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Abstract

The pathogenic bacterium Salmonella enterica has recently been shown to hyper-

replicate (HR) within the cytoplasm of epithelial cells. To better understand the

mechanisms of HR, time-lapse fluorescence microscopy images, taken by our exper-

imental collaborators, of Salmonella infecting HeLa cells were segmented. We have

developed a robust approach to identifying the presence of the HR phenotype cell-by-

cell and, across three independent experiments, found that HR fraction is independent

of bacterial load.

Related to Salmonella invasion dynamics, but separate from the hyper-replication

phenomenon, a mean-field model of infection was developed. The model involves a

set of coupled differential equations governed by rates of interactions between a pop-

ulation of hosts and pathogens. Through fitting the model to data from previously

published experiments, we have demonstrated that the Salmonella-HeLa system may

be simply describable with time-independent rates, regardless of experimental condi-

tions.
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Chapter 1

Introduction

1.1 Host-Pathogen Interactions

Host-pathogen interactions encompass a variety of phenomena that occur at the

molecular level, the single cell level, the single organism level and the population

level. From the Greekpathos, meaning “suffering”, pathogens are agents of disease

and include species of bacteria, viruses and fungi. While many of these microorgan-

isms (microbes) are harmless, or even beneficial to their host, infectious disease is a

leading cause of death among humans worldwide [1].

First contact between a host and pathogen involves adherence to an epithelial

surface, followed by colonization or penetration to replicate within the tissue [2]. In

vertebrates, this process is often cut short due to host innate immunity, which in-

volves identification via germline-encoded pattern-recognition receptors (PRRs) and

recruitment of different immune cells, such as macrophages, dendritic cells, and neu-

trophils [3]. When this fails to eliminate an invader, the adaptive immune system

acts as the second line of defense. The adaptive immune system is a more complex

host defense that is initiated by the presence of foreign proteins called antigens (such

as toxins secreted by bacteria). These antigens bind to receptors on T and B lym-

phocytes which respond to the specific pathogen and also produce memory cells to

improve efficiency against the pathogen in the future [4, 5].

Highly virulent pathogens adopt complex strategies to subvert cellular defense

mechanisms and proliferate in their host [6]. Antimicrobial research has made great

strides in the last half of the 20th century to provide a variety of treatment options for

1
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most infectious diseases [7]. In recent years, however, the tendency for pathogens to

adapt to antimicrobial drugs (called antimicrobial resistance) has threatened to render

commonly used treatments ineffective [8,9, 10]. Understandably, this phenomenon

has raised the alarm on a global scale, demanding cooperation from the public, health

professionals and policy makers to stem the flow of drug-resistance through more

careful handling and distribution of antimicrobials [11]. Tackling the problem from

the research and development side will require further insights into host-pathogen

interactions to establish novel approaches to treatment.

If not eliminated, pathogens can replicate in a variety of compartments [12]. Ex-

tracellular pathogens may occupy interstitial space, blood or lymph, or simply remain

on the epithelial surface [2]. Foreign invaders in this area are highly susceptible to

phagocytosis and thus must evolve the means to avoid engulfment. One example of an

extracellular bacterium isVibrio choleraewhich colonizes the small intestine and se-

cretes toxins that lead to the disease cholera [13]. Conversely, intracellular pathogens

invade and replicate inside of host cells, and can be further subdivided into two major

types based on their location: vacuolar and cytoplasmic [14]. The majority of intra-

cellular pathogens enter via endocytosis and replicate inside a vacuole composed of

host-derived membranes [15, 16]. To avoid intracellular autophagy (or more specif-

ically xenophagy), pathogen-derived proteins modify theinternalization vacuole to

prevent or delay fusion with lysosomes (organelles that contain enzymes for degrada-

tion) [17]. Alternatively, viruses and certain bacteria bypass this defense mechanism

by entering the host cell cytosol directly or by quickly escaping the vacuole (within

30 minutes of internalization) [18]. When it comes to cytosolic bacteria, much less is

known compared to their vacuolar counterparts. It is thought that the cytosol is a

nutrient-rich environment and protected from certain aspects of host immune killing,

such as recognition by circulating antibodies. If this were the whole story, then it

might be expected that more pathogens exploit this niche. However, a comparatively
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small number of bacteria, includingListeria monocytogenesandShigella flexneri,

have adapted to thrive in the cytosol [18].

1.2 Salmonella enterica

Salmonella entericais Gram-negative bacterium that infects both animals and hu-

mans. There are six subspecies ofS. enterica, which are further divided into over

2000 serovars classified by their surface antigens [19]. Typically ingested orally via

contaminated food or water, the majority of the serovars cause Salmonellosis (acute

enterocolitis), while the serovar Typhi causes typhoid fever in humans [20, 21]. These

two represent the most common illnesses associated withS. enterica, causing an esti-

mated 155,000 [22] and 217,000 [23] deaths per year, respectively.Salmonella enterica

serovar Typhimurium is among the most common in causing Salmonellosis, and will

be the focus of this thesis and the remainder of this section.

The stages of invasion into epithelial cells taken bySalmonellaare illustrated in

Fig 1.1A. To regulate process,S.Typhimurium uses two type III secretion systems

(T3SS), encoded withinSalmonellapathogenicity islands SPI-1 and SPI-2, that in-

ject proteins called effectors into the hostcell cytosol [24, 25]. These effectors alter

host physiology for enhancedbacterial entry and survival. Endocytosis is mainly at-

tributed to first secretion system T3SS-1 andits effectors, which trigger cytoskeletal

rearrangments resulting in bacterial internalization and the formation of prominent

membrane ruffles [26]. Interestingly, these ruffles have been shown to act as topo-

logical obstacles that enhance localstopping, binding and docking [27].Salmonella

invasion into epithelial cells is therefore acooperative effort where the first bacterium

to invade facilitates the process for others swimming nearby.
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Upon entry within a modified phagosome called theSalmonella-containing vacuole

(SCV), effectors primarily translocated by the T3SS-2 are required for the matura-

tion and biogenesis of the SCV [28, 29]. One of these effectors is SifA, which induces

the formation of Sifs (Salmonella-induced filaments) and has been shown to be nec-

essary for vacuolar integrity [30]. When the gene expressing SifA is knocked out,

the SCV cannot be maintained and mutant bacteria are released into the epithelial

cell cytosol where they grow at a faster rate [31]. This was intriguing discovery be-

causeSalmonellahad been traditionally categorized as a solely vacuolar pathogen,

yet replication seemed to be enhanced when cytosolic. Later studies confirmed that

a subpopulation of internalized bacteria lyse their nascent (≤90 minutes) SCV to

escape into epithelial cell cytosol [32, 33, 34]. Knodler et al. [35] coined the term

hyper-replication (HR) to describe cytosolicSalmonellawhich replicated to large

numbers (initially defined as>50 bacteria/cell) at late times, an effect they observed

in approximately 10% of infected epithelial cells (the HR fraction). Subsequent stud-

ies have found HR fractions in the range 5–15% [36, 37]. Single-cell analyses by

Malik-Kale et al. [36] revealed that net intracellular growth is a product of both vac-

uolar and cytosolic replication, meaning thatSalmonellacan occupy both replicative

niches in a host simultaneously.

There are still many open questions on the topic ofSalmonellapathogenesis,

especially the recently discovered hyper-replicative phenotype. When first exposed

to the cytosol,Salmonellaacquires various autophagy proteins which function to

deliver invaders to the lysosome for degradation [38, 33]. Autophagy certainly restricts

cytosolic growth [32], but clearly fails in some cases to prevent hyper-replication. In

fact, some proteins indicative of autophagy (LC3 and p62) still associate with hyper-

replicativeSalmonellaand, surprisingly, may even enhance growth [39] Though the

exact mechanisms are a mystery,Salmonellaappears to greatly alter host cell function

through its T3SS and exploit the autophagic machinery for its own benefit.
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To gain insight into these molecular-level details, we seek to answer a simple

cellular-level question: does a greater bacterial load (more internalized bacteria) result

in a greater chance of hyper-replication? As we have discussed,Salmonellaenter the

host in a cooperative manner through rufflerecruitment. Despite this, it has been

shown that eachSalmonellais contained in its own SCV, which divides along with the

bacterium [40]. Based upon this finding, we propose a simple model of independent

escape, shown in Fig 1.1B, where each bacterium has some chanceqof vacuolar escape,

autophagy evasion, and replication in the cytosol. The probability of an infected cell

harbouring at least one hyper-replicating bacterium is then

P(HR) = 1−P(no HR) = 1−(1−q)N (1.1)

whereNis the initial number of SCV-bound bacteria internalized in the host, or the

bacterial load.

Forin vitroinvasion assays, the natural way to explore bacterial load is to vary

the ratio of inoculating bacteria to hostcells (the multiplicity of infection or MOI).

Compounded by cooperative attachment to ruffles, the number of invading bacteria

per cell quickly rises with MOI, greatly exceeding numbers predicted by independent

invasion [27]. We therefore expect a wide range of MOI to result in an even wider

range of bacterial loads. Exploring MOI effects on the HR phenotype, and thereby

testing the independent escape hypothesis, will be the focal point of Chapter 2.

1.3 Cellular Decision Making

Regardless of genetic or environmental properties, living cells tend to differentiate into

specialized subtypes, altering their cellular fate to serve functionally important roles

[41]. This so-called cellular decision makingis being observed in an increasing variety

of cell types, such as the bacteriumBacillus subtiliswhich stochastically differentiates
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into resilient, non-growing spores in the face of limited nutrients [42]. In cases like

these, differentiation is a preventative measure for survival. Another example is

Escherichia coli, which appears to hedge its bet against potential antibiotics by having

a small subpopulation enter a persister state [43]. Adopting this niche avoids complete

eradication of an invasive population, allowing further proliferation within the host

[44, 45]. This strategy for survival may be the reason forSalmonellaTyphimurium’s

recently discovered bimodal lifestyle.

Related to bacterial decision making is quorum sensing, a system of cell-to-cell

signaling that is density-dependent. Bacteria utilizing this system secrete signaling

molecules called autoinducers that are detected and bound to receptors on other

bacteria [46]. The marine bacteriumVibrio fischeriwas the first studied case of

quorum sensing [47]. AsV. fischeridivide and their population density (and there-

fore the density of secreted autoinducers) reaches a threshold, bioluminescence within

the organism is activated. Since this discovery, quorum sensing has been shown to

regulate many behaviours in a wide variety of bacteria, including virulence genes

inEscherichia coliandStaphylococcus aureus[48]. By communicating via quorum

sensing, populations of bacteria exhibit a sortof multicellularity, or a population-level

focused behaviour, to alter their fate through density-dependent decision making. For

instance, quorum sensing may be used to prevent bacterial populations from growing

to levels that are unsustainable in their environment.SalmonellaTyphimurium has

been shown to require theluxSgene (responsible for autoinducer production) for up-

regulation of certain virulence factors related to the T3SS-1 and required for bacterial

internalization [49]. Any disagreement with the independent escape hypothesis of HR

expression requires some form of non-random bacterial decision making, and would

raise the provocative possibility thatSalmonellaare coordinating expression of the

HR phenotype through intracellular communication.
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1.4 Quantitative Modelling

Heterogeneity within bacterial populations, resulting from stochastic differentiation

and influenced by quorum sensing, lends itself well to quantitative modelling. As

Mogilner et al. [50] explain, cell biologyencompasses behaviour at many length and

time scales, and can become exceedingly complex when considering the breadth of

microscopic detail available. The first decision when attempting to model a system is

therefore how detailed a model to employ. Regardless of the level of coarse-graining,

however, the most important feature of a quantitative model is that it can capture

the behaviour of interest, because this indicates that we may have identified all of the

relevant players and interactions. The insight gained through exploratory quantitative

modelling can improve qualitative understanding of the system, as well as highlight

the relative importance of the different aspects of the system.

One of the first success stories in modelling biological systems was a mathematical

model of budding yeast cell cycle [51]. Theauthors distilled data from many indepen-

dent studies into a consensus model of thecell cycle control mechanisms in budding

yeast. They then converted these mechanisms into a set of differential and algebraic

equations that determine the time evolution of the system. Out of 131 experimental

yeast mutant strains compared, 120 could be explained by the model - certainly a suc-

cessful implementation and suggests that their model captures essential phenomena

and gives good estimates of hard-to-measure reaction rates.

Our model ofSalmonellainvasion into HeLa cells, detailed in Chapter 3, is similar

in that it involves a system of ordinary differential equations to model various interac-

tions. The time evolution of the system depends on constant interaction rates, as well

as the changing states of host and pathogen populations. Sets of experimental data

from independent sources in the literature were fit to parameterize the model and to
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give estimate rates of the host-pathogen interactions. From a survey of the litera-

ture, there does not appear to be an approach to host-pathogen modelling like this.

Other studies have attempted to model protein interactions [52], populations of host

organisms [53], comparative genomics [54], and stochastic growth of bacterial popu-

lations [55]. At the single-cell and cellular population level, infection dynamics have

mostly been modelled very broadly. An early examples comes from Anderson and

May [56], who constructed a simple predator-prey model to describe how microbes

regulate their survival in hosts. To studythe importance of space for infection dy-

namics, Aguiar et al. [57] employed a spatial lattice model of a general host-pathogen

population involving initial infection, reproduction, host death and transmission to

neighbours. At the extremely-detailed endof the spectrum, whole-cell modelling at-

tempts to incorporate every molecule and known gene of an organism [58], such as the

computational model of the lifecycle ofMycoplasma genitalium[59]. Our mean field

model is detailed in that it is specific to interactions betweenSalmonellaand HeLa

cells, but is broad in that it does not attempt to model subcellular processes. This

level of detail allows it to be easily extendable to other systems, as it involves many

of the interactions and stages of infection shared by other host-pathogen systems.
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Salmonella enterica

Membrane ruffles

Host cell cytosol

Entry

Salmonella-containing
vacuole (SCV)

Possible vacuolar escape

Fast cytosolic growth (HR)

Slow vacuolar growth

Salmonella-induced
filaments (Sifs)

N = 3

A

B

Figure 1.1: (A) Illustration of the stages of invasion by Salmonella into epithelial
cells, and the branching paths of vacuolar and cytosolic replication. (B) Illustration
of the independent escape hypothesis for a bacterial load of N = 3. In this context,
is the probability of any one bacterium hyper-replicating is q and the probability of
an infected cell harbouring HR bacteria is P (HR).



Chapter 2

Image Segmentation and Hyper-Replication

To study the hyper-replication of Salmonella Typhimurium, we have worked in col-

laboration with Dr. Jennifer Fredlund, a former postdoc of the lab of Jost Enninga

at the Institut Pasteur. This chapter will first go over the details of Jennifer’s exper-

imental methods and our image analysis pipeline. We then introduce an automatic

approach of determining HR growth in infected cells and present the estimated HR

fraction for a wide range of MOI.

2.1 Timelapse Fluorescence Microscopy

HeLa epithelial cells were seeded at a variety of confluencies in 24-well culture plates

one day prior to infection. Wildtype Salmonella Typhimurium expressing the DsRed

marker gene were then added and allowed to infect for 25 minutes before being washed

out. Timelapse images were acquired on an Opera (Perkin Elmer) high throughput

confocal microscope at objectives of 10x and 40x, and times ranging from 1.5 to 5.5

hours post-infection (HPI). All images were taken by Jennifer Fredlund and provided

to us as TIF files of a single plane with two fluorescent channels: one for DsRed

Salmonella and the other for Draq5 nuclear staining.

To demonstrate reproducibility, three independent invasion experiments were per-

formed in this way but with slightly different experimental procedures, as detailed

in Table 1. For the first experiment, near 100% confluence was achieved and a 10x

scope was used to take images of invasion at 25, 50 and 100 MOI. This resulted in a

high sample size but difficulty in segmentation and tracking. A lower confluency and

10
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higher objective lens were used in subsequent experiments to rule out segmentation

errors biasing the analysis. In addition, these experiments exployed a wider range of

MOI (from 25 to 800) to thoroughly explore the effects of bacterial load. To visual-

ize the difference in confluency and scope objective between the three experiments,

Fig 2.1 shows example raw images of the nuclear and bacterial channels.

Experiment 1 Experiment 2 Experiment 3

Confluency 2·105 2·104 1.5·104

Scope objective 10x 40x 40x
MOI 25, 50, 100 25, 50, 100, 25, 50, 100,

200, 400, 800 200, 400, 800
Wells per MOI 3 2-4 2-4
Fields per well 9 17 17
Cells per well 3960±183 682±10 459±8

Time points (HPI) 1.5, 2, 2.5, 3, 3.5, 4.5, 5.5 1.5, 3, 5, 5.5 1.5, 3, 4, 5, 5.5

Table 2.1: Differences between the independent invasion experiments for this study.
Confluency is the number of HeLa cells seeded per well. Cells per well is the mean
±standard error of the numbers of cellssegmented and tracked throughout the
timelapse.
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2.2 Image Segmentation and Growth Analysis

The timelapse images taken by Jennifer were analyzed by us using the open source

CellProfiler segmentation software [60]. Example bacterial, nuclear and cellular out-

lines resulting from the segmentation can be seen in Fig 2.2. A significant amount of

time was spent learning to use CellProfiler and tuning the modules to produce high

quality segmentation. We will give a briefexplanation of the segmentation pipeline

(set of sequential instructions) here but for a more detailed overview, refer to Ap-

pendix A.1.

The first step of our CellProfiler pipeline was to clean up the images and facilitate

downstream segmentation. The Smooth module was used to apply a Gaussian filter,

which essentially blurs the image slightly toobscure noise and image artifacts smaller

than some diameter set by the user. For the bacterial channel, this choice of diameter

was chosen carefully (3 pixels) as to not mistakenly conceal bacteria (as small as 5

pixels).

HeLa cell nuclei were detected by their Draq5 staining with the IdentifyPrimary-

Objects module employing the three-class Otsu thresholding method [61]. A neces-

sary setting in this module was to enable declumping of close or touching nuclei, so

that they are identified separately. Distinguishing by shape proved to be the most

effective method due to the characteristic rounded nuclear shape. For experiments

2 and 3, the IdentifySecondaryObjects module (Propagation algorithm) was used to

establish cell edges belonging to each nuclei. For experiment 1, on the other hand,

the higher confluency, lower resolution images and weaker staining of the cytoplasm

caused difficulties in identifying edges. Instead, cells were approximated as Voronoi

regions, where all nuclei were expanded until touching one another.

Of fundamental importance when measuring growth at the single-cell level is accu-

rate tracking of host cells throughout the timelapse. An error in tracking could easily
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result in an unusually large change in perceived bacterial load, causing misidentifi-

cation of HR. Cell movement, close packing of monolayers, and high bacterial loads

overruning infected cells posed difficulties when linking unique tracks together be-

tween frames. To solve these issues, the LAP (linear assignment problem) two-pass

method [62] of the TrackObjects module in CellProfiler was used. There are a number

of options available for the LAP method, and all must be tailored to the images, but

the most important options are the costs of splitting and merging tracks, as well as

the the search radius (the maximum distance you expect an object to move between

frames). Some of the options are unfortunately unintuitive, so a large amount of trial

and error was necessary. For each experiment, tracking parameter knobs were tuned

meticulously to find high quality (by eye) tracking of host cell nuclei.
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With the levels of resolution, single focal plane, and size of bacterial loads (espe-

cially in the case of hyper-replication) used for this study, individual bacteria could

not be resolved or counted. DsRed-expressingSalmonellawere instead identified as

clumps of brightness (IdentifyPrimaryObjects module) and assigned to an overlap-

ping cell identified upstream. As a proxy fornumber of bacteria, both integrated

intensity (sum of pixel brightness) and area (total number of pixels) of bacterial ob-

jects were measured in infected cells. In many cases, the difference between slow and

fast modes of growth is so significant that they can easily be distinguished by eye

(compare infected cells in Fig 2.2A and Fig 2.2B for example). However, especially

at large initial bacterial load where net intracellular replication may be combination

of both vacuolar and cytosolic growth [36], classification of growth can be ambiguous.

To avoid the subjectivity and tedium of hand-selecting HR cells, we instead use mea-

surements of net intensity growth ΔIand net area growth ΔAfrom 1.5 to 5.5 hours

post-infection. Additionally, intensity and area growth were fit to an exponential plus

non-growing background:

I(t)=Ice
γ+Iv (2.1)

A(t)=Ace
γ+Av. (2.2)

This is meant to model a starting subpopulation of cytosolicSalmonellaIc,Acgrowing

at the rateγ, along with a non-growing (or relatively slow) vacuolar componentIv,

Av. A least-squares fit was used on all cells which harboured bacteria throughout the

entire timelapse. This extra step in analysis served two purposes: the fit captures

the entire course of infection as opposed to net growth, and also captures potential

bimodality of growth. Any fits which returned greater error than estimated exponent

(Δγ>γ) were excluded from HR consideration (but still counted in the infected

population), as they were very unlikely to contain a high-growth subpopulationIc,
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Ac. Note that this alone isn’t sufficient to solely classify HR and non-HR cells, since

even slow growth may fit well to exponential growth. The filtering of cells does,

however, greatly reduce the number of infected cells to consider, making the features

of HR more prominent and easily extracted from a population.

2.3 Identifying Hyper-Replication

If we are to investigate the relationship between bacterial load and HR fraction, then it

is important to be clear on how HR is defined and determined. When first discovered,

hyper-replicative host cellswere categorized as those with>50 bacteria per cell [35].

At 10 hours post-infection (HPI), and at∼50 MOI, 11±4% of infected HeLa cells

fell under this definition. The same authors later changed this definition to≥100

bacteria per cell at 8 HPI, and found 9.2±3.2% of infected cells (at an MOI between

50 and 100) were hyper-replicative [37]. Although the purpose of these studies was not

necessarily to determine a concrete HR fraction, but rather demonstrate the existence

of a fast-growing subpopulation, these categorizations do not seem appropriate for

all situations. For instance, a cell with alarge starting population of slow-growing

vacuolar bacteria could potentially reach 50 or 100 bacteria at late times and be

misidentified as hyper-replicative. A more robust definition would involve net growth

of bacteria in infected cells. Malik-Kale et al. [36], for instance, calculated net fold

change in area of bacterial load from 2 to 8 HPI, and binned the data into three

groups: low (<2 fold increase), moderate (2–10) and high (>10) growth. Taking the

high growth subpopulation to be HR, the authors found an HR fraction of 11±3%

at 50 MOI.

To date, these definitions of hyper-replication (50 bacteria per cell, 100 bacteria

per cell, 10 fold increase in area) have been rather arbitrary. The dividing lines

between modes of growth should not be hand-selected, but rather extracted from

the distribution of growth. With this in mind, we developed a robust and automatic
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approach to classifying distinct modes of bacterial growth within infected cells. Fig 2.3

shows net bacterial intensity and area growth of infected cells at different MOI (from

experiment 1), and a clear bimodal separation can be seen in the distributions of

ΔIand ΔA. To quantify the separation, the Python package Scikit-learn [63] was

used to fit the data to a two-component, two-dimensional Gaussian mixture model

(GMM). A GMM is a probability distribution that is a linear combination of two or

more differently-shaped and positioned Gaussian distributions. Mathematically, this

can be represented as

p(x)=

K

k=1

wkN(x|μk,Σk) (2.3)

whereKis the number of components (Gaussians),wkare the weights of the com-

ponents (0≤wk≤1),μkare the means and Σkare the covariance matrices. In our

case, we expect a Gaussian at small values of ΔAand ΔI(the slow-growing infected

cells), and one at large values (the hyper-replicative cells). As previously mentioned,

infected cells were excluded from HR determination based on their single-cell growth

fit (Δγ>γ). This resulted in a reduced weightwkof the slow-growing class and

made it much easier for the fitting routine to separate the data. After this filtration

step, the GMM takes as input all of thexn=(ΔAn,ΔIn) data points, with only

the knowledge that they should be separated intoK= 2 classes, and computes the

maximum likelihood estimates of the model parameters. The resulting probability

distribution overlays the data in Fig 2.3.

The two classes are well fit, and show little overlap. Aligning with our expecta-

tions, one class (green) shows both larger intensity and area change and we designate

it “high growth.” The other class (red) shows lower change and we designate it “slow

growth.”
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Figure 2.3:Bimodal growth can be modelled to quantify HR fraction.Distributions of net intensity and area growth
of infected HeLa cells at three different MOI from experiment1. Overlaying the data is the fit to a Gaussian mixture model.
The data is coloured based on its predicted classification: high growth (green) or slow growth (red). Infected cells plotted
here were screened based on their least-squares fit to an exponential growth plus background (Eq 2.1). The number of cells
which passed the screening (γ>Δγ) are 538, 981 and 1248 for 25, 50 and 100 MOI, respectively.
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From the model fit, each cell is predicted to belong to the slow or fast-growing class.

The percentage of infected cells categorized as fast-growing is our estimate of the

HR fraction, and from this preliminary experiment of just three MOI, appears to be

increasing slightly or possibly constant in the range 7-10%, consistent with previously

reported values [35, 36, 37]. It is worth noting that the separation between the two

modes of growth becomes less pronounced with increasing MOI, resulting in greater

overlap between the bimodal distributions. This effect likely arises due to variations

in population growth rates as MOI and bacterial load increase. Since infected cells can

harbour both vacuolar and cytosolic bacteria [36], net intracellular replication may be

a combination of both slow and fast growth. If an infected cell has a disproportionately

large population of vacuolar bacteria compared to the hyper-replicative population,

then the HR growth may be masked when looking at net replication. This is another

area where the filtering of infected cells by fitting to exponential growth (fast-growing

cytosolic bacteria) plus background (relatively slow-growing vacuolar bacteria) helped

to identify the HR phenotype. Regardless, the two-component GMM seems to capture

the data even at high MOI. With confidence in our method, the process was repeated

for experiments 2 and 3 and the resulting growth distributions and fits can be seen

in Fig 2.4.
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Figure 2.4: Bimodal growth fitting for experiments 2 and 3. Scatter plots
of net intensity and area growth of infected HeLa cells for a wide range of MOI.
Overlaying the data is the fit to our two-class Gaussian mixture model. The data
is coloured based on its predicted classification: high growth (green) or slow growth
(red).
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2.4 HR Fraction and Bacterial Load

Fig 2.5 shows the HR fraction estimation of all three experiments versus infectivity

(which correlates with MOI and initial bacterial load). The striking feature of this

plot is plain to see: across MOI and between independent experiments, HR fraction

appears to be constant around 8%. Consequently, it would seem hyper-replication is

independent of bacterial load despiteSalmonellainvading in a cooperative manner

that benefits greater numbers. To confirm this, we investigated the change in bacterial

load with MOI. In Fig 2.6, we have compared initial bacterial loadI(1.5) andA(1.5)

and found it to approximately double with a doubling in MOI. Ideally, our first time

point would be at an earlier time than 1.5 hours post-infection, but there is evidence

to suggest that replication of internalizedSalmonelladoes not begin until shortly

after this time [37]. We can therefore conclude that, across the range of MOI tested

here, the average initial bacterial load doubled multiple times. If it were the case the

bacteria escaped and hyper-replicated independently, we would have expected the HR

fraction to quickly rise from the baseline bacterial loadN=1toN= 2 and beyond.

This rules out the simple independent escapehypothesis, which is plotted in Fig 2.5

assuming an escape probability per bacterium ofq=8%.

Early after escape and exposure to the cytosol,Salmonellacolocalizes with au-

tophagy proteins, such as LC3, which target the bacterium for lysosomal pathogen

elimination [38]. This autophagic response is not completely understood currently,

but it is believed that dysfunctional autophagy is to be blamed for cytosolic prolif-

eration [64]. This may be a result of theSalmonellaTyphimurium T3SS disrupting

host cell pathways, as it has been shown to do during SCV maturation [28]. Our

results, however, seem to indicate that more internalized bacteria does not lead to a

greater chance of cytosolic survival and hyper-replication. Thus, a simple explanation

for a constant HR fraction is that it is a host cell-dependent phenomena, wherein a
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Figure 2.5:HR fraction is independent of bacterial load. Three independent
experiments ofSalmonellainvading HeLa cells were segmented and tracked at a large
range of MOI. HR fraction versus infectivity is plotted (±standard error in the mean
between fields), as well as theory linesindicative of independent escape forq=8%
and initial bacterial loads ofN=1,2,3.

minority of infected hosts are unable to defend against hyper-replicativeSalmonella.

A more complex hypothesis is that, for each infected cell, a single bacterium (likely

the first to enter) attempts to escape and hyper-replicate with some mean success rate.

Perhaps other bacteria receive a “stop” signal via quorum sensing [46] from that initial

bacterium as a means to prevent oversaturation of the cytosol, and to hedge their

bets against host immune response by occupying multiple intracellular niches. Or

maybe cytosolicSalmonellacan sense something in the host cell cytosol (such as a

lack of nutrients or the presence of autophagy proteins) and enters a slow-growing

persister state.
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To confirm any of these speculations will require furtherSalmonella-HeLa invasion

experiments with varying MOI and markers for subcellular localization. LAMP1, for

instance, is a protein known to associate with SCV membranes during maturation

[28]. By staining HeLa cells for this protein, it can be determined if a bacterium is

contained in its SCV [65]. With this information, we can make more informed HR

identification by ruling out cells with just vacuolarSalmonella, and also investigate

growth rates of the subpopulations, instead of net population growth.
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Figure 2.6:Infectivity and bacterial load vary strongly with MOI.Three in-
dependent experiments ofSalmonellainvading HeLa cells were segmented. Infectivity
(±standard deviation between fields) and bacterial intensity and area at 1.5 HPI are
plotted (whiskers represent 1.5 times theinterquartile range). The main take away
here is the approximate doubling of bacterial load with doubling MOI.
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2.5 Sources of Error

Despite the great care taken to achieve high quality segmentation, artifacts and errors

are sometimes unavoidable. For images from experiment 1, which were taken at lower

resolution and higher host confluency, itproved difficult to draw accurate boundary

lines between cells. This often affected the assignment of bacteria to the appropriate

host cell. In Fig 2.7, for example, there are two neighbouring infected cells (labelled

620 and 632 in the nuclear channel) which were correctly separated into unique tracks

by the LAP tracking algorithm. However, the bacterial object which appears to

belong to the 632 host is right on the boundary of the cells, and at 4.5 HPI the

bacteria is assigned to the 620 host, leaving the 623 seemingly uninfected (indicated

by the green 0 in the bacterial channel). Initially, our classification of an infected host

was one that contained bacteria throughout the timelapse. Transient segmentation

errors like these led to miscounting of the actual number of infected cells. It was less

of a problem when counting HR cells, since the increased size of the bacterial clumps

generally overtook much of the host cell and could be unambiguously assigned to

the correct host. Erroneous infectivity counts is a source of systematic error in our

calculation of HR fraction (= number of HRcells / number of infected cells), biasing

the measurement towards higher values. Inan attempt to counteract this effect, we

changed our definition of infected hosts to include those infected for most (all but

one time point) of the timelapse, so that cells like 632 in Fig 2.7 are correctly deemed

infected. This doesn’t solve the problem entirely, but certainly helped to suppress

the systematics.
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Another source of error could come from the experimental procedure, such as

determining the multiplicity of infection.Infecting at a particular MOI is an inexact

process. Rarely will MOI be presented with error bars, but some studies tend to give

a range in which they expect MOI to fall (Knodler et al. [37], for example). Before

being added to the culture plate, bacterial populations are grown in a broth to a

specific density (in relation to the host cell density). They are then added equally

to each well of the culture plate. This two-step process is done manually and is

therefore prone to human error. An error in measurement of the bacterial density

in the first step would result in the entire culture plate receiving a lower or higher

than expected MOI, on average. The HR fraction versus infectivity plot of Fig 2.5

shows the MOI average, or more specifically the average of every field of every well

infected at that MOI with error bars repesenting the standard error in the mean. It

is at this level we would expect a density measurement error to influence the MOI

(and thereby the measured infectivity), but we have no reason to believe it would be

bias the results one way or the other. If an error occurs in adding bacteria equally

to each well of the culture plate, then error would propagate between wells. Fig 2.8

shows the HR fraction versus infectivity averaged per well. Comparing the scatter of

these points may reveal an MOI-dependence on this well-to-well error. For instance,

the left-to-right scatter of the 25 MOI points (circular markers) appears to be minor

compared to those at 100 MOI (square markers). Regardless, we again have no reason

to believe the error is biased one way or another, and small variations in infectivity do

not change our result of a constant HR fraction. As an aside, these well HR fractions

were fit to a flat line for each experiment, and were found to fall within error of each

other (8.6%, 8.2% and 7.9%).
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Chapter 3

Mean Field Model of Invasion

The previous chapter examined the relationship between hyper-replication fraction,

bacterial load and MOI of Salmonella-infected HeLa cells. We found bacterial load to

increase with MOI, as expected, but that HR fraction remained constant. As a sup-

plement to our HR study, we have developed a mean field model to explore invasion

dynamics and gain insight into MOI-dependence. The purpose of employing a mean

field model is to simplify the host-pathogen interactions (attachment, ruffle forma-

tion, internalization, escape) into system averages. This has the advantage of being

easier to compute than individually tracking and computing pairwise interactions and

stochastic processes between cells and bacteria. Our mean field model should be a

reasonable approximation at high cell and bacteria counts, which is typical of the

laboratory invasion systems we wish to simulate. We will first present the model

parameters, including counts, fractions and rates, and then go over the derivations of

the dynamical equations. We then introduce data taken from the literature which was

used to parameterize the model, and finally give an example of applying the model

to further support our analysis of the hyper-replication data.

3.1 Model Parameters

3.1.1 Bacterial and Cellular Subpopulation Counts

Over the time course of invasion by Salmonella, a bacterium can be in one of 4

generalized stages: swimming (looking to attach to a host) B, attached to a host cell

29
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Ba, invaded and vacuolarBv, or invaded and cytosolicBc. The counts of bacteria in

these stages are constantly changing in time, but at early times, generally before the

onset of bacterial replication (after 180 minutes) [37]) or host-cell death (varies, but

after repication [35]) have begun, the total number will remain constant:

Btot=B(t)+Ba(t)+Bv(t)+Bc(t). (3.1)

We can similarly classify the relationship between host cells and bacteria in one

of three ways: host cells with no bacteriaH, with attached bacteriaHa,withinvaded

vacuolar bacteriaHv, with invaded cytosolic bacteriaHc, and with any invaded bacte-

ria at allHx. A host cell may have a combination ofattached, vacuolar and cytosolic

bacteria at one time, so these classifications are not mutually exclusive. For instance,

a cell with attached bacteria may also have invaded bacteria. What we can say is

that the total number of host cells is given by

Htot=H(t)+Ha(t). (3.2)

A well-studied feature of invasiveSalmonellais the formation of epithelial cell

membrane ruffles. We call the total number of rufflesR(t), the number of host cells

with at least one ruffleHr(t), and the number of bacteria attached to rufflesBr.

When performing a typical invasion assay experiment, tunable parameters include

the multiplicity of infection (MOI),m, and the confluency,c. In terms of the counts

presented here, MOI can be expressed as

m=Btot/Htot. (3.3)

The confluency (or confluence) is the proportion of area covered by cells in a culture

dish. A confluent monolayer of cells would correspond to 100% confluence, with no



31

room left to grow. Most often, and in the case of the studies used here to parameterize

the model, confluency is instead presented as the number of host cells seeded into the

culture dish. For our mean field model, this number is unhelpful as the type/size of

plate varies between experiments, so it does not tell us the percentage of area covered

by host cells. Consequently, the percentage confluency c must instead be used as a

fitting parameter rather than a known experimental value. In terms of an average

host cell area A and side length of the square well L, the confluency is

c = HtotA/L
2. (3.4)

While this measure of host cell density does not change in time for a typical assay,

the swimming bacterial density will decrease in time as Salmonella attach and invade.

The extracellular and unattached bacterial density is

ρB(t) = B(t)/L2. (3.5)

3.1.2 Fractions

For a mean field model, it is more appropriate to speak in terms of fractions or ratios

of the population To differentiate, we use lower case variables as listed and defined in

Table 3.1. This leads to an alternate form of the bacterial density:

ρB(t) =
B(t)

L2
=

bBtot

HtotA/c
=

bmc

A
= bmc (3.6)

where in the last step, we have used the reduced units A = 1 (i.e. we measure area

in units of average host cell area).
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Variable Definition Equals

h(t) fraction of host cells without bacteria H/Htot
ha(t) fraction of host cells with attached bacteria Ha/Htot
hx(t) fraction of host cells with invaded bacteria Hx/Htot
hv(t) fraction of host cells with vacuolar bacteria Hv/Htot
hc(t) fraction of host cells with cytosolic bacteria Hc/Htot
hr(t) fraction of host cells with ruffles Hr/Htot
b(t) fraction of swimming bacteria B/Btot
ba(t) fraction of attached bacteria Ba/Btot
bx(t) fraction of invaded bacteria bc+bv
bv(t) fraction of vacuolar bacteria Bv/Btot
bc(t) fraction of cytosolic bacteria Bc/Btot
r̃(t) rufflesperhost R/Hr
b̃a(t) attached bacteria per host Ba/Ha=mba/ha
b̃x(t) invaded bacteria per host Bx/Hx=mbx/hx
b̃r(t) bacteria recruited per ruffle Br/R

Table 3.1: List of relevant time-dependent quantities and their definitions.

3.1.3 Rates

Now that we have established what is changing in time, we can introduce the rates at

which they change. For a consolidated list, refer to Table 3.2, and to see these rates

labelled, refer to Fig 3.1.

A swimming bacterium can either attach to a host cell normally with a rate Γa,

or be recruited to a previously formed membrane ruffle at Γb. Once attached, a

bacterium can cause ruffling at Γr, invade the host and remain vacuolar at Γv,or

invade the host and quickly escape into the cytosol at Γc. The combined invasion

rate is Γx, but there is evidence that suggests this rate is limited by bacterial load

[66]. To approximate a saturation effect, we define the limited invasion rate

Γ∗x(t)≡Γx 1−
b̃x(t)

b̃x,max
(3.7)

whereb̃x,max is the maximum number of bacteria that can invade a single host. From
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the same study, a limitation on the number of foci of infection (clusters of internalized

bacteria) was found. Similarly, we approximate a saturation effect on the number of

ruffles (or ruffling sites) on a single infected cell with

Γ∗
r(t) ≡ Γr

(
1− r̃(t)

r̃max

)
(3.8)

Both b̃x,max and r̃max are additional tunable parameters, and can be set to infinity to

eliminate limits on invasion and ruffle formation.

An important feature of any host-pathogen system is host-directed killing or

xenophagy. A rate of killing was omitted from our model for the simple reason

of lack of data available for parameterization. Although xenophagy is not explicitly

included, it can be partially reflected in the other rates. For example, Γc can be

thought of as the rate of successful cytosolic invasion and evasion of host defense.

A more detailed model would ideally have a parameter for xenophagy, as it may

be dependent on variables such as confluency or bacteria per cell, but this implicit

approach may suffice until more data is available.

3.1.4 Dynamical Equations

The following section presents the logic used to arrive at the dynamical equations

describing the mean field model.

Variable Definition

Γa primary attachment rate per bacterial density, per host
Γb ruffle recruitment rate per bacterial density, per ruffle
Γr ruffle formation rate per attached bacteria, per host
Γ∗
r effective ruffle formation rate per attached bacteria, per host

Γv vacuolar invasion rate per attached bacteria, per host
Γc cytosolic invasion rate per attached bacteria, per host
Γx combined invasion rate per attached bacteria, per host
Γ∗
x effective invasion rate per attached bacteria, per host

Table 3.2: List of the time-independent and effective rates governing the model.
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Figure 3.1: Illustration of the early stages of Salmonella infecting HeLa cells and the
associated rates (in red) used to model the process.

The change in the number of host cells with attached bacteria Ha will only depend

on the primary attachment rate Γa and not secondary attachment (ruffle recruitment)

rate Γb because, for a bacterium to attach to a ruffle, another bacterium has already

attached to form that ruffle. This will be given by Ḣa = ΓaHρB. Using scaled

variables, we obtain

ḣa =
Ḣa

Htot
= Γa

H

Htot
ρB = Γah(t)b(t)mc. (3.9)

The change in the number of infected cells Hx is controlled by the invasion rates

Γx = Γc+Γv, and is limited by the number of uninfected cells H and attached bacteria

per cell b̃a. From the unscaled dynamics Ḣx = Γx(Ha −Hx)b̃a, we obtain

ḣx =
Ḣx

Htot
= Γx

Ha −Hx

Htot
b̃a = (Γv+Γc)(ha−hx)

bam

ha
= (Γv+Γc)

(
1− hx(t)

ha(t)

)
ba(t)m.

(3.10)
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Similar equations can be derived for host cells with vacuolar and cytosolic bacteria:

ḣv=
Ḣv
Htot

=Γv
Ha−Hv
Htot

b̃a=Γv(ha−hv)
bam

ha
=Γv 1−

hv(t)

ha(t)
ba(t)m. (3.11)

ḣc=
Ḣc
Htot

=Γc
Ha−Hc
Htot

b̃a=Γc(ha−hc)
bam

ha
=Γc 1−

hc(t)

ha(t)
ba(t)m. (3.12)

Note thatḢv+Ḣc≥Ḣxsince vacuolar and cytosolic invasion can occur independently

in the same host [36].

Besides invading, attached bacteria will also induce ruffle formation at rate Γr:

ḣr=
Ḣr
Htot

=Γr
Ha−Hr
Htot

b̃a=Γr(ha−hr)
bam

ha
=Γr 1−

hr(t)

ha(t)
ba(t)m. (3.13)

A more complicated quantity is the number of bacteria which are attached to host

cellsBa, which has three means of change. The first is by regular primary attachment

with rate Γa, the second is ruffle recruitment with rate Γb, and the third is a loss of

attached bacteria as they invade with limited invasion rate Γ∗x. Fractional bacterial

attachment is therefore

ḃa=
Ḃa
Btot

=Γa
HtotρB
Btot

+Γb
RρB
Btot

−Γ∗x
Ba
Btot

=Γab(t)c+Γb̃r(t)hr(t)b(t)c−Γxba(t) 1−
b̃x(t)

b̃x,max
.

(3.14)

Bacteria will either internalize and remain vacuolar at rate Γ∗vor escape early and

become cytosolic at rate Γ∗c:

ḃv=
Ḃv
Btot

=Γ∗v
Ba
Btot

=Γvba(t) 1−
b̃x(t)

b̃x,max
(3.15)



36

ḃc=
Ḃc
Btot

=Γ∗c
Ba
Btot

=Γcba(t) 1−
b̃x(t)

b̃x,max
, (3.16)

and, as expected, we haveḃv+ḃcequals the negative (loss) term in Eq 3.14.

And finally, the change in rufflesRper cellHris dependent on the limited forma-

tion rate Γ∗r:

˙̃r=
Ṙ

Hr
=Γ∗r

Ba
Hr
=Γr 1−

r̃(t)

r̃max

mba(t)

hr(t)
. (3.17)

Taken altogether, we now have a set of coupled differential equations that can

be numerically integrated in time (for the results presented here, the fourth-order

Runge Kutta method was used [67]). Thesource code can be seen in Appendix A.2.

The system is initialized at zero infectivityha(0) =hx(0) = 0 and with all inoculat-

ing bacteria swimmingb(0) = 1. A sufficiently small time step Δtwas determined

for accuracy, and used to integrate until some set timetmax (the inoculation time

experimentally).

3.2 Parameterizing the Model

The goal of this section is to collect data from a variety of different publications to

estimate interaction rates of our mean field infection model. Before getting to actual

numerics however, we can state some expectations of these parameters that help to

constrain the parameter space.

The 2012 study by Misselwitz et al. [27] examined target-site selection ofSalmonella

Typhimurium. A key finding was that bacteria preferentially docked onto ruffles, an

effect the authors speculated to arise from the ruffle topology. We therefore expect

the ruffle attachment rate to exceed primary attachment, or Γb>Γa.

Another simple inference comes from Knodler et al. [37] who quantified the pro-

portion of cytosolicS.Typhimurium at early times, and found it quickly rose to

∼20% and stayed there for at least 180 minutes post infection, as plotted in Fig 3.2I.
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Firstly, this shows that early vacuolar escape is not a continuous process but rather a

predetermined “decision” that will either happen soon after internalization, or not at

all. For this reason, we model vacuolar occupation and escape as separate internal-

ization paths, rather than a slow progress from enclosed to escaped. Secondly, this

gives us an approximate ratio of internalization rates Γv≈4Γc.

Misselwitz et al. [68] showed in 2011 how attachment ofSalmonellato HeLa varies

with MOI and time for a number of different mutants. Their data for percentage of

cells with attached wildtypeSalmonella(hain our model) is shown in Fig 3.2A and B.

In regards to the model, this quantity ishaand is regulated by the primary attachment

rate Γa. The 2012 study by the same group [27] gives us ruffling fraction (percentage

of cells with at least one ruffle, orhr) versus MOI, as reproduced in Fig 3.2C.

A 1998 paper by Huang et al. [66] on entry ofSalmonellainto HeLa cells found

an apparent physical limitation on internalization at large MOI. To show this, they

measured invasion efficiency (percentage of internalized bacteria/starting inoculum,

bx=bc+bvin the model) and found it to decrease past 40 MOI. Along those same

lines, the number of internalized bacteria per cell (̃bx) was found to saturate at around

20 bacteria, a limit we call̃bx,max. Also included in the study was a time course analysis

of internalization. At time points between 0 and 60 minutes post infection, invasion

efficiency (bx), infectivity (hx) and the number of infection foci per cell were measured.

These foci were clusters of internalized bacteria and, interestingly, the authors found

an average of 2±1 foci of infection per infected cell at various times post infection

and at MOIs of 40 and 400. We hypothesize that these foci of infection are sites of

ruffling that enhance entry of attached bacteria, and that typically 1-3 sites form on

a single HeLa cell. To incorporate this effect into the model, we use the variable ̃rmax

which will place a saturation limit on ruffles per cell ̃rand curb the cooperative effect

at large MOI and late times. It is worth noting that our definition of “ruffle” is now

misleading. More accurately, our model includes “sites of ruffling”, as a single site
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may have many protrusions one could call a ruffle. The relative size of these ruffling

sites may change in time to enhance local attachment, but that is a detail both not

available in the literature and out of the scope of this model.

Now with an abundance of extracted data, the challenge was to find parameters

that fit. As a first step, a script was built for real-time manual adjustment of all

parameters, which allowed us to find ballpark estimates of the values. We took these

estimates as initial guesses to a least squares fitting routine which was used on each

set of data separately and sequentially. To speed up the fitting, certain constraints

were used on the parameter space. Since it is possible that some of the data does not

experience large saturation effects due to low bacterial load, the parameters̃bx,max

and ̃rmax were allowed to vary between 10-30 and 1-10, respectively. The constraint

oncwas between 0 and 1, since it is a percentage confluence in our model, rather

than a number density. For the rates Γa,Γb,Γr,Γvand Γc, a very large range of

variation was allowed, typically a width ofthree factors of ten centered around our

initial guess (Γabetween 0.0001 and 0.01, for example).

The results of our sequential fitting can be seen in Table 3.3. Each row corresponds

to a different set of data from the literature in the order (top to bottom) that they

were fit. Bolded values in the table indicate parameters that were allowed to vary for

the particular fitting (only Γaandcfor Fig 3.2A and B, for example). The first sets

of data fit were, naturally, relevant to the first of the stage of invasion – percentage of

cells with attached bacteria (ha) versus time and MOI, courtesy of Misselwitz et al.

[68]. This gave an estimate of the primary attachment rate Γa. The next to be fit was

ruffling fraction (hr) versus MOI from Misselwitz et al. [27] to address ruffle formation

rate Γr, as well as tune the attachment rates Γaand Γbrelative to each other. From

Huang et al. [66] came various measures of bacteria internalization (invasion efficiency

bx, bacteria per cell̃bxand infectivityhx) which were fit to give estimates of Γc,Γv

and the limiting factors̃bx,max and ̃rmax. And finally, the relatively simple result from
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Knodler et al. [37] of cytosolic bacteria proportion (bc/bx) was fit to set the expected

ratio between Γcand Γv.

Γa Γb Γr Γv Γc b̃x,max r̃max c

Initial guess 0.001 0.01 0.01 0.01 0.0025 20 2 1
Fig 3.2A 0.000909 0.01 0.01 0.01 0.0025 20 2 0.989
Fig 3.2B 0.00214 0.01 0.01 0.01 0.0025 20 2 0.244
Fig 3.2C 0.000843 0.0101 0.0228 0.01 0.0025 20 2 0.528
Fig 3.2D 0.000843 0.0101 0.0228 0.0488 0.00473 16.4 1.59 0.962
Fig 3.2E 0.000843 0.0101 0.0228 0.0552 0.00553 29.4 1.00 0.522
Fig 3.2F 0.000843 0.0101 0.0228 0.0156 0.00243 29.8 2.17 0.159
Fig 3.2G 0.000843 0.0101 0.0228 0.0179 0.00288 25.1 2.39 0.216
Fig 3.2H 0.000843 0.0101 0.0228 0.00738 0.000754 19.3 3.25 0.159
Fig 3.2I 0.000843 0.0101 0.0228 0.0117 0.00301 19.3 3.25 0.959

Table 3.3: Chronological list of the least squares fitting to each set of literature
data. Bolded values indicate that, for thatstep, those parameters were allowed to
vary. For example, Fig 3.2A and B quantify percentage of host cells with attached
bacteria, so the only relevant parameters are the primary attachment rate Γaand
the experiment-specific confluencyc. For experimental parameters used in the fitting
(MOI and incubation time), refer to the companion Table 3.5.

The blue lines in Fig 3.2 show the results of this step by step fitting and, in

most cases, good fits by eye could be achieved. This is perhaps unsurprising, as the

number of model parameters outnumbers the number of data points in most cases,

which allows a great amount of numerical flexibility. Ideally, however, we would like

to find a set of parameters, if they exist, that describe allSalmonella-HeLa infection

assays. Before fitting all the data simultaneously, a fit was performed to each of

the four separate studies. This modular fitting was done because, at the very least,

we expect our model should be able to describe all data from a single experiment

done under the same conditions (confluency, equipment, experimentalist, etc.). The

results of this fitting are listed in Table 3.4 and plotted as green lines in Fig 3.2.

Taking the parameters from the modular fitting as an initial guess, and keeping

experiment-specific confluencycconstant, a least squares fit including all of the data

was performed. This final stage of fitting can be seen in the last row of Table 3.4 and

as the red lines in Fig 3.2.
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Figure 3.2: Plots of various measures of infection related toSalmonella enterica
invasion into HeLa cells, including cells with attached bacteria (ha), ruffling fraction
(hr), invasion efficiency (bx), infectivity (hx), bacteria per cell (̃bx) and cytosolic
bacteria (bc/bx). Black circles indicate data from the cited sources, with error bars
if they were reported. (A,B) Misselwitz et al. [68]. (C) Misselwitz et al. [27]. (D-H)
Huang et al. [66]. (I) Knodler et al. [37]. The lines show best fit estimates of the mean
field model. Blue indicates the best fit to the individual data sets, green indicates the
best modular fit to the individual studies, and red indicates the best simultaneous fit
to all data.
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Source Fig 3.2 Γa Γb Γr Γv Γc b̃x,max r̃max c

Misselwitz et al. [68] A, B 0.000891 0.117 0.0757 0.0225 0.00346 20.8 1.95 0.999
Misselwitz et al. [27] C 0.00137 0.123 0.108 0.0225 0.00346 20.8 1.95 0.528
Huang et al. [66] D-H 0.00137 0.123 0.108 0.0128 0.00195 24.7 1.55 0.999
Knodler et al. [37] I 0.00137 0.123 0.108 0.0117 0.00301 24.7 1.55 0.139

All data - 0.00149 0.141 0.0809 0.0133 0.00342 21.7 1.85 -

Table 3.4: Chronological list of the least squares modular fitting to sets of data
(from the same source) and all the data. Bolded values indicate that, for that step,
those parameters were allowed to vary. When fitting all the data simultaneously, the
confluency were kept constant per-experiment at modular fit estimated values. For
experimental parameters used in the fitting (MOI and incubation time), refer to the
companion Table 3.5.

Expectedly, the quality of the fit diminished when attempting to incorporate more

sets of data from the literature. Deviations from the model can potentially be ex-

plained by variations between experiments or by incomplete/missing details, such as

confluency or inexact MOI (i.e. when given a range of MOI). For illustrative purposes,

some of these experimental details are listed in Table 3.5. Variables such as incubation

medium and culture plate are not taken into account in our model, simply because

there isn’t data comparing the effects. It isentirely possible that, taken altogether,

these differences in experimental procedure and equipment alter the average infection

dynamics of the host-pathogen population,complicating the fitting to multiple sets

of data.

Alternatively, there may of course be oversights or missing pieces in the model. It

would appear the worst deviations from the model occur at late times (Fig 3.2B, E, F,

H) and high MOI (Fig 3.2A, C). One theory is that there is an additional saturation

effect occurring at high bacterial loads. In addition tõbx,max,theremaybesome

limitation on the number of attached bacteria per cell (call it̃ba,max) which restricts

the attachment rates Γa,Γbat late times and high MOI. The poor fitting may also be

a consequence of stochastic effects at early times and low MOI, when the sample size

of infected host cells and bacteria is smallest. A more careful fitting would involve

giving less weight to these data points, and may resolve disparities in the late time
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and high MOI regime. Inconsistencies aside, we can say that our simple mean field

model with rates can capture the approximate behaviour and essential features (such

as internalization saturation) of the highly stochastic process of bacterial infection.
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Fig 3.2 Source Independent Dependent MOI Incubation time Confluency HeLa Incubation Culture Incubation Growth
variable variable (minutes) (cells/well) strain temperature plate medium medium

A Misselwitz 2011 MOI ha - 10 6·103 Kyoto 37 96-well Greiner DMEM, 10% FCS DMEM
B Misselwitz 2012 Time ha 62.5 60 6·103 ? 37 96-well Greiner DMEM, 10% FCS LB Broth
C Misselwitz 2012 MOI hr - 9 3·105 ? 37 96-well Greiner DMEM, 10% FCS LB Broth
D Huang 1998 MOI bx - 60 6·105 INT407 37 24-well Sarstedt MEM, 10% FCS LB Miller
E Huang 1998 Time bx 40 60 6·105 INT407 37 24-well Sarstedt MEM, 10% FCS LB Miller
F Huang 1998 Time hx 40 60 6·105 INT407 37 24-well Sarstedt MEM, 10% FCS LB Miller

G Huang 1998 MOI b̃x - 60 6·105 INT407 37 24-well Sarstedt MEM, 10% FCS LB Miller

H Huang 1998 Time b̃x 40 60 6·105 INT407 37 24-well Sarstedt MEM, 10% FCS LB Miller
I Knodler 2014 Time bc/bx 50-100 10 5·104 ATCC 37 24-well Corning Costar EMEM, 10% FCS LB Gibco

Table 3.5: A list of the literature data used in this study, along with some provided experimental details. Incubation time
corresponds to thetmaxmodel parameter. The given confluency values are listed as HeLa seeded per well which, unfortunately,
cannot be directly translated to the percentage confluencycin the model.
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3.3 Applications

We have shown that a mean field model of Salmonellainvading HeLa cells can be fit

to data from different sources to find rates of the various stages of invasion. If simple

time-independent rates like these can roughly describe population-level dynamics of

host-pathogen invasion assays, then we believe our model could prove a useful diag-

nostic tool in designing experiments. Forinstance, if an experimentalist wishes to

study some aspect ofSalmonella-induced ruffling on HeLa cells, then by inputting

confluency and incubation time, our model will output a predicted ruffling fraction of

host cells for a range of MOI. From this estimation, one could determine a reasonable

MOI to achieve a high sample size of ruffled cells.

Another area where we believe this model has merit is in quantifying differences

between strains and species of bacteria. A common practice when studying the mech-

anisms of invasion is to knockout genes encoding for various pathogen virulence fac-

tors and monitoring the effects. In the absence of, say,Salmonellagenes encoding for

ruffle-related effectors, one could measure the response on the ruffle formation rate

Γrand provide a more precise quantitative comparison.

Beyond justSalmonellainvasion, this model is easily extendable to other host-

pathogen systems. Perhaps most similar toSalmonellais the bacteriumShigella

flexneri, which invades epithelial cells via T3SS-mediated trigger mechanism (with

membrane ruffling as a byproduct) and then quickly ruptures its vacuole to escape

into the cytosol [18, 38]. Excluding a pathogens vacuolar lifestyle can be accom-

plished by simply “turning off” the vacuolar invasion module (setting Γv= 0 in the

model). The other rates Γa,Γb,Γr,Γcand saturation limitsb̃x,max,r̃max will be

expectedly different from ourSalmonellaparameterization simply due to the differ-

ent virulence factors and effectors used by the two bacteria. Once parameterized to
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different systems, the model can provide a useful time and MOI-independent bench-

mark for comparing pathogens and making more specific conclusions. For example,

one could find thatSalmonellahas a ruffle formation ratextimes greater than that

ofShigella, and a ruffle attachment rateytimes greater, leading to the conclusion

thatSalmonellaisztimes more effective at cooperatively invading, independent of

experimental conditions.

Moreover, we believe this first attempt at a mean field infection model forSalmonella-

HeLa has the components to be a generic model because it incorporates the various

lifestyles of pathogens: extracellular, intracellular, vacuolar and cytosolic. As with

Shigella, the modules can be turned off and on to accommodate different mechanisms

and pathways of invasion. Of course, and as mentioned previously, more detail can

and should be added to more accurately model host-pathogen interactions, such as

an explicit rate for xenophagy. Additionally, the model could be extended in time

to include pathogen replication, host cell death and transmission to other cells, but

as a first step and proof of concept, our model can potentially accommodate any

host-pathogen system with data available for parameterization.

Finally, as an illustration of the model’s predictive ability, the parameterization

from fitting all of the literature data (Table 3.4) was applied to the infectivity data

from our hyper-replication analysis (Fig 2.5). MOI and incubation time were given

experimental parameters, and percentage confluency was used as the only fitting

parameter. Fig 3.3 (top) shows the result of said fitting to infectivityhxfor each

experiment. As with the literature data, these fits are far from perfect, especially at

higher MOI, but can roughly approximate the rise in infectivity. Fig 3.3 (bottom)

then shows a model-generated prediction of the number of bacteria per infected cell

b̃x,orNas we called it in Chapter 2 before introducing the model. From this, we can

say with a high degree of confidence that, by infecting with as high as 800 MOI, we

have explored a wide range of bacterial load and likely reached the physical saturation
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limit of̃bx,max ≈20. This further invalidates the independent-escape hypothesis as,

with such high bacterial loads, we would have expected a considerable increase in HR

fraction with MOI.
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Figure 3.3: (Top) Infectivity versus MOI from theSalmonella-HeLa invasion ex-
periments presented in Chapter 2. Red lines indicate fits from the literature-
parameterized mean field model. The sole fitting parameter, confluency, wasc=
0.140, 0.0784, 0.0764 for experiments 1, 2 and 3, respectively. (Bottom) Model pre-
dictions for bacteria per infected cell versus MOI.



Chapter 4

Conclusions and Future Work

In this thesis, we have studied the pathogenicity of Salmonella enterica Typhimurium

in two distinct ways.

The first was a primarily experimental approach to investigating the hyper-replication

of Salmonella in epithelial cell cytosol. Timelapse fluorescence microscopy images

taken by our collaborators were carefully segmented and tracked to extract single

cell growth curves. To better classify HR, we argued for an alternative definition

of characteristic HR growth that involved modelling bimodal growth distributions

as mixed Gaussians. We found that, for the large range of MOI used, this method

could separate ambiguous growth into fast and slow categories, and give estimates of

HR fraction. To our surprise, HR fraction was consistently around 8%, and is thus

independent of initial bacterial load. This implies that vacuolar escape followed by

fast cytosolic growth is not an independent choice for each bacterium. The simplest

explanation is that hyper-replication is not a phenotype of Salmonella, but rather a

susceptibility in a small subpopulation of epithelial cells. In other words, an infected

cell with 1 bacterium has the same chance of harbouring HR bacteria as an infected

cell with 10. Another hypothesis is that Salmonella are using bacterial communi-

cation to coordinate replication. Perhaps the first internalized bacterium attempts

to escape (and is successful approximately 8% of the time), and the others receive

a signal (via quorum sensing or some other mechanism) to stay vacuolar or enter a

persister state, safe from host-directed xenophagy. This is akin to other pathogens,

47
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like E. Coli, which hedge their bets through multiple intracellular niches for a bet-

ter chance of population survival. Future work should involve more experiments of

Salmonella infection for a range of MOI, but with markers for vacuolar or cytosolic

localization.

The second part of this thesis was much more theoretical. A mean field model

of invasion was developed to describe laboratory invasion assays of Salmonella Ty-

phimurium infecting HeLa cells. This model involves rates describing stages of in-

fection (attachment, ruffle formation, internalization) and a system of coupled differ-

ential equations to evolve the system in time. We speculated that there exists rates

that could approximately describe all Salmonella-HeLa assays, subject to tunable

experimental parameters MOI, confluency and incubation time. A collection of data

was extracted from various publications to parameterize and test the model. By first

hand-fitting, and then fitting data separately to get initial guesses for parameters,

nine sets of data were fit simultaneously. Although not as good as the individual

fits, we found the model-generated curves to reasonably approximate the data, and

capture the essential features (such as the physical limitation on entry). Needless to

say, there is still much that could be done to improve on the model. The first step

is to include more data in the parameterization and fitting, as there is a wealth of

literature available on Salmonella infecting HeLa. Another important addition will

be a thorough error analysis to arrive at confidence intervals of model parameters.

Due to the nature of the model and data (often, there were more fitting parameters

than actual data points), the least-squares fitting routine could not estimate error.

Ideally, the model should also include an explicit autophagy interaction rate, instead

of being implicit in the other rates, but this parameterization may require data not

yet available in the literature. Once better established, we believe this mean field

model could be used as a predictive tool for choosing experimental parameters, and

for gaining additional insight into the host-pathogen dynamics. For our HR analysis,
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for example, we infected at a wide range of MOI to presumably obtain a similarly

wide range of bacterial load. By fitting the mean field model to infectivity versus

MOI, we were able to produce model predictions for internalized bacteria per cell.

This confirmed our presumption that bacterial load varied strongly with MOI.



Appendix A

A.1 CellProfiler Pipeline

The open source software CellProfiler version 2.1.1 was used to segment images of

Salmonellainfecting HeLa cells, taken by Jennifer Fredlund. The included documen-

tation provides additional details on each of the modules that we used, but also see

[60] and [69] for overviews.

A screenshot of the CellProfiler pipeline (the set of modules to carry out the

segmentation) can be seen in Fig A.1. On the left are the input modules for prepro-

cessing and organizing the images. The Images module allows specification of input

directory, and filtering of data based on filename and directory (useful for segmenting

one well at a time, for example). The Metadata module extracts information about

the images. As this was a timelapse experiment, each TIF file was a stack of frames

in chronological order. CellProfiler automatically detects and splits the stacks (this

is part of the image metadata, or embedded information) into individual frames. In

our case, the images were generally renamed and placed according to the following

format:conf<Confluency>/moi<MOI>/<Well>/f<Field>_c<Channel>.tif. This

allowed simple classification and splitting into channels 1 (nuclei) and 2 (bacteria) by

the NamesAndTypes module, and then further grouping by well and field through

the Groups module.

Once preprocessing and grouping is finished, groups of images (the timelapses) are

processed sequentially through all of the analysis modules, as pictured on the right

of Fig A.1. Table A.1 lists the most important analysis modules and their settings

used to segment images of the three experiments. Any modules or module options

50

conf<Confluency>/moi<MOI>/<Well>/f<Field>_c<Channel>.tif
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Figure A.1: Screenshot of the CellProfiler pipeline and modules used in the segmen-
tation of the three Salmonella-HeLa timelapse fluorescence microscopy experiments.
On the left are the input/preprocessing modules, and on the right are the analysis
modules which are run sequentially on each set of images.

not listed or discussed were simply left as default or were unimportant to the actual

segmentation.

The first two steps employ the Smooth module to clean up the nuclear and bacte-

rial images. The standard method here is the simple Gaussian filter, which produced

smooth images and eliminated noise for an artifact diameter set to 3 pixels. This was

less important for segmentation of the nuclear images, but for single bacteria, which

were seen as small as 5 pixels, small artifacts or noise can easily cause missegmenta-

tion.

The first identification module is IdentifyPrimaryObjects to segment HeLa cell

nuclei. The object diameter setting was adjusted to the resolution of the data (larger

diameter for the 40x images of experiments 2 and 3, compared to the 10x images of

experiment 1). The upper bound on the diameter was chosen larger than actually

expected in order to capture and diagnose anomalous segmentation (such as a cluster
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of nuclei identified as one). The thresholding strategy for each experiment was the

Otsu method, which separates pixels into two or three classes. It is the recommended

initial approach by the CellProfiler documentation, and seemed to outperform other

methods such as Background (which is appropriate for very low confluency images)

and the Mixture of Gaussian method (which is best when the percentage confluency

does not vary much from image to image). The three-class variant of the Otsu method

separates the image into foreground, mid-level and background, and worked well for

experiments 2 and 3 which has strong foreground signal (nuclei), relatively weak mid-

level signal (cytoplasm) and strong background (extracellular). For experiment 1,

however, the lower resolution, higher confluency and seemingly weaker signal made

mid-level cytoplasmic detection difficult. Consequently, the two-class Otsu method

was instead used to separate the image into foreground (nuclei) and background

(extracellular). For highly confluent clusters of cells, it is often the case that nuclei

are touching and therefore incorrectly segmented as single objects. To counteract this,

the IdentifyPrimaryObjects module has methods of distinguishing clumped objects

and drawing dividing lines. The shape method was found to work best with nuclei

declumping, as they generally had a characteristic rounded shape. Dividing lines

between clumps were also drawn by shape, which essentially meant splitting the

objects by the indentations between them.



53

M
o
d
u
le

S
et
ti
n
g

E
x
p
er
im

en
t
1

E
x
p
er
im

en
t
2

E
x
p
er
im

en
t
3

S
m
o
ot
h
(n
u
cl
ei

an
d
ce
ll
s)

M
et
h
o
d

G
au

ss
ia
n
fi
lt
er

G
au

ss
ia
n
fi
lt
er

G
au

ss
ia
n
fi
lt
er

A
rt
if
ac
t
d
ia
m
et
er

3
3

3
Id
en
ti
fy
P
ri
m
ar
y
O
b
je
ct
s
(n
u
cl
ei
)

T
y
p
ic
al

d
ia
m
et
er

10
-8
0

30
-1
00

30
-1
00

T
h
re
sh
ol
d
st
ra
te
gy

O
ts
u
(t
w
o-
cl
as
s)

O
ts
u
(t
h
re
e-
cl
as
s)

O
ts
u
(t
h
re
e-
cl
as
s)

D
is
ti
n
gu

is
h
cl
u
m
p
ed

ob
je
ct
s
b
y

S
h
ap

e
S
h
ap

e
S
h
ap

e
D
ra
w

d
iv
id
in
g
li
n
es

b
y

S
h
ap

e
S
h
ap

e
S
h
ap

e
Id
en
ti
fy
S
ec
on

d
ar
y
O
b
je
ct
s
(c
el
ls
)

M
et
h
o
d

-
P
ro
p
ag
at
io
n

P
ro
p
ag
at
io
n

T
h
re
sh
ol
d
st
ra
te
gy

-
O
ts
u
(t
h
re
e-
cl
as
s)

O
ts
u
(t
h
re
e-
cl
as
s)

E
x
p
an

d
O
rS
h
ri
n
k
O
b
je
ct
s
(c
el
ls
)

O
p
er
at
io
n

E
x
p
an

d
ob

je
ct
s
u
n
ti
l
to
u
ch
in
g

-
-

Id
en
ti
fy
P
ri
m
ar
y
O
b
je
ct
s
(b
ac
te
ri
a)

T
y
p
ic
al

d
ia
m
et
er

5-
50
0

5-
50
0

5-
50
0

T
h
re
sh
ol
d
st
ra
te
gy

M
an

u
al

M
an

u
al

M
an

u
al

M
an

u
al

th
re
sh
ol
d

0.
00
00
7

0.
00
00
85

0.
00
00
85

T
ra
ck
O
b
je
ct
s
(n
u
cl
ei
)

T
ra
ck
in
g
m
et
h
o
d

L
A
P

L
A
P

L
A
P

M
ot
io
n
m
o
d
el

B
ot
h

B
ot
h

B
ot
h

N
u
m
b
er

of
st
an

d
ar
d
d
ev
ia
ti
on

s
3.
0

3.
0

3.
0

fo
r
se
ar
ch

ra
d
iu
s

S
ea
rc
h
ra
d
iu
s
li
m
it

30
-6
0

80
-1
00

80
-1
00

G
ap

co
st

19
0

18
0

18
0

S
p
li
t
co
st

20
0

18
0

18
0

M
er
ge

co
st

22
0

20
0

20
0

M
ax

im
u
m

ga
p
d
is
p
la
ce
m
en
t

60
10
0

10
0

M
ax

im
u
m

sp
li
t
sc
or
e

15
0

20
0

20
0

M
ax

im
u
m

m
er
ge

sc
or
e

15
0

20
0

20
0

M
ax

im
u
m

ga
p

5
5

5
R
el
at
eO

b
je
ct
s

C
h
il
d
ob

je
ct
s

b
ac
te
ri
a

b
ac
te
ri
a

b
ac
te
ri
a

P
ar
en
t
ob

je
ct
s

ce
ll
s

ce
ll
s

ce
ll
s

T
ab

le
A
.1
:
L
is
t
of

C
el
lP
ro
fi
le
r
se
gm

en
ta
ti
on

p
ip
el
in
e
m
o
d
u
le
s
an

d
se
tt
in
gs

fo
r
th
e
d
iff
er
en
t
S
a
lm

o
n
el
la
-H

el
a
fl
u
or
es
ce
n
ce

m
ic
ro
sc
op

y
ex
p
er
im

en
ts
.



54

IdentifySecondaryObjects was used to identify HeLa cell edges for experiments 2

and 3. This module identifies objects using other objects identified upstream (nuclei

from the IdentifyPrimaryObjects module) as a starting point. The most sophisticated

and recommended approach is the Propagation method, which expands outward from

the nuclei and draws cell boundaries based on distance to other objects and intensity

gradients. It is thought to be an improvement over the traditional Watershed method

and, indeed, was found to produce better cellular outlines than the other available

methods. This step was complicated, however, by an apparent decrease in secondary

cytoplasmic staining over time. At late times, when the signal was weakest, the default

automatic thresholding had trouble separating the cell from background. The three-

class Otsu method was again found to be the winner in automatically determining

the threshold and identifying the decaying mid-level signal. This was an unfortunate

necessity as it greatly increased the computational time required, but a necessity

nonetheless.

A simpler approach was taken for identifying cell edges for experiment 1. As

previously mentioned, the high confluency and low resolution made mid-level cyto-

plasmic identification difficult. Instead, nuclei objects were simply expanded evenly

and simultaneously until touching one another (through the ExpandOrShrinkObjects

module), assigning every pixel of the image to an object (this is commonly called

Voronoi expansion). The borders of contact between nuclei are then simply the esti-

mated cellular outlines. This seemed a reasonable compromise as very little of these

highly confluent monolayer images was background, and most nuclei were close to

touching one another so the expansion was often minimal.

With the nuclear channel fully segmented, the next step is to identify bacteria

through the IdentifyPrimaryObjects module. The lower bound for object diameter

was set to 5 pixels (slightly above the artifact diameter setting in the Smooth module)

to capture small single bacteria, and the upper bound was set arbitrarily large (500
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pixels) to capture any sized clump of bacteria. It was found that, for all three exper-

iments, the fluorescent DsRed signal was consistently above a manually set threshold

(around 0.00008) regardless of time. This was a welcome finding, as the automatic

thresholding methods often failed to to find the appropriate value to separate bacteria

from background. Generally, these failures seemed to occur at late times and high

MOI where large bright clumps ofSalmonellaresulted in a wide distribution of pixel

intensities that likely threwoff the threshold calculation.

Perhaps the most important, and certainly the most carefully tuned module of this

pipeline was the TrackObjects module. Early on, especially with the highly confluent

experiment 1, it was found that the simple tracking methods (Overlap and Distance)

were mistracking nuclei throughout time. When nuclei were close together or nearly

touching in one frame, despite being correctly declumped by the IdentifyPrimary-

Objects module, CellProfiler would erroneously assign them the same track label.

Thankfully, a more sophisticated methodcalled the LAP (linear assignment prob-

lem) [62] is available. This approach involves two passes over the images. The first

is a basic frame-to-frame object linking (based on object overlap and size) to form

track segments. The second pass links the resulting partial trajectories into complete

trajectories by solving a global combinatorial optimization problem whose solution

identifies the most likely set of object trajectories. This step, which takes place at

the end of the CellProfiler analysis run, tends to resolve issues of object disappear-

ance (gaps in the trajectory due to objects going off frame), splitting events (when

touching nuclei are split into distinct tracks) and merging events (less common, but

sometimes strangely shaped nuclei, due tosegmentation error or because the cell is

dying, are split into pieces and must be merged to the same track). There are many

parameters involved with the LAP two-pass method, but the documentation is un-

fortunately lacking, often giving advice such as “set the split cost lower if objects are

being split that should not be split.” The more intuitive parameters include motion
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model (“both” was used as cells sometimes moved predictably with a velocity, and

sometimes seemingly randomly), and search radius limit (a smaller radius was used

for experiment 1 due to the high confluency and constricted cellular movement). For

the other parameters, trial and error was necessary to achieve high quality (by eye)

tracking of HeLa cell nuclei, and the parameters used in the end are listed in Table

A.1.

To give an example of the issues resolved by this careful tracking of cellular tra-

jectories, Fig A.2 shows a segmented infected cell (indicated by the yellow 159 label)

with a nuclei touching a neighbouring nuclei (indicated by the magenta 161 label)

at early times. First attempts at trackingcells like these resulted in assignment of

touching cells to the same trajectory. The second pass optimization step of the LAP

algorithm (once appropriately tuned) identified the splitting event here, and gave

each their own track label.

After tracking, the RelateObjects module combines the two channels by associat-

ing cells to overlapping bacteria in each frame. The next 4 modules take measurements

of object brightness (MeasureObjectIntensity) and size (MeasureObjectSizeShape).

The most important measurements to our HR analysis were the intensity and size of

bacterial objects, as they act as our proxies for bacterial load per cell. This data, and

much more, is output by the ExportToSpreadsheet module which produces a CSV file

to be later parsed for analysis by our Python scripts. The last 7 modules (RescaleIn-

tensity twice, OverlayOutlines twice, DisplayDataOnImages and SaveImages twice)

are simply extra steps to visually examine the segmentation and produce images like

in Fig A.2
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A.2 Mean Field Model Code

The following Python script used the differential equations derived in Section 3.1.4

to integrate the dynamical variables listed in Table 3.1.

importnumpy as np

defdv(v,m,ga,gb,gr,gv,gc,bxmax , rmax , c):

"""

This function, given the current state of the system, the model

parameters and experimentalparameters , will calculate the

incrementalchange in thetime−dependent variables.

Modelparameters:

ga = primaryattachmentrate

gb = ruffleattachmentrate

gr = ruffle formation rate

gv = vacuolar invasion rate

gc = cytosolic invasion rate

bxmax = saturationlimit on invaded bacteria per cell

rmax = saturationlimit on ruffles per cell

Experimental parameters:

m = multiplicity ofinfection (ratio of bacteria to host)

c = confluency (fraction of culture dish area occupied by host cells)

Time−dependent variables:
ha = host cells with attached bacteria

hx = host cells with invaded bacteria

hv = host cells with vacuolar bacteria

hc = host cells with cytosolic bacteria

hr = host cells with ruffles

ba = bacteria attached to a host cell

bv = bacteria that are vacuolar

bc = bacteria that are cytosolic

bx = bacteria that have invaded a host cell

bxmax = maximum bacteria that can invaded a host cell

r = ruffles per host

"""

ha,hx,hv,hc,hr,ba,bv,bc,r=v

h=1−ha

bx=bv+bc
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b = 1− (ba + bx)

if hx> 0.0: bx hx = m∗bx / hx
else: bx hx = 0.0

dha = h∗ga∗b∗m∗c
if ha> 0:

dhx = (1−hx/ha)∗(gc+gv)∗ba∗m
dhv = (1−hv/ha)∗gv∗ba∗m
dhc = (1−hc/ha)∗gc∗ba∗m
dhr = (1−hr/ha)∗gr∗ba∗m

else:

dhx = 0

dhv = 0

dhc = 0

dhr = 0

scale fact = 1− bx hx/bx max

dbc = ba∗gc∗scale fact
dbv = ba∗gv∗scale fact
dba = ga∗b∗c + r∗hr∗gb∗b∗c− (dbc+dbv)

if hr> 0: dr = gr∗(1−r/r max)∗ba∗m/hr
else: dr = 0

dv array = np.array([dha, dhx, dhv, dhc, dhr, dba, dbv, dbc, dr])

return dv array

def rk4(v, dt, m, ga, gb, gr, gv, gc, bx max , r max , c):

"""

Fourth order Runge−Kutta integration.
"""

k1 = dt ∗ dv(v, m, ga, gb, gr, gv, gc, bx max , r max , c)
k2 = dt ∗ dv(v+0.5∗k1, m, ga, gb, gr, gv, gc, bx max , r max , c)
k3 = dt ∗ dv(v+0.5∗k2, m, ga, gb, gr, gv, gc, bx max , r max , c)
k4 = dt ∗ dv(v+k3, m, ga, gb, gr, gv, gc, bx max , r max , c)
return (k1 + 2∗k2 + 2∗k3 + k4) / 6

def integrate(m, ga, gb, gr, gv, gc, bx max , r max , c, dt, tmax):

"""

This function will initialize a host−pathogen system and
integrate in time by step size dt until tmax is reached.

If the given multiplicity of infection (m) is a single value,

then a single integration will be performed, and the time

evolution of the system will be returned.



60

If a list of MOI is given, then an integration for each MOI

will be performed, and only the values at the end of the

integration (at tmax) will be returned.

"""

# Initial conditions

ha = 0.0 # fraction of cells with bacteria attached

hx = 0.0 # fraction of cells infected

hv = 0.0 # fraction of cells infected with vacuolar bacteria

hc = 0.0 # fraction of cells infected with cytosolic bacteria

hr = 0.0 # fraction of cells with ruffles

ba = 0.0 # fraction of bacteria attached

bv = 0.0 # fraction of vacuolar bacteria

bc = 0.0 # fraction of cytosolic bacteria

r = 1.0 # ruffles per ruffled cell

t points = np.arange(0, tmax+dt, dt)

# If the given MOI is a list, integrate for each MOI

if type(m) == list or type(m) == np.ndarray:

v points = np.empty(shape=(len(m), 9))

for i,moi in enumerate(m):

v = np.array([ha, hx, hv, hc, hr, ba, bv, bc, r])

for t in t points:

v += rk4(v, dt, moi, ga, gb, gr, gv, gc, \
bx max , r max , c)

v points[i,:] = v

return v points

# Else the given MOI is a single value, so integrate once

else:

v = np.array([ha, hx, hv, hc, hr, ba, bv, bc, r])

v points = np.empty(shape=(len(t points), len(v)))

for i,t in enumerate(t points):

v points[i,:] = v

v += rk4(v, dt, m, ga, gb, gr, gv, gc, bx max , r max , c)

return v points , t points

To give an example of how this code is used in practice, the following is a simple
script to calculate internalized bacteria per infected cell b̃x versus time at a specific
MOI.

import numpy as np

from mean field import integrate

# First, set the experimental parameters.
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m = 40 # multiplicity of infection

c = 0.5 # percentage confluency

tmax = 60 # incubation time in minutes

dt = 0.01 # time step in minutes

# Second, set the model parameters (rates and limits).

ga = 1e−3
gb = 1e−1
gr = 1e−2
gv = 1e−2
gc = 2.5e−3
bx max = 20

r max = 3

# Compute the integration.

v points , t points = integrate(m, ga, gb, gr, gv, gc, \
bx max , r max , c, dt, tmax)

# The 2d v points array now contains the time evolution

# of the dynamical variables.

# Each column corresponds to a different variable and

# can be unpackaged like so:

ha = v points[:,0]

hx = v points[:,1]

hv = v points[:,2]

hc = v points[:,3]

hr = v points[:,4]

ba = v points[:,5]

bv = v points[:,6]

bc = v points[:,7]

r = v points[:,8]

# Some quantities of interest are not given directly by

# the integration , and must be calculated afterwards.

# Invaded bacteria per infected cell, for instance:

bx = bc + bc

# To avoid dividing by zero, initialize an array

# of zeros, then do appropriate slicing to divide.

bx hx = np.zeros(len(bx))

bx hx[hx>0] = m∗bx[hx>0] / hx[hx>0]

# We now have bacteria per cell (bx hx) versus time

# (t points) and can compare/fit to real data.
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