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ABSTRACT 

The purpose of this thesis is to compare the performance of the Conventional (CO), Physical 

Internet (PI), and Hybrid (HY) logistics systems in a road network in order to understand and 

quantify the advantages and disadvantages of PI.  

The comparison presented in this work is carried out through Monte-Carlo simulation in which 

loads are generated randomly and a sequential three phase optimization framework to optimize 

the CO, PI, and HY logistical networks. 

By applying the methodology to the CO, PI, and HY logistic systems for the example road 

network, differences are observed in the total number of the instances containers requiring 

loading and unloading and total driving time to carry all the loads to their final destination.  

Finally, the total cost of each logistic policy is calculated and the most economical logistical 

policy is identified for different scenarios.   
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Chapter 1: Introduction  

Physical Internet (PI) is the way physical objects are moved, stored, realized, supplied and used, 

aiming towards greater efficiency and sustainability [1]. PI has the potential of introducing 

ground breaking improvements notable to fields of material handling, logistics, and facility 

design.  The drive for PI is from the claim that “the way physical objects are moved  handled, 

stored, realized, supplied, and used throughout the world is not sustainable economically,  

environmentally, and socially” [2].  

The term “Physical Internet” was first used on the front page of The Economist magazine, in 

June 2006 [3]. PI refers to transportation of physical goods using data transmission analogy to 

Internet. The vision for PI is on thirteen characteristics that build the PI logistic model [1]. Most 

of these characteristics are inspired from data transmission protocols that are shaping Internet.  

In PI, goods are encapsulated in globally standard, smart, green, and modular containers.  The 

PI-containers are different from the conventional containers currently used in conventional 

logistic system. The concept of encapsulation of goods into PI-containers is similar to 

transmission of data by means of data packets in data networks.  

Current logistic systems have number of unsustainability symptoms, such as: shipping large 

amounts of air and packaging, large amount of empty travel or dead-heads, slow response to 

incidental products demand, poor utilization of logistic resources, and etc [1]. It is believed that 

PI can alleviate some of these unsustainable logistics practices.  
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1.1 Thesis Objectives 

The purpose of this thesis is to compare the performance of Conventional (CO), PI, and a Hybrid 

(HY) logistic systems within a road network using an optimization framework. As we will see in 

the literature review in the next chapter, there is a need to build an optimization framework to 

support research in PI and help understand its advantages and limitations.   

1.2 Thesis Organization 

The remainder of this thesis is organized as follows: A literature review relevant to the theme of 

the research is presented in Chapter 2.  This includes an introduction to PI and an overview of 

models in vehicle routing that are pertinent to this research.  In Chapter 3, the structure of the 

logistics network and routing systems for the three systems are being compared (PI, CO, and 

HY).  In Chapter 4, a three-phased optimization framework is presented to enable the 

performance comparison. The load generation Monte-Carlo simulation is discussed in Chapter 5. 

The numerical results of the thesis are presented in Chapter 6. In Chapter 7 the main 

contributions of this thesis are summarized, and areas for future research are suggested. 
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Chapter 2: Literature Review 

The literature review in this thesis first focuses on literature related to the Physical Internet. 

Since field of Physical Internet is fairly recent, the number of published papers in the domain are 

relatively low. The second part of this literature review focuses on literature of the Vehicle 

Routing Problem (VRP).  

2.1 Physical Internet (PI)  

The PI project (or initiative) has an official and dedicated website [4] accessible at 

“http://www.physicalinternetinitiative.org”. This website contains a complete list of publications 

in this field. Active projects, events, and news of Physical Internet are also reported in this 

website.  Figure 1, shows a brief overview of PI on a timeline.  

W.P

W.P

W.P

W.P

W.P

Concept

Design

Prototype

Evaluation

Early 

Implementation

2009 2010 2011 2012 2013

3 papers on 

Supply-Web

7 papers on PI 

vision and design

3 papers on 

Functional Design

2014

Technical 

Reports

1 paper on Simulation 

Based Assessment 

 

Figure 1 - PI on Time line 

The Supply Web is described in [5], as a network of interconnected supply chain networks.  In 

the traditional system, supply chain networks of various organizations do not share much 

information or infrastructure with each other. In PI, much of the logistic infrastructure such as PI 

hubs or PI transit centers are open for use to every agent who is willing to sign up for the service. 
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The concept of an integrated supply web, which brings together disparate supply chain networks, 

is one of the most important building blocks of the PI.  

An overview of the physical aspects of PI is provided in [6]. The physical elements of the PI are 

listed as: containers, movers, and nodes. The containers used in PI are named PI-containers and a 

number of standard sizes are proposed for these containers. Movers are grouped into PI-

transporters, PI-conveyors, and PI-handlers. For the nodes, PI-hubs and PI-transit centers are 

introduced. This forms the backbone of PI. PI logistics system can be described as follows: when 

a shipment is made from A to B, the PI container used to make the shipment may be routed 

through one or more PI-hubs or PI-transit centers where they are handled by PI-transporters, PI-

conveyors, and PI-handlers. The PI-containers themselves are modular and may fit within or 

alongside other PI-containers. Since the PI logistics system is shared, the expected advantage of 

such a system comes from sharing and pooling resources.   

In [7], a supply chain visualization software called the Supply Web Mapper is introduced. This 

software enables parties and organizations using the supply web to get live information on status 

of the Supply Web in several multi-dimensional synthetic forms and diagrams. Also, a generic 

objective of the Supply Web Mapper is to obtain a representation of the existing relationship 

between several selected actors, resources and products within the Supply Web. This prototype 

software consists of three main interfaces “Conceptual Map Viewer”, “Geographical Map 

Viewer”, and “Data Mining viewer” to achieve this goal.  

In [8], an agent based simulation platform to simulate the complex scenarios that could occur on 

supply web is introduced. The motive behind creation of such simulation environment was to 
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develop an inexpensive, yet effective method of assessing dynamics of supply chain behaviour of 

an organization with shared resources.  

A global sustainability grand challenge issue is presented in [1] with statistics showing the weak 

performance of current global logistics systems. This paper also lists a number of global 

unsustainability symptoms and the PI vision is introduced through 13 points. Encapsulating 

merchandise in standard PI-container sizes, and moving from point to point transportation to 

distributed multi segment transportation are among the 13 points related to this thesis. 

The first study on the impact of network topology on the performance of PI is shown in [9].  In 

this research, which does not involve an optimization framework, the performance of the 

conventional logistic vs. PI enabled networks are described using parameters for transportation 

throughput requirements, flow travel, and total cost.  

The design and development phases of a simulation tool for a future comprehensive study of the 

PI are explained in [10]. In this research, the mechanism for capturing and quantifying the 

impact of PI in terms of economic, environmental, and social efficiency is shown. 

Finally, proposals for functional design of the PI facilities for road based transit centers, road-rail 

hubs, and road based cross-docking hub are presented in [11], [12], and [13]. Each of these 

studies show the facility components, introduce a set of key performance indicators, and 

graphical simulation models built to evaluate operations. At the end of these studies, 

performance results under various conditions are reported. 

It has been hypothesized that an interconnected logistics network is better than a fragmented 

logistics network.  A simulation platform is developed in [14] to evaluate the performance of an 

interconnected logistic network.  The goal of the platform is to evaluate the efficiency of an 
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interconnected logistic network in terms of delivery times, carbon emission levels, and travel 

times.  To carry out the demonstration, data obtained from corporations for fast moving items in 

the consumer goods sector in France is used.   The performance measures from the simulation 

for the PI logistics system are compared against standard industry KPI’s.  The conclusion in this 

paper is that PI does not compromise operational efficiency of the logistics system while 

significantly reducing the carbon foot print and logistics costs.    

In summary, the PI literature consists of two parts: the development of the conceptual PI 

framework and the development of infrastructural concepts for the realization for PI.  The 

predominant methodology is to build simulation environments.  For example, the simulation 

environments in [8], [11], [12], and [13] were designed to show the expected performance of 

various logistic activities within a PI facility. The simulation platform shown in [14] has a 

slightly broader mandate and looks at the performance of a broader interconnected logistic 

network (of which PI is a good example).  

The PI literature is in a very nascent stage.  There are several opportunities within PI for cross-

discipline research which includes research in several areas of OR such as supply chain 

management, logistics and operations planning, and transportation.  Other potential areas of 

research include mechanical design, social sciences, information technology, etc.   

From the literature, it appears that the PI logistics system has both advantages and disadvantages.  

The advantage appears to be that through consolidation and deconsolidation at PI hubs, 

transportation is more efficient.  This is because transport occurs through modular containers and 

PI hubs offer better opportunities to mix and match loads for easier routing.  Moreover, the PI 

hubs themselves can be automated for efficiency in handling.  From a social point of view, 
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drivers are generally not required to travel long distances from their home base.  On the other 

hand, the disadvantage of the PI logistics system seems to be that a greater level of material 

handling is required inside the PI hubs, which adds to both cost and lead time.   

It is believed that more research is needed to understand the above trade-offs.  There is no 

optimization framework in the literature that can help decision makers quantify the advantages 

and disadvantages of PI over the traditional logistics system.  This gap provides the motivation 

for this thesis. 

2.2 Vehicle Routing Problems  

Since the objective of this thesis is to compare PI, CO, and HY, it is important to understand how 

logistics networks are optimized.  The Vehicle Routing Problem (VRP) and its variants is the 

basic building block to optimize transportation in a logistics network.   

A VRP is defined as a set of routes or sequences that start from one or several locations, and visit 

a number of geographically scattered points to minimize total travel distance or time [15]. There 

are several classifications of the VRP and comprehensive literature reviews on the subject. For 

example [16] provides a classification of VRP according to the number of pick-up and delivery 

locations.  

An overall division in literature is between the exact algorithmic approaches, and approximate or 

meta-heuristic approaches to solve variations of the VRP.  The literature on both is 

comprehensive. Each division again has a number of subdivisions.  

The exact algorithms are classified in three broad categories of: (i) direct tree search methods, 

(ii) dynamic programming, and (iii) integer linear programming [17]. The meta-heuristic 

approaches are classified according to the heuristic algorithms used to solve the VRP. Among 
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the most popular approximation approaches, the solution methods built using Tabu Search and 

Simulated Annealing have received extensive attention from several researchers.  

As linear integer programming is the methodology applied in this thesis, the literature in integer 

programming is the focus of this literature review.  

VRP is a specific form of a more general problem set called Pick-up and Delivery Problems 

(PDP).  For PDP two problem classes can be distinguished. These classes are: (i) Vehicle 

Routing Problems with Backhaul (VRPB), and (ii) Pick-up and Delivery Vehicle Routing 

Problem (PDVRP) [18]. The first class deals with transportation of goods from number of depots 

or central locations to a set of linehaul customers, and from backhaul customers to the depots. 

The second class refers to scenarios where goods are picked up at customer’s location and 

directly delivered to other customers. Figure 2, illustrates an overall presentation of these two 

problem classes and their subclasses.  

 

General Pick up and Delivery 

Problem (GPDP) 

Transportation between Customers 

(VRPPD)

Transportation to / from Depot 

(VRPB)

PDTSP

PDVRP

SPDP

PDP

SDARP

DARP

TSPCB

VRPCB

TSPMB

VRPMB

TSPDDP

VRPDDP

TSPSDP

VRPSDP

 

Figure 2 - Pick-up and Delivery Problems [18] 

VRPB can be divided into four subclasses. Each of the four subclasses in the VRPB are shown 

with a prefix – VRP or TSP.  When the notation starts with “TSP”, the problem only involves 
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one vehicle (TSP refers to the travelling salesman problem). When a subclass has the “VRP” 

prefix, there are several vehicles. In Vehicle Routing Problem with Clustered Backhaul (VRPCB) 

and Vehicle Routing Problem with Mixed Backhaul (VRPMB), customers are either pick-up 

customers or delivery customers, but cannot be both. In VRPCB problems, the requirement is to 

visit all the delivery customers or delivery cluster before the first customer in the pick-up group 

is served.  However, in the mixed backhaul case (VRPMB), drop-off and pickup customers could 

be mixed.    

In the last two subclasses, Vehicle Routing Problem with Divisible Delivery and Pickup 

(VRPDDP), and Vehicle Routing Problem with Simultaneous Delivery and Pickup (VRPSDP), 

customers may need both delivery and pick up. In the VRPDDP each customer can be visited 

twice, one for delivery, and one for pick up.  However, in the VRPSDP, a customer can only be 

visited once.   

A graphical illustration of these subclasses is presented in Figure 3. 
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Figure 3 - VRPB Sub-Classes 
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2.2.1 Formulation of VRPB Problems 

The mathematical formulation of the VRPB problems are introduced and explained in this 

section. First, using a consistent notation, a general form of single vehicle and multi vehicle 

formulation will be introduced and explained. Second, the modification required to show any of 

the four subclasses of the problem will be introduced. The notations and formulations used in 

this section are adopted from [18].  

Sets:  

𝑃 = {1,… , 𝑛} Set of Pick up Customers 

𝐷 = {𝑛 + 1,…𝑛 + �̃�} Set of Delivery Customers  

K Set of vehicles 

Parameters: 

𝑛  Number of pick up nodes.    

�̃�   Number of delivery nodes.    

𝑞𝑖 Demand or supply quantity at node i. Supply quantity is shown by 

positive value and demand quantity with negative value.  Demand and 

supply at the start or the end deport is set to 0  

𝑒𝑖 Earliest time to begin service at node i 

𝑙𝑖 Latest time to begin service at node i 

𝑑𝑖 Service duration at node i 

𝑐𝑖𝑗
𝑘    Cost of traveling from  node i to node j by vehicle k 

𝑟𝑖𝑗
𝑘   Travel time from node i to node j by vehicle k 

𝐶𝑘    Capacity of vehicle k 

𝑇𝑘   Maximum route duration of vehicle / route k 

Variables: 

𝑥𝑖𝑗
𝑘  Binary, 1 if arc (i, j)  is used by vehicle k, 0 otherwise 

𝑄𝑖
𝑘 Load of vehicle k when leaving node i   

𝐵𝑖
𝑘 Beginning of service of vehicle k at node i  

 

Note that in a single vehicle formulation of the problems, the subscript k can be omitted.  
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The single vehicle formulation of the pick-up and delivery problems is based on Traveling 

Salesman (TSP) problem and is formulated as follows: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗  
(𝑖,𝑗) ∈𝐴

 

Subject to: 

 

(L1)  

∑ 𝑥𝑖𝑗 = 1

𝑖:(𝑖,𝑗) ∈𝐴

 

  

 

∀i ϵ V \ {0}  

 

(L2) 

∑ 𝑥𝑖𝑗 = 1

𝑗:(𝑖,𝑗) ∈𝐴

 

 

 

∀i ϵ V \ {n + �̃�  +1} 

 

(L3) 

𝑥𝑖𝑗  ∈ 0,1  ∀(i, j) ϵ A (L4) 

∑ 𝑥𝑖𝑗 ≥ 1

(𝑖,𝑗)∈𝐴(𝑆,�̃�)

 ∀S ⊆  V \ {n + �̃�  +1} , S ≠ 0 (L5) 

𝑥𝑖𝑗 = 1 ⇒ 𝐵𝑗 ≥ 𝐵𝑖 + 𝑑𝑖 + 𝑡𝑖𝑗 ∀(i, j) ϵ A (L6) 

𝑠𝑖 − 𝑠𝑗 + 1 ≤ 𝑀 ∙ (1 − 𝑥𝑖𝑗)  ∀ 𝑛 ⊆  V \ {n + �̃�  +1}  (L7) 

 

In the single vehicle formulation of the VRPB, the objective function L1 minimizes the total 

routing cost.  L2 and L3 enforce that each node is visited exactly once. Constraints L5, L6, and 

L7 are the three optional methods used for sub tour elimination. Therefore presence of only one 

of them in the formulation is sufficient. In constraint L5 at least one route has to leave every non-

empty subset S ⊆  V \ {n + �̃�  +1}. Constraint L6 is used as a time window constraint to 

eliminate the sub tours. Another option for sub tour elimination is constraint L7 (Miller, Tucker, 

and Zemlin (MTZ) constraint [19]). 

The following is the general formulation of the multi-vehicle VRP adopted from [20]: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗
𝑘 ∙  𝑥𝑖𝑗

𝑘  
(𝑖,𝑗) ∈𝐴

 

𝑘∈𝐾 

 

Subject to: 

 

(L8)  

∑ ∑  𝑥𝑖𝑗
𝑘 = 1

𝑖:(𝑖,𝑗) ∈𝐴𝑘∈𝐾

 
∀i ϵ  P ∪ D (L9) 

∑ 𝑥0𝑗
𝑘 = 1

𝑗:(0,𝑗) ∈𝐴

 ∀𝑘 ∈ 𝐾 (L10) 

∑ 𝑥𝑖,𝑛+�̃�+1
𝑘 = 1

𝑖:(𝑖,𝑛+�̃�+1) ∈𝐴

 ∀𝑘 ∈ 𝐾 (L11) 

∑ 𝑥𝑖𝑗
𝑘 −

𝑖:(𝑖,𝑗) ∈𝐴

∑ 𝑥𝑗𝑖
𝑘 = 0 

𝑗:(𝑖,𝑗) ∈𝐴

 ∀S ⊆  V \ {n + �̃�  +1} , S ≠ 0 (L12) 

𝑥𝑖𝑗 = 1 ⇒ 𝐵𝑗
𝑘 ≥ 𝐵𝑖

𝑘 + 𝑑𝑖 + 𝑡𝑖𝑗
𝑘  ∀(i, j) ∈A,  𝑘 ∈ 𝐾 (L13) 

𝑠𝑖 − 𝑠𝑗 + 1 ≤ 𝑀 ∙ (1 − 𝑥𝑖𝑗)  ∀ 𝑛 ⊆  V \ {n + �̃�  +1}  (L14) 

𝑥𝑖𝑗 = 1 ⇒ 𝑄𝑗
𝑘 = 𝑄𝑖

𝑘 + 𝑞𝑗 ∀(i, j) ∈A,  𝑘 ∈ 𝐾 (L15) 

max  {0, 𝑞𝑖} ≤  𝑄𝑖
𝑘 ≤ min {𝐶𝑘, 𝐶𝑘 + 𝑞𝑖} ∀i ∈ V,  𝑘 ∈ 𝐾 (L16) 

𝑥𝑖𝑗  ∈ 0,1  ∀(i, j) ϵ A (L17) 

 

The objective function L8 minimizes the routing cost over all the vehicles. Constraint L9 

enforces that each node is visited exactly once. Constraints L10, and L11 ensure that all vehicles 

begin their routes from the depot and return to the depot at the end of their routes. Constraint L12 

is for vehicle flow conservation. Constraint L18 is the time window constraint, used for sub tour 

elimination. As the single vehicle case, the MTZ constraint in L14 can be used instead of L13 for 

sub tour elimination. Constraints L15 and L16 ensures that vehicle capacity is not exceeded at 

any time in the route. 

2.2.1.1 TSPCB and VRPCB Extensions 

One can formulate this TSPCB as a double-cluster problem: one for a pickup and one for a 

delivery customer. An additional condition is needed to enforce that no pickup customer is 

visited until all delivery customers are visited. This can be achieved by the following constraint: 
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∑∑𝑥𝑖𝑗

𝑗𝑖

= 1 ∀i ϵ P, ∀j ϵ D (L18) 

Constraint L18 guides the model to use only one arc connecting pick-up and delivery customers. 

For this to work, the cost of an arc from j to i is assigned to a high value so that no arc from a 

delivery customer to a pickup customer is chosen. 

A similar approach can be used in the case of VRPCB. Since in the VRPCB there are multiple 

number of vehicles to be routed, constraint L18 is modified to constraint L19 as shown below: 

 ∑∑𝑥𝑖𝑗
𝑘

𝑗𝑖

= 1 ∀i ϵ P, ∀j ϵ D ∀k ϵ K (L19) 

A number of papers deal with these problem subclasses. For example, [21] and [22] use exact 

algorithms, while [23] uses a Tabu Search based heuristic to solve VRPCB problems.  

2.2.1.2 TSPMB and VRPMB Extensions 

For TSPMB the order of delivery and pick up customers is only restricted by the vehicle 

capacity. So to formulate the TSPMB problem, the following constraints are added to the general 

formulation.  

 Q0 = −∑𝑞𝑖

𝑖∈𝐷

  (L20) 

𝑥𝑖𝑗 =  1  ⟹ 𝑄𝑗 ≥ 𝑄𝑖 + 𝑞𝑗   ∀(i, j) ϵ P, ∀j ϵ D (L21) 

max{0, 𝑞𝑖} ≤ 𝑄𝑖 ≤ min{𝐶, 𝐶 + 𝑞𝑖} ∀i ϵ V (L22) 

Constraint L20 ensures that vehicle leaves the depot with load equal to the total amount of 

deliveries. Constraint L21, and L22 ensure that vehicle capacity is not exceeded at any node 

through the route.  

A similar concept is used in the VRPMP case. In this form of problem, one has to ensure that 

every vehicle leaves the depot with no more than total amount of deliveries to nodes enroute. 

This is achieved by L23.  

 𝑄0
𝑘 = −∑𝑞𝑖

𝑗∈𝐷

∑𝑥𝑖𝑗
𝑘

𝑖∈𝑉

 
∀k ϵ K (L23) 
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There are papers in the literature that deal with the VRPMB.  For the exact case, an example is 

[24].  A heuristic approach to deal with the VRPMB is shown in [25].  

2.2.1.3 TSPDDP and VRPDDP Extensions 

The TSPDDP, and VRPDDP can use the same formulations introduced for TSPMB and 

VRPMB. The only difference is that each customer is visited twice, once for delivery and once 

for pick up. To enforce this in the model, each customer node can be entered twice in the model. 

This subclass of the VRP problem is also known as the “Lasso” or “Double Path” VRP, in 

literature.   

2.2.1.4 TSPSDP and VRPSDP Extensions 

In this subclass, each customer can be only visited once. Each customer requires both delivery 

and pick at the same time. Therefore, at each node i, the difference between pick-up and delivery 

amount can be shown as: 𝑞𝑖 = (𝑞𝑖
+ − 𝑞𝑖

−).   𝑞𝑖
+ denotes the pickup amount and 𝑞𝑖

− is the 

delivery amount at node i. If the amount of delivery to node i is larger than the amount to be 

picked up, 𝑞𝑖 becomes a negative number.   

In addition, L24 and L25, are used for TSPSDP and VRPSDP cases respectively, to ensure that 

the load that vehicle(s) carry when leaving a depot is equal to the total amount to be delivered to 

all customers in the route.  

For the TSPSDP case:  

 Q0 = ∑𝑞𝑖
−

𝑖∈𝐷

  (L24) 

For the VRPSDP case:  

𝑄0
𝑘 = ∑𝑞𝑗

−

𝑗∈𝑝

∑𝑥𝑖𝑗
𝑘

𝑖∈𝑉

 ∀k ϵ K (L25) 

 

In addition to the extension introduced for the subclasses above, time window constraints and 

maximum route length constraints may be added to the general form of the TSP or VRP model to 

achieve custom requirements. For example, one can use the maximum route length constraint to 

enforce a cap on the allowed driving time of a driver.  VRPSDP is also known as the 



15 

 

“Hamiltonian” VRP in literature.  An exact algorithm for VRPSDP is introduced in [26]. For 

Tabu Search heuristic approaches, the reader may refer to [27] and [28].    

2.2.2 Transportation between Customers 

In VRPDP problems, a set of vehicles have to satisfy a set of transportation request. Each 

transportation request specifies a load size and has a distinctive origin, where it has to be picked 

up, and destination, where it has to be delivered [29].  VRPDP has three categories shown in 

Figure 2. Similar to the classification presented in the previous section, subclasses of VRPDP 

can be shown with extension to a general pick-up and delivery model. As these classification are 

not distinctively different from VRPB problems, their mathematical formulations s are not 

shown here. A reader may refer to general PDP formulation available in the literature. It should 

be noted that Dial a Ride Problem (DARP) is different from Pickup and Delivery Vehicle 

Routing Problem (PDVRP) and Pickup and Delivery Problem (PDP), as in DARP the loads are 

passengers and therefore consideration is given to level of convenience in travel. Taxi, or any 

charter service provider companies use variations of DARP models. An exact algorithm of 

DARP is presented in [30]. For a comprehensive review of PDP models a reader is encouraged 

to refer to [29].  

To summarize, the VRP is a very mature research area.  There are several optimization 

algorithms and heuristic approaches to solve this broad area of problems.  Since the objective of 

this thesis is to compare the PI, CO, and HY logistics systems, there are plenty of tools and 

techniques to model these systems within an optimization framework.  The ideas discussed in 

this review will be used extensively in the remainder of this thesis. 
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Chapter 3: Network Structure and Logistic Systems 

In this section, the road network used for this thesis will be introduced since it is important to 

study the road network topology and its physical characteristics.  In order to understand the PI, 

CO, and HY logistics systems, we describe a simplified road network in Eastern Canada in 

section 3.1.  This road network will also be used in our computational case studies.  The three 

logistic systems are discussed in detail in sections 3.2-3.4.  For a better understanding of these 

logistic polices, routes created with each of these logistic polices for two example container 

flows will be illustrated.   

3.1 Eastern Canada Road Network 

This thesis focuses on transportation within a simplified Eastern Canadian road network. As 

shown in Figure 4, 11 cities in Eastern Canada are the nodes in the network.  Being a large urban 

area, and for better simulation of traffic flows, Montreal is represented by two nodes: Montreal 

East and Montreal West. Figure 5 shows only the logical connection of the nodes in the network 

and is not to scale. The network shown in Figure 5 is a tier 4 Intra-Country Inter-State Network 

according to the PI network classification in [1].  

The Canada West node represents the rest of the Canadian road network to West. Similarly, 

Ontario North, and Ontario South nodes represent the northern and southern Ontario road 

networks as one single node. The traffic going to and from Canada West, Ontario North, and 

Ontario South will pass through these three nodes. In the same fashion, the traffic to and from 

United States will pass from three nodes called US Border Gate 1, 2, and 3. 
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Figure 4 - Candidate Cities in Road Network 

(Dots placed after retrieving map from maps.Google.com – retrieved on September 20, 2013) 

The network shown below, has a tree structure, with the exception to the connection between 

Fredericton, Moncton, and Saint John. As will be shown, logistics decision making can get very 

complicated even on tree networks, especially when there are a large number of loads to be 

transported. Without the proper tools and routing optimization algorithms, drawing a clear 

conclusion on the true performance of the logistics systems will not be possible.  
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Canada West
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Figure 5 - Logical Connection of the Nodes 

Since there are 7 network tiers in the PI logistic system [1], logical connections between the 

nodes in the network is sufficient to define the tier 4 Intra-country inter-state network in Figure 

5. However, to study other network tiers, such as a tier 3 Intra-City Inter Facility Network, 

http://www.maps.google.com/
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factors such as urban congestion, routes capacity, and routes availability should be considered in 

the network definition.  Such issues are beyond the scope of this thesis. 

3.2 Conventional (Door-to-Door) Logistics Policy  

Loads at each source node with identical final destinations are packed into a container in the 

Door-to-Door (DTD) logistics system. This container is then transported to the final destination 

without any en-route loading and unloading.  In other words, transshipment is not allowed in 

Conventional logistics (CO). As an example, a container carrying loads from Yarmouth to US 

Border Gate 2 will be loaded in Yarmouth and only unloaded when it arrives at its final 

destination. Similarly a container from Sydney to US Border Gate 2 will have a non-stop trip to 

this node. These two container flows are illustrated in Figure 6, with orange and green arrows 

respectively.  

Halifax

Moncton

Yarmouth

Sydney

FrederictonMontreal East

Saint John

Charlottetown

Riviere Du LoupQuebec City

US Border Gate 2

Ontario North

US Border Gate 1US Border Gate3Ontario South

Canada West

Truro

Montreal West

 

Figure 6 - Example Flows in CO Logistic Policy 

Appendix A: Conventional Arcs Dictionary shows, in dictionary form, the list of nodes from any 

source node to any destination node. Elements of this dictionary will be explained in detail in 

Chapter 5: Data Generation and .  

3.3 PI Logistic Policy Flows 

The PI Logistic system one the same road network uses five road based PI transit centers, as 

described in [11].  These are located in Truro, Fredericton, Quebec City, Montreal East, and 

Montreal West. Selection of these nodes to host the PI Transit Centers is because of population 
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or due to their strategic location. For example, although Truro is a small town, it is located on a 

Trans-Canada highway split.    

Each of these PI transit centers represents a cluster of nodes as shown in Figure 7. In this 

logistics system, at the source node, loads are packed into a container. A container then is 

transported to a PI node with a road based PI transit center.  The loads are therefore transported 

from an origin to one or more PI transit centers (or PI hubs) before reaching their final 

destination through the PI hub of the destination cluster. 

In the PI logistics system, loads with different sources but the same final destination could be 

packed into the same container at any of the en-route PI nodes. As an example, a container going 

from Yarmouth to US Border Gate 2 will be packed in Yarmouth, and unpacked in Truro. Since 

Truro is the PI hub of cluster 1, all the other containers arriving to Truro from the other nodes in 

cluster 1 (such as Sydney) will be also unpacked in Truro.  Loads with the final destination 

beyond the neighbour PI hub (ex. Fredericton) will be packed into other containers and 

transported to Fredericton. The same process will repeat in Fredericton until loads arrive to 

Quebec City where they are packed into containers with the final destination of US Border Gate 

2.  

 

Figure 7 - PI Road Network 

Figure 8 is a representation of how loads from Sydney and Yarmouth could be packed in the 

same container in Truro and travel together for the rest of their journey using PI logistic systems. 
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Appendix B: PI Arcs Dictionary shows a dictionary form of the list of nodes allowed for 

transshipment from any source node to any destination node when PI Logistics is used. Elements 

of this dictionary will be explained in detail in Chapter 5: Data Generation and Optimization.  

 

Figure 8 - Example Flows in PI Logistic Policy 

Figure 9 shows a proposed layout for PI Hub. Trucks enter the facility from the gates at the 

bottom left and park in the designated load switching area in the center of the facility. When 

loaded, trucks leave the facility from the gates at the bottom right side of the facility. 

 

Figure 9 - Isometric View of the Proposed Layout for PI Hubs [31] 
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3.4 Hybrid Logistic Policy 

The Hybrid Logistics policy is a combination of CO and PI. Packing and unpacking is done 

according to the PI policy inside the PI transit centers of source and destination clusters. In 

contrast, the containers transiting between PI hubs are not packed and unpacked at every 

intermediate PI hub in the network. 

Therefore, the loads are packed into a container at a source node. The container is then 

transported to the source cluster’s PI Hub.  At the PI Hub, the request is packed with all the other 

requests going to the same final cluster destination. The container is then transported to the 

destination cluster’s PI Hub, where the loads are unloaded and loaded with all other loads going 

to the same final destination node.  

As an example, a load going from Yarmouth to US Border Gate 2 will be loaded into a container 

going from Yarmouth to Truro. In Truro, all the loads arriving from the other nodes in cluster 1 

(ex.Sydney) are unloaded. Loads with the final destination node in Cluster 3 are then packed into 

container going to Quebec City. In Quebec City loads with final destination of US Border Gate 2 

are packed into a container going to this node.  

 

Figure 10 is a representation of how loads from Sydney and Yarmouth could be packed in the 

same container in Truro and travel together for the rest of their journey using the HY logistic 

policy.  
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Appendix C: Hybrid Arcs Dictionary, shows a dictionary form of a list of nodes allowed for 

transshipment from any source node to any destination node when HY Logistics is used. 

Elements of this dictionary will be explained in detail in Chapter 5: Data Generation and 

Optimization. 

 

 

Figure 10 - Example Flows in HY Logistic Policy 

3.5 Request Sizes and Physical Characteristics of Containers  

The modularity of containers is a very important element of the PI vision [1], [6]. In [6] the 

standard modules used to encapsulate goods are called π containers. In this thesis, the term PI-

container is switched with PI-box. Therefore, PI-boxes are the actual boxes that encapsulate 

merchandise. The term PI-containers will refer to the containers that encapsulate PI- boxes.  

Conventional containers have only one door at the back of the container to load and unload. This 

implies that merchandise is unloaded in Last in First out (LIFO) fashion. The size of the 

containers varies from 20 feet to 53 feet depending on the mode of transportation and 

geographical region of use [32]. Figure 11 shows a 53-foot container widely used in North 

America.  
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Figure 11 - Conventional Pallets Loaded in Container [33] 

The load (or request) sizes introduced in this thesis are the sizes used for PI-boxes. PI-boxes are 

placed in a conceptual PI-containers. The conceptual PI-containers introduced in this thesis can 

be loaded and unloaded from the side. Loading and unloading a PI-container from side reduces 

the time spent to pack and unpack containers at PI Hubs. It should be noted that the mechanical 

design and proof of concept of PI- containers is not within the scope of this thesis. The standard 

size of a PI-container is assumed to be 40 feet. 

Figure 12 and Figure 13 show PI-boxes and PI-containers. Figure 12 shows how a fully packed 

PI-container looks like with four 0.125 (5 feet) and two 0.25 (10 feet) PI-boxes.    

 

Figure 12 - Packed PI-Container [33] 
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For the sake of consistency in this thesis, all logistic systems use PI-containers for transportation 

of the loads. Using PI-containers to investigate performance of logistic systems ensures that 

factors such as difference in the shape of the loads, container packing and unpacking methods, 

and container space utilization, have no effect.   

 

Figure 13 - PI-Boxes and a PI-Container  
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Chapter 4: Three-Phase Optimization Framework 

In this chapter, we develop an optimization framework to compare and contrast the PI, CO, and 

HY logistics networks.  Once a set of container transportation requests (with load sizes and 

origin-destination information) is received, a typical logistics operator needs to consolidate these 

requests and build routes with existing assets (trucks) to realize the shipments.  We assume that 

the logistics operator of any of the three network types will use optimization to come up with an 

operations plan.   

4.1 Optimization Methodology 

The comparison presented in this work is carried out through Monte-Carlo simulation in which 

loads are generated randomly and a sequential three phase optimization framework optimizes 

CO, PI, and HY logistical networks. 

The comparison begins with generating a list of loads using Monte-Carlo simulation to be 

shipped from each source to each destination. The operations plan for container movements is 

developed by solving optimization models for packing and consolidation, routing, and truck 

assignment.  While the packing/consolidation strategy varies depending on the logistics system 

(PI, CO, HY), this part of the logistics operations plan deals with creating container shipments.  

A set of routes are then developed to transport containers through the network to satisfy the 

requests.  Finally, trucks (drivers) are assigned to routes in order execute the operations plan and 

make sure that trucks (drivers) return to their home base.  Figure 14, is a graphical illustration of 

the work done at each step in the optimization framework. 

By applying the three phase optimization framework methodology to CO, PI, and HY logistic 

systems, differences are observed in the total number of the instances containers requiring 

loading and unloading and total driving time to carry all the loads to their final destination. The 

complete list of KPI used to make the comparisons is as follows: 

1. Number of container packing and unpacking instances 

2. Total hours of container routing 

3. Number of trucks in service 

4. Average hours worked per truck 
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5. Percentage drivers back home at the end of the day 

6. Total system cost as function of operation, social, material handling, and a fix cost   

 

Figure 14 - Three Phase Optimization Framework 

These three steps (or optimization phases) are applied across the various logistics systems 

studied in this thesis using the optimization framework presented below to compare PI, CO, and 

HY for the set of KPI’s discussed. 

4.2 Model Assumptions 

The following assumptions are made in this thesis: 

 A set of discrete load sizes are generated.  All loads need to be transported by the end of 

the planning period. 

 The number containers at each node is unlimited. 
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 Trucks (drivers) have home bases.  All trucks (drivers) need to be return to their home 

bases by the end of the planning period.   

 For the PI logistics policy, consolidation and deconsolidation occurs at all nodes (source, 

destination, and PI-transit centers). For the CO logistics policy, consolidation and 

deconsolidation occurs only at source and destination nodes.   

 The three optimization models described below are all single-period models.  This means 

there is no load movement requests carried over from one period to the next.  In other 

words, the entire systems resets to its initial state at the beginning of each period.  

4.3 Elements of the Optimization Framework 

The three optimization are models written using the GLPK (GNU Linear Programming Kit) 

package.  The GLPK models are converted to .MPS or .LP format and executed by Gurobi 

Optimizer© Version 5.6. These optimization models work in the following fashion: 

1) Packing Optimization (PO) - Phase 1 

PO reads the generated requests and packs them into containers. The purpose of this 

optimization step is to find the minimum number of the containers required to transport 

all the requests from their initial location or source to their destination node. This 

depends on the number and size of requests and also the type of logistical network (CO, 

PI, or HY). 

   

2) Routing Optimization (RO) - Phase 2 

RO reads the result of PO and finds a series of node sequences to determine the order in 

which a truck can transport containers so that all the containers reach their final 

destination. The sequence of nodes visited by a truck carrying different containers is 

called a route.  Routes are created such that first and last node visited by a truck coincide. 

In other words, each route created by the RO is a loop.  

 

3) Scheduling Optimization (SO) - Phase 3  

SO model reads the list of the routes created by RO and associates each route as a unique 

job that should be assigned to a truck. The scheduling models works similar to an 

assignment problem to find the minimized cost of performing all the routes with the 
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given set trucks in a given delivery time span. This optimization model is executed three 

times with different delivery time spans to find the minimum number of the trucks 

required at each node location.  

An auxiliary module for loop elimination uses a property specific to tree networks to reduce the 

volume of the data transferred from PO to RO. Reducing the volume of the data entering RO 

reduces the solution time of RO model significantly without affecting the value of optimal 

solution. 

Figure 15 shows the data flows in the optimization framework and how the optimization models 

are connected to each other.  Load movement requests (from node to node in the network) are 

generated by the data generation module.  They are then passed on to the PO model in the first 

phase of the optimization. The output of the PO model is passed on to the RO model the result of 

which is then passed on to the SO. Once SO is run, the results are stored in a database and the 

comparison KPIs evaluated.   
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Figure 15 - Data Module and the Optimization Framework 

4.4 Phase 1: Packing Model (PO) 

The PO model is a one dimensional Bin-Packing Problem (BPP). In the BPP a list of items with 

fractional volumes are given. The objective is to find the minimum number of the bins to fit 

these items such that total volume of the items assigned to a bin is less or equal to one [34]. In 

the PO model, the generated requests are the items (or PI-boxes) and the 40 foot PI-containers 

are the bins.  

In the PO model, two sets Request and Container are defined. Data in the Request set is 

generated in the Data Generation Module. In contrast, number of containers in the Container set 
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is fixed at an arbitrary large integer number k. This number defines the maximum number of the 

containers that could be used to solve an instance of the BPP. Setting too small a value for k 

could result in infeasibility, and too large a value will increase solution time. An appropriate 

value for k can be set by investigating the number of elements in Request set. Obviously, this 

model is always feasible when the value of k is any large enough.   

In the PO model, request sizes are stored in 𝑅𝐸𝑄_𝑆𝐼𝑍𝐸𝑟. This parameter is defined over the set of 

requests. Parameter Capacity is defined as a constant value set to 1. Binary assignment variable 

𝑎𝑠𝑟𝑐 captures the assignment of request r to container c. No partial assignment of request r to 

container c is not allowed in the model. Finally 𝑐𝑜𝑛_𝑛𝐶  variable counts the minimum number of 

conatiners required to transport all the requests.  

The following are the sets, parameters, and variables of this model: 

Sets:  

𝑅𝑒𝑞 = {1…𝑞} Set of Requests. q: integer 

𝐶𝑜𝑛𝑡 = {1…𝑘} Set of Containers parked at each node.  k: integer  

  

Parameters: 

𝑅𝐸𝑄_𝑆𝐼𝑍𝐸𝑟 Fractional size of request r from node i to node j.  

Set of fractional sizes to choose from.  Available  Sizes are: {0.125, 0.25, 0.5, 

0.75, 1, 0}   

𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌 Capacity of each container. Default = 1.   

  

Variables: 

𝑎𝑠𝑟𝑐 Binary, 1 if request r is assigned to container c, 0 otherwise 

𝑐𝑜𝑛_𝑛𝐶  Binary, 1 if container c is used  

  

Mixed Integer Linear Model: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 = ∑𝑐𝑜𝑛_𝑛𝑐 

𝑘

𝑐=1

 

Subject to: 

 

 

(1)  
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∑𝑎𝑠𝑟𝑐 = 1

𝑘

𝑐=1

 

  

 

 r ϵ Req  

 

(2) 

∑𝑎𝑠𝑟𝑐  ∙  𝑅𝐸𝑄_𝑆𝐼𝑍𝐸𝑟  

𝑞

𝑟=1

≤ 𝑐𝑜𝑛_𝑛𝑐 ∙  𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌 

 

 

c ϵ Cont  

 

(3) 

Objective function minimizes the total number of the containers required. Constraint 2 assigns 

every request r to a container. Constraint 3 ensures the total volume of the requests assigned to 

container c is less than or equal to the capacity of the container. 

This model minimizes the number of container for each source and destination pair. Therefore, 

PO model should be called and executed for every possible source destination pair determined by 

the CO, PI, and HY logistic system. Appendix F: GLPK Code of Packing MIP shows the GLPK 

code for the Packing MIP. 

Depending on the number of loads generated, instances of this model can have between 4 to 

approximately 300K integer and binary variables. The time required to reach 0.005% MIP gap 

depends on the number of variables and varies from a fraction of a second for a 4 variable 

instance to approximately 20 seconds for a 300K instance on an Intel Xeon processor with 8 

logical cores, 16 GB (ECC) memory, and a processing speed of 3.4 Ghz.  

4.4.1 Packing MIP - Calling Algorithm  

The PO model is called for each source and destination pair to minimize the number of 

containers required for transportation across the entire network. One may ask what the valid 

source and destination pairs are in each of the logistic systems. The valid source-destination pairs 

Active Arcs are the arcs that directly connect a source node to a destination node. Each active arc 

is a dictionary key in the logistic dictionaries.   

For example, in the CO logistic system Halifax-Quebec City is an active arc. In PI and HY 

logistic systems, there is no direct flow between Halifax and Quebec City, therefore this arc is 

not present in these two logistic systems but is replaced by three active arcs in PI: Halifax-Truro, 

Truro-Fredericton, and Fredericton-Quebec City.   
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The number of active arcs (or number of dictionary rows) in CO, PI, and HY are 308, 80, and 68 

respectively. There are 18 nodes in the network used in this thesis.  Since the active arcs in CO 

are from any node to any other node, there are 18*17, i.e., 308 active arcs.  The number of arcs 

in PI and HY are fewer, and are a function of the number of arcs and transit nodes.  The PO 

model should be called and executed these many times as there are active arcs. 

The PO calling algorithm is written in Python 2.7. The PO model is also written in Python using 

standard code in a Python library called “Gurobipy”. This library enables user to call Gurobi 

optimization within the Python environment and feeds the MIP model to the optimizer directly 

[35]. The following, is the pseudo code of the calling algorithm used in this thesis. Appendix G: 

Packing Model Calling Algorithm, contains the actual Python code of this part.  

Read List of Loads from the Request Array Database 
Read List of Active Arcs from the Logistics Policy dictionaries 
 
   For i in Node: 
      For j in Node: 

          If ((i,j) pair exist in the logistics policy dictionary): 
             Loads_array  Request Array Database 
             --------------------------------------------------- 
             Create PO Model sets, parameters, variables 
             Create constraint set 1 (assignment constraint) 
             Create constraint set 2 (capacity constraint) 
                           Define the objective function 
             Call model.optimize() 
                          Read the solution variable values from the optimizer 
            Write solution into results database 
 

4.5 Phase 2: Routing Model (RO) 

The heart of the optimization framework is the routing optimization model (RO). The Routing 

model reads the number of containers on each active arc and finds sets of sequences called 

Routes of minimum total length. The logical constraints in RO are on Demand, Flow 

Conservation, and Subtour elimination. There are also optional constraints that could be added to 

RO such as Vehicle Capacity, and Routing Policy constraints. Routing policy constraints could 

include constraints on the total routing time or the number of routes generated.     
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4.5.1 Routing MIP 

The RO MIP uses the reduced flows on an active arc as the number of the times that arc could be 

used in routing. In the RO model, two sets of Routes and Nodes are defined. The nodes set 

contains the list of the 18 nodes defined in the network.  

Routes set contains m elements defined as the maximum number of the routes that could be 

created to solve an instance of the RO problem. Setting too small a value for m could result in 

infeasibility. An appropriate value for m can be set by investigating the number of reduced flows 

to be routed. This model is always feasible for any large enough value of m.   

If an arc is used to transport a full container, the time required to travel over this arc is shown 

by 𝐹𝑇𝑇𝐼𝑀𝐸. However, as the speed of commute increases while deadheading, deadheading over 

the same arc requires 𝐸𝑇𝑇𝐼𝑀 time. M is an auxiliary parameter used in the model for subtour 

elimination. The value of M can be also used as a maximum number of the stops in a route if 

variable  𝑠𝑖𝑘 is set to be integer. Variable 𝑟𝑘 is used to capture the total duration of a route, and 

𝑠𝑖𝑘 is used as an auxiliary variable in sub tour elimination. All the variables, parameters, and sets 

used in RO model are shown in the table below: 

Sets:  

Nodes = {1…n} Set of nodes in the network 

Route = {1…m} Set of empty routes 

  

Parameters: 

𝑅𝐸𝐷_𝐶𝑂𝑁𝑇𝑖𝑗 Reduced Flow or number of containers to be sent from node i to node j  

𝐹𝑇𝑇𝐼𝑀𝐸𝑖𝑗 Loaded (or full) travel time from node i to node j 

𝐸𝑇𝑇𝐼𝑀𝐸𝑖𝑗 Deadhead (or empty) travel time from node i to node j 

M Auxiliary parameter set at an arbitrary large value  

Variables: 

𝑓𝑎𝑖𝑗𝑘 Binary, 1 if route k includes the loaded arc from node i to node  j, 0 otherwise 

𝑒𝑎𝑖𝑗𝑘 Binary, 1 if route k includes the deadhead arc from node i to node  j, 0 

otherwise 

𝑟𝑘 Total duration (or length) of route k 

𝑠𝑖𝑘 Auxiliary positive integer variable used for sub tour elimination  
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Mixed Integer Linear RO Model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑍2 = ∑ 𝑟𝑘

𝑚

𝑘=1

 

Subject to: 

 

 

(7)  

 

∑ 𝑓𝑎𝑖𝑗𝑘 = 𝑅𝐸𝐷_𝐶𝑂𝑁𝑇𝑖𝑗

𝑚

𝑘=1

 

 

 

∀ i, j ϵ Node 

 

(8) 

∑∑(𝐹𝑇𝑇𝐼𝑀𝐸 ∙ 𝑓𝑎𝑖𝑗𝑘 +  𝐸𝑇𝑇𝐼𝑀𝐸 ∙

𝑛

𝑗=1

𝑒𝑎𝑖𝑗𝑘) =  𝑟𝑘

𝑛

𝑖=1

 

 

 

∀ k ϵ Route 

 

(9) 

∑(𝑓𝑎𝑖𝑝𝑘 + 𝑒𝑎𝑖𝑝𝑘) = ∑(𝑓𝑎𝑝𝑗𝑘 + 𝑒𝑎𝑝𝑗𝑘)

𝑛

𝑗=1

𝑛

𝑖=1

 

 

 

∀ p ϵ Node, ∀ k ϵ Route 

 

(10) 

∑(𝑓𝑎𝑖𝑝𝑘 + 𝑒𝑎𝑖𝑝𝑘) + ∑(𝑓𝑎𝑝𝑗𝑘 + 𝑒𝑎𝑝𝑗𝑘)  ≤ 2

𝑛

𝑗=1

𝑛

𝑖=1

 ∀ p ϵ Node, ∀ k ϵ Route (11) 

∑ 𝑒𝑎𝑖𝑗𝑘  ≤ 1

𝑚

𝑘=1

 

 

∀ i, j ϵ Node, ∀ k ϵ Route (12) 

𝑠𝑖𝑘 − 𝑠𝑗𝑘 + 1 ≤ 𝑀 ∙ (1 −  𝑓𝑎𝑖𝑗𝑘)  
 

∀ i, j ϵ Node, ∀ k ϵ Route (13) 

𝑠𝑖𝑘  ≥ 1, 𝑠𝑖𝑘 ≤ 𝑀 ∀ i ϵ Node, ∀ k ϵ Route (14) 

The objective function of the RO model in (7) minimizes the total duration of the routes created. 

Constraint 8 is the demand constraint. As explained, number of the times an arc can be used for 

transportation of containers should be equal to the reduced flow. Constraint 9 is used to capture 

the total duration of a route k.  In constraint 10, sum of all the full and deadhead flows in to a 

node should be equal to the sum of full and deadhead flows out of the same node. Constraint 11 

ensures that a flow is either full (with a container) or deadhead but not both at the same time.  

Constraints 10 and 11 together are used to force flow conservation in the model. Constraints 12, 

13, 14 are used for sub tour elimination. 13 and 14 are the MTZ constraints described in [19] and 

discussed in the VRP literature review. These constraints assign an auxiliary value to node j if 
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node j is immediately visited after node i in route k. Using this method, nodes are visited in just 

one single and fully integrated sequence. Constraints 13, and 14 impose sub tour elimination on 

the container flows (𝑓𝑎𝑖𝑝𝑘) but not on the deadhead flows (e𝑎𝑖𝑝𝑘). Constraint 12 sets the number 

of deadhead flows per route to maximum of one. A single flow cannot create a sub tour by itself, 

so sub tour elimination constraints are not required for this type of flow. With use of flow 

conservation constraints in 10 and 11, a single deadhead flow is assigned such that it connects 

the very last node visited by route k to the very first node in route k. Therefore every route 

created in RO model is a loop starting at an arbitrary node and ending at the same node. Having 

loops as the routes is very beneficial and reduces the complexity of the resource scheduling in 

the next optimization phase. Appendix I: GLPK Code of Routing MIP, shows the GLPK code of 

RO model. 

In addition to the standard set of constraints just described, auxiliary constraints may also be 

added to RO to restrict route durations, lengths, number of routes, maximum allowed deadhead 

length, etc.  The following parameters and a new binary variable may be introduced through 

optional constraints 15 to 19 in the RO model to accomplish this.  

Binary variable 𝑎𝑐𝑡_𝑟𝑘 is used to indicate whether a route is active or not. An active route is a 

route that has a duration greater than zero.  

𝑇𝑇𝑇𝐼𝑀𝐸 Maximum allowed duration (or length) for each route   

𝑀𝐼𝑇𝐼𝑀𝐸 Minimum allowed duration (or length) for each route 

𝐴𝑉𝐺_𝑅_ 𝐿𝐸𝑁 Average duration (or length) of each route 

𝑀𝐴𝑋_𝐷𝐸 Max allowed deadhead length as percentage of rk 

𝑁𝑈𝑀_𝐴𝐶𝑇_𝑅 Max number of the routes allowed to be created to serve all the requests  

𝑎𝑐𝑡_𝑟𝑘 Binary, 1 if rk > 0, 0 otherwise 

 

∑∑(𝑒𝑎𝑖𝑗𝑘  ∙ 𝐸𝑇𝑇𝐼𝑀𝐸) / 𝑀𝐴𝑋_𝐷𝐸

𝑛

𝑗=1

≤ 𝑟𝑘

𝑛

𝑖=1

 ∀ k ϵ Route (15) 

∑(𝑟𝑘) 

𝑚

𝑘=1

/  𝐴𝑉𝐺_𝑅_ 𝐿𝐸𝑁 ≤  ∑ 𝑎𝑐𝑡_𝑟𝑘

𝑚

𝑘=1

  (16) 

∑ 𝑎𝑐𝑡_𝑟𝑘 

𝑚

𝑘=1

≤ 𝑁𝑈𝑀_𝐴𝐶𝑇_𝑅  (17) 
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𝑟𝑘  ≥ 𝑎𝑐𝑡_𝑟𝑘 ∙ 𝑀𝐼𝑇𝐼𝑀𝐸 ∀ k ϵ Route (18) 

𝑟𝑘 ≤ 𝑎𝑐𝑡_𝑟𝑘 ∙ 𝑇𝑇𝑇𝐼𝑀𝐸 ∀ k ϵ Route (19) 

 

Constraint 15 sets an upper limit on the maximum duration of deadhead allowed in a route as a 

percentage of total route length. Constraint 16 sets an average route length for all the routes. This 

constraint enforces RO model to only build such routes that together produce an average route 

length of not greater than the fixed Average Route Length parameter. Constraint 17 sets a cap on 

the number of routes that could be activated by the RO model, enforcing the model to perform all 

routing activities with a pre specified number of routes. Constraints 18 and 19 set the minimum 

and maximum duration on the length of the generated routes.  

Unfortunately, RO is unable to find a set of minimum length routes (with 0.005% MIP gap on an 

Intel® Xeon® E3 @ 3.4 GHz) in a reasonable amount of time. Since the vehicle routing problem 

on tree is a NP-hard problem [36] and it is not surprising to observe very long solution times for 

the instances of the problems in this thesis.  To reduce the solution time a routing property on 

trees is used. This property is explained in the section 4.5.2.  

4.5.2 Loop Elimination on Tree Shaped Networks 

It is well known that a reasonably sized VRP instance is very difficult to solve [37]. A common 

approach to solving the VRP is column generation [38]. In this approach, a set of feasible routes 

which satisfy the routing constraints are generated in a separate model. The main model then 

selects and combines these routes in a feasible and optimal manner till an optimal solution is 

found.  

Column generation is the one approach to deal with the complexity of VRP models. However, 

the strategy used in the thesis to solve the RO model relies on a property that tree networks could 

benefit from, and therefore is specific to the unique network structure of the routing network 

considered in this thesis. This strategy involves elimination of loops in VRP for trees and is 

explained in [39].   

As mentioned, PO model finds the minimum number of the containers on each active arc. This 

number determines the number of instances a loaded travel from source to destination on that 
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active arc is possible. These container flows are shown with solid lines in Figure 15. Empty 

travel is also permitted on the active arcs. There might be situations where there is no container 

to be carried from a source to a destination, but a truck has to still use that active arc to be able to 

complete a route, or go back to a home location. The empty flows hij (deadheads hereafter) are 

shown with dashed lines in Figure 15. If node i can be connected to node j by an active arc, four 

distinctive flows are generated. Full or empty travel out of node i towards node j and full and 

empty travel out of node j towards node i. 
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Figure 15 - Illustration of the Flows in the Network 

To visualize this strategy, the deadhead flows are eliminated and container flows in and out of 

nodes i and j are shown with only one solid line in Figure 16.  
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Figure 16 - Illustration of the Equivalent Flows in the Network 

Since the network has a tree structure except for the part of the network creating a loop among 

Moncton, Fredericton, and Saint John. These nodes can be connected to each other with more 

than one distinctive routes. However, since the shortest path between any two nodes is a unique 

path, there is only one logical route to go to node i from node j and vice versa and our network 

therefore can benefit from the loop elimination property for trees.   

Note that 𝑐𝑜𝑛_𝑛𝑖𝑗 is the number of containers to be transported from source i to destination j and 

𝑐𝑜𝑛_𝑛𝑗𝑖  is the number of containers to be transported from source j to destination i. Therefore the 

smaller of these two values are the number of complete loops created between node i and node j.  

 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐿𝑜𝑜𝑝𝑖𝑗 = 𝑚𝑖𝑛(𝑐𝑜𝑛_𝑛𝑖𝑗  , 𝑐𝑜𝑛_𝑛𝑗𝑖) 

 

(5) 

Since there is only one feasible arc to go from i to j, and the length of this arc is equal to the 

lower bound on the travel distance from i to j, complete loops must be a subset of the optimal 

route set and therefore may be eliminated for optimization purposes (however, the cost of these 

loops are recorded to calculate total logistics costs).  

The absolute difference between 𝑐𝑜𝑛_𝑛𝑖𝑗  and 𝑐𝑜𝑛_𝑛𝑗𝑖  is called the reduced flow (rfij) between 

node i and node j and its direction and magnitude are calculated below: 

𝑟𝑓⃗⃗⃗⃗ 𝑖𝑗 = 𝑚𝑎𝑥 (𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑖𝑗 , 𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑗𝑖),   𝑟𝑓𝑖𝑗 = |𝑐𝑜𝑛_𝑛𝑖𝑗 − 𝑐𝑜𝑛_𝑛𝑗𝑖| (6) 

The direction of the reduced flow is the same as the direction of the larger 

of 𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑖𝑗 , and 𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑗𝑖.  

In loop elimination, only the reduced flows are entered in RO.  The value of the total duration of 

the eliminated loops is then added to the optimal solution of RO to report the result of the routing 

optimization phase.  

Appendix H: Calculation of Flow Lower Bond shows the Python program written to find the 

loops created after running the PO model. This program calculates the total duration of each 

loop, calculates the cumulative duration of all routes, and in the end, eliminates these loops from 

the data set sent to RO.  
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Depending on the number of routes and number of containers to be routed, various instances of 

this model (without auxiliary constraints 15-19) can have between 80K to approximately 400K 

integer and binary variables combined. The time required to reach a 0.005% MIP gap depends on 

number of variables. As explained, if loop elimination is performed, the number of variables 

entered into the routing model significantly decreases. If the loop elimination step is performed, 

the solution time of a problem instance with 400K variables is reduced to approximately 50 

minutes in the worst case. On average, the solution time is approximately 25 minutes on an 

Intel® Xeon® E3 @ 3.4 GHz. 

With auxiliary constraints, the solutions performance is sometimes faster because they act as 

valid inequalities and constrain the search space of the MIP.  The reader is referred to [37] to see 

examples of integer programs that are solved more easily when additional constraints are used.  

In grid shaped networks there are more than one route connecting nodes to each other. Flows 

between any two nodes could be assigned to different routes connecting the two nodes arbitrarily 

or according to other considerations such as route capacity, route congestions, and etc. Loop 

elimination in grid type networks therefore is a multi-step process. In the first step, (among all 

the route options available) flows between a source-destination pair should be assigned to a 

specific route. In the second step, the net flow on each route should be calculated. Finally, in 

third step loop elimination can be performed when the net flows of any source destination pair on 

each route is known. 

4.6 Phase 3: Assignment and Cost Model 

Assignment model is the third and the last phase in the optimization framework. It uses the 

identified loops and the generated routes in the RO model as input, and assigns these routes to a 

set of available vehicles. The assignments of the routes (jobs hereafter) to the vehicles are such 

that the total cost of logistic system is minimized.  The total cost in this model consists of three 

components: operational, social, and fixed costs.  

4.6.1 Operational Cost 

The operational cost is the most significant component of the total cost functions. This cost is 

incurred when a tractor truck (truck hereafter) is driven from one node to another node. A 

research report [40] presented to Transport Canada is used to extract the operational cost of truck 
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driving activities.  The following is a summary of the factors considered in calculation of the 

operation cost: 

1) Labour Cost of Drivers: Drivers cost include hourly wage for all the time a driver is on 

duty (ex. driving, loading, unloading time) with an additional percentage added to include 

any expected medical insurance or pension payments.   

2) Average Fuel Cost: Fuel cost is an average fuel consumption rate of a truck per kilometer 

or per hour multiplied by the fuel price. Some logistics companies have long term fuel 

purchase contract with fuel suppliers in Canada. Although the exact terms of these 

contracts are confidential, an expected bulk fuel price is used in calculation of the fuel 

cost of a truck. 

3) Repair and Tire Cost: repair costs are incurred to maintain a vehicle operable over its life 

span. Repair cost includes, vehicle maintenance costs, cleaning, and miscellaneous costs. 

Tires are the significant contributors to operational cost of trucks and need very frequent 

change and maintenance. Estimated tire wear rate and average price of tires across 

Canadian provinces are used to calculate the tire costs of vehicle. 

4) Registration and Licence Fee:  This is a fixed annual cost for registration a commercial 

truck in Canada. Provincial and territorial charges slightly vary in Canada. A complete 

hand book of territorial charges, regulations, and the taxes can be found in [41].    

5)  Cost of Capital: This includes all the costs associated with the amortization of a vehicle 

such as interest rate and opportunity cost of the money. An average truck market price 

and an average residual value of trucks at the end of their life is used in this calculation.  

6) Vehicle Insurance Cost: Insurance cost is historically calculated as roughly 3% of the 

revenue generated by a truck with full annual utilization. 

7) Average Toll Charges: The extent to which toll charges effect the truck’s operational cost 

depends on usage frequency of such toll facilities for transportation. In Canada there are 

17 toll facilities in total: MacDonald, and MacKay bridges, and Highway 104 in NS, 

Confederation Bridge in PEI, Saint John Harbour Bridge in NB, Coquihalla Highway in 

BC, Highway 407, and 10 Canada US border bridges in Ontario. The total revenue from 

these toll facilities is approximately $206 million dollars [40]. This number divided by 

the total number of the trucks used toll facilities can be used as an estimate of the average 

toll charges in operational cost of a truck. 
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Congestion is calculated to increase the truck operational costs on average by 15% [40]. An 

average of $3.15 per kilometer is calculated as the operational cost of a truck. This value 

increases to $3.58 cents per kilometer for operation in congested areas. Since the network road 

network in this thesis excludes congested urban areas, the $3.58 cents per kilometer was not used 

in this thesis. Therefore, for an average truck speed of 65 kilometers per hour (used in this 

thesis), the hourly operational cost of truck is approximately $200.  

4.6.2 Social Cost 

According to Transport Canada’s regulation no driver shall exceed 14 hours of on duty (or 

driving) time per day. After each 14 hours of driving, a driver should take 8 hours of rest time 

[42]. Therefore a driver has to park in a designated road side park and sleeps areas or stops at a 

bed and breakfast overnight if not going back home in 14 hours. The social cost is defined as the 

cost incurred per night if a truck driver has to take rest while on duty. An average cost of park 

and sleep or economy bed and breakfast for truck drivers is approximately $60 per night. The 

effect of seasonality or weather condition is not considered in this cost. Moreover, truck drivers 

struggle with number of common occupational health and safety issues such as sleep disorders, 

spine and lumbar problems due to continuous sitting, etc [43]. Due to the complexity and lack of 

universal data for cost of such treatments, these costs are hard to measure and were not included 

in this thesis.  

Jobs with driving duration longer than 14 hours will therefore result in a social cost on top of the 

operation cost. Also these jobs will require a longer completion time because a driver needs rest 

while enroute. A job completion time is called “enroute time” in this thesis. For example, if a job 

has driving time of 30 hours its social cost and total enroute time can be calculated as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑠𝑡 = ⌊
 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

𝐷𝑎𝑖𝑙𝑦 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐿𝑖𝑚𝑖𝑡 
⌋ ∙ (𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑠𝑡)  →  ⌊

30 

14
⌋ ∙ $60 = $120  

𝐸𝑛𝑟𝑜𝑢𝑡𝑒 𝑡𝑖𝑚𝑒 = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + ⌊
𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

𝐷𝑎𝑖𝑙𝑦 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐿𝑖𝑚𝑖𝑡
⌋ ∙ (𝑅𝑒𝑠𝑡 𝑇𝑖𝑚𝑒) →  30 + ⌊

30

14 
⌋ ∙ 8 = 46 ℎ𝑟𝑠  

Jobs created in Model 2 have a maximum duration of 72 hours. Jobs with required driving time 

between 14 to 72 hours are called “Long Jobs” and jobs with required driving time of less than 
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14 hours are called “Short Jobs”. Appendix J:  Calculation of the Jobs Enroute Time in Python 

includes the Python code used to calculate the enroute time of each job. 

4.6.3 Fixed Costs 

As explained in the social cost section, jobs can be divided into two major categories: day jobs 

and multiple day jobs. Trucks that are assigned to serve multiple day jobs require a sleeper 

compartment. Trucks with and without sleeper compartments are called “Long Haul” and “Short 

Haul” trucks respectively. Figure 17 uses the objects available in 3D Warehouse [33] of Google 

SketchUp™ to display a sample short haul and a sample long haul truck used for one day and 

multiple day job assignments respectively. 

 

Figure 17 - Short and Long Haul Trucks [33] 

The fixed cost of entering a short haul and a long haul truck into service is approximately $10, 

and $100 respectively. This cost includes administration, dispatching agent’s time, paper work 

and other costs that may be incurred if a driver needs to carry any special equipment (such as the 

rental cost for auxiliary power generation units, safety gear for special loads, etc.) while enroute. 

These fixed costs were inferred from an interview with two logistic coordinators of at a logistics 

company in Halifax, Nova Scotia.  
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There are three sets (nodes, jobs, and trucks) in the Assignment model. The route information is 

entered into the jobs sets. Jobs are identified by their starting node location, driving time, and 

enroute duration. These values are stored in JL, JDD and JD parameters. As mentioned, each job 

is a loop, therefore only the starting node of a job is sufficient to identify a job.     

Each job can be served with only one truck. Similar to the jobs, each truck is identified by its 

home node. Also each truck is either a short haul or long haul truck. Model 3 assumes that both 

types of trucks are available at each node; therefore the problem is never infeasible due the lack 

of required trucks. If truck i at node n1 is assigned to serve job j at node n2, the deadhead duration 

incurred because of this assignment is the round trip duration between node n1 and n2. Parameter 

DDUR in Model 3 calculates the deadhead durations. 

4.6.4 Assignment and Cost MIP 

Model 3 calculates the minimum number of truck required to serve all the jobs in a 72 hour time 

window. Finding the minimum number of trucks to serve the jobs is equal to minimizing the 

total assignment cost. The model objective function minimizes the operation, social, and fix costs 

of assignment. 

Sets:  

Node Set of nodes in the network 

Job = {1…m} Set of jobs 

Truck = {1…n} Set of trucks. Trucks are either short haul or long haul.  

  

Parameters: 

𝑇𝐿𝑖 Location node of truck i  

𝐽𝐿𝑗 Location node of job j  

𝐷𝐼𝑆𝑇𝑛1,𝑛2 Distance in time from  node 𝑛1 to node 𝑛2  

𝐷𝐷𝑈𝑅𝑖𝑗 Round trip distance in time from location node of truck i to location node of 

job j  

𝐽𝐷𝐷𝑗  Driving time required to serve job j.   

𝐽𝐷𝑗 Total time required to serve job j.   

𝐷𝐸𝐿𝑉𝑆𝑃𝐴𝑁𝑖 Maximum driving time allowed per day (set to 14 hours per day for short 

haul and 72 hours total for long haul trucks). 

𝐷𝐴𝑌𝐷𝑅𝐼𝑉𝐸𝑖 Maximum on duty time allowed per day (set to 14 hours). 
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𝐹𝐼𝑋𝐶 Fixed cost of entering a new short haul truck into service   

𝐻𝑂𝑈𝑅𝐶 Average hourly operational cost of a short haul truck (set to $220 /hour)  

𝑆𝑂𝐶𝐼𝐴𝐿𝐶 Social cost per day per truck driver when away from home (set to $50 /day ) 

Variables: 

𝑥𝑖𝑗 Binary, 1 if truck i is assigned to serve job j 

𝑓𝑖𝑥𝑖 Binary, 1 if truck i enters service, 0 otherwise 

𝑒𝑛𝑟𝑜𝑢𝑡𝑒𝑡𝑖 Total working time of truck i 

𝑜𝑝𝑟_𝑐𝑜𝑠𝑡𝑖 Total operational cost incurred by truck i. 

𝑠𝑜𝑐_𝑐𝑜𝑠𝑡𝑖 Total social cost incurred by truck i 

𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑖 Fixed cost of entering truck i into service  

  

 

Objective Function: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑍3 = ∑(𝑜𝑝𝑟_𝑐𝑜𝑠𝑡𝑖 + 𝑠𝑜𝑐_𝑐𝑜𝑠𝑡𝑖 + 𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑖)

𝑛

𝑖=1

 

Subject to: 

 

 

(20)  

∑(𝐷𝐷𝑈𝑅𝑖𝑗 + 𝐽𝐷𝑗  ) ∙ 𝑥𝑖𝑗

𝑚

𝑗=1

= 𝑒𝑛𝑟𝑜𝑢𝑡𝑒𝑡𝑖 
 

∀i ϵ Truck 

 

(21) 

∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1  
 

∀ j ϵ Job 

 

(22) 

𝑒𝑛𝑟𝑜𝑢𝑡𝑒𝑡𝑖 ≤ 𝐷𝐸𝐿𝑉𝑆𝑃𝐴𝑁𝑖 ∙ 𝑓𝑖𝑥𝑖 ∀i ϵ Truck (23) 

∑(𝐷𝐷𝑈𝑅𝑖𝑗 + 𝐽𝐷𝐷𝑗  ) ∙ 𝐻𝑂𝑈𝑅𝐶𝑖 ∙ 𝑥𝑖𝑗

𝑚

𝑗=1

= 𝑜𝑝𝑟_𝑐𝑜𝑠𝑡𝑖 
 

∀i ϵ Truck 

 

(24) 

∑  
𝐽𝐷𝐷𝑗 ∙ 𝑥𝑖𝑗

𝐷𝐴𝑌𝐷𝑅𝐼𝑉𝐸
∙ 𝑆𝑂𝐶𝐼𝐴𝐿𝐶 =  𝑠𝑜𝑐_𝑐𝑜𝑠𝑡𝑖  

𝑛

 ∀𝑗 𝜖 𝐽𝑜𝑏 | 𝐽𝐷𝐷𝑗≥ 𝐷𝐴𝑌𝐷𝑅𝐼𝑉𝐸

 
 

∀i ϵ Truck 

 

(25) 

𝐹𝐼𝑋𝐶 ∙ 𝑓𝑖𝑥𝑖 = 𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑖 ∀i ϵ Truck (26) 

 

In the model, constraint 21 calculates the total duration of truck i (job duration and deadhead 

travel). Constraint 22 ensures that each job is done by one and only one truck. Constraint 23 
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ensures that the enroute time of each truck remains less than the allowed delivery span. 

Constraint 24 calculates the operational cost incurred by the operation of truck i. Constraint 25 

calculates the social cost of performing a job considering only jobs that require a duty duration of 

longer than 14 hours. Constraint 26 calculates the fixed cost of assignment.  

Instances of the model solved in this thesis have between 400K and 3M variables. The solution 

times to generate 0.005 % MIP gap varied from 10 minutes to 6 hours on an 8 core Intel® 

Xeon® E3 @ 3.4 Ghz. Appendix K: GLPK Code of Assignment MIP. 
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Chapter 5: Data Generation and Optimization 

This chapter describes how data is generated for the PI, CO, and HY logistics systems for 

comparison purposes.   

Data is generated randomly using Monte-Carlo simulation and stored in the Request Array 

Database. The basic data consists of a move request from a source node to a destination node 

with a load size specified in terms of PI-container capacities.   

This is done for each of the three logistic polices. Therefore to complete an experiment instance, 

the three phase optimization framework is performed on each of the CO, PI, and HY loads. 

Figure 18 is a conceptual representation of the application of the three phase optimization 

framework applied to the simulation instances. The results generated from CO, PI and HY 

logistic systems are shown in red, green, and blue respectively. These results are investigated and 

discussed in detail in Chapter 6: Results, of this report.  

CO
PI

HY

CO
PI

HY

CO
PI

HY

...

HY ResultsHY Results

PI ResultsPI Results

CO ResultsCO Results

HY ResultsHY Results

PI ResultsPI Results

CO ResultsCO Results

HY ResultsHY Results

PI ResultsPI Results

CO ResultsCO Results

Monte Carlo Simulation Instance

 

Figure 18 - Monte Carlo Simulation Instances 

The data used in this thesis is generated using the parameters below: 

 The average speed of trucks set to 80 km per hour 

 A set of five different load sizes with the following probability distribution  

𝑃(0.125) =
8

15
 , 𝑃(0.25) =

4

15
 , 𝑃(0.5) =

2

15
 , 𝑃(1) =

1

15
 , 𝑃(0) =

1

15
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 The nodes in the Eastern Canada road network as used with actual distances in 

kilometers.   

 The number of loads to be generated (explained in section 5.2) 

The data generation module uses Monte-Carlo simulation generate an array of loads. Each line in 

this array is called a “request”. Each request therefore is identified by its row number, source 

node, destination node, and load size.   

5.1 Data Generation Module 

Data generation module has four parts, all of which are written in the Python programming 

language (Figure 19). The set of parameters is recorded in a python file called “param.py”. The 

python code in this file is given in Appendix D: Parameters File. This file is kept as a reference 

and is read by the data generator every time a new loads array is required.  

Request Array

Database

Request Array

Database

Parameters

Data Generator

Dijikstra

Algorithm

Shortest Path Database

(Arcs Dictionary)

Shortest Path Database

(Arcs Dictionary)
 

Figure 19 - Data Generation Module 

Python code implementing the Dijkstra algorithm [44] is used to find the shortest paths between 

each node in the network. This algorithm finds the shortest route (or path with the lowest cost) 

between a node and all the other nodes in the network. The solution time complexity of this 

algorithm can be shown to be 𝑂|𝑉2| where V is the number of vertices or nodes in the network 

[44]. Dijkstra’s algorithm has to be executed V times to find the complete set of shortest paths 

among all the nodes in the network. This implies that finding the shortest paths using the Dijkstra 

algorithm has a complexity of 𝑉 ∙ 𝑂|𝑉2|. There are other shortest path algorithms such as Floyd 

Warshall [45] with a solution time complexity of 𝑂|𝑉3|.  Floyd-Warshall is required to run only 
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once to get the full set of shortest paths among all the nodes in the network. While we 

implemented the Dijkstra algorithm, it should be noted that this is done only once. The network 

in this study does not have any dynamic or changing features such as variation in availability of 

source-destination arcs or varying route capacity. Therefore, it is sufficient to find the shortest 

paths among the nodes in the network once and store the results in a database. 

The solution time required for the Dijkstra Algorithm to find the shortest paths in the road 

network was between 30 seconds in CO, to approximately 2 minutes in PI. This solution time 

varied because each logistic system permitted different sets of source-destination arcs to be used.  

After execution of the Dijikstra algorithm, a Shortest Path Dictionary was generated for each 

logistic system. Each line in Shortest Path Dictionary is called a recordset. A recordset itself 

consists of a key pair and an array element. The key pair consists of a unique combination of a 

source and a destination node. The array element presents the arcs in the shortest path of the key 

pair. Elements of these dictionaries presented in Appendix A: Conventional Arcs Dictionary, 

Appendix B: PI Arcs Dictionary, and Appendix C: Hybrid Arcs Dictionary. 

Since each of the CO, PI, and HY systems use different routing policies, the array elements for 

each identical key pair varies in each Shortest Path Dictionary. For example, the key pair of 

(Yarmouth, Ontario South) will have the following array elements in CO, PI, and HY 

dictionaries respectively: 

('Yar','Ots'): [['Yar','Ots']] 

('Yar','Ots'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']] 

('Yar','Ots'): [['Yar','Tru'],['Tru','Mtw'],['Mtw','Ots']] 

The top row from the CO dictionary shows no nodes visited enroute. The second row (from the 

PI dictionary) shows multiple arcs in the array element due to transshipment nodes 

corresponding to the PI Hubs. The HY dictionary has only two transhipment nodes, one at the 

source cluster and the other at the destination cluster.  

The actual data generation occurs by executing the code in “Generator.py”. This code consists of 

a number of data connection handles to read data from inputs and a number of nested loops to 
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generate the loads array. Appendix E: Data Generator File, shows the Python code of the data 

grantor file. The pseudo code for the data generation mechanism is as follows: 

Read Parameters file  

Read Policy Dictionary  CO, PI, HY   

For r in Req: 

   For k in Node:  

      For j in Node:  

         Size = randomly choose a size from the list of available load sizes 

         For i in range (Dictionary_keys()): 

            If (Dictionary_keys[i][0] = Node[k] and Dictionary_keys[i][0] = Node [j]) : 

            For l in range (Dictionary_array_element): 

For counter in range(Policy_node_counter[counter][0] = Dictionary_array_element[i][l][0] and    

Policy_node_counter[counter][1] = Dictionary_array_element[i][l][1]): 

   Policy_node_counter[counter][2] =  Policy_node_counter[counter][2] +1 

   Policy_Loads_array = (Dictionary_array_element[i][l][0],   Dictionary_array_element[i][l][1], 

size) 

Import Policy_Loads_array into Request Array Database  

5.2 Designed of Experiments and Loading Scenarios  

In this section, the experimental design to investigate the performance of the logistic systems is 

explained. There are four types of experiments as explained in the following four sub-sections.  

5.2.1 Low, Medium, and High Traffic Levels Experiments 

In these experiments, two load requests are assigned for every (source, destination) pair. This 

scenario is to simulate a network with consistently low traffic across all nodes. For example, the 

total number of the requests in this scenario is: 

18 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 ∙ 17 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∙ 2
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑆𝑜𝑢𝑟𝑐𝑒 − 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑖𝑟
=  612 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 

This number is then set to five to simulate consistently moderate traffic across all the nodes in 

the network.  

Finally, ten requests for every source-destination pair is generated to simulate a network with 

high traffic. Table 1, Table 2, and Table 3 show number of the requests and number of the 

implied requests for each logistic policy in each scenario. The implied requests are generated 

according to the array elements of the dictionaries. For example a generated request from 

Moncton to Montreal West would imply one request in CO policy, four requests in PI, (Moncton 
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to Fredericton to Quebec City to Montreal East, to Montreal West) and two requests in HY 

(Moncton to Fredericton to Montreal West.   Six instances of each scenario was generated using 

Monte Carlo simulation. Therefore, 18 set of results were generated through this experiment.  

Table 1- Number of Requests in CO Logistic System 

 
Low Traffic  

Experiment 

Moderate Traffic  

Experiment 

High Traffic 

Experiment 

Generated  

Requests 
612 1530 3060 

Total Implied 

Requests 
612 1530 3060 

 

Table 2 - Number of Requests to Simulate PI Logistic System 

 
Low Traffic  

Experiment 

Moderate Traffic  

Experiment 

High Traffic 

Experiment 

Generated  

Requests 
612 1530 3060 

Total Implied 

Requests 
1700 4250 8500 

 

Table 3 - Number of Requests to Simulate HY Logistic System 

 
Low Traffic  

Experiment 

Moderate Traffic  

Experiment 

High Traffic 

Experiment 

Generated  

Requests 
612 1530 3060 

Total Implied 

Requests 
1250 3125 6250 

 

5.2.2 High Traffic and Small Loads Experiment 

This experiment is similar to the consistent traffic level experiment with ten loads for each 

source-destination pair. The only change is in the probability distribution of the load sizes. This 
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experiment is designed to investigate the performance of the logistic systems when sizes of the 

requests in the network tend to be small. The following is the probability distribution of the loads 

in this experiment:  

𝑃(0.125) =
8

15
 , 𝑃(0.25) =

4

15
 , 𝑃(0.5) =

3

15
 , 𝑃(0) =

1

15
 

Similar to the consistent traffic level experiment, six instances of this experiment type were 

generated using Monte Carlo simulation.  

5.2.3 High Traffic and Large Loads Experiment  

This experiment is designed to investigate the performance of the logistic systems when the sizes 

of the requests in the network tend to be large. The following is the probability distribution of the 

loads in this experiment: 

𝑃(0.125) =
1

15
 , 𝑃(0.25) =

2

15
 , 𝑃(0.5) =

4

15
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Six instances of this experiment type were generated using Monte Carlo simulation.  

5.2.4 Random Traffic Experiment  

In this experiment the probability distribution of the load sizes are returned to the original as 

follows:  

𝑃(0.125) =
8

15
 , 𝑃(0.25) =

4

15
 , 𝑃(0.5) =

2

15
 , 𝑃(1) =

1

15
 , 𝑃(0) =

1

15
 

The difference in this experiment with previous five experiments is that the number of loads 

generated for each source-destination pair is set to a normally distributed non-negative value 

with mean of 10 and standard deviation of 3. This experiment is designed to investigate the 

performance of the logistic systems when number of loads in the various parts of the network is 

not consistent and therefore network could have a high traffic in some areas and low traffic in 

other areas. Once again, six instances of this experiment type were generated using Monte Carlo 

simulation.   
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Chapter 6: Results 

This section provides the results gathered from each optimization model for each scenario. 

Graphs of results and the result of a one way ANNOVA test [46] are provided for each 

experiment.  A reader may refer to Appendix L: One-Way ANOVA Test to review the statistical 

method used in the one way ANNOVA test.  

The only factor affecting the difference in the results generated from solution of all optimization 

models is the routing polices (CO, PI, and HY) used. Routing systems are applied on identical 

data ensuring that no other source of variation effects the quality of the results. As there is only 

one factor affecting the results gathered, one can conclude that we have a one factor statistical 

problem [46]. The one way ANNOVA test is sufficient to build the confidence intervals around 

the mean values of results generated in a one factor problem. 

Minitab™ 16 is used to perform the ANNOVA test and graph the confidence intervals (CI) 

around the mean values of the results.   

6.1 Model 1 Results – Counting Packing/ Unpacking Instances 

Model 1 was used to calculate the minimum number of containers trips from one node to any 

other node. As each container needs one loading and one unloading per trip, the total number of 

containers in the system also refers to the total number of container packing and unpacking (i.e. 

loading and unloading) instances. Investigating the number of packing and unpacking is 

important as it captures the resources required in material handling. The logistic system which 

results in lower number of packing and unpacking is superior to other systems for this criteria. 

The following six sections present the results generated for Criteria 1.  

6.1.1 Low Traffic Experiment  

In the low traffic experiment, CO resulted in the smallest number of packing and unpacking 

instances.  PI logistic has the largest number of packing and unpacking instances. As expected, 

the number of packing and unpacking instances in HY is in between. Figure 20 shows the 

number of packing and unpacking in CO, HY, and PI logistics in this experiment.  
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Figure 20 - Packing / Unpacking Instance in Low Traffic Network 

Statistical Analysis  

The ANNOVA result shows that the generated 95% CIs do not overlap. This means that 

statistically, the three logistic systems perform differently in terms of number of packing and 

unpacking required. CO performers better than HY, and HY performs better than PI in the low 

traffic experiment.   

One-way ANOVA: Cont CO, Cont HY, Cont PI  

 

Source  DF       SS       MS       F      P 

Factor   2  61511.4  30755.7  458.81  0.000 

Error   15   1005.5     67.0 

Total   17  62516.9 

 

S = 8.187   R-Sq = 98.39%   R-Sq(adj) = 98.18% 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level    N    Mean  StDev  ------+---------+---------+---------+--- 

Cont CO  6  343.67   5.43  (-*-) 

Cont HY  6  364.67   7.76       (-*-) 

Cont PI  6  476.83  10.55                                   (-*-) 

                           ------+---------+---------+---------+--- 
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6.1.2 Moderate Traffic Experiment  

In the moderate traffic experiment, CO performed best followed by HY and PI.  Figure 21 shows 

the results for this experiment.  

 

Figure 21 - Packing / Unpacking Instance in Moderate Traffic Network 

Statistical Analysis  

The ANNOVA result shows that the generated 95% CIs do not overlap implying that the three 

logistic systems perform differently in terms of the number of packing and unpacking instances 

required.  

 

One-way ANOVA: Cont CO, Cont HY, Cont PI  

 

Source  DF       SS      MS        F      P 

Factor   2  1203588  601794  1075.40  0.000 

Error   15     8394     560 

Total   17  1211982 

 

S = 23.66   R-Sq = 99.31%   R-Sq(adj) = 99.22% 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level    N    Mean  StDev  -----+---------+---------+---------+---- 

Cont CO  6   529.0   10.6  (*) 

Cont HY  6   865.0   22.9                   (*) 

Cont PI  6  1162.0   32.3                                  (*) 

                           -----+---------+---------+---------+---- 
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Pooled StDev = 23.7 

 

6.1.3 High Traffic Experiment  

In the high traffic experiment, CO performed best followed by HY and PI.  Figure 22, shows the 

number of packing and unpacking in CO, HY, and PI logistics in this experiment.  

 

Figure 22 - Packing / Unpacking Instance in High Traffic Network 

Statistical Analysis  

The ANNOVA result shows that the generated 95% CIs do not overlap once again and the 

results are statistically significant.   

One-way ANOVA: Cont CO, Cont HY, Cont PI  

 

Source  DF       SS       MS        F      P 

Factor   2  5433418  2716709  2186.86  0.000 

Error   15    18634     1242 

Total   17  5452052 

 

S = 35.25   R-Sq = 99.66%   R-Sq(adj) = 99.61% 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level    N    Mean  StDev  -------+---------+---------+---------+-- 

Cont CO  6   944.0   15.1  (* 

Cont HY  6  1700.5   34.3                     (* 

Cont PI  6  2286.2   48.2                                   (*) 
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                           -------+---------+---------+---------+-- 

                               1200      1600      2000      2400 

 

Pooled StDev = 35.2 

6.1.4 High Traffic Small Loads Experiment 

In the High Traffic Small Loads Experiment, ten loads of random sizes from each node to every 

other node are packed into containers. The load size probability distribution and the total number 

of loads in the experiment was shown in section 5.2.2. 

CO resulted in the smallest number of packing and unpacking instances.  PI logistic has the 

largest number of packing and unpacking. Number of packing and unpacking in HY logistics 

was between the results for CO and PI. Figure 23, shows the number of packing and unpacking 

in CO, HY, and PI logistics in this experiment.  

 

Figure 23 - Packing / Unpacking Instance in High Traffic Small Loads Network 

Statistical Analysis  

The ANNOVA result shows that the generated 95% CI do not overlap. This means that 

statistically speaking, the three logistic systems perform differently in terms of number of 

packing and unpacking required. CO performs better than HY, and HY performs better than PI in 
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High Traffic Small Loads Experiment. The following is the result of ANNOVA test generated in 

Minitab.   

One-way ANOVA: Cont CO, Cont HY, Cont PI  

 

Source  DF       SS       MS        F      P 

Factor   2  3509734  1754867  3015.12  0.000 

Error   15     8730      582 

Total   17  3518464 

 

S = 24.13   R-Sq = 99.75%   R-Sq(adj) = 99.72% 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level    N    Mean  StDev  ----+---------+---------+---------+----- 

Cont CO  6   801.8   12.4  (* 

Cont HY  6  1398.0   22.4                      (* 

Cont PI  6  1881.5   33.1                                      (* 

                           ----+---------+---------+---------+----- 

                             900      1200      1500      1800 

6.1.5 High Traffic Large Loads Experiment 

The results for the High Traffic Large Load Experiment follow the same pattern as for the High 

Traffic Small Loads Experiment. Figure 24, shows the number of packing and unpacking in CO, 

HY, and PI logistics in this experiment.  

 

Figure 24 - Packing / Unpacking Instance in High Traffic Large Loads Network 
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Statistical Analysis  

The ANNOVA result shows that the generated 95% CI do not overlap. This means that 

statistically, the three logistic systems perform differently in terms of number of packing and 

unpacking required. The following is the result of ANNOVA test generated in Minitab.   

One-way ANOVA: Cont CO, Cont HY, Cont PI  

 
Source  DF        SS        MS        F      P 

Factor   2  39344776  19672388  2727.21  0.000 

Error   15    108201      7213 

Total   17  39452977 

 

S = 84.93   R-Sq = 99.73%   R-Sq(adj) = 99.69% 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level    N    Mean  StDev  ---------+---------+---------+---------+ 

Cont CO  6  2188.3   14.9  (*) 

Cont HY  6  4209.0  117.4                      (*) 

Cont PI  6  5801.3   87.4                                      (*) 

                           ---------+---------+---------+---------+ 

                                 3000      4000      5000      6000 

Pooled StDev = 24.1 

6.1.6 Random Traffic Experiment 

In the Random Traffic Experiment, the number of loads from any node to other nodes is 

normally distributed with mean of ten and standard deviation of four.  

In the Random Traffic Experiment, CO logistic resulted in smallest number of packing and 

unpacking instances.  PI logistic has the highest number of packing and unpacking. Number of 

packing and unpacking in HY logistics was between the results in CO and PI. Figure 25, shows 

the number of packing and unpacking in CO, HY, and PI logistics in this experiment.  
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Figure 25 - Packing / Unpacking Instance in Random Traffic Network 

Statistical Analysis  

The ANNOVA result shows that the generated 95% CI do not overlap. This means that 

statistically, the three logistic systems perform differently in terms of number of packing and 

unpacking required. The following is the result of ANNOVA test generated in Minitab.   

One-way ANOVA: Cont CO, Cont HY, Cont PI  

 
Source  DF       SS       MS        F      P 

Factor   2  4776536  2388268  3005.46  0.000 

Error   15    11920      795 

Total   17  4788456 

 

S = 28.19   R-Sq = 99.75%   R-Sq(adj) = 99.72% 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level    N    Mean  StDev  -----+---------+---------+---------+---- 

Cont CO  6   915.2    9.2  (*) 

Cont HY  6  1630.8   18.7                       (* 

Cont PI  6  2173.0   44.2                                      (*) 

                           -----+---------+---------+---------+---- 

                             1050      1400      1750      2100 

 

Pooled StDev = 28.2 
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6.2 Model 2 Results - Route Driving Time Criteria 

Model 2 was used to calculate the minimum driving time of routes required to transport all the 

containers from their sources to their destinations. Minimizing the total duration of routes is 

important as it has direct effect on transportation cost. The amount of CO2 emission due to 

transportation is also correlated with the driving time of the routes.   

The logistic system with the lowest route duration is superior to the other systems for this 

criteria. The following six sections present the results generated from the Model 2.  

6.2.1 Low Traffic Network  

The routing result of the Low Traffic Experiment shows a clear gap between PI and HY 

compared to CO. The PI and HY results are very close to each other. These results indicate that 

PI and HY are more efficient in terms of driving time required. However, the gap between PI and 

HY is very small.  Figure 26 shows the total routing time in hours for each of the logistic 

systems.  

 

Figure 26 - Optimal Routing Time in Low Traffic Network 
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Statistical Analysis 

Result of the ANNOVA test indicates that PI and HY are not statistically different for this 

criteria, as the 95% Confidence Interval (CI) of systems overlap, although the mean value of PI 

is slightly less than the mean value of HY. On the other hand, the CI of both PI and HY are 

significantly different from CO. The following is the result of ANNOVA test generated in 

Minitab. 

One-way ANOVA: Hours PI, Hours HY, Hours CO  

 
Source  DF       SS       MS        F      P 

Factor   2  9442174  4721087  1406.28  0.000 

Error   15    50357     3357 

Total   17  9492531 

 

S = 57.94   R-Sq = 99.47%   R-Sq(adj) = 99.40% 

 

                            Individual 95% CIs For Mean Based on 

                            Pooled StDev 

Level     N    Mean  StDev  ------+---------+---------+---------+--- 

Hours PI  6  1740.6   43.9  (*) 

Hours HY  6  1788.0   46.3   (*) 

Hours CO  6  3300.2   77.4                                 (*) 

                            ------+---------+---------+---------+--- 

                               2000      2500      3000      3500 

Pooled StDev = 57.9 

 

6.2.2 Moderate Traffic Experiment 

The routing result of the Moderate Traffic Experiment follows a similar pattern.  Figure 27 

shows the total routing time in hours for each of the logistic systems.  
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Figure 27 - Optimal Routing Time in Moderate Traffic Network 

Statistical Analysis 

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI 

of systems overlap. PI and HY are statistically different from CO.  The following is the result of 

ANNOVA test generated in Minitab. 

One-way ANOVA: Hours PI, Hours HY, Hours CO  

 
Source  DF       SS       MS       F      P 

Factor   2  4213616  2106808  123.81  0.000 

Error   15   255253    17017 

Total   17  4468869 

 

S = 130.4   R-Sq = 94.29%   R-Sq(adj) = 93.53% 

 

                            Individual 95% CIs For Mean Based on 
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Level     N    Mean  StDev  -----+---------+---------+---------+---- 

Hours PI  6  4147.9  142.9  (---*--) 

Hours HY  6  4163.2  117.2   (--*--) 

Hours CO  6  5181.8  130.0                                (--*--) 

                            -----+---------+---------+---------+---- 

                              4200      4550      4900      5250 

 

Pooled StDev = 130.4 
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6.2.3 High Traffic Experiment 

The routing result of the High Traffic Experiment follows a similar pattern. Figure 28 shows the 

total routing time in hours for each of the logistic systems.  

 

Figure 28 - Optimal Routing Time in High Traffic Network 

Statistical Analysis  

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI 

of systems overlap. PI and HY are statistically different from CO.  The following is the result of 

ANNOVA test generated in Minitab. 

One-way ANOVA: Hours PI, Hours HY, Hours CO  
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S = 170.7   R-Sq = 88.59%   R-Sq(adj) = 87.07% 
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Hours PI  6  8051.7  172.4  (---*---) 

Hours HY  6  8083.3  163.5   (---*---) 
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                             8050      8400      8750      9100 

Pooled StDev = 170.7 

6.2.4 High Traffic Small Loads Experiment 

The routing result of the High Traffic Small Loads Experiment follows a similar pattern. Figure 

29 shows the total routing time in hours for each of the logistic systems.  

 

Figure 29 - Optimal Routing Time in High Traffic Small Loads Network 

Statistical Analysis  

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI 

of systems overlap. PI and HY are statistically different from CO.  The following is the result of 

ANNOVA test generated in Minitab. 
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Hours HY  6  5355.8   97.9      (--*---) 

Hours CO  6  5937.8  113.2                             (---*--) 

                              -+---------+---------+---------+-------- 

                            5250      5500      5750      6000 

Pooled StDev = 104.2 

 

6.2.5 High Traffic Large Loads Experiment 

The routing result of the High Traffic Large Loads Experiment follows a similar pattern. Figure 

30 shows the total routing time in hours for each of the logistic systems.  

 

Figure 30 - Optimal Routing Time in High Traffic Large Loads Network 

Statistical Analysis  

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI 

of systems overlap. PI and HY are statistically different from CO.  The following is the result of 

ANNOVA test generated in Minitab. 

One-way ANOVA: Hours PI, Hours HY, Hours CO  
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                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level     N   Mean  StDev   ---+---------+---------+---------+------ 

Hours PI  6  18445   1355   (------*-------) 

Hours HY  6  19996    612                  (-------*------) 

Hours CO  6  20749    189                          (------*-------) 

                            ---+---------+---------+---------+------ 

                           18000     19000     20000     21000 

 

Pooled StDev = 865 

 

6.2.6 Random Traffic Experiment 

The routing result of the Random Traffic Experiment shows approximately equal gaps in the 

means for PI, HY, and CO. Figure 31 shows the total routing time in hours for each of the 

logistic systems.  

 

Figure 31 - Optimal Routing Time in Random Traffic Network 

Statistical Analysis  

The result of the ANNOVA test indicates that all the logistic systems are statistically different as 

none of the 95% CI of the systems overlap each other. The mean value for PI logistic is less than 

the mean value of the HY.  Therefore, PI is the most efficient logistic policy in a random traffic 

network. The second most efficient policy is HY with a lower mean value compared to CO.  
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One-way ANOVA: Hours PI, Hours HY, Hours CO  

 
Source  DF       SS       MS      F      P 

Factor   2  7324606  3662303  33.76  0.000 

Error   15  1627129   108475 

Total   17  8951735 

 

S = 329.4   R-Sq = 81.82%   R-Sq(adj) = 79.40% 

 

                            Individual 95% CIs For Mean Based on 

                            Pooled StDev 

Level     N    Mean  StDev  -----+---------+---------+---------+---- 

Hours PI  6  7161.2  442.6  (---*----) 

Hours HY  6  7846.3  236.6             (----*----) 

Hours CO  6  8719.9  271.2                            (---*----) 

                            -----+---------+---------+---------+---- 

                              7200      7800      8400      9000 

 

Pooled StDev = 329.4 

6.3 Model 2: Driving Time Trends 

The six experiments introduced in the previous sections creates two general trends for analysis.  

6.3.1 Traffic Level Trend 

In the Traffic Level Trend Analysis, the number of loads generated for each source, destination 

pair is increased, but the probability distribution of the loads selected for simulation stays 

unchanged. In other word, traffic trend only investigated the effect of increasing traffic level on 

the overall routing performance of the individual logistic systems.  

Side by side comparison of the results generated from Model 2 indicates that the highest gap 

between the average performance of the logistic systems is in a low traffic network.  This gap 

decreases as the traffic level increases. When traffic level increases, regardless of the routing 

system used, the likelihood of full or close to full container movements greatly increases. 

Therefore, in a scenario in which, every single container sent from a source to a destination is 

completely full, the routing performance gap among these logistic systems is minimized. Table 

4, provides a summary of the logistic systems routing times under different traffic levels. 
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Table 4 - Driving Time of Logistic Systems with Different Traffic Level 

 Total Driving Time 

Low Traffic  

Total Driving Time 

Moderate Traffic  

Total Driving Time 

High Traffic  

Exp PI HY CO PI HY CO PI HY CO 

1 1718 1773 3201 4027 4055 5027 8056 8154 9087 

2 1745 1807 3267 4225 4285 5261 8329 8328 9215 

3 1735 1756 3339 4340 4241 5298 7859 7892 8827 

4 1703 1749 3249 4170 4192 5246 8168 8176 9119 

5 1825 1873 3419 3941 3985 5005 7951 7972 8902 

6 1717 1769 3326 4184 4221 5254 7947 7978 8780 

Avg 1740.6 1788.0 3300.2 4147.9 4163.2 5181.8 8051.7 8083.3 8988.3 

Diff Base  +2.72% +89.60% Base +0.37% +24.93% Base +0.39% +11.63% 

 

6.3.2 Model 2: Load Size Trend 

In the Load Size Trend Analysis, the number of loads generated for each source, destination pair 

remains unchanged, but the probability distribution of the loads selected for simulation changes 

according to the discrete distributions described in section 5.2.  

The highest gap in the routing performance of the logistic systems occurs when large loads are 

transported over the network. The size of this gap decreases as size of the loads decrease. When 

large loads are transported, utilizing different logistic systems results in large differences in 

routing time. It is believed that when loads are large, the packing efficiency of CO, for example, 

compared to PI may not be very good.  Therefore, a large gap is observed.  However, in the case 

of smaller average loads, the packing efficiency of CO improves and therefore, the performance 

gap between CO and PI decreases.   

Table 5 provides a summary of the logistic systems routing times with different load size 

distributions. 
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Table 5 - Driving Time of Logistic Systems with Different Load Size Distributions 

 Total Driving Time 

High Traffic Large Loads 

Total Driving Time 

High Traffic Normal Loads 

Total Driving Time 

High Traffic Small Loads 

Exp PI HY CO PI HY CO PI HY CO 

1 14268 16370 17428 6540 6653 7575 6677 6713 7788 

2 15966 16074 17278 6766 6769 7561 6862 6508 7511 

3 13949 16128 17349 6366 6437 7328 6722 6726 7670 

4 17924 17215 17284 6630 6645 7611 6497 6498 7422 

5 14592 16579 17805 6453 6525 7366 7322 6500 7544 

6 20315 22565 24676 6464 6527 7099 6599 6632 7667 

Avg 16169.2 17488.5 18636.8 6536.5 6592.6 7423.3 6779.7 6596.2 7600.4 

Diff Base +8.16% +15.26% Base +0.86% +13.57% Base -2.71% +12.11% 

 

The random traffic experiment was performed to test the routing performance of each logistic 

scenario with varying traffic levels in the network. PI resulted in the lowest driving time once 

again, followed by HY, and CO. Table 5 provides a summary of driving times in the three 

logistic systems for the Random Traffic Network. 

 

Table 6 - Driving Time of Logistic Systems with Random Traffic 

 
Random Traffic Experiment 

Exp PI HY CO 

1 7772 7824 8636 

2 6766 7728 8666 

3 7202 8267 9253 

4 7608 7636 8605 

5 6778 7667 8684 

6 6842 7956 8476 

Avg 7161 7846 8720 

Diff Base +9.57% +21.77% 

 

Figure 32 shows the driving time of all logistic systems across all the experiments performed in 

this thesis.   
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Figure 32 - Overall Comparison of Routing Time of Logistic Systems 

 

The average difference in driving time across all six experiments is shown in Table 7. As can be 

seen, CO has a gap of approximately 27% in driving hours compared to PI. It can be seen that 

the performance of HY is much closer to PI. 

Table 7 - Percentage Difference in Driving Time of HY and CO with Respect to PI 

PI HY CO 

Base +2.77% +26.98% 

 

6.4 Model 3 Results 
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shown and discussed first, and then a method to calculate the total cost of the logistic systems is 

proposed.      

6.4.1 Values of the Key Performance Indicators    

The number of trucks in service, average hours worked per truck, percentage of drivers back 

home at the end of the day, and the total hours of operation are the rest of the KPIs calculated for 

the three systems. 

PI needs the largest number of trucks for service.  Most of the jobs created in PI policy are short 

jobs and can be completed in one day. Therefore, a large number of short haul trucks enter into 

service. The average work time per truck is also low in PI. Percentage of drivers that can return 

home at the end of the day is also highest in PI (it should be noted that not all the drivers can go 

back home at the end of the day as a number of routes have a duration of longer than 14 hours). 

Table 8, and Table 9 list the numerical values of the KPIs. The effect of increase in traffic level 

on the KPIs is shown in Table 8 and the effect of changing the load size distribution on the KPIs 

is shown in Table 9. 

Table 8 - Logistic Systems KPI values with Difference Traffic Levels 

 Low Traffic Moderate Traffic High Traffic 

Policy  PI HY CO PI HY CO PI HY CO 

Trucks in 

Service 
102 64 64 183 136 92 528 371 227 

     Long Haul 6 21 52 19 41 75 11 86 140 

     Short Haul 96 43 12 164 95 17 517 285 87 

Total Enroute 

Hours 
1,434.6 1,797.2 3,510.7 3,205.0 3,830.2 5,051.5 6,661.8 7,948.8 10,206.2 

Total Driving 

Hours 
1,402.6 1,469.2 2,743.2 3,191.1 3,256.6 4,212.1 6,525.8 6,636.8 7,574.2 

Avg Hours on 

Duty  
14.06 28.08 54.85 17.51 28.16 54.91 12.62 21.43 44.96 

Avg Hours 

Driving 
13.75 22.96 42.86 17.44 23.95 45.78 12.36 17.89 33.37 

% Drivers 

Back Home 
94.12% 67.19% 18.75% 89.62% 69.85% 18.48% 97.92% 76.82% 38.33% 
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Table 9 - Logistic Systems KPI values with Different Load Size Distributions 

 High Traffic, Small Loads Random Traffic High Traffic, Large Loads 

Policy  PI HY CO PI HY CO PI HY CO 

Trucks in 

Service 
413 224 168 428 322 210 529 477 429 

      Long Haul 20 66 116 18 86 138 153 242 233 

      Short Haul 393 158 52 410 236 72 376 235 196 

Total Enroute 

Hours 
5,579.1 6,375.7 8,487.7 5,682.7 7,715.5 9,877.8 14,837 18,916 22,596 

Total Driving 

Hours 
5,443.1 5,319.7 6,319.7 5,506.7 6,339.5 7,269.8 14,637 15,556 16,868 

Avg Hours on 

Duty  
13.51 28.46 50.52 13.28 23.96 47.04 28.05 39.66 52.67 

Avg Hours 

Driving 
13.18 23.75 37.62 12.87 19.69 34.62 27.67 32.61 39.32 

% Drivers 

Back Home 
95.16% 70.54% 30.95% 95.79% 73.29% 34.29% 71.08% 49.27% 45.69% 

 

The number of drivers who can go back home at the end of a work day remains consistently high 

in PI, regardless of the traffic level.  

In CO, when the traffic level is low, Model 3 may find it efficient to assign some of the short 

jobs to long haul trucks because if long haul truck is needed anyway for a job, it can be used to 

serve other short haul jobs.  Therefore, for lower traffic levels, the number of the drivers who can 

go back home in CO is low.  However as the network gets busier and long haul trucks get 

enough work, the shorter jobs are done mostly with short haul trucks and therefore, the number 

of drivers who go back home at the end of a work day increases.  

Change in load size values does not seem to create a visible change in the pattern of KPI values. 

As shown in Table 9, the PI again remains the best logistics policy in terms of a truck driver’s 

social life. This is followed by HY and CO.   
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6.5 Costs 

The cost of the logistic systems are calculated by considering the results generated from Model 1 

and Model 3. Model 2 has no direct effect on the costs: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔, 𝑓𝑟𝑜𝑚 𝑀𝑜𝑑𝑒𝑙 1) + (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 + 𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑠𝑡

+ 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡, 𝑎𝑙𝑙 𝑓𝑟𝑜𝑚 𝑀𝑜𝑑𝑒𝑙 3) 

While all cost components from Model 3 have been already discussed, the Material Handling 

cost is incurred within the PI transit centers.  It is assumed that the measurement unit for Material 

Handling cost is in dollars per container. Although there are a number of functional designs and 

detailed simulations of PI transit centers in [12], [13], [31], it is difficult to infer the realistic 

material handling cost incurred inside these type of facilities.  

Therefore, a cost ratio analysis is performed to calculate the total logistic policy cost. The cost 

ratio is calculated as follows:  

𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝐶𝑜𝑠𝑡
 

Since the main difference between PI, and CO is the trade-off between the level of material 

handling and driving activities, this can be quantified using the cost ratio. 

Current Material Handling Costs 

Many logistic companies charge a flat rate fee to pack and unpack containers regardless of the 

weight and size of the load inside the container. However, material handling cost differs 

according to the handling process used.  For example, on pallet movement of load from a 40 foot 

container to another container of the same size, called a “Pallet to Pallet” movement, costs 

approximately $150 for a 40-foot container. The “Pallet to Floor” process removes skids from 

the incoming load and puts the loads in the floor of the outgoing container. Finally, “Floor to 

Floor” process is movement of loads from the floor of incoming containers to the floor of the 

outgoing containers.  The Pallet to Floor process costs $250, and the Floor to Floor movement 

process costs $350.     
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In this thesis, $150 is used as the packing/ unpacking cost of a PI container.  This is a 

conservative estimate or the worst case scenario cost of the actual material handling cost that 

could be incurred in future PI transit centers for the following two reasons: 

1) Conventional containers are loaded from the rear, meaning only one or two forklifts can 

pack a container at once due to the limited working space. Hence the loading and 

unloading process of conventional containers capture the warehouse resources for long 

periods of time. Also load placed in a container are accessible in the first in last out order. 

Therefore accessing the load placed into the container first requires removal of the entire 

load. Whereas PI containers can be loaded from the sides making loading and unloading 

process very quick. Also, removal of a specific PI load from a container does not require 

movement of other loads. 

2) Future innovations in material handling processes can potentially reduce the cost of 

container loading/ unloading in transit centers. Automated material handling equipment 

such as PI-conveyer, PI-sorters, and PI-composers [6] will be used in PI-transit centers, 

which could result in lower cost material handling processes.  

Sections 6.5.1 to 6.5.5 present the results of the total cost analysis.  The dashed line on the cost 

ratio value of 0.75 in the charts shows the point where the material handling cost is $150.   

6.5.1 Low Traffic Experiment 

The summary of the results required for calculation of the total cost in the Low Traffic 

Experiment is shown in Table 10.  

 

Table 10 - Social, Operational, and Fix Costs in Low Traffic Experiment 

Policy 
# Packing / 

Unpacking 

Social 

Cost 

Operational 

Cost 

Fix 

Cost 

PI 475 $3.23k $280.5k $1.6k 

HY 367 $3.3k $293.8k $2.5k 

CO 347 $9.2k $548.6k $5.3k 
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13 instances of the total cost for each of the logistic systems were calculated using the cost ratio 

introduced in the previous section. Table 11 lists the total cost of each logistics system for each 

cost ratio.   

Table 11 - Total Cost as a function of Cost Ratio in Low Traffic Experiment 

 

Figure 33, illustrates the grow rate of the total cost of logistic systems as the cost ratio increases 

in the Low Traffic Experiment. From Table 11, and Figure 33, one can conclude that PI is the 

most cost efficient logistics system if the material handling cost remains less than $200 per 

container. HY has the lowest total cost between cost ratios of approximately 1 to 40. CO 

becomes the most cost efficient logistics system for cost ratio of approximately 40 and higher. 

PI and HY have a lower total cost compared to CO on a wide cost ratio range. This implies that 

in a low traffic networks, the efficiency of PI transit centers can vary widely without affecting 

the best performing logistic policy.  At the cost ratio of 0.75, both PI and HY logistics systems 

are superior to CO. 

Policy 
Total 

Cost 1

 Total 

Cost 2 

 Total 

Cost 3 

 Total 

Cost 4 

 Total 

Cost 5 

 Total 

Cost 6 

 Total 

Cost 7 

 Total 

Cost 8 

 Total 

Cost 9 

 Total 

Cost 10 

 Total 

Cost 11 

 Total 

Cost 12 

 Total 

Cost 13 

PI $328.3k $375.8k $470.8k $565.8k $660.8k $755.8k $850.8k $945.8k $1m $1.1m $1.2m $2.2m $4.1m

HY $333.9k $370.6k $444k $517.4k $590.8k $664.2k $737.6k $811k $884.4k $957.8k $1m $1.8m $3.2m

CO $592.6k $627.3k $696.7k $766.1k $835.5k $904.9k $974.3k $1m $1.1m $1.2m $1.3m $1.9m $3.3m

Ratio 0.5 1 2 3 4 5 6 7 8 9 10 20 40

Packing Cost 100 200 400 600 800 1000 1200 1400 1600 1800 2000 4000 8000

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200
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Figure 33 - Comparison of Total Cost of Logistic Systems in Low Traffic Experiment 

6.5.2 Moderate Traffic Experiment 

The summary of the results required for calculation of the total cost in the Moderate Traffic 

Experiment is shown in Table 12.  

Table 12 - Social, Operational, and Fix Costs in Moderate Traffic Experiment 

Policy  
# Packing / 

Unpacking 

Social 

Cost 

Operational 

Cost 

Fix 

Cost 

PI 1118 559 $638.2k $3.5k 

HY 842 $7.1k $651.3k $5.1k 

CO 519 $14.2k $842.4k $7.7k 

 

Table 13 lists the total cost of each logistics system for each cost ratio.   

Table 13 - Total Cost as a function of Cost Ratio in Moderate Traffic Experiment 
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Policy 
Total 

Cost 1

 Total 

Cost 2 

 Total 

Cost 3 

 Total 

Cost 4 

 Total 

Cost 5 

 Total 

Cost 6 

 Total 

Cost 7 

 Total 

Cost 8 

 Total 

Cost 9 

 Total 

Cost 10 

 Total 

Cost 11 

 Total 

Cost 12 

 Total 

Cost 13 

PI $754.1k $865.9k $977.7k $1.1m $1.2m $1.3m $1.4m $1.5m $1.6m $1.8m $1.9m $2m $2.1m

HY $747.6k $831.8k $916k $1m $1.1m $1.2m $1.3m $1.3m $1.4m $1.5m $1.6m $1.7m $1.8m

CO $916.2k $968.1k $1m $1.1m $1.1m $1.2m $1.2m $1.3m $1.3m $1.4m $1.4m $1.5m $1.5m

Ratio 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Packing Cost 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200
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Figure 34 illustrates the grow rate of the total cost of logistic systems as the cost ratio increases 

for the Moderate Traffic Experiment. From Table 13 and Figure 34, one can conclude that PI is 

the most cost efficient logistic policy if the material handling cost remains less than $110 per 

container. In other words, the cost ratio should stay below 0.55 for PI to be the least cost logistic 

policy. HY has the lowest total cost between cost ratios of approximately 0.55 up to 3.1. CO 

becomes the most cost efficient logistic policy for cost ratio of approximately 3.1 and higher. 

In other words, there is a shift towards the left of all break even points in the lines representing 

total costs.   

 

Figure 34 - Comparison of Total Cost of Logistic Systems in Low Traffic Experiment 

 

6.5.3 High Traffic Experiment 

The summary of the results required for calculation of the total cost in the High Traffic 

Experiment is shown in Table 14.  
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Table 14 - Social, Operational, and Fix Costs in High Traffic Experiment 

Policy  
# Packing / 

Unpacking 

Social 

Cost 

Operational 

Cost 

Fix 

Cost 

PI 2283 $1.3k $1.3m $6.3k 

HY 1704 $14k $1.3m $11.5k 

CO 950 $25.8k $1.5m $14.9k 

 

Table 15 lists the total cost of each logistic system for each cost ratio.   

Table 15 - Total Cost as a function of Cost Ratio in High Traffic Experiment 

 

Figure 35 illustrates the grow rate of the total cost of logistic systems as the cost ratio increases 

in the High Traffic Experiment. From Table 15 and Figure 35, one can conclude that PI is the 

most cost efficient logistics system if the material handling cost remains less than $80 per 

container. In other words, the cost ratio should stay below 0.4 for PI to be the least cost logistics 

system. HY has the lowest total cost between cost ratios of approximately 0.4 and 1.3. CO 

becomes the most cost efficient logistics system for cost ratios of approximately 1.3 and higher. 

In other words, there is once again a shift towards the left of all break even points in the lines 

representing total costs.   

 

Policy 
Total 

Cost 1

 Total 

Cost 2 

 Total 

Cost 3 

 Total 

Cost 4 

 Total 

Cost 5 

 Total 

Cost 6 

 Total 

Cost 7 

 Total 

Cost 8 

 Total 

Cost 9 

 Total 

Cost 10 

 Total 

Cost 11 

 Total 

Cost 12 

 Total 

Cost 13 

PI $1.4m $1.4m $1.4m $1.5m $1.5m $1.6m $1.6m $1.7m $1.7m $1.8m $1.8m $1.9m $1.9m

HY $1.4m $1.4m $1.5m $1.5m $1.5m $1.6m $1.6m $1.6m $1.7m $1.7m $1.7m $1.8m $1.8m

CO $1.6m $1.6m $1.6m $1.6m $1.7m $1.7m $1.7m $1.7m $1.7m $1.7m $1.8m $1.8m $1.8m

Ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Packing Cost 20 40 60 80 100 120 140 160 180 200 220 240 260

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200
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Figure 35 - Comparison of Total Cost of Logistic Systems in High Traffic Experiment 

6.5.4 High Traffic Small Loads Experiment   

The summary of the results required for calculation of the total cost in the High Traffic Small 

Loads Experiment is shown in Table 16.  

Table 16 - Social, Operational, and Fix Costs in High Traffic Small Loads Experiment 

Policy  
# Packing / 

Unpacking 

Social 

Cost 

Operational 

Cost 

Fix 

Cost 

PI 1904 $1.3k $1.1m $5.9k 

HY 1417 $11.2k $1.1m $8.2k 

CO 814 $21.3k $1.3m $12.1k 

 

Table 17 lists the total cost of each logistics systems for each cost ratio.   

Table 17 - Total Cost as a function of Cost Ratio in High Traffic Small Loads Experiment 
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Policy 
Total 

Cost 1

 Total 

Cost 2 

 Total 

Cost 3 

 Total 

Cost 4 

 Total 

Cost 5 

 Total 

Cost 6 

 Total 

Cost 7 

 Total 

Cost 8 

 Total 

Cost 9 

 Total 

Cost 10 

 Total 

Cost 11 

 Total 

Cost 12 

 Total 

Cost 13 

PI $1.1m $1.2m $1.3m $1.4m $1.4m $1.5m $1.6m $1.7m $1.7m $1.8m $1.9m $2m $2m

HY $1.1m $1.2m $1.2m $1.3m $1.3m $1.4m $1.5m $1.5m $1.6m $1.6m $1.7m $1.7m $1.8m

CO $1.3m $1.3m $1.4m $1.4m $1.4m $1.5m $1.5m $1.5m $1.6m $1.6m $1.6m $1.7m $1.7m

Ratio 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Packing Cost 20 60 100 140 180 220 260 300 340 380 420 460 500

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200
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Figure 36 illustrates the growth rate of the total cost of logistic systems as the cost ratio increases 

in the High Traffic Small Loads Experiment. From Table 17 and Figure 36 one can conclude that 

PI has the lowest total cost below cost ratios of approximately 0.12. HY is the most cost efficient 

logistics system if the cost ratio is between 0.12 and 1.7. CO becomes the most cost efficient 

logistic policy for cost ratio of approximately 1.7 and higher. 

In a High Traffic Small Loads Network, the HY logistics system is the cheapest for a relatively 

wide range. 

 

 

Figure 36 - Comparison of Total Cost of Logistic Systems in High Traffic Small Loads Experiment 

6.5.5 High Traffic Large Loads Experiment   

The summary of the results required for calculation of the total cost in the High Traffic Large 

Loads Experiment is shown in Table 18.  
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Table 18 - Social, Operational, and Fix Costs in High Traffic Large Loads Experiment 

Policy  
# Packing / 

Unpacking 

Social 

Cost 

Operational 

Cost 
Fix Cost 

PI 5773 $1.9k $2.9m $19.1k 

HY 3971 $35.8k $3.1m $26.6k 

CO 2181 $56.5k $3.4m $25.3k 

 

Table 19 lists the total cost of each logistics system for each cost ratio.  

Table 19 - Total Cost as a function of Cost Ratio in High Traffic Large Loads Experiment 

 

Figure 37 illustrates the growth rate of the total cost of the logistic systems as the cost ratio 

increases. From Table 19 and Figure 37, one can conclude that PI is the most cost efficient 

logistic policy if the material handling cost remains less than $120 per container. In other words, 

the cost ratio should stay below 0.6 for PI to be the least cost logistics system. HY has the lowest 

total cost between cost ratios of approximately 0.6 and 0.8. CO becomes the most cost efficient 

logistics system for cost ratios of approximately 0.8 and higher. 

Policy 
Total 

Cost 1

 Total 

Cost 2 

 Total 

Cost 3 

 Total 

Cost 4 

 Total 

Cost 5 

 Total 

Cost 6 

 Total 

Cost 7 

 Total 

Cost 8 

 Total 

Cost 9 

 Total 

Cost 10 

 Total 

Cost 11 

 Total 

Cost 12 

 Total 

Cost 13 

PI $3.1m $3.2m $3.3m $3.4m $3.5m $3.6m $3.8m $3.9m $4m $4.1m $4.2m $4.3m $4.4m

HY $3.3m $3.3m $3.4m $3.5m $3.6m $3.7m $3.7m $3.8m $3.9m $4m $4m $4.1m $4.2m

CO $3.5m $3.5m $3.6m $3.6m $3.7m $3.7m $3.8m $3.8m $3.8m $3.9m $3.9m $4m $4m

Ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Packing Cost 20 40 60 80 100 120 140 160 180 200 220 240 260

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200
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Figure 37 - Comparison of Total Cost of Logistic Systems in High Traffic Large Loads Experiment 

6.5.6 Random Traffic Experiment 

The summary of the results required for calculation of the total cost in the Random Traffic 

Experiment is shown in Table 20.  

Table 20 - Social, Operational, and Fix Costs in Random Traffic Experiment 

Policy  
# Packing / 

Unpacking 

Social 

Cost 

Operational 

Cost 

Fix 

Cost 

PI 2175 $1.7k $1.1m $5.9k 

HY 1617 $14.2k $1.3m $11k 

CO 914 $24.9k $1.5m $14.5k 

 

Table 21 lists the total cost of each logistics system for each cost ratio.  

Table 21 - Total Cost as a function of Cost Ratio in Random Traffic Experiment 
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Policy 
Total 

Cost 1

 Total 

Cost 2 

 Total 

Cost 3 

 Total 

Cost 4 

 Total 

Cost 5 

 Total 

Cost 6 

 Total 

Cost 7 

 Total 

Cost 8 

 Total 

Cost 9 

 Total 

Cost 10 

 Total 

Cost 11 

 Total 

Cost 12 

 Total 

Cost 13 

PI $1.1m $1.2m $1.3m $1.4m $1.5m $1.5m $1.6m $1.7m $1.8m $1.8m $1.9m $2m $2.1m

HY $1.3m $1.4m $1.4m $1.5m $1.5m $1.6m $1.7m $1.7m $1.8m $1.8m $1.9m $1.9m $2m

CO $1.5m $1.5m $1.6m $1.6m $1.6m $1.7m $1.7m $1.7m $1.8m $1.8m $1.8m $1.9m $1.9m

Ratio 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Packing Cost 20 60 100 140 180 220 260 300 340 380 420 460 500

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200
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Figure 38 illustrates the growth rate of the total cost of logistic systems as the cost ratio 

increases. From Table 21 and Figure 38, one can conclude that PI is the most cost efficient 

logistics policy if the material handling cost remains less than $300 per container. In other 

words, the cost ratio should stay below 1.5 for PI to be the least cost logistics systems. The least 

cost logistics system changes very quickly from PI to CO, leaving a very small optimal range for 

HY. Very quickly after a cost ratio of 1.5, CO becomes the most cost efficient logistic policy.  

 

Figure 38 - Comparison of Total Cost of Logistic Systems in Random Traffic Experiment 
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Chapter 7: Conclusions 

The three phase optimization framework has shown to be an effective method of investigating 

the overall performance of the three logistic systems in this thesis. By comparing the CO, PI, and 

HY logistic systems using the three phase optimization methodology, a major trade-off was 

observed between the total number of instances containers requiring loading and unloading and 

total required driving time to carry loads from source to final destination.  

Compared to CO and HY, PI benefits from lower total driving time required to transfer loads 

from sources to destinations across the introduced road network. However, number of the 

instances containers require loading and unloading is higher in PI and HY compared to CO. In 

other words, PI and HY decreases the work done by drivers and increases the work done in the 

PI transit centers.  

The cost performance of each of these logistic systems varies under various traffic and load 

selection scenarios. In networks with low ratio of packing to driving costs, PI seems to be the 

superior logistics system followed by HY and CO. As this ratio increases, HY and CO become 

increasingly attractive.  For intermediate values of this ratio, HY is the most attractive while for 

very high values of this ratio, CO is the most attractive.   

From an environmental point of view, PI shows substantial decrease in the logistic systems’ 

carbon foot print from driving and reduces truck traffic on the roads.  Another major benefit of 

PI is that it reduces the social costs associated with truck driving. It should be noted that success 

of PI logistic system highly depends on the efficiency of PI transit center. Without efficient PI 

transit centers, PI logistics policy will not reduce the total cost of logistic activities. 

7.1 Direction for Future Studies 

This thesis is one of the early analytical studies on the subject of PI. Further research is required 

to fully understand the capabilities and shortcoming of PI logistic systems. Some areas for 

potentially fruitful research are: 
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Extension to Grid Networks  

This research mainly focussed on the Eastern Canada road network, which is practically 

speaking, a tree. This framework can be used to investigate these logistic systems on other 

network topologies such as grid networks.  

Extension to City Level Delivery 

The effect of urban area congestion and road network capacity were not addressed in this 

research. One of the reasons why PI may succeed in denser topographies (such as Europe) is that 

packing/unpacking may become required for delivery inside urban cores due to environmental 

regulations.  If the cost of packing/unpacking is already paid for, the PI or HY logistics systems 

might become much more attractive. Therefore, it worth investigating this issue in realistic urban 

or dense population settings. 

Effect of Loads Sizes 

As explained in [9], the global standard PI container and load sizes are still not determined. In 

this thesis, it is shown than the load sizes is one of the main factors effecting the cost 

performance of PI. However, the combination of load sizes that could result in the optimal 

performance of PI is unknown and requires research.  

Improvement of Packing Model 

Model 1 of this thesis uses a one dimensional bin packing MIP to calculate the minimum number 

of the containers needed to be transported from sources to destinations. Load sizes chosen in this 

thesis made a one dimensional bin packing MIP sufficient to calculate the optimal number of 

bins in Model 1. However, if smaller load sizes are introduced, two or three dimensional bin 

packing will be required to calculate the minimum number of containers required.  The effect of 

this should be considered  

Delivery Times and Queuing 

In this research, we do not look at delivery lead times or queues at PI centers which increase the 

total transit time.  Investigating the effect of each logistic policy on delivery times and queuing 

behaviour in the PI transit centers can be very beneficial. In a simulation environment, the 
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average effect of delays, and queues on the total cost of a PI logistic system can be examined and 

compared to other logistic systems. 

Relaxation of the Reset Assumption and Effect of Uncertainty  

This thesis only dealt with static loads. Load information is assumed to be available at the time 

of optimization. A one period planning horizon assumed with a state reset at the end of the 

period.  However, in real-life, containers and trucks move constantly as demand evolves.   

Dynamic optimization approaches can be developed and tested to investigate the cost 

performance of these logistic systems in real-time.  There is also the effect of uncertainty that 

could be taken into account.  

Multi-agent simulation models can be a means to evaluate the performance of real-time PI 

systems to understand the complex interplay involved in the presence of multiple decision 

makers systems with uncertainty in the logistics system. As discussed in section 2, and in [8], a 

multi-agent simulation of PI was shown to be effective methods to simulate supply webs. These 

types of simulation studies will potentially provide a more accurate evaluation of the logistic 

systems’ behaviour when dealing with networks with complex demand, capacity, and routing 

constraints.    
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APPENDICES 

Appendix A: Conventional Arcs Dictionary 

route_co = { 
    ('Yar','Hal'): [['Yar','Hal']], 
    ('Yar','Tru'): [['Yar','Tru']], 
    ('Yar','Syd'): [['Yar','Syd']], 
    ('Yar','Mon'): [['Yar','Mon']], 
    ('Yar','Cht'): [['Yar','Cht']], 
    ('Yar','Stj'): [['Yar','Stj']], 
    ('Yar','Frd'): [['Yar','Frd']], 
    ('Yar','Gt1'): [['Yar','Gt1']], 
    ('Yar','Riv'): [['Yar','Riv']], 
    ('Yar','Qbc'): [['Yar','Qbc']], 
    ('Yar','Gt2'): [['Yar','Gt2']], 
    ('Yar','Mte'): [['Yar','Mte']], 
    ('Yar','Gt3'): [['Yar','Gt3']], 
    ('Yar','Caw'): [['Yar','Caw']], 
    ('Yar','Mtw'): [['Yar','Mtw']], 
    ('Yar','Otn'): [['Yar','Otn']], 
    ('Yar','Ots'): [['Yar','Ots']], 
 
    ('Hal','Yar'): [['Hal','Yar']], 
    ('Hal','Tru'): [['Hal','Tru']], 
    ('Hal','Syd'): [['Hal','Syd']], 
    ('Hal','Mon'): [['Hal','Mon']], 
    ('Hal','Cht'): [['Hal','Cht']], 
    ('Hal','Stj'): [['Hal','Stj']], 
    ('Hal','Frd'): [['Hal','Frd']], 
    ('Hal','Gt1'): [['Hal','Gt1']], 
    ('Hal','Riv'): [['Hal','Riv']], 
    ('Hal','Qbc'): [['Hal','Qbc']], 
    ('Hal','Gt2'): [['Hal','Gt2']], 
    ('Hal','Mte'): [['Hal','Mte']], 
    ('Hal','Gt3'): [['Hal','Gt3']], 
    ('Hal','Caw'): [['Hal','Caw']], 
    ('Hal','Mtw'): [['Hal','Mtw']], 
    ('Hal','Otn'): [['Hal','Otn']], 
    ('Hal','Ots'): [['Hal','Ots']], 
 
    ('Syd','Yar'): [['Syd','Yar']], 
    ('Syd','Tru'): [['Syd','Tru']], 
    ('Syd','Hal'): [['Syd','Hal']], 
    ('Syd','Mon'): [['Syd','Mon']], 
    ('Syd','Cht'): [['Syd','Cht']], 
    ('Syd','Stj'): [['Syd','Stj']], 
    ('Syd','Frd'): [['Syd','Frd']], 
    ('Syd','Gt1'): [['Syd','Gt1']], 
    ('Syd','Riv'): [['Syd','Riv']], 
    ('Syd','Qbc'): [['Syd','Qbc']], 
    ('Syd','Gt2'): [['Syd','Gt2']], 
    ('Syd','Mte'): [['Syd','Mte']], 
    ('Syd','Gt3'): [['Syd','Gt3']], 
    ('Syd','Caw'): [['Syd','Caw']], 
    ('Syd','Mtw'): [['Syd','Mtw']], 
    ('Syd','Otn'): [['Syd','Otn']], 
    ('Syd','Ots'): [['Syd','Ots']], 
 



93 

 

    ('Tru','Yar'): [['Tru','Yar']], 
    ('Tru','Syd'): [['Tru','Syd']], 
    ('Tru','Hal'): [['Tru','Hal']], 
    ('Tru','Mon'): [['Tru','Mon']], 
    ('Tru','Cht'): [['Tru','Cht']], 
    ('Tru','Stj'): [['Tru','Stj']], 
    ('Tru','Frd'): [['Tru','Frd']], 
    ('Tru','Gt1'): [['Tru','Gt1']], 
    ('Tru','Riv'): [['Tru','Riv']], 
    ('Tru','Qbc'): [['Tru','Qbc']], 
    ('Tru','Gt2'): [['Tru','Gt2']], 
    ('Tru','Mte'): [['Tru','Mte']], 
    ('Tru','Gt3'): [['Tru','Gt3']], 
    ('Tru','Caw'): [['Tru','Caw']], 
    ('Tru','Mtw'): [['Tru','Mtw']], 
    ('Tru','Otn'): [['Tru','Otn']], 
    ('Tru','Ots'): [['Tru','Ots']], 
 
    ('Mon','Yar'): [['Mon','Yar']], 
    ('Mon','Syd'): [['Mon','Syd']], 
    ('Mon','Hal'): [['Mon','Hal']], 
    ('Mon','Tru'): [['Mon','Tru']], 
    ('Mon','Cht'): [['Mon','Cht']], 
    ('Mon','Stj'): [['Mon','Stj']], 
    ('Mon','Frd'): [['Mon','Frd']], 
    ('Mon','Gt1'): [['Mon','Gt1']], 
    ('Mon','Riv'): [['Mon','Riv']], 
    ('Mon','Qbc'): [['Mon','Qbc']], 
    ('Mon','Gt2'): [['Mon','Gt2']], 
    ('Mon','Mte'): [['Mon','Mte']], 
    ('Mon','Gt3'): [['Mon','Gt3']], 
    ('Mon','Caw'): [['Mon','Caw']], 
    ('Mon','Mtw'): [['Mon','Mtw']], 
    ('Mon','Otn'): [['Mon','Otn']], 
    ('Mon','Ots'): [['Mon','Ots']], 
 
    ('Cht','Yar'): [['Cht','Yar']], 
    ('Cht','Syd'): [['Cht','Syd']], 
    ('Cht','Hal'): [['Cht','Hal']], 
    ('Cht','Tru'): [['Cht','Tru']], 
    ('Cht','Mon'): [['Cht','Mon']], 
    ('Cht','Stj'): [['Cht','Stj']], 
    ('Cht','Frd'): [['Cht','Frd']], 
    ('Cht','Gt1'): [['Cht','Gt1']], 
    ('Cht','Riv'): [['Cht','Riv']], 
    ('Cht','Qbc'): [['Cht','Qbc']], 
    ('Cht','Gt2'): [['Cht','Gt2']], 
    ('Cht','Mte'): [['Cht','Mte']], 
    ('Cht','Gt3'): [['Cht','Gt3']], 
    ('Cht','Caw'): [['Cht','Caw']], 
    ('Cht','Mtw'): [['Cht','Mtw']], 
    ('Cht','Otn'): [['Cht','Otn']], 
    ('Cht','Ots'): [['Cht','Ots']], 
 
    ('Stj','Yar'): [['Stj','Yar']], 
    ('Stj','Syd'): [['Stj','Syd']], 
    ('Stj','Hal'): [['Stj','Hal']], 
    ('Stj','Tru'): [['Stj','Tru']], 
    ('Stj','Cht'): [['Stj','Cht']], 
    ('Stj','Mon'): [['Stj','Mon']], 
    ('Stj','Frd'): [['Stj','Frd']], 



94 

 

    ('Stj','Gt1'): [['Stj','Gt1']], 
    ('Stj','Riv'): [['Stj','Riv']], 
    ('Stj','Qbc'): [['Stj','Qbc']], 
    ('Stj','Gt2'): [['Stj','Gt2']], 
    ('Stj','Mte'): [['Stj','Mte']], 
    ('Stj','Gt3'): [['Stj','Gt3']], 
    ('Stj','Caw'): [['Stj','Caw']], 
    ('Stj','Mtw'): [['Stj','Mtw']], 
    ('Stj','Otn'): [['Stj','Otn']], 
    ('Stj','Ots'): [['Stj','Ots']], 
 
    ('Frd','Yar'): [['Frd','Yar']], 
    ('Frd','Syd'): [['Frd','Syd']], 
    ('Frd','Hal'): [['Frd','Hal']], 
    ('Frd','Tru'): [['Frd','Tru']], 
    ('Frd','Cht'): [['Frd','Cht']], 
    ('Frd','Mon'): [['Frd','Mon']], 
    ('Frd','Stj'): [['Frd','Stj']], 
    ('Frd','Gt1'): [['Frd','Gt1']], 
    ('Frd','Riv'): [['Frd','Riv']], 
    ('Frd','Qbc'): [['Frd','Qbc']], 
    ('Frd','Gt2'): [['Frd','Gt2']], 
    ('Frd','Mte'): [['Frd','Mte']], 
    ('Frd','Gt3'): [['Frd','Gt3']], 
    ('Frd','Caw'): [['Frd','Caw']], 
    ('Frd','Mtw'): [['Frd','Mtw']], 
    ('Frd','Otn'): [['Frd','Otn']], 
    ('Frd','Ots'): [['Frd','Ots']], 
 
    ('Gt1','Yar'): [['Gt1','Yar']], 
    ('Gt1','Syd'): [['Gt1','Syd']], 
    ('Gt1','Hal'): [['Gt1','Hal']], 
    ('Gt1','Tru'): [['Gt1','Tru']], 
    ('Gt1','Cht'): [['Gt1','Cht']], 
    ('Gt1','Mon'): [['Gt1','Mon']], 
    ('Gt1','Stj'): [['Gt1','Stj']], 
    ('Gt1','Frd'): [['Gt1','Frd']], 
    ('Gt1','Riv'): [['Gt1','Riv']], 
    ('Gt1','Qbc'): [['Gt1','Qbc']], 
    ('Gt1','Mte'): [['Gt1','Mte']], 
    ('Gt1','Gt2'): [['Gt1','Gt2']], 
    ('Gt1','Gt3'): [['Gt1','Gt3']], 
    ('Gt1','Caw'): [['Gt1','Caw']], 
    ('Gt1','Mtw'): [['Gt1','Mtw']], 
    ('Gt1','Otn'): [['Gt1','Otn']], 
    ('Gt1','Ots'): [['Gt1','Ots']], 
 
    ('Riv','Yar'): [['Riv','Yar']], 
    ('Riv','Syd'): [['Riv','Syd']], 
    ('Riv','Hal'): [['Riv','Hal']], 
    ('Riv','Tru'): [['Riv','Tru']], 
    ('Riv','Cht'): [['Riv','Cht']], 
    ('Riv','Mon'): [['Riv','Mon']], 
    ('Riv','Stj'): [['Riv','Stj']], 
    ('Riv','Frd'): [['Riv','Frd']], 
    ('Riv','Gt1'): [['Riv','Gt1']], 
    ('Riv','Qbc'): [['Riv','Qbc']], 
    ('Riv','Mte'): [['Riv','Mte']], 
    ('Riv','Gt2'): [['Riv','Gt2']], 
    ('Riv','Gt3'): [['Riv','Gt3']], 
    ('Riv','Caw'): [['Riv','Caw']], 
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    ('Riv','Mtw'): [['Riv','Mtw']], 
    ('Riv','Otn'): [['Riv','Otn']], 
    ('Riv','Ots'): [['Riv','Ots']], 
 
    ('Qbc','Yar'): [['Qbc','Yar']], 
    ('Qbc','Syd'): [['Qbc','Syd']], 
    ('Qbc','Hal'): [['Qbc','Hal']], 
    ('Qbc','Tru'): [['Qbc','Tru']], 
    ('Qbc','Cht'): [['Qbc','Cht']], 
    ('Qbc','Mon'): [['Qbc','Mon']], 
    ('Qbc','Stj'): [['Qbc','Stj']], 
    ('Qbc','Frd'): [['Qbc','Frd']], 
    ('Qbc','Gt1'): [['Qbc','Gt1']], 
    ('Qbc','Riv'): [['Qbc','Riv']], 
    ('Qbc','Mte'): [['Qbc','Mte']], 
    ('Qbc','Gt2'): [['Qbc','Gt2']], 
    ('Qbc','Gt3'): [['Qbc','Gt3']], 
    ('Qbc','Caw'): [['Qbc','Caw']], 
    ('Qbc','Mtw'): [['Qbc','Mtw']], 
    ('Qbc','Otn'): [['Qbc','Otn']], 
    ('Qbc','Ots'): [['Qbc','Ots']], 
 
    ('Gt2','Yar'): [['Gt2','Yar']], 
    ('Gt2','Syd'): [['Gt2','Syd']], 
    ('Gt2','Hal'): [['Gt2','Hal']], 
    ('Gt2','Tru'): [['Gt2','Tru']], 
    ('Gt2','Cht'): [['Gt2','Cht']], 
    ('Gt2','Mon'): [['Gt2','Mon']], 
    ('Gt2','Stj'): [['Gt2','Stj']], 
    ('Gt2','Frd'): [['Gt2','Frd']], 
    ('Gt2','Gt1'): [['Gt2','Gt1']], 
    ('Gt2','Riv'): [['Gt2','Riv']], 
    ('Gt2','Qbc'): [['Gt2','Qbc']], 
    ('Gt2','Mte'): [['Gt2','Mte']], 
    ('Gt2','Gt3'): [['Gt2','Gt3']], 
    ('Gt2','Caw'): [['Gt2','Caw']], 
    ('Gt2','Mtw'): [['Gt2','Mtw']], 
    ('Gt2','Otn'): [['Gt2','Otn']], 
    ('Gt2','Ots'): [['Gt2','Ots']], 
 
    ('Mte','Yar'): [['Mte','Yar']], 
    ('Mte','Syd'): [['Mte','Syd']], 
    ('Mte','Hal'): [['Mte','Hal']], 
    ('Mte','Tru'): [['Mte','Tru']], 
    ('Mte','Cht'): [['Mte','Cht']], 
    ('Mte','Mon'): [['Mte','Mon']], 
    ('Mte','Stj'): [['Mte','Stj']], 
    ('Mte','Frd'): [['Mte','Frd']], 
    ('Mte','Gt1'): [['Mte','Gt1']], 
    ('Mte','Riv'): [['Mte','Riv']], 
    ('Mte','Qbc'): [['Mte','Qbc']], 
    ('Mte','Gt2'): [['Mte','Gt2']], 
    ('Mte','Gt3'): [['Mte','Gt3']], 
    ('Mte','Caw'): [['Mte','Caw']], 
    ('Mte','Mtw'): [['Mte','Mtw']], 
    ('Mte','Otn'): [['Mte','Otn']], 
    ('Mte','Ots'): [['Mte','Ots']], 
 
    ('Gt3','Yar'): [['Gt3','Yar']], 
    ('Gt3','Syd'): [['Gt3','Syd']], 
    ('Gt3','Hal'): [['Gt3','Hal']], 
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    ('Gt3','Tru'): [['Gt3','Tru']], 
    ('Gt3','Cht'): [['Gt3','Cht']], 
    ('Gt3','Mon'): [['Gt3','Mon']], 
    ('Gt3','Stj'): [['Gt3','Stj']], 
    ('Gt3','Frd'): [['Gt3','Frd']], 
    ('Gt3','Gt1'): [['Gt3','Gt1']], 
    ('Gt3','Riv'): [['Gt3','Riv']], 
    ('Gt3','Qbc'): [['Gt3','Qbc']], 
    ('Gt3','Gt2'): [['Gt3','Gt2']], 
    ('Gt3','Mte'): [['Gt3','Mte']], 
    ('Gt3','Caw'): [['Gt3','Caw']], 
    ('Gt3','Mtw'): [['Gt3','Mtw']], 
    ('Gt3','Otn'): [['Gt3','Otn']], 
    ('Gt3','Ots'): [['Gt3','Ots']], 
 
    ('Caw','Yar'): [['Caw','Yar']], 
    ('Caw','Syd'): [['Caw','Syd']], 
    ('Caw','Hal'): [['Caw','Hal']], 
    ('Caw','Tru'): [['Caw','Tru']], 
    ('Caw','Cht'): [['Caw','Cht']], 
    ('Caw','Mon'): [['Caw','Mon']], 
    ('Caw','Stj'): [['Caw','Stj']], 
    ('Caw','Frd'): [['Caw','Frd']], 
    ('Caw','Gt1'): [['Caw','Gt1']], 
    ('Caw','Riv'): [['Caw','Riv']], 
    ('Caw','Qbc'): [['Caw','Qbc']], 
    ('Caw','Gt2'): [['Caw','Gt2']], 
    ('Caw','Mte'): [['Caw','Mte']], 
    ('Caw','Gt3'): [['Caw','Gt3']], 
    ('Caw','Mtw'): [['Caw','Mtw']], 
    ('Caw','Otn'): [['Caw','Otn']], 
    ('Caw','Ots'): [['Caw','Ots']], 
 
    ('Mtw','Yar'): [['Mtw','Yar']], 
    ('Mtw','Syd'): [['Mtw','Syd']], 
    ('Mtw','Hal'): [['Mtw','Hal']], 
    ('Mtw','Tru'): [['Mtw','Tru']], 
    ('Mtw','Cht'): [['Mtw','Cht']], 
    ('Mtw','Mon'): [['Mtw','Mon']], 
    ('Mtw','Stj'): [['Mtw','Stj']], 
    ('Mtw','Frd'): [['Mtw','Frd']], 
    ('Mtw','Gt1'): [['Mtw','Gt1']], 
    ('Mtw','Riv'): [['Mtw','Riv']], 
    ('Mtw','Qbc'): [['Mtw','Qbc']], 
    ('Mtw','Gt2'): [['Mtw','Gt2']], 
    ('Mtw','Mte'): [['Mtw','Mte']], 
    ('Mtw','Gt3'): [['Mtw','Gt3']], 
    ('Mtw','Caw'): [['Mtw','Caw']], 
    ('Mtw','Otn'): [['Mtw','Otn']], 
    ('Mtw','Ots'): [['Mtw','Ots']], 

 
    ('Otn','Yar'): [['Otn','Yar']], 
    ('Otn','Syd'): [['Otn','Syd']], 
    ('Otn','Hal'): [['Otn','Hal']], 
    ('Otn','Tru'): [['Otn','Tru']], 
    ('Otn','Cht'): [['Otn','Cht']], 
    ('Otn','Mon'): [['Otn','Mon']], 
    ('Otn','Stj'): [['Otn','Stj']], 
    ('Otn','Frd'): [['Otn','Frd']], 
    ('Otn','Gt1'): [['Otn','Gt1']], 
    ('Otn','Riv'): [['Otn','Riv']], 
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    ('Otn','Qbc'): [['Otn','Qbc']], 
    ('Otn','Gt2'): [['Otn','Gt2']], 
    ('Otn','Mte'): [['Otn','Mte']], 
    ('Otn','Gt3'): [['Otn','Gt3']], 
    ('Otn','Caw'): [['Otn','Caw']], 
    ('Otn','Mtw'): [['Otn','Mtw']], 
    ('Otn','Ots'): [['Otn','Ots']], 
 
    ('Ots','Yar'): [['Ots','Yar']], 
    ('Ots','Syd'): [['Ots','Syd']], 
    ('Ots','Hal'): [['Ots','Hal']], 
    ('Ots','Tru'): [['Ots','Tru']], 
    ('Ots','Cht'): [['Ots','Cht']], 
    ('Ots','Mon'): [['Ots','Mon']], 
    ('Ots','Stj'): [['Ots','Stj']], 
    ('Ots','Frd'): [['Ots','Frd']], 
    ('Ots','Gt1'): [['Ots','Gt1']], 
    ('Ots','Riv'): [['Ots','Riv']], 
    ('Ots','Qbc'): [['Ots','Qbc']], 
    ('Ots','Gt2'): [['Ots','Gt2']], 
    ('Ots','Mte'): [['Ots','Mte']], 
    ('Ots','Gt3'): [['Ots','Gt3']], 
    ('Ots','Caw'): [['Ots','Caw']], 
    ('Ots','Mtw'): [['Ots','Mtw']], 
    ('Ots','Otn'): [['Ots','Otn']] 
    } 

 

  



98 

 

Appendix B: PI Arcs Dictionary 

 
route_pi = { 
    ('Yar','Hal'): [['Yar','Hal']], 
    ('Yar','Tru'): [['Yar','Tru']], 
    ('Yar','Syd'): [['Yar','Syd']], 
    ('Yar','Mon'): [['Yar','Tru'],['Tru','Mon']], 
    ('Yar','Cht'): [['Yar','Tru'],['Tru','Cht']], 
    ('Yar','Stj'): [['Yar','Tru'],['Tru','Stj']], 
    ('Yar','Frd'): [['Yar','Tru'],['Tru','Frd']], 
    ('Yar','Gt1'): [['Yar','Tru'],['Tru','Frd'],['Frd','Gt1']], 
    ('Yar','Riv'): [['Yar','Tru'],['Tru','Frd'],['Frd','Riv']], 
    ('Yar','Qbc'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc']], 
    ('Yar','Gt2'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Yar','Mte'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']], 
    ('Yar','Gt3'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Yar','Caw'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Yar','Mtw'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Yar','Otn'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Yar','Ots'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Hal','Yar'): [['Hal','Yar']], 
    ('Hal','Tru'): [['Hal','Tru']], 
    ('Hal','Syd'): [['Hal','Syd']], 
    ('Hal','Mon'): [['Hal','Tru'],['Tru','Mon']], 
    ('Hal','Cht'): [['Hal','Tru'],['Tru','Cht']], 
    ('Hal','Stj'): [['Hal','Tru'],['Tru','Stj']], 
    ('Hal','Frd'): [['Hal','Tru'],['Tru','Frd']], 
    ('Hal','Gt1'): [['Hal','Tru'],['Tru','Frd'],['Frd','Gt1']], 
    ('Hal','Riv'): [['Hal','Tru'],['Tru','Frd'],['Frd','Riv']], 
    ('Hal','Qbc'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc']], 
    ('Hal','Gt2'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Hal','Mte'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']], 
    ('Hal','Gt3'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Hal','Caw'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Hal','Mtw'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Hal','Otn'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Hal','Ots'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Syd','Yar'): [['Syd','Yar']], 
    ('Syd','Tru'): [['Syd','Tru']], 
    ('Syd','Hal'): [['Syd','Hal']], 
    ('Syd','Mon'): [['Syd','Tru'],['Tru','Mon']], 
    ('Syd','Cht'): [['Syd','Tru'],['Tru','Cht']], 
    ('Syd','Stj'): [['Syd','Tru'],['Tru','Stj']], 
    ('Syd','Frd'): [['Syd','Tru'],['Tru','Frd']], 
    ('Syd','Gt1'): [['Syd','Tru'],['Tru','Frd'],['Frd','Gt1']], 
    ('Syd','Riv'): [['Syd','Tru'],['Tru','Frd'],['Frd','Riv']], 
    ('Syd','Qbc'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc']], 
    ('Syd','Gt2'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Syd','Mte'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']], 
    ('Syd','Gt3'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Syd','Caw'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Syd','Mtw'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Syd','Otn'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Syd','Ots'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Tru','Yar'): [['Tru','Yar']], 
    ('Tru','Syd'): [['Tru','Syd']], 
    ('Tru','Hal'): [['Tru','Hal']], 
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    ('Tru','Mon'): [['Tru','Mon']], 
    ('Tru','Cht'): [['Tru','Cht']], 
    ('Tru','Stj'): [['Tru','Stj']], 
    ('Tru','Frd'): [['Tru','Frd']], 
    ('Tru','Gt1'): [['Tru','Frd'],['Frd','Gt1']], 
    ('Tru','Riv'): [['Tru','Frd'],['Frd','Riv']], 
    ('Tru','Qbc'): [['Tru','Frd'],['Frd','Qbc']], 
    ('Tru','Gt2'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Tru','Mte'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']], 
    ('Tru','Gt3'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Tru','Caw'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Tru','Mtw'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Tru','Otn'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Tru','Ots'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Mon','Yar'): [['Mon','Tru'],['Tru','Yar']], 
    ('Mon','Syd'): [['Mon','Tru'],['Tru','Syd']], 
    ('Mon','Hal'): [['Mon','Tru'],['Tru','Hal']], 
    ('Mon','Tru'): [['Mon','Tru']], 
    ('Mon','Cht'): [['Mon','Cht']], 
    ('Mon','Stj'): [['Mon','Stj']], 
    ('Mon','Frd'): [['Mon','Frd']], 
    ('Mon','Gt1'): [['Mon','Frd'],['Frd','Gt1']], 
    ('Mon','Riv'): [['Mon','Frd'],['Frd','Riv']], 
    ('Mon','Qbc'): [['Mon','Frd'],['Frd','Qbc']], 
    ('Mon','Gt2'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Mon','Mte'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte']], 
    ('Mon','Gt3'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Mon','Caw'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Mon','Mtw'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Mon','Otn'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Mon','Ots'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Cht','Yar'): [['Cht','Tru'],['Tru','Yar']], 
    ('Cht','Syd'): [['Cht','Tru'],['Tru','Syd']], 
    ('Cht','Hal'): [['Cht','Tru'],['Tru','Hal']], 
    ('Cht','Tru'): [['Cht','Tru']], 
    ('Cht','Mon'): [['Cht','Mon']], 
    ('Cht','Stj'): [['Cht','Stj']], 
    ('Cht','Frd'): [['Cht','Frd']], 
    ('Cht','Gt1'): [['Cht','Frd'],['Frd','Gt1']], 
    ('Cht','Riv'): [['Cht','Frd'],['Frd','Riv']], 
    ('Cht','Qbc'): [['Cht','Frd'],['Frd','Qbc']], 
    ('Cht','Gt2'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Cht','Mte'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte']], 
    ('Cht','Gt3'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Cht','Caw'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Cht','Mtw'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Cht','Otn'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Cht','Ots'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Stj','Yar'): [['Stj','Tru'],['Tru','Yar']], 
    ('Stj','Syd'): [['Stj','Tru'],['Tru','Syd']], 
    ('Stj','Hal'): [['Stj','Tru'],['Tru','Hal']], 
    ('Stj','Tru'): [['Stj','Tru']], 
    ('Stj','Cht'): [['Stj','Cht']], 
    ('Stj','Mon'): [['Stj','Mon']], 
    ('Stj','Frd'): [['Stj','Frd']], 
    ('Stj','Gt1'): [['Stj','Frd'],['Frd','Gt1']], 
    ('Stj','Riv'): [['Stj','Frd'],['Frd','Riv']], 
    ('Stj','Qbc'): [['Stj','Frd'],['Frd','Qbc']], 
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    ('Stj','Gt2'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Stj','Mte'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte']], 
    ('Stj','Gt3'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Stj','Caw'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Stj','Mtw'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Stj','Otn'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Stj','Ots'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Frd','Yar'): [['Frd','Tru'],['Tru','Yar']], 
    ('Frd','Syd'): [['Frd','Tru'],['Tru','Syd']], 
    ('Frd','Hal'): [['Frd','Tru'],['Tru','Hal']], 
    ('Frd','Tru'): [['Frd','Tru']], 
    ('Frd','Cht'): [['Frd','Cht']], 
    ('Frd','Mon'): [['Frd','Mon']], 
    ('Frd','Stj'): [['Frd','Stj']], 
    ('Frd','Gt1'): [['Frd','Gt1']], 
    ('Frd','Riv'): [['Frd','Riv']], 
    ('Frd','Qbc'): [['Frd','Qbc']], 
    ('Frd','Gt2'): [['Frd','Qbc'],['Qbc','Gt2']], 
    ('Frd','Mte'): [['Frd','Qbc'],['Qbc','Mte']], 
    ('Frd','Gt3'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Frd','Caw'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Frd','Mtw'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Frd','Otn'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Frd','Ots'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Gt1','Yar'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Gt1','Syd'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Gt1','Hal'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Gt1','Tru'): [['Gt1','Frd'],['Frd','Tru']], 
    ('Gt1','Cht'): [['Gt1','Frd'],['Frd','Cht']], 
    ('Gt1','Mon'): [['Gt1','Frd'],['Frd','Mon']], 
    ('Gt1','Stj'): [['Gt1','Frd'],['Frd','Stj']], 
    ('Gt1','Frd'): [['Gt1','Frd']], 
    ('Gt1','Riv'): [['Gt1','Riv']], 
    ('Gt1','Qbc'): [['Gt1','Qbc']], 
    ('Gt1','Mte'): [['Gt1','Qbc'],['Qbc','Mte']], 
    ('Gt1','Gt2'): [['Gt1','Qbc'],['Qbc','Gt2']], 
    ('Gt1','Gt3'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Gt1','Caw'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Gt1','Mtw'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Gt1','Otn'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Gt1','Ots'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Riv','Yar'): [['Riv','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Riv','Syd'): [['Riv','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Riv','Hal'): [['Riv','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Riv','Tru'): [['Riv','Frd'],['Frd','Tru']], 
    ('Riv','Cht'): [['Riv','Frd'],['Frd','Cht']], 
    ('Riv','Mon'): [['Riv','Frd'],['Frd','Mon']], 
    ('Riv','Stj'): [['Riv','Frd'],['Frd','Stj']], 
    ('Riv','Frd'): [['Riv','Frd']], 
    ('Riv','Gt1'): [['Riv','Gt1']], 
    ('Riv','Qbc'): [['Riv','Qbc']], 
    ('Riv','Mte'): [['Riv','Qbc'],['Qbc','Mte']], 
    ('Riv','Gt2'): [['Riv','Qbc'],['Qbc','Gt2']], 
    ('Riv','Gt3'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Riv','Caw'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Riv','Mtw'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Mtw']], 
    ('Riv','Otn'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Riv','Ots'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
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    ('Qbc','Yar'): [['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Qbc','Syd'): [['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Qbc','Hal'): [['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Qbc','Tru'): [['Qbc','Frd'],['Frd','Tru']], 
    ('Qbc','Cht'): [['Qbc','Frd'],['Frd','Cht']], 
    ('Qbc','Mon'): [['Qbc','Frd'],['Frd','Mon']], 
    ('Qbc','Stj'): [['Qbc','Frd'],['Frd','Stj']], 
    ('Qbc','Frd'): [['Qbc','Frd']], 
    ('Qbc','Gt1'): [['Qbc','Gt1']], 
    ('Qbc','Riv'): [['Qbc','Riv']], 
    ('Qbc','Mte'): [['Qbc','Mte']], 
    ('Qbc','Gt2'): [['Qbc','Gt2']], 
    ('Qbc','Gt3'): [['Qbc','Mte'],['Mte','Gt3']], 
    ('Qbc','Caw'): [['Qbc','Mte'],['Mte','Caw']], 
    ('Qbc','Mtw'): [['Qbc','Mte'],['Mte','Mtw']], 
    ('Qbc','Otn'): [['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Qbc','Ots'): [['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Gt2','Yar'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Gt2','Syd'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Gt2','Hal'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Gt2','Tru'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru']], 
    ('Gt2','Cht'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Gt2','Mon'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
    ('Gt2','Stj'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Gt2','Frd'): [['Gt2','Qbc'],['Qbc','Frd']], 
    ('Gt2','Gt1'): [['Gt2','Qbc'],['Qbc','Gt1']], 
    ('Gt2','Riv'): [['Gt2','Qbc'],['Qbc','Riv']], 
    ('Gt2','Qbc'): [['Gt2','Qbc']], 
    ('Gt2','Mte'): [['Gt2','Mte']], 
    ('Gt2','Gt3'): [['Gt2','Mte'],['Mte','Gt3']], 
    ('Gt2','Caw'): [['Gt2','Mte'],['Mte','Caw']], 
    ('Gt2','Mtw'): [['Gt2','Mte'],['Mte','Mtw']], 
    ('Gt2','Otn'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Gt2','Ots'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Mte','Yar'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Mte','Syd'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Mte','Hal'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Mte','Tru'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']], 
    ('Mte','Cht'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Mte','Mon'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
    ('Mte','Stj'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Mte','Frd'): [['Mte','Qbc'],['Qbc','Frd']], 
    ('Mte','Gt1'): [['Mte','Qbc'],['Qbc','Gt1']], 
    ('Mte','Riv'): [['Mte','Qbc'],['Qbc','Riv']], 
    ('Mte','Qbc'): [['Mte','Qbc']], 
    ('Mte','Gt2'): [['Mte','Gt2']], 
    ('Mte','Gt3'): [['Mte','Gt3']], 
    ('Mte','Caw'): [['Mte','Caw']], 
    ('Mte','Mtw'): [['Mte','Mtw']], 
    ('Mte','Otn'): [['Mte','Mtw'],['Mtw','Otn']], 
    ('Mte','Ots'): [['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Gt3','Yar'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Gt3','Syd'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Gt3','Hal'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Gt3','Tru'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']], 
    ('Gt3','Cht'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Gt3','Mon'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
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    ('Gt3','Stj'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Gt3','Frd'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd']], 
    ('Gt3','Gt1'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Gt1']], 
    ('Gt3','Riv'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Riv']], 
    ('Gt3','Qbc'): [['Gt3','Mte'],['Mte','Qbc']], 
    ('Gt3','Gt2'): [['Gt3','Mte'],['Mte','Gt2']], 
    ('Gt3','Mte'): [['Gt3','Mte']], 
    ('Gt3','Caw'): [['Gt3','Caw']], 
    ('Gt3','Mtw'): [['Gt3','Mtw']], 
    ('Gt3','Otn'): [['Gt3','Mtw'],['Mtw','Otn']], 
    ('Gt3','Ots'): [['Gt3','Mtw'],['Mtw','Ots']], 
 
    ('Caw','Yar'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Caw','Syd'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Caw','Hal'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Caw','Tru'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']], 
    ('Caw','Cht'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Caw','Mon'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
    ('Caw','Stj'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Caw','Frd'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd']], 
    ('Caw','Gt1'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Gt1']], 
    ('Caw','Riv'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Riv']], 
    ('Caw','Qbc'): [['Caw','Mte'],['Mte','Qbc']], 
    ('Caw','Gt2'): [['Caw','Mte'],['Mte','Gt2']], 
    ('Caw','Mte'): [['Caw','Mte']], 
    ('Caw','Gt3'): [['Caw','Gt3']], 
    ('Caw','Mtw'): [['Caw','Mtw']], 
    ('Caw','Otn'): [['Caw','Mtw'],['Mtw','Otn']], 
    ('Caw','Ots'): [['Caw','Mtw'],['Mtw','Ots']], 
 
    ('Mtw','Yar'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Mtw','Syd'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Mtw','Hal'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Mtw','Tru'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']], 
    ('Mtw','Cht'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Mtw','Mon'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
    ('Mtw','Stj'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Mtw','Frd'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd']], 
    ('Mtw','Gt1'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Gt1']], 
    ('Mtw','Riv'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Riv']], 
    ('Mtw','Qbc'): [['Mtw','Mte'],['Mte','Qbc']], 
    ('Mtw','Gt2'): [['Mtw','Mte'],['Mte','Gt2']], 
    ('Mtw','Mte'): [['Mtw','Mte']], 
    ('Mtw','Gt3'): [['Mtw','Gt3']], 
    ('Mtw','Caw'): [['Mtw','Caw']], 
    ('Mtw','Otn'): [['Mtw','Otn']], 
    ('Mtw','Ots'): [['Mtw','Ots']], 
 
    ('Otn','Yar'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Otn','Syd'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Otn','Hal'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Otn','Tru'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']], 
    ('Otn','Cht'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Otn','Mon'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
    ('Otn','Stj'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Otn','Frd'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd']], 
    ('Otn','Gt1'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Gt1']], 
    ('Otn','Riv'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Riv']], 
    ('Otn','Qbc'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc']], 
    ('Otn','Gt2'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Gt2']], 
    ('Otn','Mte'): [['Otn','Mtw'],['Mtw','Mte']], 
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    ('Otn','Gt3'): [['Otn','Mtw'],['Mtw','Gt3']], 
    ('Otn','Caw'): [['Otn','Mtw'],['Mtw','Caw']], 
    ('Otn','Mtw'): [['Otn','Mtw']], 
    ('Otn','Ots'): [['Otn','Ots']], 
 
    ('Ots','Yar'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Ots','Syd'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Ots','Hal'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Ots','Tru'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']], 
    ('Ots','Cht'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Ots','Mon'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
    ('Ots','Stj'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Ots','Frd'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd']], 
    ('Ots','Gt1'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Gt1']], 
    ('Ots','Riv'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Riv']], 
    ('Ots','Qbc'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc']], 
    ('Ots','Gt2'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Gt2']], 
    ('Ots','Mte'): [['Ots','Mtw'],['Mtw','Mte']], 
    ('Ots','Gt3'): [['Ots','Mtw'],['Mtw','Gt3']], 
    ('Ots','Caw'): [['Ots','Mtw'],['Mtw','Caw']], 
    ('Ots','Mtw'): [['Ots','Mtw']], 
    ('Ots','Otn'): [['Ots','Otn']] 
    } 
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Appendix C: Hybrid Arcs Dictionary 

 

route_hy = { 
    ('Yar','Hal'): [['Yar','Hal']], 
    ('Yar','Tru'): [['Yar','Tru']], 
    ('Yar','Syd'): [['Yar','Syd']], 
    ('Yar','Mon'): [['Yar','Tru'],['Tru','Mon']], 
    ('Yar','Cht'): [['Yar','Tru'],['Tru','Cht']], 
    ('Yar','Stj'): [['Yar','Tru'],['Tru','Stj']], 
    ('Yar','Frd'): [['Yar','Tru'],['Tru','Frd']], 
    ('Yar','Gt1'): [['Yar','Tru'],['Tru','Frd'],['Frd','Gt1']], 
    ('Yar','Riv'): [['Yar','Tru'],['Tru','Frd'],['Frd','Riv']], 
    ('Yar','Qbc'): [['Yar','Tru'],['Tru','Qbc']], 
    ('Yar','Gt2'): [['Yar','Tru'],['Tru','Qbc'],['Qbc','Gt2']], 
    ('Yar','Mte'): [['Yar','Tru'],['Tru','Mte']], 
    ('Yar','Gt3'): [['Yar','Tru'],['Tru','Mte'],['Mte','Gt3']], 
    ('Yar','Caw'): [['Yar','Tru'],['Tru','Mte'],['Mte','Caw']], 
    ('Yar','Mtw'): [['Yar','Tru'],['Tru','Mtw']], 
    ('Yar','Otn'): [['Yar','Tru'],['Tru','Mtw'],['Mtw','Otn']], 
    ('Yar','Ots'): [['Yar','Tru'],['Tru','Mtw'],['Mtw','Ots']], 
 
    ('Hal','Yar'): [['Hal','Yar']], 
    ('Hal','Tru'): [['Hal','Tru']], 
    ('Hal','Syd'): [['Hal','Syd']], 
    ('Hal','Mon'): [['Hal','Tru'],['Tru','Mon']], 
    ('Hal','Cht'): [['Hal','Tru'],['Tru','Cht']], 
    ('Hal','Stj'): [['Hal','Tru'],['Tru','Stj']], 
    ('Hal','Frd'): [['Hal','Tru'],['Tru','Frd']], 
    ('Hal','Gt1'): [['Hal','Tru'],['Tru','Frd'],['Frd','Gt1']], 
    ('Hal','Riv'): [['Hal','Tru'],['Tru','Frd'],['Frd','Riv']], 
    ('Hal','Qbc'): [['Hal','Tru'],['Tru','Qbc']], 
    ('Hal','Gt2'): [['Hal','Tru'],['Tru','Qbc'],['Qbc','Gt2']], 
    ('Hal','Mte'): [['Hal','Tru'],['Tru','Mte']], 
    ('Hal','Gt3'): [['Hal','Tru'],['Tru','Mte'],['Mte','Gt3']], 
    ('Hal','Caw'): [['Hal','Tru'],['Tru','Mte'],['Mte','Caw']], 
    ('Hal','Mtw'): [['Hal','Tru'],['Tru','Mtw']], 
    ('Hal','Otn'): [['Hal','Tru'],['Tru','Mtw'],['Mtw','Otn']], 
    ('Hal','Ots'): [['Hal','Tru'],['Tru','Mtw'],['Mtw','Ots']], 
 
    ('Syd','Hal'): [['Syd','Hal']], 
    ('Syd','Tru'): [['Syd','Tru']], 
    ('Syd','Yar'): [['Syd','Yar']], 
    ('Syd','Mon'): [['Syd','Tru'],['Tru','Mon']], 
    ('Syd','Cht'): [['Syd','Tru'],['Tru','Cht']], 
    ('Syd','Stj'): [['Syd','Tru'],['Tru','Stj']], 
    ('Syd','Frd'): [['Syd','Tru'],['Tru','Frd']], 
    ('Syd','Gt1'): [['Syd','Tru'],['Tru','Frd'],['Frd','Gt1']], 
    ('Syd','Riv'): [['Syd','Tru'],['Tru','Frd'],['Frd','Riv']], 
    ('Syd','Qbc'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc']], 
    ('Syd','Gt2'): [['Syd','Tru'],['Tru','Qbc'],['Qbc','Gt2']], 
    ('Syd','Mte'): [['Syd','Tru'],['Tru','Mte']], 
    ('Syd','Gt3'): [['Syd','Tru'],['Tru','Mte'],['Mte','Gt3']], 
    ('Syd','Caw'): [['Syd','Tru'],['Tru','Mte'],['Mte','Caw']], 
    ('Syd','Mtw'): [['Syd','Tru'],['Tru','Mtw']], 
    ('Syd','Otn'): [['Syd','Tru'],['Tru','Mtw'],['Mtw','Otn']], 
    ('Syd','Ots'): [['Syd','Tru'],['Tru','Mtw'],['Mtw','Ots']], 
 
    ('Tru','Hal'): [['Tru','Hal']], 
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    ('Tru','Tru'): [['Tru','Frd']], 
    ('Tru','Syd'): [['Tru','Syd']], 
    ('Tru','Mon'): [['Tru','Mon']], 
    ('Tru','Cht'): [['Tru','Cht']], 
    ('Tru','Stj'): [['Tru','Stj']], 
    ('Tru','Frd'): [['Tru','Frd']], 
    ('Tru','Gt1'): [['Tru','Frd'],['Frd','Gt1']], 
    ('Tru','Riv'): [['Tru','Frd'],['Frd','Riv']], 
    ('Tru','Qbc'): [['Tru','Qbc']], 
    ('Tru','Gt2'): [['Tru','Qbc'],['Qbc','Gt2']], 
    ('Tru','Mte'): [['Tru','Mte']], 
    ('Tru','Gt3'): [['Tru','Mte'],['Mte','Gt3']], 
    ('Tru','Caw'): [['Tru','Mte'],['Mte','Caw']], 
    ('Tru','Mtw'): [['Tru','Mtw']], 
    ('Tru','Otn'): [['Tru','Mtw'],['Mtw','Otn']], 
    ('Tru','Ots'): [['Tru','Mtw'],['Mtw','Ots']], 
 
    ('Mon','Yar'): [['Mon','Tru'],['Tru','Yar']], 
    ('Mon','Syd'): [['Mon','Tru'],['Tru','Syd']], 
    ('Mon','Hal'): [['Mon','Tru'],['Tru','Hal']], 
    ('Mon','Tru'): [['Mon','Tru']], 
    ('Mon','Cht'): [['Mon','Cht']], 
    ('Mon','Stj'): [['Mon','Stj']], 
    ('Mon','Frd'): [['Mon','Frd']], 
    ('Mon','Gt1'): [['Mon','Frd'],['Frd','Gt1']], 
    ('Mon','Riv'): [['Mon','Frd'],['Frd','Riv']], 
    ('Mon','Qbc'): [['Mon','Frd'],['Frd','Qbc']], 
    ('Mon','Gt2'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Mon','Mte'): [['Mon','Frd'],['Frd','Mte']], 
    ('Mon','Gt3'): [['Mon','Frd'],['Frd','Mte'],['Mte','Gt3']], 
    ('Mon','Caw'): [['Mon','Frd'],['Frd','Mte'],['Mte','Caw']], 
    ('Mon','Mtw'): [['Mon','Frd'],['Frd','Mtw']], 
    ('Mon','Otn'): [['Mon','Frd'],['Frd','Mtw'],['Mtw','Otn']], 
    ('Mon','Ots'): [['Mon','Frd'],['Frd','Mtw'],['Mtw','Ots']], 
 
    ('Cht','Yar'): [['Cht','Tru'],['Tru','Yar']], 
    ('Cht','Syd'): [['Cht','Tru'],['Tru','Syd']], 
    ('Cht','Hal'): [['Cht','Tru'],['Tru','Hal']], 
    ('Cht','Tru'): [['Cht','Tru']], 
    ('Cht','Mon'): [['Cht','Mon']], 
    ('Cht','Stj'): [['Cht','Stj']], 
    ('Cht','Frd'): [['Cht','Frd']], 
    ('Cht','Gt1'): [['Cht','Frd'],['Frd','Gt1']], 
    ('Cht','Riv'): [['Cht','Frd'],['Frd','Riv']], 
    ('Cht','Qbc'): [['Cht','Frd'],['Frd','Qbc']], 
    ('Cht','Gt2'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Cht','Mte'): [['Cht','Frd'],['Frd','Mte']], 
    ('Cht','Gt3'): [['Cht','Frd'],['Frd','Mte'],['Mte','Gt3']], 
    ('Cht','Caw'): [['Cht','Frd'],['Frd','Mte'],['Mte','Caw']], 
    ('Cht','Mtw'): [['Cht','Frd'],['Frd','Mtw']], 
    ('Cht','Otn'): [['Cht','Frd'],['Frd','Mtw'],['Mtw','Otn']], 
    ('Cht','Ots'): [['Cht','Frd'],['Frd','Mtw'],['Mtw','Ots']], 
 
    ('Stj','Yar'): [['Stj','Tru'],['Tru','Yar']], 
    ('Stj','Syd'): [['Stj','Tru'],['Tru','Syd']], 
    ('Stj','Hal'): [['Stj','Tru'],['Tru','Hal']], 
    ('Stj','Tru'): [['Stj','Tru']], 
    ('Stj','Cht'): [['Stj','Cht']], 
    ('Stj','Mon'): [['Stj','Mon']], 
    ('Stj','Frd'): [['Stj','Frd']], 
    ('Stj','Gt1'): [['Stj','Frd'],['Frd','Gt1']], 
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    ('Stj','Riv'): [['Stj','Frd'],['Frd','Riv']], 
    ('Stj','Qbc'): [['Stj','Frd'],['Frd','Qbc']], 
    ('Stj','Gt2'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Gt2']], 
    ('Stj','Mte'): [['Stj','Frd'],['Frd','Mte']], 
    ('Stj','Gt3'): [['Stj','Frd'],['Frd','Mte'],['Mte','Gt3']], 
    ('Stj','Caw'): [['Stj','Frd'],['Frd','Mte'],['Mte','Caw']], 
    ('Stj','Mtw'): [['Stj','Frd'],['Frd','Mtw']], 
    ('Stj','Otn'): [['Stj','Frd'],['Frd','Mtw'],['Mtw','Otn']], 
    ('Stj','Ots'): [['Stj','Frd'],['Frd','Mtw'],['Mtw','Ots']], 
 
    ('Frd','Yar'): [['Frd','Tru'],['Tru','Yar']], 
    ('Frd','Syd'): [['Frd','Tru'],['Tru','Syd']], 
    ('Frd','Hal'): [['Frd','Tru'],['Tru','Hal']], 
    ('Frd','Tru'): [['Frd','Tru']], 
    ('Frd','Cht'): [['Frd','Cht']], 
    ('Frd','Mon'): [['Frd','Mon']], 
    ('Frd','Stj'): [['Frd','Stj']], 
    ('Frd','Gt1'): [['Frd','Gt1']], 
    ('Frd','Riv'): [['Frd','Riv']], 
    ('Frd','Qbc'): [['Frd','Qbc']], 
    ('Frd','Gt2'): [['Frd','Qbc'],['Qbc','Gt2']], 
    ('Frd','Mte'): [['Frd','Mte']], 
    ('Frd','Gt3'): [['Frd','Mte'],['Mte','Gt3']], 
    ('Frd','Caw'): [['Frd','Mte'],['Mte','Caw']], 
    ('Frd','Mtw'): [['Frd','Mtw']], 
    ('Frd','Otn'): [['Frd','Mtw'],['Mtw','Otn']], 
    ('Frd','Ots'): [['Frd','Mtw'],['Mtw','Ots']], 
 
    ('Gt1','Yar'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Gt1','Syd'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Gt1','Hal'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Gt1','Tru'): [['Gt1','Frd'],['Frd','Tru']], 
    ('Gt1','Cht'): [['Gt1','Frd'],['Frd','Cht']], 
    ('Gt1','Mon'): [['Gt1','Frd'],['Frd','Mon']], 
    ('Gt1','Stj'): [['Gt1','Frd'],['Frd','Stj']], 
    ('Gt1','Frd'): [['Gt1','Frd']], 
    ('Gt1','Riv'): [['Gt1','Riv']], 
    ('Gt1','Qbc'): [['Gt1','Qbc']], 
    ('Gt1','Mte'): [['Gt1','Qbc'],['Qbc','Mte']], 
    ('Gt1','Gt2'): [['Gt1','Qbc'],['Qbc','Gt2']], 
    ('Gt1','Gt3'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Gt1','Caw'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Gt1','Mtw'): [['Gt1','Qbc'],['Qbc','Mtw']], 
    ('Gt1','Otn'): [['Gt1','Qbc'],['Qbc','Mtw'],['Mtw','Otn']], 
    ('Gt1','Ots'): [['Gt1','Qbc'],['Qbc','Mtw'],['Mtw','Ots']], 
 
    ('Riv','Yar'): [['Riv','Frd'],['Frd','Tru'],['Tru','Yar']], 
    ('Riv','Syd'): [['Riv','Frd'],['Frd','Tru'],['Tru','Syd']], 
    ('Riv','Hal'): [['Riv','Frd'],['Frd','Tru'],['Tru','Hal']], 
    ('Riv','Tru'): [['Riv','Frd'],['Frd','Tru']], 
    ('Riv','Cht'): [['Riv','Frd'],['Frd','Cht']], 
    ('Riv','Mon'): [['Riv','Frd'],['Frd','Mon']], 
    ('Riv','Stj'): [['Riv','Frd'],['Frd','Stj']], 
    ('Riv','Frd'): [['Riv','Frd']], 
    ('Riv','Gt1'): [['Riv','Gt1']], 
    ('Riv','Qbc'): [['Riv','Qbc']], 
    ('Riv','Mte'): [['Riv','Qbc'],['Qbc','Mte']], 
    ('Riv','Gt2'): [['Riv','Qbc'],['Qbc','Gt2']], 
    ('Riv','Gt3'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Gt3']], 
    ('Riv','Caw'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Caw']], 
    ('Riv','Mtw'): [['Riv','Qbc'],['Qbc','Mtw']], 
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    ('Riv','Otn'): [['Riv','Qbc'],['Qbc','Mtw'],['Mtw','Otn']], 
    ('Riv','Ots'): [['Riv','Qbc'],['Qbc','Mtw'],['Mtw','Ots']], 
 
    ('Qbc','Yar'): [['Qbc','Tru'],['Tru','Yar']], 
    ('Qbc','Syd'): [['Qbc','Tru'],['Tru','Syd']], 
    ('Qbc','Hal'): [['Qbc','Tru'],['Tru','Hal']], 
    ('Qbc','Tru'): [['Qbc','Tru']], 
    ('Qbc','Cht'): [['Qbc','Frd'],['Frd','Cht']], 
    ('Qbc','Mon'): [['Qbc','Frd'],['Frd','Mon']], 
    ('Qbc','Stj'): [['Qbc','Frd'],['Frd','Stj']], 
    ('Qbc','Frd'): [['Qbc','Frd']], 
    ('Qbc','Gt1'): [['Qbc','Gt1']], 
    ('Qbc','Riv'): [['Qbc','Riv']], 
    ('Qbc','Mte'): [['Qbc','Mte']], 
    ('Qbc','Gt2'): [['Qbc','Gt2']], 
    ('Qbc','Gt3'): [['Qbc','Mte'],['Mte','Gt3']], 
    ('Qbc','Caw'): [['Qbc','Mte'],['Mte','Caw']], 
    ('Qbc','Mtw'): [['Qbc','Mtw']], 
    ('Qbc','Otn'): [['Qbc','Mtw'],['Mtw','Otn']], 
    ('Qbc','Ots'): [['Qbc','Mtw'],['Mtw','Ots']], 
 
    ('Gt2','Yar'): [['Gt2','Qbc'],['Qbc','Tru'],['Tru','Yar']], 
    ('Gt2','Syd'): [['Gt2','Qbc'],['Qbc','Tru'],['Tru','Syd']], 
    ('Gt2','Hal'): [['Gt2','Qbc'],['Qbc','Tru'],['Tru','Hal']], 
    ('Gt2','Tru'): [['Gt2','Qbc'],['Qbc','Tru']], 
    ('Gt2','Cht'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Cht']], 
    ('Gt2','Mon'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Mon']], 
    ('Gt2','Stj'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Stj']], 
    ('Gt2','Frd'): [['Gt2','Qbc'],['Qbc','Frd']], 
    ('Gt2','Gt1'): [['Gt2','Qbc'],['Qbc','Gt1']], 
    ('Gt2','Riv'): [['Gt2','Qbc'],['Qbc','Riv']], 
    ('Gt2','Qbc'): [['Gt2','Qbc']], 
    ('Gt2','Mte'): [['Gt2','Mte']], 
    ('Gt2','Gt3'): [['Gt2','Mte'],['Mte','Gt3']], 
    ('Gt2','Caw'): [['Gt2','Mte'],['Mte','Caw']], 
    ('Gt2','Mtw'): [['Gt2','Mte'],['Mte','Mtw']], 
    ('Gt2','Otn'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Otn']], 
    ('Gt2','Ots'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Ots']], 
 
 
    ('Mte','Yar'): [['Mte','Tru'],['Tru','Yar']], 
    ('Mte','Syd'): [['Mte','Tru'],['Tru','Syd']], 
    ('Mte','Hal'): [['Mte','Tru'],['Tru','Hal']], 
    ('Mte','Tru'): [['Mte','Tru']], 
    ('Mte','Cht'): [['Mte','Frd'],['Frd','Cht']], 
    ('Mte','Mon'): [['Mte','Frd'],['Frd','Mon']], 
    ('Mte','Stj'): [['Mte','Frd'],['Frd','Stj']], 
    ('Mte','Frd'): [['Mte','Frd']], 
    ('Mte','Gt1'): [['Mte','Qbc'],['Qbc','Gt1']], 
    ('Mte','Riv'): [['Mte','Qbc'],['Qbc','Riv']], 
    ('Mte','Qbc'): [['Mte','Qbc']], 
    ('Mte','Gt2'): [['Mte','Gt2']], 
    ('Mte','Gt3'): [['Mte','Gt3']], 
    ('Mte','Caw'): [['Mte','Caw']], 
    ('Mte','Mtw'): [['Mte','Mtw']], 
    ('Mte','Otn'): [['Mte','Mtw'],['Mtw','Otn']], 
    ('Mte','Ots'): [['Mte','Mtw'],['Mtw','Ots']], 
 
    ('Gt3','Yar'): [['Gt3','Mte'],['Mte','Tru'],['Tru','Yar']], 
    ('Gt3','Syd'): [['Gt3','Mte'],['Mte','Tru'],['Tru','Syd']], 
    ('Gt3','Hal'): [['Gt3','Mte'],['Mte','Tru'],['Tru','Hal']], 
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    ('Gt3','Tru'): [['Gt3','Mte'],['Mte','Tru']], 
    ('Gt3','Cht'): [['Gt3','Mte'],['Mte','Frd'],['Frd','Cht']], 
    ('Gt3','Mon'): [['Gt3','Mte'],['Mte','Frd'],['Frd','Mon']], 
    ('Gt3','Stj'): [['Gt3','Mte'],['Mte','Frd'],['Frd','Stj']], 
    ('Gt3','Frd'): [['Gt3','Mte'],['Mte','Frd']], 
    ('Gt3','Gt1'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Gt1']], 
    ('Gt3','Riv'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Riv']], 
    ('Gt3','Qbc'): [['Gt3','Mte'],['Mte','Qbc']], 
    ('Gt3','Gt2'): [['Gt3','Mte'],['Mte','Gt2']], 
    ('Gt3','Mte'): [['Gt3','Mte']], 
    ('Gt3','Caw'): [['Gt3','Caw']], 
    ('Gt3','Mtw'): [['Gt3','Mtw']], 
    ('Gt3','Otn'): [['Gt3','Mtw'],['Mtw','Otn']], 
    ('Gt3','Ots'): [['Gt3','Mtw'],['Mtw','Ots']], 
 
    ('Caw','Yar'): [['Caw','Mte'],['Mte','Tru'],['Tru','Yar']], 
    ('Caw','Syd'): [['Caw','Mte'],['Mte','Tru'],['Tru','Syd']], 
    ('Caw','Hal'): [['Caw','Mte'],['Mte','Tru'],['Tru','Hal']], 
    ('Caw','Tru'): [['Caw','Mte'],['Mte','Tru']], 
    ('Caw','Cht'): [['Caw','Mte'],['Mte','Frd'],['Frd','Cht']], 
    ('Caw','Mon'): [['Caw','Mte'],['Mte','Frd'],['Frd','Mon']], 
    ('Caw','Stj'): [['Caw','Mte'],['Mte','Frd'],['Frd','Stj']], 
    ('Caw','Frd'): [['Caw','Mte'],['Mte','Frd']], 
    ('Caw','Gt1'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Gt1']], 
    ('Caw','Riv'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Riv']], 
    ('Caw','Qbc'): [['Caw','Mte'],['Mte','Qbc']], 
    ('Caw','Gt2'): [['Caw','Mte'],['Mte','Gt2']], 
    ('Caw','Mte'): [['Caw','Mte']], 
    ('Caw','Gt3'): [['Caw','Gt3']], 
    ('Caw','Mtw'): [['Caw','Mtw']], 
    ('Caw','Otn'): [['Caw','Mtw'],['Mtw','Otn']], 
    ('Caw','Ots'): [['Caw','Mtw'],['Mtw','Ots']], 
 
    ('Mtw','Yar'): [['Mtw','Tru'],['Tru','Yar']], 
    ('Mtw','Syd'): [['Mtw','Tru'],['Tru','Syd']], 
    ('Mtw','Hal'): [['Mtw','Tru'],['Tru','Hal']], 
    ('Mtw','Tru'): [['Mtw','Tru']], 
    ('Mtw','Cht'): [['Mtw','Frd'],['Frd','Cht']], 
    ('Mtw','Mon'): [['Mtw','Frd'],['Frd','Mon']], 
    ('Mtw','Stj'): [['Mtw','Frd'],['Frd','Stj']], 
    ('Mtw','Frd'): [['Mtw','Frd']], 
    ('Mtw','Gt1'): [['Mtw','Qbc'],['Qbc','Gt1']], 
    ('Mtw','Riv'): [['Mtw','Qbc'],['Qbc','Riv']], 
    ('Mtw','Qbc'): [['Mtw','Qbc']], 
    ('Mtw','Gt2'): [['Mtw','Mte'],['Mte','Gt2']], 
    ('Mtw','Mte'): [['Mtw','Mte']], 
    ('Mtw','Gt3'): [['Mtw','Gt3']], 
    ('Mtw','Caw'): [['Mtw','Caw']], 
    ('Mtw','Otn'): [['Mtw','Otn']], 
    ('Mtw','Ots'): [['Mtw','Ots']], 
 
    ('Otn','Yar'): [['Otn','Mtw'],['Mtw','Tru'],['Tru','Yar']], 
    ('Otn','Syd'): [['Otn','Mtw'],['Mtw','Tru'],['Tru','Syd']], 
    ('Otn','Hal'): [['Otn','Mtw'],['Mtw','Tru'],['Tru','Hal']], 
    ('Otn','Tru'): [['Otn','Mtw'],['Mtw','Tru']], 
    ('Otn','Cht'): [['Otn','Mtw'],['Mtw','Frd'],['Frd','Cht']], 
    ('Otn','Mon'): [['Otn','Mtw'],['Mtw','Frd'],['Frd','Mon']], 
    ('Otn','Stj'): [['Otn','Mtw'],['Mtw','Frd'],['Frd','Stj']], 
    ('Otn','Frd'): [['Otn','Mtw'],['Mtw','Frd']], 
    ('Otn','Gt1'): [['Otn','Mtw'],['Mtw','Qbc'],['Qbc','Gt1']], 
    ('Otn','Riv'): [['Otn','Mtw'],['Mtw','Qbc'],['Qbc','Riv']], 
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    ('Otn','Qbc'): [['Otn','Mtw'],['Mtw','Qbc']], 
    ('Otn','Gt2'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Gt2']], 
    ('Otn','Mte'): [['Otn','Mtw'],['Mtw','Mte']], 
    ('Otn','Gt3'): [['Otn','Mtw'],['Mtw','Gt3']], 
    ('Otn','Caw'): [['Otn','Mtw'],['Mtw','Caw']], 
    ('Otn','Mtw'): [['Otn','Mtw']], 
    ('Otn','Ots'): [['Otn','Ots']], 
 
    ('Ots','Yar'): [['Ots','Mtw'],['Mtw','Tru'],['Tru','Yar']], 
    ('Ots','Syd'): [['Ots','Mtw'],['Mtw','Tru'],['Tru','Syd']], 
    ('Ots','Hal'): [['Ots','Mtw'],['Mtw','Tru'],['Tru','Hal']], 
    ('Ots','Tru'): [['Ots','Mtw'],['Mtw','Tru']], 
    ('Ots','Cht'): [['Ots','Mtw'],['Mtw','Frd'],['Frd','Cht']], 
    ('Ots','Mon'): [['Ots','Mtw'],['Mtw','Frd'],['Frd','Mon']], 
    ('Ots','Stj'): [['Ots','Mtw'],['Mtw','Frd'],['Frd','Stj']], 
    ('Ots','Frd'): [['Ots','Mtw'],['Mtw','Frd']], 
    ('Ots','Gt1'): [['Ots','Mtw'],['Mtw','Qbc'],['Qbc','Gt1']], 
    ('Ots','Riv'): [['Ots','Mtw'],['Mtw','Qbc'],['Qbc','Riv']], 
    ('Ots','Qbc'): [['Ots','Mtw'],['Mtw','Qbc']], 
    ('Ots','Gt2'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Gt2']], 
    ('Ots','Mte'): [['Ots','Mtw'],['Mtw','Mte']], 
    ('Ots','Gt3'): [['Ots','Mtw'],['Mtw','Gt3']], 
    ('Ots','Caw'): [['Ots','Mtw'],['Mtw','Caw']], 
    ('Ots','Mtw'): [['Ots','Mtw']], 
    ('Ots','Otn'): [['Ots','Otn']], 
    } 
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Appendix D: Parameters File  

  
 
avg_speed = 80 
 
debug = 'No' 
 
# -------------------------------------------------------------------------------- 
# Load sizes based in the simulation ((Fraction of 40 foot container) 
 
load_size = [0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.25,0.25,0.25,0.25,0.5,0.5,1] 
#Regular loads distribution 
 
#load_size = [0,0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.25,0.25,0.25,0.25,0.5,0.5,0.5] 
#for small loads 
 
 
#load_size = [1,1,1,1,1,1,1,1,0.5,0.5,0.5,0.5,0.25,0.25,0.125,0.125] 
#for large loads 
 
# -------------------------------------------------------------------------------- 
 
if debug == 'No': 
    # Nodes in the entire network 
    Node = ['Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'] 
 
if debug == 'Yes': 
    # Nodes in the network 
    Node = ['Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc'] 
 
 
# -------------------------------------------------------------------------------- 
# Number of requests from each node to each destination 
 
Req = 10 
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Appendix E: Data Generator File 

from CO_TA import * 
from HY_TA import * 
from PI_TA import * 
from Param import * 
from random import * 

 
import csv 

 
# -------------------------------------------------------------------------------- 
# The follwoing key and values are used to call the route_pi dictionary 
 
# General form of the python dictionary dict = { 'key' : value } 
# Form of dictionary used in the program  route_xx = { ('key m',key n'): [[Node m, Node q],...,[Node r, Node n] } 
 
key_pi = route_pi.keys() 
key_hy = route_hy.keys() 
key_co = route_co.keys() 
# Puts all the dictionary keys in the key list. There is no need to iterate over the dictionary and collect all the keys 
 
value_pi = route_pi.values() 
value_hy = route_hy.values() 
value_co = route_co.values() 
# Puts all the dictionary values int the value list.There is no need iterate over the dictionary and collect all the 
values 
 
# -------------------------------------------------------------------------------- 
# Thses list are created to count the number of loads between each source and destination in the pi, hy , and co 
network 
# First list is temp list used at each iteration 
 
temp_count_pi = [] 
count_pi = [] 
 
temp_count_hy = [] 
count_hy = [] 
 
temp_count_co = [] 
count_co = [] 
 
# -------------------------------------------------------------------------------- 
# Following two for loops create the empty counter list 
# General form of the counter list 
# count_xx[i][0] --> Source 
# count_xx[i][1] --> Destination 
# count_xx[i][2] --> Counter 
 
for p in range(len(Node)): 
    for q in range(len(Node)): 
        temp_count_pi = [] 
        temp_count_pi.append(Node[p]) 
        temp_count_pi.append(Node[q]) 
        temp_count_pi.append(0) 
        count_pi.append(temp_count_pi) 
 
for p in range(len(Node)): 
    for q in range(len(Node)): 
        temp_count_hy = [] 
        temp_count_hy.append(Node[p]) 
        temp_count_hy.append(Node[q]) 
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        temp_count_hy.append(0) 
        count_hy.append(temp_count_hy) 
 
for p in range(len(Node)): 
    for q in range(len(Node)): 
        temp_count_co = [] 
        temp_count_co.append(Node[p]) 
        temp_count_co.append(Node[q]) 
        temp_count_co.append(0) 
        count_co.append(temp_count_co) 

 
# -------------------------------------------------------------------------------- 
# First list is temp list used at each iteration. 2nd list is complete list of all the  loads. 
 
temp_pi = [] 
list_pi = [] 
 
 
temp_hy = [] 
list_hy = [] 
 
temp_co = [] 
list_co = [] 
 
# -------------------------------------------------------------------------------- 
 
new_counter = 1 
for r in range(Req): 
#The entire process will repeat accroding to the number of requets 
 
    for k in range(len(Node)): 
 
        # General for loops to iterate over the set of nodes in the network 
        for j in range(len(Node)): 
 
          new_counter +=1  
 
          # size of loads randomly chosen from the load size list in the topo.py 
          size = choice(load_size) 
           
          for i in range(len(route_pi)): 
 
               new_counter = 1 
             
               # -------------------------------------------------------------------------------- 
               # Generation of list of loads for PI senario 
               if key_pi[i][0] == Node[k] and key_pi[i][1]== Node[j]: 
 
                   
                     
                  mehran = 0 
                  for l in range(len(value_pi[i])): 
 
                    # -------------------------------------------------------------------------------- 
                    # Generate counter values 
                    # when there is a load from spesific source to specific destination, 
                    # the value of the counter for that source and destination is incremented 
 
                    for pi in range(len(count_pi)): 
                        if count_pi[pi][0] == value_pi[i][l][0] and  count_pi[pi][1] == value_pi[i][l][1]: 
                            count_pi[pi][2] = count_pi[pi][2]+1 
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                    # -------------------------------------------------------------------------------- 
                    # Insertion of values in to the PI load list 
                            mehran =3 
                            if (mehran%2==1): 
                                temp_pi = [] 
                                temp_pi.append(value_pi[i][l][0]) 
                                temp_pi.append(value_pi[i][l][1]) 
                                temp_pi.append(count_pi[pi][2]) 
                                temp_pi.append(size) 
                                list_pi.append(temp_pi) 
 
                                temp_pi = [] 

 
               # -------------------------------------------------------------------------------- 
               # Generation of list of loads for Hybrid senario 
               if key_hy[i][0] == Node[k] and key_hy[i][1]== Node[j]: 
 
                  mehran = 0 
                  for l in range(len(value_hy[i])): 
 
                    # -------------------------------------------------------------------------------- 
                    # Generate counter values 
                    # when there is a load from spesific source to specific destination, 
                    # the value of the counter for that source and destination is incremented 
 
                    for hy in range(len(count_hy)): 
                        if count_hy[hy][0] == value_hy[i][l][0] and  count_hy[hy][1] == value_hy[i][l][1]: 
                            count_hy[hy][2] = count_hy[hy][2]+1 
                    # -------------------------------------------------------------------------------- 
                    # Insertion of values in to the Hybrid load list 
                            mehran =3 
                            if (mehran%2==1): 
                                temp_hy = [] 
                                temp_hy.append(value_hy[i][l][0]) 
                                temp_hy.append(value_hy[i][l][1]) 
                                temp_hy.append(count_hy[hy][2]) 
                                temp_hy.append(size) 
                                list_hy.append(temp_hy) 
                                temp_hy = [] 
 
               # -------------------------------------------------------------------------------- 
               # Generation of list of loads for Conventional senario 
               if key_co[i][0] == Node[k] and key_co[i][1]== Node[j]: 
 
                  mehran = 0 
                  for l in range(len(value_co[i])): 
 
                    # -------------------------------------------------------------------------------- 
                    # Generate counter values 
                    # when there is a load from spesific source to specific destination, 
                    # the value of the counter for that source and destination is incremented 
 
                    for co in range(len(count_co)): 
                        if count_co[co][0] == value_co[i][l][0] and  count_co[co][1] == value_co[i][l][1]: 
                            count_co[co][2] = count_co[co][2]+1 
                    # -------------------------------------------------------------------------------- 
                    # Insertion of values in to the conventional load list 
                            mehran +=1 
                            if (mehran%2==1): 
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                                temp_co = [] 
                                temp_co.append(value_co[i][l][0]) 
                                temp_co.append(value_co[i][l][1]) 
                                temp_co.append(count_co[co][2]) 
                                temp_co.append(size) 
                                list_co.append(temp_co) 
                                temp_co = [] 

 
# -------------------------------------------------------------------------------- 
 
arc_pi_size = [] 
 
for i in range(len(count_pi)): 
    if count_pi[i][2] >= 1: 
        arc_pi_size.append(count_pi[i]) 
 
arc_hy_size = [] 
for i in range(len(count_hy)): 
    if count_hy[i][2] >= 1: 
        arc_hy_size.append(count_hy[i]) 
 
arc_co_size = [] 
for i in range(len(count_co)): 
    if count_co[i][2] >= 1: 
        arc_co_size.append(count_co[i]) 
 

 
b = open('C:/Users/usr1/Desktop/Loads/Arc_PI_size.csv', 'wb') 
a = csv.writer(b) 
a.writerows(arc_pi_size) 
b.close() 
 
b = open('C:/Users/usr1/Desktop/Loads/Arc_HY_size.csv', 'wb') 
a = csv.writer(b) 
a.writerows(arc_hy_size) 
b.close() 
 
b = open('C:/Users/usr1/Desktop/Loads/Arc_CO_size.csv', 'wb') 
a = csv.writer(b) 
a.writerows(arc_co_size) 
b.close() 
 
 
 
arc_pi = [] 
temp_arc_pi = [] 
 
for i in range(len(count_pi)): 
    if count_pi[i][2] >= 1: 
        temp_arc_pi = [] 
        temp_arc_pi.append(count_pi[i][0]) 
        temp_arc_pi.append(count_pi[i][1]) 
        arc_pi.append(temp_arc_pi) 
 
arc_hy = [] 
temp_arc_hy = [] 
for i in range(len(count_hy)): 
    if count_hy[i][2] >= 1: 
        temp_arc_hy = [] 
        temp_arc_hy.append(count_hy[i][0]) 
        temp_arc_hy.append(count_hy[i][1]) 
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        arc_hy.append(temp_arc_hy) 
 
arc_co = [] 
temp_arc_co = [] 
for i in range(len(count_co)): 
    if count_co[i][2] >= 1: 
        temp_arc_co = [] 
        temp_arc_co.append(count_co[i][0]) 
        temp_arc_co.append(count_co[i][1]) 
        arc_co.append(temp_arc_co) 
 
 
b = open('C:/Users/usr1/Desktop/Loads/Act_arc_PI.csv', 'wb') 
a = csv.writer(b) 
a.writerows(arc_pi) 
b.close() 
 
b = open('C:/Users/usr1/Desktop/Loads/Act_arc_HY.csv', 'wb') 
a = csv.writer(b) 
a.writerows(arc_hy) 
b.close() 
 
b = open('C:/Users/usr1/Desktop/Loads/Act_arc_CO.csv', 'wb') 
a = csv.writer(b) 
a.writerows(arc_co) 
b.close() 
 
b = open('C:/Users/usr1/Desktop/Loads/Req_PI.csv', 'wb') 
a = csv.writer(b) 
a.writerows(list_pi) 
b.close() 
 
b = open('C:/Users/usr1/Desktop/Loads/Req_HY.csv', 'wb') 
a = csv.writer(b) 
a.writerows(list_hy) 
b.close() 
 
b = open('C:/Users/usr1/Desktop/Loads/Req_CO.csv', 'wb') 
a = csv.writer(b) 
a.writerows(list_co) 
b.close() 
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Appendix F: GLPK Code of Packing MIP 

 
set Node := {'Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'};  
param q, integer, >=1; 
set Req := {1..q}; 
 
param k, integer, >=1; 
set Cont := {1..k}; 
 
set Req_Set, dimen 3; 
 
#set Req_Set:= setof{ i in Node, j in Node, r in Req} (i,j,r); 
 
#------------------------- Parameters------------------------------------ 
ax_req_pi 
var total; 
#------------------------- Obj function------------------------------------ 
 
minimize ObjZ:sum{i in Node, j in Node, c in Cont}con_n[i,j,c]; 
 
#------------------------- Constraints------------------------------------ 
 
con1{i in Node, j in Node, r in Req: i <> j }: sum{c in Cont}as[i,j,r,c] = 1; 
 
con2{i in Node, j in Node, c in Cont: i <> j }: sum{r in Req}as[i,j,r,c]*REQ_SIZE[i,j,r] <= CAPACITY*con_n[i,j,c]; 
 
con3{i in Node, j in Node}:sum{c in Cont}con_n[i,j,c] = cont[i,j]; 
 
con4:  sum{i in Node, j in Node}cont[i,j] = total; 
 
solve; 
 
#for {i in Node, j in Node, r in Req, c in Cont}{ 
  
# for {{0}: as[i,j, r, c] == 1} { 
 #printf"\n  %s %s %s  %s %s %d %s %d ","From " ,i," to ",j," req ",r," in cont ",c ; 
 #}} 
#printf{i in Node, j in Node, r in Req, c in Cont} "\n  %s %d %s  %d %s %d %s %d %d "," From " ,i," to ",j," req ",r," in 
cont ",c, as[i,j, r, c]; 
printf "\n\n"; 
 
printf{i in Node, j in Node}" \n Num cont from  %s %s %s %s %d",i," to ",j, " -->", sum{c in Cont}con_n[i,j,c]; 
printf "\n\n"; 
#printf{i in Node, j in Node, r in Req , c in Cont}REQ_SIZE[i,j,r];  
printf " %d \n\n", total; 
data; 
 
param q := 66; 
param k := 30; 
 
end;  
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Appendix G: Packing Model Calling Algorithm 

 
from gurobipy import * 
from random import * 
import csv 
 
# Nodes in the entire network 
Node = ['Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'] 
 
 
#from Generator2 import * 
 
#Model 1 --> Consolidation Model 
 
#------------------------------- Data---------------------------------- 
 
LP_Debug = "NO" 
 
# Set of Containes 
Cont_pi = 95 
Cont_hy = 30 
Cont_co = 5 
 
#create a new model for PI senario 
mpi = Model("model1") 
 
#create a new model for HY senario 
mhy = Model("model1") 
 
#create a new model for CO senario 
mco = Model("model1") 
 
 
#create variables 
assign = {} 
 
cont_pi = {} 
cont_hy = {} 
cont_co = {} 

 
#Capacity of the containers 
CAPACITY = 1 

 
#----------------Reads DATA from the lists------------------------------ 
 
arc_pi = [] 
 
with open('Act_arc_PI.csv', 'rb') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        arc_pi.append(row) 
 
arc_hy = [] 
 
with open('Act_arc_HY.csv', 'rb') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        arc_hy.append(row) 
arc_co = [] 
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with open('Act_arc_CO.csv', 'rb') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        arc_co.append(row) 
 
list_pi = [] 
 
with open('Req_pi.csv', 'rb') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        source = row[0] 
        des = row[1] 
        req = float(row[2]) 
        si = float(row[3]) 
        p = (source, des, req, si) 
        list_pi.append(p) 
 
REQ_SET_PI = list_pi 
 
list_hy = [] 
with open('Req_hy.csv', 'rb') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        source = row[0] 
        des = row[1] 
        req = float(row[2]) 
        si = float(row[3]) 
        p = (source, des, req, si) 
        list_hy.append(p) 
 
REQ_SET_HY = list_hy 
 
list_co = [] 
 
with open('Req_co.csv', 'rb') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        source = row[0] 
        des = row[1] 
        req = float(row[2]) 
        si = float(row[3]) 
        p = (source, des, req, si) 
        list_co.append(p) 
 
 
REQ_SET_CO = list_co 
#----------------------------------------------------------------------- 
 
# Final result for calculated number of containers for each senario 
Final_Cont_PI = [] 
Final_Cont_HY = [] 
Final_Cont_CO = [] 
 
#--------------------------------PI Section --------------------------- 
 
L_SIZE = [] 
 
def loads_pi (i,j): 
    s_d_loads = [] 
    for p in range(len(REQ_SET_PI)): 
        if REQ_SET_PI[p][0] == i and REQ_SET_PI[p][1] == j: 
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            s_d_loads.append(REQ_SET_PI[p][3]) 
            #print s_d_loads 
    return s_d_loads 

 
 
#--------------Calling the optimizer inside the nested loops--------------- 
num_optimization = 1 
for i in Node: 
    for j in Node: 
        if [i,j] in arc_pi: 
            print "" 
            print "" 
            print "PI Senario" 
            print "Optimization number", num_optimization, " of ", len(arc_pi) 
            print "" 
            print "###################################################" 
            print "Min number of containers problem between", i ," to ", j 
            print "###################################################" 
            L_SIZE = [] 
            L_SIZE = loads_pi (i,j) 
            #print  "Here is the list of loads :", L_SIZE 
 
            print L_SIZE 
            #------------------------- Variables--------------------------- 
 
            mpi.update() 
            # Asignment of request r to container c from node i to node j 
            assign = {} 
 
            var1 =0 
            for r in range(len(L_SIZE)): 
                    for c in range(Cont_pi): 
                         assign[r,c] = mpi.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY,  name= 'var1') 
                         var1 += 1 
            mpi.update() 
 
            cont_pi = {} 
 
            var2 =1 
            for c in range(Cont_pi): 
 
                    cont_pi[c] = mpi.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY,  name='var2') 
                    var2 +=1 
 
            mpi.update() 
 
            #------------------------- Constraints-------------------------- 
            counter1 = 0 
            for r in range(len(L_SIZE)): 
                    for c in range(Cont_pi): 
 
                            mpi.addConstr(quicksum(assign[r,c] for c in range(Cont_pi)), GRB.EQUAL , 1, name = 'counter1' ) 
                            counter1 +=1 
                            #print 'cont_1_%s_%s' % (r,c) 
 
            mpi.update() 
            # setting the arc sizes 
 
            counter2 = 0 
            for r in range(len(L_SIZE)): 
                for c in range(Cont_pi): 
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                    mpi.addConstr(quicksum(assign[r,c]* L_SIZE[r] for r in range(len(L_SIZE))),GRB.LESS_EQUAL, 
CAPACITY* cont_pi[c], name ='counter2') 
                    counter2 +=1 
                    #print counter2 
 
            mpi.update() 
 
 
            #------------------------- ObjZ--------------------------------- 
            mpi.setObjective(quicksum(cont_pi[c] for c in range(Cont_pi)) , GRB.MINIMIZE) 
            mpi.optimize() 
 
            #print "Value of the objective function: ",mpi.objval 
            Final_Cont_PI = []    
            obj = mpi.objval 
            p=(i,j,obj) 
            Final_Cont_PI.append(p) 
 
            #------------------Model Clean up Section------------------ 
 
            mpi.update() 
            num_optimization +=1 
 
            import csv 
            b = open('C:/Users/Mehran/Dropbox/Masters/Physical Internet/Simulation Models/Data/Static/M1_PI.csv', 
'ab') 
            a = csv.writer(b) 
            a.writerows(Final_Cont_PI) 
            b.close() 
 
 
#-------------------------Hybrid Section --------------------------------- 
 
L_SIZE = [] 
 
def loads_hy (i,j): 
    s_d_loads = [] 
    for p in range(len(REQ_SET_HY)): 
        if REQ_SET_HY[p][0] == i and REQ_SET_HY[p][1] == j: 
            s_d_loads.append(REQ_SET_HY[p][3]) 
            #print s_d_loads 
    return s_d_loads 
 
 
 
#--Calling the optimizer for Hybrid senario inside the nested loops------ 
num_optimization = 1 
for i in Node: 
    for j in Node: 
        if [i,j] in arc_hy: 
 
            print "" 
            print "Hybrid Senario" 
            print "Optimization number", num_optimization, " of ", len(arc_hy) 
            print "" 
            print "###################################################" 
            print "Min number of containers problem between", i ," to ", j 
            print "###################################################" 
            L_SIZEP = L_SIZE 
            L_SIZE = [] 
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            L_SIZE = loads_hy (i,j) 
            #print  "Here is the list of loads :", L_SIZE 
 
 
            #------------------------- Variables--------------------------- 
            #for i in range(Cont): 
            #    for j in range(len(L_SIZEP)): 
            #        mhy.remove(mhy.getConstrs()[0]) 
 
 
            mhy.update() 
            # Asignment of request r to container c from node i to node j 
            assign = {} 
 
            var1 =0 
            for r in range(len(L_SIZE)): 
                    for c in range(Cont_hy): 
                         assign[r,c] = mhy.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY,  name='var1') 
                         var1 +=1 
            mhy.update() 
 
            var2 =0 
            cont_hy = {} 
            for c in range(Cont_hy): 
                    cont_hy[c] = mhy.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY,  name='var2') 
                    var2 +=1 
 
            mhy.update() 
 
            #------------------------- Constraints-------------------------- 
 
            counter1 = 0 
            for r in range(len(L_SIZE)): 
                    for c in range(Cont_hy): 
                            mhy.addConstr(quicksum(assign[r,c] for c in range(Cont_hy)), GRB.EQUAL , 1, name='counter1') 
                            counter1 +=1 
                            #print 'cont_1_%s_%s' % (r,c) 
 
            mhy.update() 
            # setting the arc sizes 
 
            counter2 = 0 
            for r in range(len(L_SIZE)): 
                for c in range(Cont_hy): 
                    mhy.addConstr(quicksum(assign[r,c]* L_SIZE[r] for r in range(len(L_SIZE))),GRB.LESS_EQUAL, 
CAPACITY* cont_hy[c], name='counter2') 
                    counter2 +=1 
                    #print 'cont_2_%s_%s'% (r,c) 
 
            mhy.update() 
 
 
            #------------------------- ObjZ--------------------------------- 
            mhy.setObjective(quicksum(cont_hy[c] for c in range(Cont_hy)) , GRB.MINIMIZE) 
            mhy.optimize() 
 
            #print "here is the value of the objective function: ",mhy.objval 
            obj = mhy.objval 
            Final_Cont_HY = []   
            p=(i,j,obj) 
            Final_Cont_HY.append(p) 
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            #------------------Model Clean up Section------------------ 
            mhy.update() 
            num_optimization +=1 
 
            import csv 
            b = open('C:/Users/Mehran/Dropbox/Masters/Physical Internet/Simulation 
Models/Data/Static/M1_HY.csv', 'ab') 
            a = csv.writer(b) 
            a.writerows(Final_Cont_HY) 
            b.close() 
 
 
#-------------------------Conventional Section --------------------------- 
 
L_SIZE = [] 
 
def loads_co (i,j): 
    s_d_loads = [] 
    for p in range(len(REQ_SET_CO)): 
        if REQ_SET_CO[p][0] == i and REQ_SET_CO[p][1] == j: 
            s_d_loads.append(REQ_SET_CO[p][3]) 
            #print s_d_loads 
    return s_d_loads 
 
 
 
#--Calling the optimizer for Hybrid senario inside the nested loops------ 
num_optimization = 1 
for i in Node: 
    for j in Node: 
        if [i,j] in arc_co: 
 
            print "" 
            print "Conventional Senario" 
            print "Optimization number", num_optimization, " of ", len(arc_co) 
            print "" 
            print "###################################################" 
            print "Min number of containers problem between", i ," to ", j 
            print "###################################################" 
            L_SIZEP = L_SIZE 
            L_SIZE = [] 
            L_SIZE = loads_co (i,j) 
            #print  "Here is the list of loads :", L_SIZE 
 
 
            #------------------------- Variables--------------------------- 
            #for i in range(Cont): 
            #    for j in range(len(L_SIZEP)): 
            #        mco.remove(mco.getConstrs()[0]) 
 
 
            mco.update() 
            # Asignment of request r to container c from node i to node j 
            assign = {} 
 
            var1 =0 
            for r in range(len(L_SIZE)): 
                    for c in range(Cont_co): 
                         assign[r,c] = mco.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY,  name='var1') 
                         var1 +=1 
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            mco.update() 
 
            cont_co = {} 
            var2 = 0 
            for c in range(Cont_co): 
                    cont_co[c] = mco.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY,  name='var2') 
                    var2 +=1 
 
            mco.update() 
 
            #------------------------- Constraints-------------------------- 
 
            counter1 = 0 
            for r in range(len(L_SIZE)): 
                    for c in range(Cont_co): 
                            mco.addConstr(quicksum(assign[r,c] for c in range(Cont_co)), GRB.EQUAL , 1, name = 'counter1') 
                            counter1 +=1 
                            #print 'cont_1_%s_%s' % (r,c) 
 
            mco.update() 
            # setting the arc sizes 
 
            for r in range(len(L_SIZE)): 
                for c in range(Cont_co): 
                    mco.addConstr(quicksum(assign[r,c]* L_SIZE[r] for r in range(len(L_SIZE))),GRB.LESS_EQUAL, 
CAPACITY* cont_co[c], name = 'counter2') 
                #print 'cont_2_%s_%s'% (r,c) 
 
            mco.update() 
 
 
            #------------------------- ObjZ--------------------------------- 
            mco.setObjective(quicksum(cont_co[c] for c in range(Cont_co)) , GRB.MINIMIZE) 
            mco.optimize() 
 
            #print "here is the value of the objective function: ",mco.objval 
            obj = mco.objval 
            Final_Cont_CO = [] 
            p=(i,j,obj) 
            Final_Cont_CO.append(p) 

 
            #------------------Model Clean up Section------------------ 
 
            num_optimization +=1 
            mco.update() 
 
            import csv 
            b = open('C:/Users/Mehran/Dropbox/Masters/Physical Internet/Simulation 
Models/Data/Static/M1_CO.csv', 'ab') 
            a = csv.writer(b) 
            a.writerows(Final_Cont_CO) 
            b.close() 
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Appendix H: Calculation of Flow Lower Bond 

import csv 
from Distance import  * 
from Param import  * 
 
key = Distance.keys() 
# Puts all the dictionary keys in the key list. There is no need to iterate over the dictionary and collect all the keys 
 
value = Distance.values() 
# Puts all the dictionary values int the value list.There is no need iterate over the dictionary and collect all the values 
 
 
Model_1_PI_LOADS = [] 
Model_1_HY_LOADS = [] 
Model_1_CO_LOADS = [] 
 
Optimal_Jobs_PI = [] 
Optimal_Jobs_HY = [] 
Optimal_Jobs_CO = [] 
 
source = [] 
dest = [] 
 
# Read Section 
#--------------------------------------------------------------------------- 
with open('M1_PI.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
 
    for row in reader: 
        Model_1_PI_LOADS_TEMP = [] 
 
        Model_1_PI_LOADS_TEMP.append(row[0]) 
        Model_1_PI_LOADS_TEMP.append(row[1]) 
        Model_1_PI_LOADS_TEMP.append(float(row[2])) 
        Model_1_PI_LOADS.append(Model_1_PI_LOADS_TEMP) 
 
Loads_PI = [] 
 
#--------------------------------------------------------------------------- 
with open('M1_HY.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
 
    for row in reader: 
        Model_1_HY_LOADS_TEMP = [] 
 
        Model_1_HY_LOADS_TEMP.append(row[0]) 
        Model_1_HY_LOADS_TEMP.append(row[1]) 
        Model_1_HY_LOADS_TEMP.append(float(row[2])) 
        Model_1_HY_LOADS.append(Model_1_HY_LOADS_TEMP) 
 
Loads_HY = [] 
 
#--------------------------------------------------------------------------- 
with open('M1_CO.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
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    for row in reader: 
        Model_1_CO_LOADS_TEMP = [] 
 
        Model_1_CO_LOADS_TEMP.append(row[0]) 
        Model_1_CO_LOADS_TEMP.append(row[1]) 
        Model_1_CO_LOADS_TEMP.append(float(row[2])) 
        Model_1_CO_LOADS.append(Model_1_CO_LOADS_TEMP) 
 
Loads_CO = [] 
#--------------------------------------------------------------------------- 

 
# PI Calculation Section 
#--------------------------------------------------------------------------- 
for pass1 in range(len(Model_1_PI_LOADS)): 
    for pass2 in range(len(Model_1_PI_LOADS)): 
        if Model_1_PI_LOADS[pass1][0] == Model_1_PI_LOADS[pass2][1] and Model_1_PI_LOADS[pass1][1] == 
Model_1_PI_LOADS[pass2][0]: 
 
                loads = 0 
                loads = Model_1_PI_LOADS[pass1][2] - Model_1_PI_LOADS[pass2][2] 
                min = 0 
                min = Model_1_PI_LOADS[pass1][2] 
                if  Model_1_PI_LOADS[pass1][2] > Model_1_PI_LOADS[pass2][2]: 
                    min = Model_1_PI_LOADS[pass2][2] 
                if loads > 0: 
                    p = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], loads) 
                    s = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], min) 
                    Optimal_Jobs_PI.append(s) 
                    Loads_PI.append(p) 
                     
                if loads == 0: 
                    source.append(Model_1_PI_LOADS[pass1][0]) 
                    dest.append(Model_1_PI_LOADS[pass1][1]) 
                    if Model_1_PI_LOADS[pass1][1] in source and Model_1_PI_LOADS[pass1][0] in dest: 
                        q = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], loads) 
                        s = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], min) 
                        Optimal_Jobs_PI.append(s) 
                        Loads_PI.append(q) 
 
total_hours_pi = 0 
 
for i in range(len(Optimal_Jobs_PI)): 
    s = Optimal_Jobs_PI[i][0] 
    d = Optimal_Jobs_PI[i][1] 
    for k in range(len(Distance)): 
        if s == key[k][0] and d == key[k][1]: 
 
            total_distance = 2 * value[k]* Optimal_Jobs_PI[i][2] 
            job_hours = total_distance/avg_speed 
 
            # Claculation of the total hours of driving for the optimal portion of the PI senario 
            total_hours_pi = total_hours_pi + job_hours 
 
            # Test to ensure all the values are read correctly 
            #print i , "distance from ", s, " to ", d, " is ", value[k],". Number of jobs ", Loads_PI[i][3], " total job hours ", 
job_hours 
 
 
source = [] 
dest = [] 
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# HY Calculation Section 
#--------------------------------------------------------------------------- 
for pass1 in range(len(Model_1_HY_LOADS)): 
    for pass2 in range(len(Model_1_HY_LOADS)): 
        if Model_1_HY_LOADS[pass1][0] == Model_1_HY_LOADS[pass2][1] and Model_1_HY_LOADS[pass1][1] == 
Model_1_HY_LOADS[pass2][0]: 
 
                loads = 0 
                loads = Model_1_HY_LOADS[pass1][2] - Model_1_HY_LOADS[pass2][2] 
                min = 0 
                min = Model_1_HY_LOADS[pass1][2] 
                if  Model_1_HY_LOADS[pass1][2] > Model_1_HY_LOADS[pass2][2]: 
                    min = Model_1_HY_LOADS[pass2][2] 
                if loads > 0: 
                    p = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], loads) 
                    s = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], min) 
                    Optimal_Jobs_HY.append(s) 
                    Loads_HY.append(p) 
                if loads == 0: 
                    source.append(Model_1_HY_LOADS[pass1][0]) 
                    dest.append(Model_1_HY_LOADS[pass1][1]) 
                    if Model_1_HY_LOADS[pass1][1] in source and Model_1_HY_LOADS[pass1][0] in dest: 
                        q = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], loads) 
                        s = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], min) 
                        Optimal_Jobs_HY.append(s) 
                        Loads_HY.append(q) 
total_hours_hy = 0 
 
for i in range(len(Optimal_Jobs_HY)): 
    s = Optimal_Jobs_HY[i][0] 
    d = Optimal_Jobs_HY[i][1] 
    for k in range(len(Distance)): 
        if s == key[k][0] and d == key[k][1]: 
 
            total_distance = 2 * value[k]* Optimal_Jobs_HY[i][2] 
            job_hours = total_distance/avg_speed 
 
            # Claculation of the total hours of driving for the optimal portion of the PI senario 
            total_hours_hy = total_hours_hy + job_hours 
 
            # Test to ensure all the values are read correctly 
            #print i , "distance from ", s, " to ", d, " is ", value[k],". Number of jobs ", Loads_HY[i][3], " total job hours ", 
job_hours 
 
source = [] 
dest = [] 
 
# CO Calculation Section 
#--------------------------------------------------------------------------- 
 
for pass1 in range(len(Model_1_CO_LOADS)): 
    for pass2 in range(len(Model_1_CO_LOADS)): 
        if Model_1_CO_LOADS[pass1][0] == Model_1_CO_LOADS[pass2][1] and Model_1_CO_LOADS[pass1][1] == 
Model_1_CO_LOADS[pass2][0]: 
 
                loads = 0 
                loads = Model_1_CO_LOADS[pass1][2] - Model_1_CO_LOADS[pass2][2] 
                min = 0 
                min = Model_1_CO_LOADS[pass1][2] 
                if  Model_1_CO_LOADS[pass1][2] > Model_1_CO_LOADS[pass2][2]: 
                    min = Model_1_CO_LOADS[pass2][2] 
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                if loads > 0: 
                    p = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], loads) 
                    s = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], min) 
                    Optimal_Jobs_CO.append(s) 
                    Loads_CO.append(p) 
 
                if loads == 0: 
                    source.append(Model_1_CO_LOADS[pass1][0]) 
                    dest.append(Model_1_CO_LOADS[pass1][1]) 
                    if Model_1_CO_LOADS[pass1][1] in source and Model_1_CO_LOADS[pass1][0] in dest: 
                        q = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], loads) 
                        s = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], min) 
                        Optimal_Jobs_CO.append(s) 
                        Loads_CO.append(q) 
 
total_hours_co = 0 
 
for i in range(len(Optimal_Jobs_CO)): 
    s = Optimal_Jobs_CO[i][0] 
    d = Optimal_Jobs_CO[i][1] 
    for k in range(len(Distance)): 
        if s == key[k][0] and d == key[k][1]: 
 
            total_distance = 2 * value[k]* Optimal_Jobs_CO[i][2] 
            job_hours = total_distance/avg_speed 
             
            # Claculation of the total hours of driving for the optimal portion of the PI senario 
            total_hours_co = total_hours_hy + job_hours 
 
            # Test to ensure all the values are read correctly 
            #print i , "distance from ", s, " to ", d, " is ", value[k],". Number of jobs ", Loads_CO[i][3], " total job hours ", 
job_hours 
 
 
source = [] 
dest = [] 
 
#--------------------------------------------------------------------------- 
 
# Write Section 
#--------------------------------------------------------------------------- 
 
b = open('M1_PI_REDUCED.csv', 'wb') 
a = csv.writer(b) 
header = ['s','d','c'] 
a.writerow(header) 
a.writerows(Loads_PI) 
b.close() 
 
b = open('M1_PI_JOBS.csv', 'wb') 
a = csv.writer(b) 
header = ['s','d','jobs'] 
a.writerow(header) 
a.writerows(Optimal_Jobs_PI) 
b.close() 
 
b = open('M1_HY_REDUCED.csv', 'wb') 
a = csv.writer(b) 
header = ['s','d','c'] 
a.writerow(header) 
a.writerows(Loads_HY) 
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b.close() 
 
b = open('M1_HY_JOBS.csv', 'wb') 
a = csv.writer(b) 
header = ['s','d','jobs'] 
a.writerow(header) 
a.writerows(Optimal_Jobs_HY) 
b.close() 
 
b = open('M1_CO_REDUCED.csv', 'wb') 
a = csv.writer(b) 
header = ['s','d','c'] 
a.writerow(header) 
a.writerows(Loads_CO) 
b.close() 
 
b = open('M1_CO_JOBS.csv', 'wb') 
a = csv.writer(b) 
header = ['s','d','jobs'] 
a.writerow(header) 
a.writerows(Loads_CO) 
b.close() 
 
b = open('Optimal_Hours.csv', 'wb') 
optimals = [["Hours PI", total_hours_pi],["Hours HY", total_hours_hy],["Hours CO", total_hours_co]] 
a = optimals 
a = csv.writer(b) 
a.writerows(optimals) 
b.close() 
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Appendix I: GLPK Code of Routing MIP 

 

# Written By Mehran Fazili 
# Last modified 8 November 2013 

 
/* Set of nodes*/ 
set Node := {'Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'};  

 
param m, integer, >1; 
# Number of routes 
 
set Route := {1..m};  
#Set of routes 
 
set Cont_Set, dimen 2; 
 
############################### 
########## Parameters ############## 
############################### 
 
param FIX_RO_CO{i in Route}, default 20; 
#To be investigated - used to calculate the fixed cost of a route  
 
param CONT{i in Node, j in Node}, default 0;  
# Number of loads to be transferred from node i to node j  
 
table ara IN "CSV" "M1_CO_REDUCED.csv" : 
Cont_Set <- [s, d] , CONT ~ c; 
 
 
param FTTIME{i in Node, j in Node}; 
# Loaded travel time from node i to node j  
 
param ETTIME{i in Node, j in Node}; 
# Deadhead travel time from node i to node  j  
 
param TTTIME, default 50; 
# Maximum duration (length) of each route (Set to a large value to relax the corresponding constraint) 
 
param MITIME, default 2;    
# Minimum duration (length) of each route (Set to zero to relax the corresponding constraint) 
 
param AVG_R_LEN, default 160; 
# Maximum allowed length for average route length (Set to a large value to relax the corresponding constraint) 
 
param NUM_ACT_ROUTE, default 100 ; 
# Maximum number of routes allowed to serve the entire demand (Set to a large value to relax the corresponding 
constraint) 
 
param MAX_PER_DAED , default 0.4; 
# Maximum percentage of deadhead travel length to the total route length (Set to a fractional value close to one to 
relax the corresponding constraint) 
 
param M , default 12; 
# Auxiliary parameter used in sub tour elmination 
 
############################### 
########## Variables ############### 
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############################### 
 
var f_a{i in Node, j in Node, k in Route}, binary; 
# Binary, 1 if route k includes the loaded arc from node i to node  j, 0 otherwise  
 
var e_a{i in Node, j in Node, k in Route}, binary; 
# Binary, 1 if route k includes the deadhead arc from node i to node  j, 0 otherwise 
 
var route{k in Route}, >=0; 
# Total duration (or length) of route k 
 
var s{i in Node, k in Route} ; 
# Auxiliary positive integer variable used for sub tour elimination  
 
var act_route{k in Route}, binary ; 
# Binary, 1 if rk > 0, 0 otherwise 
 
############################### 
######### Objective Function ########## 
############################### 
minimize obj:sum{i in Node, j in Node, k in Route}(f_a[i,j,k]*FTTIME[i,j] + e_a[i,j,k]*FTTIME[i,j]) + sum{k in 
Route}10*act_route[k]; 
#Minimizes the total route duration (length) 
 
#minimize obj:sum{k in Route}(route[k]); 
#Minimizes the total route duration (length) 
 
############################### 
######### Technical Const ######### 
############################### 
 
Con1{i in Node, j in Node}: sum{k in Route}f_a[i,j,k] = CONT[i,j]; 
# Ensures each full travel between source i and destination j is equal to the number of loads from i to j (Determined in 
model 1)  
 
Con2{k in Route}:sum{i in Node, j in Node}(f_a[i,j,k]*FTTIME[i,j] + e_a[i,j,k]*ETTIME[i,j]) = route[k]; 
# Total duration of full and empty assignment of travels to route k is equal to the route duration (length) 
 
Con3{p in Node, k in Route}:sum{i in Node}(f_a[i,p,k] + e_a[i,p,k]) = sum{j in Node}(f_a[p,j,k] + e_a[p,j,k]); 
# (Conservation of flow). at each node and for each route, total full and empty entry to a node should be equal to the 
total full and empty exit. 
 
con34{k in Route, i in Node}:sum{j in Node}(f_a[i,j,k] + e_a[i,j,k]) <= act_route[k]; 
#Con37{p in Node, k in Route}:sum{i in Node}(f_a[i,p,k] + e_a[i,p,k]) + sum{j in Node}(f_a[p,j,k] + e_a[p,j,k]) <= 2; 
# Every Node is visited only once by each route 
 
#Con31{p in Node, k in Route}:sum{i in Node}(f_a[i,p,k] + e_a[i,p,k]) <= 1; 
 
#Con32{p in Node, k in Route}: sum{j in Node}(f_a[p,j,k] + e_a[p,j,k]) <= 1 ; 
 
 
Con4{i in Node, j in Node, k in Route}:s[i,k] - s[j,k] + 1 <= M*(1- f_a[i,j,k]); 
# Together with cont 5, 6, and 7 is used for sub-tour elimination.   
 
#Con41{i in Node, j in Node, k in Route}:-s[i,k] + s[j,k] - 1 >= -(M*(1- e_a[i,j,k])); 
# Together with cont 5, 6, and 7 is used for sub-tour elimination. 
 
Con5{i in Node, k in Route}: s[i,k] <= M; 
# Used for sub-tour elimination 
 
Con6{i in Node, k in Route}: s[i,k] >= 1; 
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# Used for sub-tour elimination 
 
#Con7{k in Route}: sum{i in Node, j in Node}f_a[i,j,k] <= 4; 
 
con12{k in Route}:sum{i in Node, j in Node}e_a[i,j,k] = 1;  
#con121{k in Route}:sum{i in Node, j in Node : i = j}e_a[i,j,k] = 0;  
 
#con121{k in Route}:sum{i in Node, j in Node : i = j}e_a[i,j,k] = 0;  
#con121{k in Route}:sum{i in Node, j in Node : i = j}e_a[i,j,k] = 0;  
 
# Sets maximum duration of the deadhead as fraction of the total route duration (length). 
#con38{i in Node, j in Node, k in Route}:f_a[i,j,k]+ e_a[i,j,k] + f_a[j,i,k] + e_a[j,i,k] <= 1; 
 
#con39{k in Route}:sum{i in Node, j in Node}(f_a[i,j,k]) <=4;  
 
 
############################### 
########## Policy Constraints ##########   
############################### 
 
#con8{k in Route}: route[k] >= act_route[k]*MITIME; 
# Sets min route duration (length) 
 
#con81{k in Route}: route[k] <= act_route[k]*100; 
# Sets min route duration (length) 
 
cont9{k in Route}: route[k] <= act_route[k]*TTTIME; 
# Sets max route duration (length) 
 
#con10: sum{k in Route}route[k] / AVG_R_LEN <= sum{k in Route}act_route[k]; 
# Sets max average route duration (length) 
 
#con11:sum{k in Route}act_route[k] <= NUM_ACT_ROUTE; 
# Sets maximum number of allowed routes 
 
#con12{k in Route}:(sum{i in Node, j in Node}(e_a[i,j,k])*ETTIME[i,j]) / MAX_PER_DAED <= route[k];  
# Sets maximum duration of the deadhead as fraction of the total route duration (length). 
 
 
solve; 
 
printf "\n\nLoaded Arcs and Routes\n\n"; 
for {i in Node, j in Node, k in Route}{ 
 for {{0}: f_a[i,j,k] == 1 } { 
 
printf  " %s %d %s %d %s %d \n"," Route", k ," goes from node ",i," to node ",j ;  
}} 
 
printf "\n\nDeahead Arcs and veh\n\n"; 
for {i in Node, j in Node, k in Route}{ 
for {{0}: e_a[i,j,k] == 1 } { 
 
 printf  " %s %d %s %d %s %d \n","Route", k ," goes from node ",i," to node ",j ;  
}} 
 
printf "\n\nDuration of Each Route\n\n"; 
for {k in Route}{ 
 for {{0}: route[k] >= 1 } { 
 printf " Route  %d %s %f \ Hours \n", k, " is ", route[k]; 
}} 
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printf "\n\n"; 
data; 
 
param m := 200; 

 
param FTTIME :Hal Tru  Syd  Yar  Mon  Frd  Stj  Cht  Gt1  Riv  Qbc 
 Gt2  Mte  Gt3  Caw  Mtw  Otn  Ots := 
Hal  0.5     1.39 4.49 3.54 3.12 4.86 4.63 3.76 5.77 8.66 10.67
 12.73 12.91 13.3 13.91 13.31 14.85 15.82 
Tru  1.39 0.5     3.6     4.43 2.23 3.97 3.74 2.87 4.88 7.77 9.78
 11.84 12.02 12.42 13.02 12.42 13.96 14.93 
Syd  4.49 3.6     0.5     7.48 5.26 6.86 6.71 5.83 7.88 10.72 12.7
 14.83 15.06 15.44 16.06 15.46 16.93 17.89 
Yar  3.54 4.43 7.48 0.5     5.99 7.72 7.49 6.58 8.81 7.2     13.53
 15.7 15.82 16.06 16.82 16.22 13.38 14.35 
Mon  3.12 2.23 5.26 5.99 0.5     2.3     2.08 2.13 3.15 6.11 8.09
 10.2 10.37 10.81 11.37 10.77 12.29 13.28 
Frd  4.86 3.97 6.86 7.72 2.3     0.5     1.59 3.81 1.41 4.39 6.33
 8.46 8.76 9.06 9.76 9.16 10.6 11.57 
Stj  4.63 3.74 6.71 7.49 2.08 1.59 0.5     3.92 2.53 5.31 7.23
 9.46 9.56 9.96 10.56 9.96 11.54 12.5 
Cht  3.76 2.87 5.83 6.58 2.13 3.81 3.92 0.5     4.85 7.63 9.59
 11.74 11.9 12.43 12.9 12.3 13.86 14.79 
Gt1  5.77 4.88 7.88 8.81 3.15 1.41 2.53 4.85 0.5     3.44 5.25
 7.46 7.49 8.12 8.49 7.89 9.64 10.62 
Riv  8.66 7.77 10.72 7.2  6.11 4.39 5.31 7.63 3.44 0.5     2.45
 6.25 4.74 5.22 5.74 5.14 6.79 7.62 
Qbc  10.67 9.78 12.7 13.53 8.09 6.33 7.23 9.59 5.25 2.45 0.5     
2.72 2.94 3.45 3.94 3.34 5.02 6.08 
Gt2  12.73 11.84 14.83 15.7 10.2 8.46 9.46 11.74 7.46 6.25 2.72
 0.5     2.02 2.39 3.02 2.42 4.09 4.94 
Mte  12.91 12.02 15.06 15.82 10.37 8.76 9.56 11.9 7.49 4.74 2.94
 2.02 0.5     1.22 1.5     0.9     2.5     3.4 
Gt3  13.3 12.42 15.44 16.06 10.81 9.06 9.96 12.43 8.12 5.22 3.45
 2.39 1.22 0.5     2.45 1.45 3.24 3.85 
Caw  13.91 13.02 16.06 16.82 11.37 9.76 10.56 12.9 8.49 5.74 3.94
 3.02 1.5     2.445 0.5  1.5     3.5     4.4 
Mtw  13.31 12.42 15.46 16.22 10.77 9.16 9.96 12.3 7.89 5.14 3.34
 2.42 0.9     1.445 1.5  0.5     2.1     3 
Otn  14.85 13.96 16.93 13.38 12.29 10.6 11.54 13.86 9.64 6.79 5.02
 4.09 2.5     3.24 3.5     2.1     0.5     2.42 
Ots  15.82 14.93 17.89 14.35 13.28 11.57 12.5 14.79 10.62 7.62 6.08
 4.94 3.4     3.85 4.4     3     2.42 0.5 
; 
 
 
param ETTIME :Hal Tru  Syd  Yar  Mon  Frd  Stj  Cht  Gt1  Riv  Qbc 
 Gt2  Mte  Gt3  Caw  Mtw  Otn  Ots := 
Hal  0.00 0.89 3.99 3.04 2.62 4.36 4.13 3.26 5.27 8.16 10.17
 12.23 12.41 12.80 13.41 12.81 14.35 15.32 
Tru  0.89 0.00 3.10 3.93 1.73 3.47 3.24 2.37 4.38 7.27 9.28
 11.34 11.52 11.92 12.52 11.92 13.46 14.43 
Syd  3.99 3.10 0.00 6.98 4.76 6.36 6.21 5.33 7.38 10.22 12.20
 14.33 14.56 14.94 15.56 14.96 16.43 17.39 
Yar  3.04 3.93 6.98 0.00 5.49 7.22 6.99 6.08 8.31 6.70 13.03
 15.20 15.32 15.56 16.32 15.72 12.88 13.85 
Mon  2.62 1.73 4.76 5.49 0.00 1.80 1.58 1.63 2.65 5.61 7.59
 9.70 9.87 10.31 10.87 10.27 11.79 12.78 
Frd  4.36 3.47 6.36 7.22 1.80 0.00 1.09 3.31 0.91 3.89 5.83
 7.96 8.26 8.56 9.26 8.66 10.10 11.07 
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Stj  4.13 3.24 6.21 6.99 1.58 1.09 0.00 3.42 2.03 4.81 6.73
 8.96 9.06 9.46 10.06 9.46 11.04 12.00 
Cht  3.26 2.37 5.33 6.08 1.63 3.31 3.42 0.00 4.35 7.13 9.09
 11.24 11.40 11.93 12.40 11.80 13.36 14.29 
Gt1  5.27 4.38 7.38 8.31 2.65 0.91 2.03 4.35 0.00 2.94 4.75
 6.96 6.99 7.62 7.99 7.39 9.14 10.12 
Riv  8.16 7.27 10.22 6.70 5.61 3.89 4.81 7.13 2.94 0.00 1.95
 5.75 4.24 4.72 5.24 4.64 6.29 7.12 
Qbc  10.17 9.28 12.20 13.03 7.59 5.83 6.73 9.09 4.75 1.95 0.00
 2.22 2.44 2.95 3.44 2.84 4.52 5.58 
Gt2  12.23 11.34 14.33 15.20 9.70 7.96 8.96 11.24 6.96 5.75 2.22
 0.00 1.52 1.89 2.52 1.92 3.59 4.44 
Mte  12.41 11.52 14.56 15.32 9.87 8.26 9.06 11.40 6.99 4.24 2.44
 1.52 0.00 0.72 1.00 0.40 2.00 2.90 
Gt3  12.80 11.92 14.94 15.56 10.31 8.56 9.46 11.93 7.62 4.72 2.95
 1.89 0.72 0.00 1.95 0.95 2.74 3.35 
Caw  13.41 12.52 15.56 16.32 10.87 9.26 10.06 12.40 7.99 5.24 3.44
 2.52 1.00 1.95 0.00 1.00 3.00 3.90 
Mtw  12.81 11.92 14.96 15.72 10.27 8.66 9.46 11.80 7.39 4.64 2.84
 1.92 0.40 0.95 1.00 0.00 1.60 2.50 
Otn  14.35 13.46 16.43 12.88 11.79 10.10 11.04 13.36 9.14 6.29 4.52
 3.59 2.00 2.74 3.00 1.60 0.00 1.92 
Ots  15.32 14.43 17.39 13.85 12.78 11.07 12.00 14.29 10.12 7.12 5.58
 4.44 2.90 3.35 3.90 2.50 1.92 0.00 
; 
 
 
 
end; 
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Appendix J:  Calculation of the Jobs Enroute Time in Python 

import csv 
 
from Distance import  * 
from Param import  * 
 
key = Distance.keys() 
# Puts all the dictionary keys in the key list. There is no need to iterate over the dictionary and collect all the keys 
 
value = Distance.values() 
# Puts all the dictionary values int the value list.There is no need iterate over the dictionary and collect all the values 
 
Model_1_PI_JOBS = [] 
Model_1_PI_DUR = [] 
Model_1_PI_LOC = [] 
 
Model_1_HY_JOBS = [] 
Model_1_HY_DUR = [] 
Model_1_HY_LOC = [] 
 
Model_1_CO_JOBS = [] 
Model_1_CO_DUR = [] 
Model_1_CO_LOC = [] 
 
 
Model_1_PI_DDUR = [] 
Model_1_HY_DDUR = [] 
Model_1_CO_DDUR = [] 
 
driving_limit = 14 
sleep_time = 8 
 
# Read Section 
#--------------------------------------------------------------------------- 
 
with open('M1_PI_JOBS.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
 
    for row in reader: 
        Model_1_PI_JOBS_TEMP = [] 
        Model_1_PI_JOBS_TEMP.append(row[0]) 
        Model_1_PI_JOBS_TEMP.append(row[1]) 
        Model_1_PI_JOBS_TEMP.append(float(row[2])) 
        Model_1_PI_JOBS.append(Model_1_PI_JOBS_TEMP) 
 
with open('M1_HY_JOBS.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
 
    for row in reader: 
        Model_1_HY_JOBS_TEMP = [] 
        Model_1_HY_JOBS_TEMP.append(row[0]) 
        Model_1_HY_JOBS_TEMP.append(row[1]) 
        Model_1_HY_JOBS_TEMP.append(float(row[2])) 
        Model_1_HY_JOBS.append(Model_1_HY_JOBS_TEMP) 
 
with open('M1_CO_JOBS.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
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    for row in reader: 
        Model_1_CO_JOBS_TEMP = [] 
        Model_1_CO_JOBS_TEMP.append(row[0]) 
        Model_1_CO_JOBS_TEMP.append(row[1]) 
        Model_1_CO_JOBS_TEMP.append(float(row[2])) 
        Model_1_CO_JOBS.append(Model_1_CO_JOBS_TEMP) 
 
 
 
#------------------------------------------------------------------------------- 
# PI Section 
#--------------------------------------------------------------------------- 
# Jobs from M1 file 
job_row = 0 
for i in range(len(Model_1_PI_JOBS)): 
    s = Model_1_PI_JOBS[i][0] 
    d = Model_1_PI_JOBS[i][1] 
    for k in range(len(Distance)): 
        if s == key[k][0] and d == key[k][1]: 
 
            job_hours = 0 
            drive_hours = 0 
            total_distance = 0 
            total_distance = 2 * value[k] 
            #print total_distance 
            job_hours = (float(total_distance)/avg_speed) 
            drive_hours = job_hours  
            number_of_nights = int (job_hours / driving_limit) 
   
            job_hours = job_hours + number_of_nights * sleep_time 
            print s,d, drive_hours, number_of_nights,  job_hours 
 
            # print s,d,job_hours 
            counter =  int(Model_1_PI_JOBS[i][2]) 
 
 
            for j in range(counter): 
                job_row +=1 
 
                LOC = (job_row, s) 
                Model_1_PI_LOC.append(LOC) 
 
                DUR = (job_row, job_hours) 
                Model_1_PI_DUR.append(DUR) 
 
                DUR_DRIVE = (job_row, drive_hours) 
                Model_1_PI_DDUR.append(DUR_DRIVE)  
 
b = open('jobs_info/JOB_LOC_PI.csv', 'wb') 
a = csv.writer(b) 
header = ['number','node'] 
a.writerow(header) 
a.writerows(Model_1_PI_LOC) 
b.close() 
 
b = open('jobs_info/JOB_DUR_PI.csv', 'wb') 
a = csv.writer(b) 
header = ['number','dur'] 
a.writerow(header) 
a.writerows(Model_1_PI_DUR) 
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b.close() 
 
b = open('jobs_info/JOB_DRIVE_DUR_PI.csv', 'wb') 
a = csv.writer(b) 
header = ['number','dur'] 
a.writerow(header) 
a.writerows(Model_1_PI_DDUR) 
b.close() 
 
#------------------------------------------------------------------------------- 
# Reading the jobs created in RO optimizer 
 
M2_RAW = [] 
 
with open('M2_prep/M2_inventory_pi.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
 
    for row in reader: 
        Model_2_TEMP = [] 
        Model_2_TEMP.append(row[0]) 
        Model_2_TEMP.append(row[1]) 
        Model_2_TEMP.append(float(row[2])) 
        Model_2_TEMP.append(float(row[3])) 
        Model_2_TEMP.append(float(row[4])) 
        M2_RAW.append(Model_2_TEMP) 
 
Location = [] 
Duration = [] 
DDuration = [] 
 
for i in range(len(M2_RAW)): 
    for j in range(len(M2_RAW)): 
        pass1 = M2_RAW[i][2] 
        pass2 = M2_RAW[j][3] 
        if pass1 == pass2: 
            #print M2_RAW[i][0],M2_RAW[i][1],M2_RAW[i][2],M2_RAW[j][3],M2_RAW[j][4] 
 
            #Entering a social cost into jobs with duration longer than 14 hours 
            drive_hours = 0 
            job_dur = 0 
            job_dur = M2_RAW[j][4] 
            drive_hours = job_dur  
            #print job_dur 
            number_of_nights = int (job_dur / driving_limit) 
            #print number_of_nights 
            job_dur = job_dur + number_of_nights * sleep_time 
 
            job_row+=1 
 
            loc = (job_row , M2_RAW[i][0]) 
            Location.append(loc) 
             
            dur = (job_row , job_dur) 
            Duration.append(dur) 
 
            ddur = (job_row, drive_hours)  
            DDuration.append(ddur)         
 
b = open('jobs_info/JOB_LOC_PI.csv', 'ab') 
a = csv.writer(b) 
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a.writerows(Location) 
b.close() 
 
b = open('jobs_info/JOB_DUR_PI.csv', 'ab') 
a = csv.writer(b) 
a.writerows(Duration) 
b.close() 
 
b = open('jobs_info/JOB_DRIVE_DUR_PI.csv', 'ab') 
a = csv.writer(b) 
a.writerows(DDuration) 
b.close() 
 
#------------------------------------------------------------------------------- 
# Hybrid Section 
 
#------------------------------------------------------------------------------- 
# Jobs from M1 file 
job_row = 0 
for i in range(len(Model_1_HY_JOBS)): 
    s = Model_1_HY_JOBS[i][0] 
    d = Model_1_HY_JOBS[i][1] 
    for k in range(len(Distance)): 
        if s == key[k][0] and d == key[k][1]: 
 
            job_hours = 0 
            total_distance = 0 
            total_distance = 2 * value[k] 
            #print total_distance 
            job_hours = (float(total_distance)/avg_speed) 
            drive_hours = job_hours  
            number_of_nights = int (job_hours / driving_limit) 
            #print s,d,number_of_nights, job_hours 
            job_hours = job_hours + number_of_nights * sleep_time 
 
 
            # print s,d,job_hours 
            counter =  int(Model_1_HY_JOBS[i][2]) 
 
 
            for j in range(counter): 
                job_row +=1 
 
                LOC = (job_row, s) 
                Model_1_HY_LOC.append(LOC) 
 
                DUR = (job_row, job_hours) 
                Model_1_HY_DUR.append(DUR) 
 
                DUR_DRIVE = (job_row, drive_hours) 
                Model_1_HY_DDUR.append(DUR_DRIVE)  
 
b = open('jobs_info/JOB_LOC_HY.csv', 'wb') 
a = csv.writer(b) 
header = ['number','node'] 
a.writerow(header) 
a.writerows(Model_1_HY_LOC) 
b.close() 
 
b = open('jobs_info/JOB_DUR_HY.csv', 'wb') 
a = csv.writer(b) 
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header = ['number','dur'] 
a.writerow(header) 
a.writerows(Model_1_HY_DUR) 
b.close() 
 
b = open('jobs_info/JOB_DRIVE_DUR_HY.csv', 'wb') 
a = csv.writer(b) 
header = ['number','dur'] 
a.writerow(header) 
a.writerows(Model_1_HY_DDUR) 
b.close() 
 
#------------------------------------------------------------------------------- 
# Reading the jobs created in RO optimizer 
 
M2_RAW = [] 
 
with open('M2_prep/M2_inventory_hy.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
 
    for row in reader: 
        Model_2_TEMP = [] 
        Model_2_TEMP.append(row[0]) 
        Model_2_TEMP.append(row[1]) 
        Model_2_TEMP.append(float(row[2])) 
        Model_2_TEMP.append(float(row[3])) 
        Model_2_TEMP.append(float(row[4])) 
        M2_RAW.append(Model_2_TEMP) 
 
Location = [] 
Duration = [] 
DDuration = [] 
 
for i in range(len(M2_RAW)): 
    for j in range(len(M2_RAW)): 
        pass1 = M2_RAW[i][2] 
        pass2 = M2_RAW[j][3] 
        if pass1 == pass2: 
            #print M2_RAW[i][0],M2_RAW[i][1],M2_RAW[i][2],M2_RAW[j][3],M2_RAW[j][4] 
 
            #Entering a social cost into jobs with duration longer than 14 hours 
            job_dur = 0 
            job_dur = M2_RAW[j][4] 
            drive_hours = job_dur  
            #print job_dur 
            number_of_nights = int (job_dur / driving_limit) 
            #print number_of_nights 
            job_dur = job_dur + number_of_nights * sleep_time 
 
            job_row+=1 
            loc = (job_row , M2_RAW[i][0]) 
            Location.append(loc) 
             
            dur = (job_row , job_dur) 
            Duration.append(dur) 
 
            ddur = (job_row, drive_hours)  
            DDuration.append(ddur)          
 
b = open('jobs_info/JOB_LOC_HY.csv', 'ab') 
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a = csv.writer(b) 
a.writerows(Location) 
b.close() 
 
b = open('jobs_info/JOB_DUR_HY.csv', 'ab') 
a = csv.writer(b) 
a.writerows(Duration) 
b.close() 
 
b = open('jobs_info/JOB_DRIVE_DUR_HY.csv', 'ab') 
a = csv.writer(b) 
a.writerows(DDuration) 
b.close() 
 
#------------------------------------------------------------------------------- 
# Conventional Section 
 
#------------------------------------------------------------------------------- 
# Jobs from M1 file 
job_row = 0 
for i in range(len(Model_1_CO_JOBS)): 
    s = Model_1_CO_JOBS[i][0] 
    d = Model_1_CO_JOBS[i][1] 
    for k in range(len(Distance)): 
        if s == key[k][0] and d == key[k][1]: 
 
            job_hours = 0 
            total_distance = 0 
            total_distance = 2 * value[k] 
            #print total_distance 
            job_hours = (float(total_distance)/avg_speed) 
            drive_hours = job_hours  
            number_of_nights = int (job_hours / driving_limit) 
            #print s,d,number_of_nights, job_hours 
            job_hours = job_hours + number_of_nights * sleep_time 
 
 
            # print s,d,job_hours 
            counter =  int(Model_1_CO_JOBS[i][2]) 
 
 
            for j in range(counter): 
                job_row +=1 
 
                LOC = (job_row, s) 
                Model_1_CO_LOC.append(LOC) 
 
                DUR = (job_row, job_hours) 
                Model_1_CO_DUR.append(DUR) 
 
                DUR_DRIVE = (job_row, drive_hours) 
                Model_1_CO_DDUR.append(DUR_DRIVE)  
 
b = open('jobs_info/JOB_LOC_CO.csv', 'wb') 
a = csv.writer(b) 
header = ['number','node'] 
a.writerow(header) 
a.writerows(Model_1_CO_LOC) 
b.close() 
 
b = open('jobs_info/JOB_DUR_CO.csv', 'wb') 
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a = csv.writer(b) 
header = ['number','dur'] 
a.writerow(header) 
a.writerows(Model_1_CO_DUR) 
b.close() 
 
b = open('jobs_info/JOB_DRIVE_DUR_CO.csv', 'wb') 
a = csv.writer(b) 
header = ['number','dur'] 
a.writerow(header) 
a.writerows(Model_1_CO_DDUR) 
b.close() 
 
#------------------------------------------------------------------------------- 
# Reading the jobs created in RO optimizer 
 
M2_RAW = [] 
 
with open('M2_prep/M2_inventory_co.csv', 'rb') as f: 
 
    reader = csv.reader(f) 
 
    for row in reader: 
        Model_2_TEMP = [] 
        Model_2_TEMP.append(row[0]) 
        Model_2_TEMP.append(row[1]) 
        Model_2_TEMP.append(float(row[2])) 
        Model_2_TEMP.append(float(row[3])) 
        Model_2_TEMP.append(float(row[4])) 
        M2_RAW.append(Model_2_TEMP) 
 
Location = [] 
Duration = [] 
DDuration = [] 
 
for i in range(len(M2_RAW)): 
    for j in range(len(M2_RAW)): 
        pass1 = M2_RAW[i][2] 
        pass2 = M2_RAW[j][3] 
        if pass1 == pass2: 
            #print M2_RAW[i][0],M2_RAW[i][1],M2_RAW[i][2],M2_RAW[j][3],M2_RAW[j][4] 
 
            #Entering a social cost into jobs with duration longer than 14 hours 
            job_dur = 0 
            job_dur = M2_RAW[j][4] 
            drive_hours = job_dur  
             
            #print job_dur 
            number_of_nights = int (job_dur / driving_limit) 
            #print number_of_nights 
            job_dur = job_dur + number_of_nights * sleep_time 
 
            job_row+=1 
            loc = (job_row , M2_RAW[i][0]) 
            Location.append(loc) 
             
            dur = (job_row , job_dur) 
            Duration.append(dur) 
             
            ddur = (job_row, drive_hours) 
            DDuration.append(ddur)         
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b = open('jobs_info/JOB_LOC_CO.csv', 'ab') 
a = csv.writer(b) 
a.writerows(Location) 
b.close() 
 
b = open('jobs_info/JOB_DUR_CO.csv', 'ab') 
a = csv.writer(b) 
a.writerows(Duration) 
b.close() 
 
b = open('jobs_info/JOB_DRIVE_DUR_CO.csv', 'ab') 
a = csv.writer(b) 
a.writerows(DDuration) 
b.close() 
#------------------------------------------------------------------------------- 
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Appendix K: GLPK Code of Assignment MIP 

 
# Developed by Mehran Fazili 
# Created on Jan 14, 2014 
# Last Updated on Feb 27, 2014 
#------------------------------------------------------------------------------------------------------ 
 
set Node := {'Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'};  
/* Set of nodes*/ 
 
param K, integer;  
set Truck := {1..K} ; 
 
param Q, integer;  
set Job :={1..Q}; 
 
#-----------------------------------------Parameters------------------------------------------------- 
 
param T_L {i in Truck}, symbolic ; 
# Location of the truck 
set Truck_Set, dimen 1; 
table ara IN "CSV" "LP_INFO/TR_LOC.csv" : 
Truck_Set <-[trk_num], T_L ~ home; 
 
param J_L {j in Job}, symbolic; 
# Location of a job 
set Job_Set, dimen 1; 
table ara IN "CSV" "JOBS_INFO/JOB_LOC_CO.csv" : 
Job_Set <-[number], J_L ~ node; 
 
param J_DUR {j in Job}; 
# Duration of a job  
set JobD_Set, dimen 1; 
table ara IN "CSV" "JOBS_INFO/JOB_DUR_CO.csv" : 
JobD_Set <-[number], J_DUR ~ dur; 
 
param J_DRIVE_DUR {j in Job}; 
# Duration of a job  
set JobDD_Set, dimen 1; 
table ara IN "CSV" "JOBS_INFO/JOB_DRIVE_DUR_CO.csv" : 
JobDD_Set <-[number], J_DRIVE_DUR ~ dur; 
 
param FIX_COST{i in Truck}; 
# Fix cost of entering a new truck into the service 
set Truck_Fix_Cost_Set, dimen 1; 
table ara IN "CSV" "LP_INFO/FIX_COST.csv" : 
Truck_Fix_Cost_Set <-[trk_num], FIX_COST ~ f_cost; 
 
param DELV_SPAN{i in Truck};   
# Maximum work time assigned to truck i. 14 for short haul trucks, 72 hours for long haul trucks.   
set Del_Span_Set, dimen 1; 
table ara IN "CSV" "LP_INFO/DEL_SPAN.csv" : 
Del_Span_Set <-[trk_num], DELV_SPAN ~ span; 
 
param DIST{n1 in Node, n2 in Node}; 
# Distance from one node to other node 
 
param D_DUR {i in Truck , j in Job }  := 2*DIST[T_L[i], J_L[j]] ; 
# Distance in hours from node the location of truck i to location of job j 
 
param DAYDRIVE, default 14; 
# on duty  time allowed per day  
 
param HOUR_COST{i in Truck}, default 200; 
# Averge hourly operational cost of a truck  - from Goverment of Canada   $3.15/ km cost of operation  
 
param SOCIAL_COST, default 60; 
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# Average cost of a bed and breakfast, parking by highway.  per night.   
#-----------------------------------------Variables------------------------------------------------- 
 
var x{i in Truck, j in Job}, binary; 
# Binary variable, 1 if truck i is assigned to perform job j 
 
var fix_x{i in Truck}, binary; 
# Binary variable, 1 if truck i enter service 
 
var enroute_time{i in Truck}, >=0 ; 
#  time truck i is away from home  
 
var fix_cost{i in Truck}, >= 0; 
# Fix cost of entering truck i into service 
 
var opr_cost{i in Truck}, >= 0; 
# Operation cost of truck i  
 
var soc_cost{i in Truck}, >= 0 ; 
# Social cost of truck i  
 
#--------------------------------- 
 
var total_soc, >= 0 ; 
 
var total_opr, >= 0 ; 
 
var total_fix, >= 0; 
 
var total_enroute, >=0; 
 
var total_driving_hours, >=0; 
#-----------------------------------------Obj Func------------------------------------------------- 
 
minimize obj: sum{i in Truck }(opr_cost[i] + soc_cost[i] + fix_cost[i] ); 
 
#----------------------------------------Constraints-------------------------------------------------- 
 
con1{i in Truck}:sum{j in Job}((D_DUR[i,j] + J_DUR[j])* x[i,j]) = enroute_time[i] ; 
 
con2{j in Job}:sum{i in Truck}x[i,j] = 1; 
 
con3{i in Truck}: enroute_time[i] <= DELV_SPAN[i]*fix_x[i] ; 
# Delivery Span for Short Haul Trucks 
 
con4{i in Truck}:sum{j in Job}((D_DUR[i,j] + J_DRIVE_DUR[j])* x[i,j])*HOUR_COST[i] = opr_cost[i] ; 
#Operational cost of Short Haul Trucks 
 
cont5{i in Truck}: FIX_COST[i] * fix_x[i] = fix_cost[i];  
#Fix cost of Short Haul Trucks 
 
cont6{i in Truck}: sum{j in Job: J_DRIVE_DUR[j] >=14 }((J_DRIVE_DUR[j]* x[i,j]) / DAYDRIVE) * SOCIAL_COST  = soc_cost[i] ; 
 
#cona1{i in Truck: i = 1}: enroute_time[i] <= 93*fix_x[i] ; 
# Delivery Span for Short Haul Trucks 
 
#------------------------------------------------------------------------------------------------------ 
 
# Following are the help constriant for purpose of collecting statistics. They have nothing to do with the solution of the model.  
 
contax1: sum{i in Truck}soc_cost[i] = total_soc; 
 
contax2: sum{i in Truck}opr_cost[i] = total_opr; 
 
contax3: sum{i in Truck}fix_cost[i] = total_fix; 
 
contax4: sum{i in Truck}enroute_time[i] = total_enroute; 
 
contac5: sum{i in Truck}opr_cost[i]/ HOUR_COST[i] = total_driving_hours; 
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#------------------------------------------------------------------------------------------------------ 
solve; 
 
for {i in Truck} printf "\n\n %s %d %s %f  \n", "Driving time of truck ", i ," is ", enroute_time[i]; 
 
printf "\n\nLoaded Arcs and Routes\n\n"; 
for {i in Truck , j in Job}{ 
for {{0}: x[i,j] == 1 } { 
printf  " %s %d %s %d  \n\n"," truck ", i ," servce job ",j;  
}} 
#------------------------------------------------------------------------------------------------------ 
data; 
 
param K := 2790; 
# Number of trucks in the system 
 
param Q := 451; 
# Number of jobs for CO 
 
#param Q := 847; 
# Number of jobs for HY 
 
#param Q := 2755; 
# Number of jobs for PI 
 
param DIST :Hal  Tru  Syd  Yar  Mon  Frd  Stj  Cht  Gt1  Riv  Qbc 
 Gt2  Mte  Gt3  Caw  Mtw  Otn  Ots := 
Hal   0.00 1.61 5.49 4.30 3.78 5.95 5.66 4.58 7.09 10.70
 13.21 15.79 16.01 16.50 17.26 16.51 18.44 19.65 
Tru   1.61 0.00 4.38 5.41 2.66 4.84 4.55 3.46 5.98 9.59
 12.10 14.68 14.90 15.40 16.15 15.40 17.33 18.54 
Syd   5.49 4.38 0.00 9.23 6.45 8.45 8.26 7.16 9.73 13.28
 15.75 18.41 18.70 19.18 19.95 19.20 21.04 22.24 
Yar   4.30 5.41 9.23 0.00 7.36 9.53 9.24 8.10 10.89 8.88
 16.79 19.50 19.65 19.95 20.90 20.15 16.60 17.81 
Mon   3.78 2.66 6.45 7.36 0.00 2.75 2.48 2.54 3.81 7.51
 9.99 12.63 12.84 13.39 14.09 13.34 15.24 16.48 
Frd   5.95 4.84 8.45 9.53 2.75 0.00 1.86 4.64 1.64 5.36
 7.79 10.45 10.83 11.20 12.08 11.33 13.13 14.34 
Stj   5.66 4.55 8.26 9.24 2.48 1.86 0.00 4.78 3.04 6.51
 8.91 11.70 11.83 12.33 13.08 12.33 14.30 15.50 
Cht   4.58 3.46 7.16 8.10 2.54 4.64 4.78 0.00 5.94 9.41
 11.86 14.55 14.75 15.41 16.00 15.25 17.20 18.36 
Gt1   7.09 5.98 9.73 10.89 3.81 1.64 3.04 5.94 0.00 4.18
 6.44 9.20 9.24 10.03 10.49 9.74 11.93 13.15 
Riv   10.70 9.59 13.28 8.88 7.51 5.36 6.51 9.41 4.18 0.00
 2.94 7.69 5.80 6.40 7.05 6.30 8.36 9.40 
Qbc   13.21 12.10 15.75 16.79 9.99 7.79 8.91 11.86 6.44 2.94
 0.00 3.28 3.55 4.19 4.80 4.05 6.15 7.48 
Gt2   15.79 14.68 18.41 19.50 12.63 10.45 11.70 14.55 9.20 7.69
 3.28 0.00 2.40 2.86 3.65 2.90 4.99 6.05 
Mte   16.01 14.90 18.70 19.65 12.84 10.83 11.83 14.75 9.24 5.80
 3.55 2.40 0.00 1.40 1.75 1.00 3.00 4.13 
Gt3   16.50 15.40 19.18 19.95 13.39 11.20 12.33 15.41 10.03 6.40
 4.19 2.86 1.40 0.00 2.93 1.68 3.93 4.69 
Caw   17.26 16.15 19.95 20.90 14.09 12.08 13.08 16.00 10.49 7.05
 4.80 3.65 1.75 2.93 0.00 1.75 4.25 5.38 
Mtw   16.51 15.40 19.20 20.15 13.34 11.33 12.33 15.25 9.74 6.30
 4.05 2.90 1.00 1.68 1.75 0.00 2.50 3.63 
Otn   18.44 17.33 21.04 16.60 15.24 13.13 14.30 17.20 11.93 8.36
 6.15 4.99 3.00 3.93 4.25 2.50 0.00 2.90 
Ots   19.65 18.54 22.24 17.81 16.48 14.34 15.50 18.36 13.15 9.40
 7.48 6.05 4.13 4.69 5.38 3.63 2.90 0.00; 
 
end; 
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Appendix L: One-Way ANOVA Test  

Analysis of variance or One-Way ANOVA is used [46] to investigate the population mean of a 

one factor problem where there are more than two samples to be compared. 

The calculation procedure is explained as follows, however a reader shall refer to [46] for a 

detailed explanation of the steps.  Minitab™16 is used to perform the actual calculation in this 

thesis.   

One-Way ANOVA 

Assumption and Hypothesis in One-Way ANOVA 

The initial hypothesis in One-Way ANOVA test is shown below. If every observation j form 

every sample  

𝐻0 ∶  𝜇1 =  𝜇2 = ⋯ = 𝜇𝑘 

𝐻1 = 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 

i is shown by Yji , then one can show each observation in the form of:  

𝑌𝑖𝑗  = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗 

Where 𝜇, is the overall mean across all samples, 𝛼𝑖 is the effect of the treatment i (ex. the effect 

of policy variation D2D, PI, HY), and 𝜖𝑖𝑗 is the random error and plays the same role as the error 

term in regression analysis. Therefore the above hypothesis can be written in the following form: 

𝐻0 ∶  𝛼1 =  𝛼2 = ⋯ = 𝛼𝑘 = 0 

𝐻1 = 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝛼𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜 

 

The notations are adopted from [46].   

 

 𝐾 − 1 Degree of freedom 
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𝑛 Number of  observations in a sample 

𝑦𝑖𝑗  The j-th observation of the i-th sample  

 𝑦𝑖.̅  The mean value of the i-th sample 

𝑦..̅ 
Overall mean value across of all 

samples 

𝑆𝑆𝑇 = ∑∑(𝑦𝑖𝑗 − 𝑦..̅

𝑛

𝑗=1

𝑘

𝑖=1

 )2 Total sum of squares 

𝑆𝑆𝐴 = 𝑛 ∑(𝑦𝑖.̅

𝑘

𝑖=1

− 𝑦..̅ )
2 

 

Treatment sum of squares 

𝑆𝑆𝐸 = ∑∑(𝑦𝑖𝑗 − 𝑦𝑖.̅

𝑛

𝑗=1

𝑘

𝑖=1

 )2 

 

Error sum of squares 

 

Table 22 - Analysis of Variance - One-Way ANOVA 

Source of 

Variation 

Sum of 

Squares 

Degree of 

Freedom 

Mean 

 Square 

Computed 

f 

Treatments 

(Systems) 
SSA 𝐾 − 1 𝑠1

2 = 
𝑆𝑆𝐴

𝐾 − 1
  𝑓 =  

𝑠1
2

𝑠2 

Error SSE 𝐾(𝑛 − 1) 𝑠2 = 
𝑆𝑆𝐸

𝐾(𝑛 − 1)
  

Total SST 𝐾𝑛 − 1   

 

 

 


