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Abstract

Fine particulate matter known as PM2.5 exists in Earth’s atmosphere at varying levels

globally. High ambient concentrations of PM2.5 are associated with adverse health

impacts, reduced visibility, and have a relatively poorly understood effect on global

climate. Global chemical transport models provide an opportunity to simulate PM2.5

with full spatial coverage on a global to regional scale. Satellite observations can be

incorporated with simulated PM2.5 to further strengthen PM2.5 estimates. This work

explores the differences in simulated PM2.5 using fine (0.25◦ x 0.3125◦) and coarse (2◦

x 2.5◦) model resolution, with the aim of improving PM2.5 estimation and monitoring.

Simulating surface concentration of PM2.5 using fine spatial resolution improves

agreement with ground-based measurements compared with a coarse resolution sim-

ulation, with explained variance increasing by as much as 0.16 seasonally. The fine

resolution simulation better resolves spatial gradients in surface PM2.5 which are

poorly captured at coarse resolution, such as regions of biomass burning. In urban

areas, where population is most dense and accurate health impact assessments are

crucial, the fine resolution simulation reveals enhanced surface PM2.5 at the sub-grid

scale around city centres.

Combining simulated PM2.5/AOD with satellite-derived observations yields fur-

ther improvements in estimated surface PM2.5. The fine resolution satellite-model

PM2.5 estimates show the strongest agreement with ground-based measurements, with

correlation coefficients >0.53 and near 1:1 relationship across all seasons.

Differences between estimates of PM2.5 and its constituent species at varying

model resolutions result from differences in emission density, i.e. the dilution of

high density emission sources over coarse grid boxes.

Recommendations for future simulations are made based on fine resolution sensi-

tivity tests with varying chemical mechanisms and emission inputs.
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Chapter 1

Introduction

1.1 Background

1.1.1 Aerosols and Human Health

Small solid or liquid particles suspended in the atmosphere, known as aerosols, ad-

versely impact human health and the natural environment in a number of ways. In

addition to their indirect effect on global climate [Boucher et al., 2013] and their

role in reducing visibility [Stanek et al., 2009], fine particulate matter with aerody-

namic diameter of 2.5 µm or less (PM2.5) is being increasingly recognized as one of

the most damaging classes of air pollution to human health [Shindell et al., 2012].

Due to their small diameter, PM2.5 is able to travel deep into the lungs and enter the

bloodstream, leading to a variety of afflictions including non-fatal heart attacks, ir-

regular heartbeat, asthma, decreased lung function, increased respiratory symptoms,

and premature death [Stanek et al., 2009]. The Global Burden of Disease (GBD) risk

assessment has ranked outdoor PM2.5 9th among 20 leading risk factors, with am-

bient particulate matter pollution accounting for 3.1 million premature deaths each

year [Lim et al., 2012]. In addition, as of October 2013, the International Agency

for Research on Cancer has classified particulate matter as carcinogenic to humans

[Loomis et al., 2014], emphasizing the subtle yet powerful role PM2.5 plays in human

health and mortality.

1.1.2 PM2.5 in North America

Increased mortality rates and instances of lung cancer, cardiopulmonary disease and

diabetes are not only observed in extreme cases where annual mean PM2.5 con-

centrations are very high, such as northern India (> 60 µgm−3) or eastern China

(> 80 µgm−3) relative to the long-term (2001-2010) global mean of 26.4 µgm−3 [van

Donkelaar et al., 2015]. Adverse effects to human health are observed globally, includ-

ing in North America where long-term (2001-2010) annual mean PM2.5 concentrations

are comparatively low (9.9 µgm−3 for high income areas) [van Donkelaar et al., 2015].



2

Associations between cardiovascular mortality and long-term exposure to PM2.5 have

been reported for concentrations as low as a few micrograms per cubic meter, with

no evidence of a lower exposure limit below which health impacts are not detected

[Crouse et al., 2012]. Adverse health impacts caused by fine aerosols can be dimin-

ished by reducing exposure to PM2.5, with as little as a 10 µgm−3 decrease resulting

in a 0.35 to 0.61 year increase in life expectancy [Correia et al., 2013; Pope III et al.,

2009]. Accurate monitoring, assessment, and regulation of PM2.5 is critical in achiev-

ing such a reduction and can lead to measurable improvements in human health and

mortality on a global scale.

1.2 Measuring PM2.5

Global air quality guidelines for particulate matter have been established by the World

Health Organization (WHO) based on the lower end of the range at which PM2.5

exposure is associated with adverse health impacts. Based on this criteria, the WHO

adopted a long-term guideline for annual average PM2.5 concentration of 10 µgm−3

and a short-term (24-hour) guideline of 25 µgm−3 [World Health Organization, 2006].

Air quality standards also exist at the national level for many countries including

Canada and the United States.

The United States National Ambient Air Quality Standard (NAAQS) set by the

US Environmental Protection Agency (EPA) is slightly less strict than the WHO

guideline, with a short-term (24-hour) standard of 35 µgm−3 and a long-term guide-

line of 12 µgm−3 [US EPA Office of Air Quality Planning and Standards , 2016c].

The Canadian Ambient Air Quality Standard (CAAQS) for PM2.5 provides a more

ambitious national standard of 28 µgm−3 for short-term and 10 µgm−3 for long term

[Canadian Council of Ministers of the Environment , 2014]. In recent years, from 2010

to 2012, the majority of locations reporting PM2.5 concentrations in Canada recorded

concentrations below the 24-hour target, with only three locations in British Columbia

and five locations in Alberta exceeding the limit, likely due to seasonal forest fires

[Canadian Council of Ministers of the Environment , 2014]. The success thus far in

reducing PM2.5 concentration demonstrates the powerful response to the implementa-

tion of global and nation-wide air quality standards for PM2.5. It is therefore crucial

that standards continue to provide ambitious goals for nations to adhere to in order
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to minimize the adverse health impacts observed even at low PM2.5 exposure levels.

Adherence to air quality standards is contingent upon accurate measurement and

monitoring of ambient PM2.5 levels. Figure 1.1 illustrates three PM2.5 assessment

methods along with their relative strengths and weaknesses, as described below.

Figure 1.1 Relative strengths and weaknesses of three PM2.5 assessment methods

1.2.1 Ground-based Measurement of PM2.5

Adherence to global and national-level air quality standards is monitored via ground-

based measurement of PM2.5 and its constituents - sulfate, nitrate, ammonium, or-

ganic aerosols, black carbon, mineral dust, and sea salt. In situ monitoring is highly

valuable and often considered “truth” in PM2.5 exposure and estimation studies (e.g.

van Donkelaar et al., 2015, Philip et al., 2014a). While networks of monitoring sta-

tions are present in various locations worldwide, their locations are not evenly spa-

tially distributed and are frequently sparsely located. In addition to having poor

spatial coverage, monitoring stations are only capable of taking point measurements,

which may or may not be representative of the surrounding area. While studies have

found geostatistical interpolation between monitors to provide accurate estimates of

PM2.5 in regions where monitoring networks are dense, they struggle to represent

PM2.5 between sites in many parts of the world where monitoring locations are sparse

[Pinto et al., 2004; Lee et al., 2012]. A full understanding of the adverse impacts

of aerosols including PM2.5 requires an understanding of aerosol emissions, deposi-

tion, transport, and chemistry at high spatial and temporal resolution [Arunachalam
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et al., 2011]. Such high resolution data cannot be provided from ground-based mea-

surements alone.

1.2.2 Chemical Transport Models to Estimate PM2.5

Chemical transport models (CTMs) are an important quantitative tool for simulating

atmospheric chemistry, allowing for an enhanced understanding of the relationship

between primary particulates and secondary particulate precursors to ambient PM2.5

concentrations. Eulerian box models describe a subset of CTMs in which chemical

production and loss occur over time within a stationary grid box (Figure 1.2; Jacob

[1999]). CTMs compute aerosol concentration in each box by solving the continuity

equation (Equation 1.1). The continuity equation computes the change in number

density of each tracer n over time t (∂n/∂t) by subtracting losses due to chemistry and

deposition (L) and a transport term representing losses from the box via transport

(−∇•F), from sources such as emission, chemical production, and transport into the

box (P ).

∂n

∂t
= P −∇ • F− L (1.1)

Figure 1.2 Theoretical basis for Eulerian box models [Jacob, 1999]

PM2.5 and model resolution

The horizontal spatial resolution of CTMs, as determined by the resolution of their

meteorological input fields, can have a strong influence on simulation output. Studies

have found that coarse resolution models underpredict the adverse health impacts

attributed to PM2.5 relative to fine scale simulations. Comparisons of simulations
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at fine and coarse resolution have shown coarse simulations to underpredict PM2.5-

attributed mortality estimates by 8 to 11%, or approximately 12,000 deaths per year

when considering a 3- to 4-fold increase in spatial resolution [Punger and West , 2013;

Li et al., 2015]. When resolution is changed drastically, for example from a typical

global scale of 250 km (2.5◦) to a community scale of 12 km (0.1◦), mortality rates

can be underpredicted by as much as 40% [Punger and West , 2013].

Underprediction of PM2.5-related health effects follows from a low bias in model-

predicted PM2.5 surface concentration. Simulations using larger grid cells can lead to

dilution of point source emissions and underestimation of other sub-grid scale pro-

cesses. Population-dense areas where emissions are likely to be enhanced relative to

surrounding rural areas may therefore be misrepresented due to spatial averaging of

emissions causing underestimation of PM2.5 concentration in urban centres and over-

estimation in rural areas [Thompson et al., 2014]. Thus, coarse models underestimate

PM2.5 most significantly in highly populated urban centres [Li et al., 2015].

The influence of model spatial resolution on predicted PM2.5 surface concentration

is influenced by a number of factors. While resolution of model output is driven by

the resolution of the meteorological input data, Cuvelier et al. [2013] found that

approximately 70% of the simulated particulate matter response to grid resolution

results from differences in emission density. It is therefore critically important to

provide the model with accurate, fine resolution emissions data in order to precisely

resolve PM2.5 concentration around urban centres. Seasonality also plays a role in the

influence of model resolution on PM2.5 prediction, with resolution playing a modest

role in summer but becoming more significant in the winter months at northern mid-

latitudes [Fountoukis et al., 2013]. Different species are also affected differently by

resolution. The species most likely to be underpredicted at coarse model resolution

are those with short lifetimes, and therefore small dispersal ranges [Punger and West ,

2013]. Primary species such as elemental and organic carbon also show greater bias

with changing spatial resolution than secondary species such as sulfate, nitrate, and

ammonium [Punger and West , 2013; Thompson et al., 2014; Fountoukis et al., 2013;

Li et al., 2015].
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1.3 Satellite Observations to Estimate PM2.5

While CTMs can provide full global coverage in estimated PM2.5 concentration, im-

posing a physical constraint can improve the accuracy of such estimates. Ground-

based monitors provide one measure against which models can be validated, however

their sparse geographic coverage limits their predictive ability. Satellite instrumen-

tation is another source for physical measurements which can constrain model PM2.5

estimates. Full global coverage is an advantage of satellite data, however rather than

measuring surface PM2.5 concentration directly, remote sensing records observations

of the entire atmospheric column through measurement of aerosol optical depth.

Aerosol optical depth (AOD) is a measure of the extinction of light in the atmo-

spheric column as it is absorbed and scattered by ambient aerosols. Satellite remote

sensing observes total column AOD by measuring radiance as seen from the top of

the atmosphere and using retrieval algorithms to relate these observations to AOD.

Equations 1.2 and 1.3 provide a simplified explanation of the relationship between

measured radiance at a given wavelength (Iλ),and column AOD (τλ).

Iλ = Iλ(zo) exp

[
−
∫ ∞

zo

βe(z
′)dz′

]
(1.2)

τλ ≡
∫ ∞

zo

βe(z
′)dz′ = − ln

[
Iλ

Iλ(zo)

]
(1.3)

where Iλ is the radiance measured at the top of the atmosphere, Iλ(zo) is the

radiance emitted from level zo (the surface for total column AOD), βe is the extinction

coefficient with units of inverse length (i.e. m−1), a factor relying on the properties

of the medium and the wavelength of the incident radiation (λ). It can be seen from

Equation 1.3 that AOD is related to the ratio of the logarithm of radiance at the top

of the atmosphere to that at the bottom of the atmosphere. In theory, the radiation

observed at the top of Earth’s atmosphere will have a different spectral signature

than surface radiance. Multiple wavelength bands (i.e. visible, near infrared, and

shortwave wavelength regions) can be used to infer physical properties of the observed

aerosols based on measurement of outgoing radiation [Levy et al., 2013].

This seemingly simple relationship is complicated by the fact that there is not a

single source of radiation from the lower surface (z) being transmitted to the top of the

atmosphere to be observed by the satellite, but rather a combination of absorption and
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scattering by the surface, atmosphere, and clouds (Figure 1.3; Hoff and Christopher

[2009]). Satellite retrievals of AOD can therefore become quite complex and require

physical and observational assumptions about the surface and expected aerosol types

above the surface [Levy et al., 2013].

Figure 1.3 Various sources of radiance (represented by arrows) absorbed, scattered, and
emitted by Earth’s surface and atmosphere are observed by satellite instrumentation as
top-of-atmosphere radiance [Hoff and Christopher , 2009]

.

Obtaining PM2.5 estimates from satellite AOD observations requires a characteri-

zation of the complex relationship between surface and total column aerosol concen-

trations. The surface-to-column relationship can be characterized by a conversion

factor η, as expressed in Equation 1.4 [van Donkelaar et al., 2010].

PM2.5 = η × AOD (1.4)

The relationship between column AOD for tracer i at a given level in the atmo-

sphere and the mass of tracer in that level Mi [µgm−2] can be expressed in terms

of the Mie extinction efficiency (Qext,dry,i), a factor accounting for hygroscopic parti-

cle growth (fRH), dry aerosol effective radius (reff,dry,i, [m
2]), and species density (ρi,

[µgm−3]) as in Equation 1.5. Total column AOD is the sum of AODi,lev for all species

i over all vertical levels in the atmosphere.

AODi,lev =
3

4

Qexti fRH

reffi ρi
Mi (1.5)

The above equation can be rewritten as in Chu et al. [2013] to express η in terms

of the hygroscopic growth factor (fRH), aerosol extinction cross-section per unit mass

(σext
dry, [m

2 µg−1]) and aerosol mixing layer height (Lmix, [m]), where Mi in Equation
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1.5 is equivalent to the PM2.5 concentration times the mixing layer height. The

aerosol mixing layer height is defined as the upper boundary of the lowest layer of

the troposphere where atmospheric mixing is influenced by the Earth’s surface.

η =
PM2.5

AOD
=

1

Lmix [fRH σext
dry]surface

(1.6)

Equation 1.6 illustrates that η varies with relative humidity, aerosol type, aerosol

size, and mixing layer height. The surface-to-column ratio η can be estimated by a

CTM and then applied to satellite observations of AOD to infer surface-level PM2.5

concentration. Such estimates can be validated with ground-based measurements.

This study aims to explore the effect of model resolution on PM2.5 estimates

and how this influences satellite-derived estimates of PM2.5 (i.e. effect of resolution

on PM2.5/AOD), particularly in urban regions where prediction accuracy for health

impact assessments is crucial.
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Chapter 2

Methods

2.1 Global Chemical Transport Modeling: GEOS-Chem

GEOS-Chem (GC) version 10-01 [Bey et al., 2001], a global 3-dimensional chemical

transport model, was used to simulate concentrations of PM2.5 constituents includ-

ing sulfate, nitrate, ammonium, carbonaceous aerosols, mineral dust, sea salt, and

secondary organic aerosols. Aerosol optical depth (AOD) of sulfate, carbonaceous

aerosols, dust, and sea salt at 550 nm wavelength was also computed.

2.1.1 Meteorological Data and Spatial Resolution

GC is driven by assimilated meteorological data from the Goddard Earth Observation

System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO).

Several meteorological data products exist for use within the GEOS-Chem frame-

work, including GEOS-FP which was the product used for this study. GEOS-FP

is GMAOs most recent product (as of this writing), with data available from April

2012 to present day. GEOS-FP meteorological data includes parameters such as wind

speed, temperature, humidity, cloud fraction, and precipitation at an hourly tempo-

ral resolution. Three-dimensional quantities such as upper air properties are also

included at a 3-hourly temporal resolution.

Presently, the finest horizontal spatial resolution at which global simulations can

be performed by GEOS-Chem is 2◦ x 2.5◦, approximately 150 km x 200 km at 45◦

latitude (see Figure 2.1 (left)). At this resolution, the model is able to resolve broad

regions but unable to discern smaller areas, including large urban centres. GEOS-

Chem offers finer resolution nested-grid simulations over four large global regions

including North America, Europe, China, and Southeast Asia. GC nested-grid simu-

lations can be performed at a horizontal spatial resolution as fine as 0.25◦ x 0.3125◦,

approximately 20 km x 25 km at 45◦ latitude (see Figure 2.1 (right)). At such fine

resolution, the spatial distribution of surface-level PM2.5 and its constituents can be

resolved over urban centres, providing more detailed information regarding surface
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air quality in such regions.

Figure 2.1 GEOS-Chem horizontal spatial resolution 2◦ x 2.5◦(left); 0.25◦ x 0.3125◦(right)

A vertical grid consisting of 47 pressure levels extending from the surface (1013.25

hPa) to the top of atmosphere (0.01 hPa) was used for fine and coarse resolution

simulations. Vertical grid boxes are distributed by atmospheric pressure. The bot-

tommost layer, taken here to represent the surface, corresponds to approximately the

lowest 7.6 hPa, or 60 m, of the atmosphere.

2.1.2 Emission Inventories

GEOS-Chem v10-01 implements the Harvard-NASA Emissions Component (HEMCO),

a stand-alone software component which computes emissions in global CTMs [Keller

et al., 2014]. HEMCO provides an interface which allows the user to easily configure

which emissions inventories to use for a given simulation. Emission inventories used

in this study are outlined in Table 2.1.

Anthropogenic emissions of NOx, CO, SO2, and NH3 are provided by regional

inventories where data are available, including the Big Bend Regional Aerosol and

Visibility Observational study (BRAVO) for Mexico [Kuhns et al., 2001], the Criteria

Air Contaminants (CAC) for Canada [Environment and Climate Change Canada,

2016a], and the 2011 National Emissions Inventory (NEI2011) for the United States

[US EPA Office of Air Quality Planning and Standards , 2016d]. The NEI2011 in-

ventory extends into Canada and Mexico (see Figure A.1) and is given priority over

CAC and BRAVO in areas where regional inventories overlap. Emissions Database

for Global Atmospheric Research (EDGAR) version 4.2 global anthropogenic emis-

sions were used when regional inventories were not available. In this study, NEI2011
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was used up to the end of 2013 after which GEOS-Chem defaults to EDGAR.

Volatile organic compound (VOC) emissions come from the Reanalysis of the

Tropospheric chemical composition (RETRO) inventory [Schultz et al., 2008; Reinhart

and Millet , 2011]. Biogenic VOCs come from the Model of Emissions of Gases and

Aerosols from Nature version 2.1 (MEGAN), including monoterpenes and secondary

organic aerosols [Guenther et al., 2012]. Biomass burning emissions are provided

at a 3-hourly temporal resolution by the Global Fire Emissions Database version

4.1s (GFED4) with small fires [Giglio and Randerson, 2013; van der Werf et al.,

2010]. The Mineral Dust Entrainment and Deposition (DEAD) extension was used for

mineral dust emissions [Fairlie et al., 2010, 2007; Zender , 2003]. Ship emission of SO2

come from the Arctic Research of the Composition of the Troposphere from Aircraft

and Satellites (ARCTAS) inventory [Eyring et al., 2005], CO from the International

Comprehensive Ocean-Atmosphere Data Set (ICOADS) [Wang et al., 2008], and NOx

from PARANOx [Vinken et al., 2011]. Aircraft emissions come from the Aviation

Emissions Inventory Code version 2.0 (AEIC) [Stettler et al., 2011].

Base emissions are constructed from external data using bottom-up (e.g. known

rates of fuel consumption) or top-down (e.g. atmospheric observations) approaches.

Scale factors are applied to account for diurnal, day of the week, seasonal or an-

nual variability relative to the base emissions [Keller et al., 2014]. For example, the

regional anthropogenic inventory for North America (NEI2011) uses base emissions

from 2011 and scales emitted species with an annual scale factor based on United

States emissions the National Emissions Inventory Air Pollutant Emissions Trends

Data [US EPA, 2016].

Spatial resolution of emission inventories plays a large role in model response to

grid resolution. An intercomparison study of five CTMs found that approximately

70% of the model response in predicted particulate concentrations to changing grid

resolution was determined by differences in emission strengths [Cuvelier et al., 2013].

Spatial resolution of emission inventories used in this study are listed in Table 2.1.

2.1.3 GEOS-Chem Model Runs Conducted

GEOS-Chem version 10-01 was used to simulate surface aerosol concentrations in-

cluding sulfate, nitrate, ammonium, carbonaceous aerosol, mineral dust, and sea salt.
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Table 2.1 Emission inventories used in GEOS-Chem

Inventory Species Resolution Reference

(lat x lon)

Anthropogenic emissions

EDGAR v4.2 NO CO SOx NH3 0.1◦ x 0.1◦ Muntean et al., 2014

NEI2011 NOx CO SOx NH3 OC BC SOA 0.1◦ x 0.1◦ US EPA Office of Air Quality Planning and Standards , 2016d

CAC NO CO SOx NH3 1◦ x 1◦ Environment and Climate Change Canada, 2016a

BRAVO NO CO SOx 1◦ x 1◦ Kuhns et al., 2001

GEIA NH3 1◦ x 1◦ Benkovitz et al., 1996

Aircraft emissions

AEIC NO2 CO 1◦ x 1◦ Stettler et al., 2011

Ship emissions

ARCTAS SO2 1◦ x 1◦ Eyring et al., 2005

ICOADS CO NO 1◦ x 1◦ Wang et al., 2008

Biofuel/biomass burning emissions

GFED4.1s, 3 hourly NO CO OC BC SOA 0.25◦ x 0.25◦ Giglio et al., 2013; van der Werf et al., 2010

BIOFUEL NO CO SO2 SOA 4◦ x 5 ◦ Yevich and Logan, 2014

Biogenic emissions

MEGAN SOA 1◦ x 1◦ Guenther et al., 2012

Misc. natural emissions

Volcano SO2 1◦ x 1◦ Diehl et al., 2012

Lightning NOx NOx 0.25◦ x 0.3125◦ Murray et al., 2012

Soil NOx NOx 0.25◦ x 0.25◦ Hudman et al., 2012

DEAD Dust 4◦ x 5◦ Fairlie et al., 2010, 2007; Zender , 2003

Column aerosol optical depth (AOD) for the same species at a wavelength of 550

nm was also determined. Simulations were conducted for a run period of 2 years,

from May 2013 to May 2015. The dates were chosen based on data availability in

the GEOS-FP meteorological datasets (data available from April 2012 - present). A

global simulation was conducted at 2◦ x 2.5◦ and a regional nested grid simulation

over North America was conducted at 0.25◦ x 0.3125◦, covering from 10◦ to 70◦ lati-

tude and -140◦ to -70◦ longitude as defined by nested grid boundaries. For the 0.25◦

x 0.3125◦ simulation transport and convection were computed every 5 minutes, emis-

sions and chemistry were computed every 15 minutes. For the 2◦ x 2.5◦ simulation

transport and convection were computed every 15 minutes, emissions and chemistry

were computed every 30 minutes. Both runs used GEOS-FP meteorological input

data.

2.1.4 Modifications to Standard GEOS-Chem code

Previous studies have reported an over-prediction of nitrate by GEOS-Chem when

compared with measurements from the IMPROVE network [Heald et al., 2012; Zhang

et al., 2012]. A 75% artificial reduction in simulated HNO3 concentration at each
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chemistry timestep was found to bring surface nitrate (NO−
3 ) concentration near

agreement with ground-based measurements at a spatial resolution of 0.5◦ x 0.667◦

with a 20-minute chemistry timestep [Heald et al., 2012]. This reduction was scaled to

the model resolutions used in this research, resulting in the same reduction in HNO3

over an equivalent amount of time. In the 2◦ x 2.5◦ simulation, HNO3 concentrations

were reduced to 62.5% of their simulated values at each 30-minute chemistry timestep.

For the 0.25◦ x 0.3125◦ simulation, HNO3 was reduced to 87.5% at each 10-minute

chemistry timestep. These reductions are equivalent to a 75% reduction every 20

minutes of simulated model time, as in Heald et al. [2012]. Refer to Appendix Figure

A.3 for effect of HNO3 reduction on simulated NO−
3 .

2.1.5 Model Output Variables of Interest

The model was run at coarse (2◦ x 2.5◦) and fine (0.25◦ x 0.3125◦) resolution and a

number of output variables were examined. The primary variables of interest were

the mixing ratios of the species which comprise PM2.5, including sulfate (SO4), in-

organic nitrate (NIT), ammonium (NH4), hydrophilic and hydrophobic organic car-

bon (OCPI, OCPO), hydrophilic and hydrophobic black carbon (BCPI, BCPO), sec-

ondary organic aerosols (SOA), mineral dust (DST), and accumulation mode sea salt

(SALA).

Simulated organic carbon concentrations were converted to organic mass using

a spatially and seasonally resolved ratio (OM/OC) which describes the relationship

between organic mass and organic carbon [Philip et al., 2014b]. Organic mass is

the component of PM2.5 consisting primarily of organic carbon in addition to other

elements such as oxygen, hydrogen, and nitrogen. The relationship between OM and

OC varies with sources of primary (POA) and secondary (SOA) organic aerosols as

well as their degree of ageing. POA is produced mainly by combustion sources; SOA

is formed through oxidation and partitioning of volatile organic compounds (VOCs)

emitted by both anthropogenic and biogenic sources [Philip et al., 2014b]. The ratio

OM/OC ranges from 1.69 to 2.29 with a mean value of approximately 2.24 over North

America. OM/OC is lower for regions where POA dominates over SOA and when

POA is oxidized slowly, i.e. northeastern US in winter. Figure 2.2 shows the seasonal

and spatial distribution of OM/OC. SOA and POA were combined to obtain total
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Figure 2.2 Ratio of OM/OC over North America. Ratio increases with organic aerosol
ageing and is lower for regions where POA dominates over SOA.

simulated organic mass.

Mineral dust is simulated by GEOS-Chem into four size bins based on effective

radius (DST1, DST2, DST3, DST4). The smallest size bin (DST1) represents dust

aerosols with an effective radius below 0.7 µm, the second smallest bin (DST2) repre-

sents dust aerosol with an effective radius between 0.7 and 1.4 µm. Since DST2 con-

tains aerosols both smaller and larger than the 2.5 µm diameter threshold for PM2.5,

only a fraction of this value is included in the sum for PM2.5. Based on the dust size

distribution, the recommended fraction of DST2 to include in PM2.5 calculations is

38%.

When comparing individual species to ground-based measurements, individual

species were treated at relative humidity (RH) of 0%. EPA measurement standards

for total PM2.5 are conducted at a RH of 35% [Chow and Watson, 1998], therefore a

species-independent growth factor must be applied to hydrophilic species to account

for growth due to uptake of water. These growth factors represent aerosol hygroscop-

icity as used in GEOS-Chem [Harvard Atmospheric Chemistry and Modeling Group,

2016] and are stated in bold in Equation 2.1.

Surface PM2.5 from GEOS-Chem

Surface PM2.5 was calculated as the sum of the concentrations of the species listed

above, along with the considerations described in the previous section (conversion of

OC to OM, 38% of DST2 dust bin, and hygroscopic growth factors for RH of 35%) as

found in the lowest vertical model level (i.e. surface). Note that hygroscopic growth

of hydrophilic black carbon is built into the model with a growth factor of 1.8 for

relative humidity of 35% [GEOS-Chem Support Team, 2014].
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PM2.5 =1.33 (SO4 + NIT + NH4)

+ OM
OC

(1.12 OCPI + OCPO) + 1.12 SOA

+ (BCPI + BCPO)

+ (DST1 + 0.38 DST2)

+ 1.86 SSa

(2.1)

Column AOD from GEOS-Chem

Column AOD for each tracer i at each vertical level was calculated as in Equation

2.2 (recall from Section 1.3).

AODi,lev =
3

4

Qext,i fRH

reff,i ρi
Mi (2.2)

The hygroscopic growth factor (fRH) is the ratio of wet to dry effective radius for a

given particle at a given relative humidity (Equation 2.3). Aerosol optical properties

at high spectral resolution for calculations with GEOS-Chem data including Qext and

reff are available on the GEOS-Chem website [GEOS-Chem Support Team, 2014].

fRH =
reff,wet, i

reff,dry, i
(2.3)

Total column AOD was then taken to be the sum of AOD for all species i from

the lowest model level (surface) up to level 35 (∼100 hPa).

AODcolumn =
35∑

lev=1

tracers∑
i=1

AODi,lev (2.4)

2.2 Satellite Measurements

The observed AOD used in this study is a combined product which incorporates satel-

lite AOD from eight sources along with model values and ground-based measurements

from the Aerosol Robotic Network (AERONET) to adjust the relative contribution of

each source. Sources of satellite data are listed in Table 2.2 and described in further

detail in the remainder of Section 2.2. Locations with reduced satellite sampling, such

as northern regions with seasonal snow cover or tropical southeast Asia where cirrus
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clouds can interfere with sampling, are incorporated into the combined product by

using simulated values [van Donkelaar et al., 2016].

Table 2.2 Observational sources for combined AOD product

Satellite Instrument Retrieval Algorithm

Terra MISR MISR

Terra MODIS Dark Target

Terra MODIS Deep Blue

Terra MODIS MAIAC

Aqua MODIS Dark Target

Aqua MODIS Deep Blue

Aqua MODIS MAIAC

SeaStar SeaWiFS Deep Blue

2.2.1 Satellites

The Terra and Aqua satellites are both operated by NASA. Terra has been in orbit

since 2000 and Aqua since 2002 [Remer et al., 2008] and are both presently still in

orbit. Terra has a descending orbit (north to south) and passes the equator in the

morning at approximately 10:30 A.M. local time, while Aqua has an ascending orbit

(south to north) and passes the equator in the afternoon at approximately 1:30 P.M.

local time. These instruments work together to optimize cloud-free surface viewing

with near-daily global coverage [Savtchenko et al., 2004].

The SeaStar spacecraft launched in 1997 and stopped collecting data in late 2010.

SeaStar follows a descending orbit (north to south) and passes the equator at approx-

imately 12:00 P.M. local time. SeaStar takes approximately one week for complete

global coverage [NASA Goddard Space Flight Center; SeaWiFS , 2016].

2.2.2 Satellite Instruments

The theoretical basis for passive retrievals of AOD is outlined in Section 1.3. AOD

from four passive satellite instruments are used in the combined product - MODerate

resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satel-

lites, the Multiangle Imaging SpectroRadiometer (MISR) on board Terra, and the
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Sea-viewing Wide Field-of-view Sensor (SeaWiFS) inboard the SeaStar spacecraft.

MODIS has a swath width of 2330 km, a spectral range from 412 nm to 1450 nm

in 36 bands, and a fine spatial resolution of 250 m at nadir [NASA Goddard Space

Flight Center; MODIS , 2016].

MISR has a swath width of 380 km, a spectral range from 446 nm to 866 nm in

four bands, and a nadir spatial resolution of 1.1 km. MISR utilizes nine sensors to

collect imaging data from multiple widely-spaced angles, providing data which can

more easily distinguish between different types of aerosols, cloud forms, and land

surface covers [NASA Jet Propulsion Laboratory; MISR, 2016].

SeaWiFS has a swath width of 1500 km, a spectral range from 402 nm to 885 nm

in 8 bands, and a nadir spatial resolution of 1.1 km. Initially created for ocean-color

observing, additional products including AOD have been produced from observed

radiance [NASA Goddard Space Flight Center; SeaWiFS , 2016].

2.2.3 Retrieval Algorithms

The MODIS Collection 6 Dark Target (DT) retrieval algorithm was developed to

infer aerosol properties over surfaces with low surface reflectance in the visible and

shortwave infrared parts of the spectrum. This algorithm works best over visually

“dark” surfaces where aerosols appear to brighten the scene, as observed from above

[Levy et al., 2010].

The MODIS Deep Blue (DB) algorithm retrieves aerosol properties over bright

surfaces such as broad desert regions and urban areas. The basic principle is that

these areas are bright in the near infrared and visible parts of the spectrum, while

much darker in the blue spectral region [Hsu et al., 2004].

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieval

algorithm simultaneously retrieves aerosol information over land and a surface bidi-

rectional reflectance factor. A time series of image-based MODIS data combines mul-

tiple single-view passes to provide multi-angle coverage for surface grid cells. MAIAC

has been shown to improve accuracy in retrievals over bright surfaces over DT/DB

algorithms [Lyapustin et al., 2011].

The MISR retrieval algorithm relies on lookup tables of atmospheric radiative
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parameters and predetermined aerosol mixture models. It utilizes multi-angle obser-

vations to compare top-of-atmosphere radiance with surface radiance, utilizing model

radiances calculated for a variety of aerosol compositions and size distributions [Mar-

tonchik et al., 1998]. MAIAC performs well for difficult surface conditions such as

mountainous regions [van Donkelaar et al., 2016].

Combining a number of satellite retrievals and algorithms, along with an adjust-

ment based on ground-level AERONET observations, provides thorough spatial and

temporal coverage for a more complete AOD product than a single satellite retrieval

alone could provide.

2.3 Ground-based Monitoring of PM2.5

2.3.1 Measurement Networks

Ground-based monitoring of PM2.5 and its constituent species were used in this study

as a measure of “true” aerosol concentration against which model performance was

measured. Networks of monitoring stations used include the Canadian National

Air Pollution Surveillance Network (NAPS) for Canada [Environment and Climate

Change Canada, 2016b], the Integrated Monitoring of Protected Visual Environments

(IMPROVE) [US Federal Land Manager Environmental Database, 2016], Clean Air

Status Trends Network (CASTNET) [US EPA Office of Air Quality Planning and

Standards , 2016a], and EPA Federal Reference Method (FRM) monitoring sites for

the United States [US EPA Office of Air Quality Planning and Standards , 2016b].

2.3.2 Speciation Data

Concentrations of the constituent species which make up PM2.5 are also of inter-

est, thus ground-based measurements are required to evaluate model performance at

simulating these species. These species, or tracers, include sulfate (SO2−
4 ), nitrate

(NO−
3 ), ammonium (NH+

4 ), organic mass (OM), black/elemental/light absorbing car-

bon (BC), mineral dust (DST), and accumulation mode sea salt (SSa).

Most species were measured directly by the speciation monitoring networks, with

the exception of organic mass, mineral dust and salt which were calculated for this

study from other measured species using equations stated in Table 2.3.
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Table 2.3 PM2.5 constituent tracer calculations from in situ measured data

Species Equation Reference

OM (OM
OC

×OC) Philip et al., 2014b

Dust (2.20× Al) + (2.49× Si) + (1.63× Ca) + (2.42× Fe) + (1.84× Ti) Malm et al., 1994

Salt 1.8× Cl− Pitchford et al., 2007
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Chapter 3

Results and Discussion

3.1 Surface PM2.5

Surface PM2.5 measured by ground-based monitoring networks is shown in the right

column of Figure 3.1. High surface concentrations typically occur in areas with high

emissions, such as urban or industrialized regions, or where meteorological conditions

such as atmospheric stability inhibits atmospheric mixing. These effects are observed

in Figure 3.1 over the eastern United States where measured PM2.5 concentration is

relatively high over regions of high population density and industrial activity, and

thus greater anthropogenic emissions.

Seasonal variability in PM2.5 is also observed with highest surface concentrations

occurring in the summer months. Secondary aerosol concentration from species such

as sulfate and nitrate is enhanced in the summer months when photochemistry is

strongest, leading to relatively high summertime PM2.5 [Malm et al., 1994]. Bio-

genic aerosol emission is also greater in the summer months, leading to higher PM2.5

concentrations [Goldstein et al., 2009].

GEOS-Chem simulations of surface PM2.5 at both fine and coarse model resolution

capture seasonal variability, however concentrations over the eastern United States

during winter months are relatively high compared to summer months when one would

expect higher concentrations. A potential missing source of SOA due to oxidation of

VOCs above the surface layer in the summer months in the model may account for

weak seasonality in simulated PM2.5 [Ford and Heald , 2013].

Agreement between simulated and measured concentration is strongest in the

spring (r = 0.49, 0.63 for coarse, fine resolution respectively) and summer months (r

= 0.48, 0.58 for coarse, fine resolution respectively). Using fine resolution results in an

improvement in correlation strength for all seasons as compared to coarse resolution,

with the smallest improvement in r occurring in fall (0.06 increase in explained vari-

ance) and the greatest improvement occurring in spring (0.16 increase in explained

variance).
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Figure 3.1 Seasonal mean (2013-2015) simulated PM2.5 over North America at coarse (2◦

x 2.5◦) and fine (0.25◦ x 0.3125◦) model resolution. Comparison of model concentration
versus in situ measurements at fine (blue) and coarse (grey) model resolution (bottom).
Solid black line represents a 1:1 relationship between modeled and measured values. Dotted
lines represent line of best fit for each simulation.
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2◦ x 2.5◦ 0.25◦ x 0.3125◦

(a) Chicago, IL (b) New York City, NY

(c) Los Angeles, CA (d) Atlanta, GA

Figure 3.2 Annual mean (2013-2015) PM2.5 over (a) Chicago, IL (b) New York City, NY
(c) Los Angeles, CA and (d) Atlanta, GA at coarse (2◦ x 2.5◦) and fine (0.25◦ x 0.3125◦)
model resolution. Black boxes on map (top) indicate the geographic boundaries of the
regions shown below (a-d). Filled circles on regional plots indicate in situ measurements at
that location.
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The coarse and fine simulations differ primarily in their ability to resolve hetero-

geneity in surface PM2.5 concentration. For example, the California Central Valley

becomes apparent in the fine resolution simulation in winter and fall where it is not

well represented in the coarse simulation. This geographic feature covers approx-

imately 720 km in length while spanning 60 to 100 km in width; the width of the

Valley is therefore a sub-grid scale feature in the coarse resolution simulation, but not

in the fine resolution simulation. High PM2.5 concentrations in this region are driven

primarily by the local topography which limits ventilation and transport of pollu-

tants in the region [Chow et al., 2006]. This has the effect of enhancing simulated

concentrations near the source of emissions. At coarse resolution, the consequence of

this is a dilution of emitted aerosols throughout the encompassing grid cell, leading

to the loss of the fine-scale valley feature and a relative enhancement in surrounding

regions. Similar features include regions of biomass burning in the summer months

seen along the entire west coast in the fine resolution simulation but nearly absent

from the coarse resolution simulation.

The enhancement in the resolution of spatial features such as the California Valley

is also observed in regions containing large urban centres, where population and

emissions are dense, as shown in Figure 3.2. Ground-based measurements of PM2.5

are shown in the filled circles. At the coarse resolution, the model is unable to resolve

large urban areas and characterizes entire cities with a single value representing the

entire grid box which may extend well beyond the city itself. The fine resolution

simulation is able to resolve heterogeneities in surface PM2.5, revealing elevated surface

concentrations near urban centres which decreases with increasing distance from the

city center.

Model Emissions

While emission inventories each have their own resolution (see Table 2.1) the total

amount of aerosol emitted remains the same regardless of spatial and temporal model

resolution. The key emission inventories used in this study have a finer resolution

(i.e. 0.1◦ x 0.1◦) than either of the conducted simulations (see Table 2.1). For each

simulation, emissions from the 0.1◦ x 0.1◦ grid are added over the entire grid box area

and the total value is taken to represent emissions for the entire box. This has the
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effect of diluting emissions across an entire grid box area, an effect which deteriorates

the accuracy of fine resolution emissions as grid size increases. Information on the

peak density of emissions within a grid cell is often lost as a result.

The simulations in this study used the same emission inventories for the entire

duration, with the exception of the anthropogenic emission inventory. NEI2011 was

used from the beginning of the simulation (May 2013) to the end of 2013, EDGAR was

used for 2014 onwards. Total monthly emissions over North America for August 2014

using each of these emission inventories are reported in Table 3.1 for comparison. The

two emission inventories differ, with NEI2011 consistently reporting higher emissions

for all species. NEI2011 emissions are based on EPA reported emissions for the year

2011 and then scaled to years between 2006 and 2013 using scale factors based on

emission totals for each respective year relative to 2011. EDGAR works in a similar

manner, with a base year of 2008 and scale factors available for the years 1970 to 2010.

For years outside the available range GEOS-Chem continues to use the latest available

year. The difference between inventories likely results from different assumptions

and from the emissions being representative of different years, with higher emissions

occurring in more recent years as represented by NEI2011. Section 3.6 explores the

choice of anthropogenic emission inventory further.

Table 3.1 Monthly total emissions over North America for August 2014 using different
anthropogenic emission inventories

Run w/ Run w/

EDGAR NEI2011 NEI-EDG

Species [Tg] [Tg] [%]

CO 10.45 10.57 1.1

NO 2.10 2.20 4.7

NH3 0.66 0.69 5.2

SO2 1.08 1.22 11.8

OC 0.32 0.33 4.7

BC 0.06 0.06 0.0
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3.2 PM2.5 Composition

While many health impact assessments focus on the adverse effects of PM2.5 on hu-

man health some constituent species which make up PM2.5 may be more detrimental

to health than others. For example, studies conducted in multiple counties across

Connecticut and Massachusetts found black carbon and road dust to be more harm-

ful than other aerosols in PM2.5 [Mostofsky et al., 2012; Bell et al., 2014]. Figure 3.3

shows the effect of resolution on modeled concentration of PM2.5 constituent species

SO4, NIT, NH4, secondary inorganic aerosols (SO4 + NIT + NH4), OM, BC, DST,

and SALA. Figure 3.4 shows a scatter plot for each species illustrating the relation-

ship between measured and modeled concentration. The relative contribution of each

species to total PM2.5 is shown in Figure 3.5. Differences in composition between

resolutions is driven largely by differences in emission density.

3.2.1 Secondary Inorganics

Secondary inorganic aerosols, including SO2−
4 , NO−

3 , and NH+
4 , are formed from pre-

cursor gases such as SO2, NOx, and NH3, and are commonly associated with industrial

emissions. PM2.5 in North America is generally dominated by secondary inorganics

and organic mass, together accounting for 60 to 90% of surface PM2.5 concentration

[Ford and Heald , 2013].

Measured and simulated SIA shown in Figure 3.3 reveal higher concentrations

over the northeastern United States where industrial emissions are high. For all three

secondary inorganic species, the coarse resolution simulation predicted greater peak

surface concentration than fine resolution. Both coarse and fine resolution simulations

achieve a strong correlation with measurements for SO2−
4 where r = 0.88 and 0.83,

respectively (Figure 3.4). Simulated NO−
3 and NH+

4 at fine resolution agreed with

measurements more strongly than coarse resolution, with r values increasing from

0.38 to 0.50 for NO−
3 and from 0.62 to 0.67 for NH+

4 . For both species, the fine

resolution simulation showed a near 1:1 relationship with measurements. Overall, the

fine resolution simulation of SIA had a stronger agreement with measurements than

the coarse resolution, with the correlation coefficient increasing from 0.57 to 0.66.

The coarse resolution simulation had higher peak surface concentrations of SIA than
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Figure 3.3 Annual mean (2013-2015) simulated concentrations of PM2.5 constituent species
at coarse (2◦ x 2.5◦) and fine (0.25◦ x 0.3125◦) resolution. Ground based measurements
(right).
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Figure 3.4 Comparison between model and in situ measurements for PM2.5 species at fine
(blue) and coarse (grey) model resolution. The solid black line represents a 1:1 relationship
between modeled and measured values. Dotted lines represent lines of best fit for each
simulation.
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Figure 3.5 o

f each tracer to total surface PM2.5 at coarse and fine model resolution]Annual mean
(2013-2015) contribution [%] of each tracer to total surface PM2.5 at coarse (left)

and fine (right) model resolution.
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the fine resolution simulation which accounts for much of the difference in total PM2.5

as seen in Figure 3.1.

The relative contribution of SIA to total surface PM2.5 (Figure 3.5) is greatest over

northeastern North America and the continental interior. SIA contributes between

10% and 40% to total PM2.5, with SO2−
4 being the dominant contributor to total SIA.

3.2.2 Organic Mass

Organic mass (OM) includes both primary (POA) and secondary (SOA) organic

aerosols emitted from sources such as biomass burning, incomplete fossil fuel com-

bustion, and biogenic emissions. Biomass burning and incomplete combustion are

year-round sources, while biogenic emissions peak in spring and summer before drop-

ping off in the fall months [Kim et al., 2015]. Thus, the year-round source from fossil

fuel burning dominates OM emissions.

Measured OM as shown in Figure 3.3 reflects this, with relatively high concen-

tration in the eastern US where industrial emissions are greatest. Concentrations of

OM are also high along the west coast where seasonal forest fires contribute to OM

emissions. Simulations of OM capture this spatial trend, with a relative enhancement

in surface OM in the east, and further enhancements in OM along the west coast.

The fine resolution simulation is able to better resolve biomass burning regions which

often occur on a sub-grid scale when using coarse resolution. Large regions of biomass

burning in northern Canada are observed in both simulations. Measured OM concen-

trations are not available for these regions, illustrating the inability of ground-based

measurements to fully describe surface PM2.5 concentrations. Both coarse and fine

resolution simulations achieve a near 1:1 relationship with measured values (slope

= 0.86 and 0.74, respectively), with the fine resolution simulation having a stronger

agreement with measurements (r = 0.56 compared to 0.31 for coarse).

The relative contribution of OM varies greatly across the continent, comprising

as little as 1.4% to as much 47% of total PM2.5. Across North America, the mean

contribution of OM to total PM2.5 is 18%.
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3.2.3 Black Carbon

Black carbon is a highly absorbing component of PM2.5 and therefore has a large

contribution to AOD. BC measurements shown in Figure 3.3 reveal high BC con-

centrations in eastern North America and relatively low concentrations in the west.

Several monitoring stations near the west coast report higher BC than in continental

interior. BC emissions are dominated by fossil fuel burning, with biomass burning

also contributing to total emissions [Zhang et al., 2015]. Relatively high simulated BC

concentration in the eastern US with small regions of enhanced concentration along

the west coast is consistent with these emission sources. Figure 3.3 shows numerous

small areas of enhanced BC at fine resolution which the coarse resolution simulation

dilutes over a broad region or fails to capture entirely, indicating the strength of the

fine resolution simulation at capturing fine scale emissions such as biomass burning

events and sub-grid scale emissions.

3.2.4 Mineral Dust and Sea Salt

Fine dust aerosol, as seen in Figure 3.3, is most common in the southwestern United

States due to the arid climate and around the Gulf coast due to the long-distance

transport of dust from the Saharan desert in Africa. Coarse and fine resolution

simulations perform similarly for mineral dust with an modest improvement in r

from 0.45 to 0.49 when using fine resolution. Dust emission input data are at coarse

resolution (4◦ x 5◦), thus no dilution of dust emissions would occur at either resolution

since both are more fine than emission resolution. The small change in slope and

correlation coefficient between coarse and fine model resolution for dust illustrates

the relatively small degree of change observed when emission density is consistent

across model resolutions.

Measured sea salt aerosol concentrations are greatest in coastal regions, and rel-

atively low in the continental interior. Both coarse and fine resolution simulations

capture this spatial pattern well, with correlation coefficients of 0.67 and 0.80, respec-

tively.



31

Figure 3.6 Seasonal mean (2013-2015) model AOD over North America at coarse (2◦

x 2.5◦) and fine (0.25◦ x 0.3125◦) model resolution and combined satellite AOD product
created as described in van Donkelaar et al. [2016] and as outlined in Section 2.2. Filled
circles on combined satellite maps show measured AERONET AOD. Comparison of model
AOD versus AERONET measurements for fine (blue) and coarse (grey) model resolution
(bottom). Solid black line in correlation plots represents a 1:1 relationship between modeled
and measured values. Dotted lines represent best fit for each simulation.
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3.3 Column AOD

Measured AOD shown in Figure 3.6 (right column) is represented by two sources: a

combined satellite product as in van Donkelaar et al. [2016] and ground-based mea-

surements from AERONET (filled circles). Seasonal variation in measured AOD is

driven by aerosol sources, much as with PM2.5, however seasonality in AOD is stronger

than that in PM2.5. This can be attributed to seasonal variation in mixed layer height.

In the winter when the mixed layer is lower than in the summer, ventilation from the

surface is reduced leading to enhancements in wintertime PM2.5 at the surface, while

the opposite is true in the summer [Kim et al., 2015]. This seasonality is observed in

measured AOD shown in Figure 3.6, where the greatest AOD is observed in summer

and decreases in the cooler months. This is observed in both satellite and AERONET

AOD.

As with PM2.5, the highest aerosol loading occurs in areas with high population

density and industrial activity and thus high emissions. Measured AOD shown in

Figure 3.6 reflects this, with highest AOD occurring over the eastern United States.

Simulated column AOD exhibits similar spatial patterns at coarse and fine resolution

(Figure 3.6). The fine resolution simulation predicts greater AOD in summer and

fall months than coarse resolution. The combined satellite product AOD is similar in

magnitude to the fine resolution simulation AOD, with coarse resolution appearing to

underestimate AOD in summer and fall. Comparison with AERONET measurements

support this observation. The fine resolution simulation shows a slope of 0.83 and

0.88 for summer and fall, respectively, while the coarse resolution simulation shows a

slope of 0.56 and 0.49.

Some fine scale spatial features emerge at 0.25◦ x 0.3125◦ resolution (i.e. California

Central Valley in fall and biomass burning in the summer), as with model PM2.5.

3.4 Surface-to-Column Ratio, η

The PM2.5/AOD ratio is driven by PM2.5 concentration at the surface, leading to the

overall spatial pattern in η seen in Figure 3.7. As with PM2.5, regions of high η occur

over the eastern US in all seasons. Seasonal variation in η reveals a higher ratio in

cooler months and a lower ratio in warmer months. This indicates that column AOD
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Figure 3.7 Seasonal mean (2013-2015) surface PM2.5-to-column AOD ratio (η) over North
America at coarse (2◦ x 2.5◦) and fine (0.25◦ x 0.3125◦) model resolution. Map of the
difference between the two resolutions shown on right.
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is relatively low compared to surface PM2.5 in cooler months.

Recall Equation 1.6 from Chu et al. [2013] which expresses the aerosol surface-

to-column ratio in terms of aerosol extinction cross-section at 550 nm wavelength

per unit dry mass at surface (σext
dry), aerosol mixing layer height (Lmix), and a hygro-

scopic growth factor (fRH). Each of these factors can be independently examined to

determine their relative influence on η.

η =
PM2.5

AOD
=

1

Lmix [f (RH) σext
dry]surface

(3.1)

3.4.1 Aerosol Extinction Cross-section

The aerosol extinction cross-section (σext
dry) describes how efficiently a given aerosol

absorbs and scatters radiation, with higher σext
dry indicating greater extinction per unit

mass of aerosol. The total σext
dry for PM2.5 is a function of composition and σext

dry for

each species. Figure 3.8 (from Heald [2010]) shows the extinction coefficient for each

PM2.5 constituent species as well as how this property varies with RH. While SIA

and organic mass dominate surface PM2.5 by mass (Figure 3.5), sulfate has a higher

extinction efficiency than OMmeaning sulfate has a greater contribution to AOD than

OM per unit mass [Kim et al., 2015]. Extinction efficiency is a property of aerosol

species and does not vary between model resolutions. Differences in σext
dry between fine

and coarse model resolution are therefore driven by estimated concentrations of each

PM2.5 constituent species and model RH (discussed further in Section 3.4.3 below).

Large aerosol extinction cross-section indicates high absorption and scattering of

radiation by aerosols, leading to a high column AOD. Where column AOD is high, the

ratio PM2.5/AOD is relatively low. Figure 3.9 reveals this relationship, with higher

σext
dry occurring in northern regions, leading to a low PM2.5/AOD in the same area.

Fine resolution σext
dry reveals fine scale spatial structure in σext

dry which is not captured

in the coarse resolution simulation.

3.4.2 Mixing Layer Height

Mixing layer, or planetary boundary layer (PBL), height can impact surface concen-

trations of PM2.5 by allowing or inhibiting vertical mixing. A low PBL causes an

enhancement in surface concentration, leading to a relatively high amount of aerosol
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Figure 3.8 f

or PM2.5 constituent species [Heald , 2010]]Changes in aerosol mass extinction
coefficient [m2 g−1] with relative humidity [%] for PM2.5 constituent species. From

Heald [2010].

at the surface and thus a high η. Conversely, a high PBL would lead to a relatively

small η. Figure 3.9 illustrates the influence of model resolution on annual mean PBL

height. PBL is highest over the southwestern US. PM2.5/AOD is relatively low in this

region illustrating the inverse relationship between PBL height and η. However, in

northern regions where η is low, PBL is shown to be quite low also. In these regions,

inhibited vertical mixing does not explain the spatial pattern in η.

3.4.3 Hygroscopic Growth Factor

The hygroscopic growth factor fRH determines the growth of a given aerosol at the

surface due to uptake of ambient moisture and is influenced by aerosol type and

relative humidity. The growth factor is determined from the ratios of wet and dry

effective radius (reff,i) for each tracer i, as in Equation 3.2.

fRH =
reff,wet,i

reff,dry,i
(3.2)

As with aerosol extinction cross-section, radiative properties are consistent be-

tween fine and coarse resolution simulations. That is, reff for a given species does not

change regardless of model resolution. Variations in fRH between model resolutions

therefore result from differences in tracer concentrations (as discussed in Section 3.2)

and differences in model RH.

Figure 3.9 (bottom) shows annual mean model surface RH at coarse and fine
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resolution. Fine scale features, such as the Rocky Mountains, emerge at fine model

resolution suggesting that differences between simulations at different resolutions are

influenced by both emissions and meteorological input data.

Regions of high RH have a greater hygroscopic growth factor, and therefore more

extinction by aerosols throughout the atmospheric column. This leads to an increase

in AOD and therefore a decrease in η. This is observed in northern regions where RH

is high and η is low.

Overall, the key variable influencing changes in η with changing model resolu-

tion follows from differences in simulated surface concentration of PM2.5 constituent

species. A more detailed representation of spatial gradients in surface concentration

arises in the fine resolution simulation, where the coarse resolution simulation fails to

capture such details due to coarse and often diluted emissions input data. Meteoro-

logical input data is also better resolved in the fine resolution simulation, leading to

differences in aerosol growth due to uptake of ambient moisture. This affects aerosol

extinction, and thus AOD which leads to differences in the surface-to-column ratio.

Figure 3.9 Annual mean surface PM2.5-to-column AOD ratio (η), PBL height, and surface
RH over North America at coarse (2◦ x 2.5◦) and fine (0.25◦ x 0.3125◦) model resolution.
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3.5 Satellite-Model PM2.5

Applying the PM2.5/AOD ratio (η) from Section 3.4 to the combined satellite AOD

product from van Donkelaar et al. [2016] yields the satellite-model estimated PM2.5

shown in Figure 3.10.

Spatial and seasonal variation in PM2.5 follow the same patterns as in model-only

PM2.5 as discussed in Section 3.1. Satellite-model PM2.5 generated using fine model

resolution η again captures spatial heterogeneities such as the California Central

Valley in winter, a feature which appears more prominently in the satellite-model

estimate than with the model alone. Interestingly, the coarse resolution satellite-

model PM2.5 reveals this feature as well, albeit not in as much detail. This illustrates

a strength of incorporating satellite observations and model PM2.5 to obtain more

complete and accurate estimate of surface PM2.5.

While incorporating the combined-satellite product with simulated aerosol con-

centrations does allow the coarse resolution simulation to resolve more spatial detail

in surface PM2.5 estimates, the fine resolution simulation continues to resolve fea-

tures more precisely. Biomass burning emissions seen in the summer months provide

a good example of this, where enhancements are observed at coarse resolution, but

the spatial extent of these enhancements are more precisely defined at fine model

resolution.

Table 3.2 further supports this, stating the slope and correlation coefficients for

scatter plots comparing model and satellite-model PM2.5 at coarse and fine resolution

with ground-based measurements. For both fine and coarse simulations, incorporating

the combined-satellite product led to as much as a 0.11 increase in explained variance.

For all PM2.5 estimates the strongest correlation with measurements occurred during

the spring months and the poorest in the winter. Overall the fine resolution satellite-

model estimates had the best agreement with measurements, with a near linear (1:1)

slope and the highest correlation coefficients for each season.

3.6 Recommendations for Future Simulations

A wide range of potential settings for running GEOS-Chem exists. One-month sen-

sitivity simulations for August 2014 at 0.25◦ x 0.3125◦ were conducted to determine
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Figure 3.10 Seasonal mean (2013-2015) satellite-model PM2.5 over North America at coarse
(2◦ x 2.5◦) and fine (0.25◦ x 0.3125◦) model resolution. Comparison of satellite-model con-
centration from fine (blue) and coarse (grey) model simulations versus in situ measurements
(bottom). Solid black line represents a 1:1 relationship between modeled and measured val-
ues. Dotted lines represent line of best fit for each simulation.
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Table 3.2 Correlation coefficients for simulated vs. measured PM2.5.

MODEL SAT-MOD

2◦ x 2.5◦ 0.25◦ 2◦ x 2.5◦ 0.25◦

Season slope r slope r slope r slope r

DJF 1.11 0.29 0.85 0.46 1.25 0.44 1.04 0.55

MAM 1.17 0.49 0.88 0.63 1.46 0.55 0.95 0.63

JJA 1.25 0.48 1.03 0.58 1.58 0.53 1.01 0.58

SON 0.83 0.34 0.63 0.42 0.91 0.48 0.77 0.53

which configuration yielded the best agreement with ground-based measurements.

3.6.1 Simulation Type: SOA vs. SVPOA

GEOS-Chem “full-chemistry” simulation with secondary organic aerosols (SOA) was

used throughout this study. The SOA simulation treats primary organic aerosol

(POA) as non-volatile, therefore POA is emitted, transported, and deposited in the

particle phase. An alternative simulation type exists in which POA is treated as

semi-volatile (SVPOA). In the SVPOA simulation, POA can partition between gas

and aerosol phases. The effect of implementing SVPOA generally decreases simulated

concentrations of organic aerosol, as a fraction of the emitted POA evaporates where

it remained in the particle phase in the SOA simulation [Pye and Seinfeld , 2010].

This is consistent with the one-month test simulations shown in Figure 3.11 (a)

and (b). The most notable difference between the SOA and SVPOA simulations is

the reduction in PM2.5 concentration in northern Canada. Recall from Figure 3.3

that elevated OM was responsible for high PM2.5 concentration in this area. Allow-

ing POA to enter the gas phase led to a decrease in particulate OM concentration.

Enhancements in PM2.5 over the eastern United States were also diminished in the

SVPOA simulation relative to the SOA simulation, where OM was again a relatively

large contributor to total PM2.5 (Figure 3.5). Allowing a fraction of emitted POA

to evaporate reduced surface PM2.5 concentration to values which were more consis-

tent with measurements. Comparison between model and measurements reveals an

increase in model agreement from r = 0.39 (SOA) to 0.49 (SVPOA) and an improve-

ment in slope from 2.27 to 1.24. The SVPOA simulation is therefore recommended
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for future simulations.

3.6.2 Anthropogenic Emission Inventory: EDGAR vs. NEI2011

The default global anthropogenic emission inventory in GEOS-Chem is EDGAR. For

simulations covering areas and time periods where regional emission inventories exist

(e.g. NEI for the United States, CAC for Canada, and BRAVO for Mexico), regional

emissions are given priority over the global inventory and thus overwrite EDGAR

emissions. The most recent emissions inventory for the United States, NEI2011,

covers the majority of North America (see Figure A.1) based on reported emissions

for the year 2011. Annual scale factors are available for years ranging from 2006 to

2013. Beyond this time period, EDGAR is used.

For the one-month test simulations shown in Figure 3.11 several options were

tested. The first used EDGAR, as in the rest of the work contained in this the-

sis (Figure 3.11 (b)). Using NEI2011 with a scale factor for the last available year

of emissions (2013) was also tested (Figure 3.11 (c)). Finally, new scale factors were

computed based on the 2014 National Emissions Inventory (NEI) Air Pollutant Emis-

sions Trends Data [US EPA, 2016] (Figure 3.11 (d)). The currently available (2013)

and newly computed scale factors are listed in Table 3.3.

Table 3.3 Annual scale factors (unitless) for calculating 2014 emissions based on reported
emissions data from 2011

Repeating 2013 New 2014

Species Scale Factor Scale Factor

NO 0.887 0.855

CO 0.962 0.919

NH3 0.998 0.996

VOC 0.971 0.944

SO2 0.738 0.770

BC 0.991 0.989

OC 0.991 0.989

Of these three potential input data options for anthropogenic emissions, using

NEI2011 with a scale factor based on 2014 emissions performed the strongest as

compared to measured PM2.5. The improvement between using NEI2011 with a 2013
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versus 2014 scale factor was minimal, with the correlation coefficient increasing from

0.61 (2013 scale factor) to 0.63 (2014 scale factor). A much greater improvement was

observed when compared with using the global EDGAR emission inventory, where r

increased from 0.49 (EDGAR) to 0.63 (NEI2011 with 2014 scale factor). Based on

these findings, future simulations should use the NEI2011 emissions inventory with

updated scale factors based on the National Emissions Inventory (NEI) Air Pollutant

Emissions Trends Data when simulating PM2.5 over North America.

3.6.3 Biomass Burning Emission Inventory: With vs. Without Small

Fires

The current default biomass burning inventory in GEOS-Chem is GFED4.1s, which

includes burned area and emissions resulting from small fires. All simulations shown

in Figure 3.11 use GFED4.1s with the exception of the bottom row which still uses

GFED4.1 but with the emissions due to small fires removed. The effect of removing

small fires can be seen in Figure 3.11 (e) where several small areas with elevated PM2.5

are no longer present (i.e. northwestern Canada, western United States). Including

emissions from small fires in the biomass burning inventory improves agreement with

in situ measurements, with the r value increasing from 0.54 (without small fires) to

0.61 (with small fires). It is therefore recommended that future simulations continue

to use GFED4.1s which includes biomass burning from small fires.
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Figure 3.11 Comparison of 1-month GEOS-Chem test simulations for August 2014 using
different simulation types and different emission inventories, as labelled in column on left.
Agreement between model and in situ measurements is shown on right. The solid black line
represents a 1:1 relationship between modeled and measured values. Dotted lines represent
lines of best fit between modeled and measured values.
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Chapter 4

Conclusions

4.1 Summary

Estimating PM2.5 using a CTM with fine resolution (0.25◦ x 0.3125◦) resulted in

better estimates of surface PM2.5 concentration than using coarse resolution (2◦ x

2.5◦). Agreement with ground-based measurement of PM2.5 showed an increase in

explained variance ranging from 0.06 in fall to 0.16 in spring. The fine resolution

simulation was able to resolve heterogeneities in surface PM2.5, such as the California

Central Valley in winter and biomass burning events in summer, which the coarse

resolution was unable to resolve.

An examination of several urban centres emphasized the ability of the fine reso-

lution simulation to resolve features in surface PM2.5 which the coarse model could

not. The ability to resolve large cities can aid in the accuracy of monitoring and

mitigating adverse health impacts attributable to PM2.5.

PM2.5 constituent species also revealed surface features at fine resolution which

were not present at coarse resolution. Black carbon provides a strong example with

many localized enhancements in surface concentration in the eastern US in the fine

resolution simulation compared to a broad enhancement over the entire region when

using coarse resolution. This has important implications for health impact assess-

ments, as BC may be one of the more detrimental aerosols to human health and

therefore fine resolution estimates of its spatial distribution are highly valuable. The

greatest improvement in surface estimates was for organic mass, for which agreement

with measured concentration improved from r = 0.31 to r = 0.56 between fine and

coarse resolution.

Simulated AOD captures seasonal variation well at both resolutions. Higher peak

AOD is simulated at fine resolution than coarse.

Differences in PM2.5/AOD (η) between model resolutions were driven by differ-

ences in surface PM2.5 composition and the growth of constituent species due to RH.

An exploration of aerosol extinction cross-section, PBL height, and surface relative
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humidity revealed that differences in η were largely due to differences in simulated

aerosol composition at the surface and throughout the column. Differences in com-

position between resolutions was largely influenced by emission density.

Satellite-model estimates of PM2.5 were produced from simulated PM2.5, AOD,

and the combined satellite product. The incorporation of satellite observations im-

proved surface PM2.5 estimates over using the model only. The strongest estimates

of surface PM2.5 were generated when using the fine model resolution combined with

satellite data.

Future simulations should consider the SVPOA simulation which allows POA to

enter the gas phase, NEI2011 regional emissions for anthropogenic emissions over

North America, and should continue to include the contribution of small fires in the

GFED4.1s biomass burning emissions inventory.

4.2 Closing Remarks

Simulating PM2.5 surface concentrations at fine scale resolution improves estimates

over coarse resolution. Incorporating satellite-derived observations further strength-

ens the agreement between surface PM2.5 estimates and ground-based measurements.

Results of these simulations can provide health impact assessments with more de-

tailed information around urban centres to determine the effects and mitigate levels

of ambient air pollution in these densely populated regions. Regions where exten-

sive ground-based monitoring is not feasible can benefit from satellite-model estimate

PM2.5.
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Appendix A

Supplemental figures

A.1 Regional emission Inventory Spatial Extent

Figure A.1 Geographic extent of the NEI emission inventory at 2◦ x 2.5◦(left), 0.25◦ x
0.3125◦(middle), and overlap (right). White = no emissions, grey = NEI emission, dark
grey = overlap

Figure A.2 Geographic extent of the GFED4 emission inventory at 2◦ x 2.5◦(left), 0.25◦ x
0.3125◦(middle), and overlap (right). White = no emissions, grey = GFED emission, dark
grey = overlap
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A.2 GEOS-Chem Nitric Acid Reduction

Figure A.3 GEOS-Chem surface NO−
3 concentrations for August 2014 without (far right)

and with (middle) artificial reduction in model nitric acid as per Heald et al. [2012]. Scatter
plot comparison (below) with in situ measured NO−

3 solid black line represents 1:1 relation-
ship, dashed lines represent best fit between simulated and observed values.
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Appendix B

Model Run Time

Simulations were performed on the Glooscap cluster of ACENET using 16 CPUs.

Values in Table B.1 are for 30-day simulations.

Table B.1 Simulation run time for varying resolution and internal timesteps

Resolution Simulation ∆Ttransport ∆Tchemistry Run Time

2◦ x 2.5◦ SOA 15 min 30 min 14 hours

0.25◦ SOA 10 min 20 min 6 days 17 hours

0.25◦ SOA 5 min 10 min 15 days 12 hours

2◦ x 2.5◦ fullchem (no SOA) 15 min 30 min 12 hours

0.25◦ fullchem (no SOA) 5 min 10 min 9 days 4 hours
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Appendix C

Performance Measures

Correlation coefficient, r:

r =

∑N
1 (CM − CM)(CO − CO)√∑N

1 (CM − CM)2
√∑N

1 (CO − CO)2
(C.1)

Explained variance:

r20.25 − r22x2.5 (C.2)
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