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Abstract

The compressed web graph and social networks structures proposed by Hernández

and Navarro [22] support more queries than alternative approaches, including in-

neighbor, out-neighbour, and mining queries. Their main strategy is to extract dense

subgraphs from the given graph, and encode them using succinct data structures

such as wavelet trees. Previous experimental studies on wavelet trees, however, test

their performance using textual data, which are different from the data generated

from web graphs. We thus engineer wavelet tree implementations for compressed web

graph and social network structures. In particular, we propose a new wavelet tree

encoding, called combined encoding, which provides better time/space tradeoffs than

previous approaches when used in Hernández and Navarro’s framework to represent

web graphs.
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Chapter 1

Introduction

The World Wide Web and social networks have been the focus of many academic

and industrial research centres. Both the web and social networks can be viewed as

graphs: The web can be modelled as a directed graph in which each vertex repre-

sents a web page, and there is a directed edge from vertex u to vertex v if there is

a hyperlink in the page represented by u that refers to the page represented by v.

Such a graph structure is commonly called a web graph. Social networks are com-

monly viewed as a graph in which vertices represent social entities such as individuals

and/or organizations, and edges represent relationships between these entities. Many

graph algorithms have thus been developed for various applications to extract infor-

mation from web graphs and social networks. For instance, many ranking algorithms

which orders, by relevance and importance, the web pages retrieved by search engines

are essentially algorithms on web graphs, e.g., the PageRank [6] and HITS (hyperlink-

induced topic search) [27] algorithms. Algorithms that detect link spamming often

relies on computations on web graphs [39], such as extracting strongly connected com-

ponents, enumerating maximal cliques and computing minimum cut. Social network

structures are frequently used for data mining and analytics, and more specifically,

to identify interest groups or communities [40], to detect important persons over real

social networks [40], and to understand information propagation [30, 31, 10].

These graph algorithms typically require the underlying web graphs or social

networks to be encoded as data structures residing entirely in the main memory.

1
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Traditionally, graphs have often been represented by either adjacency lists or ad-

jacency matrices. However, as the sizes of web graphs and social networks have

been increasing rapidly, these standard representations often use too much space

to fit in main memory, and performance will be sacrificed if secondary storage is

used as virtual memory. At present, the indexed web contains at least 4.6 billion

pages (http://www.worldwidewebsize.com/), and Facebook, a popular social net-

work platform, had 1.01 billion daily active users on average in September 2015

(http://newsroom.fb.com/company-info/). For large graphs of this scale, design-

ing a representation that fits in the main memory is a challenging task.

Much work has thus been done to design compact representations of web graphs

and social networks [41, 1, 37, 5, 9, 2, 4, 14, 29, 13, 22, 7]. In most previous work,

the main strategy of representing a web graph is to compress its adjacency lists by

taking advantage of properties such as locality (pages tend to have hyperlinks to other

pages with the same domain names in their URLs) and similarity (similar pages tend

to have similar adjacency lists). This includes the early work of Suel and Yuan [41]

which achieves compression by using different codes including Huffman for hyperlinks

pointing to pages with different domain names and those pointing to pages in the

same domain, and the work of Adler and Mitzenmacher [1] which discovers pages

that share common hyperlinks and encodes the difference between the corresponding

adjacency lists. Subsequent work renumbers web graph vertices based on the URLs of

corresponding pages to exploit locality and the similarity between nearby adjacency

lists [37, 5], designs vertex ordering based on a breadth-first traversal of the graph [2],

or uses virtual nodes to represent bicliques or frequent pairs of symbols in adjacency

lists [9, 14]. Similar approaches have also been used to represent social networks, and

ideas such as shingling order and link reciprocity have been proposed [11]. See [22]

for a thorough survey.

Typically, these pieces of work support out-neighbour queries, which return the

http://www.worldwidewebsize.com/
http://newsroom.fb.com/company-info/
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out-neighbours of a given vertex. As they are all based on adjacency lists, they usually

store the transpose of the graph to provide efficient support for in-neighbour queries

which return the in-neighbours of a vertex. Storing a graph and its transpose roughly

doubles the space cost. To improve space efficiency, Brisaboa et al. [7] developed a

web graph data structure called k2-tree which takes advantage of large empty areas

common in the adjacency matrix of a web graph to achieve compression. A single k2-

tree can support both in- and out-neighbour queries efficiently. The social networks

structure by Maserrat and Pei [29] called MPk which is an Eulerian data structure

based on the multiposition linearizations of directed graphs can also answer both

queries efficiently.

Recently, Hernández and Navarro [22] proposed an approach that can support

even more operations. This method first extracts dense subgraphs, including cliques

and bicliques whose sizes are above certain thresholds, from the given web graph or

social network. These subgraphs are then represented using succinct data structures,

and the remaining graph is represented using an existing graph encoding method such

as k2-trees or MPk. Not only does this approach achieve great compression and query

performance in experimental studies, it also supports a richer set of operations than

previous results. In addition to the support of in- and out-neighbour queries, it also

supports a set of queries that can be used to retrieve information of the extracted

dense subgraphs. These queries include returning the cliques and bicliques stored in

the compressed structure, counting the number of cliques (or bicliques) that contain a

given vertex, and listing the dense subgraphs whose density is above a given threshold.

These are called mining queries, as they are useful for data mining applications.

The succinct data structures that Hernández and Navarro used include wavelet

trees [20], whose space cost dominates the cost of the representation of the extracted

dense subgraphs. A wavelet tree can represent a sequence S[1..n] drawn from the
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alphabet [σ] in n lg σ + o(n lg σ) bits1 to support the following three operations in

O(lg σ) time: access(S, i) which returns S[i], rankα(S, i) which returns the number

of occurrences of symbol α in S[1..i], and selectα(S, i) which returns the position in

S that corresponds to the i-th occurrence of α. As a wavelet tree is a key component

of many succinct data structures, a lot of efforts have been made to test its practical

implementations [28, 3, 21, 16], and Hernández and Navarro used popular existing

implementations in their experimental studies on compressed web graphs and social

networks. However, previously the performance of wavelet tree implementations were

typically tested for textual data only. A natural question to ask is whether they

be further improved for purpose of representing extracted dense subgraphs. We thus

study this problem and engineer the wavelet tree implementations used in compressed

web graphs and social networks.

1.1 Our Work

A wavelet tree is conceptually a tree structure constructed over the alphabet of the

sequence it represents, and a bit vector supporting rank and select operations is

constructed for each tree level (see Chapter 3).

In Hernández and Navarro’s experimental studies [22], the wavelet tree used to en-

code the extracted dense subgraphs is implemented as a complete binary tree encoded

implicitly, and the bit vector for each level is encoded using a practical implemen-

tation [15] of the bit vector structure by Raman et al. [36]. In preliminary studies,

we found that previous approaches of using different wavelet tree shapes to improve

efficiency for textual data can not be applied directly to improve dense subgraph

encoding. These approaches include Huffman-shaped [28] and canonical Huffman-

shaped wavelet trees [16]. The reason is that in [22], a wavelet tree is used to encode

a sequence over a very large alphabet, which requires a huge amount of structural data

1In this thesis, [σ] denotes {1, 2, . . . , σ} and lg x denotes log2 x.
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for these alternative tree shapes. To see why, observe that in [22], a wavelet tree is

used to encode a sequence whose entries are vertices of the extracted dense subgraphs.

As dense subgraphs have many vertices, the alphabet size is large compared to the

alphabet of natural language texts. A large alphabet requires more structual data

such as pointers to be stored to encode the tree shape, and for some approaches, extra

information such as the Huffamn codes. For example, a Canonical Huffman-shaped

wavelet tree, in our studies, triples the space cost of the wavelet tree, and the other

tree shapes are even worse. We also used different implementations of bit vectors

in wavelet trees, and achieved tradeoffs different from those in [22]. However, these

tradeoffs are not attractive because they sacrifice too much compression or query

performance. We discovered that bit vector implementations based on run-length en-

codings [21] can achieve better compression ratio, but the query time is increased by

about five times to get improved space efficiency. This is consistent with the experi-

mental studies on textual strings [21], but the query time is disappointing. Therefore,

despite the existence of extensive works on wavelet tree encodings of textual data, it

is hopeless to directly apply them to improve Hernández and Navarro’s compressed

web graph implementations.

To achieve better results, we design a strategy based on the following observation:

bit vectors at different levels of the wavelet tree constructed for dense subgraphs have

different properties. If we group bit vectors with similar properties and use the most

suitable bit vector implementations for each group, we can potentially achieve better

compression and/or query performance. Based on this idea, we engineer wavelet tree

implementations used in compressed web graphs and social networks, and obtained

a rich set of time/space tradeoffs that can not be achieved using existing approaches.

The following four new tradeoffs are particularly interesting:

• A new wavelet tree encoding scheme that decreases the space cost of Hernández

and Navarro’s compressed web graph structure by 9% to 19% (more than 13%
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for all but one graph in our study), while only doubling the query time.

• A new wavelet tree encoding scheme that decreases the space cost of their

compressed web graph structure by 4% to 12% (10% or more for most graphs),

with roughly the same query time.

• A new wavelet tree encoding scheme that decreases the space cost and the query

time of their compressed web graph structure by about 2% and 1% − 9% (5%

or more for most graphs), respectively.

• A new wavelet tree encoding scheme that decreases the query time of Hernández

and Navarro’s compressed social networks structure by 1% to 8%, with roughly

the same space cost.

The idea of using different bit vector encoding schemes at different parts of a

wavelet tree has been used before in the study of compressed text indexes [24, 26, 34].

Our work is the first to applies similar ideas to web graph representations.

1.2 Organization

The rest of the thesis is organized as follows. Chapter 2 describes the background

knowledge of the research area. We introduce the notion of entropy and information-

theoretic lower bound. We also discuss different prefix coding algorithms which are

used in wavelet tree and bit vector data structures. Chapter 3 provides a survey

on succinct representation of bit vectors and wavelet trees. Chapter 4 describes

details about dense subgraph extraction, and how to represent dense subgraphs using

compact data structures. In chapter 5, we perform experimented studies on wavelet

tree representations of dense subgraphs, and engineer wavelet tree implementation for

compressed web graph and social network representations. Chapter 6 is the conclusion

of this thesis.



Chapter 2

Preliminaries

This chapter introduces some concepts in information theory and some prefix codes

which are used in our work.

2.1 Succinct Data Structures, Information-Theoretic Lower Bounds and

Entropy

Succinct data structures can represent data using less space than alternative solutions,

though it typically requires more steps to perform an operation over a succinct data

structure which may sacrifise the performance when the size of the data set is small.

However, when the data are so large that they do not fit in main memory in their

raw form, succinct data structures allow us to represent more data in main memory

instead of spending a large amount of time accessing the disk, which may improve

the performance. When analyzing succinct data structures, researchers often compare

the space cost to information-theoretic lower bounds. Indeed, this kind of analysis

was performed by Jacobson [25] when he first introduced succinct data structures

to encode bit vectors, trees and graphs. The information-theoretic lower bound of

representing a combinatorial object consisting of n elements is dlg ke bits, where k is

the number of such objects. For instance, there are 2n different bit vectors of length

n. Thus the lower bound of representing a bit vector of length n is dlg 2ne = n bits.

There are σn different string of length n drawn from alphabet [σ], so the information-

theoretic lower bound is dn lg σe bits.

As natural language text is typically compressible, researchers also use empirical

7
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entropy to measure the compactness of succinct data structures for strings and text.

The following is the definition of the zero-order empirical entropy of a string:

Definition 1 The Zero-order empirical entropy of a string S of length m over

alphabet [σ] is defined as H0(S) =
σ∑

α=1

(pα lg 1
pα

) = −
σ∑

α=1

(pα lg pα)

where pα is the frequency of character α in S, and 0 lg 0 is defined to be 0.

We use H0(S) to refer to H0 when it is clear from the context. It is well-known

that nH0 is the minimum number of bits required to encode a string if we assign a

unique fixed-length code to each alphabet symbol

Note that nH0(S) ≤ n lg σ, and the maximum value is reached when all characters

have the same frequency.

Researcher have further defined the k-th order empirical entropy for any positive

integer k.

Definition 2 Consider a String S of length n over alphabet [σ]. For any string w ∈

[σ]k, the string ws is the concatenation of all the single characters directly following

one of the occurrences of w in S. The k-th order empirical entropy of S is

Hk(S) = 1
|S|

∑
w∈[σ]k

|ws|H0(ws)

We use Hk(S) to refer to Hk when it is clear from the context. nHk(S) is a lower

bound on the compression that can be achieved by compressors that assign a code to

a character based on the k characters that precede it.

2.2 Prefix Coding

A prefix code is a variable-length code system with the property that no codeword

is a prefix of any other codeword in the system. This property guarantees that an

encoded sequence, when stored as a bit string, can always be uniquely decomposed
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into codewords without requiring a special sign between codewords. Here we survey

several popular prefix codes: Huffman codes and universal codes.

Huffman codes Huffman codes were developed by David A. Huffman [23]. The

idea behind Huffman coding is to use fewer bits to encode symbols that are more

frequent. Given a set of symbols and their weights, we can find a set of codewords

with minimum expected codeword length. The algorithm that generates Huffman

codes works by creating a binary tree called Huffman tree. In this tree, all alphabets

symbols are stored in leaf nodes, whose weights are the numbers of occurrences of

the symbols in the text. The weight of an internal nodes is the sum of the two child

nodes’ weights. To generate a Huffman tree, first we calculate the frequency of each

symbol and create a leaf node for each symbol associated with its frequency. We

then add all the leaves into a priority queue, and nodes with smaller weights have

higher priority. The algorithm then removes two nodes with smallest weights (x and

y denote these two nodes), creates a new internal node z with weight equal to the

sum of the weights of x and y, makes z the parent of x and y, and then adds z

to the queue. We repeat these steps until there is only one root node left in the

queue. To compute the Huffman code of a symbol, we traverse the Huffman tree

from the root node to the leaf storing this symbol. Each time we traverse to the left

child or right child, we append a 0 bit or a 1 bit to the result, respectively. When

we reach the leaf containing the symbol, the bits generated will be the Huffman

encoding of the symbol. For instance, Figure 2.1 is a Huffman tree constructed for a

string S=AAAAAAAAAABBBBBCCCCDDDDDDDDDDDDDDDDD. You can see

that the most frequent letter ’D’ only requires one bit to encode. ’C’ and ’B’ use 3

bits each.

The decoding procedure is simple. We re-use the Huffman binary tree. The

decoding algorithm starts with first bit in the stream and determines whether to go
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Figure 2.1: Huffman Coding for string S.

left or right in the binary tree based on the bits from the stream. When a leaf of the

Huffman binary tree is reached, a character is decoded. Then the algorithm repeats

these steps with the next bit as the first bit of the next character.

A Canonical Huffman code is a special type of Huffman code. It ensures that

codes of the same length are consecutive and shorter codes have smaller values than

longer codes. Figure 2.1 is the normal Huffman codes. To get the canonical version,

we sort the Huffman codewords by codeword length and secondly by alphabetical

value, and in this example we will have D=0, A=11, B=101 and C=100. Then each

of the existing codes is replaced by a new one of the same length as follows: The

first symbol in the sorted sequence is assigned a codeword of all 0s, and the number

of zeros is equal to the length of its original codewords. Each subsequent symbol

is assigned the next greater binary number. If the codeword of the current symbol

is larger than the codeword of the previous symbol, we perform a left shift on its

codeword. Thus the canonical version of our example will be D=0, A=10, B=110

and C=111.

Universal Codes Universal codes are another type of prefix coding that convert

non-negative integers into binary codewords. Here we describe three different schemes

of generating universal codes. The first one is Elias gamma coding or gamma coding
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which was developed by Peter Elias [17]. To generate the Elias gamma code of a

positive integer x, first we calculate N = blg(x)c. Then the gamma code of x is the

binary expression of x prepended by N zeros. Thus Elias gamma uses 2blg(x)c+1 bits

to represent x. For example, The Elias gamma code of the integer 11 is 0001011. To

decode a gamma code, we read and count the number of 0s from the bit stream until

we read a 1 bit. N is equal to the number of 0s read. Then we read the remaining N

bits which are then prepended by a 1 bit, obtaining the binary expression of x.

The second encoding scheme is Elias delta coding. To code a number x ≥ 1, we

calculate N = blg xc and separate x into two parts, 2N and x − 2N . We use Elias

gamma code to encode the number N + 1. Thus, the delta code of x is the binary

expression of the gamma code of N + 1 appended by the binary expression of x− 2N .

Elias delta code uses blg(x)c+2blg(blg(x)c+1)c+1 bits to represent x. For instance,

the binary representation x = 11 is 1011, and N = blg(x)c = 3. The gamma code

of the number N + 1 is 00100. Thus the delta code of 11 is 00100 011. To decode a

delta code, we first decode N + 1 from its gamma code. Then, we read N bits from

the stream and prepend them by 1 to get the binary expression of x.

The last prefix code is Elias omega coding. To encode a number x, we first put a

bit 0 at the end of the encoding as a delimiter. If the number x = 1. stop; otherwise

we prepend the binary expression of x to the result. Then we count the number, y, of

bits we just prepended and set x to y−1. We recursively repeat the previous steps to

encode y and prepend the encoding to the result. Take number 11 as an example. We

write down a bit 0 in the end of representation. We prepend the binary expression of

11 to get 1011 0. Since we prepended 4 bits in the last step, y = 4. Thus x becomes

to 3 and its binary expression is 11. We prepend it again and get a new result 11

1011 0. Then number of bits prepended is 2, and x becomes 1, so we stop. Thus, the

omega code of integer 11 is 11 1011 0. We can reverse these steps for decoding.



Chapter 3

A survey on Bit Vectors and Wavelet Trees

This chapter is a survey of bit vector and wavelet tree representations in both theory

and practice. They are both key data structures used in our graph representations.

3.1 Bit Vector

3.1.1 Theoretical Results

Jacobson [25] first studied succinct representations of bit vectors. Given a bit array

B of length n, in which the positions are numbered 0, 1, . . . , n − 1, and b ∈ {0, 1},

Jacobson considered the support of the following operations:

• rankB(b, i): the number of occurrences of b in B[0, i];

• selectB(b, i): the position of the ith b in B.

Jacobson [25] showed how to represent B using n+o(n) bits to support both oper-

ations in O(lg n) time under the pointer machine model. Later, Clark and Munro [12]

showed how to support both operations in constant time under the word RAM model

using n + o(n) bits. Raman et al. [36] proposed a succinct indexable dictionaries

structure that can support both operations in O(1) time under the word RAM model

using nH0(B) + o(n) bits of space. Later, Sadakane and Grossi [38] showed how to

use nHk + O(n(log σ + log logσ n + k)/ logσ n) + o(n log σ) bits to support rank and

select in O(1) time. Recently, Mihai Pǎtraşcu [35] showed how to represent a bit

vector of length n with m 1s using m log n
m

+ O(ntt/ logt n + n3/4) bits, and support

both rank and select operations in O(t) time.

12
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1 1 1 1 111 1 1 1 111 1 11 110 0 00 0 0 0 0 0 00 0 00 000

0 3 7 10 0 4

1

0 13

Bit Sequence

Second Level

First Level

Basic Block

Figure 3.1: Rank Structure with two layers

3.1.2 A General Framework of Implementation

As bit vectors supporting rank and select are key structures used in many succinct

data structures, much work has been done to engineer the implementation of succinct

representations of bit vectors [18, 36, 33]. In most of the previous experimental stud-

ies, researchers use the following general framework to support rank, as summarized

in [42]:

1. Divide the bit sequence into fixed-length basic blocks. These basic blocks are

at the lowest level of partitioning, and we need to have an approach that can

count the number of bits inside a basic block up to any given position in this

block. For instance, the popcounting method is a popular approach that can

quickly count the number of ones in an integer.

2. Consecutive basic blocks are grouped into superblocks. Superblocks maintain

the information about the number of one bits in previous superblocks and basic

blocks maintain the number of 1s in previous basic blocks that are in the same

superblock.

Figure 3.1 illustrates such a two-level rank structure. In this example, we divide

a bit sequence into basic blocks, and each basic block contains 6 bits. Superblocks

(first level) contains 4 consecutive basic blocks at the second level.
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To answer rankB(b, i), we perform the following steps:

1. Start by finding which superblock index i belongs to. We can easily know which

superblock it is by dividing i by the size of the superblock. Then we know x,

which is the number of 1s in the superblocks before the superblock containing

i.

2. Next, we look into the second layer to find y, which is the number of 1s that

appears before the basic block containing i within the superblock found at the

first level.

3. Last, count the numbers of 1 bits, z, from the starting position of the basic

block containing position i up to the position i.

4. The result of rankB(b, i) is x+ y + z.

It is possible to further group superblocks to design rank structures of more than

two levels. However, González et al. [19] did experimental evaluation that showed

one or two-level rank structures use less space and support faster operations than

structures of three levels or more.

For the select operation, practical solutions typically do not directly implement

the theoretical solutions that provide constant-time support. There are two general

methods, namely rank-based select query and position-based select query [42].

For the rank-based select query, we use the same rank structure. To compute

selectB(b, i) we perform binary search among superblocks, and then do sequential

search again inside the basic block we found to compute the answer. For example, if

we want to know selectB(1, 9) in Figure 3.1, we perform binary search among the

superblocks and find it is inside the first superblock. Then we perform binary search

again at the second level, and find that it belongs to the third block. Finally, we can

perform a search to answer the query.
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For position-based selection, they sample answers of select queries. The sampled

answers divide B into select blocks, we perform binary search on samples to find the

select block containing the answer, and then perform a sequential search to find the

correct answer in the select block.

3.1.3 Practical Implementations

We used different bit vector encoding schemes in our thesis, including run-length en-

coding [21] (RLE, including RLE+γ , RLE+δ, RLE+ω), RRR (Raman, Raman and Rao’s

structure [36]), and Plain (bitmap in plain format without any compression) [33].

RLE

Grossi et al. [21] used run-length encodings (RLE) to implement bit vectors. RLE is a

simple compression algorithm that encodes a run of the same symbol as a pair (t, s),

where t is number of times that symbol s occurs consecutively. The symbols in a

binary string are either 0 or 1. Let B = B[0 · · ·n − 1] be a binary string of size

n. To compress B using RLE, we regard B as a sequence of runs of identical bits

bt11 b
t2
2 b

t3
3 · · · btmm where m ≤ n, and bx 6= bx+1 for 1 ≤ x<m. Then the RLE+γ encoding

of B is b1γ(t1)γ(t2) · · · γ(tm), where b1 identifies the first bit as either 1 or 0, and γ(ti)

is the Elias gamma coding of ti. RLE + δ and RLE + ω work in a similar way, and the

only difference is that they use Elias delta and Elias omega codes to encode ti.

To support operations, we divide B into blocks containing the same numbers of

runs, and store additional information for each block. Block size is defined as the

number of runs in a block. For each block, we store information about how many 0s

and 1s there are in B before this block. We also store the ending position of each

block in the compressed bit vector. To support rankB(1, i) and selectB(1, i), we then

perform binary searches to find the blocking containing B[i], retrieve the number of

1s before this block, and decompress the block and perform a sequential search to
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compute the answer.

We use RLEG, RLED and RLEO to refer to bit vectors based on RLE+γ, RLE+δ and

RLE+ω encodings, respectively, while RLE can refer to any of them. We suffix RLEG,

RLED or RLEO by the block size when needed. For example, RLEG64 is a bit vector

implementation based on RLE+γ with block size 64.

RRR

We now introduce practical implementations [15, 33] of the bit vector structure by

Raman et al. [36]. These implementations store B in a compressed form as follows:

B is split into blocks of length k = lgn
2

. Blocks are numbered consecutively starting

from 0, and block i refers to the ith block. Each block is represented as a pair

(ci, oi). Here ci, is called the class of the block, which encodes the number of 1s in

the block, while oi is called the offset of the block, which uniquely identifies the block

among all possible blocks within class ci. Hence oi can be encoded using dlg
(
k
ci

)
e

bits. Thus sparse blocks use less space, which achieves compression for spare bit

vectors. The implementation by Claude and Navarro [15] constructs three tables:

Table E, the universal table, stores all possible bit vectors of length k, sorted by

class and by offset within bit vectors of the same each class. Table C stores the

concatenation of all ci. Since the number of 1s in each block is between 0 and k,

ci requires dlg (k + 1)e bits to encode. Table O stores the concatenation of all oi.

The total space of the table O is bounded by nH0 + n
k

as proved in [12], and the

space of table C is bounded by O(n lg k
k

). In addition, we group every sr blocks into a

superblock. Superblocks are numbered consecutively starting from 0, and superblock

i refers to the ith superblock. This structure requires two arrays, sumC and sumO.

The entry sumC[i] stores
∑i×sr−1

j=0 ci which is the number of 1s before superblock i,

and sumO[i] contains
∑i×sr−1

j=0 dlg
(
k
ci

)
e which is the starting position of the encoding

of oi in Table O. In addition, we have a table called classIndex of length k, in which
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Figure 3.2: RRR Example

classIndex[i] stores the index of the first entry of E that stores a bit vector of class

i. In the implementation in [15], they set k = 15, so there are 16 classes. Thus each

ci only requires 4 bits. Table E has 215 entries and each entry stores a 16-bit integer.

Thus E only takes 215 × 16 bits = 64 KB.

Figure 3.2 shows an example, in which we have a bit sequence of length 60, and

block size is k = 5. Every three blocks are grouped into one superblock.

To answer rankB(b, i):

1. Identify the superblock is containing position i by the identity is = b i
sr×kc

2. Identify the block ib containing position i by the identity ib = bi/kc.

3. Let x be the number of 1s in B that appear before superblock is and posO be

the starting position of the encoding of ois in table O. Then x = smuC[is] and

posO = sumO[is]

4. Let y be the number of 1s in B that appear between block is × sr and block

ib − 1. Then increase the value of posO by
∑ib−1

is×srdlg
(
k
ci

)
e, and y =

∑ib−1
is×sr ci.

Each ci can be retrieved from C in constant time, as the entries of C are encoded

in the same number of bits.
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5. Let z be the number of 1s that appear from the starting position of block ib to

position i. We read oib from O[posO..posO+ dlg
(
k
ci

)
e], and retrieve the content

of block ib from E[oib + classIndex[cib ]] . Then scan the bits of the block ib to

compute z.

6. The result of rankB(b, i) is x+ y + z.

To answer selectB(b, i) we use the same structures. We perform a binary search

among superblocks and blocks, and then perform a sequential search inside blocks

until the i-th 1 bit.

Claude and Navarro [15]’s implementation sets k = 15, but the space cost of table

E is prohibitive for much larger k. Later, Navarro and Providel [33] came up with

an implementation that does not store table E, and they could set the block size to

31 and 63. In their implementation, they compute each entry of E on the fly, so that

E need not be explicitly stored. Due to technical reasons, k should be at most 1 less

than the word size, and thus 63 is the maximum value in 64-bit machines.

We call these implementations RRR collectively, and we use RRR15, RRR31 and

RRR63 to refer to implementations in which block sizes are 15 (in [15]), 31 and 63 (in

[33]), respectively.

Plain

Navarro and Providel [33] introduced a structure that answers rank/select queries.

It can be viewed as an implementation of Clark and Munro’s theoretical result [12]

which represents a bit vector B[1..n] in n + o(n) bits to support operations in O(1)

time. As in previous implementations, answers for some of the rank and select

queries are precomputed, which are called rank samples and select samples. The novel

part is that when supporting select, they not only make use of select samples as

in previous work, but also use rank samples to speed up the operation. This idea
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allows them to use little space overhead in addition to the n bits storing B in its

uncompressed form. More precisely, they construct a one-level structure following the

general framework in Section 3.1.2 to support rank. They then modify position-based

selection: Each two consecutive select samples are separated by a fixed number of 1s,

so that they can locate the select block containing the answer by simple arithmetic.

After that, when performing a linear scan to find the final answer, they do not always

scan bit by bit; instead, they use rank samples to compute the number of 1s for these

basic blocks that appear before the answer and are entirely contained in the select

block. We refer to this implementation as Plain in this paper.

3.2 Wavelet Trees

3.2.1 Definitions

Wavelet trees were proposed by Grossi et al. [20] to represent a string S[1..n] over

alphabet [σ] 1, to support the following operations:

• rankc(S, i): return the number of occurrences of symbol c in S[1..i];

• selectc(S, i): return the position of the i-th occurrence of symbol c in S;

• access(i): return the symbol at position i.

A wavelet tree stores n bits at each level and the last level contains at most n

bits. The height of the wavelet tree is dlg σe. It contains σ − 1 internal nodes and σ

leaves. There are many different variants of wavelet trees, and we describe them in

the rest of this section.

1[σ] denotes {1, 2, · · · , σ}.
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3.2.2 Pointer-based Normal-shaped Wavelet Trees

A pointer-based normal-shaped wavelet tree [20] can be constructed in a top-down

fashion as follows (assume that σ is a power of 2 for simplicity): The root corresponds

to the entire alphabet, and a bit vector is constructed for the root by iterating through

S, writing down a 0 each time we visit an entry of S storing a symbol from [1..σ/2],

and a 1 otherwise. The left (right) child of the root represents the subsequence of

S that corresponds to 0s (or 1s) in the bit vector at the root level, and the subtree

rooted at this node is constructed recursively.

Bit sequences in the wavelet trees can be encoded by different compact data

structure in order to support fast rank & select operations. Figure 3.3 gives an

example, which is wavelet tree for sequence S = {3 5 1 6 11 0 3 7 10 2 8 0 4 9 4 11 5

6} of length n = 18. The alphabet for this case is {0 1 2 3 4 5 6 7 8 9 10 11}, and σ

is 12.

3 5 1 6 11 0 3 7 10 2 8 0 4 9 4 11 5 6
0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

3 5 1 0 3 2 0 4 4 5 6 11 7 10 8 9 11 6
0 0 0 01 1 1 1 1 1 0 0 0 01 1 1 1

1 0 2 0 3 5 3 4 4 5 6 7 8 6 1110 9 11
10 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1

1 0 0 2 3 3 4 4 5 5 6 7 6 8 10 9 11 11
0 0 0 0 0 0 01 1 1 1 1

0 0 1 3 3 4 4 6 6 7

Figure 3.3: A pointer-based normal-shaped wavelet tree.
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Let Bv be the bit vector stored for node v, and let vl and vr be the left and right

children of v, respectively. Algorithm 1 gives the pseudocode of rank, and we call

rank(Br, c, i), where r is the root of the wavelet tree, to compute rankc(S, i). Lines 2-3

check whether the node v is a leaf or not. If v is a leaf, the algorithm returns the value

i. Otherwise, lines 4-8 decide whether to visit vl or vr depending on whether c is in

alphabetSet(vl), where alphabetSet(vl) is the alphabet of the subsequence correspond-

ing to vl. To visit vl, the algorithm calls rank(Bvl , c, rankBv(0, i)) recursively, where

the rankBv(0, i) is the number of occurrences of 0 in Bv[0, i] (thus Bvl [rankBv(0, i)]

corresponds to Bv(i)). Otherwise, the algorithm calls rank(Bvr , c, rankBv(1, i)) re-

cursively, where the rankBv(1, i) is the number of occurrences of 1 in Bv[0, i] (thus

Bvl [rankBv(1, i)] corresponds to Bv(i)).

Algorithm 1 Algorithm for rank

1: function rank(Bv, c, i)
2: if v is a leaf then
3: return i
4: else if c ∈ alphabetSet(vl) then
5: return rank(Bvl , c, rankBv(0, i))
6: else
7: return rank(Bvr , c, rankBv(1, i))
8: end if
9: end function

Algorithm 2 gives the pseudocode of select(Bv, c, i), which computes the position

in Bv that corresponds to the i-th occurrence of symbol c in S. Thus, select(Br, c, i)

computes the answer to selectc(S, j). In this piece of pseudocode, lines 2-3 are for

the base case, in which v is the leaf corresponding to symbol c. In this case the

algorithm returns i. Lines 4-8 are recursive cases. The algorithm decides whether

to visit vl or vr depending on whether c is in alphabetSet(vl), where alphabetSet(vl)

is the alphabet of the subsequence corresponding to vl. If it is, the algorithm calls

selectBv(0, select(Bvl , c, i)), where the jv = select(Bvl , c, i) return the position
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in Bvl that corresponds to the i-th occurrence of symbol c in the subsequence cor-

responding to the node vl. Then selectBv(0, jv) returns the position in Bv that

corresponds to the jv-th occurrence of bit 0 in Bv. This gives the answer because

the occurrences of c in S corresponds to 0 bit in Bv. Otherwise, algorithm calls

selectBv(1, select(Bvr , c, i)).

Algorithm 2 Algorithm for select

1: function select(Bv, c, i)
2: if v is a leaf then
3: return i
4: else if c ∈ alphabetSet(vl) then
5: return selectBv(0, select(Bvl , c, i))
6: else
7: return selectBv(1, select(Bvr , c, i))
8: end if
9: end function

A wavelet tree can be used to encode a string using ndlg σe+ o(n lg σ) +O(σ lg n)

bits to support queries in O(lg σ) time, because the bitmaps representing the nodes

use ndlg σe bits in total, the little-o term covers the extra cost of the rank and select

structures, and the tree pointers and pointers to the bitmaps requires O(σ lg n) bits.

If the bit vector at each node is compressed by RRR, the overall space cost is bounded

by nH0 + o(n lg σ) + O(σ lg n) bits where the bitmaps representing the nodes use

nH0 + o(n lg σ) bits in total, and the query time remains O(lg σ).

3.2.3 Pointerless Normal-Shaped Wavelet Trees

In a pointerless normal-shaped wavelet tree [15], we do not store the tree structure

explicitly using pointers. Instead, we concatenate the bit sequences constructed for

the nodes at the same level into a single bit vector of length at most n, and represent

each of these dlg σe concatenated bit vectors succinctly to support rank and select

operation on it.

To be able to use the algorithm given in Section 3.2.2 to support rank and select
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operations over the string represented by the wavelet trees, it suffices to show that,

given a node v representing symbols [i, i+ 1, · · · , j], we can locate, in O(1) time, the

starting and the ending positions of Bv in the concatenated bit vector constructed

for v’s level. To achieve this, we construct two bit vectors Occ and SA. SA[1, σ]

identifies which symbols occur in the sequence. SA[i] = 1 if and only if a symbol

i appears in the sequence. If all the alphabet symbols appear in S, then SA is not

needed. Let ni be the number of occurrences of symbol i, and p be the ith smallest

symbol in σ that occurs in the sequence S. Occ[1, n] stores ni by storing a 1 bit at∑p
i=1 ni. All the remaining bits in Occ are 0s. For example, for the sequence aaccbdb,

Occ = 0101011. By performing rank/select operations on SA and Occ, we can find

out, given a symbol i, the number of characters in S that are smaller than i. Such

information can be further used to determine the starting and ending positions of Bv

for a node v in the concatenated bit vectors constructed for v’s level.

Figure 3.4 is a pointerless normal-shaped wavelet tree. Using just one bitmap at

each level, we do not need pointers, O(σ lg n), for the topology. Thus a pointerless

normal-shaped wavelet tree can be used to encode a string using ndlg σe+ o(n lg σ) +

σ + o(σ) + n + o(n) bits to support queries in O(lg σ) assuming rank and select

operations in constant time. The terms σ+o(σ) +n+o(n) account for the space cost

of SA and Occ.

3.2.4 Pointer-based Huffman-Shaped Wavelet Trees

Claude et al. [16] proposed a pointer-based Huffman-shaped wavelet trees. To con-

struct a pointer-based Huffman-shaped wavelet tree to represent S, we first construct

a Huffman tree for S using the approach describe in Section 2.2. This Huffman tree

is encoded explicitly using pointers, and it gives us the structure of the wavelet tree.

We also store the Huffman code of each symbol. We then construct bit vectors for

wavelet tree nodes as follows: The root corresponds to the entire alphabet, and a bit
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0-3/4-7 0 7 1 0 3 5 63 21 54 2 6 7

1 1 1 1 1110 0 0 0 0 0 0 0

0-1/2-3 0 1 0 3 3 21 2

0 0 0 01 1 1 1

4-5/6-7 4 7 5 6 5 76

0 1 0 1 0 1 1

0/1 0 1 0 1

0 0

1

1 1

2/3 3 3 2 2

1 01 0

4/5 4 5 5

1 10

6/7 7 6 6 7

1 00 1

1 1 1 1 1110 0 0 0 0 0 0 0

0 0 0 01 1 1 11 0 1 0 1 0 1 1

0 01 1 1 01 0 1 10 1 00 1

0 0 0 0 0 0 01 1 1 1 1 1 1 1Occ
0 7 1 0 3 5 63 21 54 2 6 7

Figure 3.4: A pointerless normal-shaped wavelet tree

vector is constructed for the root by iterating through S, writing down a 0 each time

we visit an entry of S storing a symbol if the first bit of its Huffman code is a bit

0, and a 1 otherwise. The left (right) child of the root represents the subsequence of

S that corresponds to 0s (or 1s) in the bit vector at the root level, and the subtree

rooted at this node is constructed recursively by using the next bit of the Huffman

code of each symbol. As the expected length of a root-to-leaf path in a Huffman

tree is upper bounded by H0(S) + 1, the average time for access, rank and select

is O(1 + H0(S)) using the same algorithm in section 3.2.2. This is better than the

O(lg σ) query time of a normal-shaped wavelet tree when the entropy is small. The

total number of bits stored in a Huffman-shaped wavelet tree is exactly the output

size of the Huffman compressor, which is upper bounded by n(H0(S) + 1). There-

fore, using the plain bit vectors representations, the total space is upper bound by

(H0(S) + 1)(n+ o(n)) +O(σ lg n) bits. The term O(σ lg n) accounts for the pointers

and for the permutation of symbols induced by the code. Figure 3.5 is an example of

a pointer-based Huffman-shaped wavelet tree and the Huffman code of each symbol.
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11

100
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Figure 3.5: Pointer-based Huffman-shaped wavelet tree example

3.2.5 Pointerless Canonical Huffman-shaped wavelet trees

Claude et al. [16] proposed a Canonical Huffman-Shaped wavelet tree. A Huffman

tree can be viewed as bit sequence of Huffman codes, and a Canonical Huffman tree

can also be viewed as a trie constructed over Canonical Huffman codes which are

introduced in Section 2.2. It is also possible to construct a Canonical Huffman tree

without using the approach described in Section 2.2 to compute canonical Huffman

codes first. We first compute a Huffman tree of the string. Then we transform it

into a Canonical Huffman tree as follows: We sort the symbols by their frequencies

in decreasing order to create a Huffman tree first, and then we traversal the Huffman

tree level by level to sort the symbols by alphabet order at the same level

A Canonical Huffman-shaped wavelet tree is essentially a Huffman-shaped wavelet

tree built over the Canonical Huffman tree of S instead of an arbitrary Huffman tree

of S. Properties of Canonical Huffman trees can be used to save space overheads: At

any level of a Canonical Huffman tree, all the leaf nodes appear to the left of internal

nodes. Therefore, to encode the tree structure, we need not use pointers to encode
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Figure 3.7: Canonical Huffman Wavelet Tree

edges. Instead, it suffices to encode the number of leaves at each level, requiring only

lg n bits per level. Claude et al. [16] further bounded the length of Huffman codes by

lg n, by rebalancing Huffman trees below a certain level. This guarantees that there

are at most lg n levels in a Canonical Huffman tree, and it requires at most lg2 n bits

to encode the tree structure. They also use various approaches proposed by Navarro

and Ordóñez [32] that can encode Canonical Huffman codes in a compact manner.

Figure 3.7 is an example by using Canonical Huffman codes to build the Canonical

Huffman-shaped wavelet trees.

A Canonical Huffman-shaped wavelet tree can still support access, rank and

select in O(H0(S)+1) time. Thus it provides the same support for operations while

using less space, when compared to a Huffman-shaped wavelet tree.



Chapter 4

Compressed Graph Representations via Dense Subgraphs

Extraction

In this chapter, we describe the compressed representations of web graphs and so-

cial networks proposed by Hernández and Navarro [22]. As mentioned before, their

strategy is to extract dense subgraphs and then use succinct data structures to rep-

resent them. Thus, in Section 4.1, We described their approach to dense subgraph

extraction, which was originally proposed by Buehrer and Chellapilla [9]. We then

describe the compressed representations in Section 4.2 and the query algorithms in

section 4.3.

4.1 Extracting Dense Subgraphs

Let G = (V,E) be a directed graph. Hernández and Navarro [22] gave the following

definition of dense subgraphs:

Definition 3 A dense subgraph H(S,D) of a directed graph G = (V,E) is a subgraph

whose vertices are S ∪D and edges are S ×D, where S,D ⊆ V .

They then augment each vertex of G with a self-loop, and use a mining algorithm

based on [9] to detect dense subgraphs, including bicliques (when (S∩D = ∅)), cliques

with self-loops on each vertex (when S = D) and general dense subgraphs where S

and D are neither equal nor disjoint. If no self-loops are present in G , then all

dense subgraphs are bicliques. Indeed, this mining algorithm was initially proposed

to find bicliques only [9]. Hernández and Navarro [22] choose to add a self-loop,

27
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(s, s), for each vertex s in G that is not incident to a self-loop. They then discover

dense subgraphs of all types in the augmented graph. This strategy allows them to

extract more subgraphs. In addition, they add a bitmap of length |V | to identify

which nodes have self-loops in the original graph. The mining algorithm contains

two major phases for finding dense subgraphs, namely the clustering phase and the

pattern mining phase [9].

4.1.1 Clustering

Clustering aims to group together vertices that have similar outlinks. The algorithm

in [8] first chooses k independent hash functions. Here k is called the hash factor of

the mining algorithm. Then the algorithm iterates through each adjacency list, and

computes a hash value H corresponded with each edge of the adjacency list k times

and choose the k smallest hashes associated to each adjacency list; each item in the

adjacent list is the ID of the terminal vertex of the corresponding edge. Next, the

algorithm generates a |V | × k matrix F , in which F [i, j] stores the minimum among

all the hash values that the items in the i-th adjacency list are mapped to by the

j-th hash function. We then sort the rows of the adjacency matrix by the rows of

F in lexicographic order, and cluster the sorted adjacency matrix into groups, such

that each group contains vertices and their adjacency lists whose corresponding rows

in F store the same values. It requires O(k|E|) time to compute all the hash values,

and the sorting requires O(k|V | lg |V |) time. Figure 4.1 shows an example, in which

we have nine adjacent lists and 3 hash functions. We use a line to separate the two

groups in Figure 4.1. In the mining step to be described in section 4.1.2 we will use

the first group as an example.
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Figure 4.1: Clustering: Hashing Example

4.1.2 Pattern Mining

In this stage, the algorithm computes, for each group, the number of times each

vertex appears as items in the adjacency lists in the group. This calculated value

for each vertex is called the frequency of this vertex in the group. We then modify

each adjacency list in the group as follows. First, we remove all the items whose

frequencies are 1. Then we sort the items in this adjacency list in decreasing order of

their frequencies. This step uses O(|E| lg |E|) time. Figure 4.2 (a) shows an example.

The two tables in the top show the content of the adjacency lists of the first group in

Figure 4.1 before and after this step, and the table in the bottom shows the frequencies

of each vertex in the group.

The next step of the mining phase is to add all the sorted adjacency lists in each

group to a prefix trie. Each node, x, of the trie is associated with a set of vertices of

the given graph, such that the adjacency list of each vertex in the set is prefixed with

the labels of the path from the root to x. Figure 4.2 (b) shows the prefix trie built

for the sorted adjacency lists shown in Figure 4.2 (a). The edge saving of each node,

x, of the trie is defined as depth(x) · set(x), where depth(x) is defined as the depth of

x in the trie and set(x) is the size of the vertex set associated with x. For example,

the edge saving of the leftmost leaf in the trie in Figure 4.2 (b) is 20, as its depth is

5 and the size of its associated vertex set is 4.

Note that Each node x in the prefix trie has a label which is the node id, and it

represents the sequence, list(x), of labels from the root to x. Node x corresponds to
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Figure 4.2: Mining Phase

a dense subgraph H(S,D), where S is the set of graph vertices associated with x,

and D is the set of graph vertices in list(x). For instance, the leftmost leaf in the

trie in Figure 4.2 (b) corresponds to dense subgraph H(S,D) where S is {1, 3, 4, 5}

and D is {1, 3, 4, 7, 5}. The edge saving value of H(S,D) is defined to be |S| × |D|,

which is the number of edges in H(S,D). The reason why this value is called edge

saving is that we need not encode each of the |S| × |D| edges between S and D after

we identify S and D, thus saving the cost of storing these edges explicitly.

To identify dense subgraphs, we choose two parameters: an integer value threshold,

and another parameters edgeSaving, which is a sequence of integers < e1, e2, ..., et >,

where e1>e2> · · ·>et. We then construct the prefix tree described in this section. We

perform a traversal of the tree. When we visit a node x, if its corresponding dense

subgraph has more than e1 edges, we add this dense subgraph into a vector vec. Each

time after we add a dense subgraph into vec, we search vec to find out where there is

a dense subgraph in vec that shares an edge which the newly added dense subgraph.
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If there is, we remove the dense subgraph whose edge saving value is smaller between

these two dense subgraphs. Once we visit all the nodes in the prefix tree, we remove

the edges of the dense subgraphs in vec from the original graph and repeat this pro-

cess. When the total number of dense subgraphs added to vec minus the number of

subgraphs removed from vec is less than threshold in a single iteration, we repeat

the same process for e2, e3, · · · , et. After we use up all the values in edgeSaving, vec

contains all the dense subgraphs discovered.

4.2 Representation of Dense Subgraphs and Remaining Graphs

The mining algorithm divides the original graph into two parts: dense subgraphs

and the remaining graph. The remaining graph is represented by a k2-tree or MPk.

Let Hall = {H(S1, D1), · · · , H(Sd, Dd)} denote the set of extracted dense subgraphs,

where H(Si, Di) is the ith dense subgraphs extracted by the mining algorithm. Two

sequences represent Hall. The first is a sequence of vertex identifiers X = X1X2 . . . Xd,

and the second is a bit vector B = B1B2 . . . Bd. Xi and Bi are substrings defined for

H(Si, Di) as follows: Xi is the concatenation of three components, L, M and R. L

contains the elements in Si−Di, M stores Si∩Di, and R stores Di−Si. The bitmap

Bi = 10|L|10|M |10|R| has the information that can be used to divide Xi into L, M and

R. Figure 4.3 shows how to represent a subgraph that containing only one extracted

dense subgraph using the sequences X and B.

6:
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1

3
3

4
4 6

6 6: 7

Dense subgraph Remaining

6 8 1 3 4 6

S1 D1

68 1 3 4X
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Figure 4.3: Compact Representation
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4.3 Out/In-Neighbours Query

To support queries, X and B are represented by succinct data structures supporting

access, rank and select. To list the out-neighbours of a vertex x, we first report its

out-neighbours in the remaining graph using the k2-tree for web graphs or MPk for

social networks, and then report its out-neighbours in the dense subgraphs as follows:

Use select to locate all the occurrences of x in X. For each occurrence, we perform

a select operation to find its corresponding 0 bit in B. We can use the number of 1s,

o, before this 0 to further tell whether x is in an L, M or R component by calculating

o mod 3. If the result is 0, then the symbol is located in R. If the result is 1, then

the symbol is located in L. If the result is 2, then the symbol is located in M . If it

is in an L or M component, we perform rank and select operations over B and X

to identify the starting and ending positions of the related M and R components in

X, and report all the vertices in M and R. If it is in an R component, then report

nothing. Similar ideas can be used to support in-neighbour and mining queries.

The same paper presents another approach which replaces each extracted dense

subgraph by a virtual node to mine dense subgraphs recursively. It yields a structure

which can outperform the approach described in previous paragraphs in terms of

compression and the support for in-/out-neighbour queries. However, it does not

support mining queries, and we do not try to improve it. We refer to it as DSM.



Chapter 5

Experimental Studies

We have performed experimented studies on compressed representations of web graphs

and social networks based on dense subgraphs extraction. In Section 5.1, we use

Hernández and Navarro’s algorithm for dense subgraphs extraction [22], and repeat

their experimental studies to test how various parameters of the algorithm affects com-

pression results. We then report the compression ratios and query times of Hernández

and Navarro’s compressed representation by using it to represent a set of web graphs

and social networks. In Section 5.2, we further study the encoding of dense subgraphs,

and in particular the encoding of the sequence X defined in Section 4.2, using var-

ious encoding schemes of wavelet trees. Most of these encoding schemes were not

studied in [22]. Finally, in Section 5.3, based on the properties of the wavelet trees

constructed over X, we propose a new approach called combined encoding for the

wavelet tree encoding of X to improve previous results in experimental studies.

Since we use different wavelet tree shapes in our experiments, we define the fol-

lowing list of abbreviations:

• WT: pointer-based normal-shaped wavelet trees

• WTNP: pointerless normal-shaped wavelet trees

• HWT: pointer-based Huffman-shaped wavelet trees

• CHWTNP: pointerless Canonical Huffman-shaped wavelet trees

We may further combine these abbreviations to specify complete encoding schemes.
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For instance, WTNP-RRR15 stands for a pointerless normal-shaped wavelet tree with its

bit vectors at each level encoded by RRR15.

The source code of some data structures was made available and used in our stud-

ies, including the code for dense subgraphs extraction and DSM provided by Hernández

and Navarro [22], WTNP, RRR15, Huffman encoding and CHWTNP implementation from

the compact structures library libcds (http://recoded.cl/), the code for WT, HWT,

RLEG and RLED provided by Grossi et al [21], the latest k2-tree representation [7],

and the MPk representation from http://webgraphs.recoded.cl/index.php. We

implemented all the other data structures, including RRR31, RRR63, Plain and RLEO.

For RRR, sr is set to 64 (see section 3.1.3 for the definition of sr), and in Plain, the

size of a basic block is set to 1024 and the size of a select block is set to 8192. These

parameter values are the recommended values given by their authors. The code was

written in C++ and compiled by gcc with the -O3 flag turned on for optimization.

We used a PC with 16GB RAM installed with 64-bit Ubuntu Linux 14.04 LTS, whose

processor is Intel Core i5-3550 at 3.30 GHz with 6MB L3 cache.

The data used in our experimental studies are from the website of the Web-

Graph Framework project (http://webgraph.di.unimi.it/), and the natural order

of these graphs are used, i.e., the vertices are sorted by the corresponding URL

(webgraphs) or member name (social networks). The only exception is the file soc-

Livejournal, which is available from the SNAP project (http://snap.stanford.edu/

data/). Table 5.1 lists the data sets that we use in our experimental studies, in which

the first five are web graphs, and the last five are social networks.

http://recoded.cl/
http://webgraphs.recoded.cl/index.php
http://webgraph.di.unimi.it/
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
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Table 5.1: Data Sets used in our experimental studies and the effectiveness of dense
subgraphs mining algorithms

data set vertices edges |H|/|E| description
eu-2005 862,664 19,235,140 89.47% a small crawl of the websites with .eu domains
in-2004 1,382,908 16,917,053 86.01% a small crawl of the websites with .in domains
indochina-2004 7,414,866 194,109,311 93.31% a fairly large crawl of the country domains of Indochina
uk-2002 18,520,486 298,113,762 89.62% a large crawl of the websites with .uk domains in 2002
arabic-2005 22,744,080 639,999,458 93.30% a large crawl of the websites that contain pages written in arabic

enron 69,244 276,143 44.24%
a partially anonymised corpus of e-mail messages
exchanged by some Enron employees

dblp-2011 986,324 6,707,236 65.52%
a bibliography service from an undirected
scientific collaboration network

dewiki-2013 1,532,354 36,722,696 60.03%
a snapshot of the German part of Wikipedia
as of late February 2013

soc-LiveJournal 4,847,571 68,993,773 55.96% a free on-line community with almost 10 million members
ljournal-2008 5,363,260 79,023,142 56.34% a virtual-community social site started in 1999

5.1 Dense Subgraphs Mining Algorithm

Recall that the algorithm of Hernández and Navarro’s [22] uses the following three pa-

rameters: edgeSaving, hash factor, and threshold, which are described in section 4.1

of this thesis.

The smaller the value of threshold is, the more thoroughly the mining algorithm

discovers dense subgraphs that are sufficiently large before using the next smaller

value in the edgeSaving sequence. Therefore, having a small threshold value helps

to extract more dense subgraphs. However, setting the threshold to a smaller value

will also increase the running time of the mining algorithm. Therefore, Hernández

and Navarro [22] used larger threshold values for large graphs to avoid using too much

time for mining, while using smaller threshold values for small graphs to discover large

dense subgraphs more thoroughly. We follow the same strategy and use the same

values for threshold as in their work. More precisely, threshold = 10 for eu-2005,

in-2004, dblp-2011 and enron, threshold = 100 for dewiki-2013, uk-2002, indochina-

2004, ljournal-2008, and soc-livejournal, and threshold = 500 for arabic-2005.

Table 5.1 also show how effectively the dense subgraphs mining algorithm discov-

ers dense subgraphs by setting edgeSaving = <500, 100, 50, 30, 15, 6>. The fourth

columns of this table gives the ratio of the number of edges of the dense subgraphs
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Table 5.2: Dense subgraph extraction using different k with in-2004
hash factor dense subgraphs nodes edges edge-vertex ratio

2 97,489 1,783,053 14,539,382 8.15
4 101,819 1,815,298 14,538,813 8.01
8 104,207 1,863,324 14,544,791 7.81

to the number of edges in the entire graph (|H| denotes the number of edges in the

dense subgraphs). As shown in the table, for each web graph, 89%−94% of the edges

of the original graph are included in the extracted dense subgraphs, while for social

networks, only 41%−65% of the edges are extracted. This means that Hernndez and

Navarro’s algorithm [22] can potentially achieve more compression for web graphs

than for social networks. It also shows a well-known fact that the web graphs are

more compressible compared to the social networks.

Next, Hernández and Navarro [22] discovered that setting the hash factor to

be 2 is the best. This is because the algorithm discovers smaller dense subgraphs

when the hash factor increases, which is bad for compression. We run the same

experiment for one of the graphs to demonstrate this. We fix edgeSaving to be

<500, 100, 50, 30, 15, 6> and threshold to be 10, and run the algorithm on in-2004.

Table 5.2 show the number of dense subgraphs, the total number of nodes in these

dense subgraphs, the total number of edges in these subgraphs and the ratio of the

number of edges to the number of nodes. It turns out that setting the hash factor to

be 2 is better than other values in terms of edge-vertex ratio.

We then run the compression algorithm on all graphs to see how the values of

edgeSaving affect compression performance. We use WTNP-RRR15 to compress X and

RRR15 to compress B. We use k2-tree and MPk for web graphs and social networks

to encode the remaining graph, respectively. Tables 5.3 and 5.4 present the results,

whose columns correspond to different sequences of values for edgeSaving: To get the
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Table 5.3: Compression performance on web graphs for different values of edgeSaving
eu-2005

edgeSaving 500 100 50 30 15 6
|H|/|E| 59.74% 77.23% 81.77% 84.24% 87.29% 89.47%
dense subgraphs 1,386,736 2,396,356 2,862,572 3,207,528 3,732,808 4,262,672
remaining graph 5,312,512 3,883,008 3,268,608 2,895,872 2,420,736 2,035,712
entire Graph 2.79 2.61 2.55 2.54 2.56 2.62
query 3.68 4.67 5.07 5.32 5.60 6.01

in-2004
edgeSaving 500 100 50 30 15 6
|H|/|E| 64.1% 75.97% 79.12% 81.22% 83.97% 86.01%
dense subgraphs 1,123,096 1,789,160 2,057,080 2,309,084 2,675,912 3,078,556
remaining graph 4,222,976 3,444,736 3,112,960 2,846,720 2,469,888 2,207,744
entire Graph 2.53 2.48 2.44 2.44 2.43 2.50
query 4.06 4.72 4.95 5.12 5.47 5.69

indochina-2004
edgeSaving 500 100 50 30 15 6
|H|/|E| 81.52% 86.90% 89.36% 90.74% 92.2% 93.31%
dense subgraphs 9,811,748 13,841,488 16,443,616 18,402,072 20,922,280 23,600,612
remaining graph 25,344,000 20,135,936 17,448,960 15,503,360 13,217,792 11,341,824
entire Graph 1.45 1.40 1.40 1.40 1.41 1.44
query 4.85 5.21 5.42 5.56 5.69 5.80

uk-2002
edgeSaving 500 100 50 30 15 6
|H|/|E| 69.75% 79.76% 83.19% 85.30% 87.71% 89.62%
dense subgraphs 22,200,160 33,637,076 39,944,032 44,867,204 52,322,728 60,006,512
remaining Graph 72,048,640 57,315,328 50,106,368 44,933,120 37,978,112 34,603,008
entire Graph 2.53 2.44 2.42 2.41 2.42 2.54
query 10.81 11.30 11.34 11.40 11.41 11.70

arabic-2005
edgeSaving 500 100 50 30 15 6
|H|/|E| 79.89% 86.38% 88.74% 90.20% 91.90% 93.30%
dense subgraphs 40,658,064 59,827,716 71,636,072 79,573,748 91,149,776 104,350,720
remaining Graph 110,178,304 84,508,672 72,704,000 64,512,000 53,899,264 40,738,816
entire Graph 1.89 1.80 1.80 1.80 1.81 1.81
query 6.55 7.11 7.46 7.60 7.70 8.27
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Table 5.4: Compression performance on social networks for different values of
edgeSaving

enron
edgeSaving 500 100 50 30 15 6
|H|/|E| 4.77% 13.82% 20.99% 25.74% 29.14% 44.24%
dense subgraphs 9,684 31,052 50,504 61,552 74,468 125,924
remaining Graph 572,796 539,972 514,304 497,876 486,796 437268
entire Graph 16.87 16.54 16.36 16.21 16.26 16.32
query 5.10 5.61 5.68 5.78 5.98 7.01

dblp-2011
edgeSaving 500 100 50 30 15 6
|H|/|E| 2.59% 9.48% 18.52% 28.71% 48.52% 65.52%
dense subgraphs 53,792 236,460 683,048 1,328,640 3,020,004 5,073,188
remaining Graph 7,162,688 6,999,844 6,808,312 6,583,820 6,066,496 5,401,864
entire Graph 8.61 8.63 8.94 9.44 10.84 12.49
query 4.34 4.81 5.31 5.91 7.75 9.77

dewiki-2013
edgeSaving 500 100 50 30 15 6
|H|/|E| 2.38% 14.75% 23.84% 31.88% 45.76% 60.03%
dense subgraphs 614,844 6,302,064 11,143,876 15,621,136 24,129,072 34,491,136
remaining Graph 83,524,912 76,130,700 70,412,816 65,233,072 55,304,780 43,951,620
entire Graph 18.33 17.96 17.77 17.61 17.30 17.09
query 9.72 10.19 10.69 11.23 12.50 13.88

soc-livejornal
edgeSaving 500 100 50 30 15 6
|H|/|E| 4.65% 10.80% 19.57% 27.99% 42.08% 55.96%
dense subgraphs 551,608 4,316,268 11,456,108 18,999,288 34,105,256 51,947,268
remaining Graph 110,914,812 108,207,824 104,412,244 99,914,556 90,631,420 77,911,280
entire Graph 12.92 13.05 13.44 13.79 14.46 15.06
query 7.73 8.77 10.08 10.35 12.55 14.28

ljournal-2008
edgeSaving 500 100 50 30 15 6
|H|/|E| 6.07% 12.97% 21.47% 29.54% 42.80% 56.34%
dense subgraphs 771,620 5,619,300 13,563,840 21,750,104 37,496,304 56,508,108
remaining Graph 126,975,036 123,024,380 118,238,164 112,907,628 102,621,808 88,409,780
entire Graph 12.93 13.02 13.34 13.63 14.19 14.67
query 7.05 8.99 9.93 10.62 12.06 13.46
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Figure 5.1: Space cost for different edgeSaving values.

results for columns labeled 500, 100, 50, 30, 15, and 6, we set the values of edgeSav-

ing to <500>, <500, 100>, <500, 100, 50>, <500, 100, 50, 30>, <500, 100, 50, 30, 15>,

and <500, 100, 50, 30, 15, 6>, respectively. Hence the label of each column is the last

value in the sequence of values assigned to edgeSaving for that column. The second

row of this table presents the total number of edges in the dense subgraphs divided by

the total number of edges in the original graph. The third and fourth row of this table

present the number of bytes needed to encode dense subgraphs and the remaining

graph, respectively. The fifth row presents the space cost of encoding the entire graph

expressed in bits per edge (bpe), i.e., the total space in bits divided by the number of

edges in the graph. We used a randomly generated query sequence containing 8×106

queries, and the query times are in microseconds per out-neighbour (out-going edge)

reported. Here we only show the time of out-neighbor queries since the in-neighbor

queries have similar performance. Figure 5.1 illustrates the compression performance

recorded in Tables 5.3- 5.4 on web graphs and social networks.

Decreasing the last value in edgeSaving may help us discover more dense sub-

graphs, which may potentially achieve more compression. On the other hand, this

may also discover many dense subgraphs that are too small, which may affect the
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Table 5.5: Compression and query performance for web graphs compared to k2-tree.
Hernández and

Navarro [22]
k2-tree

data set vertices edges bpe time bpe time
eu-2005 862,664 19,235,140 2.54 5.32 3.46 1.13
in-2004 1,382,908 16,917,053 2.43 5.47 2.65 1.36
indochina-2004 7,414,866 194,109,311 1.40 5.42 1.72 1.76
uk-2002 18,520,486 298,113,762 2.41 11.40 2.82 7.57
arabic-2005 22,744,080 639,999,458 1.80 7.60 2.45 2.80

Table 5.6: Compression and query performance for social graphs compared to MPk.
Hernández and

Navarro [22]
MPk

data set vertices edges bpe time bpe time
enron 69,244 276,143 16.21 5.78 17.15 5.15
dblp-2011 986,324 6,707,236 8.61 4.34 8.62 5.46
dewiki-2013 1,532,354 36,722,696 17.09 13.88 18.48 9.99
soc-livejournal 4,847,571 68,993,773 12.92 7.73 13.25 8.63
ljournal-2008 5,363,260 79,023,142 12.93 7.05 13.42 8.62

compression performance negatively. Figure 5.1 shows that for each graph, there

exists an edgeSaving value that maximizes compression and we use this value in

our mining algorithm, as is done by Hernández and Navarro [22]. More specifically

we fix edgeSaving to be <500, 100, 50, 30, 15, 6> for dewiki-2013, edgeSaving to be

<500, 100, 50, 30, 15> for in-2004, edgeSaving to be <500, 100, 50, 30> for eu-2005,

uk-2002, arabic-2005 and enron, edgeSaving to be <500, 100, 50> for indochina-2004,

and edgeSaving to be <500> for dblp-2011, ljournal-2008 and soc-livejournal1.

Tables 5.3 and 5.4 already include the best compression performance that can be

achieved by Hernández and Navarro’s approach [22]. To show how much more com-

pression has been achieved compared to the original k2-tree and MPk, we report, in

Table 5.5 and Table 5.6, the compression and query performance that can be achieved

with the edgeSaving values that maximize compression, as well as the performance

achieved by directly using k2-tree and MPk to encode web graphs and social networks,

respectively.



41

Table 5.5 shows that Hernández and Navarro’s approach achieves more compres-

sion for web graphs than k2-tree does. Similarity, Table 5.6 shows that their approach

also achieves more compression for social networks than MPk does. The difference

in compression performance is larger for web graphs, and this is because the ratio of

the number of edges in dense subgraphs to the number of edges in the original graph

is much higher for web graphs than that for social networks, as shown in Table 5.3

and Table 5.4. The improvement in compression performance is achieved at the cost

of sacrificing query time for web graphs, though the query performance achieved by

Hernández and Navarro’s approach is still competitive.

5.2 Wavelet Tree Implementations for Dense Subgraphs

We now perform experimented studies on wavelet tree representations of the sequence

X and bit vectors representations of B defined in Section 4.2. Because the encoding

of the remaining graph of a given graph is chosen independantly, we only perform

experimental studies on the representations of dense subgraphs in this section.

Table 5.7 shows how big these sequences are. We include |X| which is defined as

the length of X, σ which is defined as the alphabet size of X, lg σ, H0(X), d|X|× lg σe

which is the information theoretical lower bound of encoding X, and |B| which is

Table 5.7: Components of dense subgraph representations
data set |X| σ d|X| × lg σe lg σ H0(X) |B|

eu-2005 1,808,357 862,611 35,657,817 19.72 19.02 1,949,427
in-2004 1,570,515 1,382,895 32,037,344 20.40 19.43 1,731,463
indochina-2004 9,048,551 7,414,862 206,505,926 22.82 21.79 9,507,426
uk-2002 23,716,402 18,520,483 572,576,043 24.14 23.23 25,349,495
arabic-2005 40,259,449 22,744,079 983,900,178 24.44 23.39 42,616,019
enron 27,507 69,236 442,292 16.08 12.96 28,993
dblp-2011 6,510 986,309 129,625 19.91 12.13 7,015
dewiki-2013 12,240,298 1,532,352 251,505,275 20.55 19.55 15,310,176
soc-livejornal 210,340 4,846,369 4,671,330 22.21 15.68 216,016
ljournal-2008 334,163 5,363,089 7,470,091 22.35 16.08 342,825
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Table 5.8: The ratio of the space cost of encoding X to the space cost of encoding B
data set X B ratio
eu-2005 24,280,096 130,336 186.29
in-2004 19,746,272 124,648 158.42
indochina-2004 123,920,608 552,208 224.41
uk-2002 336,609,888 1,639,596 205.30
arabic-2005 605,684,288 2,610,920 231.98
enron 421,504 1,756 240.04
dblp-2011 105,920 576 183.89
dewiki-2013 262,155,840 1,599,020 163.95
soc-livejornal 2,661,280 10,668 249.46
ljournal-2008 4,150,752 16,724 248.19

defined as the length of B. The fact that H0(X) is close to lg σ indicates that X is

difficult to compress.

Table 5.8 shows the space cost in bits of X encoded by WTNP-RRR15 and the space

cost in bits of B encoded by RRR15. We include the ratio of the space cost of encoding

X to the space cost of encoding B for different graphs. We found that the space cost of

B is less than 1% of that of X, so we perform experimental studies on the encoding of

X only in this section. Let TX be the wavelet tree representing X. When the context

is clear, we say that TX is encoded by a certain bit vector implementation (e.g., RRR15)

when the bit vector at each of its level is encoded by this same representation. In this

section, compression is measured in bits per symbol which is the space cost of storing

X in bits divided by the length of X. These values, when compared to the values of

lg σ and H0(X) given in Table 5.7, tell us how much compression has been achieved.

The queries tested were out-neighbour queries performed over dense subgraphs only.

We used a randomly generated query sequence containing 8× 106 queries. The time

is measured in µs per edge which is the total time cost of all queries divided by the

total number of edges retrieved by these queries.
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5.2.1 Pointer-Based Wavelet Trees

Now we use pointer-based wavelet trees to encode X. The bit vector data structures

we use to encode a level in a wavelet tree include Plain, RRR15, RRR63, RLEG256,

RLED256, and RLEO256. The Wavelet tree shapes that we use are WT and HWT.

Table 5.9 shows the compression performance of pointer-based normal-shaped

wavelet trees combined with different compact bit vectors. We include the cost

of X encoded by the original method WTNP-RRR15 to compare with pointer-based

normal-shaped wavelet trees, even though WTNP-RRR15 is a pointerless wavelet tree.

Among the pointer-based wavelet trees tested here, the best compression is achieved

by WT-RLEG256. WT-RLED256 and WT-RLEO256 always use slightly more space than WT-

RLEG256. WT-RRR15 and WT-RRR63 use more space than WT-RLEG256, WT-RLED256 and

WT-RLEO256. WT-RRR63 uses slightly more space than WT-RRR15. The reason is the bit

vectors corresponding to the nodes at lower levels in pointer-based wavelet trees have

small lengths and are not compressible, so we actually use more space for Table O at

lower levels when we set the length of a block to 63. WT-Plain is the worst in space

efficiency. Comparing to the original WTNP-RRR15, WT uses 4 to 30 times the space.

The reason is that the alphabet size of X is large, and thus the corresponding wavelet

tree structure has many leaves. Therefore, there are many nodes in the wavelet tree,

and many pointers have to be stored to encode the tree structure in a pointer-based

representation. These pointers use too much space.

Table 5.10 shows the query performance of pointer-based normal-shaped wavelet

trees combined with different compact bit vectors. We also include the query perfor-

mance of the original method WTNP-RRR15 to compare with all pointer-based normal-

shaped wavelet trees. The best query performance is achieved by WT-Plain. WTNP-

RRR15 is 1 to 3 times slower than WT-RRR15 only. The reason why WT-RRR15 is faster

is that we use more space to store the pointers in order to speed up the traversal in
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Table 5.9: Compression performance for dense subgraphs using pointer-based
normal-shaped wavelet trees, measured in bits per symbol

data set WT-Plain WT-RRR15 WT-RRR63 WT-RLEG256 WT-RLED256 WT-RLEO256 WTNP-RRR15
eu-2005 559.97 448.48 450.07 266.49 267.55 267.04 13.43
in-2004 778.02 623.84 624.88 368.90 369.85 369.34 12.57
indochina-2004 745.85 596.63 597.75 352.39 353.51 352.84 13.70
uk-2002 761.93 609.05 609.48 359.56 360.55 360.03 14.19
arabic-2005 607.40 484.36 484.63 286.61 287.75 287.13 15.04
enron 613.68 498.45 501.28 299.67 301.27 300.63 15.32
dblp-2011 1050.84 852.50 854.57 507.93 509.91 508.84 16.27
dewiki-2013 167.34 138.64 139.44 91.84 94.61 93.08 21.42
soc-livejornal 575.53 463.13 465.53 275.77 276.76 276.35 12.42
ljournal-2008 504.37 405.08 406.89 241.34 242.33 241.88 12.65

Table 5.10: Query performance for dense subgraphs using pointer-based normal-
shaped wavelet trees, measured in microseconds per edge

data set WT-Plain WT-RRR15 WT-RRR63 WT-RLEG256 WT-RLED256 WT-RLEO256 WTNP-RRR15
eu-2005 2.06 3.59 7.54 36.94 36.98 37.42 5.25
in-2004 1.78 3.24 6.14 30.43 30.95 31.52 5.26
indochina-2004 1.80 3.49 6.10 33.60 34.41 34.64 4.82
uk-2002 2.53 4.46 7.76 52.56 53.16 54.02 6.36
arabic-2005 2.42 4.46 7.76 51.90 52.21 53.39 6.09
enron 1.54 2.48 9.14 24.10 25.53 25.31 5.74
dblp-2011 0.57 0.98 5.11 10.05 10.62 10.56 2.81
dewiki-2013 6.01 9.72 23.33 76.24 80.99 75.97 14.84
soc-livejornal 1.02 2.17 5.37 25.44 26.30 26.70 3.56
ljournal-2008 1.17 2.34 4.91 28.01 28.93 29.16 3.66

the tree, and WTNP-RRR15 requires additional computation to determine, for a node v,

the starting and ending positions of B(v) in the concatenated bit vector for v’s level.

Table 5.11 shows the compression performance of pointer-based Huffman-shaped

wavelet trees combined with different compact bit vectors. The best compression

performance is achieved by HWT-RLEG256 among all pointer-based Huffman-shaped

wavelet trees. However, the space cost of HWT-RLEG256 is much larger than WT-

RLEG256. The reason why HWT-RLEG256 uses more space is that HWT stores the Huff-

man coding table along with the tree structure. Thus it takes more space for larger

alphabets.

Table 5.12 shows the query performance of pointer-based Huffman-shaped wavelet

trees combined with different compact bit vectors. The best query performance is
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Table 5.11: Compression performance of dense subgraphs using Huffman-shaped
wavelet trees, measured in bits per symbol

data set HWT-Plain HWT-RRR15 HWT-RRR63 HWT-RLEG256 HWT-RLED256 HWT-RLEO256 WTNP-RRR15
eu-2005 675.80 566.02 566.84 384.37 385.63 384.96 13.43
in-2004 940.79 788.16 788.45 533.20 534.56 533.67 12.57
indochina-2004 900.79 753.19 753.13 509.13 510.43 509.59 13.70
uk-2002 920.27 769.00 768.80 519.73 521.06 520.21 14.19
arabic-2005 732.07 610.83 610.56 413.55 414.84 414.10 15.04
enron 742.93 628.69 629.81 430.39 432.51 431.16 15.32
dblp-2011 1274.50 1076.27 1077.35 731.24 733.28 731.86 16.27
dewiki-2013 198.50 171.36 171.52 125.32 128.49 126.53 21.42
soc-livejornal 695.21 585.03 586.76 398.62 400.02 399.28 12.65
ljournal-2008 608.56 511.75 513.23 349.17 350.57 349.82 12.42

Table 5.12: Query performance of dense subgraphs using Huffman-shaped wavelet
trees, measured in microseconds per edge

data set HWT-Plain HWT-RRR15 HWT-RRR63 HWT-RLEG256 HWT-RLED256 HWT-RLEO256 WTNP-RRR15
eu-2005 1.75 2.02 4.37 18.20 18.20 19.80 5.25
in-2004 1.60 1.87 3.59 14.18 14.91 16.22 5.26
indochina-2004 1.57 1.79 3.34 15.42 16.26 18.46 4.82
uk-2002 2.48 2.91 4.86 26.80 27.20 30.00 6.36
arabic-2005 2.14 2.58 4.44 23.36 24.29 26.74 6.09
enron 1.32 1.58 5.46 14.35 15.26 15.13 5.74
dblp-2011 0.34 0.34 2.58 4.25 5.05 4.94 2.81
dewiki-2013 4.99 6.89 14.67 47.99 50.29 48.38 14.84
soc-livejornal 0.83 1.14 3.09 10.41 10.96 12.24 3.56
ljournal-2008 0.95 1.34 3.24 11.67 12.27 13.75 3.66

achieved by HWT-Plain among all pointer-based Huffman-shaped wavelet trees.

Figure 5.2 and Figure 5.3 show the space/time tradeoffs of all the approaches

discussed in this section. The best space performance is achieved by WTNP-RRR15 as

shown in the previous tables. The best query performance is achieved by HWT-Plain.

It is faster than WTNP-RRR15, but WTNP-RRR15 is only 1-3 times slower than WT-RRR15.

Considering the huge space cost of pointer-based wavelet trees, WTNP-RRR15 is more

preferable.

Overall, pointers-based wavelet trees are not good at compressing dense subgraphs

because of the space cost required by large alphabets. They are not competitive in

dense subgraphs compression compared to the original idea of using WTNP-RRR15.

Thus we focus on pointerless wavelet trees. We also notice that bit vectors based on

run-length encodings achieve good compression performance.
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Figure 5.2: Space/time performance in web graphs
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Figure 5.3: Space/time performance in social networks
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Table 5.13: Compression performance of dense subgraphs using pointerless normal-
shaped wavelet trees, measured in bits per symbol

data set Plain RRR15 RRR63 RLEG256 RLED256 RLEO256

eu-2005 21.41 13.43 12.14 10.12 11.05 10.67
in-2004 21.37 12.57 10.99 8.95 9.74 9.42
indochina-2004 24.47 13.70 11.55 9.03 9.83 9.51
uk-2002 25.55 14.19 11.80 9.23 10.05 9.71
arabic-2005 26.59 15.04 12.49 9.95 10.87 10.49
enron 15.86 15.32 15.25 15.31 16.99 16.20
dblp-2011 16.56 16.27 15.83 16.30 18.18 17.13
dewiki-2013 22.19 21.42 20.08 22.56 25.31 23.81
soc-livejornal 18.21 12.65 12.45 10.48 11.43 11.06
ljournal-2008 18.18 12.42 11.96 10.10 11.03 10.67

Table 5.14: Query performance of dense subgraphs using pointerless normal-shaped
wavelet trees, measured in microseconds per edge

data set Plain RRR15 RRR63 RLEG256 RLED256 RLEO256

eu-2005 3.85 5.25 13.99 107.55 114.02 110.00
in-2004 3.85 5.26 13.09 105.97 113.17 111.31
indochina-2004 3.45 4.82 12.89 117.93 124.66 122.51
uk-2002 4.64 6.36 16.16 140.10 147.73 141.34
arabic-2005 4.38 6.09 15.55 135.43 142.17 135.12
enron 4.34 6.88 21.73 74.77 82.30 78.15
dblp-2011 1.95 4.38 19.51 35.82 41.45 39.03
dewiki-2013 11.08 14.84 39.53 135.25 145.98 135.37
soc-livejornal 2.52 3.56 10.77 81.94 87.37 84.09
ljournal-2008 2.51 7.21 20.39 81.92 87.24 83.92

5.2.2 Pointerless Wavelet Trees

In this section, we focus on two types of pointerless wavelet trees. One is the normal-

shaped pointerless wavelet tree [15], and the other one is the canonical Huffman-

shaped wavelet tree [32]. The bit vector data structures that we use include RLEG256,

RLED256, RLEO256, Plain, RRR15 and RRR63.

Table 5.13 and Table 5.14 show the compression performance and the query per-

formance of pointerless normal-shaped wavelet trees combined with different compact

bit vectors. The best compression performance is achieved by RLEG256 for all web

graphs. The best compression performance is achieved by RRR63 for most social
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Table 5.15: Compression performance of dense subgraphs using canonical Huffman-
shaped wavelet trees, measured in bits per symbol

data set Plain RRR15 RRR63 RLEG256 RLED256 RLEO256

Eu-2005 40.95 33.99 33.00 31.26 32.24 31.83
In-2004 50.03 41.83 40.44 38.53 39.35 39.02
Indochina-2004 52.12 42.37 40.55 38.23 39.04 38.71
Uk-2002 55.42 44.80 42.67 40.23 41.09 40.73
Arabic-2005 48.98 38.75 36.53 34.34 35.31 34.89
Enron 35.07 35.40 34.90 36.22 38.16 37.05
Dblp-2011 49.91 49.72 49.38 50.04 51.90 50.78
Dewiki-2013 26.30 26.93 25.57 28.74 31.72 29.96
Soc-livejornal 37.07 33.00 33.02 31.66 32.74 32.31
Ljournal-2008 34.78 30.19 29.91 28.61 29.65 29.23

Table 5.16: Query performance of dense subgraphs using canonical Huffman-shaped
wavelet trees, measured in microseconds per edge

data set Plain RRR15 RRR63 RLEG256 RLED256 RLEO256

Eu-2005 7.08 7.08 39.28 242.85 274.49 256.92
In-2004 7.65 7.08 39.01 278.31 312.84 297.79
Indochina-2004 7.12 6.64 35.83 278.82 310.28 300.12
Uk-2002 8.87 9.08 47.39 337.80 375.20 358.10
Arabic-2005 8.72 8.64 46.18 302.50 337.12 321.90
Enron 7.40 6.90 52.54 185.79 220.98 188.30
Dblp-2011 4.59 4.59 32.15 103.56 111.25 104.02
Dewiki-2013 12.21 14.17 78.82 276.02 325.26 276.21
Soc-livejornal 5.22 5.13 32.66 190.20 219.81 199.91
Ljournal-2008 5.57 5.34 34.12 198.43 227.12 208.07

networks. Plain has the best query performance among all those compact data

structures for dense subgraphs.

Table 5.15 and Table 5.16 show the compression performance and the query per-

formance of canonical Huffman-shaped wavelet trees combined with different compact

bit vectors. The best compression performance is achieved by RLEG256 for all web

graphs, and RRR63 for most social networks. Plain and RRR15 have similarity query

performance among all those compact data structures for dense subgraphs.

Figure 5.4 and Figure 5.5 illustrate the results recorded in Tables 5.13- 5.16 on

web graphs and social networks, respectively. Recall that WTNP-RRR15 is the original
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encoding scheme by Claude and Navarro [15]. The figures show that WTNP-RLEG256

has the best compression performance for web graphs, and WTNP-RRR63 and WTNP-

RLEG256 have better compression than other combinations for social networks, but

the query time is not competitive comparing to the WTNP-RRR15 structure or WTNP-

Plain. WTNP-Plain support faster queries than WTNP-RRR15 does for most graphs,

since RRR required more computation when answering queries.

The CHWTNP data structures are not competitive for both web graphs and so-

cial networks. Both figures show that they are almost twice larger than the WTNP

data structures, since our data has a high entropy and CHWTNP requires us to store

some information so that we can compute the Huffman encoding of each symbol,

as explained in Section 3.2.5. The query support of RLE-based CHWTNP is slower

than RLE-based WTNP, because the query algorithm of CHWTNP needs to decompress

symbols. WTNP-RRR15 and WTNP-RRR63 provide the best space/time tradeoff here.

WTNP-RRR63 is better than WTNP-RRR15 regarding compression rates, but queries are

slower with WTNP-RRR63. In other words, when the block size in RRR are bigger, we

have better compression but slower query support. In this experiment, our RLE-based

structure’s block size is 256, which means RLE-based structure contains many runs in

one block. We can decrease the block size of RLE to speed up query performance.
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Figure 5.4: Space/time Performance in web graphs
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Figure 5.5: Space/time Performance in social networks
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5.3 Improving Representation of Dense Subgraphs

5.3.1 Wavelet Tree Implementations for Dense Subgraphs

From the previous experiments, we noticed that the best implementations use point-

erless normal-shaped wavelet trees. This is because the large alphabet of X prevents

us from achieving improvements using alternative approaches such as those that use

different tree shapes. Thus, we focus on investigating the encodings of bit vectors for

different levels of wavelet trees, to see if we can make improvements. We only use WTNP

in this section. Since RLEG has better compression and query performance than RLED

and RLEO, we only consider RLEG in this section. Thus the bit vector implementations

considered in this section are RRR, Plain, and RLEG.

Tables 5.17 and 5.18, with the exception of the last two columns in each table,

present the compression ratio and query performance achieved by using different bit

vector implementations in TX . From these tables, we can see that the fastest query

time is achieved by Plain, though its space cost is the highest. Hernández and

Navarro’s implementation is RRR15; increasing the block size in RRR can achieve more

compression, though the queries will be slower. RLE with big block size can be used

to achieve even more compression, but the query is even slower. This study shows

that new tradeoffs can be obtained, though none of these new tradeoff is particularly

Table 5.17: Compression performance of dense subgraphs using wavelet trees, mea-
sured in bits per symbol

data set Plain RRR15 RRR63 RLEG32 RLEG64 RLEG256 RRR15-P RL32-RRR15-P
eu-2005 21.41 13.43 12.14 17.12 13.12 10.12 13.05 10.93
in-2004 21.37 12.57 10.99 15.17 11.62 8.95 12.11 9.20
indochina-2004 24.47 13.70 11.55 15.29 11.71 9.03 13.27 9.31
uk-2002 25.55 14.19 11.80 15.58 11.95 9.23 13.75 9.57
arabic-2005 26.59 15.04 12.49 16.87 12.92 9.95 14.69 10.57
enron 15.86 15.32 15.25 26.65 20.18 15.31 14.78 14.56
dblp-2011 16.56 16.27 15.83 28.57 21.54 16.30 15.81 15.72
dewiki-2013 22.19 21.42 20.08 41.64 30.74 22.56 21.13 21.13
soc-livejournal 18.21 12.65 12.45 17.66 13.56 10.48 12.27 11.03
ljournal-2008 18.18 12.42 11.96 17.06 13.09 10.10 12.03 10.62
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Table 5.18: Query performance of dense subgraphs, measured in microseconds per
edge

data set Plain RRR15 RRR63 RLEG32 RLEG64 RLEG256 RRR15-P RL32-RRR15-P
eu-2005 3.85 5.25 13.99 17.46 31.11 107.55 4.93 11.77
in-2004 3.85 5.26 13.09 15.46 26.82 105.97 4.94 11.82
indochina-2004 3.45 4.82 12.89 16.62 30.89 117.93 4.54 12.75
uk-2002 4.64 6.36 16.16 20.25 36.39 140.10 6.03 15.19
arabic-2005 4.38 6.09 15.55 20.32 37.12 135.43 5.81 14.60
enron 4.34 6.88 21.73 15.58 24.36 74.77 6.24 6.39
dblp-2011 1.95 4.38 19.51 11.91 18.56 35.82 3.36 3.47
dewiki-2013 11.08 14.84 39.53 34.09 46.66 135.25 12.76 13.47
soc-livejournal 2.52 3.56 10.77 10.13 18.75 81.94 3.18 6.65
ljournal-2008 2.51 7.21 20.39 18.70 29.93 81.92 6.59 9.51

attractive, as they sacrifice too much query or compression performance.

Thus, to achieve better performance, new approaches are needed. In our experi-

mental studies, TX has 20-25 levels (the number of levels is the ceiling of lg σ, which

is reported in Table 5.7). Figure 5.6 shows the entropy and average run length of the

bit vector at each level. It shows that the bit vector at the root level has many long

runs of 0s and 1s. As we go down the tree, the bit vector at each level has smaller

average run length, while its zeroth-order empirical entropy becomes higher. In the

last several levels, each bit vector has average run length between 1 and 10, and its

zeroth-order empirical entropy is roughly 1. Thus the bit vectors at the bottommost

levels are difficult to compress. From this observation, we conjectured that more

compression can be achieved if we use RLE to represent bit vectors at top levels, and

Plain, which does not compress bit vectors but has less space overhead, for bottom

levels. RRR may still be the best option for the bit vectors in between. We then

computed the space cost of different bit vector representations at different levels of

TX , which confirmed our conjecture. Figure 5.7 and Figure 5.8 show the space cost

of different bit vectors at different levels for the web graphs and social networks, in

which the levels are numbered 0, 1, 2, . . . starting from the root level.

We thus use different bit vector implementations for different levels of TX . As

Plain has faster query time than RRR15, which has faster query time than RLEG32, we
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Figure 5.6: Entropy and average run length of the bit vector at each level of the
wavelet tree

develop two different ways of combining these implementations. The first approach

uses RRR15 and Plain only. It encodes the bit vectors in TX from top down. We

initially use RRR15 to encode the bit vector at each level, until we reach a level for

which Plain uses less space. Then, starting from this level downwards, we use Plain

to encode bit vectors. This approach is referred to as RRR15-P in Tables 5.17 and 5.18,

which show that its compression and query performance is 3%−4% and 5%−6% better

than RRR15 in web graphs, and its compression and query performance is 1%−4% and

8% − 24% better than RRR15 in social networks, respectively. The second approach

uses three bit vector implementations in a similar fashion: from top to bottom, we

use RLEG32, RRR15 and Plain to maximize compression. This approach is referred to

as RL32-RRR15-P in Tables 5.17 and 5.18, which show that its space cost is 19%−33%

less than that of RRR15 in web graphs and its space cost is 1%−14% less than that of

RRR15 in social networks. The query time is still competitive. This compression can

not be achieved by increasing the block size of RRR, and to achieve roughly the same

compression, we can use RLEG256, but then a query will use 10 times as much time as

RL32-RRR15-P. Thus RL32-RRR15-P is an attractive method when more compression
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Table 5.19: Optimum edgeSaving and level information
optimum edgeSaving Level

Data Set RRR15 Plain RLEG32 RRR15-P RL32-RRR15-P RRR15-P RL32-RRR15-P
eu-2005 30 500 50 30 15 15|19 9|15|19
in-2004 15 500 500 15 15 15|19 12|15|19
indochina-2004 50 500 100 30 15 18|22 15|18|22
uk-2002 30 500 100 30 15 19|23 16|19|23
arabic-2005 30 500 100 30 6 20|24 15|20|24
enron 30 30 6 30 30 3|13 1|3|13
dblp-2011 500 500 500 500 500 2|12 1|2|12
dewiki-2013 6 6 500 6 6 6|18|20 6|18|20
soc-livejornal 500 500 500 500 500 12|16 8|12|16
ljournal-2008 500 500 500 500 500 12|16 8|12|16

is desired.

It now makes sense to engineer the implementation of TX by trying different block

sizes of the bit vector implementations used in our new combined encoding approach.

There is however one more consideration: as we follow Hernández and Navarro’s

approach and always tune the parameters of their mining algorithm to maximize the

compression of the entire graph, having different implementations of TX may change

the parameters of the mining algorithm, which may affect the content of X itself.

Therefore, when engineering the implementation of TX , it makes sense to use the

compression and query performance over the entire graph.

5.3.2 Engineering Wavelet Tree Implementation for Compressed Web

Graph Representations

We now engineer the implementation of TX , using the performance achieved over

the entire graph to evaluate our approaches. For each bit vector implementation, we

follow Hernández and Navarro’s approach which uses different values for edge saving

and determine the value that achieves the most compression, as shown in Section 5.1.

To get the best compression performance, Table 5.19 shows the optimum edgeSav-

ing values for wavelet trees based on different bit vector structures. For combined

encoding schemes, it also shows the last wavelet tree level at which each individual
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Table 5.20: Space performance with optimum edgeSavings, measured in bits per edge
Data Set Plain RRR15 RLEG32 RRR15-P RL32-RRR15-P
eu-2005 3.16 2.54 2.85 2.50 2.30
in-2004 2.91 2.43 2.60 2.39 2.12
indochina-2004 1.76 1.40 1.46 1.38 1.17
uk-2002 3.02 2.41 2.50 2.37 2.02
arabic-2005 2.29 1.80 1.89 1.78 1.49
enron 16.26 16.21 16.53 16.15 16.13
dblp-2011 8.61 8.61 8.62 8.61 8.61
dewiki-2013 17.09 17.09 18.40 16.99 16.99
soc-livejornal 12.94 12.92 12.94 12.92 12.92
ljournal-2008 12.96 12.93 12.95 12.93 12.93

bit vector encoding scheme is used. These levels are given in the last two columns

of the table. As two different bit vector implementation are used in RRR15-P, two

numbers are used when reporting such level information for RRR15-P, separated by

”|”. Similarly, three numbers are used for RL32-RRR15-P. For example, 15|20|24 are

given for the RL32-RRR15-P encoding of arabic-2005, and this means the bitmaps from

level 0 to level 15 are encoded by RLEG32, the bitmaps from level 16 to level 20 are

encoded by RRR, and the bitmaps from level 21 to level 24 are encoded by Plain.

We have two special cases when using RL32-RRR15-P to encode social networks: for

dewiki-2013, RLEG32 uses more space for all levels compared to RRR15 and Plain, so

the bitmaps from level 0 to level 6 are encoded by RRR15, the bitmaps from level 7 to

level 18 are encoded by Plain, and bitmaps from level 19 to level 20 are encoded by

RRR15; for dblp-2011, level 6 is encoded by RRR15 even through this level is within

the range of levels whose bit vectors are supposed to be encoded by Plain.

Table 5.20 and Table 5.21 show the compression performance and the query per-

formance of pointerless wavelet trees combined with different bit vector structures by

using the optimum edgeSaving values. In this section, the compression is measured in

bits per edge which is the space cost of storing the dense subgraph and the remaining
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Table 5.21: Query performance with optimum edgeSavings, measured in microseconds
per out-neighbours

Data Set Plain RRR15 RLEG32 RRR15-P RL32-RRR15-P
eu-2005 2.73 5.32 15.15 4.87 7.95
in-2004 3.18 5.47 11.72 5.21 11.01
indochina-2004 3.87 5.42 15.05 5.37 12.41
uk-2002 9.33 11.40 23.68 10.86 19.44
arabic-2005 5.18 7.60 19.65 7.20 14.62
enron 5.60 5.78 10.77 5.55 5.77
dblp-2011 4.18 4.34 5.74 4.26 4.29
dewiki-2013 11.12 13.88 11.24 12.73 12.86
soc-livejornal 7.42 7.73 9.37 7.66 9.21
ljournal-2008 6.60 7.05 9.12 6.88 8.60

Table 5.22: Optimum edgeSaving II
Data Set RLEG4 RLEG6 RLEG8 RLEG16 RLEG64 RLEG128 RLEG256 RRR31 RRR63

eu-2005 500 500 500 500 30 15 15 30 15
in-2004 500 500 500 500 15 15 15 15 15
indochina-2004 500 500 500 500 30 15 15 15 15
uk-2002 500 500 500 500 30 15 15 15 15
arabic-2005 500 500 500 500 30 6 6 6 6

graph in bits divided by the total number of edges of the graph. The queries were out-

neighbour queries performed on the entire graph, and the query times reported are in

microseconds per out-neighbour reported. For the space performance, RL32-RRR15-P

achieves an improvement of around 9% to 19% over RRR15 for web graphs. For social

graphs, RL32-RRR15-P does not achieve any significant improvement. For the query

performance, RRR15-P achieves a slight improvement over RRR15 for both web graphs

and social networks. RL32-RRR15-P is around twice as slow as RRR15 for web graphs,

and the query performance is similar for social networks. Overall, combined encoding

achieved significant improvements for web graphs only. Thus, the rest of this section

will focus on web graphs only.

We first report, in Tables 5.22, 5.23 and 5.24, the optimum edgeSaving values, the

compression performance and the query performance achieved by using existing bit
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Table 5.23: Space performance over the entire graph of using existing approaches,
measured in bpe

data set Plain RRR15 RRR31 RRR63 RLEG4 RLEG6 RLEG8 RLEG16 RLEG32 RLEG64 RLEG128 RLEG256 k2-tree DSM1 DSM2

eu-2005 3.16 2.54 2.44 2.41 5.13 4.29 3.86 3.23 2.85 2.51 2.32 2.21 3.46 2.02 2.34
in-2004 2.91 2.43 2.32 2.29 4.46 3.76 3.40 2.87 2.60 2.34 2.18 2.10 2.65 1.64 1.67
indochina-2004 1.76 1.40 1.31 1.28 2.89 2.35 2.09 1.69 1.46 1.30 1.19 1.14 1.72 0.81 0.86
uk-2002 3.02 2.41 2.26 2.20 4.48 3.75 3.38 2.83 2.50 2.23 2.06 1.98 2.82 1.44 1.56
arabic-2005 2.29 1.80 1.66 1.60 3.64 2.99 2.66 2.17 1.89 1.67 1.50 1.42 2.45 1.03 1.12

Table 5.24: Query performance over the entire graph of using existing approaches,
measured in µs/edge

data set Plain RRR15 RRR31 RRR63 RLEG4 RLEG6 RLEG8 RLEG16 RLEG32 RLEG64 RLEG128 RLEG256 k2-tree DSM1 DSM2

eu-2005 2.73 5.32 10.13 13.47 4.74 5.26 5.60 7.58 15.15 27.50 48.79 93.67 1.13 12.33 4.84
in-2004 3.18 5.47 10.02 12.38 4.75 5.22 5.78 7.62 11.72 24.04 45.42 91.28 1.36 3.95 1.94
indochina-2004 3.87 5.42 10.90 13.17 6.14 6.69 7.33 10.01 15.05 29.67 57.53 112.46 1.76 5.17 2.27
uk-2002 9.33 11.40 17.60 20.76 12.10 12.64 13.20 15.95 23.68 37.34 67.80 123.59 7.57 16.61 7.56
arabic-2005 5.18 7.60 13.75 16.95 8.65 9.21 9.84 12.72 19.65 35.98 63.87 119.56 2.80 13.21 5.25

vector implementations to encode TX . We also include three different approaches: k2-

tree, and two tradeoffs of DSM. The first tradeoff, denoted by DSM1, chooses parameters

(ES = 10 and T = 10; see [22]) to maximize compression. The second tradeoff,

denoted by DSM2 (ES = 100 and T = 10), outperforms RRR15 in both query time and

space cost. Note that none of these three approaches can support mining queries, so

we include them here only to show where our results stand when compared to some

state-of-the-art web graph compression approaches that support fewer operations; we

will make more comments about them in later part of the section.

From these two tables, we can draw the same conclusion as in Section 5.3.1 on the

performance of existing approaches. What is new is that we tested many different

choices for the block size of RLEG (we only use RLEG as it outperforms RLED and RLEO):

4, 6, 8, 16, 32, 64, 128, and 256. It is unusual to use small blocks sizes such as 4, 6 or

8, as they require too much space overhead. However, as the bit vectors at the top

levels of TX have very long runs of the same bit, these approaches can still use less

space than RRR15 for these levels, and their fast support for queries is attractive.

Table 5.25 shows the optimum edgeSaving values and the last wavelet tree level

at which each individual bit vector encoding scheme is used for for RL32-RRR31-P and

RL32-RRR63-P. These levels are given in the last two columns of the table. Table 5.26
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Table 5.25: Optimum edgeSaving for combined encoding
optimum edgeSaving Level

Data Set RL32-RRR31-P RL32-RRR63-P RL32-RRR31-P RL32-RRR63-P
eu-2005 15 15 8|15|19 8|15|19
in-2004 15 15 14|*|19 14|*|19
indochina-2004 15 15 15|18|22 17|18|22
uk-2002 15 15 15|18|23 18|19|23
arabic-2005 6 6 14|20|24 13|24|*

Table 5.26: Space Performance of using different block sizes of RRR in combined
encoding, measured in bits per edges

Data Set RL32-RRR15-P RL32-RRR31-P RL32-RRR63-P
eu-2005 2.30 2.31 2.34
in-2004 2.12 2.14 2.14
indochina-2004 1.17 1.18 1.18
uk-2002 2.02 2.04 2.05
arabic-2005 1.49 1.49 1.51

Table 5.27: Query Performance of using different block sizes of RRR in combined
encoding, measured in microseconds per edge

Data Set RL32-RRR15-P RL32-RRR31-P RL32-RRR63-P
eu-2005 7.95 8.81 9.45
in-2004 11.01 11.86 11.96
indochina-2004 12.41 13.36 14.11
uk-2002 19.44 19.70 21.46
arabic-2005 14.62 15.94 19.89
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Table 5.28: Optimum edgeSaving III
optimum edgeSaving

data set RL4-RRR15-P RL6-RRR15-P RL8-RRR15-P RL16-RRR15-P RL64-RRR15-P
eu-2005 30 30 30 30 15
in-2004 30 30 15 15 15
indochina-2004 30 30 30 15 15
uk-2002 30 30 30 15 15
arabic-2005 30 30 6 6 6

level
eu-2005 3|15|19 4|15|19 6|15|19 8|15|19 13|15|19
in-2004 7|15|19 8|15|19 8|15|19 10|15|19 15|*|19
indochina-2004 9|18|22 10|18|22 11|18|22 13|18|22 17|18|22
uk-2002 11|19|23 12|19|23 13|19|23 13|19|23 18|19|23
arabic-2005 11|20|24 11|20|24 11|20|24 12|20|24 17|20|24

and Table 5.27 show the compression performance and the query performance for

RL32-RRR15-P, RL32-RRR31-P, and RL32-RRR63-P. In table 5.25, ”*” is used in some

cells to indicate that the corresponding bit vector encoding scheme is not used at

all for a particular files, because at any level of the wavelet tree, this schemes uses

more space than at least one alternative approach. For example 14|*|19 in the cell

corresponding to in-2004 and RL32-RRR31-P means that RLEG32 is used for levels

0-14, Plain is used for levels 15-19, and RRR15 is not used. We have found that

RL32-RRR31-P and RL32-RRR63-P not only provide slower support for queries than

RL32-RRR15-P does, but also use more space, which is surprising. We found that this

is because, in combined encodings, RRR is used to encode the bit vectors in TX that

are compressible but are not highly compressible (the highly compressible ones are

encoded using RLEG), and for these bit vectors, increasing the block size in RRR does

not improve compression. Therefore, the best strategy is to use RRR15 in combined

encodings.

We now test the performance of combined encodings using different block sizes

for RLEG. Table 5.28 shows the optimum edgeSaving values and the last wavelet tree

level at which each individual bit vector encoding scheme is used for RL4-RRR15-P,

RL6-RRR15-P, RL8-RRR15-P, RL16-RRR15-P and RL64-RRR15-P. These levels are given in
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Table 5.29: Space performance over the entire graph of using combined encodings,
measured in bits per edge

data set RRR15-P RL4-RRR15-P RL6-RRR15-P RL8-RRR15-P RL16-RRR15-P RL32-RRR15-P RL64-RRR15-P
eu-2005 2.50 2.46 2.43 2.41 2.35 2.30 2.23
in-2004 2.39 2.28 2.25 2.23 2.17 2.12 2.07
indochina-2004 1.38 1.27 1.25 1.23 1.20 1.17 1.13
uk-2002 2.37 2.23 2.18 2.15 2.08 2.02 1.97
arabic-2005 1.78 1.65 1.61 1.59 1.54 1.49 1.44

Table 5.30: Query performance over the entire graph of using combined encodings,
measured in µs/edge

data set RRR15-P RL4-RRR15-P RL6-RRR15-P RL8-RRR15-P RL16-RRR15-P RL32-RRR15-P RL64-RRR15-P
eu-2005 4.87 4.85 5.08 5.46 6.56 7.95 13.39
in-2004 5.21 5.07 5.36 5.87 7.48 11.01 20.48
indochina-2004 5.37 5.53 5.87 6.19 8.28 12.41 24.46
uk-2002 10.86 11.54 11.70 12.19 14.63 19.44 32.87
arabic-2005 7.20 7.66 8.04 8.47 10.06 14.62 25.14

the bottom of the table. Table 5.29, and Table 5.30 show the compression performance

and the query performance for combined encoding schemes. They not only contain

the results for RRR15-P and RL32-RRR15-P as defined in Section 5.3, but also contain

the performance of several more approaches that use different block sizes for RLEG.

In particular, we used block sizes 4, 6, 8, 16, 32 and 64, and the names of these

combined approaches are defined similarly as in Section 5.3. To make it easier to

see how combined encodings compare to previous approaches, Figure 5.9 illustrates

the results reported in the tables in this section. In these figures, the data points

corresponding to RLEG use block sizes 16, 32, 64 and 128, the data points for RRR

use block sizes 15, 31 and 63, and the data points for RL-RRR15-P includes all the

combined encoding approaches in Tables 5.29 and 5.30 that combines RLEG, RRR and

Plain.

From these tables and figures, we can tell that our combined encoding approach

indeed achieves more desirable tradeoffs than what can be achieved by using a single

bit vector encoding for TX . Our strategy of using three different bit vector encodings

to represent TX can improve the space cost of using RRR only, without sacrificing as

much query performance as RLEG would. RL32-RRR15-P, RL6-RRR15-P and RRR15-P
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are the three interesting tradeoffs described in Section 1.1.

As with Hernández and Navarro’s implementation, our new tradeoffs achieves

more compression than k2-trees, though k2-trees support faster queries. DSM1, which

outperforms the original implementation in both query and space, still outperforms

the new tradeoffs, though the difference is now smaller. We would like to remind the

readers that DSM does not support mining queries, so our implementation is still the

best if these queries are desired.
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Figure 5.9: Space/Query performance on web graphs



Chapter 6

Conclusions and Future Work

This thesis studies compressed representation of web graphs and social networks based

on discovering dense subgraphs, which was originally proposed by Hernández and

Navarro’s [22]. In these representations, dense subgraphs are represented by succinct

data structure such as wavelet trees.

We first conducted a survey on succinct data structures that can be used in these

graph structures, including different bit vectors structures, such as RRR and RLE, and

different implementations of wavelet trees such as the pointer-based wavelet trees and

pointerless wavelet trees.

Then we used these data structures in Hernández and Navarro’s framework to

represent web graphs and social networks. We found that pointer-based wavelet trees

are not competitive compared to pointer-less wavelet tree in dense subgraph repre-

sentations due to the hug space overhead incurred by the large size of the alphabets

in our experimental studies.

We thus propose a wavelet tree encoding scheme called combined encoding. This

approach allowed us to achieve new results for web graph representations that can

not be achieved by changing wavelet tree shapes or using an existing bit vector im-

plementation for all levels of a wavelet tree. In addition, our structure is simple and

easy to implement.

Despite the progress made for web graphs, our approach does not achieve signifi-

cant improvement over previous results for social networks. Thus, further improving

67
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the compressed representations of social networks is a future research direction. An-

other possible future research direction is to study the parallel construction of these

data structures as the mining phase of the construction algorithm requires a lot of

time.
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