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Abstract

Maritime traffic data is an important resource to understand vessel activities. Several

topics, such as maritime traffic anomaly detection, have been widely studied. With

the increase in the number of vessels, location, transponders and satellite receiving

statistics, the size of these data is huge and rapidly increasing. A single machine or

a sequential algorithm may not be able to handle data at this scale. Due to the lack

of scalable tools, many problems on marine data have only been studied on relatively

small datasets.

In this thesis, we propose a framework, AIS Data Explorer, to analyse and visualise

marine trajectory data. The framework achieves the following goals: scalability, sup-

port for big data visualisation and acceleration of large scale data analysis. Users

are able to visualise large marine datasets on an interactive map. Client visualisa-

tions include heat maps, grid maps and trajectories. Data to be displayed can be

filtered by dimensions including area of interest, time period, ship type and ship sta-

tus. Moreover, it allows user to implement algorithms and analyse data of interest.

We designed and implemented a web application for data visualisation and explored

the use of vOLAP and Spark platform for data processing. Velocity OLAP (vOLAP)

is a scalable, real-time OLAP system designed for high velocity data. It provides

efficient query for data aggregations. To support the desired visualisations, a module

was implemented to enable vOLAP in order to answer histogram query. Spark is a

cluster computing framework designed for big data. It allows user to keep data in

cluster memory and query it repeatedly. With Spark as the core, we designed and

implemented a pipeline for big data analysis of vessel trajectories. It performs data

cleaning, data processing and data analysis. As an example of large scale data anal-

ysis, we designed and implemented a distributed DBSCANSD method that discovers

vessel traffic patterns from trajectory data. In our experiments, using 5 worker in-

stances for a dataset size of 100 million items, the framework visualised a global heat

map in 20 seconds.
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Chapter 1

Introduction

More than 90 percent of current global trades take place on the ocean [18]. In order

to effectively monitor maritime activities and avoid maritime accidents, industries,

governments and marine organisations need to understand the movement of ships on

the ocean and be able to analyse marine data. This is where the Automatic Identi-

fication System (AIS) [18, 47, 35, 33, 14] comes into use. It is designed for tracking

vessel activities. Several methods for analysis on AIS data have been developed for

applications including traffic route extraction [35], vessel route prediction [47] and

anomaly detection [45, 47].

Automatic Identification System (AIS) is a communication system based on radio fre-

quency [18]. Information is exchanged between nearby ships, terrestrial base stations

and satellites. The satellite-based system can receive messages from open sea which

is far away from coastline. Space-based receivers are mounted on Low Earth Orbit

satellites with sufficient satellite coverage, AIS can capture a global view of maritime

activities [47]. Captains usually use AIS to ensure the safety of the ships, for example,

it can be used as a basic method of collision avoidance. For maritime authorities, they

use AIS to track vessels and figure out their locations, directions and destinations.

In order to enhance safety and efficiency of navigation, the International Maritime

Organisation (IMO) requires AIS transponders to be installed on vessels and more

than 60,000 ships have installed this system [18].

AIS messages contain two categories of data: vessel static and dynamic information.

Static information includes ship name, ship type, vessel dimensions, vessel call sign,

IMO number and Maritime Mobile Service Identity (MMSI). Sometimes, it contains

1
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marine navigation data including vessel destination and estimated time of arrival. Dy-

namic information includes ship position (latitude and longitude), UTC time, nav-

igation status, Rate of Turn, Speed over Ground (SOG) and Course over Ground

(COG). Depending on their speed, vessels broadcast their dynamic information at a

variable rate and send their static information every five minutes [47].

AIS data is an important resource for studying maritime activities. One crucial task

in marine data analysis is ship trajectory clustering. It is a process to discover vessel

traffic pattern from trajectory data. One of the representative clustering methods is

density-based spatial clustering of applications with noise (DBSCAN) [30]. Several

DBSCAN based clustering algorithms have been proposed. Rocha et al. [37] pro-

posed a clustering method, called DB-SMoT (Direction Based Stops and Moves of

Trajectories). It considers the variation of the direction. The proposed method is

used to find real places where vessels develop fishing activities. Another DBSCAN

based method, called CB-SMoT (Clustering-based Stops and Moves of Trajectories),

is proposed in [36]. Different from DB-SMoT, CB-SMoT takes speed into account.

Anomaly detection is another kind of application, which can be used in ocean pro-

tection, intrusion detection and military surveillance. It detects vessels that do not

conform to vessel traffic patterns [45]. Pallota et al. [47] proposed an online method

for anomaly detection. The anomalies can be measured by deviation from the nor-

mality learned from the historical data. Gerben et al. [26] proposed a method based

on machine learning. Different trajectory alignment kernels are applied with SVMs

(Support Vector Machine) for outlying trajectory detection.

1.1 Aim and Objectives

Automatic Identification System (AIS) provides a huge amount of maritime naviga-

tion data. It helps researchers better understand maritime activities. Several topics,

such as anomaly detection [45, 47], have been widely studied with AIS data. How-

ever, most studies work on relatively small datasets. Apparently, the results from

large datasets are more general and reliable than those from smaller ones. The whole
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AIS dataset is huge and it increases rapidly. Taking Big Data Institute at Dalhousie

University as an example, it has accumulated nearly 4 terabytes maritime navigation

data within five years from 2010 to 2014. The size keeps increasing incrementally by

100 gigabytes per month. To handle data at this scale, a single machine or a sequen-

tial algorithm may be too slow and simply do not have the processing power. In this

thesis, we propose a scalable framework, called AIS Data Explorer that is designed to

analyse and visualise maritime navigation data at a large scale. It has been designed

to solve the following two problems:

1) how to explore AIS dataset and find out interesting data.

2) how to perform data analysis on a large dataset.

1.2 Contributions

This thesis presented the design, implementation and evaluation of a data analysis

framework for AIS data called AIS Data Explorer. The framework provides an intu-

itive way to explore the AIS dataset so that users can find the data of interest easily.

The AIS dataset is massive and increasing rapidly. Thus, the framework was designed

to be scalable and able to do fast queries on huge datasets. Moreover, new features

can be integrated into the existing framework easily, which allows users to do their

desired data analysis. To achieve these goals, AIS Data Explorer is designed to be a

cloud-based system. Users are able to visualise large amount of data on an interactive

map. Client visualisation includes heat maps, grid maps and trajectories. Data to be

displayed can be filtered by many dimensions including area of interest, time period,

ship type and ship status. Depending on data size, results can be typically visualised

within seconds. Furthermore, the framework allows users to implement their own

algorithms and run them on data of interest. The computation of the algorithm can

be distributed over the whole computing cluster. Also in this thesis, we designed and

implemented a distributed version of DBSCANSD [35] that discovers vessel traffic

patterns from trajectory data.

Figure 1.1 presents the system architecture of AIS Data Explorer. It consists of two
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Figure 1.1: System Architecture

main components: a front-end system for user interaction and data visualisation, a

distributed framework for marine data processing. The front-end system is made of

a web client and a web server. The web client handles user input and translates it

into the query. When the reply is received, the web client parses it and visualises

the data on the web map. The web server works as a connector between the client

and the back-end system. It also provides basic functions like user verification, web

application initialisation. For data processing, we explored two types of distributed

frameworks: vOLAP and Spark. Velocity OLAP (vOLAP) [28] is a cloud-based real-

time OLAP system designed for multi-dimensional data. It can answer aggregate

queries efficiently. Spark [38] is a cluster computing framework designed for big data

processing. It allows user to implement their own algorithms which can be executed

over a cluster.

1.3 Thesis Outline

The remainder of this thesis is organised into five chapters. Chapter 2 describes the

technologies used in this thesis. It gives a brief introduction to web development

techniques, online analytical processing system (OLAP) and the cluster computing

framework (Spark). In Chapter 3, we present the design of our front-end system. To

start with, we show the examples of data visualisations and then introduce the used

techniques. Then we give an overview of the system architecture. The exploration

of vOLAP based query processing is described in Chapter 4. vOLAP provides an
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efficient way to query data aggregations. In Chapter 5, we explore AIS data processing

using Spark. It allows user to perform complex data analysis on a large dataset. In

Chapter 6, we present the results of an experimental evaluation of the AIS Data

Explorer. The conclusion of this thesis is in Chapter 7, which summarises the goals

we achieved and gives ideas for future work.



Chapter 2

Background

In this chapter, we introduce the technologies used in this thesis. To start with, we

first give an overview of Online Analytical Processing System (OLAP) and introduce

data structures for OLAP and Velocity OLAP (vOLAP) [28]. vOLAP provides a

method to answer real-time aggregate queries efficiently. In Section 2.2, we introduce

a cluster computing framework called Spark. It provides a scalable and flexible way

to process big data. At last, we give an overview of used web techniques.

2.1 Online Analytical Processing System

Online analytical processing system (OLAP) is at the heart of business intelligence. It

is the foundation for many essential business applications including business report for

sales, marketing analysis, budgeting and forecasting, performance measurement [44].

OLAP systems allow users to analyse multi-dimensional data from different perspec-

tives. It supports three basic operations: roll up, drill down, slicing and dicing [22].

The aggregation of data can be computed in one or multiple dimensions (roll up).

For example, it can compute the number of fishing ships in one area. Drill down is

a reverse operation of roll up, which navigates from less detailed data to more de-

tailed data. Given a data cube [32], slicing and dicing generates a sub-cube by doing

selections on one or multiple dimensions.

For online transaction processing (OLTP), queries usually access a small portion of

the database (e.g. add one new record) [44]. However, queries for OLAP systems are

quite different and always need to aggregate a large portion of the whole dataset to

support high-level data analysis. Such queries are always computationally expensive.

6
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Figure 2.1: Hierarchy Schema and Concept Hierarchy for location

To solve this problem, a static data cube approach is proposed by Jim Gray [32],

which materialises a subset of the cuboids of the data cube to improve the query

performance. Based on the concept of data cube, many OLAP systems are developed.

However, the traditional OLAP systems can only be updated periodically. In other

words, it cannot take the latest information into account and this greatly limits

its application. To solve this problem, some real-time OLAP systems are developed.

Frank Dehne et al. [28] develop a real-time OLAP system called vOLAP. It is designed

for high velocity data. vOLAP system supports dimension hierarchies and exploits

both multicore and multiprocessor parallelism. SAP HANA [31] is a cloud-based,

in-memory database system designed for business analytics. It works with Hadoop

and Spark which supports real-time decision making. Druid is an open-source data

store designed for stream data. It supports OLAP queries and is always used to power

business analytic applications.

2.1.1 Dimension Hierarchy

A data cube contains two types of attributes : functional attributes which are grouped

into dimensions and independent attributes which are called measures [42]. Dimen-

sions are used to identify a subset of a multi-dimensional dataset. If one dimension

has multiple attributes, these attributes are organised by a hierarchy schema. Figure
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2.1 gives an example, oceans, seas and coordinates make up a dimension for location.

2.1.2 Star Schema

In online transaction processing (OLTP) system, data schema is always highly nor-

malised and its data is time-variant and frequently updated. These systems have

many users and are optimised for insertions, updates and deletions. However, OLAP

systems have fewer users and are highly optimised for queries [13]. Its data schema

is denormalised and has fewer tables, fewer join paths. A data record is always a

snapshot and seldom updated. OLAP system usually uses star schemas to represent

multi-dimensional data models.

Star schema is a simple style of data schema. It consists of a single fact table and

one table for each dimension. The fact table contains measurements for a specific

event. It usually contains numeric measurements, such as sales price, sales quantity,

distance, and weight. It records events at an atomic level and as a result, fact table

usually contains a large number of records. The dimension table has a small number

of records compared to the fact table. And each record contains many attributes to

describe the fact data. Fact tables change frequently and dimensions do not change,

or change slowly over time. Figure 2.2 shows an example for star schema.

Star schemas are highly denormalised. Since it has a small number of tables and

few join paths, queries can be processed efficiently. It also accelerates the speed of

data loading. The main disadvantage of the star schema is that data integrity is not

enforced. Insert operations may result in data anomalies which normalised schema is

designed to avoid. And it is not as flexible in terms of analytical needs as a normalised

data model.

Some OLAP systems also use snowflake schema to represent data models. Snowflake

schema is similar to star schema. It optimises the performance of queries and is easy

to understand. But in a snowflake schema, dimensions are normalised into multiple

related tables. Compared to star schema, it has more join paths and supports more

complex queries. It saves some storage space but the performance is slower.
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Figure 2.2: Star Schema

2.1.3 Data Structure for OLAP

In this section, we discuss data structures used in OLAP systems. A OLAP system

usually supports point data insertion, bulk data insertion, point data query and

multi-dimensional query. It does not support delete operation and keeps a historical

append-only dataset. In a OLAP system, each data record is a multi-dimensional data

point with dimension hierarchies. There are several tree-based data structures used

to implement OLAP systems. Here we give a brief overview of these data structures.

R-Tree In order to handle spatial data efficiently, a dynamic tree-based data struc-

ture, called R-Tree, has been proposed by Antonin Guttman [16] in 1984. It has

significant use in both theoretical and applied contexts. A common usage for R-tree

is to index multi-dimensional data like geographical coordinates, rectangles or poly-

gons. It can also accelerate the process of nearest neighbour search, which is useful in

many algorithms. R-tree has many variants including R+ tree [46], R* tree [27] and

X-tree [15]. The basic idea of R-tree is to use minimum bounding rectangle (MBR)

to group nearby data objects. Figure 2.3 shows an example of R-tree for 2d rectangle.

MBRs in root node covers all data points in the tree. MBRs in each internal node



10

Figure 2.3: An Example for 2D R-Tree [23]

covers all data points in its subtree.

R-tree is a height-balanced tree data structure that consists of directory nodes and

leaf nodes. Each directory node contains MBRs and a list of pointers to its children.

Since each directory node can have more than two children, the height of R-tree can

be very small. As a result, search and insert operations only need to visit a small

number of internal nodes. Each leaf node contains links to the actual data that can be

stored on the disk. The search process in R-tree is a top-down process which starts

from the root node. For each directory node, it checks if its MBR and query box

overlap. If the overlap exists, it checks the children of this directory node recursively.

If there is no overlap, it skips this node and checks other directory nodes at the same

level. At last, the process stops at leaf nodes and then retrieves the data.

Minimisation of overlap and coverage is important to the performance of R-tree. Over-

lap is the area contained in one or two nodes. Minimal overlap reduces the number

of search paths to leaf nodes. Coverage is the area which covers all related bounding
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Figure 2.4: An Example of X-Tree [15]

rectangles. Minimal coverage reduces the empty area covered by the nodes of R-tree.

Compared to R-tree, R+ tree [46] avoids the overlapping of internal nodes by insert-

ing objects into leaf nodes. It greatly improves query performance but requires more

time to construct. R* tree [27] tries to minimise both overlap and coverage by using

an improved node split algorithm. It can support point data and multi-dimensional

data at the same time.

X-Tree An analysis survey shows that R-tree based index data structure cannot

handle high dimensional datasets efficiently. The experiments [15] show that the

performance of R*-tree degrades rapidly when the dataset dimensions increase. And

it also shows that the overlap of bounding box (MBR) in the directory nodes increases

dramatically when the dimensions increase. As we mentioned before, when the overlap

increases, the number of search paths increases resulting in slowing down the query

performance. To solve this problem, a data structure, called X-tree, was proposed

by Stefan Berchtold et al. [15] in 1996. For high dimensional data, it outperforms

R*-tree by up to two orders of magnitude in their experiments. Figure 2.4 gives an

example of X-tree.

The basic idea of X-tree is to minimise the overlap utilising the concept of supernode.

It tries to avoid overlap whenever it is possible. If overlap is inevitable, X-tree uses
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Figure 2.5: Various shapes of X-tree in different dimensions [15]

an extended directory node, which is also called supernode. X-tree has two types of

directory nodes: linear array-like directory nodes and R-tree-like directory nodes. In

low dimensions, the X-tree has less overlap and less search paths for queries. The

number of required access to tree node corresponds to the height of tree. Therefore,

R-tree-like organisation is efficient. In high dimensions, X-tree has more overlap and

more search paths for queries. Since most of directory nodes need to be searched,

a linear scan to the directory nodes will be faster. Therefore, a linear array-like

organisation is efficient. In different dimensions, X-tree has different structures to

achieve the best performance. Figure 2.5 shows different structures of X-tree under

different dimensions.

DC-Tree Typical OLAP systems can be only updated periodically. In other words,

data in the system is not up to date. To solve this problem, a dynamic index structure,

called DC-tree, is introduced [42]. It exploits the concept hierarchy that is a tree-

based data structure which contains all appeared values in one given dimension [42].

DC-tree uses minimum describing set (MDS) instead of minimum bounding rectangle

(MBR). MDS is used to describe a bounding box which covers the data stored in the

corresponding subtree. Compared to MBR, MDS covers less empty space but it

has to store some additional information. A data record consists of dimensions and

measures. DC-tree assigns an id to each dimension of the data record. MDS actually
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Figure 2.6: Example of DC-Tree [44]

consists of a list of IDs and each ID represents the value at a level of one dimensional

hierarchy.

Figure 2.6 shows an example of two dimensional DC-tree. DC-tree consists of leaf

node, directory node and supernode. One leaf node contains a MDS and measures.

One directory node contains a MDS that covers the data in its subtree, aggregation

values of the data in its subtree and links to its children. For example, MDS ([Europe,

2013 06]) contains ([France, 2013 06]) and ([England, 2013 06]). France and England

belong to Europe. Search in DC-tree is a top-down process started from the root

node. The query is a bounding box like MDS. For each directory node, DC-tree

checks if the query and its MDS overlap. If the overlap exists, it checks the children

of this directory node recursively. If the overlap is empty, it skips this node and

checks the remaining directory nodes. If the MDS of this directory is fully contained

in the range of query, aggregation values stored in this directory node are added to

the result without visiting nodes in its subtree. This is the reason why DC-tree can

answer aggregate query efficiently.
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2.1.4 vOLAP

Velocity OLAP (vOLAP) is a scalable real-time OLAP system which works in the

cloud environment. It supports data ingestion, OLAP queries but no deletion. Since

vOLAP keeps the data in memory, it is able to process OLAP queries efficiently. The

system is optimised for stream data and leverages PDC-Tree as a basic building block.

It consists of multiple servers and workers. Data is distributed over multiple workers.

Each user session is attached to one of servers and this server handles all queries from

this client. It redirects these queries to appropriate workers, collects and computes

the result and then sends it back to the original client. Since vOLAP is designed

for working in the cloud environment. Servers and workers can be added or removed

dynamically, which abbreviates the performance bottleneck for large amounts of data.

Zookeeper [12] is used to manage global information. And a dynamic load balancing

strategy is designed. A manager process monitors the load status of the whole system

and sends instructions to workers for global load balancing. Because of the incoming

data, the data distribution in vOLAP changes significantly overtime. The experiments

conducted in [44] show, using 18 workers and a dataset with 1.5 billion records,

vOLAP is able to process streams of inserts and queries at a rate of 200,000 per

second.

Compared to vOLAP, other real-time OLAP systems, such as SAP HANA [31] and

Druid, still have their own drawbacks. SAP HANA is a distributed, in-memory, data

store designed for modern business applications, which consists of multiple data pro-

cessing and query engines. The problem of SAP HANA is that it only has one active

master node. It limits the scalability of the system and may become a bottleneck as

client queries increase. vOLAP has multiple servers to handle queries and servers can

be added or removed dynamically, which abbreviates this performance bottleneck.

Druid is another distributed data store optimised for real-time streaming data. Al-

though Druid supports OLAP queries, it is still quite different from standard OLAP

systems. It does not support dimensional hierarchy which is supported in most OLAP

systems. vOLAP does not this problem and can handle stream data efficiently.

Figure 2.7 shows an overview of the architecture of vOLAP. It consists of a set of
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Figure 2.7: System Architecture of vOLAP [28]

servers and workers. Servers are used to handle client queries and workers are used

to store data and process OLAP queries. The dataset is partitioned into multiple

subsets and each subset is covered by a bounding box (MBR or MDS). One single

worker may contain multiple subsets. Zookeeper maintains a global system image and

each server keeps a local system image. When one server receives an OLAP query

from one client, it checks its local system image and decides which worker the query

should go. When one worker receives an OLAP query from the server, it searches in

local PDC-tree and then sends the result back to the server. For one OLAP query,

one server generates multiple subqueries, then collects data from different workers

and at last computes the final result. The whole process is highly parallelised.

vOLAP uses PDC-Tree as a basic building block. Each worker stores one or more

subtrees and each server stores the tree hat for routing. When one worker receives a

query from a server, it searches in its local PDC-Tree. This is a top-down process.

If one directory nodes bounding box and query box overlap, it checks this directory

nodes children recursively. And at last, it stops at the leaf node which contains the

required data. Three data structures are implemented for query processing: an ar-

ray for benchmarking, a PDC-MBR tree and a PDC-MDS tree. PDC-MBR tree is
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optimised for insert operation. PDC-MDS tree uses cache-efficient MDS implemen-

tation and has better performance when tree becomes large. vOLAP connects its

components including servers, workers and the manager process, using ZeroMQ [11].

ZeroMQ is a high-performance asynchronous messaging library designed for build-

ing distributed applications. It provides APIs for in-process and TCP transport and

messaging patterns like request-reply.

The global system state is stored in Zookeeper [44] that provides reliable distributed

coordination. With information stored in Zookeeper, the manager process performs

load balancing among workers. Each server contains a local system state used for

insert and OLAP query operations. Insertion may change the local system state and

servers need to update information in Zookeeper. In vOLAP, servers are configured

to update Zookeeper every 3 seconds [28]. If the stored global system state changes,

Zookeeper would inform servers of this change and then servers update their local

information.

2.2 Cluster Computing Framework : Spark

Apache Spark [38] is an open-source cluster computing framework designed for big

data. It has been originally developed in AMPLab at University of California, Berke-

ley and then became an open-source projects supported by Apache Software Founda-

tion. Until now, it has more than 1000 contributors, which makes it one of the most

active project for big data analytics. Spark works with a distributed storage system.

It supports a wide variety of distributed frameworks including Hadoop Distributed

File System (HDFS) [25], Amazon S3, and Cassandra [17], which makes it flexible to

be integrated into existing systems. Different from Hadoop’s disk-based MapReduce

paradigm, Spark uses a multi-stage in-memory paradigm [20]. It allows user to load

data into cluster memory and query it repeatedly, which greatly improves the perfor-

mance of iterative algorithms. Spark also has a set of high-level tools including Spark

SQL for structured data processing, MLib for machine learning, GraphX for graph

processing and Spark Streaming for real-time data analysis.
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Figure 2.8: Spark Architecture [9]

2.2.1 Spark Architecture

Figure 2.8 shows the architecture of Spark. To start with, any Spark process in the

cluster is actually a JVM process. To run a cluster, the driver program connects to

the cluster manager and requests some resources. The cluster manager brings up sets

of executors which are JVM processes that run computations and store data for user

application. Each executor can be viewed as a pool of task execution slots. Each

task is a single unit of work executed as a thread in one executor. For example, in a

cluster with 6 nodes, if user starts two executors on each node and each executor uses

6 cpu cores. In total the cluster has 72 task slots, which means this Spark cluster

would be able to have 72 tasks running at the same time. When user starts a job

on the cluster, the processing of a job is split into stages and each stage is split into

tasks. The driver program first sends user’s application code and then sends tasks to

the executors to run.

2.2.2 Resilient Distributed Datasets

One of the main abstractions in Spark is Resilient Distributed Dataset(RDD) [39]. It

provides a restricted form of shared memory which is based on coarse-grained transfor-

mations. Data reuse is common in iterative algorithms. However, in many distributed

frameworks like Hadoop, the only way to reuse intermediate result between compu-

tations is to write it back to disk, which greatly slows down the performance. To
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solve this problem, RDD allows user to keep intermediate result in memory to avoid

overhead caused by data replication and disk I/O.

An resilient distributed dataset (RDD) is a read-only collection of data records. It

supports two types of operations: transformations, which create a new RDD from

data in stable storage or other RDDs; actions, which return a value after running

a computation on an RDD. For example, map is a transformation which applies a

function on each data record in a RDD and then returns a new RDD. All transforma-

tions are lazy which means Spark remembers transformations applied to the dataset

instead of computing the result immediately. Transformations are only performed

until a result is required by the driver application. User can specify which RDD

will be reused and choose a storage strategy for it (e.g. keep it in memory). Each

RDD contains information about how it derives from other RDDs or dataset. If one

compute node fails, the lost partitions of an RDD can be recomputed efficiently.

2.2.3 Hive on Spark

Hive on Spark (Shark) [29] is a data analysis system which provides deep data anal-

ysis by using the RDD memory abstraction. It combines the SQL query processing

engine with analytical algorithms. Compared with traditional data warehouse and

distributed framework like Apache Hive, Shark is good at answering ad-hoc queries.

By caching required dataset in the cluster memory, queries that take minutes can be

reduced to seconds. This improvement is achieved by avoiding overhead due to Disk

I/O. Figure 2.9 shows the architecture of Shark.

Shark allows users to manipulate structured data using SQL. Given a Hive query,

HiveQL parser is used to parse this query and generate a syntax tree. This tree is

turned into a operator tree and eventually turned into transformations which will be

performed on RDDs. It also allows users to define their own functions and implement

algorithms for special data mining tasks. According to the experiments in [29], Shark

is 40X times faster than Apache Hive for query processing and for machine learning

algorithms, Shark is nearly 25X faster than MapReduce-based program in Hadoop.
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Figure 2.9: Shark Architecture [29]



Chapter 3

AIS Data Explorer : Visualisation Client

In this chapter, we introduce the design and implementation of the visualisation

client. To start with, we give an overview of its functionalities, user interface and

supported visualisations. In Section 3.2, the techniques used in data visualisations

are introduced. Section 3.3 shows the architecture of the visualisation client. A

conclusion is lastly given in Section 3.4.

3.1 Introduction

The visualisation client provides an intuitive way to explore the AIS dataset. Users

are able to visualise data of interest on an interactive map. It supports three types

of visualisations: heat maps, grid maps and trajectories. Data to be displayed can

be filtered by dimensions including area of interest, time period, ship type and ship

status. In the design and implementation of the visualization client, we encountered

into two challenges. The first one is to support different visualizations on the map.

We explored web based technologies and proposed a framework for map visualisation.

The second challenge comes from the performance of map rendering. The existing

methods cannot render the map efficiently. To solve this problem, we implemented a

rendering library to support efficient grid map visualisation.

*The user interface, which consists of a web map and a function bar, is shown in

Figure 3.1. User can explore area of interest easily using a web map. Function bar,

which is on the left side, allows user to select data of interest and specify the type

of visualisation. It also supports different types of web maps including satellite map,

street map and a customised map with protected areas.

20
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Figure 3.1: User Interface of AIS Data Explorer

Figure 3.2: Grid Map
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Figure 3.3: Heat Map

Grid map is a graphical representation of data where each individual value in the

dataset is represented as colours. Its interface consists of three components: grids, a

legend and a label for vessel density. The colour of each cell in the grids is from light

yellow to dark red, which correspond the vessel density from low to high. The legend

shows the range of vessel density for different colours and it may change according to

the data distribution. The label shows the number of vessels in the cell pointed by the

cursor. Figure 3.2 gives an example of grid map visualization. It shows vessel density

near Nova Scotia, dated from January, 2013 to March, 2013. Heat map is another

way to show vessel density in one area. Figure 3.3 shows the example. When the

map is zoomed in or out, it will redraw the heat map according to the vessel density

of the area. Grid and heat map accept a list of data records as input, each of which

contains coordinates that represent a rectangle area on the map and the aggregation

of the marine data in that area. The input data can be seen as the result of a two

dimensional histogram query. The aggregations of the data are computed in latitude

and longitude dimensions.

Figure 3.4 shows vessel trajectories in the first week of January, 2013, near Nova

Scotia. Each line represents one vessel sailing trajectory. It also shows the specific

channel the vessel sails. Different from heat map and grid map, the input data of

trajectory visualisation is a list of vessel trajectories. One trajectory is identified by

a unique identifier and contains a list of vessel snapshots, each of which describes

its status at one specific instant. The input data can be obtained by a report query
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Figure 3.4: Vessel Trajectories

which returns items that satisfy the requirements.

3.2 Techniques for Data Visualisation

Traditional geographical information system, Quantum GIS [7], provides functions to

view, edit and analyse geographical data on a desktop. It supports a wide range of

data formats including PostGIS layers, OpenStreetMap vectors and Comma Separate

data (CSV). However, it cannot process a large amount of data due to the limited

processing power of one single machine and is difficult to extend new types of visual-

izations like grid map. In this section, we explore web mapping and web visualization

technologies and then present their applications in the visualization client. These

web-based techniques provide a flexible way to analyse and visualise geographical

data. Features, like grid map visualization, can be implemented and integrated into

the existing framework.

One of the main components of the visualisation client is web map which enabling

users to navigate within a single continuous system. For example, by spanning across

the map, Toronto, Ottawa and Halifax can be viewed in the same continuous space.

By zooming in and out, the amount of details increase from country labels to city

streets and buildings. A web map is made of multiple layers, each of which can be

images, lines or markers and can be placed on top of each other to build combinations
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and mashups. The map layer has abilities to detect click and respond to different

mouse events. By defining the corresponding functions, a customised interactive map

is created. In the visaulization client, a web map is designed to have two layers: base

and feature layer. The base layer is a customised map provided by geographic data

provider Mapbox [3]. The feature layer is a visualization layer created by rendering

libraries. By combining base and feature layer, users are able to visualise data on a

web map. In one user session, the base map is loaded and initialised one time while

the feature layer is created and destroyed frequently due to different requests from

the user. Thus, the performance of map rendering becomes crucial to user experience.

Several techniques are used to construct the visualisation client. To start with, we

introduce Leaflet [2] which is an open-source, client-side only Javascript library de-

signed for building web mapping applications. It provides a basic structure for web

map and core methods for manipulating geographical data. Leaflet plays an impor-

tant role in marine data processing, web map visualisation. A GIS format, called

GeoJSON [21], is used to encode marine data. GeoJSON is an open standard format

designed for encoding geographic data structures. It is widely supported by mapping

and GIS software packages including Leaflet, PostGIS [5] and Mapnik [4]. Several

Javascript libraries are used to support data visualisations. Heatmap.js [1], which is

a light-weight Javascript library, is used to visualise data in heat maps. It can render

thousands of data points in seconds. Grid map is another way to visualise vessel

density, which allows user to interact with map and get more information of the data.

The creation of a grid map is complicated and the existing methods cannot render it

efficiently. Thus, we design and implement a rendering library for grid maps, which

provides much better performance.

3.2.1 The Design and Implementation of Gridmap.js

The grid map visualisation has been described in Section 3.1 and here we discuss the

design and implementation of the rendering library. The feature layer of grid map

can be considered as a set of polygons on a 2D canvas, each of which represents an

area of the base map and has features like vessel density. Leaflet has methods to draw
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Figure 3.5: The Structure of Gridmap.js

polygons on a map while it is too slow to render thousands of polygons. Instead, we

create the feature layer using D3.js and the polygons are represented as SVG [24]

elements. The first step of creating the feature layer is to convert geographic coordi-

nates of the data to the corresponding coordinates in the canvas. The rectangles are

constructed from the data and then rendered onto the canvas with different colours.

For example, if the feature of one rectangle is the largest, it will be filled with dark

red to indicate high vessel density in this area. As an interactive map, it will present

related information when the mouse moves over one area. To achieve this, a hash

table, which maps coordinates to the features of rectangles, is generated. The map

layer will detect the coordinates of the mouse, retrieve related data from hash table

and then present the data to the user.

Figure 3.5 shows the architecture of Gridmap.js. It consists of four components: a

class for configuration, a class for data preprocessing, a class for rendering and a

connector which creates feature layers for Leaflet. After the user submits a query, the

visualisation client receives the data and then passes it to the rendering library. To

start with, Gridmap.js combines the default values and data statistics to generate a

customised configuration. Then the data is parsed and converted into an appropriate

format. Based on the configuration, Gridmap.js creates a feature layer with the data

and then attaches it onto the base map.
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Figure 3.6: The Architecture of Visualization Client

3.3 System Architecture

The architecture of modern web applications can be divided into two categories:

server-side oriented and client-side oriented. When a web application is built using

a server-side web architecture, work including request parsing, data processing and

page rendering, is done by the server. The only task for the client (the browser) is to

display the web page it receives. Client-side web application, on the other hand, runs

in the browser and connect to a server only for user authorisation and data exchange.

Most of the work, including user interaction and page construction, is done by the

client. The design of the visualisation client is the latter one. User interaction and

data visualisation are handled in the browser. Moreover, the data is cached and can

be used repeatedly. For example, user may want to visualise the data in a heat map

and then in a grid map. Instead of requiring data from the server again, it simply

creates the desired visualisation from the cached data. This design saves the resource

of the server and takes advantage of the processing power of the client machine.

Figure 3.6 shows the architecture. When a user logs into AIS Data Explorer, the

browser first gets a bunch of JavaScript codes. Then the code begins to construct

the web page and requests a base map from a map server. The whole process can

be done in seconds. When a request is submitted, the browser analyses it and then

performs one asynchronous GET request to the server. The web server verifies user

identity, retrieves the data from the back-end system (vOLAP or Spark) and sends it
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Figure 3.7: Web Client Architecture

to the client. At last, with the received data, the browser creates the visualisations

on the web map.

3.3.1 Web Client Architecture

The client-side web architecture is quite similar to the server-side architecture, which

follows a variant of model-view-controller design paradigm. Data is represented as

Models which can be created, destroyed and saved to the server. Models connect to

a back-end server for data exchange. A View is an atomic chunk of user interface,

which renders the data from Models. It listens to model changes and renders itself

from scratch. Figure 3.7 shows the architecture of client-side web application. Views

listen to user input and call model methods to fetch the data. When data is received,

views update their UI components. Here, the data is passed to the rendering library

which creates visualisations on the web map. New visualisations can be extended

simply by adding rendering libraries.
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Figure 3.8: Web Server Architecture

3.3.2 Web Server Architecture

A typical Django application follows the model-view-template(MVT) architecture

pattern. While the web server uses a modified architecture to satisfy its own re-

quirements. It uses a RESTful API to exchange data with the web client. The view

functions parses the request and translates the data into the appropriate format. The

query processing layer provides methods to connect to different back-end systems.

Figure 3.8 shows the architecture of the web server. When a request is received from

the client, the view function parses it and calls methods in query processing layer to

construct and send the query to the corresponding back-end system. Then the view

function encodes the retrieved data in JSON and sends it back to the client. The web

server works like a bridge between the client and the back-end system.

3.4 Conclusion

In this chapter, we introduce web mapping and web visualisation technologies and

present their applications in the visualisation client. A rendering library, called

gridmap.js, is implemented to support efficient grid map visualisation. At last, we

present the system architecture.



Chapter 4

AIS Data Explorer : vOLAP based Query Processing

In this chapter, we introduce AIS Data Explorer, which has Velocity OLAP as backend

to process marine data. To start with, we give a brief introduction to vOLAP and then

explain how it achieves our design goals described in Chapter 1. In Section 4.2, we

give an overview of data preparing. By analysing marine data, dimension hierarchies

are defined and a star schema for vOLAP is designed. Section 4.3 introduces our

contribution to vOLAP, which is the design and implementation of a module to

enable vOLAP to handle histogram queries. In Section 4.4, we present the system

architecture and explain how vOLAP works as a component of AIS Data Explorer.

Lastly in Section 4.5, a conclusion is given.

4.1 Introduction

Velocity OLAP (vOLAP) [28] is a scalable, real-time OLAP system developed by

Risk Analysis Lab at Dalhousie University. It supports operations including data

point insertion, bulk insertion and aggregate query. In an experimental evaluation of

vOLAP, using 18 worker instances for a dataset of 1.5 billion items, it can process

streams of inserts and OLAP queries at a rate of approximately 200,000 queries per

second [44]. vOLAP achieves our design goals for the back-end system: scalability

and fast query on huge datasets. The challenge in this part is the limited functions

of vOLAP. For heat and grid map visualizations, the system is required to support

histogram query while vOLAP does not. Thus, we dig into the implementation of

vOLAP and implement a module for histogram query.

Grid and heat map visualisations accept a list of data records as input, each of which

contains coordinates of a rectangle area and aggregations of the data in that area.

29
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Thus, a query for grid and heat map can be seen as a two dimensional histogram query

which can be decomposed into many aggregate queries. This is where vOLAP comes

into use. It can query the aggregation of multi-dimensional data efficiently and process

thousands of such queries in parallel. However, vOLAP cannot support histogram

query directly and does not have an interface to communicate with the visualisation

client. In the section, the module we implemented handles these problems.

4.2 Data Preparation and Exploration

4.2.1 Data Preprocessing

The dataset, collected by AIS, is a big collection of marine related data which includes

vessel static messages, vessel dynamic messages, configuration information and safety-

related messages. A few of these messages may be incomplete or have illegal values,

for example, one dynamic message does not have the information for latitude and

longitude. Moreover, the messages could be faked by senders. Lack of extra infor-

mation, it is impossible to fix errors and detect dummy messages. In the first step

of data preprocessing, vessel static and dynamic messages are extracted from the

AIS dataset. The incomplete and illegal messages are abandoned while the rest of

messages are kept. The accuracy of the data is crucial in some scenarios. But for

applications in this thesis, the data is appropriate to use.

A ship snapshot is defined as a data record which consists of MMSI, time, ship type,

ship status, longitude, latitude, SOG and COG. It describes ship status at one specific

instant. MMSI is a series of nine digits which are sent over a radio frequency channel

in order to identify ship stations. Here, we assume it identifies one ship uniquely.

Ship status describes vessel’s navigation status that could be using engine, at anchor

or moored. SOG is short for speed over ground, which is the speed of vessel relative

to surface of the earth. COG is short for course over ground, which describes the

direction over ground along which the vessel is currently moving. A ship snapshot is

built from the preprocessed data.
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Figure 4.1: Dimension Hierarchies

4.2.2 Star Schema

vOLAP uses star schemas to represent multi-dimensional data models. Star schema

is highly denormalised and query optimised, which enables vOLAP to achieve effi-

cient query and data insertion. In this section, based on the requirements of data

visualisations, we first define dimension hierarchies and then present the star schema

designed for vOLAP.

In grid and heat map visualisations, data to be displayed can be filtered by dimensions

including area of interest, time period, ship type and ship status. Thus, we need to

define the corresponding dimensions in the star schema and area of interest can be

converted into latitude and longitude dimensions. The attributes of one dimension

can be organised as a hierarchy if they have parent-child relationships where a parent

member summarises its children. Figure 4.1 shows the dimensions and the respective

dimension hierarchies for each dimension. The first box for each dimension denotes

the dimension name while the boxes below denote hierarchy levels from highest to

lowest. Time dimension is designed to have three levels which are year, month and

day. Considering the revisit time of the satellite, it is more accurate to generate data

visualisations based on days than any smaller time unites like hours. Latitude and

longitude dimensions are designed to have three levels which are zone, degree and
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Figure 4.2: Star Schema

minute. In previous experiments [28] of vOLAP, it leads to a better performance if

the number of attributes in the first level of the dimension hierarchy is small. Thus,

we create an attribute, which is called zone, in the first level of the hierarchy. Take

longitude dimension as an example, it is divided into four zones in the first level. Each

zone covers ninety degrees and each degree covers sixty minutes. Since attributes in

ship type and ship status dimensions do not have any parent-child relationships, they

are organised as one level in the respective dimension.

The visualisation client allows user to visualise aggregations of the data on a web

map. In the correspondence, the fact table of the star schema contains the numeric

measurements including the number of vessel snapshots, SOG and COG. Figure 4.2

shows the star schema designed for vOLAP. It consists of one fact table and five

dimension tables. One query consists of a set of values, each of which corresponds to

one dimension. If the value for one dimension is not specified, vOLAP will aggregate

all the data in this dimension. For example, by specifying ship type, ship status and

time, we can create an aggregate query like ([tanker], [at anchor], [2013,01]). vOLAP

will return the number of vessel snapshots, the sum of SOG and COG.
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Figure 4.3: Router and Dealer [11]

4.3 Histogram Query in vOLAP

vOLAP supports basic operations including data point insertion, bulk insertion and

aggregate query. A new module is implemented inside vOLAP to support histogram

query. To start with, it analyses histogram queries from the client and generates a

set of aggregate queries for vOLAP servers. Then it collects the replies, constructs

the result for each histogram query and then sends them back to the corresponding

client. Several techniques are used in this module. Zeromq [11] provides a basic struc-

ture for distributed messaging, which connects different components of the system.

Protobuf [6] is used to serialise the structured data.

Zeromq [11] provides a set of messaging patterns which are used to build distributed

applications. Router and dealer is one type of extended request-reply pattern, which

connects multiple clients to multiple servers. This pattern centralises the knowledge of

topology in a queueing broker, which works as a bridge between clients and servers.

Figure 4.3 gives an example. Here, we use this pattern to build the module for

histogram query and this design has two benefits. First, vOLAP can have multiple

servers to handle query streams. And based on the amount of queries, servers can

be added or removed dynamically. Since the queueing broker hides the topology
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Figure 4.4: Message Structure

of vOLAP from clients, changes in vOLAP will not influence communications with

clients. Second, it provides a way to support histogram query in vOLAP. The code

in the queueing broker translates a histogram query into a set of aggregate queries.

Then it collects and sends back the result to the original client.

Protobuf [6] provides a language-neutral, platform-neutral method for serialising

structured data. Data structures are first defined by users and then special source code

is generated by protocol buffers, which allows user to read and write data structures

from and to a variety of data streams using a variety of programming languages.

By using protocol buffer, an interface is designed and implemented, which enables

vOLAP to communicate with the visualisation client. For communications inside

vOLAP, it uses its own function, which is efficient and simple. For communications

outside, it exchanges structured data with clients using protocol buffers. Take the

visualisation client as an example, it is a web application written in javascript and

python while vOLAP is written in C++. With protocol buffers, we can exchange

structured data between python and C++ easily.

The queueing broker receives multiple histogram queries from different clients. Then

these histogram queries are translated into thousands of aggregate queries. Since

queries and replies are processed asynchronous, we need to identify each reply and

reconstruct the result for each histogram query. The queueing broker also needs to

keep the client address and send back the result to the correct client. Several methods

are used to solve these problems. First, a message structure is designed to contain

queries and replies. Figure 4.4 gives an example. A message from a client consists

of the address and the actual data that could be a histogram query or an aggregate
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Figure 4.5: The Architecture of vOLAP

query. Message inside vOLAP consists of a key for identification and data. Second,

a class is designed for histogram query which has three parameters: client address,

the number of aggregate queries it generated and a pre-allocated data structure for

results. It provides methods for handling histogram query, for example, translating

it into aggregate queries, serialising and deserialising the data.

Figure 4.5 shows the architecture of vOLAP which supports histogram query. It

consists of a queueing broker, a manager, a Zookeeper, multiple servers and workers.

The queueing broker works as an interface for vOLAP. Since techniques used in

the broker are widely supported by different programming languages, vOLAP can

communicate with a variety of clients. Here, we show how a histogram query is

processed. A message is received from a client which contains the client address and

the serialised data. The broker firstly initialises an instance of the histogram query

class. The instance extracts and keeps the client address. Then it parses the serialised

data and generates subqueries with a group ID. The broker sends these subqueries to

vOLAP servers and collects a set of replies, each of which is identified by the group

ID and saved to the corresponding instance. Each time a reply is received, the broker

checks if all replies are received for one histogram query. If it does, the result is

serialised and sent back to the client.
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Figure 4.6: System Architecture

4.4 System Architecture

With vOLAP as the back-end system, AIS Data Explorer is able to support grid

map and heat map visualisations. As dataset increase, vOLAP can be deployed on

more machines to provide better performance. Aggregate values are computed and

stored in memory while data records are inserted, which allows vOLAP to answer

histogram queries efficiently. Figure 4.6 shows the architecture of AIS Data Explorer

with vOLAP. It has two main components: the client for data visualisation and

vOLAP for marine data processing. In the query processing layer, a module is im-

plemented to communicate with vOLAP, which uses ZeroMQ [11]for message passing

and Protocol Buffers [6] for data serialisation. It translates user input into OLAP

queries. When reply is received, it parses data and converted it into a format accepted

by the visualisation client.

4.5 Conclusion

In this chapter, we introduce vOLAP and its applications in AIS Data Explorer.

vOLAP is a cloud based OLAP system which uses PDC-tree as a basic building

block. A module is implemented inside vOLAP to support histogram queries. It

also enables vOLAP to communicate with the visualisation client. However, vOLAP

has limited functions and is difficult to extend. The desired system should provide
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a flexible way to analyse data. In next chapter, we explore the use of the cluster

computing framework Spark. It allows user to implement their own algorithms and

the computation can be easily distributed over the whole cluster.



Chapter 5

AIS Data Explorer : Spark based Query Processing

In this chapter, we introduce AIS Data Explorer, which has Spark as backend to

process big data. To start with, we give a brief introduction to Spark and explains

how it achieves our design goals described in Chapter 1. In Section 5.2, we introduce

how to support data visualisations. Spark provides a SQL interface for structured data

processing. In Section 5.3, we introduce how to support data analysis. A distributed

clustering method is designed and implemented. In Section 5.4, we give an overview

of system architecture. At last, we conclude this chapter.

5.1 Introduction

Spark [38] is a cluster computing framework designed for big data. Different from

Hadoop [25], it keeps intermediate results in memory. Iterative algorithms, which

require to access data repeatedly, can be executed efficiently. Spark also powers a set

of libraries including Spark SQL for structured data, MLib for machine learning and

GraphX for graph processing. By using Spark, we can achieve our goals easily : scal-

ability, fast query on huge dataset and data analysis at a large scale. As an example

for data analysis, we design and implement a distributed version of DBSCANSD [35]

that learns vessel traffic patterns from trajectory data. The challenge in this part is

the design and implementation of distributed DBSCANSD. Pre- and post-processing

of the data are performed to enable parallel computation.

The main abstraction in Spark is resilient distributed dataset (RDD), which is an

immutable collection of elements partitioned across the cluster which can be processed

in parallel [39]. Normally, Spark tries to create partitions automatically based on the

cluster. Users can also develop their own strategies to partition the data. During

38
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computation, a single task will operate on a single partition. For example, if one

cluster has 40 task slots, it will have at most 40 partitions processed in parallel.

User can apply a function to either each data record or each partition in a RDD. As

we can see, RDDs are suited for applications that apply the same operations to all

elements or subsets of a dataset while they are not suited for applications that make

fine-grained updates to a shared state.

5.2 Data Visualisation

AIS Data Explorer allows user to explore and visualise maritime data in a browser.

To answer such query, a subset of data is extracted and then the aggregations are

computed. Sometimes, it may run computations on the whole dataset to get the

result, for example, generate a global heat map of all the time. It requires the system

to be scalable to handle large dataset. Spark SQL is a suitable system to satisfy such

requirement, which is built on RDDs and able scale to multiple machines.

Different from relational databases, Spark SQL use DataFrames to represent struc-

tured data. A DataFrame is a distributed collection of data which is equivalent to a

table. Maritime data is loaded from HDFS and then stored in one RDD. Based on

the user defined data schema, the RDD is translated into a DataFrame. Then the

DataFrame is registered as a table and cached in memory. User can run SQL queries

to the dataset. Inside Spark, any SQL query will eventually translate into a series of

parallel operations on RDDs. A two dimensional histogram query cannot be easily

supported in SQL. To accelerate the process of histogram query, one extra value,

called aggregationID, is computed. The map can be divided into many equal-sized

boxes. Each box represents a rectangle area and is assigned to an index number.

For each ship snapshot, we calculate the index number of the box it belongs to. A

histogram query can be easily supported by grouping snapshots with the same index.

AIS Data Explorer supports three kinds of data visualisation: heat maps, grid maps

and trajectories. Heat and grid map visualisations usually require aggregations of

the data of interest. The aggregations could be the number of vessel snapshots, the
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number of ships, the average of SOG or the average of COG. Trajectory visualisation

requires a set of vessel snapshots. These snapshots are grouped by MMSI and sorted

by timestamp. These queries can be expressed in SQL. The code below gives an

example, which returns vessel density near Halifax Habour.

SQL Code : s e l e c t aggregationID , count ( d i s t i n c t mmsi) from v e s s e l

where l a t > 44 .51 and l a t < 44 .66 and lon > −63.61 and

lon < −63.40 group by aggregat ionID ;

5.3 Data Analysis

In the past decades, the use of tracking systems, such as GPS (Global Positioning

System) and AIS (Automatic Identification System), has greatly increased, which

leads to an increasing number of tracking applications. One important task of these

applications is trajectory clustering that is a process to discover traffic patterns from

trajectory data. In [35], Liu Bo et al proposed a clustering method, called DB-

SCANSD (Density-Based Spatial Clustering of Applications with Noise considering

Speed and Direction), which is designed for vessel trajectory clustering. One limita-

tion of DBSCANSD is the performance. It takes nearly 10 minutes to run a sequential

DBSCANSD on a dataset of 100 thousands data points. Since the time complexity

of this algorithm is O(n2), it is not able to process large amount of data. By ap-

plying index structures, such as k-d tree [43], R-tree, its time complexity could be

O(n log n). But it is still not scalable as the dataset increase. In this section, we

design and implement a distributed version of DBSCANSD.

5.3.1 Representing Trajectory Data

Definition 1. (Trajectory in Maritime Domain) A trajectory is a finite sequence T

= ((x1,t1),(x2,t2),...,(xn, tn)) where xi is a set of < Latitude, Longitude, COG, SOG

> and ti is the timestamp.

A ship trajectory can be defined as a sequence of multi-dimensional data points,
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each of which describes ship status at a specific instant (Definition 1) [35]. A ship

trajectory point is defined as a vector, xi. In the rest of this section, we also use point

or data point instead.

5.3.2 Density-Based Spatial Clustering of Applications with Noise

considering Speed and Direction

Under different circumstances, ships follow different moving patterns. It is common

that different types of ships sail with different speed. For example, a high speed

craft (HSC) usually moves faster than an oil tanker. Ships heading in different di-

rections can behave differently. For example, cargo ships may sail into port at low

speed while they may leave at high speed. Based on these observations, maximum

speed variance (MaxSpd) and maximum direction variance (MaxDir) are considered

in DBSCANSD [35]. As we know, the key idea of DBSCAN is to group points that

are close to each other into one cluster. DBSCANSD adopt this idea and modify the

definition of Eps-neighbourhood in [30] to the following:

Definition 2. Given a database D of trajectory points in one area, the Eps - neigh-

bourhood of a trajectory point p, denoted by Nϵ(p), is defined by Nϵ(p) = {q ∈ D |
dist(p, q) < ϵ and |p.SOG− q.SOG| < MaxSpd and |p.COG− q.COG| < MaxDir}

DBSCANSD requires 5 parameters (Data, eps, MinPts, MaxDir), MaxSpd. Data is

a list of trajectory points. Eps is the reachable distance and MinPts is the reachable

minimum number of points [30]. MaxDir and MaxSpd are the maximum direction

variance and the maximum speed variance. Considering the Earth’s curvature, DB-

SCANSD calculates the Geographical Distance [19] between two points.

5.3.3 Distributed DBSCANSD

In this section, we develop a parallel algorithm called distributed DBSCANSD which

is based on the algorithm presented in [40]. Distributed DBSCANSD requires 6 pa-

rameters (BR, eps, MinPts, MaxDir, MaxSpd, MaxPts) as input. To start with, the
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Figure 5.1: Clusters in different partitions

algorithm splits the input data into parts of approximately equal size. Then a se-

quential DBSCANSD is performed on each partition. At last, it collects outputs from

different partitions and compute the final clustering result. BR is a rectangle bound-

ing box that contains all the trajectory points. For each trajectory point, three extra

attributes are assigned: pointId that is a unique identifier, clusterId that denotes the

cluster it belongs to, partitionId that denotes its partition. The trajectory points

are assigned unique identifiers before the partition stage. MaxPts is the maximum

number of points expected in one partition. The pseudo code of distributed DB-

SCANSD is presented in Algorithm 1. mapPartitions(func, params) is a method

of the RDD. It is runs the function on each partition of the RDD in parallel and then

returns a new distributed dataset.

As discussed in [40], one crucial requirement of a partition strategy is that a DBSCAN

based algorithm is able to work on the data in one partition independently without

the knowledge of the data in other partitions. It has been proved in [34] that it is

possible to execute DBSCAN in multiple partitions independently and get the same

result as if DBSCAN is executed on the original space. Figure 5.1 shows an example.

A rectangle bounding box S is divided into two non-overlapping boxes S1 and S2,

each of which includes the core points that reside in it (the box) and the border

points that are within one eps of its borders. In other words, some points may appear

twice. Then DBSCAN is executed on S1 and S2 separately. Two clusters c1 and c2 are

identified. The points can be divided into four categories: the black ones that belong

to c1, the yellow ones that belong to c2, the white ones that belong to no cluster, the
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red ones that belong to c1 and c2. Since some points belong to both clusters, there

is a cluster c3 that includes all the points in c1 and c2. And c3 is the cluster founded

by executing DBSCAN on the original space S. This is the basic idea of distributed

DBSCANSD.

Algorithm 1 Distributed DBSCANSD

1: procedure DISTRIBUTED DBSCANSD(BR, eps, MinPts, MaxDir,

MaxSpd, MaxPts)

2: partitionedPoints← densityPartition(BR, eps,MaxPts)

3: partitions← expandPartitions(partitionedPoints)

4: partialClusteredPts← partitions.mapPartitions(DBSCANSD, eps,

MinPts,MaxDir,MaxSpd)

5: clusteredPts← merge(partialClusteredPts, eps)

Partition A partition algorithm is introduced in [40], which uses binary space par-

titioning (BSP)[41] to split the data into parts of roughly equal size. We adopt its

idea and make modifications to improve the algorithms’ efficiency. The new partition

algorithm requires three parameters (BR, MinSize, MaxPts) as input. BR is a rect-

angle bounding box that contains all the points. MinSize is the minimum size of one

partition and MaxPts is the maximum number of points in one partition. To start

with, the algorithm splits the bounding box into two parts along its longest dimen-

sion. The assumption behind this is that data points are distributed evenly. Then

the algorithm recursively splits the box until one of these boxes has less points than

MaxPts or smaller than MinSize and this box is selected as one partition. At last, it

generates a list of partitions of roughly equal size. When it comes to the implementa-

tion, the whole hierarchy of boxes is precomputed and the number of points in each

box is counted. Then each box is checked whether it should be selected as a parti-

tion. Trajectory points are partitioned and each point is assigned to a partitionId.

The time complexity of this algorithm is O(n). The pseudo code of the algorithm is

presented in Algorithm 2.
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Algorithm 2 Density Partition

1: procedure densityPartition(BoundingRectangle,MinSize,MaxPts)

2: toSplit← {BoundingRectangle}
3: partitions← ∅
4: for BR ∈ toSplit do

5: if POINTSIN(BR) ≥MaxPts & isBigEnough(BR,MinSize) then

6: (S1, S2)← splitByMaxDim(BR)

7: toSplit← toSplit ∪ {S1, S2}
8: else

9: partitions← partitions ∪ {BR}

10: return partitions

11: procedure isBigEnough(BR,L)

12: return LATITUDE(BR) ≥ L orLONGITUDE(BR) ≥ L

Local DBSCANSD After partition, trajectory points are split into partitions.

To run DBSCANSD on each partition independently, each partition is expanded to

include core points and border points. The output of local DBSCANSD is a set of

trajectory points that are assigned clusterIds. If one point belongs to no cluster, its

clusterId is set to be -1. Some points may appear multiple times and have different

clusterIds.

Cluster Merging One cluster may spread across multiple partitions. We need to

identify such clusters and put their parts together. The main goal of cluster merging

is to assign a global identifier to trajectory points that belong to one cluster but

reside in different partitions. As we discussed before, if one border point belongs

to two clusters, then points in these two clusters belong to one bigger cluster. The

cluster merging can be completed in two steps. First step, we find out local cluster

identifiers correspond to a single cluster that spread across multiple partitions and

then map these identifiers to one global unique identifier. Second step, based on

the mapping, all trajectory points are relabeled. The algorithm presented in [40]

provides a sequential method to merge local clusters. We adopt its idea and develop

a parallel algorithm for cluster merging. Its pseudo code is presented in Algorithm 3



45

Figure 5.2: System Architecture

and Algorithm 4.

To start with, trajectory points that belong to no cluster or not within one eps of

the borders of their partitions are filtered out and the remaining points are grouped

by partitionId. The algorithm generates cluster identifier pairs in each partition and

merge these pairs to generate a mapping. At last, all trajectory points are relabeled

using this mapping. For simplicity, we only showed how to process points that belong

to clusters. Points that belong to no cluster need to be processed separately.

5.4 System Architecture

Figure 5.2 shows the system architecture. Several techniques are used to build the

back-end system. HDFS is used as a distributed storage system which keeps the AIS

dataset on disks. Spark is worked as a distributed database and a computing engine.

It loads data from HDFS and do cluster computing. Spark Jobserver [10] provides

a RESTful interface for managing Spark jobs and job contexts. It works as a bridge

between Spark and the visualisation client. To start with, the whole AIS dataset is

preprocessed and then loaded into Spark SQL. The data is cached in memory for

efficient query. After a SQL query is received, Spark SQL analyses it and the query

will eventually translate into a series of operations on RDDs. The query result can

be returned directly or further processed by algorithms like DBSCANSD.
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Algorithm 3 Clusters Merging

1: procedure merge(Points, eps)

2: borderPoints← Points.mapPartitions(borderPointsF ilter, eps)

3: borderParts← groupedByPartitionId(borderPoints)

4: pairs← borderParts.mapPartitions(generateClusterPairs)

5: mappings← mergePairs(pairs)

6: partialClusteredPts← shrinkPartitions(Points)

7: clusteredPts← partialClusteredPts.mapPartitions(relabelPoints,mappings)

8: procedure borderPointsFilter(eps)

9: points← ∅
10: for Pt ∈ partition do

11: if Pt within eps of partition borders & Pt is assigned to a cluster then

12: points← points ∪ Pt

13: return points

14: procedure generateClusterPairs(part)

15: points← ∅
16: pairs← ∅
17: for Pt ∈ part do

18: if Pt ∈ points then

19: (c1, c2)← (Pt.clusterId, prevP t.clusterId)

20: if (c1, c2) /∈ pairs then

21: pairs← pairs ∪ {(c1, c2)}

22: else

23: points← points ∪ {Pt}

24: return pairs

25: procedure relabelPoint(mappings)

26: for Pt ∈ partition do

27: Pt.clusterId← mappings[Pt.clusterId]

28: return partition
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Algorithm 4 Merge Pairs

1: procedure mergePairs(pairs)

2: id← 0

3: g ← empty graph

4: map← empty map

5: for (c1, c2) ∈ pairs do

6: if c1 /∈ g then

7: add node c1 to g

8: if c2 /∈ g then

9: add node c2 to g

10: if edge(c1, c2) /∈ g then

11: add edge(c1, c2)to g

12: for subgraph ∈ g do

13: for c ∈ subgraph do

14: insert (c,id) to map

15: id← id+ 1

16: return map



48

5.5 Conclusion

In this Chapter, we gave an overview of Spark platform and explained how it achieved

our design goals. A pipeline for marine data processing was built, which performs data

cleaning, data processing and data analysis. We design and implement distributed

DBSCANSD and integrated it into the existing system, which allows user to visualize

the clustering result in the visualisation client.



Chapter 6

Evaluation

In this chapter, experiments are conducted to evaluate the performance of the pro-

posed framework. To start with, we conducted experiments with the visualisation

client and evaluated the performance of map rendering. The results are presented

in Section 6.1. Then in Section 6.2, we evaluated and compared the performance of

vOLAP and Spark. Section 6.3, we present the results of an experimental evaluation

of distributed DBSCANSD.

6.1 Performance of the Front-end : Data Visualization

In this section, we compared the performance of different visualisations including

grid maps, heat maps and trajectories. For grid and heat maps, we performed a

two dimensional histogram query on the AIS dataset dated from 1 Feb, 2013 to 30

April, 2013 and used its result as test data. The test dataset consists of 41374 data

records, each of which contains the coordinates of one rectangle area and the number

of vessels in that area. For trajectory visualisation, the test dataset consists of 112784

ship snapshots dated from 1 Feb, 2013 to 3 Feb, 2013, near Libreville, Gabon. The

experiments are conducted on a laptop of Mac OS X with an Intel I5 processor (2.4

GHz), Intel Iris graphics (1536 MB) and a RAM of 8 GB (1600 MHz DDR3). The

software is Google Chrome (version 50.0.2661, 64-bit). The application is a Javascript

program running in the browser.

Figure 6.1 shows the results. Two methods for grid map visualisation are evaluated

and compared. A native method is provided by Leaflet and an improved method is

implemented by us. As the number of points increase, the time for the native method

49
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Figure 6.1: Time (seconds) for map rendering as a function of the number of data
points

increase dramatically while that for the improved method increase slowly. The perfor-

mance of our method outperforms that of the native method by ten times. Although

the outputs of two methods are similar, the underlying rendering techniques are dif-

ferent which determines the performance gap. The implementation of heatmap.js [1]

is based on html5 canvas, which enables efficient heat map rendering. The time for

heat map is less than 0.5 second although the number of points increase from 5000

to 40000. Because of the simplicity of trajectory rendering, it is faster than other

visualisations.

6.2 Performance of the Back-end: Data Loading and Query Processing

A test dataset of 100 million ship snapshots is created from a subset of the AIS

data dated from February 1, 2013 to April 30, 2013. Each ship snapshot contains

the following fields: maritime mobile service identity (MMSI), timestamp, ship type,

ship status, longitude, latitude, speed over ground and course over ground. The test

dataset is used to evaluate the performance of the back-end system. The experiments
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Figure 6.2: Time (seconds) for a query as a function of the number of data points

were conducted on West Cloud of Compute Canada. For each worker instance, it has

4 virtual cores (Intel Xeon CPU E5-2650 v2 @ 2.60GHZ) and 15 GiB memory. The

OS image used was the standard CentOS 7.0. All instances run in the same network

and talk to each other with private IPs. In the local network, data transfer can be as

fast as 100 megabits per second. A public IP is provided for user access.

6.2.1 Data Loading

We tested how the time for data loading changes when the size of data increase. 5

workers are used in this experiment. Figure 6.2 shows the results. As the number of

data records increase from 10M to 100M, the time for data loading increases slowly.

Spark shows better performance than vOLAP. For data loading, vOLAP does more

work than simply loading the data into the system. When data records are inserted,

it precomputes the aggregate values, which improves the performance for queries.
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6.2.2 Query Processing

We test how the time of different queries for vOLAP and Spark changes as we in-

crease the number of workers. To start with, 30 million items from the test dataset are

inserted into vOLAP and Spark. Then a two dimensional histogram query is executed.

It computes aggregations of the data in a rectangle area (N 10◦ 0′W40◦ 0′,S 10◦ 0′E10◦ 0′),

dated from February 1, 2013 to April 30, 2013. One rectangle area is represented by

a pair of points which denote upper left corner and lower right corner respectively.

The aggregations are the number of snapshots and vessels. A report query, which

work on the same data as histogram query, is also executed. There is always some

performance fluctuation on the cloud. Based on the result of experiments, the aver-

age of 10 same queries is considered as a stable measure. The evaluation results are

shown in Figure 6.3 and 6.4.

Spark is good at answering queries that apply the same operation to a subset of the

data. For one histogram query, it applies a series of parallel operations on RDDs,

which use the resource of the cluster effectively. In vOLAP, a histogram query will

translate into a set of aggregate queries, each of which is processed separately. These

aggregate queries are sent to workers which have the data they required. Thus, only

some of the workers are engaged in the computation and the processing power of the

whole cluster is not fully utilised. As we can see, Spark shows better performance on

query processing.

6.3 Performance of the Back-end: Distributed DBSCANSD

We tested the performance of Distributed DBSCANSD on two different dataset. A

test dataset of 3 million trajectory points is generated from a subset of AIS data

dated from February 1, 2013 to March 1, 2013. All these points are resided in one

rectangle area (N 29◦ 0′E47◦ 0′, N 2◦ 37′E100◦ 0′) that includes Arabian Sea and Bay

of Bengal. Another one is a synthetic dataset generated by scikit-learn’s dataset

loading utilities [8]. This dataset consists of 3 million trajectory points and contains

100 different clusters. The used hardware has been described in Section 6.2. The
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parameters of the algorithm are set to be 10km (eps), 100 (MinPts), 20 (MaxDir),

200 (MaxSpd) and 10000 (MaxPts). Since no auxiliary index structure is used, the

time complexity of local DBSCANSD is O(n2) where n is the number of points in that

partition. We test how the time of distributed DBSCANSD changes as we increase

the number of workers. And the impact of system size is also evaluated. The results

of our experiments are shown in Figure 6.5, 6.6 and 6.7.

As we can see, although data is not partitioned evenly, distributed DBSCANSD can

still scale as the number of workers increase. This is due to the design of Spark task

scheduling. The number of tasks that can be executed in parallel is determined by the

number of cpu cores in the cluster. One task is assigned to one partition. Partitions

without tasks are queued in memory. Once the work on one partition is complete,

Spark will assign a new partition to the task. The number of partitions generated

by Distributed DBSCANSD is much more than the number of tasks. Thus, more

partitions are processed in parallel as the number of workers increase. As a result,

the program becomes faster.
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Chapter 7

Conclusions and Future Work

In this thesis, we propose a scalable framework, AIS Data Explorer, to analyse and

visualise marine navigation data. The main challenge of this work is how to effectively

handle data at a large scale. The main contribution of this work is to provide a method

to help researchers explore and analyse huge datasets.

With increasing in the number of vessels, transponders and satellite receiving statis-

tics, the size of marine navigation data is huge and increasing rapidly. In five years

from 2010 to 2014, Big Data Institute at Dalhousie University has accumulated nearly

4 terabytes data and the size keeps increasing by 100 gigabytes per month. Lack of

scalable tools, many problems are studied on relatively small dataset.

AIS Data Explorer is designed to solve this problem. Users are able to explore the

dataset by visualising data of interest on an interactive map. We also design and build

a data processing pipeline that performs data extraction, data cleaning, data analysis

and data visualisation. As an example of large scale data analysis, we design and

implement distributed DBSCANSD that discovers vessel traffic patterns from ves-

sel trajectories. Two different techniques are explored to process marine navigation

data. vOLAP is able to compute aggregations of structured data efficiently. How-

ever, its functions are limited and difficult to extend. Different from vOLAP, Spark

is optimised for iterative jobs and interactive analytics. Based on resilient distributed

dataset, Spark is extended to support different applications including structured data

management, streaming data processing, machine learning and graph processing. Al-

though vOLAP and Spark are designed for processing big data, ideas behind these

two techniques are quite different. The design of vOLAP follows client-server ar-

chitecture. It explores multicore and multiprocessor parallelism. While the original

purpose of Spark is to improve Hadoop. The intermediate result in Hadoop needs to
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be written back to disks which involves overhead caused by data replication and disk

I/O. To solve this problem, Spark allows user to keep data in memory and query it

repeatedly. Thus, iterative jobs and interactive analytics can be well supported. At

last, we evaluated the performance of AIS Data Explorer on cloud. The experiment

results demonstrate its efficiency. Depend on data size, visualisations can be typi-

cally generated in seconds. Distributed DBSCANSD is able to work on millions of

trajectory points, which is impossible for sequential DBSCANSD.

As for future work, we would like to build interested applications for researchers in

AIS Data Explorer. And this framework can also be reused in other domains where

visualisations and data analysis are required. Another work is to improve distributed

DBSCANSD. Vessel trajectories are spatial-temporal datasets that can be better split

by a 3 dimensional partition strategy.
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