ≤ M̄(q) ≤ λmaxM̄(q)I, (2.40)

where λminM̄(q) and λmaxM̄(q) are the minimum and maximum eigenvalues of the

M̄(q).

Property 2: There exists a skew-symmetric relationship between the inertia matrix

M̄(q) and the centripetal and Coriolis matrix C̄(q, q̇) as follow:

XT [ ˙̄M(q)− 2C̄(q, q̇)]X = 0. (2.41)

Property 3: The left hand side of Eq. (2.37) is linearly parameterized in terms of

system parameters as shown below:

M̄(q)η̇ + C̄(q, q̇)η + Ḡ(q) = Y (q, q̇,η, η̇)p, (2.42)

where p is the vector of uncertain or unknown parameters and Y is a regressor matrix

which contains unknown parameters.



Chapter 3

Proposed Control Design

3.1 Problem Formulation

3.1.1 Challenging Problems

1. Mobile manipulators are kinematically redundant. Due to kinematics redun-

dancy, the mobile manipulators are subjected to have infinite solution for their

inverse kinematics and hence subjected to singularity [47]. The methods used

to calculate this inverse kinematics of redundant mobile manipulators are com-

putationally complicated.

2. A wheeled mobile base considered here is a differential drive mobile platform

which is subjected to nonholonomic constraints.

3. Due to different dynamics of a manipulator arm and a mobile base, there will

be a dynamic interaction between both dynamics [19] which will result in com-

plicated dynamic equations, which require more complicated and sophisticated

control.

4. It is very complicated to combine the motion control problem of the wheeled

mobile base and the posiotion control of the manipulator arm. Trajectory track-

ing task becomes more complicated and difficult to achieve due to simultaneous

movement of the manipulator and wheeled mobile base.

We address the modelling and control problem of the nonholonomic mobile manip-

ulators for the n-DOF manipulator mounted on the differential drive wheeled mobile

base. The present work firstly aims at the accurate modelling of the kinematics and

dynamics of the mobile manipulator using Lagrangian-Euler Dynamic method; sec-

ondly, design of a two-stage controller with the objective to track the desired position

and velocity of the end-effector. In the first step of the controller design, a kinematic

26
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control law is considered using the backstepping control method to control the ve-

locity of the mobile manipulator. In the second step, the adaptive computed torque

controller is designed which estimates the unknown parameters of the mobile manip-

ulator system and controls the torque in order to achieve the asymptotic trajectory

tracking of the end-effector.

3.1.2 Control Objective

The trajectory tracking problem for nonholonomic mobile manipulator can be de-

scribed as follows. Let there be a mobile manipulator consist of an n-links connected

together with revolute joints mounted on the nonholonomic wheeled mobile vehicle.

The system can be described by the Eq.(2.37) which is subjected to nonholonomic

constraints as Eq.(2.35). Those equations are rewritten here.

q̇ = H(q)η

η̇ = M̄−1(q)[τ̄ − C̄(q, q̇)η − Ḡ(q)].
(3.1)

η is assumed as

η =
[
αT q̇Ta

]T
, (3.2)

where α is the vector of steering velocity of the mobile platform and q̇a is the vector

of joint velocities of the manipulator arm mounted on the mobile base.

The controller is designed into two steps. First, motion/velocity tracking control

of the end-effector of the mobile manipulator assuming that the desired trajectory is

generated by kinmematic equations and then using that control as a virtual input to

Eq. (2.37) and by calculating the torque control τ̄ that accomplish the asymptotic

trajectory tracking of the mobile manipulator systems given in Eq. (3.1) for any de-

sired trajectory Ψd =
[
ẋd ẏd xEEd yEEd zEEd

]T
=
[
Ψ̇bd(t) Ψad(t)

]T
,

where ẋ and ẏ are the derivative of the x and y components of the mobile platform,

and xEE, yEE, zEE are the end-effector position coordinates in respective directions.

xEEd, yEEd, zEEd are the desired end-effector positions.

3.1.3 Assumptions

The following assumptions are made in the work presented.
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1. The nonholonomic constraints and the kinematics of the platform are considered

for the velocity control of the mobile platform.

2. The system is subjected to nonholonomic constraints.

3. No external forces act on the robotic system.

4. It is assumed that Ψd(t) is computable with Ψ̇bd(t). In other words mobile

manipulator is able to track the Ψd and Ψ̇bd simultaneously and Ψd and Ψ̇bd are

inside the range of the workspace of the mobile manipulator.

5. The desired trajectory of the end-effector Ψd(t) of the mobile manipulator is

assumed to be bounded and uniformly continuous and also assumed that it has

derivatives up to the second order and they are also uniformly bounded and

continuous. (However, assumed constant for the ZEE here.)

6. The desired velocity trajectory Ψ̇bd(t) of the mobile manipulator is assumed to

be bounded and uniformly continuous and also assumed that it has derivatives

up to the second order and their derivatives are also assumed to be uniformly

bounded and continuous.

7. It is assumed that the mass of the platform, mass of the links, length of the

links and the inertia parameters are unknown for the mobile manipulator sys-

tem. More significantly, the parameters of the mobile manipulator system are

unknown.

Barbalat’s Lemma [48]

If f : R+ → R is uniformly continuous and positive function for all t ≥ 0, and if

the limit of integral

lim
t→∞

∫ ∞
0

f(τ)dτ (3.3)

exist and finite, then

lim
t→∞

f(t) = 0 (3.4)

Definition

The Ls norm of a function f : R+ → R is defined as:

||f(t)||s =
(∫ ∞

0

|f(τ)|sdτ
)1

s . (3.5)
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for all s = [1,∞), while

||f(t)||∞ = max|f(t)| t ≥ 0. (3.6)

denotes the L∞ norm of function f . f ∈ Ls if ||f(t)||s exist and finite. For example,

f ∈ L2 if
∫∞
0
|f(τ)|2dτ <∞.

With the above given assumptions and system we can formulate the control prob-

lem as below,

3.1.4 Velocity Tracking Problem

Develop a control law ηc(t) such that all the state variables of the kinematic Eq.

(2.35) for any (Ψ(0), Ψ̇(0)) ∈ Φ, Ψ and Ψ̇ convereg to a manifold specified as Φd

Φd = {(Ψ, Ψ̇) | Ψ = Ψd, Ψ̇ = Ψ̇d}

Ψ =
[
ẋ ẏ xEE yEE zEE

]T (3.7)

To simplify the control objective, assume the tracking error of the desired tra-

jectory is e(t) and it can be written in the form of Eq. (3.8) where Ψ(t) denoting

the configuration of mobile platform velocity and the position of the end-effector and

Ψd(t) denotes the desired configuration of mobile platform velocity and the position

of the end-effector.

e(t) = Ψd(t)−Ψ(t) (3.8)

The control objecive can be formulated as

lim
t→∞

e(t) = 0 and lim
t→∞

ė(t) = 0 (3.9)

The basic block diagram of the designed controller is given in the Fig.(3.1).

3.1.5 Torque Control Problem

Using a property of the dynamic system given in Eq.(2.42) design a control law such

that all the state variables of the mobile manipulator dynamics converge to a desired

trajectory Ψd(t). In other words, design a controller τ̄ such that

lim
t→∞

η(t)− ηc(t) = 0 or lim
t→∞

ηe(t) = 0 (3.10)

where ηc(t) is the velocity controller designed in the first step and ηe(t) is the joint

velocities error between actual and controlled joint velocities.
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Figure 3.1: Block diagram of control scheme

3.2 Control Design

3.2.1 Kinematic Controller

We will use the backstepping approach to design a kinematic or velocity controller.

To design a motion tracking controller, we only consider the Eq.(2.35) which is the

kinematic equation of the mobile manipulator.

q̇ = H(q)η. (3.11)

Firstly define an output of the system as

Ψ = f(q), (3.12)

The error and its derivative can be written as

e = Ψd −Ψ

ė = Ψ̇d − Ψ̇
, (3.13)

where e is the velocity error of the mobile platform and the position error of the end

effector. Taking the time derivative of the Eq.(3.12)

Ψ̇ =
∂f(q)

∂q
q̇ =

∂f(q)

∂q
H(q)η = ∆η, (3.14)

where ∆ is a decoupling matrix or extended Jacobian matrix and can be represented

as

∆ =
∂f(q)

∂q
H(q). (3.15)

From Eqs. (3.13) and (3.14),

ė = Ψ̇d −∆η. (3.16)
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Let η = ηc, as the virtual velocity control,Eq.(3.16) can be written as,

ė = Ψ̇d −∆ηc. (3.17)

Choosing the Lyapunov function as,

V1 =
1

2
eTe. (3.18)

Taking the derivative gives,

V̇1 = eT ė

= eT (Ψ̇d −∆ηc) (3.19)

Choosing the kinematic control law ηc

ηc = ∆−1[Ψ̇d +Ke], (3.20)

where K > 0 is the positive constant control gain. Eq.(3.20) is the velocity tracking

kinematic controller. From Eqs.(3.17) and (3.20)

ė = Ψ̇d −∆[∆−1(Ψ̇d +Ke)] = −Ke. (3.21)

From Eq.(3.21) when K > 0, limt→∞ e(t) = 0.

V̇1 ≤ −K||e||2.

If ∆ is a full rank square matrix, then ∆−1 can be obtained via simple inversion. If ∆

is not a full rank matrix or the mobile manipulator is at a singular configuration, the

system given in Eq.(3.11) contains linearly dependent equations. In this case, ∆−1

cannot be derived from the simple inversion of ∆. An alternative solution to invert

the ∆ at the sinuglar point or in the neighbourhood of a singularity is provided by

the DLS inverse method [49, 50]. In the Damped Least Square inverse method, the

inverse can be written by Eq.(3.22)

∆−1 = ∆T
(

∆∆T + k2I
)−1

, (3.22)

where k is a damping factor.
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3.2.2 Adaptive Torque Control

In the first part of the controller design, kinematic velocity controller is designed to

track the desired trajectory of the mobile manipulator system. Using the controller

ηc, the adaptive torque controller is designed. System given in Eq.(2.37) is considered

to design the controller. Using the properties of dynamic system given in Eqs.(2.40),

(2.41) and (2.42), the adaptive torque controller is designed as follows.

Consider a Lyapunov function V2 as

V2 =
1

2
ηTe M̄ηe, (3.23)

where ηe is defined as a state error of the kinematically controlled system and can

be written as Eq.(3.24). Note that it is not an independent Lyapunov function for

the adaptive torque control as ηe given in the Eq.(3.24) depends upon the kinematic

control,

ηe = η − ηc. (3.24)

Taking the time derivative of the Lyapunov function V2 as

V̇2 =
1

2
ηTe

[
˙̄Mηe + 2M̄ η̇e

]
. (3.25)

From Eq.(3.24)

V̇2 = ηTe

[1

2
˙̄M
(
η − ηc

)
+ M̄

(
η̇ − η̇c

)]
. (3.26)

From Eq.(3.1), we have

V̇2 = ηTe

[
1

2
˙̄M
(
η − ηc

)
+ M̄

[
M̄−1

(
τ̄ − C̄η − Ḡ

)
− η̇c

]]
= ηTe

[
1

2
˙̄M
(
η − ηc

)
+ τ̄ − C̄η − Ḡ− M̄ η̇c

]
= ηTe

[
1

2
˙̄Mη − 1

2
˙̄Mηc + τ̄ − C̄η − Ḡ− M̄ η̇c

]
. (3.27)

Adding and subtracting C̄ηC in Eq.(3.27) and re-arranging the terms, we obtain

V̇2 = ηTe

[(1

2
˙̄Mη − C̄η

)
−
(1

2
˙̄Mηc − C̄ηc

)
− C̄ηc + τ̄ − Ḡ− M̄ η̇c

]
. (3.28)

Using the dynamic property of the mobile manipulator system, from Eq.(2.41) we

can simplify the Eq.(3.28) as follow

V̇2 = ηTe

[
τ̄ − M̄ η̇c − C̄ηc − Ḡ

]
. (3.29)
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Using the dynamic property in Eq.(2.42), the derivative of the Lyapunov function

can be written as

V̇2 = ηTe

[
τ̄ − Y

(
q, q̇,ηc, η̇c

)
p

]
. (3.30)

Therefore, the control law for the known parameters p can be chosen as,

τ̄ = Y
(
q, q̇,ηc, η̇c

)
p−K1ηe, (3.31)

where K1 is a constant control gain positive definite matrix.

With K1 being positive definite matrix,

V̇2 = −ηTeK1ηe ≤ −λmin(K1)||ηe||2. (3.32)

However here in Eq.(3.31), p is the vector of uncertain or unknown parameters. So

we need to add the adaptive controller to estimate the constant value of vector p.

Define the estimated parameter vector is p̂ and then define the error between actual

and estimated parameters as

ep = p− p̂. (3.33)

Choosing the control law τ̄ , and parameter update law ˙̂p as

τ̄ = Y (q, q̇,ηc, η̇c)p̂−K1ηe

˙̂p = −(Γ−1)TY (q, q̇,ηc, η̇c)
Tηe

= −Γ−1Y (q, q̇,ηc, η̇c)
Tηe (3.34)

where Γ is the symmetric positive definite gain matrix which ensures that Eq.(3.35)

is positive definite.

Consider the Lyapunov function V3 as

V3 = V2 +
1

2
eTp Γep. (3.35)

Taking the time derivative of the Lyapunov function,

V̇3 = ηTe

[
τ̄ − Y (q, q̇,ηc, η̇c)p

]
+ ėp

TΓep

= ηTe

[
τ̄ − Y p

]
+ (− ˙̂p)TΓ(p− p̂) (3.36)
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Using the parameter update law from Eq.(3.34),

V̇3 = ηTe

[
τ̄ − Y p

]
+ (ηTe )Y (Γ−1Γ)(p− p̂)

= ηTe

[
τ̄ − Y p + Y p− Y p̂

]
= ηTe

[
τ̄ − Y p̂

]
≤ ηTeK1ηe

≤ −λmin(K1)||ηe||2. (3.37)

From the Lyapunov stability theorem and definition given in Eqs.(3.3)-(3.6), ηe ∈ L∞.

Integrating Eq.(3.37) we get,

V2(t) ≤ V2(0)− λminK1

∫ t

0

||ηe||2dt.

Rearranging the above equation,∫ t

0

||ηe||2dt ≤
V2(0)− V2(t)
λminK1

,

Since V2(0) is finite and V2(t) ∈ L∞, we can write, ηe ∈ L2. Also, because η̇e is a

function of ηe. In Eqs.(3.32) and (3.37), λmin(K1) is the minimum eigenvalue of the

control gain K1. Thus from the Barbalat’s lemma we can write

lim
t→∞

ηe = 0 =⇒ lim
t→∞

η = ηc. (3.38)

Hence the system tracking error tends to zero asymptotically and the system in (3.34)

is Lyapunov stable.



Chapter 4

Simulation Results on Model Based Control

The chapter descries the model based control of mobile manipulators, with the aid

of the concept of feedback linearization. The basic idea of utilizing this approach in

the chapter is to assist in the conversion of the nonlinear system into a full or partial

linear system, by algebraic calculations so as to apply linear control techniques. This

is applied to holonomic constrained nonholonomic mobile manipulators. In turn, the

chapter outlines the attempt to provide a solution to motion/force control, citing

limitations of the model in the sensitivity to the accuracy of the dynamic model.

Simulation was performed to determine the effectiveness of the proposed controller.

MATLAB/Simulink was used for the simulation purpose. Simulink is a MATLAB

toolbox, which provides customized block libraries and solvers for modeling and sim-

ulating dynamic systems. The simulation procedure in Simulink can be described by

Fig.4.1.

Figure 4.1: Simulation procedure in MATLAB/Simulink

35
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4.1 Model Based Control (MBC)

A complicated dynamic model of the mobile manipulator is created in the Simulink by

programming the MATLAB Function Block. Case study on a model based controller

was performed in Simulink. The model based control architecture [4] implemented

in the Simulink. The generalized block diagram of the model based control is shown

in Fig.4.4. The closed loop system was modeled in Simulink for the holonomic con-

strained nonholonomic mobile manipulator. The overall Simulink block diagram is

shown in the Fig.4.2.

Figure 4.2: Simulation block diagram of model based controller

The mobile manipulator assumed was subjected to the holonomic and nonholo-

nomic constraints. The mobile manipulator was subjected to the following constraints

given in Eq.(4.1).

−ẋ sin θ + ẏ cos θ + lθ̇ + rθL = 0

ẋ sin θ − ẏ cos θ + lθ̇ + rθR = 0

ẋ cos θ + ẏ sin θ = 0. (4.1)

The mobile manipulator system considered for this simulation is shown in Fig.4.3.

The manipulator is mounted on the nonholonomic mobile base such that the distance

between the center of the wheel and the first link of manipulator is d as shown in the

figure. The reduced dynamic model of a mobile manipulator was considered from the
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Figure 4.3: Mobile manipulator system considered for the model based control [4]

reference [4] given in Eqs.(4.2) and (4.1) and details of the dynamic terms are given

in Appendix A.4.

MLζ̈ + CLζ̇ +GL + dL(t) = LTu (4.2)

where

ML = LT (ζ)M1L

CL = LT (ζ)C1

GL = LT (ζ)G1

dL = LT (ζ)d1(t).

Due to the space limit only reduced dynamic equations are shown here. The detailed

dynamics and its reduction is given in the literature [4]. The system has several

dynamic properties same as described in the dynamic properties section. Mobile

manipulator dynamics are as in Eqs.(2.40), (2.41) and (2.42).

Assumption 1

The desired trajectory ζd(t) is assumed to be uniformly bounded and continuous. It is

uniformly bounded and the second order derivative is continuous. This assumption is

made because it is required for the controller design where ζ̇d(t) is used as in Eq.(4.3),

eζ = ζ − ζd

ζ̇r = ζ̇d −Kζeζ

r = ėζ +Kζeζ

(4.3)
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The system dynamics can be written in the following form,

MLζ̈ + CLζ̇ +GL + dL = LTua. (4.4)

Considering there is no external disturbance, i.e. dL = 0, and the dynamics of mobile

manipulator is known completely, the model based control law used for the simulation

is given by Eq.(4.5),

LTua = −Kpr −Ki

∫ t

0

rds− Φm (4.5)

where
Φm = CmΨm

Cm = [ML CL GL]

Ψm = [ζ̈r ζ̇r 1]T

Table 4.1: Mobile manipulator parameters used in simulation for the MBC control [4].

Parametrs Values Units

Mass of the mobile base (m) 1.0 kg
Mass of Link 1 (m1) 1.0 kg
Mass of Link 2 (m2) 1.0 kg

Moment of inertia of the mobile base (Ip) 0.5 kgm2

Moment of inertia of Link 1 (I1) 1.0 kgm2

Moment of inertia of Link 2 (I2) 1.0 kgm2

Wheel radius (R) 1.0 m
Length of Link 1 (l1) 0.5 m
Length of Link 2 (l1) 0.5 m

d 1.0 m
Initial q(0) [0, 4, 0.785, 0.1]T [m,m, rad, rad]T

Gravitational force (g) 9.8 m/s2

Table 4.2: Control gains used for the model based control

Control Gain Value

Kp Diag[1.0]
Kζ Diag[1.0]
Ki 0
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Figure 4.4: Generalized block diagram of model based control

4.2 Simulation Results

The parameters of the mobile manipulator used to test the model based control are

shown in Tables 4.1 and 4.2.

The desired trajectories are given as

yd = 1.5 sin(t)

θd = 1.0 sin(t)

θ1d =
π

4(1− cos(t))

Under the assumptions that the system model is completely known, the model

based control used to track the desired motion trajectories over the specified time

period. The trajectory tracking of the model based controller is shown in Fig.4.6.

From the figures, it is clear that the model-based control achieves the desired

responses. In Fig.4.5, individual joint positions tracking is shown. Actual responses

track the desired responses with some tracking error as shown in Fig.4.6. In Fig.4.7,

the error signals are not smooth and they are fluctuating throughout. The tracking

error results are not satisfactory for the given case. Also, the torque changing more
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Figure 4.5: Individual joint position tracking by model-based control.

Figure 4.6: Joint position trajectory tracking by model-based control.

greatly for the model-based control as shown in Fig.4.8. Although the control in-

put is bounded, there is a high fluctuation in the torque throughout the simulation

procedure. The presented system doesn’t consider any disturbances and it doesn’t

have any singularity in the system. The responses can be smoothly bounded by

applying a backstepping-adaptive controller for the mobile manipulator system sub-

jected to singularity. The velocities of the joints with MBC are compared with the

backstepping-adaptive control in the next chapter.
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Figure 4.7: Trajectory tracking error by model-based control.

Figure 4.8: Torque of the joints by model-based control.
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Figure 4.9: Velocities of the joints by model based control



Chapter 5

Simulation Results on Backstepping Adaptive Control

5.1 System Model and Control Scheme in MATLAB/Simulink

In Section 5.1, simulation results of the mobile manipulator are presented shown in

the Fig.5.1 using the controller presented in Eq.(3.34) for the system presented in

Eq.(3.1). The proposed controller is tested for the trajectory tracking of the end-

effector of the mobile manipulator along with the velocity tracking of the mobile

base.

Figure 5.1: Mobile manipulator considered in the simulation [5]

First consider a nonholonomic wheeled mobile manipulator shown in Fig.5.1. The

definitions of the parameters of the mobile manipulator are presented here in Ta-

ble 5.1. The dynamics of the mobile manipulator system is given in Eqs.(2.21)-(2.22)

and (2.35)-(2.39). The detailed dynamics of the mobile manipulator is presented in

Appendix A.4 . All the values of the parameters of the mobile manipulator considered

for the simulation are shown in Table 5.2.

43
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Table 5.1: Mobile manipulator variables

variable Description

τr, τl The torque of the two wheels
θr, θl The rotation angle of left and right wheel of the mobile manipulator
v Forward velocity of the mobile manipulator platform
w Rotation velocity of the mobile manipulator platform

m1, m2 the mass of link 1 and 2
mp the mass of the mobile manipulator platform

2L1, 2L2 the length of link 1 and 2
R the radius of the wheel of the mobile manipulator

x, y, θb Position and orientation of the mobile manipulator platform
2D Distance between the wheels
θ1, θ2 Angular position of link 1 and 2
Ib Moment of inertia of the mobile manipulator platform

I1, I2 Moment of inertia of link 1 and 2
g gravitational force

Table 5.2: Mobile manipulator parameters used in simulation for proposed control

Parametrs Values Units

mp 32 kg
m1 3 kg
m2 3 kg
Ib 1 kgm2

I1 1 kgm2

I2 1 kgm2

R 0.5 m
L1 1 m
L2 1 m
g 9.8 m/s2

The controller implemented for the control of the mobile manipulator can be de-

scribed in Fig.5.2. The same scheme was modelled in the Simulink for a given mobile

manipulator system to track the given desired trajectories Ψd.

Fig.5.3 shows the overall closed-loop system of the mobile manipulator with the pro-

posed controller in the Simulink environment. The nonholonomic dynamic model of

the 2-link mobile manipulator system described in Eq.(3.1) is programmed in the

“Mobile Manipulator System” block. The details of the DLS inverse method given

in Eq.(3.22) are programmed in “Kinematic Transformation and DLS” block. The
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Figure 5.2: Backstepping-Adaptive Control Scheme

Figure 5.3: Simulink block diagram

backstepping kinematic control of mobile manipulator is constructed in the “Kine-

matic Velocity Controller” subsystem and the adaptive torque control is modelled in

the “Adaptive controller” subsystem. The “ode45(Dorman-Prince)” solver is used

to run the simulation over the 10 seconds of time to analyse the performance of the

proposed control to track the different given desired trajectories.

For the following part of the chapter the mobile manipulator system and its parame-

ters will be same as discussed unless specified. Three cases are considered. The first

and second cases while mobile manipulator system’s output operational space has five

states Ψd =
[
ẋd, ẏd, xEEd

, yEEd
, zEEd

]T
; and the third case when mobile manipulator

system’s output operational space has four states Ψd =
[
ẋd, ẏd, xEEd

, yEEd

]T
. In the

third case, since the operational space has four vectors and the Jacobian matrix is
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4× 4, the Jacobian inverse of the kinematics can be calculated directly by inverting

the matrix using the matrix laws. In the first and second cases, the operational space

has five vectors and because of the extra state in the operational space, the size of the

Jacobian matrix is 5× 4, which cannot be inversed using the same law. DLS inverse

method is used to invert the Jacobian and remove the singularity from the system.

It gives the approximation of the Jacobian inverse. For the first and second cases,

different trajectories of the end-effector is tracked with the proposed controller. For

the third case, the same trajectory used for Case 1 is tracked to verify the controller.

However the control gain values are not the same in both cases. Note that in both

cases, the mathematical models of the system are the same. However the inverse

kinematics of the mobile manipulator system are different in both cases i.e. Case

1 and Case 3. Because in Case 1, the angular velocity of the wheels of the mobile

platform is used to calculate the inverse kinematics states. In Case 3, the mobile

platform velocity and acceleration is used as the inverse kinematics states. For both

cases they have multiple solutions for their inverse kinematics because of the redun-

dancy. A redundancy resolution method is used to remove the singularity from the

system. Defining 3 cases for the simulation process as follows,

1. Trajectory tracking Case 1: The system’s output operational space has five

states Ψd =
[
ẋd, ẏd, xEEd

, yEEd
, zEEd

]T
to track the trajectory given in Eq.(5.1).

2. Trajectory tracking Case 2: The system’s output operational space has five

states Ψd =
[
ẋd, ẏd, xEEd

, yEEd
, zEEd

]T
to track the trajectory given in Eq.(5.2).

3. Trajectory tracking Case 3: The system’s output operational space has four

states Ψd =
[
ẋd, ẏd, xEEd

, yEEd

]T
to track the trajectory given in Eq.(5.1).

5.2 Desired Trajectory Tracking of the End-Effector Position and

Vehicle Velocity

In this section, we assumed that the output of the mobile manipulator system has five

states Ψd =
[
ẋd, ẏd, xEEd

, yEEd
, zEEd

]T
. This means that the Jacobian matrix is not

a square matrix and it cannot be inverted using the direct inversion of the matrix.

For that, we used the DLS inverse method. In the following section, the simulation of
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the mobile manipulator system for the trajectory tracking of the mobile manipulator

is given. The proposed controller is used to verify the effectiveness of the modeling

and the control of the mobile manipulator system.

5.2.1 Trajectory Tracking Case 1

Consider the given mobile manipulator system, the time dependent desired trajectory

Ψd =
[
ẋd, ẏd, xEEd

, yEEd
, zEEd

]T
is selected as Eq.(5.1).

ẋ = 0.1 + 0.05 sin t

ẏ = 0.1 + 0.05 cos t

xEEd
= 0.1t− 0.05 cos t+ 0.05 + 1

yEEd
= 0.1t+ 0.05 sin t+ 1

zEEd
= 2

(5.1)

Figure 5.4: Desired end-effector trajectories for Case 1

The desired trajectory of the end-effector Ψad(t) =
[
xEEd

, yEEd
, zEEd

]T
is shown

in Fig.5.4, where desired X, Y and Z refers to the desired X, Y and Z positions of

the end-effector which are xEEd
, yEEd

and zEEd
. Note that the desired Z position of

the end-effector is chosen as a constant. The initial position of the end-effector is

given in Table 5.3.

The control gain values chosen for this case are given in Table 5.4.
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Table 5.3: Initial position of the end-effector of the mobile manipulator for case 1

State Initial Position

ẋ 0
ẏ 0

xEEd
0

yEEd
1

zEEd
2

Table 5.4: Control gain values for case 1

Control Gain Value

k 1.01
K 2.6
K1 80I4×4
Γ −10I6×6

The main objective is to track the desired trajectory with minimum possible errors.

Results are plotted and shown in the following section to analyze the performance

of the controller. Actual X, Y and Z positions of the manipulator end-effector are

shown in Figs.5.5, 5.6 and 5.7. These figures clearly show that the actual position of

the end-effector is tracking the desired positions of the end-effector given in Fig.5.4.
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Figure 5.5: Actual xEE of Case 1

Figs.5.8, 5.9 and 5.10 describe the desired and actual end-effector position of mo-

bile manipulator. The actual position of the end-effector converge to the desired
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Figure 5.6: Actual yEE of Case 1
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Figure 5.7: Actual zEE of Case 1

trajectory quickly with zero error. These results show the perfect trajectory tracking

of the end-effector and the effectiveness of the proposed controller for the given re-

dundant mobile manipulator system. The convergence time of the actual trajectory

to desired trajectory is around 2 seconds. The errors between the desired and the

actual position are shown in Fig.5.11.

From Fig.5.11, the position errors of X, Y and Z of the mobile manipulator end-

effector are quickly converged to zero. It proves the designed controller is efficient

for the trajectory tracking of the non-zero velocity mobile manipulator’s end-effector
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Figure 5.8: Desired and actual xEE for Case 1
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Figure 5.9: Desired and actual yEE for Case 1

position control. The desired and actual position of the end-effector in three di-

mensions are shown in Figs.5.12 and 5.13, where Fig.5.12 shows the desired and

actual position in the XY plane. The mobile manipulator’s end-effector is initially

placed on
(
xEE, yEE

)
= (0, 1). It follows the desired trajectory smoothly with a

minimum error. Fig.5.13 shows the three dimensional view of the desired and ac-

tual position trajectory. Some data points are shown to compare both trajectories.

Initially the end-effector of the mobile manipulator is at
[
xEE, yEE, zEE

]
= [0, 1, 2],

then it tracks the desired trajectory and after 10 seconds the actual position of the

end-effector is at
[
xEE, yEE, zEE

]
= [2.091, 2.022, 1] while the desired position is at
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Figure 5.10: Desired and actual zEE for Case 1

[
xEEd

, yEEd
, zEEd

]
= [2.092, 2.023, 1] which proves the desired trajectory is almost

achieved and the tracking error is very low and acceptable. Desired and actual

velocities of the mobile manipulator in x and y directions are shown in the Figs.5.14

and 5.15. These velocities also converge to the desired velocities very quickly. After

1.5 seconds, mobile base velocity in x direction converge to the desired velocity. This

small error is because of the redundancy resolution method used. This method can-

not guarantee ideal solution to the inverse kinematics, it provides the approximation

to the inverse kinematics and it helps to remove the singularity from the system.

This kind of errors can be lowered by using proper redundancy resolution methods.

However it cannot guarantee for the error-free trajectories because it deals with the

singularities and redundancy.

Fig. 5.16 shows the actual joint velocities of the the mobile base and the first

and second joint of the manipulator arm. Fig. 5.17 gives the plot of the controlled

joint velocities of the mobile base and both joints. From both figures it can be seen

that the controlled velocities ηc are the same as that of the actual velocities η of

the joint. The ultimate goal is to control the joint velocities and it can be clearly

identified from both figures that both velocities are same. The error between these

velocities are plotted in Fig. 5.18. The error is zero indicates that both the actual and

controlled joint velocities are same. Conclusions can be made from these results about

the effectiveness of the backstepping kinematic controller. ηc is the controlled joint
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Figure 5.11: Tracking error of end-effector position for Case 1
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Figure 5.12: Desired and actual end-effector trajectory in XY plane for Case 1

velocities and it is derived using the backstepping velocity controller. η is the actual

joint velocity of the dynamic system of the mobile manipulator. Fig. 5.19 shows the

estimated parameters of the system. These parameters are not the actual values of

the respective parameters but they help achieve the zero velocity errors. The adaptive

method chosen here is direct adaptive and in this method, the estimated parameter

doesn’t converge to their true value instead it helps the controller to provide zero

error tracking. Fig.5.20 shows the input torque to the actuators. Fig.5.21 shows the

torques over the 5 seconds of time. It is more clear from the figure that the the input

torques quickly converges to constant values and bounded to that constant value.
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Figure 5.13: Desired and actual end-effector trajectory in the 3D plane for Case 1

5.2.2 Trajectory Tracking Case 2

Considering the other time dependent desired trajectory Ψd =
[
ẋd, ẏd, xEEd

, yEEd
, zEEd

]T
as Eq.(5.2). 

ẋ = 2ω cos(ωt)

ẏ = 2ω sin(ωt)

xEEd
= sin(ωt)

yEEd
= 1− cos(ωt)

zEEd
= 1

(5.2)

ω = 0.1π is selected for this simulation. Note that the end-effector trajectory in

XY plane is a circular trajectory. The initial position and control gain used in this

simulation procedure are given in Table 5.5 and 5.6. The simulation run-time for this

simulation is chosen as 80 seconds. The parameters and the system model used is

exactly the same as the section 5.2.1.

X, Y and Z components of the desired trajectory of the end-effector can be

shown in Fig.5.22, where the desired X and Y components are sinusoidal and desired

Z component is constant.

The actual and desired trajectories of the end-effector in X, Y and Z directions are

shown in Figs.5.23, 5.24 and 5.25 respectively. In Fig.5.23, the actual X position of
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Figure 5.14: Desired and actual mobile base velocity in x direction for Case 1

Table 5.5: Initial position of the end-effector of the mobile manipulator for Case 2

State Initial Position

ẋ 0
ẏ 0

xEEd
0

yEEd
1

zEEd
2

Table 5.6: Control gain values for Case 2

Control Gain Value

k 1.5
K 0.2
K1 250I4×4
Γ −10I6×6

the end-effector tracks the desired X position in 20 seconds and then converge to the

desiredX position throughout. Fig.5.24 compares desired and actual Y position of the

end-effector. The actual Y response starts tracking the desired Y position within 25

seconds of time and after that it converges to the desired position. However, there is a

steady error throughout because of the redundancy resolution method used. Fig.5.25

represents the actual and desired Z position of the end effector. From the figure, it

almost 40 seconds for it to converge to the desired constant value. It is shown in
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Figure 5.15: Desired and actual mobile base velocity in y direction for Case 1

Figs.5.23, 5.24 and 5.25 that the Z position takes more time than X and Y positions

to converge to the desired position.

The trajectory tracking error of the Case 2 is given in Fig.5.26. All error signals

converge to zero but the Y signal is not converging to exact zero value; and there

is 5 percentage error at 50 seconds which is almost 2 percentage at 70 seconds with

respect to the desired values. As discussed earlier, the DLS method cannot provide

ideal solution to the inverse kinematics of the mobile manipulator system. This

error can be reduced by increasing the simulation run time. However there is a 2

percentage of error after running a simulation for long time and this error becomes

constant. However for some applications, where accuracy is the main concern, for

example, surgery robots, this error cannot be ignored and this can be the limitation

of using the DLS method for the redundancy resolution. X and Y position errors of

the mobile manipulator end-effector are converging to zero.

The trajectory tracking in XY and XZ plane are given in the following figures.

Fig.5.27 shows the desired and actual trajectory of the end-effector in XY plane. The

actual end-effector position starts from (0, 1) and tracks the desired circular trajectory

as shown in the figure. The desired trajectory is followed by the actual trajectory

well. A clearer view of the figure is plotted in Fig.5.28. Fig.5.29 shows the desired

and actual position of the end-effector in XZ plane. Initially the actual Z position
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Figure 5.16: Actual velocities of the operational space joints for Case 1

Figure 5.17: Controlled velocities of the operational space joints for Case 1

of the end-effector is at 2 and then it tracks the desired trajectory as shown in the

figure.

The actual and desired velocity of the mobile base in X and Y direction are given

in Figs.5.30 and 5.31. Fig.5.30 shows the desired and actual mobile base velocity in

X direction.The actual velocity converges to the desired velocity in 25 seconds and it

smoothly converges to the desired velocity in X direction. Similarly an actual mobile

base velocity tracks the desired velocity in Y direction in 25 seconds smoothly. These

figures shows how the mobile base velocity converges to the desired velocity of the

mobile base.
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Figure 5.18: Error velocities of the operational space joints for Case 1

Figure 5.19: Estimated parameters for Case 1

Figs.5.32 and 5.33 show the actual velocity η and controlled velocity ηc of the

mobile manipulator joints. From the figures, it is clear that both the actual and

controlled velocities are same and there is very low error between them. The right and

left wheel velocities are same in this case because of the circular trajectory. Fig.5.34

gives the error of the actual and controlled joint velocities of the mobile manipulator.

The error is very small about 0.0001 rad/sec for the right and left wheel velocities.

It is 0.000025 rad/sec for the first link joint velocity and almost 0 for the second

link joint velocity. These zero errors mean that both the controlled and actual joint

velocities of the mobile manipulator are same.
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Figure 5.20: Input torque for Case 1

Figure 5.21: Input torque (5 sec) for Case 1

Fig.5.35 illustrates the estimated parameters of the system over the time. As seen

in the figure, the parameter converges to a constant value p = [1.4 × 10−5, 1, 5.9 ×
10−3,−1.4 × 10−59.5 × 10−3, 9.45 × 10−3]T .This adaption of the parameters to some

constant value is absolutely what is expected of the control scheme used here. The

settling time is quick (smaller than 40 seconds) and and parameter value is constant.

As discussed in Section 5.2.1, it is significant to indicate that these parameters do not

actually represent the true value of the parameters. These parameters are adapted to

ensure the limited tracking errors only. To get the true convergence of the parameter,
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Figure 5.22: Desired end-effector position trajectories for Case 2

an indirect adaptive method should be chosen, which would adapt the true param-

eter values. However this method (direct adaptive) maintains the bounded tracking

errors. The control law defined here requires the complete knowledge of the mobile

manipulator system, i.e. dynamics, kinematics and inverse kinematics. If these are

not completely and accurately known, the performance of the control law will be in-

effective over time. The lower performance of the controller should also be expected

for the external disturbance case because of the incomplete knowledge of the mobile

manipulator system.

Fig.5.36 shows the input torque of the joints τ̄ .

5.2.3 Trajectory Tracking Case 3

In previous sections, mobile manipulator’s output operational space has five states and

the DLS method is used to remove the singularity from the system. However, in this

case, we assume the operational space has only four states and therefore the Jacobian

can be inverted using the matrix laws. However the system is still singular. The

inverse of Jacobian is not possible because the 4× 4 Jacobian matrix is full rank and

therefore it is subjected to singularities. Similar to the first two cases, a redundancy

resolution method is used to invert the Jacobian of the mobile manipulator system.

In the modeling process, it is assumed that the manipulator arm is mounted at the
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Figure 5.23: Desired and actual xEE for Case 2

Figure 5.24: Desired and actual yEE for Case 2

center of the wheel axis and because of that two columns of Jacobian matrix are same

and this makes the system subjected to singularities. Four states are considered for

the trajectory tracking of Case 3.The desired trajectory Ψd =
[
ẋd, ẏd, xEEd

, yEEd

]T
is

selected as in Eq.(5.1) ignoring the fifth variable Z. Also, instead the left wheel and

right wheel velocity of the mobile base, the linear and angular velocities of the mobile

base are used for the velocity commands. The control gain values chosen are given in

Table 5.7.

The initial position of the mobile manipulator system remains same as Table 5.3

ignoring position of zEE. The actual and desired xEE position and yEE positions are
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Figure 5.25: Desired and actual zEE for Case 2

Figure 5.26: Tracking error of end-Effector position for Case 2

Table 5.7: Control gain values for Case 3

Control Gain Value

k 0.05
K 1.2
K1 80I4×4
Γ −10I8×8

given in Figs.5.37 and 5.38. The actual responses track the desired responses smoothly

and quickly. However, it takes more time to converge to the desired value than Case

1 but it converge to the desired trajectory smoothly and accurately with less error

comparatively. This is because the controller has less states to track and therefore
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Figure 5.27: Actual and desired trajectory tracking of the Case 2 in XY plane

the error is comparatively very small. The value of k is smaller which ensures the

results near the singular configuration.

The error between the desired and actual positions are given in Fig.5.39. The

errors converges to zero smoothly.

The Actual and desired velocity of mobile base in x and y directions are shown in

Figs.5.40 and 5.41. Both velocities converges to the desired trajectory. Comparing it

with Case 1, it has very small peak values of the velocities. This confirms that the

damping factor k values are near the singular configuration.

The actual joint velocity of the mobile manipulator is plotted in Fig.5.42. The

controlled joint velocities ηc is plotted to compare the controlled velocity to actual

joint velocities. From Fig.5.44, the controlled velocities track the actual velocities

and the error is almost zero.
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Figure 5.28: Actual and desired trajectory tracking of the Case 2 in XY plane

Figure 5.29: Actual and desired trajectory tracking of the Case 2 in XZ plane
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Figure 5.30: Desired and actual ẋ for Case 2

Figure 5.31: Desired and actual ẏ for Case 2
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Figure 5.32: Actual velocities of the operational space joints for Case 2

Figure 5.33: Controlled velocities of the operational space joints for Case 2



66

Figure 5.34: Error velocities of the operational space joints for Case 2

Figure 5.35: Estimated parameters for Case 2
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Figure 5.36: Input torque of the joints for Case 2

Figure 5.37: Actual and desired x positions for Case 3
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Figure 5.38: Actual and desired y positions for Case 3

Figure 5.39: Tracking errors for Case 3
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Figure 5.40: Actual and desired velocities of mobile base in x direction for Case 3

Figure 5.41: Actual and desired velocities of mobile base in y direction for Case 3
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Figure 5.42: Actual joint velocities for Case 3

Figure 5.43: Controlled joint velocities for Case 3
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Figure 5.44: Error of joint velocities for Case 3

The estimated parameter values converge to a constant value p = [−0.135,−0.135,

− 0.135, 0.39, 0.9,−3.7× 10−3, 0.24, 0.86]T shown in Fig.5.45. The input torque of the

joint for Case 3 is shown in Fig.5.46. The large joint torques in the beginning converge

to a value of 9.434 and bound.

Simulation studies have verified that the system states converge to the desired

position and velocity trajectories with minimum errors. Redundancy and singular-

ity of the mobile manipulator system are resolved by DLS method which provides

satisfying results. The input torque is bounded and converge to a constant value

for the backstepping-adaptive controller whereas in MBC, the torque is bounded but

fluctuating for large values. Three cases are considered for the simulation of a 5-DOF

mobile manipulator subjected to nonholonomic constraints, redundancy and singu-

larity. Simulation studies have verified the effectiveness of the backstepping-adaptive

controller.
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Figure 5.45: Estimated paramters for Case 3

Figure 5.46: Input torques for each joints for Case 3



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The goal of this dissertation was to design a systematical mathematical modeling

of the mobile manipulator system and to design a backstepping adaptive controller

efficient to provide an n-link mobile manipulator with an objective of highly precise

simultaneous trajectory tracking of mobile base velocity and the position of the end-

effector. This research work was attempted as a result of the high level of interest in

the area of control of mobile manipulators. Several modeling and control techniques

were examined before, however the main focus was expeditiously narrowed down to

the adaptive control algorithm. The purpose of this research was to develop a novel

approach by improving a standard adaptive control algorithm. We have determined

a new control design strategy. This controller have been found to be beneficial to

the control problem of mobile manipulator with unknown parameters. A kinematic

backstepping controller was designed followed by an adaptive torque controller so that

a mobile manipulator trajectories converge to the desired trajectories. Redundancy

resolution method was also used to resolve the redundancy of the mobile manipulator.

Following the designed control scheme and redundancy resolution method an ex-

tensive simulation study was performed in order to ensure the efficiency of the de-

signed controller. A 5-DOF nonholonomic mobile manipulator was used in the sim-

ulation study. The complete kinematics and dynamic model was derived in order to

perform the simulation. The results of the simulation study have indeed proved the

effectiveness of the proposed controller. The following conclusions can be made from

the simulation studies:

The proposed controller achieves the very good trajectory tracking performance

without generating unnecessary high frequency torques comparing to the other con-

trollers in literature and case studies.

73
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6.2 Future Work

Although the overall goal of the dissertation was achieved, there are still many im-

provements that could be made in order to make this controller a realistic controller

for real application. Several of these improvements would deal with the ability of the

controller to respond reliably to external disturbances and unknown model dynamics,

giving the controller wider range and reliability. By applying the suitable redundancy

resolution method along with the proposed controller, a better performance can be

achieved. The new robust controller will be designed and will be tested on the exper-

imental mobile manipulator. A case of cooperative control can be further developed

for multiple mobile manipulators.
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Appendix A

Mathematical Equations

A.1 Kinematic Modeling of 5-DOF Mobile Manipulator

In 2.2.2, a 2-DOF manipulator armed nonholonomic mobile manipulator and its kine-

matics is presented in Eqs. (2.13), (2.14) and (2.15). From Eq.(2.15), Jacobian matrix

of the kinematics can be calculated. Jacobian of the 5-DOF mobile manipulator is

given in terms of linear and angular velocities of the wheeled platform and also in

terms of right and left wheel velocities of the mobile platform.

J =



J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

J51 J52 J53 J54


(A.1)

where

J11 = cos θb, J12 = 0, J13 = 0, J14 = 0,

J21 = sin θb, J22 = 0, J23 = 0, J24 = 0,

J31 = cos θb

J32 = l2 sin θ2 sin(θb + θ1)

J33 = l2 sin θ2 sin(θb + θ1)

J34 = −l2 cos θ2 cos(θb + θ1)

J41 = sin θb, J42 = −l2 sin θ2 cos(θb + θ1)

J43 = −l2 sin θ2 cos(θb + θ1), J44 = −l2 cos θ2 sin(θb + θ1)

J51 = 0, J52 = 0, J53 = 0, J54 = L2 cos θ2

OR
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J11 =
R

2
cos θb, J12 =

R

2
cos θb, J13 = 0, J14 = 0

J21 =
R

2
sin θb, J22 =

R

2
sin θb, J23 = 0, J24 = 0

J31 =
R

2
cos θb −

[
L2 cos θ2 sin(θb + θ1

] R
2D

J32 =
R

2
cos θb +

[
L2 cos θ2 sin(θb + θ1

] R
2D

J33 = −L2 cos θ2 sin(θb + θ1), J34 = −L2 sin θ2 cos(θb + θ1)

J41 =
R

2
sin θb +

[
L2 cos θ2 cos(θb + θ1

] R
2D

J42 =
R

2
sin θb −

[
L2 cos θ2 cos(θb + θ1

] R
2D

J43 = L2 cos θ2 cos(θb + θ1, J44 = −L2 sin θ2 sin(θb + θ1)

J51 = 0, J52 = 0, J53 = 0, J54 = L2 cos θ2

A.2 The Dynamics Model

Let L1 and L2 denote the distance between joints and the center of mass of the links.

The coordinate of the center of mass of Link 1 can be written as,

x1 = x

y1 = y

z1 = L2 (A.2)

the coordinate of the center of mass of link z can be obtained as follows

x2 = x1 + L2 cos θ2 cos(θb + θ1)

y2 = y1 + L2 cos θ2 sin(θb + θ1)

z2 = l1 + L2Sin(θ2) (A.3)

The total kinetic energy can be written as follow

K(q, q̇) =
1

2
mb(ẋ

2 + ẏ2) +
1

2
Ibθ̇

2
b +

1

2
m1(ẋ

2 + ẏ2) +
1

2
I1(θ̇b + θ̇1)

2

+
1

2
m2(ẋ

2 + ẏ2) +
1

2
I2[(θ̇b + θ̇1)

2 + θ̇2)
2]2 (A.4)
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Total potential energy is

P (q) = m1gl1 +m2gl1 + L2 sin θ2. (A.5)

The velocity constraints of the MM system is

ẋ sin(ψ)− ẏ cos(ψ) = 0. (A.6)

From Routh equation, we can obtain

∂

∂t

(∂L
∂q̇

)
− ∂L

∂q
= Q+ A(q)Tλ, (A.7)

where, L = K − P
Q = The forces or torques acted on the plate form and links

λ = Langrangian multiplier

Substituting Eq. (A.4) and (A.5) into Eq. (A.7), we can get Eq. (A.8).

M(q)q̈ + C(q, q̇)q̇ +G(q) + f = B(q)τ (A.8)

where

M =

[
Mb Mba

Mab Ma

]

C(q, q̇) =

[
Cb Cba

Cab Ca

]

G =

[
Gb

Ga

]
=



0

0

0

0

m2gL2Cos(θ2)


B(q) =

[
Bb 0

0 Ba

]

τ =

[
τb

τa

]
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M(q) =



M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55



C =



C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55


M11 = M22 = mp +m1 +m2

M33 = Ib + I1 + I2 +m2L
2
2 cos2 θ2

M44 = I1 + I2 +m2L
2
2 cos2 θ2

M55 = I2 +m2L
2
2 cos2 θ2

M12 = M21 = M35 = M53 = M45 = M54 = 0

M13 = M31 = M41 = M14 = −m2L2 cos θ2 sin(θb + θ1)

M15 = M51 = −m2L2 sin θ2 cos(θb + θ1)

M23 = M32 = M24 = M42 = m2L2 cos(θ2) cos(θb + θ1)

M25 = M52 = −m2L2 sin(θb + θ1)

M34 = M43 = I1 + I2 +m2L
2
2 cos2 θ2

Cij = 0, i = 1, 2, 3, 4, 5. j = 1, 2

C13 = C14 = −m2L2 cos θ2 cos(θb + θ1)(θ̇b + θ̇1)

+m2L2 sin θ2 sin(θb + θ1)θ̇2

C15 = −m2L2 cos θ2 cos(θb + θ1)θ̇2

+m2L2 sin θ2 sin(θb + θ1)(θ̇b + θ̇2)

C23 = C24 = −m2L2 cos θ2 sin(θb + θ1)(θ̇b + θ̇1)

+m3L2 sin θ2 cos(θb + θ1)θ̇2

C25 = −m2L2 sin θ2 cos(θb + θ1)(θ̇b + θ̇1)
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−m2L2 cos θ2 sin(θb + θ1)θ̇2

C35 = C45 = m2L
2
2 cos θ2 sin θ2(θ̇b + θ̇1)

C33 = C34 = C43 = C44 = −m2L
2
2 cos θ2 sin θ2θ̇2

C53 = C54 = m2L
2
2 cos θ2 sin θ2(θ̇b + θ̇1)

C55 = m2L
2
2 cos θ2 sin θ2θ̇2

G = [0 0 0 0 m2gL2 cos θ2]
T
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A.3 Regressor Matrix

Y =


Y11 Y12 Y13 Y14 Y15 Y16

Y21 Y22 Y23 Y24 Y25 Y26

Y31 Y32 Y33 Y34 Y35 Y36

Y41 Y42 Y43 Y44 Y45 Y46


p =

[
mt m2L2 m2L

2
2 Ib I1 I2

]T

Y11 =
R2

4
(v̇ + ω̇) +

R2

4
(sin2 θb − cos2 θb)ω

Y12 = 2 cos θ2
R2

4D
(cos(θb + θ1)− sin(θb + θ1) cos θb)v̇ +

R

2
cos θ2(cos(θb + θ1) sin θb−

sin(θb + θ1) cos θb))θ̈1 −
R

2
sin θ2(cos(θb + θ1) cos θb + sin(θb + θ1) sin θb)θ̈2 +

R2

4D

cos θ2(cos(θb + θ1) cos θb + sin(θb + θ1) sin θb)v −
R2

4D
cos θb(cos θ2 cos(θb + θ1)

(θ̇b + θ̇1)− cos θ2 cos(θb + θ1)θ̇2)v −
R2

4D
sin θb(cos θ2 sin(θb + θ1)(θ̇b + θ̇1)− sin θ2

cos(θb + θ1)θ̇2)v +
R2

4D
cos θ2(cos θb sin(θb + θ1) + sin θb cos(θb + θ1))ω +

R2

4D
cos θb

(cos θ2 cos(θb + θ1)(θ̇b + θ̇1)− sin θ2 sin(θb + θ1)θ̇2)ω +
R2

4D
sin θb(cos θ2 sin(θb + θ1)

(θ̇b + θ̇1)− sin θ2 cos(θb + θ1)θ̇2)ω −
R

2
cos θb(cos θ2 cos(θb + θ1)(θ̇b + θ̇1)− sin θ2

sin(θb + θ1)θ̇2)θ̇1 −
R

2
sin θb(cos θ2 sin(θb + θ1)(θ̇b + θ̇1)− sin θ2 cos(θb + θ1)θ̇2)θ̇1+

R

2
cos θb(sin θ2 sin(θb + θ1)(θ̇b + θ̇1)− cos θ2 cos(θb + θ1)θ̇2)θ̇2 −

R

2
sin θb

(sin θ2 cos(θb + θ1)(θ̇b + θ̇1)− cos θ2 sin(θb + θ1)θ̇2)θ̇2

Y13 =
R2

4D2
cos2 θ2v̇ −

R2

4D2
cos2 θ2ω̇ +

R

2D
cos2 θ2θ̈1 −

R2

4D2
cos θ2 sin θ2θ̇2v +

R2

4D2
cos θ2

sin θ2θ̇2ω −
R

2D
cos θ2 sin θ2θ̇2θ̇1 −

R

2D
cos θ2 sin θ2(θ̇b + θ̇1)θ̇2

Y14 =
R2

4D2
v̇ − R2

4D2
ω̇

Y15 =
R2

4D2
v̇ − R2

4D2
ω̇ +

R

2D
θ̇1

Y16 =
R2

4D2
v̇ − R2

4D2
ω̇ +

R

2D
θ̇1
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Y21 =
R2

4
v̇ +

R2

4
ω̇ +

R2

4
(sin2 θb − cos2 θb)ω

Y22 = 2 cos θ2 sin(θb + θ1)
R2

4D
cos θbω̇ − 2 cos θ2 cos(θb + θ1)

R2

4D
sin θbω̇

− cos θ2 sin(θb + θ1)
R

2
cos θbθ̈1 + cos θ2 cos(θb + θ1)

R

2
sin θbθ̈1

− sin θ2 cos(θb + θ1)
R

2
cos θbθ̈2 + sin θ2 sin(θb + θ1)

R

2
sin θbθ̈2

− cos θ2 sin(θb + θ1)
R2

4D
sin θbv − cos θ2 cos(θb + θ1)

R2

4D
cos θbv

− cos θ2 cos(θb + θ1)(θ̇b + θ̇1)
R2

4D
cos θbv + sin θ2 sin(θb + θ1)θ̇2

R2

4D
cos θbv

− cos θ2 sin(θb + θ1)(θ̇b + θ̇1)
R2

4D
sin θbv + sin θ2 cos(θb + θ1)θ̇2

R2

4D
sin θbv

− cos θ2 sin(θb + θ1)
R2

4D
cos θbω − cos θ2 cos(θb + θ1)

R2

4D
sin θbω

+ cos θ2 cos(θb + θ1)(θ̇b + θ̇1)
R2

4D
cos θbω − sin θ2 sin(θb + θ1)θ̇2

R2

4D
cos θbω

+ cos θ2 sin(θb + θ1)(θ̇b + θ̇1)
R2

4D
sin θbω − sin θ2 cos(θb + θ1)θ̇2

R2

4D
sin θbω

− cos θ2 cos(θb + θ1)(θ̇b + θ̇1)
R

2
cos θbθ̇1 + sin θ2 sin(θb + θ1)θ̇2

R

2
cos θbθ̇1

− cos θ2 sin(θb + θ1)(θ̇b + θ̇1)
R

2
sin θbθ̇1 + sin θ2 cos(θb + θ1)θ̇2

R

2
sin θbθ̇1

+ sin θ2 sin(θb + θ1)(θ̇b + θ̇1)
R

2
cos θbθ̇2 − cos θ2 cos(θb + θ1)θ̇2

R

2
cos θbθ̇2

− sin θ2 cos(θb + θ1)(θ̇b + θ̇1)
R

2
sin θbθ̇2 − cos θ2 sin(θb + θ1)θ̇2

R

2
sin θbθ̇2

Y23 = − R2

4D2
cos2 θ2v̇ +

R2

4D2
cos2 θ2ω̇ −

R2

4D2
cos2 θ2θ̈1 + cos θ2 sin θ2θ̇2

R2

4D2
v

− cos θ2 sin θ2θ̇2
R2

4D2
ω + cos θ2 sin θ2θ̇2

R

2D
θ̇1 + cos θ2 sin θ2(θ̇b + θ̇1)

R

2D
θ̇2

Y24 = − R2

4D2
cos2 θ2v̇ +

R2

4D2
cos2 θ2ω̇

Y25 = − R2

4D2
cos2 θ2v̇ +

R2

4D2
cos2 θ2ω̇ +

R

2D
θ̈1

Y26 = − R2

4D2
cos2 θ2v̇ +

R2

4D2
cos2 θ2ω̇ +

R

2D
θ̈1

Y31 = 0

Y32 = − cos θ2 sin(θb + θ1)
R

2
cos θbv̇ + cos θ2 cos(θb + θ1)

R

2
sin θbv̇ − cos θ2

sin(θb + θ1)
R

2
cos θbω̇ + cos θ2 cos(θb + θ1)

R

2
sin θbω̇ + cos θ2 sin(θb + θ1)
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R

2
sin θbv + cos θ2 cos(θb + θ1)

R

2
cos θbv + cos θ2 sin(θb + θ1)

R

2
cos θbω

+ cos θ2 cos(θb + θ1)
R

2
sin θbω

Y33 =
R

2D
cos2 θ2v̇ −

R

2D
cos2 θ2ω̇ + cos2 θ2θ̈1 − cos θ2 sin θ2θ̇2

R

2D
v + cos θ2

sin θ2θ̇2
R

2D
ω − cos θ2 sin θ2θ̇2θ̇1 + cos θ2 sin θ2(θ̇b + θ̇1)θ̇2

Y34 = 0

Y35 =
R

2D
v̇ − R

2D
ω̇ + θ̈1

Y36 =
R

2D
v̇ − R

2D
ω̇ + θ̈1

Y41 = 0

Y42 = sin θ2 cos(θb + θ1)
R

2
cos θbv̇ − sin θ2 sin(θb + θ1)

R

2
sin θbv̇ − sin θ2

cos(θb + θ1)
R

2
cos θbω̇ − sin θ2 sin(θb + θ1)

R

2
sin θbω̇ + sin θ2 cos(θb + θ1)

R

2
sin θbv + sin θ2 sin(θb + θ1)

R

2
cos θbv + sin θ2 cos(θb + θ1)

R

2
cos θbω

+ sin θ2 sin(θb + θ1)
R

2
sin θbω

Y43 = cos θ2 sin θ2(θ̇b + θ̇1)
R

2D
v − cos θ2 sin θ2(θ̇b + θ̇1)

R

2D
ω + cos θ2 sin θ2

(θ̇b + θ̇1)θ̇1 + cos θ2 sin θ2θ̇2θ̇2

Y44 = 0

Y45 = 0

Y46 = 0
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A.3.1 Regressor Matrix Y in Terms of Vehicle Linear and Angular

Velocities

Y =


Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18

Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28

Y31 Y32 Y33 Y34 Y35 Y36 Y37 Y38

Y41 Y42 Y43 Y44 Y45 Y46 Y47 Y48

 (A.9)

The parameters are:

p =
[
mb m1 m2 m2L2 m2L

2
2 Ib I1 I2

]T
(A.10)

Y11 = Y12 = Y13 = η̇1

Y14 = cos θ2(cos(θb + θ1) sin θb − sin(θb + θ1) cos θb)η̇2 + cos θ2 sin(θb + θ1)

(sin θb − cos θb)η̇3 − sin θ2(cos(θb + θ1) cos θb + sin(θb + θ1) sin θb)η̇4 + cos θb

(sin(θb + θ1) sin θ2θ̇2 − cos(θb + θ1) cos θ2(θ̇b + θ̇1))(η2 + η3) + sin θb(cos(θb + θ1)

sin θ2θ̇2 − cos θ2 cos(θb + θ1)(θ̇b + θ̇1))(η2 + η3) + cos θb(sin(θb + θ1) sin θ2

(θ̇b + θ̇1)− cos θ2 cos(θb + θ1)θ̇2)η4 + sin θb(cos(θb + θ1) sin θ2(θ̇b + θ̇1)− sin θ2

cos(θb + θ1)θ̇2)η4

Y15 = Y16 = Y17 = Y18 = 0

Y21 = Y22 = Y23 = 0

Y24 = cos θ2(cos(θb + θ1) sin θb − sin(θb + θ1) cos θb)η̇1 + cos θ2(sin(θb + θ1) sin θb + cos(θb

+ θ1) cos θb)θ̇bη1

Y25 = cos2 θ2η̇2 + cos2 θ2η̇3 + cos θ2 sin θ2θ̇2(η̇2 + η̇3) + cos θ2 sin θ2(θ̇b + θ̇1)η̇4

Y26 = η2

Y27 = Y28 = η̇2 + η̇3

Y31 = Y32 = Y33 = Y36 = 0

Y34 = cos θ2 sin(θb + θ1)(sin θb − cos θb)v̇ + cos θ2 sin(θb + θ1)(sin θb + cos θb)θ̇2v

Y35 = cos2 θ2η̇2 + cos2 θ2η̇3 − cos θ2 sin θ2θ̇2(η̇2 + η̇3)− cos θ2 sin θ2(θ̇b + θ̇1)η̇4

Y36 = 0

Y37 = Y38 = η̇2 + η̇3
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Y41 = Y42 = Y43 = 0

Y44 = − sin θ2 cos(θb + θ1)(cos θb − sin θb)v̇ + sin θ2 cos(θb + θ1)(sin θb + cos θb)θ̇bv

Y45 = cos2 θ2η̇2 + cos2 θ2η̇3 + cos θ2 sin θ2θ̇2(η̇2 + η̇3) + cos θ2 sin θ2(θ̇b + θ̇1)η̇4

Y46 = Y47 = 0

Y48 = η̇4
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A.4 MBC control Dynamics

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ + f

qv = [x, y, θ]T qa = [θ1, θ2]
T q = [qv, qa]

T

A = [cos θ, sin θ, 0]T

Mv11 =

mp12 +
2Iw sin2 θ

r2
−2Iw
r2

sin θ cos θ

2Iw
r2

sin θ cos θ mp12 +
2Iw cos2 θ

r2


Mv12 =

[
−m12d sin θ

m12d cos θ

]
Mv21 = MT

v12 Mv22 = M1
11

Cv =


2Iw
r2

θ̇ sin θ cos θ −2Iw
r2

θ̇ cos2 θ 0

2Iw
r2

θ̇ sin2 θ −2Iw
r2

θ̇ sin θ cos θ 0

−m12dθ̇ cos θ −m12dθ̇ cos θ 0


M1

11 = Ip + I12 +m12d2 +
2Iwl

2

r2

Ma = diag[I12, I2]

mp12 = mp +m12 m12 = m1 +m2

I12 = I1 + I2

Mva =


0.0 0.0

0.0 0.0

I12 0.0



B =



sin θ

r
−sin θ

r
0.0 0.0

− cos θ

r

cos θ

r
0.0 0.0

− l
r

l

r
0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0


Cva = 0.0 Cav = CT

va Ca = 0.0
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Gv = [0.0, 0.0, 0.0]T Ga = [0.0,m2gl2 sin θ2]
T

H =


− tan θ 0.0

1.0 0.0

0.0 1.0


τv = [τL, τr]

T τa = [τ1, τ2]
T

ζ = [ζ1ζ2ζ3]
T ζ̇ = [v, ω, θ1]

T



91

A.5 MATLAB Codes

Mobile Manipulator System Block

function etaD = SYSTEM(Taubar, eta, q, thetabD, theta1D,theta2D)

%#codegen

mb = 32; %32

m1 = 3; %3

m2 = 3; %3

Ib = 1;

I1 = 1;

I2 = 1;

g = 9.8;

D = 1;

L1 = 1;

L2 = 1;

R = 0.5;

% thetab = orientation of the mobile manipulator

% q = [x; y; thetab; tehta1; theat2];

thetab = q(3);

theta1 = q(4);

theta2 = q(5);

%% Matrix M

% M =[M11 M12 M13 M14 M15;

% M21 M22 M23 M24 M25;

% M31 M32 M33 M34 M35;

% M41 M42 M43 M44 M45;

% M51 M52 M53 M54 M55]
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M11= mb + m1 + m2;

M12= 0;

M13= -m2*L2*cos(theta2)*sin(thetab+theta1);

M14= -m2*L2*cos(theta2)*sin(thetab+theta1);

M15= -m2*L2*sin(theta2)*cos(thetab+theta1);

M21= 0;

M22= mb + m1 + m2;

M23= m2*L2*cos(theta2)*cos(thetab+theta1);

M24= m2*L2*cos(theta2)*sin(thetab+theta1);

M25= -m2*L2*sin(theta2)*sin(thetab+theta1);

M31=-m2*L2*cos(theta2)*sin(thetab+theta1);

M32= m2*L2*cos(theta2)*cos(thetab+theta1);

M33= Ib+I1+I2+(m2*(L2ˆ2)*(cos(theta2)ˆ2));

M34= I1+I2+(m2*(L2ˆ2)*(cos(theta2)ˆ2));

M35= 0;

M41= -m2*L2*cos(theta2)*sin(thetab+theta1);

M42= m2*L2*cos(theta2)*sin(thetab+theta1);

M43= I1+I2+(m2*(L2ˆ2)*(cos(theta2)ˆ2));

M44= I1+I2+(m2*(L2ˆ2)*(cos(theta2)ˆ2));

M45= 0;

M51= -m2*L2*sin(theta2)*cos(thetab+theta1);

M52= -m2*L2*sin(thetab+theta1);

M53= 0;

M54= 0;

M55= I2+(m2*(L2ˆ2)*(cos(theta2)ˆ2));

M =[M11 M12 M13 M14 M15;

M21 M22 M23 M24 M25;

M31 M32 M33 M34 M35;

M41 M42 M43 M44 M45;

M51 M52 M53 M54 M55];

%% Matrix C

%C = [C11 C12 C13 C14 C15;
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% C21 C22 C23 C24 C25;

% C31 C32 C33 C34 C35;

% C41 C42 C43 C44 C45;

% C51 C52 C53 C54 C55];

C11 = 0;

C12 = 0;

C13 = (-m2*L2*cos(theta2)*cos(thetab+theta1)*(thetabD+theta1D))...

+ m2*L2*sin(theta2)*sin(thetab+theta1)*theta2D;

C14 = (-m2*L2*cos(theta2)*cos(thetab+theta1)*(thetabD+theta1D))...

+ m2*L2*sin(theta2)*sin(thetab+theta1)*theta2D;

C15 = (-m2*L2*cos(theta2)*cos(thetab+theta1)*(theta2D))...

+( m2*L2*sin(theta2)*sin(thetab+theta1)*(thetabD+theta1D));

C21= 0;

C22= 0;

C23= (-m2*L2*cos(theta2)*sin(thetab+theta1)*(thetabD+theta1D))...

+ m2*L2*sin(theta2)*cos(thetab+theta1)*theta2D;

C24= (-m2*L2*cos(theta2)*sin(thetab+theta1)*(thetabD+theta1D))...

+ m2*L2*sin(theta2)*cos(thetab+theta1)*theta2D;

C25= (-m2*L2*sin(theta2)*cos(thetab+theta1)*(thetabD+theta1D))...

+ m2*L2*cos(theta2)*sin(thetab+theta1)*theta2D;

C31 =0;

C32 =0;

C33 = -m2*L2ˆ2*cos(theta2)*sin(theta2)*theta2D;

C34 = -m2*L2ˆ2*cos(theta2)*sin(theta2)*theta2D;

C35 = -m2*L2ˆ2*cos(theta2)*sin(theta2)*(thetabD+theta1D);

C41 = 0;

C42 = 0;

C43 = -m2*L2ˆ2*cos(theta2)*sin(theta2)*theta2D;

C44 = -m2*L2ˆ2*cos(theta2)*sin(theta2)*theta2D;

C45 = -m2*L2ˆ2*cos(theta2)*sin(theta2)*(thetabD+theta1D);

C51= 0;

C52 =0;

C53 = m2*L2ˆ2*cos(theta2)*sin(theta2)*(thetabD+theta1D);

C54 = m2*L2ˆ2*cos(theta2)*sin(theta2)*(thetabD+theta1D);
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C55 = m2*L2ˆ2*cos(theta2)*sin(theta2)*theta2D;

C = [C11 C12 C13 C14 C15;

C21 C22 C23 C24 C25;

C31 C32 C33 C34 C35;

C41 C42 C43 C44 C45;

C51 C52 C53 C54 C55];

%% G matrix

%G = [G1; G2; G3; G4; G5];

G1= 0;

G2= 0;

G3 =0;

G4 =0;

G5= m2*g*L2*cos(theta2);

G = [G1; G2; G3; G4; G5];

%% E Matrix

% E = [(1/R)*cos(theta) (1/R)*cos(theta) 0 0;

% (1/R)*sin(theta) (1/R)*sin(theta) 0 0;

% D/R -D/R 0 0;

% 0 0 1 0;

% 0 0 0 1];

%% Including Non-holonomic Constraints to the system.

H = [(R/2)*cos(q(3)) (R/2)*cos(q(3)) 0 0;...

(R/2)*sin(q(3)) (R/2)*sin(q(3)) 0 0;...

R/2*D -R/2*D 0 0;...

0 0 1 0;...

0 0 0 1];

% taking transpose of H

Ht = H';

% taking H/dot

HD = [-(R/2)*sin(q(3))*thetabD -(R/2)*sin(q(3))*thetabD 0 0;...

(R/2)*cos(q(3))*thetabD (R/2)*cos(q(3))*thetabD 0 0;...
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0 0 0 0; 0 0 0 0; 0 0 0 0];

%% Dynamics can be expressed by Mbar, Cbar, Gbar

Mbar = Ht*M*H;

Cbar = Ht*(M*HD+C*H);

Gbar = Ht*G;

etaD =(Mbar)\(Taubar- Cbar*eta - Gbar);

Kinematic Transformation and I.K. Block

function [qD, Deltainverse, Sidot, DeltainverseDot, PP, XX] = KT(eta,q)

%#codegen

%KT = kinematic Transformation

R = 0.5;

D = 1;

L2 = 1; %length of the second link

theta2 = q(5);

theta1 = q(4);

thetab = q(3);

%% Including Non-holonomic Constraints to the system.

H = [(R/2)*cos(q(3)) (R/2)*cos(q(3)) 0 0;...

(R/2)*sin(q(3)) (R/2)*sin(q(3)) 0 0;...

R/2*D -R/2*D 0 0;...

0 0 1 0;...

0 0 0 1];

%%

%qdot

qD = H*eta;

ThetabDot = qD(3);

Theta1Dot = qD(4);
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Theta2Dot = qD(5);

%Jh1 = -L2*cos(theta2)*sin(theta1+thetab);

%Jh2 = -L2*sin(theta2)*cos(theta1+thetab);

%Jh3 = L2*cos(theta2)*cos(theta1+thetab);

%Jh4 = -L2*sin(theta2)*sin(theta1+thetab);

%Jh5 = L2*cos(theta2);

%Jh1 = L2*sin(theta2)*sin(theta1+thetab);

%Jh2 = -L2*cos(theta2)*cos(theta1+thetab);

%Jh3 = -L2*sin(theta2)*cos(theta1+thetab);

%Jh4 =-L2*cos(theta2)*sin(theta1+thetab);

%Jh5 = L2*sin(theta2);

J11 = (R/2)*cos(thetab);

J12 = (R/2)*cos(thetab);

J13 = 0;

J14 = 0;

J21 = (R/2)*sin(thetab);

J22 = (R/2)*sin(thetab);

J23 = 0;

J24 = 0;

J31 = (R/2)*cos(thetab) - (L2*cos(theta2)*sin(theta1+thetab))*(R/2*D);

J32 = (R/2)*cos(thetab) + (L2*cos(theta2)*sin(theta1+thetab))*(R/2*D);

J33 = -L2*cos(theta2)*sin(theta1+thetab);

J34 = -L2*sin(theta2)*cos(theta1+thetab);

J41 = (R/2)*sin(thetab) + (L2*cos(theta2)*cos(theta1+thetab))*(R/2*D);

J42 = (R/2)*sin(thetab) - (L2*cos(theta2)*cos(theta1+thetab))*(R/2*D);

J43 = L2*cos(theta2)*cos(theta1+thetab);

J44 = -L2*sin(theta2)*sin(theta1+thetab);

J51 = 0;

J52 = 0;

J53 = 0;

J54 = L2*cos(theta2);
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J = [J11 J12 J13 J14;

J21 J22 J23 J24;

J31 J32 J33 J34;

J41 J42 J43 J44;

J51 J52 J53 J54];

%Delta = [cos(thetab) 0 0 0; sin(thetab) 0 0 0;

% cos(thetab) Jh1 Jh1 Jh2;sin(thetab) Jh3 Jh3 Jh4; 0 0 0 Jh5 ];

%sidot

Sidot = J*eta;

J11d = -(R/2)*sin(thetab)*ThetabDot;

J12d = -(R/2)*sin(thetab)*ThetabDot;

J13d = 0;

J14d = 0;

J21d = (R/2)*cos(thetab)*ThetabDot;

J22d = (R/2)*cos(thetab)*ThetabDot;

J23d = 0;

J24d = 0;

J31d = -(R/2)*sin(thetab)*ThetabDot...

- (L2*cos(theta2)*cos(theta1+thetab)*(ThetabDot+Theta1Dot)...

- L2*sin(theta2)*sin(theta1+thetab)*Theta2Dot)*(R/2*D);

J32d = -(R/2)*sin(thetab)*ThetabDot...

+ (L2*cos(theta2)*cos(theta1+thetab)*(ThetabDot+Theta1Dot)...

- L2*sin(theta2)*sin(theta1+thetab)*Theta2Dot)*(R/2*D);

J33d = -L2*cos(theta2)*cos(theta1+thetab)*(ThetabDot+Theta1Dot)...

+ L2*sin(theta2)*sin(theta1+thetab)*Theta2Dot;

J34d = L2*sin(theta2)*sin(theta1+thetab)*(ThetabDot+Theta1Dot)...

+ L2*cos(theta2)*cos(theta1+thetab)*Theta2Dot;

J41d = (R/2)*cos(thetab)*ThetabDot...

+ (-L2*cos(theta2)*sin(theta1+thetab)*(ThetabDot+Theta1Dot)...

- L2*sin(theta2)*cos(theta1+thetab)*Theta2Dot)*(R/2*D);

J42d = (R/2)*cos(thetab)*ThetabDot...
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- (-L2*cos(theta2)*sin(theta1+thetab)*(ThetabDot+Theta1Dot)...

- L2*sin(theta2)*cos(theta1+thetab)*Theta2Dot)*(R/2*D);

J43d = -L2*cos(theta2)*sin(theta1+thetab)*(ThetabDot+Theta1Dot)...

- L2*sin(theta2)*cos(theta1+thetab)*Theta2Dot;

J44d = -L2*sin(theta2)*cos(theta1+thetab)*(ThetabDot+Theta1Dot)...

- L2*cos(theta2)*sin(theta1+thetab)*Theta2Dot;

J51d = 0;

J52d = 0;

J53d = 0;

J54d = -L2*sin(theta2)*Theta2Dot;

Jd = [J11d J12d J13d J14d;

J21d J22d J23d J24d;

J31d J32d J33d J34d;

J41d J42d J43d J44d;

J51d J52d J53d J54d];

%DeltaInverse

%k= 1.5;

k= 1.01;

K2I = [kˆ2 0 0 0 0; 0 kˆ2 0 0 0; 0 0 kˆ2 0 0; 0 0 0 kˆ2 0; 0 0 0 0 kˆ2];

Deltainverse = J'/(J*J' + K2I);

% DeltaDot for Delta inverse dot; rule:

%deltainversedot = -deltainverse*deltadot*Deltadot

%DeltaDot = [-sin(thetab)*ThetabDot 0 0 0;

% cos(thetab)*ThetabDot 0 0 0;

% -sin(thetab)*ThetabDot Jh1D Jh1D Jh2D;

% cos(thetab)*ThetabDot Jh3D Jh3D Jh4D; 0 0 0 Jh5D];

DeltainverseDot = -Deltainverse*Jd*Deltainverse;

%For etaCDot

PPP = Deltainverse*J;

PP = eye(4)-PPP;
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xxx1 = -Deltainverse*Jd;

xxx2 = -DeltainverseDot*J;

XX = xxx1+xxx2;

end

Regressor Matrix Calculation

function Y = fcn(etaC, etaCDot, q, qD)

%#codegen

R = 0.5;

D = 1;

g= 9.8;

vdot = etaCDot(1);

wdot = etaCDot(2);

theta1DD = etaCDot(3);

theta2DD = etaCDot(4);

v = etaC(1);

w = etaC(2);

Theta1D = etaC(3);

Theta2D = etaC(4);

thetab = q(3);

theta1 = q(4);

theta2 = q(5);

thetabD = qD(3);

theta1D = qD(4);

theta2D = qD(5);

Y11 = (Rˆ2/4)*(vdot + wdot) + (Rˆ2/4)*(sin(thetab)ˆ2-cos(thetab)ˆ2)*w ;

Y12 = 2*cos(theta2)*(Rˆ2/4*D)*(cos(thetab+theta1)*sin(thetab)...

- sin(thetab+theta1)*cos(thetab))*vdot...
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+ (R/2)*cos(theta2)*(cos(thetab+theta1)*sin(thetab)...

- sin(thetab+theta1)*cos(thetab))*theta1DD...

- (R/2)*sin(theta2)*(cos(thetab+theta1)*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*theta2DD ...

+ (Rˆ2/4*D)*cos(theta2)*(cos(thetab+theta1)*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*v...

- (Rˆ2/4*D)*(thetabD+theta1D)*cos(theta2)*(cos(thetab+theta1)...

*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*v...

+ (Rˆ2/4*D)*sin(theta2)*theta2D*(cos(thetab+theta1)*sin(thetab)...

+ sin(thetab+theta1)*cos(thetab))*v...

+ (Rˆ2/4*D)*cos(theta2)*(cos(thetab+theta1)*sin(thetab)...

+ sin(thetab+theta1)*cos(thetab))*w...

+ (Rˆ2/4*D)*cos(theta2)*(thetabD+theta1D)*(cos(thetab+theta1)...

*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*w...

- (Rˆ2/4*D)*sin(theta2)*theta2D*(cos(thetab+theta1)*sin(thetab)...

+ sin(thetab+theta1)*cos(thetab))*w...

- (R/2)*(thetabD+theta1D)*cos(theta2)*(cos(thetab+theta1)...

*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*Theta1D...

+ (R/2)*(theta2D)*sin(theta2)*(sin(thetab+theta1)*cos(thetab)...

+ cos(thetab+theta1)*sin(thetab))*Theta1D...

+ (R/2)*(thetabD+theta1D)*sin(theta2)*(sin(thetab+theta1)...

*cos(thetab)...

- cos(thetab+theta1)*sin(thetab))*Theta2D...

- (R/2)*(theta2D)*cos(theta2)*(cos(thetab+theta1)...

*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*Theta2D ;

Y13 = (Rˆ2/4*Dˆ2)*cos(theta2)ˆ2*(vdot-wdot)...

+ (R/2*D)*cos(theta2)ˆ2* theta1DD...

+ (Rˆ2/4*Dˆ2)* cos(theta2)*sin(theta2)*theta2D*(w-v)...

- (R/2*D)*cos(theta2)*sin(theta2)*(theta2D*Theta1D...

+ (thetabD+theta1D)*Theta2D);

Y14 = (Rˆ2/4*Dˆ2)*(vdot - wdot);

Y15 = Y14 + (R/2*D)*theta1DD ;

Y16 = Y15;

Y21 = Y11 ;
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Y22 = 2*cos(theta2)*(Rˆ2/4*D)*(-cos(thetab+theta1)*sin(thetab)...

+ sin(thetab+theta1)*cos(thetab))*wdot...

+ (R/2)*cos(theta2)*(cos(thetab+theta1)*sin(thetab)...

- sin(thetab+theta1)*cos(thetab))*theta1DD...

- (R/2)*sin(theta2)*(cos(thetab+theta1)*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*theta2DD...

-(Rˆ2/4*D)*cos(theta2)*(cos(thetab+theta1)*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*v...

- (Rˆ2/4*D)*(thetabD+theta1D)*cos(theta2)*(cos(thetab+theta1)...

*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*v...

+ (Rˆ2/4*D)*sin(theta2)*theta2D*(cos(thetab+theta1)*sin(thetab)...

+sin(thetab+theta1)*cos(thetab))*v...

- (Rˆ2/4*D)*cos(theta2)*(cos(thetab+theta1)*sin(thetab)...

+ sin(thetab+theta1)*cos(thetab))*w...

+ (Rˆ2/4*D)*cos(theta2)*(thetabD+theta1D)*(cos(thetab+theta1)...

*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*w...

- (Rˆ2/4*D)*sin(theta2)*theta2D*(cos(thetab+theta1)*sin(thetab)...

+ sin(thetab+theta1)*cos(thetab))*w...

- (R/2)*(thetabD+theta1D)*cos(theta2)*(cos(thetab+theta1)...

*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*Theta1D...

+ (R/2)*(theta2D)*sin(theta2)*(sin(thetab+theta1)*cos(thetab)...

+cos(thetab+theta1)*sin(thetab))*Theta1D...

+ (R/2)*(thetabD+theta1D)*sin(theta2)*(sin(thetab+theta1)...

*cos(thetab)...

- cos(thetab+theta1)*sin(thetab))*Theta2D...

- (R/2)*(theta2D)*cos(theta2)*(cos(thetab+theta1)*cos(thetab)...

+ sin(thetab+theta1)*sin(thetab))*Theta2D ;

Y23 = (Rˆ2/4*Dˆ2)*cos(theta2)ˆ2*(wdot-vdot)...

- (R/2*D)*cos(theta2)ˆ2* theta1DD...

+ (Rˆ2/4*Dˆ2)* cos(theta2)*sin(theta2)*theta2D*(v-w)...

+ (R/2*D)*cos(theta2)*sin(theta2)*(theta2D*Theta1D...

+ (thetabD+theta1D)*Theta2D);

Y24 = (Rˆ2/4*Dˆ2)*(wdot - vdot);

Y25 = Y24 + (R/2*D)*theta1DD ;

Y26 = Y25;
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Y31 = 0;

Y32 = -(R/2)*cos(theta2)*sin(thetab+theta1)*cos(thetab)*(vdot+wdot)...

+ (R/2)*cos(theta2)*cos(thetab+theta1)*sin(thetab)*(vdot+wdot)...

+ (cos(theta2)*sin(thetab+theta1)*sin(thetab)...

+ cos(theta2)*cos(thetab+theta1)*cos(thetab))*(R/2)*v...

+ (R/2)*cos(theta2)*(sin(thetab+theta1)*cos(thetab)...

+cos(thetab+theta1)*sin(thetab))*w ;

Y33 = (R/2*D)*cos(theta2)ˆ2*(vdot-wdot)...

+ cos(theta2)ˆ2*theta1DD...

+ (R/2*D)*cos(theta2)*sin(theta2)*theta2D*(w-v)...

+ cos(theta2)*sin(theta2)*((thetabD+theta1D)*Theta2D...

- theta2D*Theta1D);

Y34 = 0;

Y35 = (R/2*D)*(vdot-wdot)+ theta1DD;

Y36 = Y35;

Y41 = 0;

Y42 = (R/2)*sin(theta2)*cos(thetab+theta1)*cos(thetab)*(vdot-wdot)...

- (R/2)*sin(theta2)*sin(thetab+theta1)*sin(thetab)*(vdot+wdot)...

+ (R/2)*sin(theta2)*(cos(thetab+theta1)*sin(thetab)...

+ sin(thetab+theta1)*cos(thetab))*v...

+ (R/2)*sin(theta2)*(cos(thetab+theta1)*cos(thetab)...

+sin(thetab+theta1)*sin(thetab))*w + g*cos(theta2);

Y43 = cos(theta2)*sin(theta2)*(thetabD+theta1D)*(R/2*D)*(v-w)...

+ cos(theta2)*sin(theta2)*((thetabD+theta1D)*Theta1D+...

theta2D*Theta2D);

Y44 = 0;

Y45 = 0;

Y46 = 0;

Y = [Y11 Y12 Y13 Y14 Y15 Y16;

Y21 Y22 Y23 Y24 Y25 Y26;

Y31 Y32 Y33 Y34 Y35 Y36;

Y41 Y42 Y43 Y44 Y45 Y46];

end
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