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Abstract
This dissertation investigates cross-layer designs in spatial division multiplexing (SDM) for
multiuser multiple-input multiple-output (MU-MIMO) transmissions on the uplink. The
MU systems which allow simultaneous transmissions on the downlink offer various improve-
ments, such as an increase in total system throughput, and have already been standardized
in IEEE 802.11ac wireless local area networks (WLANs) and cellular networks. However, the
implementation of MU-MIMO SDM on the uplink is still considered to be an open problem.
The challenges include radio resource management and low complexity decoding designs.
Motivated by these considerations, this dissertation presents four main contributions.

First, this research focuses on the physical layer MU-MIMO issues by proposing an uplink
approach that employs a design with low complexity, while maintaining an acceptable sum
rate performance. This is done by utilizing zero forcing (ZF) cancellation, and by assuming
that channel state information (CSI) is required only at the base station (BS). In addition,
spatial coordination is applied to improve the total system performance by giving medium
access to a limited number of transmitters.

Secondly, two resource management algorithms are developed with the objective of maxi-
mizing the total system sum rate by considering the impact of multiple access noise enhance-
ment on the spatial stream capacity. An additional scheme is then proposed to maximize
the weighted sum capacity of all admitted users, where the weights are chosen based on the
state of user buffers. The proposed resource allocation and scheduling algorithms operate in
a reduced search space for sub-optimum configurations targeting lower overall complexity.

Thirdly, two-layer decoding is proposed in a multi-cell environment for MU-MIMO sys-
tems. The first layer of decoding handles multiple access interference (MAI) by applying
the ZF approach, where this process is executed at the BS level. The second layer utilizes a
diversity combining technique on a selected number of mobile stations (MS), with the aim
of reducing inter-cell interference (ICI).

Finally, an interference-aware joint scheduling algorithm is presented for the multi-cell
MU-MIMO system. This algorithm focuses on selecting users/antennas, and utilizes power
allocation to improve the total system performance. Spatial coordination is executed in a
distributive manner with full independence from the power allocation, in order to reduce the
search time. Moreover, Newton’s method of optimization is included to find the optimum
power level for all transmitting users.

This dissertation advances MU-MIMO system designs for the uplink by contributing to
the development of interference and radio resource management algorithms. The motivation
of this work is to propose a low complexity design that reduces the level of interference while
providing good overall system performance as measured by the total sum rate. The results
presented in this work are applicable to wireless networks such as WLANs that can operate
with a single autonomous access point (AP) as well as coordinated APs that are managed
by centralized controllers.

ix
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Chapter 1

Introduction

Multiple-input multiple-output (MIMO) technology represents a disruptive paradigm

shift in wireless communication systems, enabling high capacity transmissions with

the use of multiple-transmit multiple-receive antennas [1, 2]. New developments in

this area consider multiuser MIMO (MU-MIMO) operations, to allow simultaneous

transmissions between multiple hosts and a base station, where the spatial dimen-

sion is utilized to serve many users in parallel [3, 4, 5]. In particular, IEEE 802.11ac

wireless local area network (WLAN) standardization and long-term evolution (LTE)

cellular systems consider this approach on a downlink from the base station to the

hosts [6, 7], because of the feasible implementation of channel estimation and the

accessibility of channel state information from the base station to any of the hosts.

However, designing integrated medium access control (MAC) and baseband process-

ing for MU-MIMO on the uplink, from users to the base station, is still an open

problem, and is the main focus of this work [8].

Initially, MIMO was deployed only in point-to-point communication between two

terminals, either to provide higher transmission rates by increasing bandwidth effi-

ciency or to improve reliability with space-time coding [9, 10]. In recent years, network

MIMO and cooperative MIMO approaches have emerged, where simultaneous MIMO

1
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transmissions (to and from users) are coordinated to control the level of multiple

access interference (MAI) [1]. The MAI is a result of mutual inter-user interference,

where users share frequency, time and spatial streams, and power in wireless chan-

nels with broadcast characteristics and a limited spectrum [11]. Coordination for the

utilization of radio resources is realized via significant data and channel state informa-

tion (CSI) sharing across cooperating BSs over the backhaul links [12]. Under ideal

conditions, the gains achieved by employing multiple antennas to exploit the spatial

dimension in the downlink and uplink are well recognized, and theoretically similar

strategies could be deployed. However, because of practical constraints such as (i)

insufficient channel knowledge, (ii) asymmetry in the computational capabilities of

user terminals and BSs, (iii) backhaul capacity, and (iv) the constrained level of coor-

dination among users, the signal processing strategies pursued for uplink MU-MIMO

transmissions differ from those developed for downlink MU-MIMO [13].

Scheduled transmissions to and from users distributed in space are generally re-

ferred to as space division multiplexing (SDM). This has been investigated primarily

in the context of single-user (SU) transmissions [1, 11, 13]. The SDM for MU-MIMO

is based on minimum mean square error (MMSE), zero forcing (ZF) or beamform-

ing methods of signal detection, to allow parallel communications in the same time-

frequency plane [1]. The major disadvantage of MMSE is that its performance suffers

from intra-cell interference, whereas the other two methods mitigate the effects of

MAI. The MMSE method can be developed together with a successive interference

canceler (SIC) to reduce the effects of MAI and achieve optimum capacity, however,

this results in a considerable increase in decoding complexity. The ZF and beam-

forming methods differ from one another in terms of the requirement for channel

state information (CSI) availability: The ZF approach requires CSI only at the re-

ceiver end [14, 15], while the beamforming approach requires CSI at both ends [16].

Consequently, this work adopts the ZF approach due to its low complexity and the
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fact that the limited coordination among users in practical systems does not permit

global CSI knowledge for every user.

Infrastructure-based wireless systems with a base station (BS) serving an area

referred to as a cell can operate in a single-cell or multi-cell mode. Depending upon

the level of coordination among the BSs, these deployments are classified either as au-

tonomous (with no coordination) or coordinated multi-cell systems. The performance

of both types of system depends upon resource allocation, i.e., how time, power, fre-

quency, and spatial resources are divided among users [13]. This work characterizes

the problems of resource allocation with ZF detection at the BSs, and develops signal

processing algorithms to solve these problems in the case of autonomous (single-cell)

as well as multi-cell systems. This is accomplished for single carrier transmissions

within the framework of coordinated multipoint transmission/reception (CoMP) [17],

where user interference is managed through the scheduling of transmissions and re-

source allocation in order to enhance overall system performance [11]. The challenge

is to maximize the aggregate system throughput, while maintaining user fairness, for

instance with a comparable bit error rate (BER) performance.

In MU-MIMO SDM, multiple users share spatial channels which can be modeled

as parallel links affected by MAI. From a theoretical point of view, parallel channels in

the spatial, frequency or time domains could be handled in a similar way, however in

practice this is not the case. Considerable research has been done on resource alloca-

tion and scheduling for orthogonal frequency domain multiplexing access (OFDMA)

and single user systems [18, 19, 20, 21]. Scheduling algorithms in OFDMA assign

active MSs a subset of all subcarriers, based on their channel gain conditions [22].

In the case of MU systems where user transmissions are separated in the frequency

domain, the capacity of a subcarrier allocated to a particular user does not depend

upon the choices of other MSs (in terms of their subcarrier gains and power). This is

because the subcarriers are orthogonal, and processing at the receiver does not allow
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inter-carrier interference [23]. In uplink MU-MIMO with ZF decoding, the capacity

of spatial streams allocated to a particular user depends upon the set of active users

and their decoding vectors and joint power control [1, 15]. As a result, spatial coor-

dination is more difficult to solve than OFDMA. Although parallel transmissions in

OFDMA and MU-MIMO differ with regard to noise modeling, nevertheless there are

a number of OFDMA methods that could prove beneficial for the design of algorithms

for MU-MIMO [24, 25, 26].

As wireless networks develop to a multi-cell environment, it is envisioned that

wireless controller (WC) management of access points (APs) for wireless local area

networks (WLANs), as already deployed in cellular networks, will not be limited to

the data link and higher layers, but will also affect the radio front end. In these

systems, the WCs are referred to as WLAN controllers (WLCs) [27] and mobile

switching centers (MSCs). In multi-cell networks, inter-cell interference (ICI) from

devices re-using the same frequency channel is a major factor that affects overall

performance. Initial investigations of MU-MIMO proposed the use of coordinated

multi-point (CoMP) systems to cancel ICI [28, 29]. In CoMP systems, all BSs receive

the same signals from all active transmissions, though with different channel gains.

The signals received are then forwarded to the WC for processing [30]. Therefore, the

whole system depends upon a central unit to perform decoding processes and resource

management, resulting in more robust system performance than that of stand-alone

BSs.

Another ICI coordination solution to address ICI problems is the implementation

of radio resource management, which helps to minimize the effects of ICI and improve

the total system sum rate [13, 11, 31]. This method is important for controlling

interference levels encountered especially by users that are located at the edges of

cells [32, 33]. A few algorithms have already been proposed in this field, including [34,

31, 35, 36, 37]. However, most of these studies propose solutions for multi-cell systems
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using MMSE decoders at the BS, or address OFDMA systems without considering

the effects specific to MU-MIMO with ZF decoding.

The major contributions of this work involve the integration of spatial coordination

and power allocation for MU-MIMO systems, where ZF is utilized to perform the

SDM. To this end, joint scheduling algorithms are developed to mitigate the noise

enhancement and interference caused by the system, in order to maximize the total

system sum rate. Special consideration of decoding complexity is included in the

proposed designs, to offer a system that is applicable to real-time applications.

1.1 Dissertation Objectives, Contributions and Or-

ganization

1.1.1 Objectives

This dissertation proposes interference-aware resource management algorithms for

single-cell and multi-cell networks. The primary aim is to increase the total system

sum rate by allocating system resources among the available MSs. This thesis has

four main objectives.

The first objective is to analyze MAI and noise enhancement when working with

a ZF decoder, and then to implement a low complexity SDM for MU-MIMO to

limit MAI on the uplink. This is achieved by considering two decoding strategies

that are both based on ZF equalizer principles for nulling undesired signals. The two

decoders utilize the ZF method with and without precoding vectors at the MSs, based

on singular value decomposition (SVD). Applying SVD within the system requires

additional processing at the MSs and may be suitable in cases where user terminals

or MSs have strong processing capabilities.
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The second objective involves the design of a scheduling algorithm that is applica-

ble for a single-cell wireless network. The scheme considers channel gain as the main

parameter for making spatial coordination decisions. In addition, noise enhancement,

which is a result of ZF processing, is included in the selection process to improve sys-

tem performance. A load-adaptive algorithm is also integrated with the proposed

algorithm in order to increase system throughput and fairness.

The third objective is to apply the cooperative reception (CR) method to a few

active users in a multi-cell system. Utilizing this method helps to achieve some of

the advantages provided by CoMP, while still keeping system complexity as low as

possible. Transmitted signals that are received cooperatively are subject to fewer

interference effects. In general, system performance as a whole improves as ICI levels

are reduced.

The fourth and final objective is to design a distributed scheduler, where spatial

coordination and power allocation are performed for multi-cell systems. Newton’s

method of optimization is utilized to help find the optimum power allocation and

temporarily disable transmitting antennas that are contributing to deterioration of

the total system performance.

1.1.2 Contributions

Results of the research described in this thesis have been published in the form of

conference papers [38, 39, 40, 41]. In addition, one journal article has been submitted

and another is in preparation [42, 43]. The details of these publications are outlined

below.

Refereed Conference Proceeding Publications

[C-1] A. Alyahya and J. Ilow, "Zero-forcing assisted spatial stream allocation in

uplink multiuser MIMO systems," in 2015 IEEE 28th Canadian Conference on
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Electrical and Computer Engineering (CCECE), 3-6 May 2015, pp.1030-1035.

[C-2] A. Alyahya and J. Ilow, "Spatial stream scheduling in uplink multiuser MIMO

systems with zero-forcing post-processing," in 2015 IEEE 14th Canadian Work-

shop in Information Theory (CWIT), 6-9 Jul 2015, pp.101-105.

[C-3] A. Alyahya and J. Ilow, "Uplink scheduling in multi-cell MU-MIMO systems

with ZF post-processing and diversity combining," in 2015 IEEE 14th Canadian

Workshop in Information Theory (CWIT), 6-9 Jul 2015, pp.83-87.

[C-4] A. Alyahya and J. Ilow, "Short paper: Radio resource and interference man-

agement in uplink multi-cell MU-MIMO systems with ZF post-processing," in

2015 IEEE in Vehicular Technology Conference (VTC Fall), 6-9 Sep 2015.

Papers Submitted to Refereed Journals or in Preparation

[IPJ-1] A. Alyahya and J. Ilow, "Spatial coordination and resource management

for uplink MU-MIMO systems," In Preparation.

[SJ-1] A. Alyahya and J. Ilow, "Multi-cell Coordination of radio resources in MU-

MIMO systems with ZF post-processing," Computer Communications, submit-

ted in July 2016.

The research in each of the papers cited above was initiated and carried out by

the principal author of the papers, who is also the author of this dissertation.

The research contributions of this thesis can be classified into four areas, which

correspond to the four main chapters of the dissertation. The specific papers and the

chapters that relate to them are listed below.

Chapter 2: Spatial Coordination and ZF in Uplink MU-MIMO

A design for a low complexity ZF post-processing uplink MU-MIMO is proposed

and compared with conventional systems. Two methods are illustrated in this
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chapter, a stand-alone ZF post-processing approach and a ZF-SVD method [C-

1] and [IPJ-1].

Chapter 3: Resource Allocation and Noise Enhancement in an Uplink MU-

MIMO Single-Cell System

An interference-aware user selection and resource allocation algorithm is intro-

duced for an uplink MU-MIMO system with a ZF-SVD process. Antenna/spatial

coordination algorithms are proposed with the aim of either increasing the total

system sum rate or improving overall user fairness [C-2] and [IPJ-1].

Chapter 4: Spatial Coordination Algorithm and CR Method in a Double-

Cell Environment

A double-cell MU-MIMO uplink system model is analyzed with the aid of the

ZF stand-alone post-processing approach. A user/antenna selection algorithm

is described where the possibility of cooperative reception (CR) is considered

with the aim of countering the ICI [C-3] and [SJ-1].

Chapter 5: Resource Management for Multi-Cell Networks

Distributed resource management algorithms are proposed for a multi-cell topol-

ogy, where spatial coordination and power allocation are considered. The two

resource allocation algorithms perform independently to provide the system

with lower complexity [C-3], [C-4] and [SJ-1].

1.1.3 Thesis Organization

Below is a brief outline of the organization of the chapters of this dissertation.

Chapter 1

In Section 1.1 the objectives, contributions and organization of the dissertation
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are outlined. The remainder of this chapter reviews the general concepts and el-

ements employed throughout the dissertation. Section 1.2 presents an overview

of the wireless channel model, while Section 1.3 reviews the concepts related to

diversity in wireless communications. The MIMO system model is described in

Section 1.4, and an analysis of its capacity is presented in Section 1.5. Next, a

brief description of the MU-MIMO model is provided in Section 1.6, followed

by an elaboration of SDM in Section 1.7. Finally, the chapter concludes with a

summary in Section 1.8.

Chapter 2

The MU-MIMO model and the ZF decoder are introduced in Section 2.1 and

Section 2.2, respectively. In addition, a preliminary spatial coordination algo-

rithm is implemented in Section 2.3 to highlight the advantages that can be

gained from the system. The simulation results are presented in Section 2.4,

and the chapter concludes with Section 2.5.

Chapter 3

The chapter begins with a system model description in Section 3.1. Power, ca-

pacity and buffer state are analyzed in Section 3.2. Two rate adaptive schedul-

ing algorithms are introduced in Section 3.3, with the simulation results for

their performance. In addition, a hybrid (rate- and load-adaptive) algorithm

is described in Section 3.4, which also presents the simulation results. Finally,

Section 3.5 concludes the chapter.

Chapter 4

In Section 4.1, a double-cell system model for the MU-MIMO uplink system is

presented. A two-layer decoder to perform MU detection and CR is described

in Section 4.2. In addition, a successive interference canceler (SIC) is also

utilized to improve the total system performance. A low-complexity scheduling
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algorithm is presented in Section 4.3, and the simulation results are provided

in Section 4.4. Section 4.5 summarizes the chapter.

Chapter 5

In Section 5.1 a multi-cell system model is presented, and a generalized total

system capacity formula is introduced in Section 5.2. Newton’s method for

optimization of the cost function in hand is derived in Section 5.3, which also

includes simulation results for finding the best parameters for the model. A

resource allocation algorithm is proposed in Section 5.4, while the simulation

results are presented in Section 5.5. Section 5.6 summarizes the chapter.

Chapter 6

The concluding chapter summarizes this dissertation and outlines its contribu-

tions. In addition, suggestions for future work are presented.

1.2 Modeling Wireless Communication Channels

This dissertation contributes to the theoretical development of signal processing al-

gorithms for MU-MIMO systems and the results are verified through simulations.

This is the first step, which precedes practical implementation and is an acceptable

methodology in the field of communication system design, as not all physical layer

wireless communication proposals go into the implementation stage. Sound modeling

of wireless channels plays an essential role in analyzing and studying large wireless

communication systems. In essence, transmitted signals are subject to detrimental

effects such as noise and signal attenuation. This section reviews some of the wireless

communication channel models used in this dissertation.
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1.2.1 Additive White Gaussian Noise

Additive white Gaussian noise (AWGN) is a channel model that includes numerous ef-

fects of wideband noise omnipresent in the RF front end of wireless receivers [44]. Ac-

cording to the central limit theorem, the summation of many random variables (RVs)

results in a Gaussian distribution which has a probability density function (pdf):

pdf(n) =
1√
2πσ2

0

exp
−(n−μ)2

2σ2
0 (1.1)

with a zero mean (μ = 0) and a noise variance (σ2
0) that represents the power spectral

density (N0

2
[W/Hz]). This dissertation deals with received signals after downconvert-

ing and matched filtering, and noise is represented as a RV rather than as a stochastic

process.

1.2.2 Rayleigh Fading Channel

When a signal is transmitted in a radio channel, it arrives at the receiver via dif-

ferent paths due to atmospheric or object refractions and reflections. Therefore,

various copies of the original message are combined at the receiver at the output

of matched filtering, but with different attenuation effects and time delays. This

condition is recognized as fading, where the replicas of the original signal from all

multipaths when combined represent the multiplicative effect of the received signal.

The most common type of fading is flat, slow fading where the multiplicative fac-

tor is given by a random variable denoted as h. Here h is a complex variable with

real and imaginary components considered as Gaussian RVs, being independently and

identically distributed (i.i.d.). Therefore, the random gain of the fading channel is:

|h| = √�(h)2 + �(h)2, where �(h) and �(h) denote the real and imaginary values of

h, respectively, where h is a complex normal RV: h ∼ CN (0, σ2
h). Therefore |h| has a
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pdf of

pdf(|h|) = 2|h|
2σ2

h

exp
|h|2
2σ2

h (1.2)

where σ2
h is a power scaling parameter. Hence, |h| has a Rayleigh distribution. This

applies only when there is no line-of-sight (LOS) path and (1.2) represents the most

adverse type of fading.

1.2.3 Large-Scale Attenuation

The signal power level decays when the signal propagate through a channel over

distance. This phenomenon is known as signal attenuation or deterministic path loss.

To capture this effect, different mathematical models are proposed for different radio

propagation conditions [45]. This work adopts a generalized formula which links the

attenuation to the traveled distance d > 1 as follows:

pr(d) =
pt
dα

(1.3)

where pr(d) and pt represent the power of the received and transmitted signals, re-

spectively. The α parameter corresponds to the propagation condition; normally this

value ranges from 2 in free-space conditions to 6 in a dense urban area.

1.3 Diversity Schemes

As transmitted signals travel through a channel, they encounter various obstacles

which cause them to scatter and to arrive at the receiver with different delays, re-

sulting in multipath fading. Multipath fading significantly degrades wireless system

performance in terms of BERs. This problem is usually solved by increasing the trans-

mission power. However, increasing the transmission power is not always a practical

solution, particularly for mobile applications with limited energy resources. Diversity

techniques are therefore used to restore the data by creating multiple replicas of the
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original signal. Diversity is exploited in either the time, frequency or space domains.

It is also possible to work with combinations of diversity types, referred to as hy-

brid models. For example, the Alamouti scheme, which was developed to increase

the reliability of MIMO transceivers, uses both time and spatial diversity [46]. The

present research focuses primarily on spatial diversity, by exploiting available anten-

nas. Thus, bandwidth expansion is not imposed, as required by frequency diversity,

nor are extra time slots needed, as is the case with time diversity [9, 10].

1.4 Multi-Input Multi-Output Systems

In Figure 1.1, three basic spatial diversity models are presented. First the single-

input multi-output (SIMO) model is shown, where a single antenna is located at the

transmitter and multiple antennas are used at the receiver. Next, the multi-input

single-output (MISO) system is illustrated, where there are multiple antennas at the

transmitter and only one antenna at the receiver. The last model shows the multi-

output multi-input (MIMO) system, where both the transmitter and the receiver have

multiple antennas. All of these models are considered as single-user (SU) models, with

one transmitter occupying all spatial dimensions created between the transmitter and

the receiver in this peer-to-peer type of communication.

A more detailed representation of the SU-MIMO model is shown in Figure 1.2,

where M and R represent the total number of antennas for the transmitter and the

receiver, respectively. For the case where channel state information (CSI) is not

available at the transmitter, the total transmission power is divided equally among

Tx Tx Rx

MIMOSIMO

RxTx

MISO

Rx

Figure 1.1: Antenna configurations for different spatial diversity models.
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all the antennas (P/M), where P is the total transmitted power. Two types of noise

that affect signal transmission are considered. The first is additive Gaussian noise,

represented as the vector n, with size R× 1. The nr element of the matrix n, where

r = 1, .., R, represents the AWGN that affects the rth antenna of the receiver. The

standard assumption here is that n is an independently identically distributed (i.i.d)

Gaussian random column vector. Secondly, Rayleigh multipath fading is represented

as the H channel gain matrix with size R ×M . The coefficient hrm in H represents

the fading coefficient (random channel gain) occurring from the mth antenna of the

transmitter to the rth antenna of the receiver, where r = 1, · · · , R and m = 1, · · · ,M .

Finally, the vector of the received signal is represented in matrix notation as:

y = Hs+ n (1.4)

and in an expanded version as:⎡⎢⎢⎢⎣
y1
...

yR

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h11 · · · h1M

... . . . ...

hR1 · · · hRM

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
s1
...

sM

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
n1

...

nR

⎤⎥⎥⎥⎦ (1.5)

where the s and y vectors represent the signals sent and received, respectively.

RxTx y

1

s
2

M R

2

1

n1

nR

h11

hRM

n2h22

Figure 1.2: The basic MIMO model.
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1.5 MIMO Capacity

System capacity is defined as the maximum transmission rate in bits per second which

is accommodated in one hertz of bandwidth with an acceptable BER. For a SISO

model with an additive white Gaussian channel, the capacity is given by Shannon’s

channel capacity formula:

C = log2 (1 + SNR) [bps/Hz] (1.6)

To extend this formula in order to calculate the total channel capacity for the MIMO

system, (1.4) is considered. The channel matrix can be decomposed by using singular

value decomposition (SVD):

H = UΛV H (1.7)

where U and V are both unitary matrices, i.e., U · UH = I and V · V H = I. The (H)

notation refers to the Hermitian operator, and I is the identity matrix. Λ is a diagonal

matrix which holds the singular values of H, i.e., the square roots of the eigenvalues

of HHH. The consideration of S = V s, ŷ = UHy and n̂ = UHn, and substitution of

(1.7) into (1.4) yields:

ŷ = ΛS+ n̂ (1.8)

where s represents the pre-processed (precoded) version at the transmitter of the

original data S to be sent, and ŷ represents the post-processed version of the re-

ceived signal vector y. The pre- and post-processing depend upon knowledge of the

channel matrix H, or knowledge of the V and U matrices at the transmitter and

the receiver, respectively. The matrix V (pre-processing matrix) is employed as a

beamforming matrix that adjust the elements of transmitted signal in amplitude and

phase. From (1.8), the MIMO model can be represented as parallel Gaussian chan-

nels, as shown in Figure 1.3, where X available channels correspond to the size of the

Λ matrix. The number of available channels is given by X = min(M,R), and λx is
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the singular value associated with the xth parallel (“logical” or “virtual”) path, that

characterizes the equivalent multipath fading factor.

λX

sX

nX

yX

s1

n2

y2

λ1

s2

λ2

n1

y1

Figure 1.3: SVD-equivalent MIMO model.

The total capacity for MIMO systems is therefore given by the sum of the ca-

pacities of individual parallel channels in the spatial domain. From (1.6), the total

MIMO link capacity can be written as:

C =
X∑

x=1

log2

(
1 +

λ2
xpx
2nx

)
(1.9)

where px is the total energy invested in the xth channel.

Two cases related to the availability of CSI are represented in this discussion.

The first case includes access to CSI at both sides of the transceiver as discussed

above, i.e., at the transmitter and at the receiver. In this case the transmitter is

able to distribute the power bias among the transmission antennas to take advantage

of less faded channels, in order to achieve maximum capacity by using water-filling

algorithms [23].

However, in some applications it is difficult to obtain the CSI at the transmitter

side. In this case, with different signal processing in the MIMO transceiver, the total
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available power P is equally distributed among all the M antennas. Hence, (1.9) is

written as:

C =
X∑

x=1

log2

(
1 +

λ2
xEs

2Mnx

)
(1.10)

1.6 Multiuser MIMO Model

In multiuser MIMO (MU-MIMO) systems with BSs, a set of terminals equipped

with multiple antennas transmit to (or receive from) the BSs at the same time and

frequency, and their transmissions are separated using some kind of spatial signature.

This contrasts with single-user MIMO (SU-MIMO), where a single multi-antenna

transmitter communicates with a single multi-antenna receiver in a given time slot.

The MU-MIMO system is a type of one-to-many and many-to-one model, whereas

the SU-MIMO system is a one-to-one model [47].

Figure 1.4 shows an example of a MU-MIMO model with one base station (BS)

and four mobile stations (MSs). Every MS is equipped with at least one antenna,

Figure 1.4: MU-MIMO model with 4 mobile stations.

and the BS always has multiple antennas for receiving and transmitting. The MU-

MIMO model offers a number of multiple channel streams that are equal to the
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number of antennas at the BS. The MSs compete among themselves in order to

gain access to the spatial streams, and each MS may obtain access to a number of

spatial streams equal to but not exceeding the number of its antennas. Thus, the

more channel streams provided by the BS, the more MSs can be accommodated

for parallel transmissions, where different MSs communicate with the BS using the

same spectrum at the same time. MU-MIMO systems offer flexibility in assigning

spatial channels to MSs with advantageous channel conditions, and in this regard

are much more beneficial than SU-MIMO systems. This flexibility is achieved by

taking advantage of the distributed communications and channel diversity that occur

with MU-MIMO, where multiple MSs communicate with a single device. Specifically,

in MU-MIMO systems as compared to SU-MIMO systems, when wireless channel

conditions vary, the total system capacity is not dramatically degraded when one of

the MSs experiences poor channel conditions, because some of its spatial streams can

be reallocated to other users [4].

The physical layer of the MU-MIMO model is characterized as one of two types,

according to the direction of transmissions: The downlink and the uplink. The down-

link refers to sending information from the BS to the MSs. Because the BS is the

only node that is using the channel, downlink transmissions are usually considered

to be easier to implement in terms of multiple access control. The uplink refers to

information flow in the opposite direction, involving transmission from the MSs to the

BS. The design of communication strategies is more complex for the uplink than it is

for the downlink, because the MSs do not have the advantage of having the same CSI,

and there may be a need to implement a CSI sharing protocol in order to organize

the access of MSs to the shared channel. Also, the MSs do not have access to the

data transmitted from other MSs to the BS. In contrast, for a downlink transmission,

the BS has access to data transmitted to all MSs, and usually also has access to the

CSI for the individual links to all MSs.
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1.7 Space-Division Multiplexing

In the MU-MIMO model for a downlink, parallel communications using spatial streams

between the BS and MSs require specialized processing of the transmitted data. The

processing overhead is biased toward the BS, due to the higher computational pro-

cessing capabilities of the BS, and because the BS is able to obtain all of the CSI

for the whole system (the global CSI). However, some processing approaches require

processing to be executed at both the BS and MSs. This is usually considered to

be a complex design, because the MSs then require full knowledge of the MU-MIMO

system CSI, or at least a feedback channel from the BS. The ZF technique, which

is a low-complexity method that permits parallel communications in the MU-MIMO

setting, is summarized next, as this approach is an important aspect in this disserta-

tion.

The ZF method was originally introduced in the context of a linear equaliza-

tion algorithm which cancels inter-symbol interference (ISI) by inverting the channel

frequency response. A modified version of the ZF equalizer is used for ISI cancella-

tion in the SU-MIMO model, and for removing the effects of MAI in the MU-MIMO

model [48]. Most research investigations consider this approach for the downlink flow,

with processing overhead added only at the BS [14].

Figure 1.5 illustrates the general signal processing model for downlink MU-MIMO

in single-cell systems that take advantage of the ZF method. As shown in the figure,

R antennas are available at the BS, and Mk antennas are available for the kth user,

where R > 1, Mk ≥ 1 and k ∈ {1, 2, . . . , K}. Encoding (signal pre-preprocessing) is

applied only at the BS, hence the MSs do not require any CSI to decode messages.

There are K signals, sk, to be transmitted to K MSs. Before being sent, the signals are

multiplied by their designated encoding matrices Tk implying liner signal processing.

Due to the broadcast characteristics of the wireless channel, the signal received at
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user k is:

yk = Hk

(
K∑
i=1

Tisi

)
+ nk (1.11)

where Hk and nk are the channel gain matrix between the BS and the kth MS and the

Gaussian noise, respectively. Although user k is interested only in its own transmitted

signal, represented by the term HkTksk, a summation of all signals multiplied by their

corresponding encoding matrices is received. Hence, at the BS, from the perspective

of user k, the encoding matrices Ti, i 	= k and i ∈ {1, · · · , K} associated with the

other K − 1 users should be chosen such that the impact of undesired signals si is

nulled, i.e., Hk ·Ti · si = 0 for a fixed k and i 	= k and i ∈ {1, · · · , K}. When these

requirements are combined for all users, the encoding matrices Tk at the BS should

be selected so that [14]:

Tk = arg1<i<K,i �=k (HiTk = 0) (1.12)

subject to power constraints on the encoded signal. In (1.12), Tk does not depend

upon sk as in the earlier discussion, because it is considered as a random vector

ŝ2

s1

s2

sK

R

M1

M2

MK

ŝ1

ŝK

Figure 1.5: ZF approach for downlink flow.
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representing user data from a finite alphabet set. On the other hand, Hi is assumed

to be known from the channel estimation process: Channel gain matrices Hi are

varying, but with the assumption of slow fading they are assumed to be fixed over

the block of transmitted data. From linear algebra, encoding matrices Tk can be

solved in (1.12), with the condition that R >
∑K

i=1,i �=k Mi. Hence, with this nulling

or ZF approach, every MS would receive only the information intended for it.

Although there are some published works which use a ZF analytical approach

similar to that proposed in [49] for the uplink flow, their methods assume additional

processing overhead at the MSs and BS, and they result in considerably more complex

designs than those pursued in this dissertation.

Another SDM technique for MU-MIMO is the beamforming approach. This tech-

nique is based on applying the beam-space beamforming model, where the transmitted

signal is combined with orthogonal parameters [50]. The design of the orthogonal pa-

rameters is usually similar to code division multiple access, as described in [51]. Most

publications consider this strategy for the uplink data flow [16], although it could be

generalized for full duplex communication, where encoding and decoding are required

at both the BS and the MSs.

1.8 Summary

This chapter has presented an overview of the research area considered in this dis-

sertation, and has outlined the objectives, contributions, and organization of the

dissertation. In addition, a review of the relevant concepts used throughout this dis-

sertation is included, with the main topics: Wireless channel modeling, MIMO system

capacity, MU-MIMO schemes, and SDM with ZF processing on the downlink.



Chapter 2

Spatial Coordination and ZF in

Uplink MU-MIMO

Multiple access systems with multiple antennas allow several users to communicate

simultaneously in the same frequency band with an access point (AP) or a base

station (BS), by spatially multiplexing several data streams onto the MU-MIMO

channel [1]. In these systems, the objective for MU-MIMO decoding is to resolve

mixed signals from different users in the spatial domain and thus decompose a MU-

MIMO channel into multiple parallel SU-MIMO channels.

This chapter analyzes two MU linear decoders based on the ZF approach for

the uplink connection. At a common BS, ZF processing performs the spatial de-

multiplexing of user signals, with the low computational complexity of the developed

algorithms. Moreover, global CSI is required only at the BS, and there is no need to

distribute the global CSI to MSs. In addition, an antenna-based spatial coordination

algorithm is developed with the aim of improving the overall system performance, by

reducing the noise enhancement effects that result from deploying ZF decoders.

The chapter is structured as follows. Section 2.1 first presents the underlying

22
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system model. The two MU-MIMO uplink schemes, one based exclusively on ZF post-

processing at the AP and the other being an improvement incorporating SVD pre-

processing at the hosts, are introduced in Section 2.2. The antenna/user scheduling

algorithm is proposed in Section 2.3, while the performance analysis and simulation

results are presented in Section 2.4. Finally, Section 2.5 summarizes the chapter.

2.1 ZF System Model for MU-MIMO

Figure 2.1 illustrates the general model for the uplink transmissions in a single-cell

MU-MIMO system, where K potentially active MSs send data to a common BS. The

kth MS is equipped with Mk omnidirectional transmitting antennas, while the BS

has R omnidirectional receiving antennas. Simultaneously, in one time slot, each MS

propagates its own signal (sk) toward the BS, where sk is the Mk × 1 column vector

representing the kth user data at the baseband equivalent.

HK

MSK

BS

MS1

s2

sK

ŝ1

ŝK

T1

T2

TK

1

1

1

M2

2

R

n2

n1

s1

ŝ2

MK

M1

nRMS2

1

H1

H2

Figure 2.1: The ZF uplink MU-MIMO system model.

When the signals are transmitted over a common broadcast wireless medium, it is

assumed that they are affected by flat fading. The channel gain (coefficients) matrix
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of the MIMO channel between user k and the BS is denoted by Hk, representing a

R×Mk matrix. The (r,m)th element in Hk represents a complex channel gain from

the mth antenna of the kth MS to the rth antenna of the BS. Assuming Rayleigh

fading, all of the elements in Hk (k ∈ 1, 2, · · · , K) are i.i.d. zero-mean complex

Gaussian RVs with a unit variance (Hk(r,m) ∼ CN (0, 1)).

The signal received at the BS through over-the-air signal summation is a combi-

nation of all transmitted signals. It is then decoded/processed by the BS to retrieve

all of the users’ information. These operations at the BS receiver are referred to as

post-processing reception. In linear processing, the decoding matrix Tk is deployed

at the BS to recover the transmitted data from user k, where Tk is a Mk ×R matrix.

Here the kth user’s decoded data can be represented as:

ŝk = Tk

(
K∑
i=1

Hisi + n

)
(2.1)

where n is a R× 1 column vector representing the AWGN with the nr – rth element

of vector n – being complex Gaussian noise which affects the rth receiving antenna

of the base station, as shown in Figure 2.1.

The post-processing with Tk at the BS on the uplink in (2.1) and the pre-

processing with Tk at the BS on the downlink in (1.11) have a common interpretation

of canceling other users’ interference. However, the major difference is that in (2.1)

for uplink transmissions, the post-processing with Tk modifies (enhances) the original

AWGN noise n from the RF front end at the BS. This observation is a cornerstone

for many new results in this thesis.

2.2 ZF Post-Processing in Uplink MU-MIMO

The primary aim of this section is to present and analyze the effects of signal process-

ing at the BS. The objective of this decoding process is to convert the MU-MIMO
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model presented in Section 2.1 into a set of conventional single-user (SU)-MIMO

systems from the perspective of the MSs. This is to be accomplished with low-

complexity linear decoding for all K users. This decoding, as represented by matrices

T1,T2, . . . ,TK , operates as a MU interference canceler. In addition, it must be en-

sured that the decoding matrices, Tk, retrieve the original data sent from MS k with

acceptable reliability. To this end, two approaches are investigated: The first is based

on implementing only a zero forcing (ZF) technique, to retrieve the original data at

the BS only; and the second approach focuses on designing the ZF technique at the

BS so as to incorporate the advantages of the singular value decomposition (SVD)

method at the MSs.

2.2.1 The ZF Approach

In the ZF approach, the decoding matrix for user k, Tk, is calculated so that it

satisfies the following matrix relation:

Tk

(
K∑

i=1,i �=k

Hisi

)
= 0 (2.2)

where Tk should not be the zero matrix solution, and Tk should be such that (2.2)

holds for any possible data si, which are essentially RV vectors from a finite set rep-

resenting the modulated symbols. To exclude the impact of si in (2.2), the condition

is enforced that TkHi = 0 where i ∈ {1, 2, · · · , k − 1, k + 1, · · ·n} (in the present

instance the size of the zero matrix is Mk ×Mi). The existence of a viable solution

for Tk (k ∈ 1, · · · , K) is verified later. In addition, the decoding matrix should also

consider the retrieval of the original data without scaling. Hence,

TkHk = I (2.3)
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where I is the identity matrix (in this case, with size Mk×Mk). From (2.2) and (2.3),

it can be seen that Tk should satisfy:

Tk = argTk �=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TkH1 = 0
...

TkHk−1 = 0

TkHk = I

TkHk+1 = 0
...

TkHK = 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)

In this dissertation, it is assumed that at the BS accurate information is available

regarding the channel gain matrices Hk (k ∈ 1, · · · , K), also referred to as global

CSI.

The technique employed in this work for deriving the system of matrix equations

constraining the decoding/post-processing matrices Tk may be viewed as an approach

that is complementary to deriving the system of matrix equations constraining the

pre-coding matrices in the uplink MU-MIMO scenario originally proposed in [14].

However, a careful examination of the constraints presented in relation (1) in [14] and

the constraints indicated in (2.2) should show a clear differentiation between these

two approaches which actually result in very similar final solutions for Tk matrices.

From (2.4), Tk can be found, as an algebraic solution to:

Tk

[
H1 . . . Hk−1 Hk Hk+1 . . . HK

]
= Y (2.5)

where matrix Y is designed to hold the values of 1(s) from a diagonal of the identity

matrix (2.3), starting from row
∑k−1

i=1 Mi and column
∑k

i=1 Mi, with zero values every-

where else. It should be noted here that a non-zero solution for Tk (k ∈ {1, 2, · · · , K})
in (2.5) can be found for all Tk(s) only if

R ≥
K∑
k=1

Mk (2.6)
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From (2.1) and the constraints in (2.5), it can be seen that the recovered data for

the kth user is:

ŝk = sk +Tkn (2.7)

where Tkn represents the enhanced noise (through matrix Tk) that resulted from

MU post-processing at the BS. This noise is dependent only on the channel matrices,

and is not affected by the transmitted power utilized at the MSs.

2.2.2 Integrated ZF and SVD Approaches

The adoption of SVD pre-processing at the MSs to aid in MU-MIMO detection serves

the purpose of reducing the impact of AWGN noise enhancement as shown in (2.7)

when deploying ZF alone, and takes advantage of the known local channel gain ma-

trix Hk at the kth MS. With this integrated ZF-SVD approach, it is possible to

achieve additional performance gains for the MU-MIMO, as already demonstrated

for downlink transmissions [14, 15]. The SVD permits the fading channel matrix to

be represented as Hk = UkΛkV
H
k , where the (·)H operator denotes the Hermitian

transpose and Λk is a diagonal matrix that always holds the positive singular values.

Consequently, (2.1) can be rewritten as:

ŝk = Tk

(
K∑
i=1

UiΛiV
H
i Si + n

)
(2.8)

The original data sk sent from the kth user are adjusted via a linear transform Vk,

so that the transmitted data are Sk = Vksk. This additional local pre-processing

procedure at the user side requires the MS to have access to its channel gain matrix

relative to the BS (Hk, known as the local CSI) and to calculate the SVD. Access to

Hk can be accomplished via the reverse channel from the BS to the MS or, with the

assumption of channel reciprocity, it can be estimated by using the transmission of

pilot signals. The latter approach is similar to the procedure for SU-MIMO systems
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where the uplink and downlink channels are assumed to be the same and a data

training is performed for local CSI estimation. On the other hand, the BS needs to

acquire the complete CSI (Hk for any k ∈ {1, · · · , K}), so as to be able to cancel all

of the MU interference and to recover the data for all users.

From equivalent relations as in (2.2) leading to (2.3), with Hi now replaced by

UiΛi and si replaced by Si, at the receiver, to remove the MAI, first the initial post-

processing matrices Gk (equivalent to Tk in the ZF-only approach) can be found such

that:

Gk = null

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1Λ1

...

Uk−1Λk−1

Uk+1Λk+1

...

UKΛK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.9)

where null(X) is used to derive the kernel or null space of matrix X, and where

(2.6) should be met so as to find a non-zero solution for Gk (k ∈ {1, 2, · · · , K}).
In addition, in order to retrieve the original information, the BS needs to perform

additional processing for the kth MS, because the post-processed signal is now a

transformed version of the original vector sk:

ζk = GkUk (2.10)

where ζk is a matrix of size Mk ×R. Hence, there is no left inverse for ζk as Mk < R,

and, as a consequence, there is no straightforward solution to this problem. Therefore,

a matrix ζ̂k is created that contains the first Mk ×Mk values found in ζk. From this

the de-mixing matrix Ak for the original data is derived as:

Ak = Inv(ζ̂k) (2.11)
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where Inv(X) is the pseudo-inverse of X. Hence, from (2.9) and (2.11) the decoding

matrix for user k can be calculated as:

Tk = AkGk (2.12)

The columns that are not included in ζ̂ are not relevant, because they are multiplied

by zeros from Λk. As a result, (2.8) can be rewritten as:

ŝk = Λksk +AkGkn (2.13)

where the enhanced noise (AkGkn) is similar to that described in the previous section,

as it depends only on the channel matrices. Henceforth, all active MSs could transmit

at their maximum transmission power without affecting each other’s performance.

2.3 Antenna Selection Algorithm

A significant drawback evident in the system model presented above is that noise

is modified (and potentially amplified) during the decoding procedure, which could

degrade the signal-to-noise ratio (SNR) used when determining the BER for individual

users after spatial stream decoupling. For this reason, a rate-adaptive algorithm and

spatial coordination are proposed here to take advantage of the antennas associated

with channel gains, thus resulting in lower BERs and contributing less to MU noise

enhancement in the ZF-type algorithms at the BS receiver.

The user/antenna admission decision is made with the aid of a central controller

unit that should first acquire the full CSI of the whole MU-MIMO system, which is

usually available at the BS. The system model is now extended to K̈ available users

where the kth user (k ∈ 1, 2, · · · , K̈) has M̈k antennas. The scheduler has to limit the

number of active MSs to K, and must meet the condition in (2.6) in order to control

the number of enabled (transmitting) antennas. In general, the scheduling is done at
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the BS, where the central unit can select any of the
(∑K̈

i=1 M̈i

R

)
available combinations

of transmit antennas (
(
n
k

)
represents the binomial coefficient). Selected antennas that

are associated with one or different users are allowed to transmit in a specific time

slot, while the others are temporary disabled. There are two approaches for selecting

the best combination of antennas to maximize the capacity on the parallel channels

as in (1.9). One is based on reducing the effects of noise enhancement, whereas

the other aims at increasing the effective signal gain after post-processing so as to

overcome noise.

The first approach, which considers reducing the noise, is more appropriate for

deployment with the ZF-only decoding method, because in this case the decoding

matrix normalizes the effective gain after processing, as in (2.3). In light of (2.7),

where Tk controls the noise variance after post-processing, the decoding matrix (Tk)

average gain values should be as low as possible, where Tk is the pseudo-inverse of

Hk as discussed in (2.3). In general, the greater the fading channel gains, the lower

the decoding matrix magnitude values. This in turn reduces the noise enhancement

effects.

Table 2.1 presents the proposed algorithm to reduce MU noise enhancement, where

the impact of all antennas is analyzed separately as a function of hkm, where m denotes

the mth antenna for user k; i.e., hkm is described as the mth column of Hk. Hence,

the channel gain per path is calculated and averaged over all R available spatial

streams/paths. Finally, the antennas with the highest average path gain are selected

for transmissions. The reduced complexity of the proposed algorithm is due to the

fact that after ranking the channel gains, the algorithm selects for transmission only

antennas with the highest gains, rather than processing all possible combinations of

antennas.

When ZF is adopted in combination with SVD, the model takes advantage of

added gains from the positive singular values in Λk resulting from the SVD. As in
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Table 2.1: A rate-adaptive algorithm for the ZF approach.
Input
R: number of antennas for the BS
M̈k: number of antennas per MS
K̈: number of available MSs
Hk: the channel matrix between the MSs and the BS
Algorithm
Begin
For k=1:K̈
For m=1:M̈k

Calculate: the average channel path gain for hkm

Store: the value in AvgGain(k,m)
end

end
Select: the maximum R value from AvgGain

that corresponds to a specific user’s antenna

the case of the ZF-only algorithm, a simplified algorithm is proposed in Table 2.2 to

calculate the available spatial stream gain per antenna. The algorithm then finds the

R antennas that are associated with the greatest added gain. This is done with the

objective of increasing overall system capacity.

2.4 Simulation Results

In this section, the results of computer simulations are presented in order to analyze

and investigate the performance of the proposed MU-MIMO ZF decoding strate-

gies. The two approaches implemented are the stand-alone ZF approach, and the ZF

approach integrated with SVD. These approaches are identified below as ZF and ZF-

SVD, respectively. In the simulations, binary phase shift keying (BPSK) is adopted

with the flat fading MIMO channels corrupted by omnipresent complex AWGN at

the BS receive antennas. A single BS with four antennas is always used, and K̈ users

are always available in the cell covered by this BS. Every user has M̈ antennas that
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Table 2.2: A rate-adaptive algorithm for the ZF approach with SVD.
Input
R: number of antennas for the BS
M̈k: number of antennas per MS
K̈: number of available MSs
Hk: the channel matrix between the MSs and the BS
Algorithm
Begin
For k=1:K̈
For i=m:M̈k

Calculate: the Euclidean norm for Hkm

Store: the value in ChannelGain(k,m)
end

end
Select: the maximum R value from ChannelGain

that corresponds to a specific user’s antenna
end

could be activated. The active configuration of MS antennas is usually written as (4,

[M̈1,M̈2,. . . ,M̈K ]), where 4 represents the number of antennas at the BS. Moreover, a

R×M SU-MIMO system with a maximum likelihood decoder with and without SVD

is also implemented as a benchmark for comparisons, and is represented as (R,M).

The two approaches were tested in simulations in terms of their performance as mea-

sured through the BER and system throughput, as a function of the SNR per receive

antenna. System throughput is defined in this section as the number of correctly

received bits at the BS per time slot from all active users considering that all trans-

missions are BPSK. This throughput could be considered as the measure for the total

system sum rate though the latter one is going to be evaluated in other chapters using

semi-analytical results based on (1.9) or (1.10).

Figure 2.2 provides the initial results for the BER as a function of the SNR, where

the simulated strategies do not consider the proposed spatial coordination method

and there are up to four (4) available MSs. Thus, the data streams are divided evenly
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among the MSs, even if some users are experiencing a high level of distortion. The two

MU-MIMO systems under consideration are a model with four MSs (K̈ = K = 4),

where every station is equipped with a single antenna (M̈ = M = 1), and a model

with two MSs (K̈ = K = 2), with two antennas per MS (M̈ = M = 2). Moreover, a

4 × 4 SU-MIMO system is implemented that utilizes the SVD. A comparison of the

resulting curves shows that at a low SNR the 4× 4 SU-MIMO systems exhibit better

results. This is due to the fact that Gaussian noise at low SNRs can overwhelm the

received signals when the data are decoded at the BS after post-processing. However,

for SNR values of 15 dB or above, the MU-MIMO systems achieve BER values that

are comparable to those of SU-MIMO systems.
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Figure 2.2: A comparison of SU-MIMO and MU-MIMO system BERs.

Figure 2.3 shows the BER as a function of the SNR for the enhanced signal pro-

cessing algorithms proposed in this chapter. From five available MSs (K̈ = 5), up to

four "best" users (K ≤ 4) with their corresponding antennas are selected for transmis-

sions, to take advantage of user diversity. The two MU-MIMO systems implemented
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use the ZF approach with and without SVD, based on rate adaptation. Both models

consider five users, and every MS is equipped with four antennas (M̈ = 4). Be-

cause the total number of MS antennas is greater than the number of BS antennas, a

scheduling algorithm is applied here. Since users with the best channel conditions are

to be selected, for a fair comparison, two SU-MIMO systems are adjusted, with five

users from which to select. The results show that both of the systems investigated

exhibit better BER values throughout the whole simulation, with savings equal to

1 dB at a BER of 10−3.
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Figure 2.3: Comparison of BERs for a SU-MIMO system and a MU-MIMO system
with spatial allocation.

The proposed ZF and ZF-SVD schemes were tested further by using Monte-Carlo

simulations for the averaged system throughput as a function of SNR by averaging

the results over random realization of channel gain matrices. This was compared

with the throughput of the SU-MIMO approach. The results of these simulations
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are shown in Figure 2.4. The models used are the same as those described for the

previous test setups. It was found that the SU-MIMO systems achieve a better data

rate at a low SNR, however with an increasing SNR the system throughput levels off

at 3.7 bits/transmission. In contrast, the MU-MIMO systems with ZF alone exhibit

low data rates at a low SNR, and with an increasing SNR the data rate increases

to achieve the maximum possible value of 4 bits/transmission. It should be noted

that the ZF-SVD approach represents the optimal solution, with the best competitive

results at a low and high SNR.

Moreover, when ZF alone is compared with ZF-SVD at a low BER, it can be

seen in Figures 2.3 and 2.4 that ZF-SVD achieves better results. This is due to the

spatial gain obtained when using the SVD that increases the post-processed signal

energy; this has a higher impact when transmitting with low power. From a statistical
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Figure 2.4: Comparison of system throughput for a SU-MIMO system and a MU-
MIMO system with spatial allocation.
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characterization of the antenna selection process for the two proposed algorithms, it

was found that although they resulted in different selection combinations, this did

not affect the system performance. Hence, it is concluded that the first algorithm is

preferable due to its low complexity for calculating channel gains, as it can be applied

to both system models.

In summary, Figure 2.2 shows that results for the multi-user approach are similar

to those for the single-user approach, but with the advantage of allowing simultaneous

user transmissions, i.e., with better fairness regarding MIMO channel access and no

transmission delays. Furthermore, with the application of spatial coordination, the

MU model achieved improved BER performance in comparison to the SU systems.

This is also confirmed by the results of data rate tests shown in Figure 2.4. In this

chapter, our investigation were focused on a small number of available MSs (M̈ = 5),

and we increase this parameter in the following chapters.

2.5 Summary

This chapter introduced an uplink ZF post-processing approach for MU-MIMO sys-

tems. Through decoupling the user streams at the BS, this technique could be adapted

to allow simultaneous SU-MIMO transmissions of any kind, not necessarily limited to

BPSK (provided that limitations on the number of antennas are met, and assuming

access to global CSI at the BS). The available spatial streams are allocated centrally

through antenna/user spatial coordination. The proposed approach ensures process-

ing with low complexity, because no additional MU coding is required on the MS side.

This provides the opportunity to build a cross-layer multiple access control protocol

for MU-MIMO systems. Simulation results are also presented in order to compare the

BER with that of corresponding currently used conventional systems. Furthermore,

the throughput simulation results demonstrate the increased data rates that can be

achieved.



Chapter 3

Resource Allocation and Noise

Enhancement in an Uplink

MU-MIMO Single-Cell System

As demonstrated in the previous chapter, MU-MIMO networks allow several users to

utilize a common bandwidth simultaneously in the spatial dimension. In real wireless

systems, MSs that are competing to access the channel must be coordinated in order

to satisfy overall performance goals. As elaborated in this chapter, in the context of

ZF post-processing at the BS, this is accomplished by developing centralized radio

resource management (RRM) strategies that provide two basic functions. First, they

limit the number of active antennas/users to comply with ZF decoding requirements.

Secondly, in order to maximize the system sum rate, they implement power allocation

based on the water-filling principle, to counter interference and noise enhancement

effects. When users are admitted to send data, the state of the buffers at the MSs is

also considered.

The purpose of this chapter is to analyze the noise in spatial streams on the

uplink, when ZF-type post-processing is deployed with power allocation to decouple

37
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user data [14]. The MSs use linear pre-processing based on SVD/beamforming in

order to reduce noise and to allow basic power water-filling for their own spatial

streams. As described in the general observation in [16], without beamforming at

the MSs, power allocation maximizing the sum rate with ZF at the BS alone is not

practically feasible, due to the complexity of the optimization algorithm.

Section 3.1 explains the analyzed system model, while Section 3.2 derives analyt-

ical representations for the power allocation algorithm, the capacity and the buffer

conditions. The proposed schedulers for user/antenna and power selections are pre-

sented in Sections 3.3 and 3.4, where the corresponding simulation results are also

provided. Finally, the chapter is summarized in Section 3.5

3.1 Single-Cell MU-MIMO System Model

The single-cell MU-MIMO model under study is illustrated in Figure 3.1. The number

of MSs that are requesting access to the channel is given by K̈, while K represents the

number of MSs that are considered as potentially active users. The BS is equipped

with an array of R antennas, and all MSs have M̈ antenna(s). The green block

represents the state of buffers at the MSs which initially is not taken into account,

i.e., the buffers are always backlogged.

Every MS has unique flat fading channel gains, from its Mk active antenna(s) to

the R antennas at the BS. For the kth user, this is represented by the channel matrix

Hk with R×Mk dimensions. Throughout the encoding/beamforming at the MS and

the decoding at the BS it is assumed that (i) every MS has full knowledge of the local

channel state information at the transmitter (CSIT) between itself and the BS only,

i.e., Hk for the kth user, and (ii) the central controller/scheduler at the BS is aware

of all channel matrices Hk, i.e., global CSI. A discussion concerning the distribution

and “learning” of local and global CSI at the MSs and the BS and about the sending
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Figure 3.1: The uplink MU-MIMO system model.

of limited control information regarding user/antenna selection (feedback) is beyond

the scope of this work. Since only local CSIT is assumed, the precoders at the MSs

cannot be designed jointly. When mitigating the noise effects on their own spatial

streams, the MSs will utilize the SVD of Hk, where the fading channel matrix is

represented as:

Hk = UkΛkV
H
k (3.1)

and the (H) operator denotes the Hermitian transpose, while Uk and Vk are unitary

matrices with size R × R and Mk × Mk, respectively. Λk is a diagonal matrix that

always holds the non-negative singular values (λkx) of Hk. These values could also

be described as the root mean square of the diversity spatial gain for the xth spatial

channel allocated to the kth user .
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3.2 Problem Formulation

3.2.1 Power Considerations

Prior to the pre-processing/multiplication of the transmitted signal at the MS by Vk,

it is also amplified with the power constraint:

Pk ≥
Mk∑
x=1

pkx (3.2)

where Pk is the constrained power for the kth MS and pkx is the invested power at

the xth spatial stream for the kth MS. The kth MS has access to a number of spatial

streams, equal to the number of its active antenna (Mk). In the case where the

channel between the kth MS and the BS is unknown, the power could be apportioned

equally between transmit streams. However, when the local CSIT is available, a more

efficient approach to distributing the power is to use the water-filling principle as

described in [23, 9, 10]. From the perspective of a single user, the objective of using

the water-filling approach is to bias the power distribution for certain spatial streams

to increase the capacity Ck of user k, calculated in the presence of i.i.d. AWGN (with

the variance σ2
kx for the xth spatial stream) as:

Ck = max
Pk≥

∑Mk
x=1 pkx

Mk∑
x=1

log2

(
1 +

λ2
kxpkx
2σ2

kx

)
(3.3)

Here, γkx =
λ2
kxpkx
2σ2

kx
is the signal-to-noise ratio (SNR) for the xth spatial stream for user

k, accounting for all processing at the MIMO transceiver(s). A water-filling solution

for the power allocation in (3.3) is:

pkx =

⎧⎨⎩
Pk

γ̂k
− 2σ2

kx

λ2
kx

λ2
kxPk

2σ2
kx

≥ γ̂k

0
λ2
kxPk

2σ2
kx

< γ̂k
(3.4)

where γ̂k is the cutoff value for the kth MS.
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3.2.2 Capacity Analysis

The signal transmitted from the kth MS is:

Sk = VkQksk (3.5)

with Qk = diag
(√

pk1 · · · √pkMk

)
being the diagonal gain scaling matrix and Q2

k

defining the −→p k = [pk1 · · · pkMk
] power allocation vector. In the wireless channel, the

signals from K users are summed together, and at the BS the received signal is:

y =
K∑
i=1

UiΛiV
H
i Si + n (3.6)

where y and n are R × 1 column vectors, and the rth elements from both vectors

represent the signal at the rth receiving antenna and the corresponding AWGN,

respectively.

To retrieve the original data sk transmitted from the kth MS, at the BS the

received signal in (3.6) is passed through the ZF decoding matrix Tk, in order to

cancel the MAI. The decoded data of the kth user is thus:

ŝk = Tk

(
K∑
i=1

UiΛiV
H
i Si + n

)
(3.7)

The decoding matrix Tk is calculated on the basis of representing it as a product of

two matrices: Tk = AkGk as described in (2.12). The derivation of Gk is based on

the null operator as shown in (2.9), where null(X) calculates the orthonormal basis

for the null space of X, and Gk thus cancels all of the multiuser interference. When

Q is diagonal (more generally invertible), null(XQ) = null(X), and there is no need

to consider power matrices when calculating Gk.

From (2.12), the post-processed signal at the BS in (3.7) can be rewritten as:

ŝk = ΛkQksk +AkGkn (3.8)
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The noise affecting data recovery for the kth MS is:

ñk =

⎡⎢⎢⎢⎣
ñk1

...

ñkMk

⎤⎥⎥⎥⎦ = AkGkn (3.9)

where ñkx shows on the xth spatial stream for the kth MS. The post-processed, or

enhanced, noise ñk is caused by the MU-MIMO decoding matrix, AkGk, multiplying

AWGN vector n at the R antennas of the BS. The latter is common when decoding

all K users. Thus ñk depends only upon channel matrices related to the other trans-

mitting MSs, i.e., Ul and Λl with l 	= k. As a result, power allocation vectors −→p k

from any of the k MSs do not affect the post-processed noise ñk. Hence, with the

assumption of independent components in ñk, (3.3) can now be rewritten as:

Ck = max
Pk≥

∑Mk
x=1 pkx

Mk∑
x=1

log2

(
1 +

λ2
kxpkx
2n̂2

kx

)
(3.10)

where n̂2
kx is the variance of the post-processed noise on the xth spatial stream when

decoding user k, and is given by the xth diagonal element of AkGk(AkGk)
H. It was

later verified when simulating the algorithms that the assumption of independence

did not affect the results significantly. In the case when the noise is dependent,

deterioration in performance has been demonstrated in [52].

In (3.10), the capacity optimization is expressed from the perspective of a single

user. The eventual objective of a system is to optimize power allocation (and antenna

selection) so as to maximize the system capacity given by the sum rate of all active

users. Therefore, the total system sum rate optimization is expressed as:

Csystem = max
Ω

∑
k∈Ω

Ck (3.11)

where Ω is a set with K elements, that indexes the selected MSs and their associated

antennas/power.
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3.2.3 Buffer Analysis

In addition to the sum rate analysis with resource allocation at the physical link layer,

this dissertation also considers user scheduling based the state of user buffers. When

data buffers are considered in order to decide on user transmissions, this becomes a

MAC layer issue, which in this case is integrated with RRM.

Figure 3.1 illustrates in green that every MS is regarded as having its own buffer of

infinite capacity, containing data of size Lk for user k, where working with finite buffer

size is beyond the scope of this work. The arrival and dispatch rate are represented

by ν and ρ, respectively. At a specified time (t), the current buffer size for MS k is

calculated by using Little’s law, Lk(t) = (νk − ρk(t))t, where νk = ν is considered a

constant value for Poisson traffic (with the same load for all users), while ρk changes

through the time slots, as it is dependent upon the multiuser scheduling algorithm

and the MS channel conditions (resource allocation and spatial channel capacity).

3.3 Best Channel Scheduling Algorithms

The primary aim of this chapter is to design resource allocation and scheduling al-

gorithms for a single-cell network, in light of the noise and capacity analysis in the

previous section. The proposed schemes maximize the overall system sum rate by

selecting preferential antennas (and corresponding power allocations) associated with

the admitted MSs. The desgined schemes are refered to as best channels schuduling

algorithems because we select the antennas and corosponing transmission power from

the finite set of potential solutions but beccuase of limited search space we do not

guarantee the optimal solution. To take advantage of user diversity, a distinction is

made between the K potentially active users and the total number of users in the

system K̈. The algorithm design is based on selecting R antennas to transmit, from
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all of the available MS antennas, while temporarily disabling the rest. The general

flow of all of the algorithms developed in this section is presented in Figure 3.2.
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Every MS competes with Mk equal to

Choose Max �R/stage level MS

Figure 3.2: General flow of proposed algorithms for the single-cell system.

Initially all antennas of all MSs individually compete to gain access to the MU-

MIMO channel, regardless of the state of the MS buffers. All of the following designs

are based on the total system sum rate optimization presented in (3.11) and (3.10),

and the consideration that at most only R MSs can be selected from the available K̈,

in order to comply with condition (2.6).

To this end, without yet considering buffers, two antenna selection algorithms

are proposed. The first algorithm, presented in Section 3.3.1, utilizes diversity spatial

gain information alone in order to assess different available antenna combinations that

could offer the best sum rate performance, i.e., assuming fixed noise levels independent

of other users in making the evaluation (3.10). This scheme results in a very low-

complexity algorithm. The second algorithm, presented in Section 3.3.2, includes
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multiuser noise enhancement effects and spatial gain in its calculations when deciding

on the R MS antennas, hence there is a higher level of complexity. The resulting

trade-off between the two proposed algorithms is improved system capacity with

more accurate user/antenna selection, versus increased complexity.

3.3.1 Best Channels Based on Spatial Gains

In this algorithm, to maximize the sum rate given in (3.11), the selection of users

and their antennas is based exclusively on λkj values, assuming that n̂2
kj = σ2 on all

spatial streams. This would ensure an increased value of the numerator in (3.10),

that in turn increases the SNR on the assigned spatial streams in a suboptimal way.

Also, this approach does not require feedback from the BS to the MSs concerning the

power allocation vectors −→p k, as users could calculate −→p k based on their local CSIT.

The algorithm is divided into R stages: The first stage considers allowing only

one spatial stream per MS, the second stage allows two spatial streams, and so on.

Dividing the algorithm into stages yields a less complex design and a more flexible

algorithm, as will be seen below. Before beginning the first stage, it is important

to organize and sort the antennas from best to worst, based on the spatial channel

diversity gain for every MS. The antenna with the highest gain for MS k is indexed as

Jk1, and the gain value is represented as λkJk1 . Similarly, the mth best antenna is rep-

resented as Jkm, with gain value λkJkm . Hence, when stage one starts it considers only

the best antenna Jk1 for all MSs, and discards the remaining M̈k−1 antenna(s). This

reduces the number of processed antenna combinations. The initially selected candi-

dates are stored in Ω, where they represent the best R MSs that would satisfy (3.11),

with a maximum of one spatial stream per MS.

The second stage, where a MS could occupy two spatial streams, would then select

�R/2 stations, where �· represents the floor operation. For this stage, the two best

antennas are selected for every MS (Jk1 and Jk2). However, the channel gains must
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be recalculated, as their values are adjusted when enabling another antenna on the

same device. The water-filling process is now considered, as it assists in dividing the

available power efficiently between the two potential streams, as described in (3.4).

Thus, if the division of power is not allowable for a certain MS, it will no longer

compete within this stage. Only �R/2 MSs obtain the highest capacity by using (3.3),

with a maximum of two antennas per MS (Mk = 2). Lastly, all of the �R/2 selected

stations from the current stage then compete with the candidates resulting from the

previous stage (Ω). Hence, a new list of candidates is formed, and Ω is updated with

a certain combination which meets the condition of (2.6) and ensures the maximum

sum rate as provided by (3.10).

The algorithm advances successively to each of the following stages, where the

allowable number of antennas is equal to the stage level, Mk = (stage level), and only

�R/(stage level) MS(s) are selected. Subsequently, the selected stations compete

with those on the updated candidate list (Ω) from the previous stage only. The final

stage, stage R, yields the final list of candidates, which shows the MS(s) that have

been selected to transmit and the antenna indexes to which they have access.

3.3.2 Best Channels Based on Spatial Gains and Noise En-

hancement Effects

In this algorithm, for the calculation of power allocation vectors and the user capacity

in Figure 3.2, both the numerator and denominator of SNR in (3.10) are considered.

Therefore, when noise enhancement exists, additional processing in calculating the

SNR on spatial streams following post-processing and more feedback information, i.e.,

information about −→p k being sent to MSs, could be utilized in order to increase the

algorithm selection accuracy, so as to maximize the actual sum rate.

In this method, because of the dependence between Ck and n̂2
kx (x ∈ {1, · · · ,Mk})
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as presented in (3.10), the water-filling of −→p k for user k is not completely indepen-

dent of other users, because n̂2
k depends on Ul and Λl with l 	= k, i.e., global CSI.

Therefore, the calculation of n̂2
kj precedes water-filling to find −→p k, thus obtaining Ck.

This is not a substantial computation increase, but it requires feedback to the MSs

concerning −→p k. This algorithm benefits from being divided into stages of differing

complexity. In order to reduce the search space, the algorithm includes the schedul-

ing/admission incorporating noise enhancement effects only in certain stages, referred

to as vital stages. For all other stages, the algorithm with only a spatial gain decision

is considered, which provides a less complex design.

3.3.3 Simulation Results

In this section, analytical and simulation results are presented in order to investigate

the performance of the proposed antenna selection and power allocation algorithms.

The two algorithms proposed: (i) Best channels (BCs) based on spatial gains, and

(ii) BCs based on spatial gains and noise enhancement effects, are identified below as

BC-SpG and BC-SpG/NE, respectively. A single BS is deployed with four receiving

antennas (R = 4), and all K̈ users in the system are equipped with the same number

of M̈ antennas (M̈1 = M̈2 = · · · = M̈K̈ = M̈), where in most of the simulations K̈ = 5

and M̈ = 4.

Table 3.1 compares the BC-SpG/NE algorithm with a brute force exhaustive

search in terms of statistics for the best antenna number configurations. In the

table, the first row shows the combination (1,1,1,1), meaning that a total of four MSs

are selected to maximize the sum rate, and that each station is assigned one spatial

stream. The only other statistically significant combination is shown in the second

row (2,1,1) with three active users, one with two spatial streams, and two MSs with

one spatial stream each. From this table, it is clear that the (1,1,1,1) combination

dominates overall. Hence, the algorithm BC-SpG/NE would consider stage one to
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be the vital stage, i.e., when BC-SpG/NE is executed there is a high frequency of

correctly selecting the optimum combination in the first stage.

Figure 3.3 shows the semi-analytical results for the total system sum rate as a

function of SNR (E/N). This analysis investigates BC-SpG with and without a

consideration of noise enhancement, as shown in Figure 3.3 by a dashed and solid

black line, respectively. The performance of the latter scheme is close to the downlink

Table 3.1: Percentages of combination occurrence.

Combinations Algorithms
Brute Force BC-SpG/NE

1,1,1,1 98.42 % 99.71 %
2,1,1 1.58 % 0.17 %
2,2 0 0
3,1 0 0.07 %
4 0 0.05 %

0 5 10 15 20 25 30
0

10

20

30

40

50

60

E/N (dB) per MS

To
ta

l s
ys

te
m

 s
um

 ra
te

 (b
it/

se
c/

H
z)

BC−SpG/NE
BC−SpG without NE consideration
BC−SpG with NE consideration
4x1 fixed antennas (MU−MIMO)
4x2 fixed antennas (MU−MIMO)

Figure 3.3: A sum rate comparison between antenna selection versus user selection
methods for a MU-MIMO model.
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performance; it is not affected by the noise enhancement problem and is presented as a

benchmark. This figure also illustrates the performance of the BC-SpG/NE selection

method (shown by a red line) when the algorithm is run with only stage one as the

vital stage, with minimal degradation relative to the exhaustive search. In addition,

the performance of two brute force algorithms is included for comparison, where the

same number of MSs are selected with fixed (not optimized) antenna(s). As can be

seen in the figure, a performance drop of ∼ 10bps/Hz occurs when noise enhancement

(uplink transmission) is incorporated into simulations and calculations for the sum

rates in the BC-SpG algorithms (solid versus dashed black lines). An analysis of the

BC-SpG which considers noise enhancement shows that its performance is between

the two benchmark results with fixed antennas. This means that the BC-SpG has

a slight advantage due to its flexibility in assigning the spatial streams. The BC-

SpG/NE algorithm is able to compensate for the capacity drop, with an improvement

of 5dB over either the BC-SpG or the systems with fixed antennas.

Next, the complexity of the algorithms is analyzed, by comparing the complexity

of both proposed scheduling schemes with that of the brute force search algorithm.

The complexity is measured in terms of antenna combinations that are processed to

arrive at the combination resulting in the highest total sum rate. Assuming that

K̈ ≥ R and M̈ = R, the BC-SpG algorithm processes:

(
K̈

R

)
+

R∑
ς=2

⎛⎝(
R− ς + 2

�R/ς
)
+

�R/ς�∑
ς̂=1

(�R/ς
ς̂

)(
R− ς ς̂ + 2

R− ς ς̂

)
+ 1

⎞⎠ (3.12)

combinations, where ς denotes the stage count. If stage one is considered to be the

vital stage for BC-SpG/NE, as illustrated in Figure 3.3, then its complexity (in terms

of antenna combinations to process) is given by:

RM̈

(
K̈

R

)
+

R∑
ς=2

⎛⎝(
R− ς + 2

�R/ς
)
+

�R/ς�∑
ς̂=1

(�R/ς
ς̂

)(
R− ς ς̂ + 2

R− ς ς̂

)
+ 1

⎞⎠ (3.13)
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where both(3.12) and (3.13) express the worst case complexity.

Figure 3.4 illustrates the number of combinations processed by the BC-SpG and

BC-SpG/NE algorithms (indicated by black and red lines, respectively), based on (3.12)

and (3.13) as a function of K̈. For comparison purposes, the complexity of the brute
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Figure 3.4: Comparison of complexity.

force search algorithm is plotted with a blue line as a benchmark; here the brute

force algorithm would have to go through
(
KM
R

)
different combinations in order to

maximize the system capacity. From the figure, it can be seen that BC-SpG is the

least complex algorithm, however it does not achieve a high total system sum rate, as

shown in Figure 3.3. The BC-SpG/NE algorithm has a marginal increase in complex-

ity, especially at low K̈ values, but it provides an improved total sum rate. Finally,

the brute force algorithm performs a far greater number of processed combinations,

which makes it an impractical solution in real-time applications.
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3.4 Fair Rate Load-Adaptive Algorithm

This section deals with a more complex problem of user/antenna selection, by consid-

ering the CSI and buffer behavior jointly. The cost function in the decision process

adopts an approach similar to that presented in [53] and [54], by utilizing the buffer

state information, including the buffer size, the maximum delay time and arrival rate,

and the weighted capacities of admitted users. Specifically, this section focuses on the

weighted buffer size, referred to as gk for the kth MS. As shown in Figure 3.1, every

MS has its own buffer with Lk stored bit(s). Thus the weighted buffer ratio can be

expressed as:

gk =
Lk∑K̈
i=1 Li

(3.14)

To ensure fairness among users and to give preference based on the amount of queued

data in addition to the CSI, the central controller/scheduler optimizes the weighted

sum rate of (3.10) based on (3.14), as follows:

max
Ω

∑
k∈Ω

gkCk (3.15)

If MS k transmits a portion of it buffered then Lk will decrease. As a result, gk will

also decrease when MS k go back to compete for the following time slot, which gives it

less priority as it had cleared few of it data, and higher priority to those who have more

stored data. This algorithm follows the same stages as the algorithms BC-SpG and

BC-SpG/NE presented in the previous section, but calculates the weighted capacity

according to (3.15), as opposed to using the sum of individual terms as in (3.11).

3.4.1 Simulation Results

In this section, the performance of the fair rate load-adaptive algorithm (FRLA) is

analyzed. The same simulation setup is used as in Section 3.3.3, where a common
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BS is equipped with four antennas. The number of competing MSs varies, as noted

for the different simulations; whereas the number of antennas available at the MSs is

always fixed at two.

Figures 3.5, 3.6 and 3.7 show the current buffer size, the standard deviation of

all buffer sizes, and the sum dispatch rate versus the time slots (packet durations),

respectively. The two algorithms that are under investigation in these simulations

are the BC-SpG/NE (with no buffer consideration) and the FRLA, shown in red and

green, respectively. In addition, the performance of a load-adaptive (LA) algorithm,

where antenna selection is based purely on the buffer weight, is included for compar-

ison and plotted with a blue line. The simulation results, which are averaged over

a thousand runs, consider K̈ = 10 MSs equipped with M̈ = 2 antennas. For each

scheduling scheme, Figure 3.5 plots the maximum, mean and minimum buffer sizes
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Figure 3.5: Comparison of different algorithms in terms of current buffer size, at
K̈ = 10.
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for all MSs; these are represented as solid, dashed and starred lines, respectively.
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Figure 3.6: Comparison of different algorithms in terms of buffer size standard devi-
ation, at K̈ = 10.

Figures 3.5 and 3.6 show that the BC-SpG/NE scheme has the greatest variability

in terms of buffer size. This variability is due to the unfairness of this selection

approach, as the MSs with the best channel conditions cause buffer overruns for users

with channel conditions that are worse (though still acceptable for transmission). The

LA algorithm addresses the buffer overrun problem by allocating access to the channel

based on the buffer size, ensuring full utilization of the buffer as a resource among

all MSs. However, the LA scheme would significantly reduce the system dispatch

rate, as shown in Figure 3.7. For the three algorithms tested, Figure 3.7 shows that

FRLA has the highest dispatch rate. In particular, it outperforms the BC-SpG/NE

algorithm, i.e., channel utilization is better than with BC-SpG/NE. Figure 3.5 also

demonstrates that the FRLA algorithm has good buffer behavior.

Figures 3.8, 3.9 and 3.10 show simulations similar to those presented in Figures 3.5
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Figure 3.7: Comparison of different algorithms in terms of total system dispatch rate,
at K̂ = 10.

to 3.7, but with a reduced number of MSs. Here K̈ = 5, while all other attributes are

kept the same, in order to analyze the effects of user density. Figure 3.8 suggests that

the FRLA scheme achieves the best results, whereas for the BC-SpG/NE and LA

algorithms the buffer size continues to increase linearly. Because the FRLA scheme

always favors MSs that have good CSI conditions and a high volume of cashed data,

this scheme is able to keep up with the arrival rates. This helps with the management

of buffer content, so as to avoid any overflows that may occur with the BC-SpG/NE

and LA schemes.

Hence, for a low- or high-density user environment, the FRLA scheduler exhibited

the best performance. It had a higher dispatch rate under all conditions, as compared

with the BC-SpG/NE algorithm, and better buffer behavior than the LA algorithm.
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Figure 3.8: Comparison of different algorithms in terms of current buffer size, at
K̈ = 5.

3.5 Summary

A design and performance analysis of resource allocation and scheduling algorithms

on the uplink has been presented for a MU-MIMO transmission strategy that em-

ploys beamforming and power allocation, utilizing local CSIT at the MSs and ZF

post-processing at the BS using global CSI. Through first analyzing the noise en-

hancement at the receiver side, the SNR on the spatial channels was derived for such

a system and used in further analyses of the total sum rate calculations. The statis-

tical results presented demonstrate that with the approach of searching through the

limited antenna sets when optimizing the sum rate, there is not much performance

degradation in comparison to the results of exhaustive search solutions. The analy-

sis and results validate the efficiency of the joint resource allocation and scheduling

strategy proposed with a ZF receiver for a single-cell environment.
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Figure 3.9: Comparison of different algorithms in terms of buffer size standard devi-
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Chapter 4

Spatial Coordination and

Cooperative Reception in a

Double-Cell Environment

In the previous chapters, the MU-MIMO system has been investigated within a single-

cell environment. In this chapter, the focus is on the operation of the MU-SIMO

system in a double-cell system model, where two BSs with multiple antennas serve

a number of MSs with single antennas simultaneously in the same frequency band.

The general case of a multi-cell MU-MIMO system is considered in Chapter 5. In

such systems, it is necessary to account for two types of interference: (i) intra-cell

interference, and (ii) inter-cell interference (ICI). Intra-cell interference can be dealt

with at the BSs by employing ZF multiuser decoders that mitigate noise enhance-

ment effects, as described in previous chapters. To address problems related to ICI,

this dissertation develops spatial coordination algorithms that reduce the impact of

ICI. Specifically, in this chapter an interference-aware scheduling scheme is designed

and integrated with cooperative reception (CR), where some data are decoded by

combining signals from both BSs. In addition, for better control of the interference, a

57



58

second scheme is also presented that employs a successive interference canceler (SIC).

The chapter is organized into five sections. Section 4.1 explains the underlying

multi-cell system model. In Section 4.2, derivations are presented for the capacity

analysis. The multi-cell spatial coordination algorithm is developed in Section 4.3,

while the corresponding simulations and analytical results are discussed in Section 4.4.

Finally, a summary of the chapter is provided in Section 4.5.

4.1 A Double-Cell System Model

The network under consideration is illustrated in Figure 4.1. There are K active MSs

in the area, serviced by B = 2 BSs. Each BS is equipped with an array of R receiving

antennas, allowing it to be associated with up to R MSs, while each MS has a single

antenna. All active MSs transmit their signals (sk) to the corresponding BS in the

same time slot, using the same bandwidth, where k is the global index assigned to

the active MS (k ∈ {1, 2, .., K}).
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Figure 4.1: The two-cell MU-MIMO model.
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From the MS antenna, flat fading channel gains to each accessible BS are as-

sumed. The channels are represented by matrices (column vector) hbk with R × 1

dimensions, where b is the BS identifier (b ∈ {1, 2, .., B}; although in this chapter

B = 2, general notation is employed, because some of the formulas will be reused in

the next chapter). Assuming Rayleigh fading, elements of the channel matrices are

i.i.d., zero-mean complex Gaussian RVs with a unit variance (hbk(i, j) ∼ CN (0, 1)).

Because there are multiple BSs in the system, in this model it is necessary to consider

the deterministic attenuation of signals with distance. henceforth, the signal received

at BS b is expressed as:

yb =
∑
∀k∈Ωb

Dbkhbk
√
pksk +

∑
∀k̂ /∈Ωb

Dbk̂hbk̂

√
pk̂sk̂ + n (4.1)

where k̂ identifies the MSs that are assigned to other cells and cause the ICI, and pk

represents the power at the transmitter used by the kth MS. The data set Ωb holds

all the MS indexes that are assigned by the scheduler to access BS b. Dbk represents

macro-scale signal attenuation, where the path loss coefficient between MS k and

BS b is defined as Dbk = 1/dαbk, and dbk is the distance between MS k and BS b

(dbk > 0). Furthermore, α = 2 is considered for ground wave propagation [55]. A

simple power allocation is applied, where the power invested by MS k depends upon

the distance traveled, so as to achieve a targeted SNR, pk = SNR · d2αbk | k ∈ Ωb.

The first summation term in (4.1) represents the information intended for the bth

BS, while the second term of the equation represents all of the ICI affecting the bth

BS. Complex AWGN is represented by elements of the matrix n with the dimensions

R× 1.
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4.2 A Two-Layer Decoder

This chapter proposes a two-layer decoding mechanism. The first step is performed

at the BS, immediately after the signal is received. This process is responsible for

decoupling multiuser transmissions by applying the ZF approach; henceforth, the

intra-cell interference is resolved. In the second step, for the MSs assigned to be

handled by a single BS, after being processed by the decoding matrix, the resulting

signal is passed through a maximum likelihood decoder (MLD) to retrieve the original

data through hard-decision decoding. In the case of MSs that are handled by multiple

BSs, after being processed by the decoding matrices at different BSs, the signals

representing the same data are fed back to the WC to be processed by a diversity

decoder. The WC employs maximal-ratio combining (MRC), to combine the multiple

signals received into a single signal before passing it to the MLD. To improve the

performance of MRC, another decoding approach is also proposed, where MRC is

aided by SIC (MRC-SIC) to reduce the effects of ICI.

4.2.1 ZF Detection at the BS

The ZF is utilized to separate the mixed signals, based on the acquisition of CSI at

the receiver. In order to retrieve the original signal sent by MS k from (4.1), the

decoder of BS b multiplies yb in (4.1) by Tbk as follows:

ŝk = TbkDbkhbk
√
pksk

+Tbk

(∑
∀k̄∈Ωb,k̄ �=k Dbkhbk

√
pksk

)
+Tbk

(∑
∀k̂ /∈Ωb

Dbk̂hbk̂

√
pk̂sk̂

)
+Tbkn

(4.2)

Here Tbk is the multiuser ZF decoding matrix described in (2.4), with size 1× R. It

satisfies:
Tbkhbk = 1

Tbkhbk̄ = 0
(4.3)
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where indices k̄ refer to the MSs assigned to the bth BS, excluding MS k, and they

cause intra-cell interference. As a result, (4.2) can be rewritten as:

ŝk = Dbk
√
pksk +Tbk

⎛⎝ ∑
∀k̂ /∈Ωb

Dbk̂hbk̂

√
pk̂sk̂

⎞⎠ +Tbkn (4.4)

where the intra-cell interference is canceled at the cost of noise enhancement resulting

from the multiplication by Tbk of ICI and AWGN. Therefore, the total system capacity

achieved by MS k can be derived as follows:

Cbk = log2

(
1 +

D2
bkpk

|σ2
0TbkTH

bk|+
∑

∀k̂ /∈Ωb

∣∣Tbkhbk̂Dbk̂

√
pk̂

∣∣2
)

(4.5)

where σ2
0 and H are the variance of the AWGN and the Hermitian operator, respec-

tively.

4.2.2 Cooperative Reception at the WC

In certain scenarios, for MS distribution within the cells, it is preferable to disable

a few MSs initially selected by the scheduler in a conventional one-to-one mapping

of users or their spatial streams to the closest BSs, i.e., within the cell. This has

the purpose of reassigning the vacated spatial streams to enhance the performance

of “under-performing” MSs, and allowing the signals from these MSs to be handled

by more than one BS. Thus, spatial decoding operations must be considered, in

order to combine multiple replicas of the same signal efficiently. One of the best

combining techniques is MRC, where multiple received signals, which represent the

same data, are weighted with appropriately selected coefficients to improve the BER

performance. This process can be carried out at the WC by sending the multiple

versions of signals representing the same data from different BSs to the WC via

the backhaul (wired) links. For MS signals received by more than one BS that are
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processed with ZF decoding matrices for intra-cell interference removal, from (4.4),

the combined received signal can be written as:

ŝk =
∑

∀b|k∈Ωb
wbk

(
Dbk

√
pksk

+Tbk

∑
k̂ /∈Ωb

hbk̂Dbk̂

√
pk̂sk̂ +Tbkn

) (4.6)

where wbk are weighting factors dependent on instantaneous SNRs, or rather SINRs,

for different replicas of the same signal [23]. Here it is worth noting that assigning the

kth MS to multiple BSs reduces the number of MSs contributing to ICI. The reason is

that this MS then contributes to intra-cell interference at two BSs, which is canceled

with ZF signal separation by using different decoding matrices for different BSs. The

ICI level is therefore reduced for all signals received, at the expense of fewer connected

MSs in the system, as compared to the situation where the MS is handled by only

one BS. Therefore, from (4.6), the instantaneous signal-to-interference-to-noise ratio

(SINR) can be expressed as:

SINRk =
pk

∣∣∣∑∀b|k∈Ωb
wbkDbi

∣∣∣2
E

[∣∣∣∑∀b|k∈Ωb
wbkTbkΨb

∣∣∣2] (4.7)

where Ψb is a R× 1 matrix representing the ICI and AWGN affecting BS b, and it is

derived as:

Ψb =
∑
k̂ /∈Ωb

hbk̂Dbk̂

√
pk̂sk̂ + n (4.8)

If, as in the present case, only two BSs are considered, the ICI level for both BSs can

be considered to be balanced and independent, because a MS communicating with

one BS interferes only with the other BS. Therefore, (4.7) can be simplified as follows:

SINRk =
pk

∣∣∣∑∀b|k∈Ωb
wbkDbk

∣∣∣2
E

[∑
∀b|k∈Ωb

|wbkTbkΨb|2
] (4.9)
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Substituting ubk = wbkTbkΨb in (4.9) yields:

SINRk =
pk

∣∣∣∑∀b|k∈Ωb
ubk

Dbk

TbkΨb

∣∣∣2
E

[∑
∀b|k∈Ωb

|ubk|2
] (4.10)

The SINR reaches a maximum value if u∗
bk is set to Dbk

TbiΨb
, where ∗ stands for the

complex conjugate operator. Therefore, for a signal sent from MS k to BS b, the

MRC coefficient is:

wbk =
Dbk

|TbkΨb|2
(4.11)

Substituting (4.11) in (4.9) allows the SINR to be rewritten as:

SINRk = pk

⎛⎝ ∑
∀b|k∈Ωb

D2
bk

E
[|TbkΨb|2

]
⎞⎠ (4.12)

As a result, the user data rate is:

CMRC
k = log2

⎛⎝1 + pk

⎛⎝ ∑
∀b|k∈Ωb

D2
bk

E
[|TbkΨb|2

]
⎞⎠⎞⎠ (4.13)

4.2.3 Cooperative Reception with Successive Interference Can-

cellation

The maximum achievable data rate in (4.13) is limited by the presence of ICI that

affects the corresponding BSs. Henceforth, SIC is utilized in order to eliminate the

ICI. However SIC is only applied on the MSs that are CR to limit the growth of system

complexity. This can be done at the WC as shown in Figure 4.2, provided that the

BSs forward both hard- and soft-decoded data to the WC [1, 56]. The hard-decoded

data, shown as a dashed line, result from resolving the data related to MS antennas

that are associated with only one BS. Hence, ZF post-processing is performed at the

BS, followed by maximum likelihood estimation. The forwarded soft-decoded data
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ŝ1

Figure 4.2: The MRC-SIC decoder.

represent the signals that are intended to be resolved at multiple BSs. As a result,

the ZF process is only implemented on the received signal to deal with the intra-cell

interference, and the processed data are then forwarded to the WC. The WC receives

all of the information and, assuming full CSI knowledge, the centralized controller is

able to subtract all of the ICI before combining the multiple signals with MRC. This

permits (4.13) to be rewritten as:

CMRC−SIC
k = log2

⎛⎝1 + pk

⎛⎝ ∑
∀b|k∈Ωb

D2
bk

E [|Tbkn|]2

⎞⎠⎞⎠ (4.14)

The power allocation assigned to the kth MS in (4.13) and (4.14) is adjusted to

accommodate the multiple streams utilized. Therefore,

pk =
SNIR(∑
∀b|k∈Ωb

D2
bk

) (4.15)
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4.3 A Multi-Cell Scheduling Algorithm

The aim of this algorithm is to maximize the total system sum rate by focusing on

reducing the ICI, in accordance with the analysis in the previous section. This is

done by temporarily disabling a number of selected MSs that are experiencing a high

level of interference, and assigning the free streams to previously selected MSs, thus

increasing the utilization of the CR approach. The scheduling process is carried out

by the WC, with the assumption that it has full knowledge of the distances between

the BSs and MSs (dbk). This involves the long-term average of the received signal

strength, referred to in the literature as the received signal strength indicator (RSSI).

Figure 4.3 illustrates the general flow of the proposed algorithm, which proceeds in

the following steps:

1. For every path between BS b and MS k, calculate its weight gbk, where

gbk =
Dbk∑

∀b̂|b̂ �=b Db̂k

(4.16)

The weighting scheme reflects the ratio between the attenuation coefficient for the

described path and the summation of attenuation coefficients for the other paths

with which MS k interferes. Therefore, the selection of MSs with high weighted

values reflects either high sum rates for the specific MSs, or a low level of interference

caused by them.

2. Select the highest R MSs based on their weights, and add their indexes in Ωb.

3. For BS b, find

min
k

(dbk) ∀k ∈ Ωb (4.17)

max
k̂

(dbk̂) ∀k̂ ∈ Ωb̂, k̂ /∈ Ωb|b̂ 	= b (4.18)
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Figure 4.3: General flow of the spatial allocation algorithm for the multi-cell systems.

This step is not executed until step 2 has been performed for all B BSs, where all

initial Ωb are set.

4. If dbk < dbk̂, then exit.

5. Remove k from Ωb, replace it with k̂, and go to step 3.



67

The last two steps address the situation where there is a MS (k) associated with

a certain BS (b) positioned behind an interfering MS (k̂) from another cell. The

algorithm solves this problem by disabling k and replacing it with the interfering MS.

This procedure thus reduces the global ICI level.

With regard to the trade-off between the total system sum rate and fairness among

MSs, this algorithm neglects fairness in favor of increasing the system capacity. How-

ever, this proposed approach could be extended to solve this problem, by modifying

the cost function (4.16) according to [53].

4.4 Simulation Results

In this section, analytical and simulation results are presented in order to investi-

gate the performance of the proposed decoders and user selection algorithms for the

two-cell uplink MU-SIMO model considered. The three decoders analyzed are: (i)

ZF and MRC-SIC, with the assumption that noise enhancement does not affect the

performance – this unrealistic model is used only as a benchmark; (ii) ZF and MRC-

SIC based on (4.5) and (4.14); and (iii) ZF and MRC based on (4.5) and (4.13). In

addition, two selection algorithms are considered: (i) the proposed algorithm from

Figure 4.3 (identified as Alg. 1); and (ii) a simplified algorithm that is based on

executing only the first two steps discussed in Section 4.3 (identified as Alg. 2). All

simulations consider two BSs (B = 2) equipped with two antennas (R = 2). The K̈

MSs are uniformly distributed over a rectangular area of size 25×25 [normalized unit

of space], and K̈ = 5 unless otherwise noted. In addition, the BSs are positioned on

a diagonal in the rectangular service area, and are equidistant from the center and

the adjacent corners. Total system sum rate is evaluated as sum of capacities like

in (4.5) and (4.14) or (4.15) averaged over random locations of MSs.

Figure 4.4 shows the semi-analytical results for the total system sum rate as a
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function of SNR. For Alg. 1 (with blue performance curves), the best performance

is achieved when it is used with ZF and MRC-SIC without noise enhancement (solid

blue line). The same algorithm with ZF and MRC-SIC decoders, with noise enhance-

ment (dashed blue line), attains a similar performance at the expense of a longer

convergence time to find the optimum parameters. When MRC is used without SIC,

a drastic reduction (∼ 5 bits/sec/Hz) in system performance is seen (dashed and

dotted blue line). The performance of decoding strategies using Alg. 2, shown in

Figure 4.4 by red lines, is always poorer than that of strategies using Alg. 1.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

SNR (dB)

To
ta

l s
ys

te
m

 s
um

 ra
te

 (b
it/

se
c/

H
z)

ZF & MRC−SIC without noise enhancement  (Alg 1)
ZF & MRC−SIC (Alg 1)
ZF & MRC (Alg 1)
ZF & MRC−SC without noise enhancement (Alg 2)
ZF & MRC (Alg 2)

Figure 4.4: Comparison of total system sum rates plotted against the SNR.

Figure 4.5 presents results for total system sum rates as a function of K̈ evaluated

at SNR=36 dB, as shown by blue and red performance curves for Alg. 1 and Alg. 2,

respectively. In this figure it can be seen that the plotted results exhibit an increase

in total system sum rate with an increase in the number of available users. Because

higher values of K̈ are associated with a greater number of choices, this increases
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the probability of selecting users with good channel conditions. When K̈ = 2, all

simulations indicate the same performance; both algorithms result in the same selec-

tion, since 2 MSs are always selected. The greatest difference in performance occurs

when R · B = K̈ = 4. This is due to the utilization of CR by Alg. 1, which employs

the possibility of canceling one or two users to achieve a higher performance. With

an increasing number of MSs, all of the curves indicate comparable results, with a

decrease of ∼ 2.5 bit/sec/Hz due to noise enhancement caused by the ZF decoding

matrix.

2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

K̈ (uesrs)

To
ta

l s
ys

te
m

 s
um

 ra
te

 (b
it/

se
c/

H
z)

ZF & MRC−SIC without noise enhancement  (Alg 1)
ZF & MRC−SIC (Alg 1)
ZF & MRC (Alg 1)
ZF & MRC−SC without noise enhancement (Alg 2)
ZF & MRC (Alg 2)

Figure 4.5: Comparison of total system sum rates plotted against MS density.

Figure 4.6 shows the total system sum rate performance when fixed power is

applied to all transmissions, for the same setup as considered in Figure 4.4. For

simplicity, the magnitude of the noise affecting all receivers is assumed to be 1 watt.

From Figure 4.6, it can be seen that low performance is caused by noise enhancement,
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although a slight improvement in system performance is achieved when SIC is uti-

lized. Therefore, for systems that are restricted to fixed power, special consideration

should be given to channel gains (CSI) when selecting the MS, so as to reduce noise

enhancement caused by the ZF decoder.
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Figure 4.6: Comparison of total system sum rates plotted against power per MS.

4.5 Summary

A performance analysis of different decoding designs for two-cell uplink MU-SIMO

is presented. First, investigations are conducted for sum rate performance using

the ZF post-processing decoupling of spatial streams, which applies to MSs that are

associated with a single BS. Secondly, the performance of MSs that are associated

with multiple BSs is derived, where MRC or MRC-SIC is utilized to combine multiple

replicas of a common signal. Moreover, a selection algorithm is designed to control
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and limit the ICI level. The analysis and results demonstrate that a huge gain is

achieved when applying the proposed antenna selection algorithm, with even better

performance when SIC is deployed. However, further analysis should be carried out

to consider channel gains in the selection algorithm with a higher density of users.



Chapter 5

Resource Management for Multi-Cell

Networks

In the previous chapter, a system model was presented that is applicable to multi-

cell networks, however only two-cell MU-SIMO systems were analyzed. On the one

hand, intra-cell interference was dealt with by using a ZF canceler, as in the case of

the single-cell systems. On the other hand, the impact of ICI was reduced by a CR

method that improved the performance of the underlying two-cell system. However, as

noted by this author in [41], these algorithms do not scale well when performing with

a number of active MSs. Therefore, in this chapter, a more sophisticated RRM and

scheduling algorithm is introduced for more general systems. The proposed algorithm

utilizes spatial coordination together with a power allocation algorithm to deal with

under-performing antennas/users. Due to its low complexity and fast convergence,

Newton’s method of optimization is employed to manage the transmission power

levels [32].

The chapter is organized as follows: The generalized multi-cell system model is

described in Section 5.1. The capacity formula and Newton’s method derivations

for the current system model are presented in Sections 5.2 and 5.3, respectively.

72



73

Section 5.4 introduces the proposed resource allocation algorithm, while Section 5.5

presents the simulation results. Finally, Section 5.6 concludes the chapter.

5.1 The Multi-Cell System Model

The multi-cell network model under study is illustrated in Figure 5.1, where the K̈

MSs are distributed randomly in the area serviced by B BSs. Each BS is equipped

with an array of R receiving antennas, allowing it to be associated with up to R

MSs, while each MS has M̈k antenna(s) (k̈ ∈ {1, 2, .., K̈} and M̈k̈ ≥ 1). All BSs

are connected via a reliable backbone to a centralized WC, where joint detection is

MS#KMS#1

WC
1 2 B

MS#2

MS#3

MS#k
BS#B

BS#1 BS#2

· · ·

d13

d2Kd11

d12

dB2

dB3

dBk

d23

MS#K̈

1 · · · R

1 · · · R 1 · · · R

Figure 5.1: The uplink multi-cell MU-MIMO system model.
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performed by using soft decisions from BSs for certain users. The power allocation is

implemented at the WC, which requires knowledge of the global CSI, while the spatial

coordination is done distributively, as it requires only the local CSI. The spatial coor-

dination is performed based on the CSI for each antenna at a MS and the designated

BS. Only K of K̈ MSs are permitted to transmit their signals (skm, | m ∈ 1, . . . , M̈k̈)

to the corresponding BS in the same time slot using the same bandwidth, where

skm represents the scalar data sent from mth antenna of the kth user. This chap-

ter breaks away from the conventional representation of the received data that uses

column vector representations of the transmitted data and channel gain matrices, as

in (2.1). Further analysis is accommodated by working with the scalar representations

of transmitted data and column vectors hbkm representing Rayleigh fading channels

from the m antenna of the kth MSs to the bth BS. This approach benefits from the

fact that Hbksk =
∑Mk

m=1 hbkmskm. Henceforth, the received signal at BS b is derived

as:

yb =
∑

∀k,m abkm
√
pkmDbkhbkmskm

+
∑

∀k̂,m̂ qbk̂m̂
√
pk̂m̂Dbk̂hbk̂m̂sk̂m̂ + n

(5.1)

where
∑

∀k,m are in fact double summations. This equation comprises three parts,

with the first representing the transmitted signals selected for ZF post-processing at

BS b. The second summation represents the ICI, which is the result of the signals

that are intended for ZF post-processing at other BSs b̂, where b̂ 	= b. The third

term (n) is a R × 1 column vector representing circularly symmetric AWGN with a

variance of σ2
0 for each element.

In (5.1), pkm denotes the power allocated to the mth antenna of user k and Dbk

is the deterministic signal attenuation normalized as 1/dαbk, where dbk is the distance

between BS b and user k and α is the propagation factor. The hbkm is a column vector

of size R× 1 representing the Rayleigh fading channel(s) from the mth transmitting
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antenna of user k to the array of antennas at the bth BS. abkm and qbk̂m̂ are two

indicator functions, such that abkm is defined as:

abkm =

⎧⎨⎩ 1 if {k,m} ∈ Ωb

0 otherwise
(5.2)

where Ωb is a set that holds all the antenna/user element indexes {k,m} that are

assigned to BS b, and qbk̂m̂ indexes users contributing to ICI:

qbk̂m̂ =

⎧⎨⎩ 1 if {k̂, m̂} ∈ Ωb̂, ∀b̂ 	= b

0 otherwise
(5.3)

5.2 Capacity Analysis

This section rederives the formulas presented in (4.5) and (4.13), generalizing them

for the system model with multiple antennas at the MSs and multiple BSs, that is

investigated in this chapter. Consideration is still given to the two-layer decoding

process described originally in Section 4.2. The first layer implements the MU de-

tection of all user signals, and is performed at the BS. The second layer implements

diversity combining as a form of CR at the WC. These derivations for capacities of

users being handled by a single BS or by multiple BSs are essential for implementing

Newton’s method for power allocation, which is used in this chapter as described in

Section 5.3

5.2.1 Multiuser Transmissions

When multiple stations transmit to a common destination simultaneously using the

same frequency band, each signal could interfere with the others, resulting in irretriev-

able data. Therefore, ZF is utilized to separate the mixed signals, based on acquiring

CSI at the receiver. Thus, in order to retrieve the original signal sent by the mth
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antenna of MS k, the decoder of BS b multiplies (5.1) by Tbkm:

s̄km = Tbkmabkm
√
pkmDbkhbkmskm

+Tbkm

(∑
∀k̄,m̄ abk̄m̄

√
pk̄m̄Dbk̄hbk̄m̄sk̄m̄

)
+Tbkm

(∑
∀k̂,m̂ qbk̂m̂

√
pk̂m̂Dbk̂hbk̂m̂sk̂m̂

)
+Tbkmn

(5.4)

where Tbkm is the multiuser ZF decoding matrix with size 1×R. In order to recover

data of interest and to cancel intra-cell interference:

Tbkmhbkm = 1

Tbkmhbk̄m̄ = 0
(5.5)

where the diacritical mark (¯ ) refers to all antennas/users that are assigned to BS b,

excluding the {k,m} transmitter/antenna, i.e., all the transmissions that are causing

intra-cell interference. In order to obtain a non-zero solution for Tbkm in (5.5), the

following condition must be met:
∑

k,m abkm ≤ R. As a result, (5.4) can be rewritten

as:
s̄km = abkm

√
pkmDbkskm

+Tbkm

(∑
∀k̂,m̂ qbk̂m̂

√
pk̂m̂Dbk̂hbk̂m̂sk̂m̂

)
+Tbkmn

(5.6)

Henceforth, the MAI (actually the ICI) affecting all resolved signals at BS b is denoted

as:

Ψb =
∑
∀k̂,m̂

qbk̂m̂
√
pk̂m̂Dbk̂hbk̂m̂sk̂m̂ + n (5.7)

The variance of the enhanced noise and interference affecting the signal transmitted

by the mth antenna of the kth MS is given by:

Var(TbkmΨb) = E[Tbkmnn
HTH

bkm] + E[|Tbkm

∑
∀k̂,m̂ qbk̂m̂

√
pk̂m̂Dbk̂hbk̂m̂sk̂m̂|2]

= |TbkmT
H
bkm|σ2

0 +
∑

∀k̂,m̂ |Tbkmqbk̂m̂
√
pk̂m̂Dbk̂hbk̂m̂|2

(5.8)
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Therefore, the capacity of the link between the mth BS and the antenna/user indi-

cated by (km) is:

Cbkm = log2

(
1 +

abkmD2
bkpkm

|σ2
0TbkmTH

bkm|+∑
∀k̂,m̂ |Tbkmq

bk̂m̂
√
p
k̂m̂

D
bk̂
h
bk̂m̂

|2
)

(5.9)

5.2.2 Cooperative Reception

In certain MS position scenarios, one antenna/MS could be assigned to multiple BSs

in a single time slot. Therefore, a special decoding operation must be considered to

combine multiple replicas of the same signal efficiently. To this end, CR is applied

with diversity combining, where the multiple received signals are weighted with an

appropriately chosen coefficient before a decision is made for improving the reliability

of the user’s data. This process is performed at the WC, after forwarding of the soft

decoded data from the ZF post-processing that is done at the BSs. Thus, from (5.6),

the combined received signals from the multiple BSs can be written as:

s̄km =
∑

∀b wbkm

(
abkm

√
pkmDbkskm

+Tbkm

∑
k̂m̂ qbk̂m̂

√
pk̂m̂Dbk̂hbk̂m̂sk̂m̂ +Tbkmn

)
=

√
pkmskm

∑
∀b (wbkmabkmDbk)

+
∑

b wbkmTbkmΨb

(5.10)

where wbkm is the combining weighted coefficient for the signal from BS b. Therefore,

from (5.10), the SINR is expressed as:

SINRkm =
pk |

∑
∀b wbkmDbk|2

E[|∑∀b wbkmTbkmΨb|2]
(5.11)
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where the variance of the combined enhanced noise and interference is given by:

Var(
∑

∀b wbkmTbkmΨb)

=
∑

∀b w
2
bkmE[Tbkmnn

HTH
bkm] + E[|∑∀b wbkmTbkm

∑
∀k̂,m̂ abk̂m

√
pk̂m̂Dbk̂hbk̂m̂|2]

=
∑

∀b w
2
bkmσ

2
0|TbkmT

H
bkm|+

∑
∀k̂,m̂ pk̂m̂|

∑
∀b wbkmTbkmqbk̂m̂Dbk̂hbk̂m̂|2

= Vkm

(5.12)

Hence, applying (5.12) in (5.11) yields:

SINRkm =
pk|∑∀b wbkmDbk|2

∑
∀b w

2
bkmσ2

0 |TbkmTH
bkm|+∑

∀k̂,m̂ pk̂m̂|∑∀b wbkmTbkmqbk̂m̂Dbk̂hbk̂m̂|2 (5.13)

As a result, after decoding at the WC through signal combining, the user data

rate is:

Ckm=log2

(
1+

pk |
∑

∀b wbkmabkmDbk|2∑
∀b w

2
bkmabkmσ

2
0|TbkmTH

bkm|+
∑

∀k̂,m̂pk̂m̂|
∑

∀b wbkmTbkmabkmqbk̂m̂Dbk̂hbk̂m̂|2
)

(5.14)

Assuming equal gain combining CR, the combining coefficients wbkm = 1. In order to

simplify the presentation, these coefficients are not considered further in this chapter.

A comparison of (5.9) with (5.14) shows that the latter is a more general equation.

Therefore, (5.14) could be used to calculate the total system sum rate as:

Ctotal =
∑
∀k,m

Ckm (5.15)

5.3 Power Allocation

In this section, Newton’s optimization method is utilized for power allocation in order

to maximize the total system sum rate, as in (5.15), where the power vector variable

represents the invested power for all transmitting antennas from all active MSs. For a

given assignment of users/antennas to the BS(s), this method uses an iterative search
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to find the power allocation vector P to optimize Ctotal, as follows:

Pi+1 = Pi − [∇2Ctotal(Pi)]
−1∇Ctotal(Pi) (5.16)

where ∇Ctotal(Pi) and ∇2Ctotal(Pi) are the gradient and the Hessian matrices, re-

spectively. Pi is a column vector, with elements {p11, p12, . . . , pKMK
} representing

the power assigned to potentially active users/antennas. As usual, i denotes the iter-

ation index as Newton’s method attempts to converge toward power vector/allocation

P, as the stationary (min or max) point for the total sum rate Ctotal. The gradient

matrix elements are given by:

∇Ctotal =
[∂Ctotal

∂p11

∂Ctotal

∂p12
· · · ∂Ctotal

∂pKM

]′
(5.17)

where (′) represents the matrix transpose operator. Each element in (5.17) can be

expressed as:
∂Ctotal

∂pkm
=

∂Ckm

∂pkm
+

∂
( ∑

∀k̂,m̂ Ck̂m̂

)
∂pkm

(5.18)

where the partial derivative term is separated into two parts. The first part, which

considers taking the derivative with respect to pkm over its own user/antenna (k,m)

capacity Ckm, is calculated as:

∂Ckm

∂pkm
= 1

ln (2)

|∑∀b abkmDbk|2
Vkm+pkm|∑∀b abkmDbk|2 = Akm (5.19)

In (5.18), the second part represents capacity affected by ICI transmissions:

∂
(∑

∀k̂,m̂ Ck̂m̂

)
∂pkm

= − 1
ln (2)

∑
∀k̂,m̂

pk̂m̂|∑∀b̂ ab̂k̂m̂Db̂k̂|2 ∂V
k̂m̂

∂pkm

(V 2
k̂m̂

+p
k̂m̂|∑∀b̂ ab̂k̂m̂D

b̂k̂|2Vk̂m̂
)

= Bkm

(5.20)

where ln(X) is the natural logarithm of X, and ∂Vk̂m̂

∂pkm
is defined as:

∂V
k̂m̂

∂pkm
= |∑b̂ ab̂k̂m̂qb̂kmDb̂kTb̂k̂m̂hb̂km|2 (5.21)
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In (5.18), only two terms are included when calculating the derivative, as the deriva-

tive with respect to pkm of the capacity cost function due to intra-cell interference is

always equal to zero
(∂Ck̄m̄

∂pkm
= 0

)
, where {k,m}, {k̄, m̄} ∈ Ωb. This is due to the fact

that the intra-cell interference is canceled by the ZF post-processing approach.

For the Hessian matrix:

∇2Ctotal =

⎡⎢⎢⎢⎢⎢⎢⎣

∂2Ctotal

∂p211

∂2Ctotal

∂p11∂p12
· · · ∂2Ctotal

∂p11∂pKM

∂2Ctotal

∂p12∂p11

∂2Ctotal

∂2p12
· · · ∂2Ctotal

∂p12∂pKM

...
... . . . ...

∂2Ctotal

∂pKM∂p11

∂2Ctotal

∂pKM∂p12
· · · ∂2Ctotal

∂2pKM

⎤⎥⎥⎥⎥⎥⎥⎦ (5.22)

equations are first derived for the second order partial derivatives identified as the

diagonal elements, where:

∂2Ctotal

∂p2km
=

∂2Ckm

∂p2km
+

∂2(
∑

∀k̂,m̂ Ck̂m̂)

∂p2km
(5.23)

Similarly to (5.18), (5.23) is divided into two partial derivatives. The first part,

which takes the second order derivative with respect to the targeted power invested

by antenna m of MS k (pkm) for its own contribution to the total sum rate, is given

by:
∂2Ckm

∂p2km
= ∂Akm

∂pkm
= − 1

ln (2)

|∑∀b abkmDbk|4
(Vkm+pkm|∑∀b abkmDbk|2)2 (5.24)

The second part of (5.23) is the partial derivative for the contribution to the total

sum rate of the MSs that cause ICI with respect to {k,m}:
∂2(

∑
∀k̂,m̂ Ck̂m̂)

∂p2km

= ∂Bkm

∂pkm
= 1

ln (2)

∑
∀k̂,m̂

p
k̂m̂|∑∀b̂ ab̂k̂m̂D

b̂k̂|2
(

∂V
k̂m̂

∂pkm

)2

(2V
k̂m̂

+p
k̂m̂|∑∀b̂ ab̂k̂m̂D

b̂k̂|2)
(V 2

k̂m̂
+pk̂m̂|∑∀b̂ ab̂k̂m̂Db̂k̂|2Vk̂m̂)2

(5.25)

The result arrived at in (5.25) can be compacted by taking the derivative of the

denominator of (5.20) only, where the derivative of the numerator is zero. This is due

to the fact that ∂2Vk̂m̂

∂pkm2 = 0.
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Equations are next derived for the non-diagonal elements of (5.22) that illustrate

the mixed second partial derivatives. They are expressed as:

∂2Ctotal

∂pkm∂pk̇ṁ
=

∂2Ckm

∂pkm∂pk̇ṁ
+

∂2Ck̇ṁ

∂pkm∂pk̇ṁ
+

∂2
( ∑

∀k̂,m̂ Ck̂m̂

)
∂pkm∂pk̇ṁ

(5.26)

assuming that {k̇, ṁ} ∈ Ωḃ and {k̂, m̂} /∈ (Ωb ∪ Ωḃ). The first part of (5.26) is the

mixed partial derivative over Ckm, where:

∂2Ckm

∂pkm∂pk̇ṁ
=

⎧⎪⎨⎪⎩ − 1
ln (2)

|∑∀b abkmDbk|2
(

∂Vkm
∂p

k̇ṁ

)
(Vkm+pkm|∑∀b abkmDbk|2)2 if {k̇, ṁ} /∈ Ωb

0 if {k̇, ṁ} ∈ Ωb

(5.27)

The second part of (5.26) is responsible for taking the derivative of Ck̇ṁ with

respect to the mixed partial variables pkm and pk̇ṁ. The derivative would have the

same results and conditions, according to Schwarz’s theorem. Hence, (5.27) becomes:

∂2Ck̇ṁ

∂pkm∂pk̇ṁ
=

⎧⎪⎨⎪⎩ − 1
ln (2)

|∑∀ḃ aḃk̇ṁDk̇ṁ|2
(

∂V
k̇ṁ

∂pkm

)
(Vk̇ṁ+pk̇ṁ|∑∀ḃ aḃk̇ṁDk̇ṁ|2)2 if {k̇, ṁ} /∈ Ωb

0 if {k̇, ṁ} ∈ Ωb

(5.28)

Finally, the last part of (5.26) derives the second derivative for the performance of

the active antennas/users that are not assigned to BS b and ḃ {k̂, m̂ /∈ (Ωb ∪ Ωḃ)}:

∂2Ck̂m̂

∂pkm∂pk̇ṁ
= 1

ln (2)

p
k̂m̂|∑∀b̂ ab̂k̂m̂D

b̂k̂|2
(

∂V
k̂m̂

∂pkm

)(
∂V

k̂m̂
∂p

k̇ṁ

)
(2V

k̂m̂
+p

k̂m̂|∑∀b̂ ab̂k̂m̂D
b̂k̂|2)

(V 2
k̂m̂

+pk̂m̂|∑∀b̂ ab̂k̂m̂Db̂k̂|2Vk̂m̂)2
(5.29)

To summarize, in this method (5.17) and (5.22) are substituted into (5.16), and

the procedure is iterated until pkm values converge.

5.3.1 Power Optimization Results

Figure 5.2 analyzes the convergence of Newton’s method, with iterative steps being

modified versions of (5.16) and the corresponding analysis in Section 5.3. Specifically,

the total sum rate calculated according to (5.15) based on (5.9) and (5.14) is examined
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as a function of the iterative index i. The impact of the choice of the initial pkm values

(the “initial guess”) is also considered. In the simulations, there are three BSs, where

each BS has three antennas. In addition, ten MSs (K̈ = 10) are randomly distributed,

and each MS is equipped with three antennas (M̈ = 3). The objective function (Ctotal

in (5.15)) is not concave or uni-modal with respect to P, therefore, implementing New-

ton’s method for Ctotal based on the direction proposed in (5.16) does not necessarily

result in an optimized solution (the global maximum). Equation (5.16) was modified

by adjusting the iteration steps for maximizing the cost function in (5.15), with the

original step being controlled by the varying [|∇2Ctotal(Pi)|−1]. With these modified

steps, it was ensured that improved convergence was achieved. First, it was decided

to replace (5.16) in the modified iterative search with:

Pi+1 = Pi + |∇2Ctotal(Pi)|−1∇Ctotal(Pi) (5.30)

The convergence results for this iterative search are illustrated in Fig. 5.2, where the

curves corresponding to an initial power (p0) for all active antennas of 0 or pmax are

shown in green or blue, respectively. (pmax is the maximum power for any antenna

in the system, with pmax = 30dB). The non-diagonal elements for ∇2Ctotal in (5.30)

are set to zero and discarded. This is done to reduce the complexity when calculating

the inverse, without affecting the performance of the method. In the second modified

search, (5.16) was replaced with:

Pi+1 = Pi + |∇2Ctotal(Pi)
−1|∇Ctotal(Pi) (5.31)

Here all of the elements of the Hessian matrix are included. The results for this search

procedure are shown in pink in Fig. 5.2, where the initial guess for the transmission

power is set to pmin = 0. A comparison of the performance of the different search

procedures plotted in green and pink shows that (5.30) converges somewhat more

slowly but to a higher value, for the same initial conditions. Setting p0 to pmax
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for (5.30), indicated in blue, results in faster convergence, with minimal performance

improvement for the first few iterations. Therefore, (5.30) with p0 = pmax is employed

in all other simulations in this chapter, when Newton’s method is used to allocate

power for different possible combinations of antennas/users.
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Figure 5.2: Convergence of modified Newton’s method, for power allocation maxi-
mizing the total sum rate.

5.4 Radio Resource Management

The proposed resource allocation for the system under study in this chapter proceeds

in three stages, and is summarized in Figure 5.3. The first two stages, highlighted in

red and green, select the initial combinations of at most (K = B×R) users/antennas

as potential active transmitters, based on the channel conditions (including both

deterministic signal attenuation and Rayleigh fading gains). It is stipulated that these
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True

End

Start

False

True

False

Calculate ∇Ctotal∇2Ctotal with respect to P

Set all pkm to p0 for all K MSs

Update P according to (16)

Ωb = (Ωb \ {k,m})∀pkm = 0

∀{k,m}
if pkm > pmax => pkm = pmax

if pkm < 0 => pkm = 0

For all MSs calculate gbkm

Add the indexes of the R
highset MS based on wbkm in Ωb

Ωb = (Ωb \ {k,m}) ∩ {k̂, m̂}

For BS b identify {k,m} and {k̂, m̂}
max∀{k,m}∈Ωb

(dbkm)
min∀{k̂,m̂}∈Ω

b̂
:b �=b(dbk̂m̂)

P converge

dbkm > dbk̂m̂

Figure 5.3: The proposed RRM algorithm.

combinations are the most likely to result in a maximum total system sum rate. The

last stage, highlighted in blue, improves the total system sum rate in (5.15) by using

power allocations for a given set of users/antennas from the initial selection. This is
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achieved by employing the modified Newton’s optimization method presented in the

previous section, in order to find the best transmitting power per active antenna, so

as to increase the total system capacity.

The procedures included in the red and green areas of Fig. 5.3 represent the

user/antenna spatial coordination that allocates the available (B×R) spatial streams

to the MSs, using a simplified, efficient approach. To this end, the spatial coordination

is divided into two stages. The first stage, shown in the red area of Fig. 5.3, could be

implemented independently for every BS, and would include the following steps:

1. The weight function gbkm for every potentially active antenna is calculated,

where

gbkm =
Dbkmhbkm∑

∀b̂|b̂ �=b Db̂kmhb̂km

(5.32)

2. Based on the highest values calculated in (5.32), R transmitters are selected for

each BS, and their indexes {k,m} are added to the initial set of active antennas

(Ωb).

3. After the initial set of active users/antennas (Ωb) is established, the information

can either be distributed among the BSs, or sent directly to the WC for further

processing.

In the first stage, there is a finite probability that multiple BSs could select a common

user/antenna. When this happens, such users/antennas are considered for CR.

The second stage of the algorithm, represented by the green area in Fig. 5.3, is

responsible for removing from set Ωb users/antennas that would have a low capacity

due to ICI. This stage could have distributed implementation, and could be executed

at every BS instead of relying on the WC. The algorithm proceeds as follows:

4. Find the {k,m} for BS b that has the weakest signal strength based on the

attenuation factor.
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5. Find the {k̂, m̂} that has the highest interference level for the spatial streams

associated with BS b.

6. If user k̂ is closer than k to BS b, then remove {k,m} from Ωb, substitute {k̂, m̂},
and return to step 4.

Therefore, the users/antennas that are selected by more then one BS are flagged, and

their soft decoded information is forwarded to the WC for diversity combining.

The third stage, shown in the blue area of Fig. 5.3, utilizes the iterative modifi-

cation of Newton’s method to find power allocation vectors optimizing the total sum

rate for the initial selection of users/antennas, with two main objectives. The first

objective is to maximize the total system sum rate, based on adjusting the power for

all users/antennas that are included in all Ωb. The second objective is to deactivate

temporarily the users/antennas that are degrading the overall system performance,

by setting their power to zero. This stage has the following steps:

7. For all {k,m} selected from the previous stages, set the power to an initial value

P0. Based on an examination of a few initial power vector values, it was found

that setting the value to the maximum available power is to be recommended.

8. Calculate ∇Ctotal and ∇2Ctoatl, based on (5.17) and (5.22), respectively.

9. For the ith iteration, find Pi+1 as shown in (5.30).

10. The resulting optimized power values for all {k,m} potentially active transmit-

ters are examined. If they exceed the power range, they are then set to the

boundaries.

11. If the objective function does not converge, go to step 8.

12. The users/antennas exceeding the minimum boundary are temporarily sup-

pressed and removed from the sets of active users/antennas.
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5.5 Simulation Results

In this section, analytical and simulation results are presented in order to investigate

the performance of the proposed resource management algorithms for the multi-cell

MU-MIMO model considered. The performance of three algorithms is evaluated.

The first algorithm (referred to in the figures and tables as Alg. 1) implements the

entire scheduling scheme as presented in Figure 5.3. The second algorithm (Alg. 2)

considers two stages only, omitting the second stage (represented by the green area

in Fig. 5.3). In addition, a third scheduling algorithm (Alg. 3) is implemented, where

all of the decisions and resource management are performed at the WC. It should

also be noted that CR is not implemented in Alg. 3, so that it can be used as a

benchmark for the first two scheduling algorithms.

In all simulations, three BSs (B = 3) and K̈ randomly distributed MSs are placed

in a 25 × 25 area. The BSs are equally spaced from each other and from the center

of the area. The BSs are always equipped with 3 antennas (R = 3), while at the MSs

the number of antennas varies in different simulations, as noted in the presentation

of the results/figures. The simulation results are always averaged over a thousand

realizations of channel conditions and different MS positions, unless otherwise stated.

Table 5.1 shows the percentage of common assignments of selected users/antennas

Table 5.1: Percentage occurrence of similar combinations.

M̈ = 1 M̈ = 2 M̈ = 3
Alg. 1 vs Alg. 2 65% 31 % 49%
Alg. 1 vs Alg. 3 2.5% 30.5 % 49%
Alg. 2 vs Alg. 3 49% 98 % 100%

to particular BS combinations, for all three algorithms. The columns present the

results for three different cases, based on the number of available antennas at the MSs.

Increasing the number of antennas while keeping the number of MSs fixed (K̈ = 10)
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increases the number of possible user/antenna combination choices. From the table

it can be seen that reducing the number of antennas results in higher discrepancies

in the selection of common combinations of users/antennas. This is due to the fact

that higher numbers of antennas provide a greater number of available combinations,

which in turn reduces the occurrence of CR, leading to minimum variation between

the algorithms. For this reason, the focus is first on evaluating the three algorithms

when a low number of antennas is used at the MSs.

Fig. 5.4, compares the three algorithms in terms of convergence in finding the
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Figure 5.4: The convergence rate of different scheduling schemes.

maximum total sum rate, where K̈ = 10 and M̈ = 1. The results for algorithms 1, 2

and 3 are plotted in green, blue and black, respectively. Although Alg. 1 exhibits the

highest total sum rate for the first few iterations, the total sum rate levels off at a

low value. Alg. 2 and 3 have very similar results, with the former converging faster.

This means that if the power is not optimized for allocation among the transmitting
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antennas, then Alg. 1 is preferable. However, Alg. 2 could yield a better performance

when Newton’s method is applied.

Figures 5.5 and 5.6 present the total system sum rate and power savings versus the
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Figure 5.5: The total system sum rate for different antenna selection approaches, with
K̈ = 10 M̈ = 1.

maximum available transmission power, for ten randomly distributed MSs (K̈ = 10)

and one antenna per MS (M̈ = 1). The power savings are determined in relation to

the maximum power in the system. The results for algorithms 1, 2 and 3 are plotted

in green, blue and black, respectively. In addition, a fourth system is implemented,

shown in red, which illustrates the performance of a system that does not utilize a

power allocation method; hence, maximum power is always used at all transmitters.

Figure 5.5 shows that Alg. 1 has the best total sum rate performance when compared

to all the other algorithms, and Figure 5.6 corroborates that Alg. 1 yields the greatest

power savings. This is due to the fact that at a low M̈ , there are few antennas

from which to select, which reduces the advantage of performing spatial coordination.
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Figure 5.6: Power savings as compared with the fixed power approach, for K̈ = 10
M̈ = 1.

This is addressed by utilizing the proposed joint algorithm (Alg. 3) which focuses

on reducing the number of users that are overpowered by ICI, noise enhancement

and partial CR. In Alg. 2, the use of CR is lower than in Alg. 1, and CR is not

implemented in Alg. 3. Hence, when the performance of Alg. 3 is compared to that

of Alg. 1, an improvement of ∼ 10% is seen in the total system sum rate, and 170%

in power savings.

Next, Figs. 5.7 and 5.8 present the results for capacity and power savings, for

simulations with ten MSs equipped with two antennas (M̈ = 2) each. It can be seen

from Fig. 5.7 that when an extra antenna is added to each MS, all of the proposed

algorithms have a similar total sum rate performance, which exceeds that of the fixed

power system. Figure 5.8 shows that all of the proposed algorithms achieve power

savings, in comparison to the system with fixed power. Moreover, Alg. 1 provides

the greatest power savings of all algorithms. This is achieved due to the increased
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Figure 5.7: The total system sum rate for different antenna selection approaches, with
K̈ = 10 M̈ = 2.
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Figure 5.8: Power savings as compared with the fixed power approach, for K̈ = 10
M̈ = 2.
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chance of selecting an antenna with transmissions to be received by multiple BSs,

which in turn reduces the number of transmitting users. Without CR, this would

reduce the total sum rate, which is not the case here. It is important to emphasize

that reducing the number of transmitters did not reduce the total system data rate,

not only because of CR, but also because of the deployment of power allocation.

Finally, Figs. 5.9 and 5.10 present the results for the total system sum rate and

power savings, with three antennas (M̈ = 3) deployed per MS. A comparison of
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Figure 5.9: The total system sum rate for different antenna selection approaches, with
K̈ = 10 M̈ = 3.

the total sum rate performance of systems using the proposed power optimization

with that of the system using fixed power, as seen in Fig. 5.9, shows that their

performance increases linearly with an increase in maximum available power. In

contrast, the performance of the system with fixed power stabilizes at a constant

value after reaching a power of 25dB. This is due to the low number of active
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antennas in the latter system that are degrading the total sum rate performance. In

the proposed schemes, such situations are avoided by deploying Newton’s method to

deactivate those transmissions temporarily. With regard to the systems that utilize

Newton’s method as part of the scheduling algorithm, Fig. 5.9 shows very similar

results for the performance of Alg. 2 and Alg. 3. This is because, as demonstrated in

Table 5.1, both methods yield an identical selection of user/antenna combinations at

M̈ = 3.

Figure 5.10 shows the power savings gained by the three proposed algorithms

in comparison to the scheduling algorithm that assigns fixed power to all active

users/antennas. From the figure, all three algorithms are able to provide power sav-

ings of 67% at high power levels, in comparison to the fixed power scheme. However,

Alg. 1 exhibits greater power savings than the other two algorithms; at a low pmax
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Figure 5.10: Power savings as compared with the fixed power approach, for K̈ = 10
M̈ = 3.
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value, Alg. 1 yields 50% more power savings than Alg. 2 or 3.

Table 5.2 indicates how many combinations of users/antennas the algorithms need

to examine, which reflects the complexity of these algorithms. The two columns la-

beled BS and WC show the complexity for the indicated hosts, whereas the last

column presents the total system complexity. The complexity associated with New-

Table 5.2: Algorithm complexity

BS WC Total
Alg. 1

(
KM
R

)
+R None B(

(
KM
R

)
+R)

Alg. 2
(
KM
R

)
None B(

(
KM
R

)
)

Alg. 3 None (KM)!
(KM−RB)!R!

(KM)!
(KM−RB)!R!

ton’s method is not included here, as all three algorithms are equally affected by

this approach. However, the power optimization method in Alg. 1 requires fewer

calculations because it makes greater use of CR. Alg. 1 and 2 are performed at each

BS independently, therefore, the total system complexity is scaled only by B. How-

ever, the scheduling operations of Alg. 3 (at different BSs) are dependent upon one

another, hence, the scheduling is performed at a centralized location, the WC. This

results in a greater number of combinations to be analyzed, and a less efficient system.

Figure 5.11 shows the semi-analytical results for the average bit error rate (BER)

as a function of the maximum available power at the transmitter. This analysis con-

siders implementing the same system model presented earlier, but with the addition

of an iterative interference canceler (IIC) processed at the WC for all received sig-

nals. The solid and dotted lines represent the system models with and without the

IIC, respectively, for all system models. With fixed power, BER performance would

converge at a high power per antenna to BER 10−1; this value is improved to 10−2

when the IIC is utilized in this system. The two proposed algorithms, Alg. 1 and

Alg. 2, can achieve a BER performance comparable to that of the fixed power system

without the great complexity added by the IIC. Performance is significantly improved
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Figure 5.11: BER performance versus maximum available power.

when the IIC is integrated with the two proposed algorithms. A comparison of Alg.

1 and Alg. 2 shows that they have a very similar performance when the IIC is used,

however Alg. 1 performs slightly better than Alg. 2 when the IIC is not used.

In conclusion, Alg. 1 exhibited good performance results at all levels of antenna

density. The simulation results show that Alg. 1 always provided the greatest trans-

mission power savings, while total system capacity decreased marginally at high M̈

values. Furthermore, the proposed schemes provide a less complex approach, with a

performance that equals or even exceeds that of the IIC-based scheme with equal

power allocation. In terms of BER performance, all of the proposed algorithms

achieved similar results, which can be improved if the IIC is employed.
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5.6 Summary

In this chapter, the design and performance analysis of a joint scheduling algorithm

and power allocation were presented for uplink MU-MIMO transmissions in a multi-

cell topology. The ZF method was used to resolve and cancel completely the intra-cell

interference. The CR approach and Newton’s method were adopted for the system at

hand and applied in the proposed scheduling algorithms in order to reduce the impact

of ICI. Newton’s method of optimization assisted in the allocation of power among all

transmit antennas, with certain power constraints. In addition, the simulation results

illustrated that the proposed algorithms scale well with increasing density of anten-

nas/users, resulting in high performance and good power savings. The complexity of

the proposed algorithms was also characterized.



Chapter 6

Conclusions and Future Work

The primary objective of this dissertation was to design and implement radio resource

management algorithms for the uplink transmission in MU-MIMO systems, with the

aim of improving the total system data rate. In this chapter, the dissertation con-

tributions and conclusions are presented in Section 6.1, followed by suggestions for

future work related to this field in Section 6.2.

6.1 Dissertation Contributions and Summary

The following are the main contributions of this work:

1. An analysis of ZF-based detection methods is performed for MU-MIMO systems on

the uplink in single-cell and multi-cell settings. Because the proposed systems do

not require additional processing at the MSs, system complexity is reduced. In

addition, a spatial allocation algorithm is integrated into the MU-MIMO system

to demonstrate the advantage of performing radio resource and interference

management. Specifically, the effects of noise enhancement intrinsic to ZF-type

processing are controlled. The systems implemented achieve better sum rate and

97
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BER performance than is the case with conventional systems, as corroborated

in the simulations.

2. Three advanced spatial allocation algorithms are proposed for a single-cell envi-

ronment. The first two algorithms are based on a rate-adaptive approach; the

second algorithm adopts a more complex solution to achieve a higher total sys-

tem sum rate, by including noise enhancement effects as a decision factor. The

third algorithm, which is a hybrid rate- and load-adaptive algorithm, provides

better buffer management and a higher dispatch rate. Moreover, the water-

filling principle for power allocation is employed with all three algorithms to

distribute power along the spatial streams, in order to optimize the total sum

rate. In particular, in the power allocation and antenna selection strategies,

effects are incorporated that are specific to the different signal processing in the

detection algorithms.

3. Development and analysis are presented for a proposed uplink MU-MIMO multi-

cell system with ZF detection coordinated among the BSs. This is achieved by

adopting the CR method and applying it to a limited number of MSs. As a

result, a two-layer decoder is introduced, where the first layer performs the MU

detection for all signals received at the BS. The second layer implements the

diversity combining method at the WC only for signals that are intended to be

received via cooperation of the BSs. This helps to reduce the global ICI level,

while still maintaining low system complexity. Finally, SIC is integrated with

the CR method to reduce ICI effects for signals that are processed jointly, with

the objective of attaining higher system capacity.

4. A distributed radio resource management algorithm, which incorporates spatial

coordination and a power allocation method, is presented for a multi-cell MU-

MIMO system. The antenna selection algorithm utilizes the CR method, where
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multiple BSs can select and decode from common transmitting antennas. In

addition, Newton’s method is employed to help reduce the ICI by (i) allocating

an optimum power value to each transmitting user, and (ii) disabling antennas

which contribute excessively to interference effects.

The main chapters of this dissertation can be summarized as follows:

Chapter 2 proposes two ZF decoders to perform MU detection for the uplink

transmissions in a MU-MIMO system. The two decoders are comprised of ZF as

a stand-alone, and ZF integrated with SVD. While neither model requires any MU

processing on the MS side, the BS is required to have full CSI in order to perform

the spatial de-multiplexing. This work proposes a solution to overcome problems in

inverting the matrix ζk, which is necessary in order to find a suitable decoder for

ZF-SVD. This problem does not occur on the downlink, and the proposed solution

is unique to this dissertation. Specifically, the columns of the underlying matrix

are manipulated to create a square matrix that is invertible, without affecting the

operation or the performance of the system.

A spatial coordination algorithm is developed where the centralized scheduler

decides when an antenna should be active or temporarily disabled, based on channel

gains. In addition, the scheduler limits the number of active transmitting users, to

comply with ZF requirements. When the ZF and ZF-SVD approaches are tested

in simulations, the results show no improvement over conventional systems such as

the SU-MIMO. However, when the MU-MIMO system is integrated with a spatial

coordination algorithm, a saving of 1 dB is achieved at BER 10−3. In addition, the

simulation results show an increase in the total system sum rate.

Chapter 3 introduces three advanced spatial coordination algorithms, where the

MU detection performed for all three algorithms is based on the ZF-SVD. When as-

signing spatial (parallel) channels, the proposed algorithms take into consideration

the dependency among the utilized channel gains. Here it was not possible to benefit
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from the large body of work concerning resource allocation for OFDMA, as this prob-

lem does not occur in OFDMA systems. This is because in OFDMA, each signal is

transmitted in a dedicated band without affecting subcarrier gains. The algorithms

are divided into multiple stages, where each stage considers a limited number of an-

tennas per MS and analyzes the corresponding effects. The first proposed algorithm

(BC-SpG) is the least complex, as it only considers the spatial gains in its decisions;

while the second algorithm (BC-SpG/NE) is a more intelligent scheduler that consid-

ers channel gains and noise enhancement when selecting the transmitting antennas.

The third algorithm (FRLA) integrates the BC-SpG/NE and a load-adaptive algo-

rithm to achieve better control of the MS buffers. In addition, specialized water-filling

algorithms are applied for all of the systems developed, in order to allocate the power

for all active antennas.

The initial semi-analytical result shows a degradation in system performance when

basic ZF detection algorithms are deployed on the uplink, as compared with downlink

transmissions. This is due to noise enhancement in ZF uplink detection in MU-

MIMO systems, which does not occur in downlink transmissions. The deployment

of BC-SpG/NE yields a significant increase in performance, due to the incorporation

of noise enhancement effects in the process of selecting antennas in the first stage.

The division of the selection process into stages also results in reduced algorithm

complexity. The buffer states are analyzed subsequently in the proposed MU-MIMO

system with randomly arriving packets. The simulation results show that the FRLA

algorithm yields the highest performance in terms of total system throughput. Finally,

the proposed algorithm is compared with a brute-force approach for selecting the

antennas, in order to illustrate the complexity of the different schemes.

Chapter 4 focuses on developing a system model that is applicable to multi-cell

MU-MIMO, with the aim of reducing ICI effects with minimum complexity. This

chapter begins by investigating the performance of a double-cell system and creating
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a two-layer decoder. The first layer, that affects all MSs, performs MU detection

to cancel intra-cell interference fully; this is applied at the BS level. The second

layer is executed only on a few received signals, that are intended to be cooperatively

received by multiple BSs through the WC. Specifically, the WC performs diversity

combining of signals from different BSs, handling common users that do not have

reliable reception in the first stage. The inclusion of CR assists in controlling the

ICI level for all signals received. Furthermore, the diversity combining method is

integrated with the SIC algorithm to achieve further reduction of the ICI.

A spatial coordination algorithm is proposed, which allows multiple BSs to select

a common transmitting antenna to utilize the CR method. In addition, the algorithm

is designed to be interference-aware, where the scheduler selects the antennas/users

that have good channel gains and cause minimum interference effects. The simulation

results show good capacity improvement in comparison to other systems that do not

utilize the CR method.

Chapter 5 advances the development of the radio resource management algorithm

proposed in Chapter 4. This is accomplished by integrating into the scheme from

Chapter 4 (i) an optimization algorithm to improve antenna selection, and (ii) an

iterative power allocation mechanism. The optimization algorithm employed is New-

ton’s method, which has the advantage of relatively low computational complexity

and fast convergence times, as illustrated in [32]. This chapter investigates the best

direction function which complements the optimization of the original cost function,

and also considers the best initial values that can be used to achieve faster conver-

gence and to avoid local minima. This approach improves the scheduling algorithm

by temporarily deactivating a few transmitting antennas that contribute excessively

to interference, and by working with MSs that have good channel gains in order to

improve the total system sum rate.
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Two algorithms are proposed with different levels of cooperative reception and cor-

responding complexity for distributing different CSI and data over the backhaul links.

The simulation results indicate a tradeoff between total system capacity and power

savings, however both proposed algorithms show an improvement in performance and

complexity in comparison with a competing algorithm.

6.2 Suggested Future Work

In this section, the following related topics are suggested for future research:

1. Imperfect CSI Knowledge

This work depends on the assumption of global CSI availability at the BSs for

successful calculation of the ZF decoding matrixes. In addition, instantaneous

knowledge of global CSI is considered at the scheduler to ensure proper eval-

uation of competing MSs and to make decisions based on the spatial gains.

However, in real-world applications these assumption are difficult to fulfill due

to imperfect estimation of the CSI and continuous changes in channel condi-

tions. Therefore, research is required in order to understand the effects of delay

and partial channel estimation.

2. Massive MIMO systems

Massive MIMO systems with a very large number of antennas at the BSs are

currently being studied as a potential future solution for wireless transmissions.

From a theoretical point of view, the bandwidth efficiency can be increased

simply by increasing the array of antennas at the BSs. The proposed work can

be implemented in such applications, however, extensive research is required to

test the scalability of the algorithms presented here when applied to a massive

MIMO model. In addition, interference effects must be carefully investigated,
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as ICI levels can be expected to increase substantially due to the large number

of transmissions occurring within a multi-cell system.

3. Full Duplex Transmission

This thesis focuses on designing uplink cross-layer resource allocation algo-

rithms. The implemented work is also applicable to the downlink transmis-

sion, because the performance of the downlink transmission is mainly depen-

dent upon channel gains. However, special consideration must be given to full

duplex mode in terms of performance deterioration due to self-interference and

co-channel interference (where the uplink affects the downlink transmission).

4. Creating a Hybrid MU Detector for a Multi-Cell Topology

In a multi-cell environment it was necessary to use ZF as a stand-alone decoder.

The ZF-SVD decoding was not used due to the fact that MS signals are received

at multiple BSs, and joint channels were not considered from the MSs to multiple

BSs. As a result, it was not possible to benefit from performance gains with ZF-

SVD decoding at low SNR values. Thus, a hybrid decoder could be investigated

that uses both ZF and ZF-SVD, based on the principles developed in Chapter 2.

5. A Resource Allocation Algorithm that Considers Noise Enhancement for Multi-

Cell Networks

Due to time limitations, the BC-SpG/NE algorithm proposed in Chapter 3 was

not applied to multi-cell environments. The direct application of earlier results

could yield improved performance at the expense of high system complexity.

Some time could be invested in studying the problem, with the aim of finding

a feasible algorithm with minimized complexity. Achieving this would assist in

controlling noise enhancement resulting from the MU decoder.
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6. Considering Discrete Capacity Performance

In the testing of the results, capacity was presented as a real continuous value

based on the Shannon theorem. This is an accepted method in the research

field, which helps to give an indication of system performance. However, in

real network environments modulation techniques are used, where the data rate

achieved is based on a targeted BER and the resulting SNR value. Hence, the

proposed system could be tested in a real environment, in order to evaluate the

data rate in a discrete manner.

7. Analyzing the MIMO-OFDM Problem

This work focuses on radio resource management and noise enhancement for

MU-MIMO models with a single carrier. Most modern wireless communication

systems utilize OFDM, such as LTE and IEEE 802.11ac, which is based on the

multi-carrier modulation. Thus, this work could be extended to perform radio

resource control and optimization for MIMO-OFDM systems that require the

inclusion of additional parameters such as subcarrier allocation.
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