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Abstract

Spatial graph coupling has been immensely successful in the field of error correcting

codes. Motivated by this success the coupling approach has been implemented for more

general communication formats, including multiple-access communications. We explore

the application of spatial coupling to modulation of data streams, and employ a recently

proposed approximate message passing compressed sensing technique to develop an al-

gorithm for the demodulation of datastreams transmitted over the multiple-access additive

white Gaussian noise channel and demonstrate that near-optimal sum-rate performance can

be achieved.
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Chapter 1

Introduction

The focus of this thesis is on a low-complexity implementation of the coupling informa-

tion transmission multi-user communication technique based on the spatial graph coupling

principle [3]. Each user transmits one or more independently encoded data streams over

the multiple access channel. Each data stream is encoded and modulated such that the

relations between the data bits and modulation symbols within each transmitted stream

are represented by a bipartite graph. The data streams are transmitted with time offsets

enabling coupling of the transmitted graphs into a single continuous graph chain at the re-

ceiver. Modulation of each data stream is accomplished with repetition, permutation, and

spreading of data.

The principle of spatial graph coupling [4, 5, 6] which originated in the area of low-

density error-correction codes, has recently attracted significant research attention. Con-

struction of coupled graph models on which sub-optimal iterative message-passing de-

coding can asymptotically achieve the optimal maximum a posteriori probability (MAP)

decoding limit has now been applied in a number of fields including multiple-access com-

munications. Regular (un-coupled) random code-division multiple access (CDMA) [7] as

well as its sparse counterparts [8, 9, 10] can only achieve limited multi-user loads of equal

power users. The application of spatial graph coupling removes this limitation [2, 11, 12],

and in addition, can make the system capacity-achieving asymptotically [2, 11].

The receiver performs iterative message-passing interference cancellation and data es-

timation on the received graph chain, followed by individual error-correction decoding,

performed for each data stream individually, providing near-capacity operation [2, 11].

Slightly different modulation graphs resulting from partition-spreading CDMA [9], gener-

alized modulation [13], interleaved-division multiple access (IDMA) [14], sparse CDMA

[8], and, interleaved-division multiplexing (IDM) [15] result in similar coupled equations

characterizing the iterative interference cancellation behaviour at the receiver.

In practice, however, achieving high multi-user loads and spectral efficiency requires

1
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large amount of data streams and large repetition factors. This presents a challenge for

the existing message-passing algorithms in terms of both memory and computational com-

plexity. To make the modulation format based on spatial graph coupling practical we must

consider an appropriate receiver. We introduce a demodulation technique based on ap-

proximate message passing (AMP) proposed by Donoho et al. [16] for compressed sensing

problems.

A version of the AMP is specially derived for our multi-user situation and allows for

efficient implementation, a large savings in complexity, and simplified operation in the

“near-capacity” regime. The demodulation complexity per bit is constant per iteration and

does not scale with the processing gain, contrary to existing algorithms [2, 11, 12]. The

algorithm is first derived for the theoretic case in which users transmit their data streams

at specific times, and then extended to the case where the packets arrive at random times

considering a particular application of the technique.

As an application we adapt our modulation/demodulation approach to address random

channel access in maritime data exchange systems. These systems have received signifi-

cant research attention in recent years due to the rapidly growing number of vessels and

information services required for their operation including positioning, tracking, and navi-

gation. While the automatic identification system (AIS) has proven to be a very successful

means of tracking ships, the capacity of AIS will soon be exceeded; in some ocean areas,

such as the Gulf of Mexico, the current AIS load is already above 50% of its capacity [17].

At the same time new applications such as e-navigation require additional capabilities to

exchange data.

The new standard of VHF data exchange (VDES) which is currently under development

by the International Telecommunications Union (ITU) will include satellite ship track-

ing, ship-to-shore, and ship-to-ship communication and extend the services provided by

AIS [18]. Random access communications will be an important mechanism of accessing

the communication channel resources in VDES. The current time-division based random

access (TDMA) mechanism in AIS may not be suitable for the upcoming traffic demands

for VDES. This suggests that a new random access mechanism must replace TDMA.

We focus on an uplink communication scenario in which multiple number of vessels

transmit their messages to a satellite charing the same communication channel. We pro-

pose a way to apply coupling data transmission in a random access fashion, using the AMP
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algorithm at the receiver. To do so we adapted our modulation scheme to include the trans-

mission of a preamble prior to sending each datastream’s payload. Similarly for demodu-

lation at the receiver, preamble detection was inserted into the iterative loop for the AMP

algorithm, its convergence is studied and we demonstrate that the achievable multi-user

loads are superior to that of competing random-access systems.

The thesis is divided into five subsequent chapters and a conclusion. In Chapter 2 VHF

maritime data exchange systems are introduced. Current TDMA media access schemes and

the limitation of these for the future application in maritime data exchange are discussed.

In Chapter 3 the theory behind the spatial graph coupling method is introduced using

low-density parity-check convolutional codes - the original coupled system. After that two

examples describing applications of spatial graph coupling to multi-user communications

are given. The first example discusses the coupling information transmission [2] for the

multiple access AWGN channel with single antenna at the receiver, while the second ex-

ample is an original contribution for the multiple input and multiple output (MIMO) case

where the receiver has two antennas. The chapter discusses the original message-passing

interference cancellation receiver for the coupling information transmission.

Chapter 4 discusses sparse estimation problems and the variety of approaches used for

reconstruction of information. The basic theory behind message-passing algorithms on

graphs is introduced and a particular example, the min-sum algorithm is discussed. The

chapter concludes with a summary of the cost function and messages used for the message-

passing algorithm used in the receiver for the coupling information transmission.

Modulation for communication over the AWGN channel where arrival of each datas-

tream is known, using spatial graph coupling is elaborated on in Chapter 5. Specifically, the

approximate message passing algorithm is presented and used to demodulate the received

signals. Numerical results are provided to illustrate the efficiency of the AMP based de-

modulation. The chapter concludes with a mathematical derivation of the AMP algorithm

from the message-passing rules introduced in Chapter 3 and using compressed sensing

approach from Chapter 4.

In Chapter 6, we consider the modulation for communication over the AWGN channel

where users access the channel randomly. This chapter is dedicated to the application to the

maritime data exchange systems and in particular to the uplink to satellite scenario. The

main feature of the development is the iterative reception in which detection of packets
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and the multi-user demodulation is happening in parallel. Simulation results highlighting

various system loads are presented.

Finally, Chapter 7 presents the conclusion and an outlook on the future work.

1.1 Summary of Contributions

The work presented in this thesis contributes to improving the efficiency of communi-

cation over the AWGN multiple access channel by exploiting spatial graph coupling and

techniques from compressed sensing. As a result of this effort, two papers have been pre-

pared for publication:

� D. Truhachev, and D. McNutt (2015)

Coupling Information Transmission with Approximate Message Passing, IEEE Com-

munications Letters, under revision.

� D. Truhachev, and D. McNutt (2015).

Joint Packet Detection and Decoding for Maritime Data Exchange Systems. MT-

S/IEEE Oceans 2015.

The first paper is based on the work presented in Chapter 5 which focuses on the trans-

mission of data from multiple users over the multiuser AWGN channel. The focus is on

a theoretic setup in which arrival for each signal is assumed to be known, and all users

transmit with equal power. The derivation of the AMP algorithm, and numerical simu-

lations illustrating the achievable sum-rate of the algorithm in conjunction with coupling

transmission are presented.

The second paper was published in the proceedings of the international conference

MTS/IEEE Oceans 2015. This paper is based on the work presented in Chapter 6 where we

consider the transmission of data from multiple users over the MAC AWGN channel where

the packets arrival are now random. Each transmitting user forms a packet and includes a

preamble to the message payload in order to ensure detection, demodulation and decoding

at the receiver. In this paper we outline how the AMP algorithm derived in Chapter 5 can

be adapted to allow for the detection of packets using pseudo-random binary sequences

that are known to the receiver, and present the performance of this system in terms of total

throughput of the system versus signal-to-noise ratio. The impact of the carrier frequency

shift due to the satellite’s motion is also taken into account.



Chapter 2

VHF Data Exchange System (VDES)

2.1 The Automatic Identification System

Due to the rapidly growing number of vessels and the increasing number of information

services required for ship operation there has been a significant research effort directed at

improving maritime data exchange systems. One important component of these exchange

system has been the automatic identification system (AIS) used by ships and by vessel

traffic services to identify and locate vessels by exchanging data with other nearby ships,

shore base stations, and satellites.

The automatic identification system (AIS) supplements marine radar as a secondary

method of collision avoidance for water transport. The International Maritime Organi-

zation (IMO) requires AIS to be fitted aboard any ship with gross tonnage equal to 300

or more, and all passenger ships. The information provided by this system consists of a

unique identification, position, course, and speed for each ship. This allows for maritime

authorities and each vessel’s watchstanding officers to track and monitor vessel movements.

In order to record and transmit this information AIS integrates a standardized VHF

transceiver with a positioning system receiver, electronic navigation sensors and a gyro-

compass or rate of turn indicator. Any vessel fitted with AIS transceivers can be tracked by

AIS base stations, or when out of range of terrestrial networks through satellites that have

been equipped with special AIS receivers which can manage the large number of vessel

signatures. Outside of collision avoidance, many applications have been developed for AIS

including fishing fleet monitoring and control, vessel traffic services, marine security, aids

to navigation, search and rescue, accident investigation, and fleet and cargo tracking.

Terrestrial AIS uses two globally allocated Marine Band Channels 87 and 88 with trans-

mitting frequencies 161.975 MHz and 162.025 MHz respectively, the system transmits

using Gassian minimum shift-keying (GMSK). AIS uses the frequency channels by em-

ploying frequency division duplexing, where the upper leg of these channels are used for

shore-to-ship and ship-to-ship digital messaging, while the lower leg of the channels is used

5
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for ship-to-shore messaging.

In contrast, ship-to-satellite messages (long range AIS) uses the Maritime Band chan-

nels 75 and 76 with frequencies 156.775 MHz and 156.825 MHz. Currently the ships only

transmit to satellites, with no messages received from the satellites in order to provide nav-

igational information for all ships. For this reason, there is no need for duplex channels

when long range AIS is used [19]

While ship-to-ship and ship-to-shore have a range of ten to twenty miles, Satellite-AIS

(S-AIS) has a much larger coverage. Shipboard AIS transceivers can reach much further

vertically; up to the 400 km orbit of the International Space Station (ISS). Since satellite

receive footprint is hundreds of miles in radius, such receiver needs to be able to handle a

huge number of vessel signatures.

By its very nature, AIS must allow vessels to access the channel without interfering with

each other, the AIS transceivers use Time Division Multiple Access (TDMA) to transmits

and receive messages. The AIS standard comprises several sub-standards (or types) for

individual products, but there are two major product types for vessel-mounted transceiver:

� Type A : Targeted at large commercial vessels, these transceivers use Self-Organized

TDMA (SO-TDMA) as a method of random channel access.

� Type B : Targeted at smaller commercial and leisure vessels, there are two subtypes

depending on whether SO-TDMA or Carrier Sense TDMA (CS-TDMA) is used as a

method of random channel access by the transceiver.

2.2 Time Division Multiple Access

Time division Multiple access allows multiple users to share the same frequency chan-

nel by dividing each minute frame into 2250 slots, during which users transmits one after

another. How this slot structure is accessed is determined by the chosen scheme.

� Self Organized-TDMA :

This is the multiple access approach associated with the Class A transceivers. Each

user maintains an updated slot map in its memory allowing for prior knowledge of

available slots. This is achieved by sharing a common time of reference derived from
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GPS time. Before a message is sent the user will pre-announce their transmission

in a known free slot indicating their intention to use a particular slot for the next

transmission. This allows other users to update the slot map, and avoid those slots

that are known to be in use [19].

As users move in and out of communication regions, they will encounter new users

with different slot allocations, causing the slot map to be recomputed. From these

rules a dynamic and self organizing system over time and space can be determined.

� Carrier Sense-TDMA :

This is the multiple access approach associated with the Class B transceivers. The

access scheme is fully interoperable with SO-TDMA transmission, and also ensures

priority is given to SO-TDMA transmissions. To do this, a user using CS-TDMA

determines the slot timing by observing the timing of a user using SO-TDMA. Then,

by continuously monitoring the channel background noise level, the user can use this

as a reference for a received signal strength measurement at the start of each TDMA

slot.

When a transmission is required, a TDMA slot is picked at random and if the signal

strength at the start of the slot is above the background level, the slot is assumed to

be in use and the transmission is deferred, otherwise the slot is assumed to be empty

and the slot used. There are limitations to this approach, this will only work on a slot

by slot basis, unlike SO-TDMA which can use multiple concurrent slots.

In terrestrial AIS, SO-TDMA allows for autonomous management of capacity in busy

areas, by implementing "slot-reuse rules" when all TDMA slots are occupied. The slots

occupied by the most distant users are re-used for local transmission. This reduces the size

of an AIS region and ensures position reports from closer users are not affected. This is

important as these users are most relevant to navigation. This approach no longer works in

satellite AIS when a satellite receives many messages from many vessels.

2.3 VDES

As AIS usage increased globally in terms of number of vessels and variety of applica-

tions related to AIS grow, the ITU Radiocommunication Assembly have recognized that



8

a new VHF data exchange system must be introduced to accommodate the growing num-

ber of users, and the diversification of data communication applications. This system will

allow for harmonized collection, integration, exchange, presentation, and analysis of ma-

rine information onboard and ashore to enhance berth to berth navigation, and associated

services for safety and security at sea.

While the proposed VHF data exchange system will incorporate other maritime safety

related applications outside of the scope of AIS, it must improve AIS functionality in order

to allow for increased usage of the channel. Running continuously, this implementation

must ensure that the functions of digital selective calling, AIS and voice distress, safety,

and calling communication are not impaired.

VDES will require multiple frequency channels in the VHF band for AIS, application

specific messages (ASM), voice and other data communication needs such as e-navigation

[17].

Current time-division based random access (TDMA) mechanism in AIS has a number

of limitations such as the necessity to maintain slot maps and limitations imposed by the

number of available slots. Specifically in satellite uplink communication with a large pop-

ulation of users accessing the channel that coordinating channel access will be difficult due

to the finite number of slots per minute per frame, and the difficulty to organize slot maps

due to large feedback delays. Hence, alternative, more flexible media access approaches

would be desirable for VDES. In particular random media access and multi-packet recep-

tion would provide a very useful functionality in this scenario. Chapter 6 is this thesis

describes a potential application of the coupling information transmission technique with

an AMP receiver for VDES communication scenarios.



Chapter 3

Spatial Graph Coupling

3.1 Introduction

Error-correction codes on sparse graphs such as low-density parity-check codes (LDPC)s

that have been a popular theoretic area of research codes are frequently used in practical

communications by now. LDPCs are included in a numerous sttandards such as wireless

local-area networks WiFi [20], WiMax, digital video broadcasting DVB-S2, 10GBase-T

Ethernet and others. Due to the ubiquity of iterative belief-progagation-based decoding

of sparse graphical codes, and their incorporation into many communications standards,

it would be beneficial to construct new codes based on these algorithms that are formally

capacity achieving.

While it is known that polar codes achieve channel capacity [21], these are not easily

implemented for applications. With this in mind, it has been proven that a collection of

sparse codes that are spatially coupled will have an improved decoding threshold which

approaches the maximum-aposteriori decoding (MAP) of the uncoupled sparse code [6,

22]. This is known as threshold saturation. Originally the concept of spatial graph coupling

arose from the construction of convolutional low-density parity-check codes (LDPCCs)

by Felström and Zigangirov [4], spatial graph coupling has been readily adapted to other

applications like source coding and multiple access communications.

Whatever the application of spatial graph coupling may be, the method involved is

essentially equivalent to the case of coupling graph-based error control codes. For this

reason we will introduce the concepts of spatial graph coupling in the guise of an exposition

of LDPCCs on the Binary Erasure Channel (BEC), before generalizing into the framework

of coupled vector recursions. As a way to sidestep the issues involved in proving threshold

saturation for the spatially coupled codes, we conclude with an introduction to Lyapunov

stability theory; which will allow one to prove that a coupled system may attain the capacity

of the transmission channel.

9
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3.2 LDPC Convolutional Codes Also Known as Spatially Coupled LDPC Codes

The low-density parity-check codes are linear block codes of large size, which are well-

liked as their sparse graphical structure allows them to be efficiently decoded using message

pasing algorithms. A convolutional LDPC code can be constructed by taking the parity-

check matrix of an LDPC code and cutting diagonally as shown in Figure 3.1, which pro-

duces a lower-triangular matrix H0 and an upper-triangular matrix H1 of size (N−K)×N :

Figure 3.1: Unwrapping of Gallager-type (3,6) LDPC matrix H. Taken from [1].

By pasting these matrices together, with H0 on top of H1 and repeating this diagonally

as in Figure 3.2 ad infintum, the resulting parity-check matrix Hconv will have infinite

extent. Since the original LDPC matrix was sparse, the matrix Hconv will be sparse as well,

and the same message-passing algorithm may be used to decode this new code.

Figure 3.2: Construction of the parity-check matrix Hconv. Taken from [1].

This new code may be treated as a convolutional code, with constraint length equal

to the length of the original LDPC code, i.e., μ = N . Realistically, a code cannot be

transmitted for infintely long duration, and so one must typically have a starting point and

(possibly) a termination point, which may occur after a large number, L, of sections. Thus
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Hconv will be a band-diagonal matrix of size L(N − k) × LN . The effect of terminating

at either or both ends of the code is ultimately beneficial, as the ratio of information bits

to coded bits is locally smaller around the termination points, and so a locally improved

bit error rate is expected. It turns out that this improvement is carried out to the entire

codeword via iterative decoding.

Just as in the original case of an LDPC block code, we may construct a Tanner graph

of a convolutional LDPC code, which illustrates the band-diagonal structure of the parity-

check matrix. Drawing the graph in sections as in Figure 3.3, it is easily seen that the first

bits are checked by lower weighed check nodes than in the remaining sections. This may

be treated as having the earlier bits before the starting point known in advance, and hence

set to zero.

Figure 3.3: Tanner graph of the LDPCC code from Figure 3.2. Taken from [1].

Unlike the example given in Figure 3.3, the originating LDPC code must be much

larger, and in practice N ≈ 103 and larger are typical for practical applications. The

Tanner graph for such a code would be too confusing to be used as a conceptual tool,

instead we consider a proto-graph representation of the code, given in Figure 3.4, where

each edge of the proto-graph represents N
2

edges, connecting N
2

variable nodes and check

nodes respectively. Each of the N
2

pairs of nodes are connected by a permuted arrangement

of the edges, with each of the proto-graph edges representing a different permutation.

Each section in Figure 3.4 represents a N -sized section of the convolutional LDPC

code. From this perspective one can see that the endpoints of the structure have better

protections; the parity nodes at either end have degree two, followed by nodes with degree

four, and the remaining interior nodes have degree six, and all variable nodes have degree

three While there is some rate loss associated with termination of the code, one may see



12

Figure 3.4: Proto-graph representation of the (3, 6) LDPCC given in Figure 3.2. Taken
from [1].

that as L → ∞ the design rate of the LDPCC code is

R = lim
L→∞

1− (L+ 1)(N −K)

LN
=

K

N
, (3.1)

just like for the block LDPC, R = 1
L

for the (3,6) code case.

The decoding threshold for convolutional LDPCs generated from regular (J, 2J) LDPC

codes was studied in [5, 23], and is summarized in Figure 3.5 for several lengths, L, of the

structure. Notice that as L → ∞, those regular codes with large J achieve a threshold that

reaches the capacity limit of the binary-input AWGN channel at Eb/N0 = 0.19dB with

rate R = 0.5, this is defined as

Definition 3.2.1. The iterative decoding threshold of a code family is the largest channel

parameter ε∗ (for BEC) or smallest SNR∗ (for AWGN) such that for any ε < ε∗ (SNR >

SNR∗) the decoding error probability of iterative message passing decoding goes to 0

as a function of the code length N with constraint length μ and the number of decoding

iterations I . Typically exponential error probability decay is a function of N(μ) is required

as well.

Alternatively for small L the rate loss experienced by the LDPCC code given by the

formula (3.1) will be smaller than the rate of the block version of the same code, and hence

codes with lengths significantly larger than ten are required to achieve the same threshold.

Admittedly, for most applications the effort involved for the gain in threshold may not be

necessary, as the code lengths in the block code case required to gain a fraction of a dB in

terms of performance will be on the order of 100,000 compared to 1,000-10,000 of the base

code. The interest in convolutional LDPCs lie in the connection to spatial graph coupling

which allows for the construction of message-passing code ensembles that are proven to

achieve the Shannon’s capacity limit.
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Figure 3.5: Decoding thresholds for LDPCC codes for varying lengths, L, and degree
profiles under message-passing decoding. Hollow circles denote block codes, and black
circles denote convolutional or coupled codes. Taken from [1].

3.3 Spatial Graph Coupling: From Graphs to Recursion Equations

As was noted in the introduction, the method behind the creation of the LDPCC’s is

only a particular incarnation of a much broader concept known as spatial graph coupling.

Using the LDPCC codes as an example we will examine the density evolution equations

and show how this may be generalized.

Figure 3.4 this can be visualized as a coupled ensemble of codes, where each edge

denotes M edges of the Tanning graph of the LDPC codes. When the codes are coupled,

a fixed number of the connections are attached to the neighboring codes. The coupling

window W will be the number of neighbors involved on both sides of this bi-partite graph.

While coupling may involve an arbitrary number of edges, to study this analytically we

will require uniform edge spreading so that each line in the coupled graph represents 1/W

of the edges of the original code. The edges are permuted randomly with the constraint

that the original node degrees of the uncoupled codes are unchanged. The check nodes at

start and end of the code imply that 1/W of the variable nodes in the first and last code are

known and hence equal to zero.

To illustrate how a LDPC code would be decoded, we consider a simple channel,
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namely the Binary Erasure Channel BEC given in Figure 3.6, where each bit transmit-

ted has a probability ε ∈ (0, 1) of being erased.

Figure 3.6: A diagram representing the Binary Erasure Channel

Consider a (dv, dc) LDPC block code, i.e., dv edges come out of each variable node and

dc edges from a check node. We denote A = {−1, 0,+1} as the channel output, ri ∈ A the

received symbol at variable node i, and di ∈ A the decision at variable node i. A message

from variable node i to check node j is represented by ui→j ∈ A and a message from check

node j to variable node i is βj→i ∈ A. Finally we write Vj\i as the set of variable nodes

which connect to check node j, except for variable node i, and Ci\j to be the set of check

nodes which connect to variable node i, excluding check node j. To decode an LDPC code

on the BEC, we have the following steps:

1. Initialize di = ri for each variable node. If ri = 0 then the received symbol i has

been erased and variable i is said to be unknown.

2. Variable nodes send μi→j = di to each check node j ∈ Ci

3. Check nodes connected to variable node i send βj→i = Πl∈Vj\iul→j to i. I.e., if all

incoming messages are different from zero, the check node sends back to i the value

that makes the check consistent, otherwise it sends back a zero for “unknown”.

4. If the variable i is unknown and at least one βj→i �= 0 set di = βj→i and declare the

variable i to be known. For the simple BEC, once a variable is known its status can

not be changed.

5. When all variables are known, stop. Otherwise go back to Step 2.

To study the behaviour of this decoding scheme, density evolution analysis allows a

recursive relation to be derived describing the statistical behaviour of a regular block LDPC

code over the binary erasure channel (BEC) ([1], section 6.2) we consider the tree structure
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given in Figure 3.7. Let ε(l)v denote the probability of erasures at the variable nodes at

iteration l, and ε
(l)
u be the probability of erasures at the check nodes at iteration l, then for a

regular code, in which the node degrees are all equal, the following recursive relation can

be established

ε(l−1)
u = 1− [1− ε(l−1)

v ]dc−1, ε(l)v = ε[ε(l−1)
u ]dv−1 (3.2)

starting with ε
(0)
u = ε with ε is the initial probability of erasure.

Figure 3.7: Local subtree structure of a large LDPC code

Combining these two equations produces a one-dimensional iterated map for the prob-

ability that any variable node remains uncorrected ,

x(l) = f(x(l−1), ε) = ε(1− [1− x(l−1)]dc−1)dv−1, (3.3)

where x(l) is the probability of bit erasure at iteration l in a (dv, dc) regular LDPC block

code of infinitely large size N → ∞. We need this to ensure that there is a tree-like

neighborhood of decoding for each symbol. We define a check node function in (3.3) as

g(x) = 1− (1− x)dc−1, (3.4)
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and the statistical variable node function as

f(y, ε) = εydv−1, (3.5)

the dynamic behaviour of a regular LDPC code may be characterized by the fixed points of

the equation

x = f(g(x), ε). (3.6)

The above equation has one fixed point at x = 0, but can have two or three depending

on ε, and the supremum of ε such that only one fixed point exists, we say ε∗ is called the

belief propagation threshold (BP threshold). For this system, convergence to the limit point

x(∞) = 0 requires

x− εf(g(x), ε) > 0, x ∈ [0, ε]. (3.7)

Alternatively, we may formulate the threshold value of the parameter ε as

εs = sup{ε s.t. x(∞) = 0}. (3.8)

Through numerical experimentation, it may be shown that the largest erasure probability

that can be corrected by the code is ε = 0.4294. for the (3,6) code [1].

In the coupled case, we must consider the convergence behaviour of each system in-

volved in the coupled ensemble, thus we must consider a vector convergence equation of

the form

x = F (x, ε), (3.9)

where x = [x1, ..., xL] is a vector of the statistical variable for each of the L + 1 coupled

dynamical systems illustrated in figure 3.4, and F is a monotonic decreasing function.

Returning to the coupled system of L copies of L graphs, with a uniform window of size
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W , the variables are updated as

x
(l+1)
i =

1

W

W−1∑
k=0

f

(
1

W

W−1∑
j=0

g
(
x
(l)
i+j−k, ε

))
. (3.10)

The boundary conditions may be imposed by requiring that xl = 0 for l /∈ [0, L], which

corresponds to variables that are already known, which may be pilot signals, frame markers,

preambles or any other fixed signals we wish to couple to our code ensemble.

Writing this in vector form, we denote the vector functions f(x, ε) and g(x) which

operate on each components of the vector x as a scalar with f(·) and g(·) respectively.

Then equation (3.10) may be expressed as

x(l+1) = ATf
(
Ag
(
x(l), ε)

))
= F (x(l), ε), (3.11)

where A is a band-diagonal matrix with non-zero entries 1/W for all j ≥ i and j−1 ≤ W ,

and zeros otherwise.

The parameter ε in this instance represents the channel erasure probability. More gen-

erally it could be a signal to noise ratio, or another parameter characterizing the channel.

Typically one is interested in the threshold of the coupled system which is the largest ε such

that an arbitrary initial vector x(0) converges to the zero vector.

Denoting the set of all possible values of the erasure probabilities for each system x as

X 0, these will be strictly non-negative and hence the form of (3.11) implies

F (x, ε) ≤ x and F (x, ε) ∈ X 0. (3.12)

Thus for any l > 0 and x(l) ∈ X 0 we have that x(l+1) ≤ x(l) and x(l+1) ∈ X 0, and so we

will have a monotonically non-increasing sequence of points if we continue to iterate the

equation. If we can find some initial point x(0) such that the resulting sequence of points is

strictly monotonically decreasing, i.e., x(0) > x(1) > x(2) > ... then this must converge to

a limiting point x(∞) ≥ 0. Ideally this point should be a stable fixed point, it is possible for

particular values of ε that there are unstable fixed points where the system passes through

this fixed point and moves towards another fixed point.

The boundary conditions play an important role in the convergence of the coupled sys-

tem, as these allow the dynamical variables xl closer to the exterior of the ensemble to
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converge faster than the interior variables. This allows for the boundary conditions to prop-

agate to the interior of the system over several iterations, which would not be possible

without the boundary conditions.

To study the convergence of the system (3.11), an approach was introduced by [24] and

expanded upon in [25, 26] which was based upon the function U(x, ε) : x → R
1 called the

potential function

U(x, ε) =

∫ x

0

g′(z)[z − f(g(z), ε)]dz. (3.13)

whose origin arose from the continuous-time approximation for the system (3.11) given by

dx(t)

dt
= F (x(t), ε)− x(t), t > 0, t → ∞. (3.14)

With this function we have a general result for any recursion equation of the above form:

Theorem 3.3.1. For large window sizes w → ∞, an iterative system of sparse graphs

couples as in (3.11) converges to x(l) → 0, if U(x) > 0. This implies that the coupled

system threshold may be given by the following criteria:

ε∗c = sup{ε : U(x, ε) > 0, ∀x ≤ ε}. (3.15)

Using this theorem, it may be shown that the coupled (3,6) LDPC code ensemble for the

BEC channel will converge for erasure rates up to ε = 0.48815 which is much closer to the

capacity CBEC = 0.5 than the uncoupled case.

In general, for large w ≥ 0, ε∗c ≥ ε∗; coupling always improves performance. Exploit-

ing theorem 3.3.1, it can be shown that certain convolutional LDPC codes based off the

(dv, dc) LDPC codes achieve capacity over the binary erasure channel [1]:

Theorem 3.3.2. For large window sizes, w → ∞, an iterative system of sparse coupled

regular (dv, dc) LDPC codes achieve the capacity of the BEC,

ε∗c → α, for α =
dv
dc
, and dv → ∞.

Equivalently, the rate of the code R = 1 − dv/dc approaches the channel capacity, R →
1− ε = CBEC for ε → ε∗c .
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The proof follows by computing the potential function for the regular (dv, dc) LDPC codes:

U(x, ε) =
1

dc
− (1− x)dc

dc
− x(1− x)dc−1 − ε

dv

(
1− (1− x)dc−1

)dv
. (3.16)

and determining the largest ε∗ for which U(x, ε∗) ≥ 0 for all x ∈ [0, 1].

The phenomenon of threshold saturation is in fact very general [6], and has been shown

to be applicable to other communication scenarios such as the isotropic multiple access

channel used with uniformly random signal sets [2]. For this reason it is important to show

rigorously, whatever the application, that the coupled system converges to the zero vector.

In the case of the LDPCC codes one is able to work with the potential function which

exists as the original recursion equation is scalar-valued. In the case of vector recursions,

the existence of a potential function is no longer assured. In the next section we will explore

a related tool that will help determine convergence.

3.4 Convergence Analysis of Spatially Coupled Systems

From the previous section we have seen that the performance of spatially coupled en-

sembles of LDPC codes relied on the convergence, to the point x(∞) = 0, of an iterative

vector recursion equation:

x(l+1) = F (x(l), ε), F (x, ε) ≤ x and F (x, ε) ∈ X 0. (3.17)

We will focus on the case where x is non-increasing, however it should be noted that there

may be other stable points such that x(∞) �= 0 which might cause a small initial value

of x(0) to move towards a non-zero fixed point; given the current application these points

should be avoided as they are not helpful for applications.

If we pick an initial point x(0) such that the resulting sequence of points is strictly

monotonically decreasing, i.e., x(0) > x(1) > x(2) > ..., then the sequence will converge

to some limiting point x(∞)(x(0), ε) ≥ 0. We wish to determine when a given vector

recursion will converge to the point x(∞)(x(0), ε) = 0 for a particular ε. This question may

be approached using the Lyapunov method. This will simplify the behaviour of individal

trajectories in a dynamical system, like the one given above, to the study of the system’s
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properties in subspaces of X 0 through the study of Lyapunov functions [27].

As before, X 0 denotes the smallest set containing x(l) for all l ≥ 0 and we introduce

an open subset X 1 ⊂ X 0 such that 0 /∈ X 1. For the domain of ε, E , we have two subsets

E0 = E \{0} and E2 ⊂ E0. The purpose of E2 will be explained momentarily, but this subset

willl be related to the issue of global asymptotic stability.

Definition 3.4.1. The solution x(l) = 0 to (3.11) is globally asymptotically stable if

liml→∞ x(l) = 0 for all x(0) ∈ X 0.

Lyapunov introduced a special type of function in X 0 defined by the following criteria:

Definition 3.4.2. A continuous function V (x) : X → R
1 is called a Lyapunov function for

the system (3.11) with x ∈ X 0, ε ∈ E2 if it satisfies the following conditions:

V (0) = 0, (3.18)

V (x) > 0 for x ∈ X 1, (3.19)

V (f(g(x), ε))− V (x) < 0 for x ∈ X 1, ε ∈ E2. (3.20)

We may provide sufficient conditions for global asymptotic stability of the system (3.11)

Theorem 3.4.3. Given that V (x) is a Lyapunov function for the system (3.11) for ε ∈ E2,
the solution x(l) = 0 is globablly asymptotically stable.

Thus for any ε ∈ E2, any initial choice of x(0) will converge to the origin 0.

While this was formulated for a continuous system, this may be related to the iterative

equation (3.11) by writing this as

x(l) − x(l+1) = q(x(l)) = x(l) − F (x(l).ε) (3.21)

We may build a Lyapunov function for this system by considering its continuous-time ana-

log,

dx(t)

dt
= −q(x(t)), t > 0, t → ∞. (3.22)

We use the variable gradient method to construct a Lyapunov function for this new system

that satisfies (3.18) - (3.20). Let V : X → R
1 be a continuously differentiable function
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with

h(x) =

(
∂V

∂x

)T

=

[
∂V

∂x1

, ...,
∂V

∂xn

]T
.

The derivative of V (x) along the trajectories of (3.22) are now given by

dV (x)

dt
= −∂V

∂x
q(x) = −hT (x)q(x) (3.23)

To satisfy (3.19), h must be the gradient of a positive function, while condition (3.20)

requires

dV (x)

dt
= −hT (x)q(x) < 0, x ∈ X 1. (3.24)

If this is the case, then V (x) for both system (3.21) and (3.22) will be the line integral

V (x) =

∫ x

0

hT (x)ds, (3.25)

which will be path-independent if and only if the Jacobian matrix of h(x) is symmetric

∂hi

∂xj

=
∂hj

∂xi

i, j ∈ [1, n]. (3.26)

since h(x) is constructed to be the gradient of a potential function.

Generally the vector recursion q will not be conservative, so that the Jacobian matrix of

q(x) is not symmetric, and the hunt for h is not altogether a simple task. As a simplifcation,

we may consider h(x) = B(x)q(x), where B is a positive-definite n × n matrix, then

(3.24) becomes

hT (x)q(x) = qT (x)BT (x)q(x) > 0. (3.27)

and (3.25) is now

VB(x) =

∫ x

0

[B(s)(s− f(g(s)))]Tds. (3.28)

This will be a Lyapunov function for the system (3.23) if VB(x) > 0, and condition (3.24)



22

is satisfied for x ∈ X 1. If this is the case then liml→∞ x(l) = 0.

If we have found a suitable Lyapunov function, we may obtain a region of the parameter

space ε ∈ E2 where our coupled system converges, although this region may be smaller

than the actual convergence region in E . The region E2 is determined by the boundary

conditions. If the coupled system has infinite extent, or is coupled together in a loop,

there will be no difference between the regions for this system and the uncoupled system

respectively. However, if we allow for xi = 0 for i < 0 and/or i > L, L < ∞ then the

region E2 for the coupled system will be larger than that of the uncoupled system.

We state two more definitions in order to formulate this precisely.

Definition 3.4.4. The coupled-system threshold with xi = 0 i /∈ [1, L] is defined as

ε∗c = sup{ε ∈ E2|x(∞)(1, ε) = 0}. (3.29)

The boundary conditions ensure that ε∗c ≥ ε∗s from (3.8), with equality occuring when

w = 0. In some cases it may not be possible to determine the value ε∗s; for example if

h(x) = g′(x)q(x) does not produce a symmetric Jacobian, then the original potential

function in (3.13) cannot be constructed. In this case we may consider the following

Definition 3.4.5. For a positive-definite matrix B the coupled-system threshold εc(B) is

defined as

εc(B) = sup
{
ε ∈ E2| min

x∈X 0
VB(x) ≥ 0

}
. (3.30)

For any positive-definite matrix B we have that εc(B) < ε∗c which shows that the Lyapunov

function provides sufficient, but not necessary conditions for convergence. However, if

one is able to show that εc(B) coincides with the capacity limit of the channel, then it

automatically becomes a necessary condition.

There is one more issue that must be considered when determining the largest region E2,
and this concerns condition (3.20) when considering the largest region X0 for which global

convergence of the dynamical system is suitable for the application it models. It is possible

that some initial values lead to fixed points x(∞) �= 0 such that x(∞) − f(g(x(∞)), ε) = 0.

At these points we must show that these points are unstable, so that any perturbation from

this point will cause the system to converge to 0. If we wish to include these points, we
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must relax (3.20) to be a non-strict inequality. With these points in mind, it is possible to

choose an appropriately coupled ensemble of codes for which 0 is globally asymptotically

stable. [27]

Theorem 3.4.6. There exists a function w0(f , g) such that for any positive-definite matrix

B, W ≥ w0(f , g), L ≥ 2w + 1 and ε < ε∗c(B), the only stable fixed point of the system

(3.11) is x(∞) = 0.

3.5 Coupling Information Transmission Modulation

3.5.1 Multiple-Access Channel: Single Antenna Receiver

To illustrate the flexibility of spatial graph coupling, we provide an example outside

of coding theory, where a signalling format has been constructed which achieves capacity

on the additive white Gaussian noise (AWGN) channel [2]. Here we introduce coupling

information transmission which will be the focus of the contribution in Chapter 5 and 61.

The signals transmitted over the AWGN channel are formed through the superposition of

L independent modulated data streams. These may arise from the same or several different

terminals and are superimposed at the receiver along with AWGN noise.

We note that spatial graph coupling is closer to data transmission than digital transmis-

sion, as we have assumed some form of digital-to-analog conversion prior to each datas-

treams transmission using an accepted form of modulation2. Similarly analog-to-digital

conversion is assumed at the receiver and demodulation is performed before data recovery

for spatially coupled graphs begins. Noting this we will call the combination of the two

processes at the transmitter and receiver modulation and demodulation respectively.

For each datastream, a binary information sequence, ul = u1,lu2,lu3,l, ..., uK,l, enters

a binary forward error correction encoder of rate R=K/N. Each bit of the encoded binary

sequence, vl = v1,lv2,lv3,l, ..., vN,l, with vj,l ∈ {−1, 1}, j = 1, 2, ..., N is replicated M

times and permuted producing a sequence, ṽl = ṽ1,lṽ2,lṽ3,l, ..., ṽMN,l. The L modulated

datastreams are added together after certain chosen time offsets. The first group of datas-

treams starts at time t = 1, after τ2 intervals the second group of datastreams initiates.

1In the modulation format presented in Chapter 5 and 6, signature sequences are used for modulation,
however, in the following modulation format this is not included

2For example, GMSK is used as a digital modulation approach for AIS.
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For t ∈ [τ2 + 1, τ2 + τ3] the signal consists of the superposition of the first two groups of

datastreams. After a delay of τ3 symbols the third group of datastreams are added, and so

on. This is called datastream coupling, and the modulated signal at time, t, is:

st =

L(t)∑
l=1

ṽt,l, t = 1, 2, ...w, with L(t) = min
l>0

{
l+1∑
i=2

τi ≥ t}.

Figure 3.8: Modulation of a binary information sequence for one datastream.

Demodulation is achieved through an iterative approach. The received signal

y = s+ n, n ∼ N(0, σ2)

contains M replicas of each transmitted bit vj,l, j ≥ 1 and l ∈ [1, L]. Denoting T (j, l) as

the set of indices t such that the signal st and hence yt contains vj,l, and J (t) to denote the

set of all index pairs (j, l) such that vj,l is included in yt, as in Figure 3.10, then for each bit

vj,l we choose the set of received signals {yt}t∈T (j,l) to form a vector yj,l.

As each yt, t ∈ T (j, l) contains vj,l then

yj,l = hvj,l + ξj,l (3.31)

where h =
√
1/L(1, 1, ..., 1), and the vector ξj,l = (ξj,l,t1 , ξj,l,t2 , ..., ξj,l,tM ) where (t1, t2, ..., tM) =

T (j, l) is the noise-and-interference vector with respect to the signal vj,l. This may be bro-

ken into two pieces
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Figure 3.9: Encoded data bits vj,l are represented by "variable" nodes which are connected
to "channel" nodes representing modulation symbols st. Graphs representing individual
data streams are shown in a. Variable nodes are depicted as circles while channel nodes
are hexagons. The example in b shows the graph obtained by stream coupling with three
datastreams in which the information is modulated into five bit blocks. The transmission
time offsets are τ2 = 3 and τ3 = 8. Taken from [2].

Figure 3.10: The relation between variable and channel nodes and the sets of indices in-
volved. Taken from [2]

ξj,l,t =

√
1

L

∑
(j′,l′)∈J (t)\(j,l)

vj′,l′ + nt, t = t1, t2, ...tM . (3.32)

As L increases, we may invoke the Central Limit Theorem, implying that the vector ξj,l
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converges to a Gaussian random vector with independent zero-mean components and co-

variance matrix Rj,l = diag(σ2
t1
, σ2

t2
, ...σ2

tM
) where σ2

t denotes the variance of ξj,l,t. For

t > 2W + 1 the number of elements in the set J (t) is L and so the variance of σ2
t =

(L − 1)/L + σ2 according to (3.32) When t ≤ 2W + 1, the size of the set J (t) is less

than L, and so the variances are influenced by the interference cancellation throughout the

demodulation iterations, the expression based on σ2
t is preferred.

With this vector yj,l one may perform minimum mean-squared error (MMSE) filtering

to form a SNR-optimal linear estimate of vj,l given by

zj,l = wT
j,lyj,l = wT

j,lhvj,l +wT
j,lξj,l (3.33)

wT
j,l = (I + h∗R−1

j,l h)
−1h∗R−1

j,l . (3.34)

This minimizes ||wj,lyj,l − vj,l||2. The resulting SNR of the signal zj,l is then

γj,l = h∗R−1
j,l h =

1

L

∑
t∈T (j,l)

1

σ2
t

(3.35)

As vj,l ∈ {1,−1}, and takes each of the two values with equal probability 1/2, one can

form a conditional expectation estimate v̂j,l of vj,l as

v̂j,l = E(vj,l|zj,l) = tanh(zj,lγj,l) = tanh

⎡
⎣zj,l 1

L

∑
t∈T (j,l)

1

σ2
t

⎤
⎦ (3.36)

With all of the estimates v̂j,l computed for all data bits vj,l j = 1, 2, ... and l ∈ [1, L]

the next iteration starts with interference cancellation performed by computing y
(1)
j,l with

components

y
(1)
j,l,t = yt −

√
1

L

∑
(j′,l′)∈J (t)\(j,l)

v̂j′,l′ , t ∈ T (j, l). (3.37)
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From which we have the vector

y
(1)
j,l = hvj,l + ξ

(1)
j,l (3.38)

with components of ξ(1)j,l

ξ
(1)
j,l,t =

√
1

L

∑
(j′,l′)∈J (t)\(j,l)

(vj′,l′ − v̂j′,l′) + nt, t ∈ T (j, l). (3.39)

This process continues by computing new estimates v̂(1)j,l by repeating the same procedure

to compute (3.34) and (3.36), and the estimation and interference cancellation steps are

repeated for a number of iterations. In order to avoid reusing the same information at each

iteration, one computes M extrinsic vectors y(i)
j,l,t, t ∈ T (j, l) for each bit vj,l at iteration i

and the components of y(i)
j,l,t are then

y
(i)
j,l,t′ = yt′ −

√
1

L

∑
(j′,l′)∈J (t)\(j,l)

v̂
(i−1)
j′,l′,t′

=

√
1

L
vj,l +

√
1

L

∑
(j′,l′)∈J (t)\(j,l)

(vj′,l′ − v̂
(t−1)
j′,l′,t′) + nt′ (3.40)

where t′ �= t and t′ ∈ T (j, l). As before the vectors y
(i)
j,l,t are used to form M values for

z
(i)
j,l,t according to (3.34) and corresponding estimates v̂(i)j,l,t using (3.36) for each replication

of vj,l.

After a fixed number of iterations, I, the estimated bits are passed to a decoder to decode

the fowrward error correction codes used to encode the information into the datastreams.

Figure 3.11: General Structure of iterative demodulation prior to decoding.



28

As in the case of the LDPC codes, one can produce a recursive relation describing

the evolution of the noise-and-interference power. Assuming that the data block of MN

symbols consists of 2W +1 equal length subblocks, with time measured in subblocks, and

that the L datastreams are split into 2W+1 equal size groups. The analysis of the evolution

of the noise-and-interference power at iteration i for symbols vj,l transmitted at time t is

now:

xt
i =

1

2W + 1

W∑
j=−W

gm

(
1

α

1

2W + 1

W∑
l=−W

1

xt+j+l
i−1

)
+ σ2, (3.41)

where the function gm is given as

gm(a) = E[(1− tanh(a+ ζ
√
a))2], ζ ∼ N(0, 1)

and α is the modulation load.

Definition 3.5.1. The modulation load is the ratio of the number of users divided by the

number of replicas made for each message

α =
L

M

Assuming that transmission starts at t = 1, and that at each instant, t, the modulation

load is increased by α/(2W + 1) for t ∈ [1, 2W + 1] the initial conditions are

xt0 = 0, t ≤ 0;

xt0 =
t

2W+1 + σ2, t ∈ [1, 2W + 1]; (3.42)

xt0 = 1 + σ2, t > 2W + 1.

The system converges if equation (3.41) approaches some small value. Notice that

(3.41) resembles a SC system, where α acts as the ε parameter. However, to put this into

the appropriate form where x(∞) = 0 will be a fixed point, we must examine the fixed

points of the uncoupled case. Setting W = 0, we produce the recursion describing the

evolution of the noise-and-interference power during the demodulation iterations:

xi = gm

(
1

αxi−1

)
+ σ2. (3.43)
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Depending on the choice of α this equation will have one, two, or three fixed points for

x ∈ [0,∞). In the case where (3.43) has three fixed points such that x(1) < x(2) < x(3).

The roots x(1) and x(3) will be stable, while x(2) will be an unstable fixed point.

Denoting the capacity of the AWGN channel with SNR 1/σ2 as

C(σ2) =
1

2
log2

(
1 +

1

σ2

)
(3.44)

we may provide upper and lower bounds on the stable roots where the proof is given in [2]:

Lemma 3.5.2. For σ2 ≤ 1, the following statements are satisfied:

1. for α ∈ [0, C(σ2)], σ2 ≤ x(1) ≤ (1 + e−1/σ)σ2 ≤ 2σ2,

2. for α ∈ [4, C(σ2)], 1 + σ2 − 2
α
≤ x(3) ≤ 1 + σ2,

3. for α ∈ [5, C(σ2)], x(3) = 1 + σ2 − 1
α(1+σ2)

+ ρ(α, σ2) where ρ is bounded by a

function ρ̃(α) such that |ρ(α, σ2)| ≤ ρ̃(α) = o
(
1
α

)
for σ2 ∈ [0, 1],

4. for σ ≤ 0.01 and α ≥ 2, 0.3 ≤ x(3) ≤ 1 + σ2

With approximate neighbourhoods of each fixed point known, we introduce the following

functions:

f(x;α) = gm
(
1
α

(
1

x(1) − x
))

+ σ2 − x(1),

g(x) = 1
x(1) − 1

x(1)+x
,

the recursion (3.41) may now be written as

xt
i =

1

2W + 1

W∑
j=−W

f

(
1

2W + 1

W∑
l=−W

g
(
xt+j+l
i−1

)
;α

)
.

The potential function for the uncoupled case (W=0) is then

U(x;α) = ln

(
x+ x(1)

x(1)

)
− σ2x

x(1)(x+ x((1))
− α

∫ 1

αx(1)

1

α(x+x(1))

gm(y)dy.

The convergence of this spatially coupled system has important implications for the

achievable rate and capacity of the signaling format [2]. If the system (3.41) converges
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to its smallest root x(1) of (3.43) after I iterations, the SNR of the demodulated data bits

equals M/(Lx(1)) = 1/(αx(1)). Each replica suffers noise-and-interference power x(1),

and the replicas are added together. Thus, the total communication rate achievable by the

system will be

R(α, σ2) =
L

M
CBIAWGN

(
M

Lx(1)

)
= αCBIAWGN

(
1

αx(1)

)
.

where CBIAWGN(a) denotes the capacity of the binary-input AWGN channel with SNR, a.

Letting ᾱ(σ2,W ) denote the maximum load for which the coupled system converges to

x(1) for a given σ2 and W the following theorem holds [2]:

Theorem 3.5.3. There exists a W̄ > 0 such that ∀ W > W̄

R(ᾱ, σ2) = C(σ2)−
3

2ln2

C(σ2)
+ o

(
1

C(σ2)

)
.

as σ2 → 0 and thus limσ2→0(C(σ2)−R(ᾱ, σ2)) = 0

3.5.2 MIMO Block Fading Channel

Consider a multi-user MIMO system, where K data streams are transmitted by L inde-

pendent users to a MIMO receiver with two receiving antennas. User l ∈ {1, 2, · · · , L}
transmits a signal vector ṽl (single data stream). First a binary information sequence

ul = u1,l, u2,l, u3,l, · · · , uK,l enters a binary forward error correction encoder of rate R =

K/N . Then each bit of the encoded binary sequence vl = v1,l, v2,l, v3,l, · · · , vN,l, where

vj,l ∈ {1, 1} , j = 1, 2, · · · , N is replicated M times and permuted producing a sequence

ṽl = ṽ1,l, ṽ2,l, · · · , ṽMN,l. The power of each user is P/M . The signals y1 and y2 received

at the two receive antennas at time t are then

yt,1 =

√
P

M

L∑
i=1

h1,t,iṽj,i + n1,t

yt,2 =

√
P

M

L∑
i=1

h2,t,iṽj,i + n2,t



31

or more compactly by combining the two vectors as

yt =

√
P

M
Htνt + nt (3.45)

where yt = [yt,1yt,2]
T , Ht = [h1, ...,hL] with hl = [h1,t,l, h2,t,l]

T denotes the channel

matrix, νt = [ṽt,1, ṽt,2, · · · , ṽt,L]T , and nt = [nt,1nt,2]
T is the noise vector. Let us assume

that the channel us fixed, i.e., Ht = H, for all t.

To discuss the case of asynchronous transmission along with the possibility of data

coupling for the modulated data-streams, we define two sets. Let T(j, l) denote the set of

indices t such that the the signal st representing y.t contains yj,l, and I(t) denote the set

of all index pairs for which vj,l is included in yt . Additionally we add an index to the

columns of Ht, ht,l - as these may vary with time. Now, for each bit vj,l we must use the

set of received signals {yt}, t ∈ T(j, l) to form a 2M component vector yj,l, containing

the bit vj,l:

ȳj,l = h̄vj,l + ζ̄j,l

where h̄l =
√

P
M
[hT

t1,l
, ...,hT

tM ,l] and the noise-and-interference vector with respect to the

signal vj,l given by, ζ̄j,l = (ζT
j,l,t1

, ..., ζT
j,l,tM

) with (t1, t2, ..., tM) = T(j, l). The components

of this vector are now:

ζj,l,t =

√
P

M

∑
(j′,l′)∈I(t)\{(j,l)}

h̄l′vj′,l′ + nt, t = t1, t2, ..., tM .

As L increases, the Central Limit Theorem implies that the vector ζj,l converges to a

Gaussian random vector with zero-mean components and covariance matrix, Rj,l,0. As-

suming that each time t the fading is not corelated, this will be a 2M × 2M block matrix

with the following 2× 2 matrices along the diagonal:

R0,t =

[
Ey2

1,t Ey1,ty
∗
2,t

Ey2,ty
∗
1,t Ey2

2,t

]

where t = t1, ..., tM and ( )∗ denotes the conjugate transpose, E denotes the expected value
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and

Ey2
1,t =

L∑
l′=1

|h1,t,l′ |2
P

M
+ σ2

Ey2
2,t =

L∑
l′=1

|h2,t,l′ |2
P

M
+ σ2

Ey1,ty
∗
2,t =

L∑
l′=1

h1,t,l′h
∗
2,t,l′

P

M

Ey2,ty
∗
1,t =

L∑
l′=1

h2,t,l′h
∗
1,t,l′

P

M
.

The vector ζ̄j,l has zero mean and its covariance matrix is the 2M×2M diagonal block ma-

trix R̄j,l = diag(R0,t1 , ...,R0,tM ). With these quantities we may perform a linear filtering

on ȳj,l to form an SNR-optimal linear estimate of vj,l as

z
(0)
j,l =

√
P

M
h̄∗
l R̄

−1
0 ȳj,l ,

we may compute the resulting signal to noise ratio (SNR) of z(0)j,l as

γj,l,0 =
P

M
h̄∗
l R̄

−1
j,l h̄l .

As vi,l ∈ {−1, 1} and takes each of the two values with probability 1
2

we may form a

conditional expectation estimate v̂i,l as

v̂
(0)
j,l = E(vj,l|z(0)i,l ) = tanh(z

(0)
j,l γj,l,0).

Repeating this process for all data bits vi,l, i ∈ [1, N ] and l ∈ [1, k] we produce esti-

mates v̂(0)i,l for all of the data bits, we now proceed to the next demodulation iteration by first

performing an interference cancellation step by computing the vectors ȳ(1)
t for all values of

t and l ∈ [1, k]
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y
(1)
j,l,t = yt −

∑
(j′,l′)∈I(t)\{(j,l)}

hl′ v̂
(0)
j′,l′

√
P

M

=

√
P

M
hlvj,l +

√
P

M

∑
(j′,l′)∈I(t)\{(j,l)}

hl′(ṽj′,l′ − v̂
(0)
j,l′) + nt

=

√
P

M
h̄lvj,l + ζ

(1)
j,l

where ζ(1)
j,l denotes the two-dimensional noise and interference vector for the bit vj,l at time

t for the first iteration.

In order to estimate a particular bit vj,l we collect M replicas of vj,l transmitted at times

t1, t2, · · · , tM to produce the 2M -vector ȳ(1)
j,l = [y

(1) T
t1 ,y

(1) T
t2 , · · · ,y(1) T

tM
]T , and the 2M -

vector of the interference and noise ζ̄
(1)
j,l = [ζ

(1) T
t1 , ζ

(1) T
t2 , · · · , ζ(1) T

tM
]T . This implies

ȳ
(1)
j,l =

√
P

M
h̄lvj,l + ζ̄

(1)
j,l (3.46)

Again, for large values of L, the Central Limit Theorem implies that the vector ζ̄(1)
j,l

converges to a Gaussian random vector with zero-mean components and covariance matrix,

Rj,l,1, which is a block diagonal matrix with 2× 2 block matrices:

R1,t =

[
Ey

(1) 2
1,t Ey

(1)
1,ty

(1)∗
2,t

Ey
(1)
2,ty

(1)∗
1,t Ey

(1) 2
2,t

]

Denoting σ2
mmse,l,0 = E[1 − tanh(z

(0)
j,l γl,0)] the components of the new covariance matrix
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are:

Ey
(1) 2
1,t =

L∑
l=1

|h1,t,l|2
P

M
σ2

mmse,l,0 + σ2

Ey
(1) 2
2,t =

L∑
l=1

|h2,t,l|2
P

M
σ2

mmse,l,0 + σ2

Ey
(1)
1,ty

(1)∗
2 =

L∑
l=1

h1,t,lh
∗
2,t,l

P

M
σ2

mmse,l,0

Ey
(1)
2,ty

(1)∗
1 =

L∑
l=1

h2,t,lh
∗
1,t,l

P

M
σ2

mmse,l,0 .

With these quantities we may perform a linear filtering on ȳ
(1)
j,l to form an SNR-optimal

linear estimate of vj,l as

z
(1)
j,l =

√
P

M
h̄∗
l R̄

−1
1 ȳ

(1)
j,l .

we may compute the resulting signal to noise ratio (SNR)

γi,l,1 =
P

M
h̄∗
l R̄

−1
1 h̄l .

As vj,l ∈ {−1, 1} and takes each of the two values with probability 1
2

we may form a

conditional expectation estimate v̂j,l as

v̂
(1)
j,l = E(vj,l|z(1)j,l ) = tanh(z

(1)
j,l γj,l,1).

Repeating this process for all data bits vj,l, i ∈ [1, N ] and l ∈ [1, k] we produce es-

timates v̂j,l for all of the data bits, one repeat all demodulation iterations by computing

may proceed to the next demodulation iteration i > 1 by first performing an interference
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cancellation step by computing the vectors

y
(i)
t = y

(i−1)
t −

√
P

M

∑
(j′,l′)∈I(t)\{(j,l)}

hl′ v̂
(i−1)
j′,l′

for all t, combining these copies to produce ȳ
(i)
j,l and applying a linear filter on this vector

to produce a new SNR optimal linear estimate

z
(i)
j,l =

√
P

M
h̄∗
l R̄

−1
i ȳ

(i)
j,l

with signal to noise ratio (SNR)

γj,l,i =
P

M
h̄∗
l R̄

−1
i h̄l ,

using the new covariance matrix Rj,l,i = diag(Rt1 , ...,RtM ), where

Rt =

[
Ey

(i) 2
1,t Ey

(i)
1,ty

(i)∗
2,t

Ey
(i)
2,ty

(i)∗
1,t Ey

(i) 2
2,t

]

with components:

Ey
(i) 2
1,t =

L∑
l=1

|h1,t,l|2
P

M
σ2

mmse,l,i-1 + σ2

Ey
(i) 2
2,t =

L∑
l=1

|h2,t,l|2
P

M
σ2

mmse,l,i-1 + σ2

Ey
(i)
1,ty

(i)∗
2 =

L∑
l=1

h1,t,lh
∗
2,t,l

P

M
σ2

mmse,l,i-1

Ey
(i)
2,ty

(i)∗
1 =

L∑
l=1

h2,t,lh
∗
1,t,l

P

M
σ2

mmse,l,i-1 .

After the final I−th iteration we pass the bit estimates v̂(I)j,l to the error correction decoders.

These operate with the bit estimates with SNR′s γl,I .
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This demodulation approach produces a similar recursion equation, however it is now

a vector recursion. This vector recursion is not conservative and so a Lyapunov potential

function cannot be determined to study its threshold saturation behaviour.



Chapter 4

Compressed Sensing Using Message Passing

4.1 Introduction

The recovery of an unknown high-dimensional sparse signal based on a collection of

noisy measurements has been studied extensively in the past decade [28, 29, 30, 31, 32,

33]. The interest in estimation problems with sparsity constraints arises from the potential

applications in signal processing, such as denoising, compression and sampling [34, 35,

36, 37, 38]. The original compressed sensing problem considered noisy measurements of a

deterministic vector, and it is assumed that x0 has a sparse representation x0 = Dα0 where

D is a given dictionary and the majority of the entries of α0 are zero.

This permits the representation of x0 as a linear combination of a small number of

"atoms" or columns of D. Thus the goal of any estimation technique is to recover either

x0 or its sparse representation given by α0. There are several practical approaches to this

problem, these include �1 relaxation methods such as the Dantzig selector [33], Basis pur-

suit denoising (BPDN) which is also known as the Lasso. [28, 29, 39]. These approaches

rely on methods from linear programming (LP), and these approaches can be substantially

more expensive in applications than the standard linear reconstruction schemes. As an

alternative one can consider iterative algorithms that achieve reconstruction performance

comparable to the LP-based approaches while running considerably faster. Examples of

these are greedy algorithms such as thresholding and orthogonal matching pursuit (OMP)

[40], and implementations of message passing.

Several authors have approached compressed sensing from the information-theoretic

perspective [41, 42, 43, 44]. Notably Wu and Verdu presented information-theoretic lower

bounds on the undersampling rate in terms of Rényi information dimensions of the esti-

mated vector for noiseless [43] and noisy sensing [44] cases. This has allowed for com-

pressed sensing to be considered for vectors with components drawn from a given set based

on some probability distribution which allows one to drop the sparseness requirement on

the input vector. The connection between achievable compressed sensing undersampling

37
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rates and multi-user efficients were computed using methods from statistical mechanics

[44, 45].

In [46] it is shown that a special construction of band-diagonal sensing matrices built

from random Gaussian matrices and the AMP algorithm have been used to approach the

ultimate reconstruction limits according to Rényi information dimension. In terms of ex-

panding the achievable limits of the reconstruction, spatial graph coupling has made sig-

nificant progress. It has been shown by Kudekar and Pfister [47], and Krzakala et. al. [48]

that coupled sensing matrices can be used efficiently for compressed sensing.

4.2 Sparse Estimation Problems

In this section we describe two common estimation problems. Wherein the unknown

parameter has a sparse representation with respect to a known dictionary. A measurement

of the unknown deterministic signal x0 ∈ R
n is given by y ∈ R

m

y = Ax0 +w (4.1)

where w is an independent, identically distributed (IID) Gaussian noise with zero mean and

variance σ2, and A is a known m× n matrix. We require that A is non-adaptive, implying

that measurements do not depend on measurements made previously.

It is assumed as prior knowledge that there exists a sparse representation of x0, i.e.,

x0 ∈ S = {x ∈ R
n : x = Dα, ||α||0 ≤ s}. (4.2)

The set S describes signals x which can be formed from linear combinations of s columns

from D (commonly called atoms). The dictionary D is a known n × p matrix with n ≤ p,

and it is further assumed that s < p to ensure only a subset of atoms in D can be used to

represent any signal in S, and that this number s is known.

As an example, in [16] the authors consider three possible compressed sensing prob-

lems which are similar to (4.1) with potentially Gaussian random matrices A and informa-

tion vectors of three types:

� Sparse vectors with non-negative entries.

� Sparse vectors with signed components.
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� Vectors with components xi ∈ [−1, 1] and at most k � n entries with values in the

interior (−1, 1).

Given such a measurement, the goal is to obtain an estimate x̂ whose average mean

squared error (MSE),

MSE = E[||x̂− x0||22] (4.3)

is as small as possible. As x0 is deterministic, the expectation above is taken over the noise

of w, but not x0, and so we may treat this as a function of x0.

It may also be of interest to estimate the coefficient vector α0 for which x0 = Dα0,

say for the purpose of model selection [28, 33]. In such a scenario, one must construct

an estimator α̂ whose MSE, E[||α̂ − α0||22] is as low as possible. Unless D is unitary,

estimating α0 is not equivalent to estimating x0. Of course when estimating for α0 we may

combine the two matrices to produce an equivalent problem

y = Hα0 +w (4.4)

where H = AD is an m× p matrix and

α0 ∈ T = {α ∈ R
p : ||α0||0 ≤ s}. (4.5)

This is just a special case of (4.1) and (4.2) with the p-dimensional identity matrix acting

as D in (4.2). Signal estimation problems differ in the properties of the dictionary D

and measurement matrix A. For example, distinctly different problems arise depending on

whether the dictionary is a basis or an over-complete frame.

Alternatively, in accordance with the results [43, 44, 45] one can drop the requirement

that x is sparse and instead consider vectors with components as random variables with

some probability distribution. In this work we consider the sensing problem

y = Ax0 +w

where x with entries arising from the binomial distribution, w is a noise vector as stated in

(4.1), and A is a band-diagonal sparse m× n matrix.
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4.3 Inference from Message Passing

We have considered linear measurement problems of the form [49]

y = Ax+w

where A is a known measurement matrix and w a noise vector. The graphical model ap-

proach to reconstructing the original vector x is to postulate a joint probability distribution

on the transmitted and received vectors which is of the form

p(dx, dy) = p(dy|x)p(dx) (4.6)

The conditional distribution p(dy|x) models the noise process, while the prior p(dx) en-

codes information on the vector. In compressed sensing this can describe its sparsity prop-

erties. Either of these distributions (or both) is factorized according to a specific graph

structure, and the resulting posterior distribution p(dy|x) can be used to infer x given y.

To illustrate this, we consider the conditional distribution of y given x which is equiv-

alent to specifying the distribution of the noise vector w. We will assume that p(w) is

Gaussian with zero mean and variance β−1I , and so

pβ(dy|x) =
(

β

2π

)n
2

exp
(
−β

2
||y −Ax||22

)
dy (4.7)

For the prior p(dx) we use the product distribution with identical factors.

The posterior distribution of x given observations y admits an explicit expression de-

rived from pβ(dx, dy)

pβ(dy|y) =
(

β

2π

)n
2 1

p(y)
exp
(
−β

2
||y −Ax||22

)
dyΠn

i=1p(dxi). (4.8)

Despite this explicit expression, computing marginals or expectations of this distribution is

computationally hard.
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Notice that the square residuals ||y−Ax||22 decompose into a sum of m terms, produc-

ing a simpler expression

pβ(dy|y) =
(

β

2π

)n
2 1

p(y)
Πm

a=1exp
(
−β

2
(ya − (Ax)a)

2

)
dyΠn

i=1p(dxi). (4.9)

where (Ax)a is the a−th entry of the vector Ax. This factorized structure can be expressed

as bipartite graph including a "variable node" i ∈ [1, n] for each variable xi and a "factor

node" a ∈ [1,m] for each term Ψa(x) = exp
(
−β

2
(ya − (Ax)a)

2
)

Variable i and factor a

are connected by an edge if and only if Ψa(x) depends non-trivially on xi (i.e., Aai �= 0).

We will call such a bipartite graph, a factor graph.

Figure 4.1: Factor graph associated to the probability distribution (4.9). Circles correspond
to variables xi, i ∈ [1, n] and squares correspond to measurements ya, a ∈ [1,m].

An estimate of the signal can be extracted from the posterior distribution in several

ways. One could use the conditional expectation

x̂β(y; p) =

∫
Rn

xpβ(dy|x), (4.10)

this estimate achieves the minimal mean square error if pβ(dx, dy) is the actual joint dis-

tribution of the problem. In practical terms, this estimator is hard to compute. To pro-

duce something more tractable, we suppose that p(dxi) = pβ,h(dxi) = cfβ,h(xi)dxi for

fβ,h(xi) = e−βh(xi) an un-normalized probability density function. As β becomes large,

the integral (4.10) becomes dominated by the vector x with the highest posterior probabil-

ity pβ and one can replace the integral in dx with a maximization over x and define the

following minimization over a cost function CA,y(z;h),
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x̂(y;h) = argminz∈RnCA,y(z;h)

CA,y(z;h) =
1
2
||y −Az||22 +

∑n
i=1 h(zi) (4.11)

where h arose from the assumption of an un-normalized probability density function. As-

suming the cost function has a unique minimum. This problem is amenable to iterative

approaches like LASSO, BPDN and mesage passing.

4.4 Message Passing: The Min-sum Algorithm

Message passing is often too complex to implement, instead the solution to the op-

timization problem (4.11) can be determined using an appropriate approximate message

passing algorithm. To illustrate this, we start with the min-sum algorithm, which is an

iterative belief-propagation algorithm [49].

We introduce a general cost function over x = (x1, · · · , xn) that decomposes according

to a factor graph as in Figure 4.1:

C(x) =
∑
a∈F

Ca(x∂a) +
∑
i∈V

Ci(xi′). (4.12)

Here F is the set of m factor nodes, and V is the set of n variable nodes. We denote

the set of neighbors of factor node a (those variable nodes connected to the factor node

a) as ∂a and x∂x = {xi : i ∈ ∂a}. The basic variables here are messages; a message is

associated to each directed edge in the underlying factor graph. In our case the messages

are functions on the optimization variables which denoted as J t
i→a(xi) and Ĵ t

a→i(xi) for

"variable to factor" and "factor to variable" messages respectively at iteration t. Modulo up

to addition to additive constant, the messages are updated at t-th iteration as

J t+1
i→a(xi′) = Ci(xi′) +

∑
b∈∂i\a Ĵ

t
b→i(xi′),

Ĵ t+1
a→i(xi′) = minx∂a\i

[
Ca(x∂a) +

∑
j∈∂a\i J

t
j→a(xi′)

]
. (4.13)
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Iterating over t, the optimum is approximated by

x̂t+1
i = argminxi∈Rn J t+1

i (xi′),

J t+1
i (xi′) = Ci(xi′) +

∑
b∈∂i Ĵ

t
b→i(xi′). (4.14)

There are many ways to modify the basic iteration to provide better properties. The ap-

proximate message passing algorithm presented in Chapter 5 and 6 is derived to simplify

the message passing rules from section 3.5:

xt+1
j→a = ηt

(∑
a′ �=a, a′∈∂j z

t
a′→j

)
zta→j = y −

√
P
∑

j′ �=j, j′∈∂a x
t
j′→a, (4.15)

where ηt(·) = tanh(·) denotes the threshold function applied component-wise to the vector

input and
√
P is a constant. Over t iterations the optimum is

x̂t+1
i = arg min

xi∈Rn

[∑
b∈∂i

ztb→i

]
. (4.16)



Chapter 5

Coupling Information Transmission with

Approximate Message Passing

In this section we focus on the coupling information transmission multi-user commu-

nication technique based on the spatial graph coupling principle [3] where the packets

transmitted from their respective datastreams have perfect timing. Each user transmits one

or more independently encoded data streams over the multiple access channel.

Each data stream is encoded and modulated such that the relations between the data

bits and modulation symbols within each transmitted stream are represented by a bipartite

graph. The data streams are transmitted with time offsets enabling coupling of the transmit-

ted graphs into a single continuous graph chain at the receiver. The receiver performs iter-

ative message-passing interference cancellation and data estimation on the received graph

chain, followed by individual error-correction decoding, performed for each data stream

individually, providing near-capacity operation [2, 11].

Modulation of each data stream is accomplished with repetition, permutation, and

spreading of data. We start with an introduction to the coupling information transmission

system and present its compressed sensing representation in Section 5.1, we formulate the

AMP-based demodulation algorithm in Section 5.3, and give the derivation of the algorithm

in the Appendix. Simulation results and conclusions are given in Section 5.4.

In terms of expanding the achievable limits of the reconstruction, spatial graph cou-

pling has made significant progress. It has been shown by Kudekar and Pfister [47], and

Krzakala et. al. [48] that coupled sensing matrices can be used efficiently for compressed

sensing. We consider a demodulation technique based on approximate message passing

(AMP) proposed by Donoho et al. [16] for compressed sensing problems, and construct a

version of the AMP which is specially derived for our multi-user situation.

We start with an introduction to the coupling information transmission system and

present its compressed sensing representation in Section 5.1, we formulate the AMP-based

44



45

demodulation algorithm in Section 5.3, and give the derivation of the algorithm in the Ap-

pendix. Simulation results and conclusions are given in Section 5.4.

5.1 System Model

We consider a communication scenario where a number of distinct transmitters send

independently encoded and modulated streams of data to the common receiver. The en-

coding format follows the coupling data transmission technique outlined in [11][2]. Each

data stream � = 1, 2, 3, · · · is encoded and modulated as shown in Fig. 5.1. First, a binary

information sequence u� = u1,�, u2,�, · · · , uK,�, where uj,� ∈ {−1, 1} is encoded with a

binary error correction code of rate R = K/N to produce an N bit codeword v�.

Each bit vj,� ∈ {−1, 1}, j = 1, 2, · · · , N of v�, is then replicated M times. The

resulting sequence is permuted using a binary permutation matrix P � and bitwise mul-

tiplied with a pseudo-random binary signature sequence specific to data stream �, s� =

s1,�, s2,�, · · · , sMN,�, with sj,� ∈ {−1, 1}, producing a sequence ṽ� = ṽ1,�, · · · , ṽMN,�. The

resulting binary phase shift keying (BPSK) signal ṽ� is multiplied by an amplitude
√

P�/M

and transmitted over the Gaussian multiple access channel (see Fig. 5.1). The bit error rates

(BER) are computed assuming error-correction codes which are capacity achieving on a

binary-input Gaussian channel given post detection SNR. Thus the goal for demodulation

is to reduce the SNR to an acceptable threshold in order to pass to the error-correction

codes.

The encoding and modulation of the vector ṽ� can be represented using matrix notation

as

√
P�

M
ṽ� =

√
P�

M
S�P �Rv� = B�v� (5.1)

where R is the MN ×N band-diagonal repetition matrix with M ones in each row, P � is

an MN ×MN permutation matrix, and S� = diag(s�) is an MN ×MN diagonal matrix

that has the signature sequence s� on its diagonal.

We focus on a transmission scenario where k modulated data streams are transmitted

over the channel with time offsets of θ1 ≤ θ2 ≤ θ3 ≤ · · · ≤ θk symbol (chip) durations.1

1Without loss of generality we assume that the received data streams are chip synchronized. Processing
of fractional offsets is discussed in Section 5.3.
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√
P�
M

s�

ṽ�

v�
u�

Signature sequence

Channel

information
bits

v

Binary Error 
Correction 
Encoder

Symbol 
Replication
M Times

v
Permutation

Figure 5.1: Encoding and modulation of the �th data stream.

The received vector y is given by

y = Av + ξ . (5.2)

where

A = C
[
BT

1 ,B
T
2 , · · · ,BT

k

]T
, (5.3)

C is a coupling matrix illustrated in Figure 5.2, and v = [vT
1 ,v

T
2 , · · · ,vT

k]
T is the composite

encoded data vector of all data streams. Multiplication by the coupling matrix performs

superposition of the data streams transmitted with time offsets. The noise vector ξ consists

of iid real-valued Gaussian noise samples ξt ∼ N (0, σ2) with t = 1, 2, 3, · · · .

It is convenient to represent each transmitted data stream using a bipartite graph in

which each encoded data bit corresponds to a variable node and each modulated symbol

by a constraint node. A variable node has M outgoing edges connecting it to the constraint

nodes containing the M replicas of the variable node bit.

Data stream transmission with time offsets initiates coupling of the graphs correspond-

ing to the individual data streams into a continuous graph chain at the receiver. Hence,

we refer to such transmission as coupling transmission (a regularized coupling transmis-

sion with equispaced offsets is described in Section 5.4). A constraint node in the received

graph corresponds to a particular symbol (chip) time instance and is connected to all vari-

able nodes for which those respective bits are transmitted at that particular time. Let us

denote the set of indices of the variable nodes connected to constraint node t by J (t) and

the indices of constraint nodes connected to variable node j by T (j)2 (see Fig. 5.4).

2We omit index l and index all data bits with a single index j for simplicity.
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C =

θ1

θ2
θ3
θ4
...

INM

INM
INM

INM

INM

INM
INM

INM

Figure 5.2: The MN × MN coupling matrix C consists of identity matrices surrounded
by zeros. Each identity matrix IMN corresponds to an incoming data stream and its row
offset corresponds to the time offset (starting time) of that data stream.

The alternative “compressed sensing” representation of the system is based on the

sparse m×n matrix A (see (5.2)). Note that the non-zero elements in row t, t = 1, 2, · · · ,m
of A are indexed by the set J (t) and represent the indices of the data bits vj that are trans-

mitted at time t. The non-zero elements in a column j, j = 1, 2, · · · , n, of A represent

times at which a particular bit vj is transmitted over the channel and are indexed by the set

T (j).

5.2 Demodulation and Decoding

The receiver starts with joint iterative demodulation (multi-user detection) of the data

streams. At each iteration of the iterative demodulation process each bit vj is estimated

based on the M received symbols that contain the M transmitted replicas of vj ( bit estima-

tion stage). The estimated bits are then utilized to remodulate the data streams and perform

interference cancellation (interference cancellation stage). After the interference cancella-

tion stage the data streams are again passed to the bit estimation stage and the process is

repeated for a number of iterations until most of the inter-stream interference is removed.

The individual error correction decoding of the data streams is performed after the

final demodulation iteration. The decoding is not included into the demodulation loop to

simplify the system implementation and reduce the computational complexity. The system

is still capacity achieving asymptotically [11][2].

The iterative demodulation process can also be seen as message-passing on the system’s

graph chain. The interference cancellation message zit→j from constraint node t to variable

node j at demodulation iteration i and the bit estimation message back from node t to node
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j at demodulation iteration i+ 1 are given by

zit→j = yt −
∑

j′ �=j, j′∈J (t)

Atj′v
i
j′→t (5.4)

vi+1
j→t = tanh

⎛
⎝ ∑

t′∈T (j),t′ �=t

At′j
zit′→j

σ2,i
t′

⎞
⎠ , (5.5)

where σ2,i
t is the noise and interference power experienced by the tth symbol of the re-

ceived signal at demodulation iteration i (see Fig. 5.4). The bit estimation performs maxi-

mum ratio combining over all signals zit→j containing bit vj and then takes the conditional

expectation estimate (see [11]). The interference cancellation step features subtraction of

all data streams except stream j from the received signal.

The number of messages computed, stored, and transmitted at each iteration of the

message-passing based iterative demodulation scales with the total number of the data bits

as well as the repetition factor M . An implementation, besides the main iteration loop,

requires a loop involving the exclusion of one message t′ = t or j′ = j.

y

y
(i)
l

x̂
(i)
l

y
v̂
(I)
1

v̂
(I)
2

v̂
(I)
l∈L

Lpack(i)

. .
 .

. .
 .I iterationsInterference 

Cancellation
Data

Estimation

Error Correction Decoder 1

Error Correction Decoder 2

Lpacp k((i))Error Correction Decoder . . .

Figure 5.3: Diagram of the iterative receiver, with error correction decoding for each data
stream.

5.3 The Proposed AMP-Based Demodulation Algorithm

Let v̂i denote an estimate of the entire data vector v computed at iteration i and zi

denote the residual noise and interference between the data streams at iteration i. The
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j j′

tt′

J (t)

T (j)

zit→j′

vi+1
j→t′

Figure 5.4: Graph representation of the modulated data.

proposed algorithms steps are as follows:

zi = y −Av̂i +
zi−1

σ2,i−1
◦ (A2 sech2(wi−1)), (5.6)

wi = AT zi

σ2,i
+AT

2

1

σ2,i
◦ v̂i . (5.7)

v̂i+1 = tanh(wi) (5.8)

where ◦ denotes the Hadamard (component-wise) product, A2 = A ◦ A and ’sech’ is the

hyperbolic secant function. The derivation of the algorithm is given in Appendix. The

initialization is done using

z0 = y, v̂0 = 0 . (5.9)

and σ2,i is computed from the variance of the residual zi.

The algorithm description is almost as compact and simple as linear multiuser detection

for CDMA such as a mean squared error (MSE) detector with just an addition of two

correction terms but without matrix inversions. Moreover, since matrix A is sparse, the

complexity of the actual matrix multiplication scale only with the number of non-zero

matrix entries. The role of the coupling matrix C to add data streams with time offsets,

and therefore, the operation Av can be performed as addition of the vectors B�v̂� with

offsets θ�. The number of operations performed per iteration scales only with the number

of data bits or received chips (which differ by the systems load factor). The implementation

requires a single iterative loop.

Finally, in the case that the time offsets θ1, θ2, · · · are not precisely chip time syn-

chronous the interference cancellation operation in (5.6) can be performed on sample basis.
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Figure 5.5: Simulated coupling data transmission with AMP demodulation for M = 250
(solid circles), M = 100 (dashed circles), full message-passing M = 250 (dotted squares),
capacity of the GMAC channel (solid curve).

5.4 Numerical Results

The proposed algorithm can be applied in the case of arbitrary data stream transmission

offsets θ1, θ2, · · · . We present numerical results for a regularized offset scenario in which

the system is asymptotically capacity achieving [2]. Let us define a coupling parameter W

and assume that each packet consists of 2W + 1 sections of length ηW = MN/(2W + 1)

bits, where MN is divisible by 2W + 1. We then assume that data streams are transmitted

in groups of Lw where Lw is a parameter determining the system load α = Lw(2W+1)/M .

The time offsets are multiples of ηW , i.e. θ1 = θ2 = · · · = θLw = 0, θLw+1 = θLw+2 =

· · · = θ2Lw = ηW and so on, θj = ηW �j/Lw�. Small random deviations from this time

offsets will not influence the results.

Fig. 5.5 demonstrates simulated achievable sum rate of the coupling transmission with

the proposed AMP algorithm. We consider coupling window size W = 12, code length

N = 250 and focus on the case of equal power streams, P1 = P2 = · · · = P , known

to be the hardest for multi-user detection at high system loads. AMP demodulation with

repetitions factors M = 250 and M = 100 and given by the solid and dashed circle curves

respectively. The dotted squares curve represents full message passing for M = 250.

The rates are computed assuming error-correction codes which are capacity achieving on

a binary-input Gaussian channel given post detection SNR. The solid curve represents the
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channel capacity. The two horizontal dashed lines represent the maximum load α = 1.49

achievable by the individually optimal detector of random CDMA [7] and the maximum

load α = 2.08 achievable by the un-coupled partitioned spreading DMA (PS-CDMA)

or sparse CDMA [10] - the limits of the un-coupled systems. Dash-dotted curves show

capacities of 2, 4, 8-PAM input Gaussian channel.

The coupled data transmission with AMP follows the capacity of the channel within

2dB while systems loads scale up to α = 3.5. The results for smaller repetition factor

M = 100 loses 0.5dB to M = 250 curve and starts to degrade slightly for load α = 3.5.

The proposed algorithm results in a negligible performance loss compared to complete

message-passing while it presents a significant complexity and implementation advantage.

5.5 Derivation of AMP Algorithm

Let us define two quantities representing the elements of the estimated data vector at itera-

tion i+ 1 and the vector of the interference cancellation residual at iteration i

v̂i+1
j

def
= η̃

(
m∑
t=1

Atj

zit→j

σ2,i
t

)
, zit

def
= zit→j − Atj v̂

i
j . (5.10)

Expressing zit→j from (5.10) we get zit→j = zit + Aaj v̂
i
j . Hence

m∑
t=1

Atjz
i
t→j

σ2,i
t

=
m∑
t=1

Atjz
i
t

σ2,i
t

+
m∑
t=1

AtjAtj

σ2,i
t

v̂ij. (5.11)

Substituting (5.11) into (5.5) we obtain

vij→t = η̃

(
m∑
t′ �=t

At′jz
i−1
t′→j

σ2,i−1
t′

)

= η̃

(
m∑
t′ �=t

At′j

σ2,i−1
t′

zi−1
t′ +

[
m∑

t′=1

A2
t′j

σ2,i−1
t′

−
A2

t′j

σ2,i−1
t′

]
v̂i−1
j

)
.

≈ η̃

(
m∑
t′ �=t

At′j

σ2,i−1
t′

zi−1
t′ +

m∑
t′=1

A2
t′j

σ2,i−1
t′

v̂i−1
j

)
. (5.12)

By neglecting the small term A2
tj (≈ P�

M
for some �, or 0) we obtain (5.12). Re-writing the
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first term in (5.12) above leads to

vij→t = η̃

((
AT zi−1

σ2,i−1

)
j

− Atj
zi−1
t

σ2,i−1
t

+
m∑

t′=1

A2
t′j

σ2,i−1
t′

v̂i−1
j

)

Taking a Taylor series expansion up to the linear term, we find

vij→t ≈ η̃

((
AT zi−1

σ2,i−1
+AT

2

1

σ2,t−1
◦ v̂i−1

)
j

)

− Atj
zi−1
t

σ2,i−1
t

η̃′

((
AT zi−1

σ2,i−1
+AT

2

1

σ2,i−1
◦ v̂i−1

)
j

)
(5.13)

where ◦ denotes the Hadamard (component-wise) product, A2 = A ◦ A, and AT denotes

the transpose of the matrix A

Let us define the vector

wi−1 def
= AT zi−1

σ2,i−1
+AT

2

1

σ2,i−1
◦ v̂i−1 . (5.14)

We can now represent (5.13) as

vij→t ≈ v̂ij −
Atjz

i−1
t

σ2,i−1
t

η̃′
(
wi−1

j

)
(5.15)

and we also have

v̂ij = η̃(wi−1
j ) . (5.16)

To compute zit we apply (5.15) to (5.10) and obtain

zit = yt −
n∑

j �=j′
Atj′v

i
j′→t − Atj v̂

i
j

= yt −
n∑

j �=j′
Atj′

(
v̂ij −

Atj′z
i−1
t

σ2,i−1
t

η̃′(wi−1
j′ )

)
− Atj v̂

i
j

= yt − (Av̂i)t +
n∑

j′=1

A2
tj′z

i−1
t

σ2,i−1
t

η̃′(wt−1
j′ )−

A2
tj

σ2,i−1
t

η̃(wt−1
j ).
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Again we will drop A2
tj ≈ P�

M
leaving the approximation

zit ≈
(
y −Av̂i +

zi−1

σ2,i−1
◦ (A2η̃

′(wi−1))

)
t

. (5.17)

Finally (5.17), (5.14), and (5.16) give the AMP algorithm.



Chapter 6

Joint Packet Detection and Decoding for Maritime Data Exchange

Systems

Random access communications is an important mechanism of accessing the commu-

nication channel resources in the upcoming VHF data exchange, VDES as was previously

mentioned in Chapter 2. In satellite uplink communications a large varying user (ves-

sel) population is accessing the channel and coordinated channel access will be difficult to

implement. At the same time is it important to allow as many vessels as possible to com-

municate and share channel resources efficiently. Hence, the present time-division based

random access mechanism may not be able to cater to the growing traffic demand. In

addition to ship-to-satellite requests for downlink data transfer, tracking, and emergency

messages, short message exchange between ships and ship-to-shore can also be efficiently

handled with random access. Often, vessels do not need to establish a link but just need to

send a single packet.

We consider an approach to random access at the physical layer that is based on tech-

niques for simultaneously receiving several packets originating from distinct transmitters.

In a random access setting such receiver needs to accomplish two tasks: detect the start

of each incoming packet (timing acquisition) and decode the packets. The latter typically

also involves cancellation of mutual interference between the packets. It has been observed

already in the 90s for the case of code-division multiple access that the detection task lim-

its the multi-packet reception (MPR) capabilities of a receiver [50][51]. Later it has been

shown [52][53] that joint detection and decoding can improve the MPR capability. It has

also been proved in [54] that for packets modulated using generalized modulation format

and for specific packet power distribution the detection results in a loss that amounts to a

small fraction of the channel capacity asymptotically.

We focus on a spread spectrum transmission system that uses a constant envelop mod-

ulation and a spread preamble as in VDES uplink option [18], suitable for a simple im-

plementation in a vessel transmitter. We propose an algorithm for packet encoding at the

54
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transmitter and joint packet detection and decoding at the receiver. Due to the specific

encoding format, from a communications theoretic perspective we can represent each mes-

sage as a bi-partite graph relating the data bits and the transmitted modulated symbols. At

the receiver consecutively received interfering packet graphs couple into a chain of graphs.

Our proposed joint iterative preamble detection, interference cancellation and decoding al-

gorithm is based on the AMP technique [16] and operates on the received graph chain.

Numerical results demonstrate that incorporation of the preamble detection into the itera-

tive decoding loop leads to a relatively minor performance loss compared to the throughput

of the system with an a priori timing knowledge assumption. The total throughput follows

the capacity of the multiple access channel. We also demonstrate that packet loads as high

as 2.95 packets per packet length per spreading factor are achievable and that the presented

random access mechanism outperforms the existing random access techniques.

6.1 System Model

bl d √
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Figure 6.1: Encoding and modulation of one data packet.

We consider a scenario when a number of users send their data packets to the common

receiver. The users send packets on demand at random times and create random traffic

at the receiver. We assume that all packets are of the same length, the total number of

packets transmitted within a frame is Lpack, and the ordered set of packet indices is Lpack =

(1, 2, · · · , Lpack). The bit error rates (BER) are computed assuming error-correction codes

which are capacity achieving on a binary-input Gaussian channel given post detection SNR.

Thus the goal for demodulation is to reduce the SNR to an acceptable threshold in order to

pass to the error-correction codes.

Each packet begins with a preamble that will be used for the packet’s timing acquisition.
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The preamble is followed by a payload consisting of the modulated original data to be sent.

To produce the payload of packet l ∈ Lpack a transmitter starts with encoding the binary data

vector ul = u1,l, u2,l, · · · , uK,l with a binary error correction code of rate R = K/N . After

the encoding each bit of the encoded sequence vl = v1,l, v2,l, · · · , vN,l, vj,l ∈ {1,−1}, is

repeated M times and the resulting sequence is permuted using a permutation described

by a binary permutation matrix P l. Finally, the permuted sequence is multiplied bit-by-bit

by the binary pseudo-random signature sequence sl = s1,l, s2,l · · · , sMN,l, sj,l ∈ {1,−1},

to produce ṽl = ṽ1,l, ṽ2,l, · · · , ṽMN,l. The resulting binary phase shift keying signal is

multiplied by a factor
√

Pl/M , where Pl is the transmit power, and is transmitted over the

channel (see Fig. 6.1) 1.

Hence, each data bit is spread with a spreading factor M and the resulting spread

symbols (chips) are permuted. The modulation format follows the coupling information

transmission modulation principle [11], [55], [56], [2] and also resembles interleave divi-

sion multiple access (IDMA) [14], partition-spreading code-division multiple access (PS-

CDMA) [9, 10], generalized modulation [13], and superposition modulation [15]. The

modulated signal can be represented as a sparse graph connecting variable nodes corre-

sponding to the data bits vj,l to the channel access nodes corresponding to the times at

which M replicas of vj,l are transmitted over the channel. By T (j, l) we denote the set

of times τ1, τ2, · · · , τM at which the modulated replicas of bit vj,l are transmitted over the

channel.

To help the receiver find the starting time of the packet each transmitter starts its packet

with a preamble. Besides its purpose for timing acquisition the preamble also carries in-

formation. The information may include the seed of the spreading code and permutation

used for modulating the packet’s payload. Typically this information is encoded by a strong

error correction code. Assume that the preamble of the lth packet contains an information

bearing bit sequence bl = b1,l, b2,l, · · · , bNp,l where Np is the length of the preamble in bits.

To modulate the preamble each bit of the sequence bl is repeated M times and the result-

ing sequence is multiplied bit-by-bit by a binary signature sequence d = d1, d2, · · · , dMNp

to produce the preamble sequence b̃l = b̃1,l, b̃2,l, · · · , b̃MNp . The signature sequence d is

common to all preambles of all packets. As with the payload, the sequence b̃l is finally

1To simplify the presentation of the material we consider BPSK modulated packets. The format can be
extended to QPSK modulation in a straightforward manner (see [54]).
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t

preamble              payload

Figure 6.2: A stream of coupled packets with random arrivals of approximately 4 packets/-
packet length.

multiplied by the amplitude factor
√

Pl/M prior to transmission. The pseudo-random sig-

nature sequence d is constructed from sequences with low autocorrelation [57] to reduce

the rates of false alarms.

Thus, one data packet consists of an NpM -chip preamble followed by an NM -chip

payload. The length parameter Np determines the transmission rate-loss and complexity of

the acquisition device, and it is desirable that this preamble length is minimized, especially

for the case of transmitting short packets as in VDES.

Combining the payload and preamble data into one vector xl = (bl,vl)
T we can repre-

sent the lth modulated packet, l ∈ Lpack as a product

x̃l = Blxl .

The matrix Bl is given by

Bl =

√
Pl

M
diag(d, sl)

(
IMNp 0

0 P l

)
RN+Np (6.1)

= B̃lRN+Np , (6.2)

where diag(d, sl) is an (N +Np)M × (N +Np)M diagonal matrix with sequence (d, sl)

on the main diagonal, IMNp is an identity matrix of size MNp, and RN+Np is an (N +

Np)M × (N +Np) matrix which performs M -times replication via right multiplication.

We assume that throughout the frame the users transmit their packets with the overall

traffic intensity αM packets/packet length. Hence, at the beginning of the frame the packet

traffic increases linearly from an intensity of 0 packets/packet length to αM packets/packet

length and stays at that level (see Fig. 6.2). The graphs representing the packets couple in

the channel randomly into a chain of graphs. Hence, we obtain a spatially coupled system
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on which we will try to exhibit the threshold saturation phenomenon [5][6] via an iterative

message-passing-like receiver processing. The fact that the inter-packet interference grad-

ually increases at the beginning of the frame will help to start the detection and decoding

process which will then continue successfully for the duration of the entire frame.

We consider communication over the additive white Gaussian noise (AWGN) channel,

and so, the received signal y = (y1, y2, y3, ...) is computed as a superposition:

yτ =

L(τ)∑
l=1

x̃τ,l + nτ , τ = 0, 1, 2, · · ·

where L(τ) denotes the number of interfering packets at time τ and nτ ∼ N (0, σ2) are the

iid noise samples.2 The received signal also allows for representation

y = ALpackx+ n , (6.3)

where x = (xT
1 ,x

T
2 , · · · ,xT

Lpack
)T is the vector of stacked data and preamble information of

all packets, n is the vector of noise samples and

ALpack = CLpack

⎛
⎜⎜⎜⎜⎜⎝

B1

B2

...

BLpack

⎞
⎟⎟⎟⎟⎟⎠ (6.4)

where CLpack is the coupling matrix representing the addition of all the transmitted packets

in the channel. The starting times of the packets 1, 2, · · · , Lpack are denoted by θ1, θ2, · · · , θLpack .

The coupling matrix CLpack is depicted in Fig. 6.3. Generalizing this definition, given a set

of indices L ⊂ Lpack by CL we denote a coupling matrix coupling only packets l ∈ L,

by BL we denote the matrix produced by vertical stacking of matrices Bl, l ∈ L and by

xL a vector of corresponding packet data xl, l ∈ L, also stacked vertically. Finally, AL is

computed analogously to (6.4).

2Without loss of generality we assume that the received packets are chip-synchronized, otherwise we
would consider sample-based detection and interference cancellation processing with the sampling time the
receiver would use to oversample the incoming signal.
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C(Lpack) =

θ1

θ2
θ3

θ4
...

I(N+Np)M

I(N+Np)M

I(N+Np)M

I(N+Np)M

I(N+NpNN )M

I(N+NpNN )M

I(N+NpNN )M

I(N+NpNN )M

Figure 6.3: The coupling matrix C(Lpack) consists of identity matrices surrounded by zeros.
Each identity matrix corresponds to an incoming packet and its row offset corresponds to
the packet’s starting time.

6.1.1 Preamble Detection

The first iteration starts with the packet detection performed via correlating the pream-

ble’s signature sequence d with the incoming signal. The preamble detector slides through

the incoming sequence y chip-by-chip and evaluates the correlation detection statistics

ητ =

Np∑
j=1

∣∣∣∣∣ 1√
M

M∑
m=1

yτ+(j−1)M+m−1d(j−1)M+m−1

∣∣∣∣∣
2

. (6.5)

Since the preamble contains unknown bits we have the inner summation over the chips

spreading each bit and compute the energy using the outer summation in (6.5). The statis-

tics ητ is compared to the decision threshold G and in the case ητ ≥ G a decision about the

presence of a packet starting at time τ in the received signal is made.

After the initial detection, some packets, mainly those located at the beginning of the

frame, are detected, and will be processed by the data estimation and the interference can-

cellation block (multiple user detection block) discussed in Section 6.1.2. At the end of

the estimation and interference cancellation stage the residual vector z(1) containing the

residual interference, undetected packets, and noise will be incoming for the preamble de-

tection at the second iteration. The statistics ητ will be computed based on z(1) and since

z(1) has reduced level of interference compared to y more packets may be detected. The

newly detected packets join the estimation and interference cancellation process at the sec-

ond iteration. The iterations are repeated until all or almost all packets are detected and the

interference level is reduced to a level at which the error correction decoders can decode
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the packets. A block diagram of the receiver is depicted in Fig. 6.4.

The thresholding parameter G may be determined assuming that the noise and interfer-

ence experienced by the packets in the multi-user environment can be approximated by a

Gaussian random variable. 3 In this case the statistics ητ follows a Chi-squared distribution

with Np degrees of freedom and non-centrality parameter Np(P +σ2
I ) where σ2

I is the noise

and interference power and P is the power of the packet. If the packet is absent, ητ fol-

lows a central Chi-squared distribution with Np degrees of freedom. Supposing Np is large

enough, the Central Limit Theorem implies that ητ may be treated as a Gaussian random

variable with expectation and variance

Eητ = Np(P + σ2
I ), var(ητ ) = Np(P + σ2

I )σ
2
I

for the case of a packet being present at time τ and

Eητ = Npσ
2
I , var(ητ ) = Npσ

4
I

in the case it is absent. With this we may compute the probability of a false alarm as

pfa = Q

(
G−Npσ

2
I√

Npσ4
I

)
,

where

Q(x) =
1√
2π

∫ ∞

x

exp(−t2/2)dt .

Fixing the false alarm probability to some value p0, and denoting q0 = Q−1(p0) allows us

to solve for the threshold

G = σ2
I

√
Np(
√
Np + q0) .

At iteration i the variance σ2
I is estimated directly from the residual vector z(i−1) which

is processed for detection. To compute the decision threshold G for time τ the variance

σ2
I needs to be computed for the part of the vector z(i−1) around the time index τ . The

length of this window may be chosen to be 3 − 5% of the packet length since σ2
I varies

3This assumption relies on the Central Limit Theorem as we have a collection of a large number of
independent interfering packets. The packets’ power distribution needs to satisfy Lindeberg Condition.
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Figure 6.4: Diagram of the iterative receiver that includes joint preamble detection and
payload decoding followed by individual error correction decoding.

significantly among different sections of the vector z(i−1). Note also that in practice G has

to be adjusted according to the observed false alarm probability, see Section 6.3. Let us

denote the set of indices of packets detected by iteration i by Lpack(i).

The signals produced by the modulators are at the chip level. The modulation format

includes a bit-wise multiplication by a known pseudo-random binary sequence prior to

transmission. In the above analysis we have assumed that the receiver clock is in sync

with each of the transmitters clocks and all the sequences are chip synchronized. However,

if that is not the case, both the estimation and the interference cancellation stages of the

receiver can still be applied. The interference cancellation would need to be performed at

the sample level rather that chip level.

6.1.2 Payload Decoding

One iteration of the payload decoding starts with a data estimation step performed for

each bit of the detected packets l ∈ Lpack(1). We start with considering estimation of bit

vj,l of packet l at the first iteration. At the beginning we form a vector yj,l that consists of

M received chips {yτ}τ∈T (j,l), T (j, l) = {τ1, τ2, · · · , τM} that contain vj,l

yj,l = hvj,l + ζj,l

where h =
√
Pl/M(sl,τ1−θl+1, sl,τ2−θl+1, ..., sl,τM−θl+1)

T and ζj,l is the vector of noise and

interference from the other packets. Computing the minimum mean-squared error (MMSE)

filtering of yj,l to form an SNR-optimal linear of estimate of vj,l we find

wj,l = (I + h∗F−1
j,l h)

−1h∗F−1
j,l yj,l
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where F j,l denotes the covariance matrix of ζj,l. One may compute the SNR of the signal

wj,l as

γj,l = h∗F−1
j,l h.

In other words wj,l is a result of maximum ratio combining (MRC) of M received replicas

of vj,l. Since each bit vj,l can be 1 or −1, and takes each of the values with probability 1/2,

one can form a conditional expectation estimate v̂j,l of vj,l as

v̂
(1)
j,l = E(vj,l|wj,l) = tanh(wj,lγj,l).

The estimates v̂(1)j,l of the data bits may then be used instead of the true bits vj,l unknown to

the receiver to remodulate the packets. Since our estimation and interference cancellation

process is performing message passing on a graph for each bit vj,l we compute M estimates

v
(1)
j,l,m, m = 1, 2, · · · ,M . An estimate v̂

(1)
j,l,m is obtained exactly as v̂(1)j,l discussed above but

without involving the observation yτm in the estimation process (i.e. we start with vector

yj,l,m where the yτm component is not present). We then produce a vector v̂(1)
l by stacking

all the estimates v(1)j,l,m, re-modulate the packet and produce

x̂
(1)
l =

√
Pl

M
diag(d, sl)

(
IMNp 0

0 P l

)[
blR

T
Np

v̂
(1)
l

]T
.

At the next step we perform full interference cancellation to compute the residual vector of

noise and interference

z(1) = y −ALpack(1)x̂
(1)
Lpack(1)

which is forwarded to the preamble detector at the beginning of the second iteration. We

also compute vectors

y
(1)
l = y −ALpack(1)\lx̂

(1)
Lpack(1)\l , l ∈ Lpack(1)

that will be used for estimation of data of packets l ∈ Lpack(1) at the second iteration. At the

beginning of the second iteration the packet detector produces an updated set of detected

packet indices Lpack(2). For the packets newly detected at the second iteration, i.e. l ∈
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Lpack(2)\Lpack(1) the vector z(1) will be used for data estimation. The data estimation stage

of the second iteration computes x̂(2)
l which is then passed to the interference canceller. The

entire process repeats for I iterations until all or almost all packets are detected and mutual

inter-packet interference is reduced to (approximately) the noise power level. After that the

packets are individually decoded by the error correction decoders. A detailed analysis of

convergence for such a system is given in [55] where it is proved that as preamble length

increases the system’s performance approaches the capacity of the channel.

6.2 AMP Algorithm for Joint Decoding and Detection

We notice that at each iteration we need to compute and store M copies of each esti-

mated packet bit and up to |Lpack(i)| different cancelled vectors. To reduce this computation

burden we will use the AMP framework [16][58]. At each iteration we compute only one

estimate for each data bit and each vector, and use correction factors to carefully approxi-

mate the original detection and decoding process.

The description of our proposed AMP algorithm based on series expansion and ap-

proximation of the passed messages is given in Fig. 6.5. The AMP version has a simple

description and saves orders of magnitude in complexity and storage for algorithm im-

plementation. Instead of storing the entire sparse matrix Ai matrix multiplications may be

done via explicit modulation as in Fig. 6.1. In practical conditions with no chip synchronic-

ity between the packets steps (6.6) and (6.7) can by done on sample basis.

6.3 Numerical Results

Fig. 6.6 demonstrates the simulated performance of the proposed random access system

with a joint detector and decoder. We consider a spreading factor M = 64, Np = 15 bit

preamble, N = 390 bit payload, and set the average rate of the new false alarms per

iteration to be < 10−5. Equal power distribution of the packets’ powers is considered 4

and the transmission is over the AWGN channel with signal-to-noise ratio (SNR) equal to

Pα/σ2. Binary error-correction codes optimal for the SNR observed at the output of the

4Unequal power distribution typically results in better iterative multi-user detector performances since
power differences facilitate the convergence of the interference cancellation process. However, a modified
sliding correlation detector needs to be considered in this case. For each time position detection at a number
of threshold levels needs to be attempted before sliding forward.
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Initialization: z(0) = y, x̂(1) = 0

For i = 1, 2, · · · , I

Lpack(i) = CorrelationDetect(z(i−1)) (6.6)
Ai = ALpack(i)

z(i) = y −Aix̂
(i) + (Ai ∗Ai)vi ∗

z(i−1)

var (z(i−1))
(6.7)

wi+1 = AT
i z

(i) + x̂(i) ∗
((

AT
i ∗AT

i

) 1

var (z(i))

)
x̂(i+1) = tanh(wi+1)

vi+1 = sech2(wi+1)

∗ denotes component-wise multiplication.
Figure 6.5: AMP based joint decoding and detection algorithm. The above iterative process
is followed by the individual error correction decoding of the packets.

joint decoder after the final iteration are assumed 5. The rate R of the error-correction codes

approaches 1 at high SNRs. The normalized traffic intensity is in the range α ∈ [0.84, 2.95]

and the achievable throughput is computed for the maximum traffic intensity achievable for

a given SNR as αR.

The achievable throughput is given in blue in Fig. 6.6, the theoretic throughput with

perfect timing knowledge by the magenta stars curve, its asymptotic limit (as in [11]) by

the magenta curve, the channel capacity by the red curve, and the throughput for separate

detection and decoding (as in [55]) by the black curve. We notice that packet detection

results in a moderate loss (about 2.2dB or smaller) compared to the results with perfect

timing knowledge assumption.

The threshold G given by formula (6.6) needs to be adjusted to practical conditions to

give specific false alarm probability. For this purpose we have multiplied G computed for

the entire vector z(i) by a single scaling factor ranging between 1.4 and 2.6 depending on

the load. In addition, the preambles of the detected packets are removed upon detection to

reduce the inter-packet interference. The rate of the false alarms that will inevitably occur

during the detection process is kept low (suggested rate for VDES is 10−4 [18]). We do not

consider explicit processing of the false alarms in this work, however, the false alarms may

be detected by the decoding the preamble codes or noticing no improvement of the iterative

5We have not considered the impact of finite-length capacity.
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Figure 6.6: The throughput achievable by the proposed random access system in bit/s/Hz
as a function of the total system’s SNR.

data estimation of a non-existing packet.

Comparing the results with other random access techniques we notice that the achieved

traffic load of 2.95 of packets per packet length per spreading factor (bandwidth) is much

higher than 1 packets per slot or (packet length for unslotted systems) which is a typical

maximum for classic random access systems such as ALOHA [59], carrier-sense multiple

access (CSMA), self-organized TDMA used in AIS, contention resolution diversity slot-

ted ALOHA (CRDSA) [60], irregular resolution slotted ALOHA (IRSA) [61], coupled

random access [62], and even recently proposed systems such as coded slotted ALOHA

and enhanced contention resolution ALOHA (ECRA) [63] that can achieve loads up to 2

packets/packet length.



Chapter 7

Conclusions

In this thesis we have considered an implementation of the coupling information trans-

mission multi-user communication technique based on the spatial graph coupling princi-

ple [3]. We have proposed a demodulation technique based on approximate message pass-

ing (AMP) proposed by Donoho et al. [16] for compressed sensing problems. A version

of the AMP is derived for the multi-user situation to simplify the reception algorithm from

the perspective of implementation layout and computational complexity. At the same time

we make sure that operation in the “near-capacity” regime for a large number of multi-user

loads is preserved. The demodulation complexity per bit is constant per iteration and does

not scale with the processing gain, contrary to existing algorithms [2, 11, 12].

The algorithm, which is derived for the case of a theoretic scenario with perfectly orga-

nized message arrivals is the extended to a random-access case. An application of a satellite

uplink communication for maritime data exchange systems is considered and we demon-

strate that the achievable performance is superior that that of competing random access

mechanisms such as variations on ALOHA, ECRA, and uncoupled CDMA.

7.1 Future Work

It has been shown that coupling information transmission in conjunction with the de-

rived approximate message passing is an effective tool for communication over the AWGN

multiple access channel. There are several directions one could consider for future work:

� Unequal Power Case : While the equal power case is more difficult for inter-

symbol interference cancellation, in a realistic scenarion multiple user will always

have power differences. It is, for example, likely that users will transmit with differ-

ent power levels due to differing distances from the receiver. While, the algorithm in

its present form can accept unequal power messages it would be helpful to examine

the effectiveness of the AMP algorithm for the unequal power cases.

66



67

� Alternative Channels : We have considered the AWGN channel, however satel-

lite communication can be complicated by fading due to the ionosphere or tropo-

sphere, possible multi-path propagation, and changes of phase in the signal due to

the Doppler effect. It is worthwhile to consider how the AMP algorithm would be

modified to handle this situation, such as the inclusion of a bank of correlation de-

tectors and adjustment of the transmitter frequency based on approximate satellite

location broadcasted every frame via a bulletin board on the downlink channel.
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