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Abstract

This thesis is a simulation study for Serious Outcomes Surveillance (SOS) in influenza.

We introduce some statistical methods appropriate for matched and unmatched data

and describe an algorithm to simulate from a point process, and reports the results of

some simulation studies which examining the performance of matched and unmatched

analysis methods to assess the presence of a vaccine effect. We report further simula-

tions which address the ability of matched and unmatched methods to accommodate

additional predictor variables, and also investigates the effect of missing data in the

form of missing matched controls.
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Chapter 1

Introduction

Every year, 10-20% of the Canadian population becomes infected with influenza, and

many will end up requiring medical attention as well as treatment for complications

associated with the viral infection. On top of the economic costs associated with this

illness there is also an added burden on and cost to the healthcare system due to

the increased number of physician visits, hospitalizations, and emergency room trips.

Fortunately, there is a publicly funded influenza vaccine that is offered annually and

considered to be the best form of protection from the circulating strains of the virus.

While vaccination has been shown to reduce the prevalence of influenza, absences

from work and school, and physician visits, the overall effectiveness of the influenza

vaccine is quite variable. Older populations for instance have been shown to be

at greater risk for vaccine failure due to immunosenescence. In Canada, sentinel

surveillance for influenza amongest hospitalized Canadian adults results in estimates

of vaccine effectiveness (VE) in the prevention of hospitalization in older adults of

one-third [4] to one-half [5] of influenza-related hospitalizations in the elderly. This

clearly represents an important contribution to the health of Canadians and justifies

the investment in publicly funded influenza immunization programs.

1.1 Methods of Serious Outcomes Surveillance (SOS) Network

In 2009, the Public Health Agency of Canada/CIHR Influenza Research Network

(PCIRN) Serious Outcomes Surveillance Network was established to conduct active

surveillance for influenza amongst Canadian adults admitted to participating hospi-

tals. The primary goals of this collaborative research network are to better define

the burden of disease caused by influenza, and to monitor the effectiveness of the

seasonal vaccine against serious outcomes such as hospitalization and death. While

the Network began with nine hospitals in five provinces in 2009, today it has grown to

consist of 40 hospitals in seven provinces, which encompasses about 17,000 hospital

1
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beds.

Once specific goal of the network was to address the missing gap in previous studies

on vaccine effectiveness by investigating whether influenza vaccination attenuates

disease severity or improves outcomes in those who are admitted to hospital despite

vaccination, as well as to identify the host factors that may be predictive of vaccine

failure and severe illness. Impact of prior season vaccination on estimates of VE was

also explored. Such knowledge is crucial, as it may help to inform health policies and

guidelines surrounding the use of new influenza vaccines, and more importantly it has

the potential to change our understanding of the utility of the vaccine and improve

vaccine uptake.

Nurses conducted active surveillance for flu in admitted adults from October to

May (flu reason). All patients admitted with respiratory infection had a Nasopharyn-

geal(NP) swab for flu polymerase chain reaction (PCR). Test negative results were

controls for calculation of Vaccine effectiveness(VE). Measuring VE was a challenge

due to the timing of the immunization campaign and the bulk of illness occurrence.

1.2 Study Design and Data Collection

This is a prospective, test-negative case-control study that was conducted at the

participating sentinel hospitals located throughout Canada. For the purposes of as-

sessment of vaccine effectiveness, cases were defined as adult patients admitted to an

SOS hospital as a result of influenza or complication of the virus, and who had tested

positive for influenza. For each case enrolled, one or more controls were selected from

amongst patients admitted with an acute respiratory illness to the same SOS hospital

of the case, within 2 weeks of the admission date of the case, but who had a negative

test for influenza on admission. The test-negative case-control design is not a case-

control design in the usual sense, in that controls may be collected prospectively, or

retrospectively over a small time window.

The SOS network collects data during the flu season, which normally begins in

September and ends in April or May depending on the level of virus recycling. The

cases are defined as adult patients with a positive test for influenza whose admission

is attributable to influenza or a complication of influenza. The potential control is

defined as a consenting adult patient at same site, with the same age stratum as a case,
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which is either greater than 65 years old or less than 65 year old; and admission date

within 14 days of case; NP swab obtained within seven days of onset of symptoms,

and test negative for influenza and diagnosis compatible with influenza. The study

was planned such that each case would be matched with two controls, but due to

difficulties in identifying sufficient numbers of controls, the planned matching was

reduced to single controls in year two, with a number of cases being unmatched.

1.3 Object of interest

The object of interest for SOS study is vaccine efficacy. The primary predictor variable

of interest is vaccination status (Y/N), with the goal being to assess whether the

vaccination rates differ in cases and controls. For example, if the vaccination rate is

higher in controls than in cases, that would suggest that vaccination is effective in

reducing hospitalization with influenze like illness.

By definition, [11] [12], vaccine efficacy, also known as vaccine effectiveness, VE,

is estimated as one minus some measure of relative risk, RR .

V E = 1−RR (1.1)

The SOS study focused on evaluating protective effects of influenza vaccination,

the relative risk measure being the ratio of odds of vaccination in cases vs controls.

[7]

V E = 1−OR (1.2)

In an unmatched study, a reasonable assumption is that the times at which vac-

cinated and unvaccinated individuals are admitted to hospital follow independent

Poisson processs, with hazard rates λV (t) and λU(t) respectively, in which case the

time varying vaccine efficacy is given by one minus the hazard rate ratio [11]

V E = 1− λV (t)

λU(t)
(1.3)
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In the matched design of the SOS study, where matched controls are identified

within a specified time window of cases, the control times are not independent of case

times. In the limit, where the interval of the matching window tends to 0, there is

only one arrival process, that for cases, with no additional randomness in the control

times. In this matched case, we will see that methods of survival analysis can be used

to estimate vaccine efficacy.

1.4 Why match?

Why is matching useful for this study?

The quantity of circulating influenza virus in the population, and therefore the

probability of influenza infection, depends on the time of year and location. By

matching according to time of year and location, the unmeasured level of circulating

virus can be controlled for.

An individual presenting at hospital who tests positive for influenza must have

been exposed to the virus. Let P (V ) denote the probability that an individual was

vaccinated in the current flu season, and P (U) = 1 − P (V ) be the probability of an

unvaccinated individual. Let P (E) be the probability that an individual was exposed

to the influenza virus, and let P (F |V,E) and P (F |U,E) be the probabilities that

vaccinated and unvaccinated individuals who were exposed to the virus present to

hospital with the flu virus. Let P (O) be the probability that an individual presents

to the hospital with an other respiratory infection. It is assumed that the probability

of other respiratory infections is unaffected by the influenza vaccination status, or

contact with flu infected individuals.

Consider the population of individuals presenting to hospital with influenza like

illness. Individuals will be of one of the following types: (Other, Vaccinated), (Other,

Unvaccinated), (Flu, Vaccinated, Exposed), or (Flu, Unvaccinated, Exposed). As-

suming that influenza vaccination does not change the likelihood of another respira-

tory infection:

• P ( Other,Vaccinated) = P (O)P (V )

• P ( Other,Unvaccinated)= P (O)P (U)

• P ( Flu,Vaccinated,Exposed)= P (Flu|V,E)P (V )P (E), and
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• P ( Flu,Unvaccinated,Exposed)= P (Flu|U,E)P (U)P (E)

• The true vaccine efficacy is defined as one minus the relative odds,

V E = 1− P (Flu|V,E)

P (Flu|U,E)

Exposue is a latent variable which is not measured, but it is known that P (E)

changes throughout the influenza season. Consider the following table of vaccina-

tion status by case/control status, for those individuals presenting to hospital with

influenza like illness. The probabilities in the table allow that exposure might differ

for vaccinated and unvaccinated individuals, with probabilities P (E|V ) and P (E|U)

respectively.

Case Control

Vaccinated P (Flu|V,E)P (V )P (E|V ) P (O)P (V )

Unvaccinated P (Flu|U,E)P (U)P (E|U) P (O)P (U)

The odds of vaccination for a case is
P (Flu|V,E)P (V )P (E|V )
P (Flu|U,E)P (U)P (E|U) , while the odds of

vaccinaton for a control is
P (V )
P (U) , and the resulting odds ratio is

P (Flu|V,E)P (E|V )
P (Flu|U,E)P (E|U) .

Unless P (E|V ) = P (E|U), the odds ratio being calculated is not the odds ratio of

interest
P (Flu|V,E)
P (Flu|U,E) . One way to assure that P (E|V ) = P (E|U) is to match by

time and location, and any other factors which might be related to the quantity of

circulating influenza virus. Based on this argument, the SOS study was planned as a

matched design.

The experience in carrying out the SOS study has been that it is often difficult

to obtain matched controls. As noted above, in year one the goal was to use 2:1

matching. In year two this was reduced to a goal of 1:1 matching, and for many

cases, the implementation team was unable to find any matched controls.

To carry out a matched analysis, only matched cases are included, and the loss

of unmatched cases may result in reduced power. This leads to questions concerning

the method of analysis. Although the design is matched, is it always best to use

a matched analysis, or can an unmatched analysis provide greater power than a

matched analysis, given that unmatched analysis methods can use all data, matched

or otherwise. The primary goal of this thesis is to address this question.
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1.5 Role of other variables

The elderly are known to be at greater risk for vaccine failure due to immunosensence,

and a secondary objective for the SOS study is to assess the role of patient age as

a determinant of vaccine efficacy. The SOS study recorded gender and a number of

other variables, and while age was controlled for through matching, other variables

were controlled for by inclusion in regression models.

In this thesis, we carry out an exploratory simulation based comparison of matched

and unmatched analyses using only three variables - vaccination status, case/control

status, and gender, with the latter variable included as a regressor in both matched

and unmatched logistic regression models, and in addition, including vaccination

status as a regressor in an unmatched logistic regression model with case/control

status as the outcome.

The remainder of the thesis is organized as follows. In chapter 2, we introduce

some statistical methods appropriate for matched and unmatched data. Chapter 3

describes an algorithm to simulate from a point process, and reports the results of

some simulation studies which examining the peformance of matched and unmatched

analysis methods to assess the presence of a vaccine effect. Chapter 4 reports further

simulations which address the ability of matched and unmatched methods to accom-

modate additional predictor variables, and also investigates the effect of missing data

in the form of missing matched controls. Chapter 5 summarizes the advantages and

limitations of the methods used, and suggests areas for further research.



Chapter 2

Likelihood and Theoretical Inference

A full understanding of how the data from a case-control study permit estimation of

the relative risk requires careful description of how cases and controls are sampled

from the population.

2.1 Data and Model

For an unmatched design, the underlying data of interest consist of the times of ad-

mission to hostpital with influenza like illness. Let a, b, c, and d denote the numbers of

admissions with influenza like illness in time (0,T], for vaccinated cases, unvaccinated

cases, vaccinated controls, and unvaccinated controls, respectively.

Let {tj,i, i = 1, ..., Nj, j ∈ (1, 2, 3, 4)} denote the times of admission, where Nj is

the number of admissions of the j’th type in (0,T]. It is assumed that the four ad-

mission processes are independent non-homogeneous Possion processes, with the j’th

process having rate λj(t).

2.2 The relative risks for matched data

We shall start by considering two dichotomous variables, one of which we shall regard

as the vaccination status, the other a case-control variable. Suppose we had obtained,

when cross-tabulating disease status against vaccination status, the following results

based on pooling the data over levels of any covariates.

7
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Table 2.1: Pooled data
Vaccinated Not vaccinated

case a b n1

control c d n0

m1 m0 N

The risk ratio associated with exposure to vaccination status can be approximated

by the odds ratio in the above table.

OR = ad/bc (2.1)

2.3 Matched analysis using McNemar’s test

Where ψ denote the population odds ratio, McNemar’s test is specifically designed to

the hypothesis H0 : ψ = 1. Under this hypothesis of no association, the probabilities

of the two discordant types are equal. With two sided alternative, the null hypothesis

H0 : ψ = 1 may be tested by calculating the exact tail probabilities of the biomial

distribution with probability equal to 1/2. Alternatively, a a continuity corrected

version of the chi-square statistic is based on the standardized value of b. In carrying

out McNemar’s test, the data are arranged as in table 2.

Table 2.2: Data for McNemar’s test
Cases

Controls vaccinated unvaccinated
vaccinated A B
unvaccinated C D

Here B is the number of matched pairs where the Control is vaccinated and the

Case is unvaccinated, and so on. Known as McNemar’s test [1] for the equality

proportions in matched samples, the test statistic is often expressed as

χ2 =
(B − C)2

(B + C)
(2.2)

which has a χ2
1 distribution under the null hypothesis.
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2.4 Poisson Likelihood for Unmatched Data

In this section we develop the likelihood for a Poisson process where the intensity

function is of the Cox proportional hazards form. In the context of section 2.1, we

are developing the likelihood for one of the four processes. The presentation is general

in that each individual may be under observation over a different period of time, and

may experience 0 or more events. The development follows Lawless [9].

Suppose that there are independent observations on m individuals. Individual i

is observed over the time interval (Si,Ti), during which she experiences Ni events at

times ti1 < ... < tiNi
.

Without loss of generality, assume that all of the Si’s equal to 0, and let Λ(T ) =∫ T

0
λ(t)dt denote the integrated intensity function. For example,

If individual i has covariate vector xi, the proportional hazards model assumes

λxi
(t; θ, β) = λ0(t; θ)g(xi; β) (2.3)

where λ0(t; θ) is a baseline intensity function depending on parameter θ, and g(xi; β)

is a postitive-valued function of xi and a vector of parameters β. For the model with

g(x; β) = exp(x′β) (2.4)

and λ0 = λ0(t; θ), the likelihood function [9] is

L(θ, β) =
m∏
i=1

{
ni∏
j=1

λxi
(tij; θ, β)

}
exp {−Λxi

(Ti; θ, β)} (2.5)

which can be decomposed as

L(θ, β) =

{
m∏
i=1

ni∏
j=1

λ0(tij; θ)

Λ0(Ti; θ)

}
×

m∏
i=1

exp[−Λ0(Ti; θ)e
x′
iβ][Λ0(Ti; θ)e

x′
iβ]ni (2.6)

= L1(θ)L2(θ; β) (2.7)

For the SOS study, there is one event per subject so that ni = 1 for i = 1, 2, ...m,

where m is the number of subjects. Therefore the likelihood for this study is

L =
m∏
i=1

λxi
(ti)exp {−Λxi

(Ti)} (2.8)



10

where

Λxi
(Ti) =

∫ Ti

0

λxi
(t)dt (2.9)

In the simplest case of independent homogeneous Poisson processes with rate

functions λ1(t) = λ1 for cases, and λ0(t) = λ0 for controls, with N1 cases and N0

controls, the likelihood is

L(λj) =

Nj∏
i=1

λje
− ∫ T

0 λjdt

giving log likelihood

l = Njlogλj − Tλj

Differenting,

∂l

∂λj

=
Nj

λj

− T = 0

which implies that the MLE is λj =
Nj

T
.

Alternatively, the intensity function can be written as log(λ) = β0 + β1X, where

X is an indicator variable being 1 for cases and 0 for controls. The MLE’s for β0 and

β1, and the information matrix, can be calculated in the usual fashion, with the usual

tests and confidence intervals for β0 and β1 being based on the asymptotic normality

of the MLE. For the point process model with this parameterization, vaccine efficacy

is defined as V E = 1− exp(β1), for which confidence intervals and tests follow from

the asymptotic distribution of β̂1. Covariates are accommodated in a straightforward

manner by inclusion in the intensity function. For example, log(λ) = β0+β1X+β2G,

where G = 1 for males, and G = 0 for females.



11

2.5 Conditional Likelihood for a Matched Design

The developement of the conditional likelihood follows Cox [2]. The original moti-

vation was the comparison of survival functions, and contained the proposal for the

Cox proportional hazards model. Where x = (x1, ..., xp) is a vector of covariates and

β = (β1, ..., βp) a vector of parameters, Cox proposed that the hazard function for a

subject with covariate vector β be

λ(t, x) = λ0(t)exp(x
′β) (2.10)

where λ0(t) is an unspecified baseline hazard function. The multiplicative factor

exp(x′β), gives the risk of failure with covariate x relative to that at x = 0.

In the original context, the time points of interest were general event or failure

times, with the possibility of several events per subject. In this thesis, it is assumed

that each subject experiences exactly one event, an admission to hospital with in-

fluenza like illness.

Cox argued that if λ0(t) is arbitrary, then no information can be contributed about

β by time intervals in which no events occurred because the component λ0(t) might

conceivably be identically zero in such intervals. He therefore argued conditionally

on the set {ti} of instants at which failures occur.

Let R(ti) denote the risk set at observed failure time ti, which consists of those

individuals at risk of failure just prior to ti. In the absence of tied failure times, then

ti, the probability that the failure is on the individual as observed, conditional on the

risk set, is

exp(x′
iβ)/

∑
j∈R(ti)

exp(x′
jβ)

.

The conditional, or partial, likelihood for β is the product of such terms over observed

failure times.

Downton [3] showed how Cox’s conditional likelihood analysis can be applied to

matched pairs. In particular, for the i’th matched pair, the probability that the failure

occurred to the actual individual observed is exp(xβ)/(1 + exp(β)), where x = 1 for

a case, and x = 0 for a control.
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Assume that out of n discordant matched pairs, there are r for which the case

was vaccinated and the control unvaccinated, and n − r for which the control was

vaccinated and the case was unvaccinated. The resulting conditional, or partial, log

likelihood is

l(β) = rβ − nlog(1 + exp(β))

Differentiating the above log likelihood with respect to β

∂l

∂β
= r − neβ

(1 + eβ)
= 0 (2.11)

=⇒ r =
neβ

(1 + eβ)
(2.12)

=⇒ r + reβ = neβ (2.13)

=⇒ r

n− r
= eβ (2.14)

(2.15)

=⇒ β̂ = log
r

n− r
(2.16)

Differentiating a second time,

∂2l(β)

∂β2
= − neβ

(1 + eβ)2
(2.17)

The asymptotic variance is

V AR(β̂) = −E[
∂2l(β)

∂β2
] =

(1 + eβ)2

neβ

for which the plugin estimate equals n
r(n−r)

.

The regularity conditions underlying the asympotic normality of the maximum

likelihood estimator are satisfied in this case, so that

β̂ ∼ AN

(
β,

(1 + eβ)2

neβ

)
(2.18)
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where the notation ”AN” denotes asymptotic normality.

Thus to test the hypothesis β = 0 we have the test statistic

χ2 = z2 =
β̂2

var(β̂)
= (log

r

n− r
)2/

n

r(n− r)
(2.19)

Using application of Taylor’s theorem, it can be shown that for any x > 0, log x ≈
2(x−1

x+1
) leading to the test statistic

χ2 = 4(r − n/2)2/n (2.20)

whose distribution when β = 0 is, asymptotically, χ2 with one degree of freedom.

Letting the number of discordant pairs be n = b+ c and taking r = b as in table

(2.1), then 4(r − n/2)2/n = (b − c)2/(b + c), and we see that the test based on the

conditional likelihood is the same as the McNemar’s test.

2.6 Power and Bias

Three inference procedures have been described - the unconditional and conditional

methods to compare the rates of underlying point processes assuming a Cox pro-

portional hazards model, and McNemar’s test. We are interested in estimating the

bias and mean squared error of the unconditional and conditional estimators, and in

comparing the power of each of the three methods when testing the hypothesis that

VE=0, or equivalently, the hypothesis that relative risk equals 1.

2.6.1 Bias

The bias of an estimator is the difference between this estimator’s expected value and

the true value of the parameter being estimated. That is,

Bias[β̂] = Eβ[β̂]− β (2.21)

An estimator or decision rule with zero bias is called unbiased. Otherwise the

estimator is said to be biased.
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2.6.2 Mean squared error

While bias quantifies the average difference to be expected between an estimator and

an underlying parameter, an estimator based on a finite sample can additionally be

expected to differ from the parameter due to the randomness in the sample.

The MSE is one measure which is used to try to reflect both mean and variability.

It is given by

MSE(β̂) = E
[
(β̂ − β)2

]
(2.22)

and it is well known that MSE(β̂) = V (β̂) + Bias[β̂]2.

2.6.3 Power

The power of a binary hypothesis test is the probability that the test correctly rejects

the null hypothesis H0 when the alternative hypothesis (H1) is true. That is Power

= P (rejectH0 | H1 is true).

If under H0 : β̂ ∼ N
(
β0, σ

2
0

)
, i.e.

β̂ − β0

σ0

∼ N (0, 1) (2.23)

and under H1 : β̂ ∼ N
(
β1, σ

2
1

)
, i.e.

β̂ − β1

σ1

∼ N (0, 1) (2.24)

then when testing H0 : β = 0 vs H1 : β > 0 using the test statistic

T =
β̂ − β0

σ0

(2.25)
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one rejects H0 if T ≥ Z1−α ⇐⇒ β̂ ≥ β0 + Z1−ασ0. This gives power

Power(γ) = PH1(Reject H0) (2.26)

= Pβ1(T ≥ Z1−α) = Pβ1(β̂ ≥ β0 + Z1−ασ0) (2.27)

= Pβ1

(
β̂ − β1

σ1

≥ β0 + Z1−ασ0 − β1

σ1

)
(2.28)

= P

(
Z ≤ (β1 − β0)− Z1−ασ0

σ1

)
(2.29)

= P (Z ≤ Zγ) (2.30)

In the above, α is referred to as the significance level, the power is γ, and Zγ

and Z1−α are quantiles of the standard normal distribution. These calculations as-

sume that the variances σ2
0 and σ2

1 are known, together with β0 and β1, with power

calculation typically carried out prior to data collection.

Where exact formulas are not available, simulation can be used to estimate the

power of a statistical procedure, and also to estimate the bias and the mean squared

error of different estimators. The next chapter reports the results of a simulation

study to estimate the power of the unconditional and conditional models to test

the hypothesis that VE=0, and to estimate the bias and MSE of conditional and

unconditional estimators.



Chapter 3

Simulation

A simulation study was conducted to examine the performance of matched and un-

matched estimation procedures, with the focus being on the power of test in the

binary situation.

The study population being modeled is Canadian adults admitted to hospital for

influenza like illness during flu season. It is assumed that patients are admitted to

hospital according to Poisson processes with rate λ(t|β) [6].

As in Chapter 2, we assume that the intensity function of the admission process

is:

λx(t) = λ0(t)exp(x
′β) (3.1)

To model a seasonal cycle for the influenza season, we add a periodic term, as

log(λx(t)) ∼ β0 + β1x+ β2cos(
2π

T
t) + β3sin(

2π

T
t) (3.2)

where x is the indicator vaccination status, which is either 1 (vaccinated) or 0 (un-

vaccinated). t is the time at which either case or control is admitted to hospital, and

T = 1 year is the period of the influenza cycle.

3.1 Algorithm to simulate from a point process

We now introduce the Lewis and Shedler(1976) algorithm [10] to simulate a point

process. A point process is determined by its conditional intensity function λ(t|Ht),

where Ht is the history of the process on (0,t]. For simulation, we require knowledge

of a finite bound M such that λ(t|Ht) ≤ M for all possible past histories. The process

is to be simulated over the finite interval (0,A), given some initial history H0.

16
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The thinning algorithm is the following [13],

1. Simulate t1, ..., ti according to a stationary Poisson process with rate M (by

simulating successive interval lengths as i.i.d. exponential r.v.s. of mean 1/M),

stopping when ti > A

2. Simulate y1, ..., yi as a set of i.i.d uniform (0,1) random variables.

3. Set K = 1, j = 1

4. If tk > A, terminate, otherwise evaluate λ(tk|Htk).

5. If yk ≤ λ(tk|Htk)/M , set zj = tk, update the history H to H ∪{zj} and advance

j to j + 1

6. Advance k to k + 1 and return to step 4

7. The output consists of the lists {j; z1, ..., zj}

If the intensity function does not depend on the past history, then the process is

a Poisson process, and the Lewis and Shedler algorithm is simple rejection sampling.

3.2 Simulation of data

Unmatched data was generated by simulating times from two independent Poisson

processes for cases and controls. Matched data was generated by simulating case

admission times from a single Poisson process, and randomly allocating successive

observations to be either (case,control) or (control,case) pairs.

All simulations assumed admission times over a period of 3 years, so a sampling

interval of 1095 days, over which the number of admissions is a Poisson random vari-

able, whose mean is the integral of the intensity function from 0 to 1095.

3.2.1 Simulation of matched data

The simulation of matched data was based on the SOS study design, with a three year

interval of interest, a yearly cycle, and one matched control for each simulated case

time. The bound M for the Shedler-Lewis algorithm was e
∑

β, where the parameters
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were fixed as in Table 3.1. In practice, when simulating for a Poisson process, for

which the history is not taken into account, rather than looping according to the

Shedler-Lewis algorithm it is sufficent to generate iid exponential interarrival times

with rate M , stopping when the associated event times exceed A = 1095, and then

using rejection sampling with acceptance probability λ(t|x)/M .

Table 3.1: Regression parameters used to generate matched data

β0 β1 β2 β3

1 0 1 0

This generates times according to a Poisson process with log intensity function

log(λx(t)) ∼ 1+cos(
2π

T
t), so the intensity function has an annual cycle with minimum

and maximum rates of one and exp(2).

After generating the sequence of times t1, t2, . . . , tN , successive observations (t2i−1, t2i)

were randomly permuted, with the first member of the pair taken as a case time, and

the second member as the matched control time.

3.2.2 Simulation of unmatched data

Unmatched data were generated from independent Poisson processes for cases and

controls using the parameter values in table 3.2.

Table 3.2: Regression parameters used to generate unmatched data

Status β0 β1 β2 β3

Case 0 1 1 0
Control 0 0 1 0

The intensity function use for cases was the same as that used for cases with

matched data, while the intensity function for unmatched controls was log(λx(t)) ∼
cos(

2π

T
t), so that the controls intensity function has a yearly period with minimum

and maximum rates exp(−1) and exp(1).
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3.3 Analysis of matched data

Seasonal influenza vaccine is usually effective in reducing the probability of hospital-

ization for influenza, and in the test negative case/control study, vaccine effectiveness

is related to the relative probabilities of vaccination in cases, P(V | case), and controls,

P(V | control).
The null hypothesis of 0 vaccine efficacy implies that the probability of vaccination

is the same in each of the case and control groups, P (V | case) = P (V | control).
Having generated a sequence of matched times as described above, indicators of

vaccination status were generated as a sequence of Bernoulli random variables with

probabilities P (V | case) and P (V | control). In order to reduce the number of

parameters, P (V | case) was fixed at .5 throughout, corresponding to a 50% control

vaccination rate. P (V | control) was then varied, and the power of different statistical

procedures to reject the null hypothesis was assessed.

3.3.1 Matched analysis of matched data

Two matched methods of analysis were evaluated - McNemar’s test and conditional

logistic regression.

The null and alternative hypotheses are:

H0 : P (V | case) = P (V | control) (3.3)

H1 : P (V | case) 
= P (V | control) (3.4)

where P (V | case) = .5 throughout. All hypothesis tests, here and elsewhere, were

carried out at level .05.

For each simulated dataset the p-value for McNemar’s test was evaluated using

the R function “mcnemar.test”.

For conditional logistic regresson the model fit was

logit(P (case)) = β0 + β1X

where P (case) is the probability that the associated admission time is for a case. The

conditional logistic regression analysis was carried out using the R function “clogit”

in the library survival, using the model statement
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case/control ∼ X + strata(pair)

where pair identifies the matched pair, X is the indicator of vaccination status, and

case/control is an indicator identifying case vs control observation. The null hypoth-

esis was rejected if the 95% confidence interval for β1 did not contain 0. The power of

each procedure was estimated as the proportion of the simulation batches for which

the null hypothesis was rejected.

Figure 3.1 shows the simulated power of McNemar’s test. The figure shows that

at P (V | control) = 0.5, the power is close to the nominal level α = .05, while the

power quickly approaches 1 under the alternative, with power exceeding 80% as soon

as the difference between control and vaccination probabilities differs by at least .05.

We conclude that with the length of time interval that we’re looking at and the

associated rate constants, there are sufficient number of observations that we could

detect a difference in vaccination probability of 0.05 with high probability.
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Figure 3.1: The matched power of McNemar’s test

Conditional logistic regression provides another inference procedure for matched

data, and we now study its power in comparison to McNemar’s test.

Conditional logistic regression offers a conceptual advantage over unconditional

logistic regression for case-control studies [1] in that it depends only on the relative risk

parameters of interest and thus allows for construction of exact tests and estimates

using matched data.

In contrast to McNemar’s test, conditional logistic regression has the advantage

that it allows for the inclusion of additional predictor variables. In this chapter no

additional predictor variables are included, while in chapter 4, the performance of

conditional logistic regression will be assessed where there are additional covariates.

The conditional approach is the best restricted to matched case-control designs, or
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to similar situations involving very fine stratification, where its use is in fact essential

in order to avoid biased estimates of relative risk.

Table 3.3 and figure 3.2 show the estimated powers calculated by McNemar’s test

and conditional logistic regression in the neighborhood of the hull hypothesis, using

1000 simulation batches, again fixing P (V | case) = .5. Where the true power is

p, the standard variation of the estimated power is
√

(p(1− p)/1000, which has a

maximum value of about .016 when p = .5.

Table 3.3: Simulated power of McNemar’s test and conditional logistic regression
with P (V | control) from 0.45 to 0.55 and sample size 1000

P (V | control) McNemar’s Conditional Logistic Regression
0.45 85.7% 86.6%
0.46 66.8% 68.0%
0.47 45.1% 47.2%
0.48 22.5% 23.2%
0.49 6.9% 9.9%
0.50 5.1% 4.3%
0.51 9.4% 8.0%
0.52 23.2% 22.8%
0.53 45.9% 45.9%
0.54 67.9% 67.5%
0.55 87.2% 88.4%

These results suggest that the power of conditional logistic regression is very

close to that of McNemar’s test. Conditional logistic regression has the advantage

over McNemar’s test that additional covariates can be included in the model, and

therefore it will be the method of choice for conditional analysis in chapter 4.
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Figure 3.2: The power of McNemar’s test and Conditional logistic regression with
P (V | control) from 0.35 to 0.65



24

3.3.2 Unmatched analysis of matched data

With matched data, it is possible to use an unmatched method of analysis. This

entails ignoring the matching status, and using the case/control status as the outcome

variable. Specifically we fit a generalized additive model using the “gam” procedure

in the R library mgcv, with the probability of a case modeled as

logitP (case) = β0 + β1X + s(X, t)

Here X is the indicator of vaccination, and different smooth functions of time

are allowed for vaccinated and unvaccinated individuals. By including the smooth

functions of time, no knowledge of the underlying periodic structure of the intensity

function is required.

Table 3.4 shows the simulated power to detect a vaccine effect using both matched

and unmatched methods of analysis, in the neighborhood of the null hypothesis.

Where ρ is the true power, the standard deviation of ρ̂ based on 1000 batches is√
(ρ(1− ρ)/1000, which is about .007 when ρ = .05, and .16 when ρ = .5, so there

appears to be little difference between the power of the matched and unmatched

analyses.

Table 3.4: Power of matched analysis and unmatched analysis with P (V | control)
from 0.45 to 0.55 and sample size 1000

P (V | control) Matched Analysis Unmatched Analysis
0.45 85.7% 86.8%
0.46 66.8% 68.4%
0.47 45.1% 45.2%
0.48 22.5% 23.8%
0.49 6.9% 9.2%
0.50 5.1% 5.8%
0.51 9.4% 10.0%
0.52 23.2% 21.8%
0.53 45.9% 47.2%
0.54 67.9% 71.2%
0.55 87.2% 86.3%

In a matched study for which there is a problem in obtaining matched controls,

unmatched cases will be unused in a matched analysis. The results in table 3.4 suggest
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that little power is lost in moving from a matched to an unmatched method of analysis.

This suggests that when unmatched cases are common, it may be advantageous to

use an unmatched analysis, which can use all data, including unmatched cases.

3.4 Analysis of unmatched data

A simulation was carried out to examine estimator properties with fully unmatched

data, in which case matched analysis methods are not appropriate.

In this simulaton we are not generating cases and controls, but rather generating

a two sequences of admission times where the intensity of the admission process

differs for vaccinated and unvaccinated individuals, and also depends smoothly on

time. Where x = 1 denotes vaccinated individuals and x = 0 denotes unvaccinated

individuals, we are simulating times according to the intensity function

log(λx(t)) ∼ β0 + β1x+ β2cos(
2π

T
t) + β3sin(

2π

T
t) (3.5)

The cyclic terms represent a seasonally varying vaccination rate. We used a period

of one year, and assumed observation over a 3 year window. The average number of

admission events in the 3 year period depends on the value of the parameters, and if

β1 > 0, will be higher for vaccinated individuals. The goal is to assess the ability to

estimate β1 in the presence of cyclic variation.

In the simulation, β0 was set at 0, and β1 = 1. For unvaccinated individuals,

(β2, β3) = (1, 0) and for vaccinateds, (β2, β3) = (0, .25). This choice of parameters

entails a 90o phase shift for event times in vaccinated individuals, as compared to

unvaccinated, and also, an amplitude change in the cyclic term. The associated

intensity functions are shown in the top plots of figures 3.3 and 3.4, where the left

hand panels are for unvaccinated, and the right hand panels are for vaccinated. The

ordinate is time in days. Admission times for vaccinated and unvaccinated were

generated independently of one another.

It is straightfoward to write down the likelihood for a Poisson process with param-

eterized intensity function, and maximize to obtain maximum likelihood estimators.
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However, in the SOS study, admission times are recorded to the nearest day, in dis-

crete time, and so we chose to use a discrete time approximation in the simulation.

The event times were transformed to a binary time series Y (t) by discretizing the

time interval [0,3 years] into 100000 equal length subintervals. This discretization is

sufficiently fine that each subinterval contains at most 1 point. The middle panels in

figures 3.3 and 3.4 show a windowed average of the resulting binary time series for

one replicate, and appears to capture the cyclic nature of the intensity function.

To the associated sequence of Bernoulli random variables Y1, Y2, . . . , Y10000 we fit

the binomial generalized additive model

logit(P (Y = 1)) = β0 + β1X + s(X, t)

This model allows for separate smooth functions of time in vaccinateds and unvac-

cinateds, together with a fixed effect of vaccination status. The estimated smooth

functions of time are shown in the lower panels of figures 3.3 and 3.4. These plots are

illustrative only, being based on just two simulated data sets. Figure 3 differs from

figure 4 in that the amplitude parameter of the sinusoidal variation is reduced from

.25 in figure 3.3, to .10 in figure 3.4.

Without having specified the sinusoidal nature of the underlying smooth term,

the estimates from the gam fit appear to capture the underlying smooth structure.
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Figure 3.3: Estimated smooth component of intensity function. Top: true inensity
function. Middle: running mean of binary time series: Bottom: estimated smooth
component of intensity from gam fit. Left panels: (β0, β1, β2, β3) = (0, 1, 1, 0) Right
panels: (β0, β1, β2, β3) = (0, 0, 0, .25).
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Figure 3.4: Estimated smooth component of intensity function. Top: true inensity
function. Middle: running mean of binary time series: Bottom: estimated smooth
component of intensity from gam fit. Left panels: (β0, β1, β2, β3) = (0, 1, 1, 0) Right
panels: (β0, β1, β2, β3) = (0, 0, 0, .10)
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It is of primary interest to assess the ability of the gam fit to provide an accurate

estimate of β1.

By transforming the point process to a binary time series, with discretization

interval sufficiently small that each interval contains at most one point, the resulting

time series is very long, and this can lead to substantial computational cost. The

question arises as to whether a coarser discretization can be used.

It is well known that a Poisson process has independent increments, and that the

number of events in an interval (a,b] will have a Poisson distribution.

We broke the interval (0,3 years] into 100 subintervals of equal length, and counted

the number of events in each subinterval, leading to a collection of 100 Poisson dis-

tributed observations, where the mean μj for the j’th observation is a function of X

and tj. We then fit a Poisson generalized addive model with mean parameterized as

log(μj) = β0 + β1X + s(X, j)

in which real time has been replaced by the discrete index j.

The results of a simulation study are presented in figure 3.5, which shows the

estimated power to rejectH0 : β1 = 0 when testing against the two sided alternative at

level .05. Under the alternative we used values of β1 ranging from 0 (which represents

the null hypothesis) to .2, beyond which the power was essentially 1. The left hand

panel shows the estimated power using 100 simulation batches, and the right hand

panel uses 1000 simulation batches, which provides a more precise power estimate.

The simulation suggests that a Poisson regression model with a nonparametric

smooth term can be an effective method for estimating vaccine effect in the presence

of time variation.
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Figure 3.5: Estimated power to detect β1 > 0. Left hand panel is based on 100
simulation batches, right hand panel used 1000 batches.

95% confidence intervals for β1 are shown in figure 3.6. Each panel shows 100

intervals, each interval being based on 1 simulation batch. The true values of β1 are

shown as vertical lines, and are .05, .1 and .15 respectively, for the left, middle and

right hand panels. The estimated coverage probabilties based on 1000 simulation

batches were 95.1%, 92.8% and 94.3%, indicating that the empirical coverage is close
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to the nominal. The 92.8% coverage appears significantly lower than the nominal .95,

in that it leads to an observed Z statistic of −3.19, which has one sided p-value .0007.

Figure 3.6: 95% confidence intervals for β1, where β1 = .05 (left), .10 (centre) and
.15 (right).



Chapter 4

Method appropriate to the SOS study

The SOS study was designed as a matched study with matching on time, location,

subject age, and including a number of nonmatching predictor variables. The pro-

posed method of analysis was conditional logistic regression. In the first year of the

study, the goal was to match two controls to each case. Based on difficulties in finding

sufficient numbers of matched controls, the matching goal was reduced to 1:1 in year

2, and exprience has been that many cases remain unmatched.

For a matched analysis, any unmatched cases are unused. This represents a possi-

bly inefficient use of data, and the question arises as to whether there might be some

advantage to using an unmatched analysis method, which would include unmatched

cases. This is explored in the present chapter. Data are generated according to a

matched design, after which a random subset of controls are chosen to be missing. For

the matched analysis the cases associated with the missing controls are also deleted

prior to analysis. For unmatched analysis, the missing controls are excluded, but the

associated cases are included in the analysis. We are interested in potential bias that

this might generate, and also whether, for a sufficiently large proportion of missing

controls, the unmatched method might provide a more precise estimate of vaccine

efficacy than the matched method, and/or increased power to detect a nonzero VE.

We explored the effects of including a non-matching covariate, and of adding a time

varying vaccination status. As regards the latter, it is well known that the influenza

vaccination rate is cyclic, and mirrors the quantity of circulating virus to a certain

degree. People generally get vaccinated when there is flu circulating in the commu-

nity. There is concern that if the time variation in vaccination rate differs in cases and

controls, this may reduce the ability to accurately assess the average vaccine efficacy.

Admission times were randomly generated from a Poisson process with rate λ(t),

where log(λ(t)) = 1 + cos(2πt/T ), such that λ(t) has a period of 1 year, with three

years of observation. Where the number of observations was odd, the last observation

32
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was removed. The resulting sequence of times t1, t2, . . . is divided into a collection of

cases and matched controls by randomly permuting the order of each pair t2i−1, t2i,

assigning the first permuted observation as a case, and the second as a control.

Vaccination status was then randomly generated according to probabiltities p1 =

P (V accinated|Case) and p2 = P (V accinated|Control), in which case the odds ratio

for vaccination, which equals the odds ratio for being an influenza case, is OR =

p1(1− p2)/(p2(1− p1)), with vaccine efficacy 1−OR.

In some simulations another variable was considered, referred to here as gender and

generated as Bernoulli variables with probabilities P (Male|Case) and P (Male|Control).

Where V denotes the indicator of vaccination, and Y is the indicator of case

(Y = 1)/ control (Y = 0) status, and gender was included, the unmatched models fit

were Bernoulli generalized additive models of the form

logit(P (Case)) = β0 + β1V + β2Gender + s(t|V )

with s(t|V ) being smooth functions of time, which are allowed to be different for

vaccinated and unvaccinated individuals.

The matched analysis fits a conditional logistic regression model of the form

logit(P (case)) = β0 + β1V + β2Gender

with stratification (matching) by time.

Section 4.1 examines the effect of adding the additional nonmatching covariate

gender, and section 4.2 examines the influence of missing data on both matched and

unmatched analyses. In section 4.4 we explore the effect of time varying vaccinaton

rates for cases P (V |t, Case), and controls P (V |t, Control). In this situation the

vaccine efficacy may be time varying, and an overall estimate, calculated, for example,

by collapsing to a 2×2 table of vaccine vs case/control status will be estimating some

type of time average, at best.

4.1 Adding covariates

There are two kinds of covariates which can be added - those involved in the matching

design, and those not associated with matching. Inclusion of matching variables as
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covariates in a matched analysis is not appropriate, and so we restrict to covariates

not used in matching controls to cases.

We considered the performance of the matched analysis after including one addi-

tional covariate, a Bernoulli variable which we have referred to as gender, with G = 1

representing males, and G = 0 females.

A simulation was carried out fixing P (male|case) = .5, and varying P (male|control) =
.45, .46, . . . , .55. We fixed P (V |control) = .45 and P (V |case) = .50 and studied the

power to detect the vaccine effect in the presence of a Gender effect. The following

table gives the estimated power of the conditional likelihood method based on 1000

simulation batches.

Table 4.1: Estimated power to detect a vaccine effect. P (Male|Case) = .5

P (Male|Control) Power
0.45 84.7%
0.46 87.1%
0.47 86.1%
0.48 86.7%
0.49 85.0%
0.50 84.9%
0.51 85.9%
0.52 86.8%
0.53 85.5%
0.54 87.6%
0.55 88.2%

The results in the table suggest that the power is not dramatically altered by

inclusion of a covariate whose values differ for cases and controls.

In this and other simulation results reported, there is Monte Carlo sampling vari-

ation. In particular, if the true power p is estimated as p̂ - the proportion of N

independent replicates which either reject or do not reject the null hypothesis - then

a 95% confidence interval for p will have half width of about 2
√
p(1− p)/N , which

for, say p = .85 and N = 1000, is about .023. Based on this, there is some weak

evidence that there is a small variation in power as the gender ratios vary between

cases and controls.
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4.2 Comparison of unmatched and matched analyses when the design

was matched

In this section we examine the performance of matched and unmatched analyses for

estimating vaccine efficacy when data are matched. For the unmatched analyses, this

address the question of the effect of breaking the match.

4.2.1 Estimation

As mentioned in chapter 2, the odds ratio is

OR =

P (V accinated|case)
P (NotV accinated|Case)

P (V accinated|Control)
P (NotV accinated|Control)

(4.1)

with V E = 1−OR. Where p1 = P (V |case) and p2 = P (V |control),

eβ1 =

p1
1−p1
p2

1−p2

(4.2)

=⇒

β1 = ln(

p1
1−p1
p2

1−p2

) (4.3)

We carried out a simulation with p1 = 0.5 and p2 = 0.45, and also fixing

P (Male|Case) = .5 and P (Male|Control) = .45. In this case, β1 = 0.2006707.

The estimated values of β1 using matched and unmatched analyses are shown in

figure 4.1 for 100 simulation batches. There appears to be little difference in the

distributions of the estimated values from unmatched and matched analysis, with the

boxplots centred near to the true β1.
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Figure 4.1: Boxplot of 100 simulated values of β̂1 calculated using matched and
unmatched analyses

Where Bias[β̂1] = Eβ1 [β̂1]− β1 and MSE(β̂1) = Eβ1

[
(β̂1 − β1)

2
]
, table 4.2 shows

the estimated bias and MSE of the matched and unmatched estimators, together

with the power to detect a non-zero value of β1 when testing against the two sided

alternative at level .05.

Table 4.2: Estimated bias, MSE and power of matched and unmatched analyses based
on 100 simulation batches

Matched analysis Unmatched analysis

B̂ias 1.36 ∗ 10−3 8.84 ∗ 10−4

M̂SE 4.09 ∗ 10−3 4.04 ∗ 10−3̂Power 97% 96%

The estimated MSE is very close for the two methods, while the bias is about

double for the matched analysis. Figure 4.2 shows the 95% confidence intervals from

the 100 simulation batches. The empirical coverage was 97% for the matched anal-

ysis and 96% for the unmatched analysis. Where the nominal coverage is .95, the
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estimated coverage based on 100 simulation batches would have a standard error of√
.95(.05)/100 ≈ .02, suggesting that the empirical coverage is compatible with the

nominal.

Figure 4.2: 95% confidence intervals for β1 calculated using matched and unmatched
analysis, for 100 simulation batches
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4.3 Missing controls

In the SOS study, controls are matched by time and location to account for the

quantity of circulating virus, and age, to control for the known age effect on the

immune response. In reality, it is often impossible to identify matched controls, and

in order to calculate the VE for the SOS study, the Principal Investigator decided to

use only matched pairs to estimate VE. The resulting estimate was sufficiently small

that the lower end of the 95% CI for VE was negative, compatible with decision in

favour of the null hypothesis H0 : V E = 0. This led to a discussion as to whether

incorporating unmatched cases might increase precision of the VE estimate.

Jewell [8] notes that gains in precision of matched designs are most evident when

the matching factors are strongly associated with the outcome of interest (in the SOS

study hospitalization) and with the relevant exposure variable (here vaccination). He

notes that in cohort studies, breaking the match and pooling yields a valid estimate

of the odds ratio, but that accounting for the matching variables in the analysis

is usually necessary to produce an appropriate assessment of variability. He argues

further that for matched case-control data it is essential to control for matching factors

in an unmatched analysis, in order to obtain a valid estimate of the odds ratio. In

simulations examining the impact of breaking the match, we included the matching

variable time as a predictor in the unmatched analysis, in which case we expect valid

inferences.

A first simulation estimates the power of the matched and unmatched procedures

when unmatched cases are deleted from each analysis. Table 4.3 shows the estimated

power to reject the hypothesisH0 : V E = 0 against the two sided alternative. For each

simulation batch the odds ratio was estimated using both matched and unmatched

analyses, together with 95% confidence interval. The null hypothesis was rejected if

the CI for the odds ratio did not contain 1. The values reported are the proportion

of 1000 simulation batches for which the null hypothesis was rejected.

As expected, estimated power decreases as the proporton of nonmissing data de-

creases. The unmatched analysis appears to have higher power than the matched

analysis even though matched data was being used. This might be due to the matched

analysis using a conditional likelihood, whereas the unmatched analysis uses a full

likelihood, albeit for a generalized linear model incorporating smooth functions of
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Table 4.3: Percentage of missing matched pairs, and estimated power for matched
and unmatched analysis, based on 1000 simulation batches

Percentage of nonmissing Estimated power of Estimated power of
matched pairs unmatched analysis matched analysis

20% 30.2% 28.7%
25% 31.5% 32.1%
30% 38.1% 39.2%
35% 42.0% 41.9%
40% 48.8% 50.1%
45% 54.9% 52.2%
50% 58.3% 57.0%
55% 60.6% 62.3%
60% 67.4% 67.2%
65% 70.0% 69.9%
70% 73.3% 74.4%
75% 75.7% 76.1%
80% 79.0% 78.1%
85% 81.4% 80.8%
90% 83.0% 83.4%
100% 86.6% 85.7%

time. Another explanation might be that there is no need for matching, as the sim-

ulation used constant vaccination rates for cases or controls. On the other hand, the

estimated powers of the two tests are within two standard errors based on the Monte

Carlo sampling variation, indicating no real difference in power.

4.3.1 Missing controls only

Another simulation was carried out in which unmatched cases were discarded for

the matched analysis, but retained for the unmatched analysis. Table 4.4 shows the

estimated power of the unmatched analysis, together with the percentage of non-

missing controls. These values can be compared to the estimates in table 4.3, where

unmatched cases were removed.

Comparison of tables 4.3 and 4.4 shows that there can be a considerable increase in

power of an unmatched analysis, as compared to a matched analysis, when cases are

retained for the unmatched analysis and when there is a moderately large proportion

of missing controls.
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Table 4.4: Estimated power of unmatched analysis based on 1000 simulation batches.

Proportion of Estimated power
nonmissing controls of unmatched analysis

100% 85.1%
90% 83.2%
80% 81.7%
70% 75.7%
60% 73.2%
50% 70.3%

Figure 4.3 illustrates the increased power of the unmatched analysis when un-

matched cases are retained, as opposed to when they are dropped from analysis.

Blue triangles show estimated power when unmatched cases are retained, and green

circles show estimated power when they are deleted.
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Figure 4.3: Estimated power of unmatched analysis vs percentage of missing controls.
Blue - unmatched cases are retained in the analysis. Green - unmatched cases are
deleted

Table 4.5 provides further information in the form of 95% confidence intervals for

the true power. The table reports confidence intervals on the true power based on

1000 batches, when unmatched controls are both deleted and included.
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Table 4.5: 95% confidence intervals on the power of the unmatched analysis based on
fully missing pairs and missing controls

Proportion of CI on power with CI on power with
nonmissing controls unmatched cases removed unmatched cases included

100% (84.5% , 88.7%) (82.9% , 87.3%)
90% (80.7% ,85.3%) (80.9% , 85.5%)
80% (76.5% , 81.5%) (79.3% ,84.1%)
70% (70.6% , 76.0%) (73.0% , 78.4%)
60% (64.5% , 70.3%) (70.5% , 75.9%)
50% (55.2% , 61.4%) (67.5% , 73.1%)

4.4 Time varying vaccination rate

In general, we know the vacination rate is not a constant through the year, with flu

vaccination rate increasing in the flu season. In setting up a simulation with time

varying vaccination rate, we assumed that vaccination rate has period of one year.

We assumed that P1(t) and P2(t), the time varying probabilities of vaccination for

cases and controls, respectively, are given by

logit(P1(t)) ∼ α0c + α1ccos(
2π

T
t) + α2csin(

2π

T
t) (4.4)

and

logit(P2(t)) ∼ α0o + α1ocos(
2π

T
t) + α2osin(

2π

T
t) (4.5)

for which the log odds ratio is

logOR(t) = logitPt(V |C)− logitPt(V |O) (4.6)

or

logOR(t) = (α0c − α0o) + (α1c − α1o)cos(
2π

T
t) + (α2c − α2o)sin(

2π

T
t) (4.7)

Note that unless (α1c = α1o) and (α2c = α2o), the odds ratio will be time varying.
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Figure 4.4 shows the time varying probabilities of vaccination for cases and con-

trols, together with the intensity function λ(t).

Figure 4.4: The probability function and lambda function in terms of times with cases
and controls



44

4.4.1 Estimating β

A small simulation study was carried out using the following six models with time

varying vaccination rate.

Table 4.6: Coefficients of time varying vaccination rate

Model Status α0 α1 α2

1 Case -3.5 2.5 0
Control -3 2.5 0

2 Case -3.5 2.5 0
Control -3.4 2.5 0

3 Case -3.5 0 0
Control -3 0 0

4 Case -3.5 0 0
Control -3.4 0 0

5 Case -3.5 2.5 0
Control -3.5 2.4 0.1

6 Case -3.5 2.5 0
Control -3.4 2.4 0.1

The odds ratios for models 1-4 are constant, because the time varying structure

of the vaccination rate is the same for cases and controls. Models 1 and 2 differ in the

magnitude of the odds ratio. For models 3 and 4, the vaccination rates are constant,

as are the odds ratios, and a comparison of those models with 1 and 2 shows the

effect, if any, of a time varying vaccination rate.

Models 5 and 6 have time varying odds ratio with a small (model 6) or absent

(model 5) constant term in the log odds ratio. These models were not considered

further at this time, but are discussed in Chapter 5.

Figure 4.5 shows the probability of vaccination for the six models for controls

(blue) and cases (black). It is expected that the ability to detect a vaccine effect will

be greatest in those models where the ratio of the vaccination probabilities is largest.
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Figure 4.5: Probability of vaccination for cases (black) and controls (blue) for models
1-6
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An unmatched model was fit, in which the rate of the case/control binary series

is given by

log(λx(t)) ∼ β0 + β1x+ s(t|x) (4.8)

where x is the indicator of vaccination status, and the goal was to examine the

behaviour of the estimate of β1 using matched and unmatched methods.

In the log odds ratio calculations above, the sine and cosine terms cancel for

models 1 through 4. The difference of intercept terms α0c − α0o remains, and that

is the true β1 which is being estimated, so that for model 1 and model 3, β1 = −0.5

and for model 2 and 4, β1 = −0.1. Models 5 and 6, which have different time varying

vaccination rates for cases and controls, so a model with constant value of β1 is not

appropriate.

For each of 100 simulation batches, β1 was estimated using both matched and

unmatched analyses for models 1-4 . The boxplots of the estimated values β̂1 are

shown in figure 4.6 All β̂1 in those 8 boxplots are very close to the true β1. The

median of the matched estimator is closer to β1 than the median of the unmatched

estimator for model 1, while for models 2 through 4, the distribution of the estimates

from the matched and unmatched analyses are similar.

The bias and MSE of the estimates was also calculated for models I-IV, for both

matched and unmatched analyses.

4.4.2 Bias and MSE with no missing data

The results shown in table 4.7 are for the case that there are no unmatched cases.

The estimated bias is greater for the unmatched analysis than for matched analysis

for these 4 models, while the estimated MSE’s are similar. For the matched analysis,

the bias in model 3 is twice bigger than the bias in model 1; the bias in model 4 is

also twice bigger than the bias in model 2; the MSE in model 3 is much bigger than

the MSE in model 1; the same as the MSE in model 4 is much bigger than the MSE

in model 2. For the unmatched analysis, the bias in model 3 is the same as the bias

in model 1; the bias in model 4 is the same as the bias in model 2 as well. The MSE
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in model 3 is much bigger than the MSE in model 1; the same as the MSE in model

4 is much bigger than the MSE in model 2.
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Figure 4.6: The boxplot of estimated β1 using matched and unmatched analysis in
model 1 through model 4
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Table 4.7: Estimated Bias and MSE of matched and unmatched analysis with time
varying vaccinated rate-models with 100% of matching data

Models Matched analysis Unmatched analysis
Model 1 Bias −1.1 ∗ 10−2 3.87 ∗ 10−2

MSE 9.03 ∗ 10−3 8.65 ∗ 10−3

Model 2 Bias 2.13 ∗ 10−3 1.04 ∗ 10−2

MSE 6.90 ∗ 10−3 5.87 ∗ 10−3

Model 3 Bias −2.55 ∗ 10−2 −3.24 ∗ 10−2

MSE 2.77 ∗ 10−2 2.94 ∗ 10−2

Model 4 Bias −4.67 ∗ 10−2 −4.96 ∗ 10−2

MSE 2.08 ∗ 10−1 2.16 ∗ 10−1

4.4.3 Bias and MSE with missing data

Figure 4.7 shows the estimated bias and MSE of β̂1 for matched and unmatched

methods, as a function of the proportion of missing data. For matched analysis, the

proportion of matched data runs from 100% to 50%. For unmatched analysis, this

is the proportion of controls used, while both matched and unmatched cases are in-

cluded.

There is more bias in the unmatched analysis than in the matched analysis in the

first 2 models. In model 3 and 4, there is more bias in the unmatched analysis with

complete and with 90% of matched data. For matched analysis, the bias in model 3

is bigger than the bias in model 1; the bias in model 4 is also bigger than the bias in

model 2.

The MSE started getting bigger in matched analysis with the percentage of missing

data increasing in model 1 to model 3. The MSE in model 4 is much bigger than the

MSE in model 2. The MSE using matched analysis is the same as the MSE using

unmatched analysis in model 4.

So the vaccination function with time varying which are model 1 and model 2 are

closer than real models. The bias from model 1 and model 2 are smaller than model

3 and 4. As long as keeping 80% of matched pairs in the models, we can get a good

estimate.
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Figure 4.7: Estimated bias as a function of proportion of nonmissing controls, for
both matched and unmatched analyses, based on 100 simulation batches
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Figure 4.8: Estimated MSE as a function of proportion of nonmissing controls, for
both matched and unmatched analyses, based on 100 simulation batches



Chapter 5

Conclusions and Further Work

In this thesis, we conducted a simulation study to investigate the performance of

matched and unmatched methods of analysis for estimation of vaccine efficacy with

a case negative case control design. A number of issues were addessed, in particular,

the influence of unmatched controls, which reduces power, and the consequences

of breaking the match, whereby unmatched cases can be included with unmatched

inference methods.

In the case that there are no variables measured in addition to vaccine status and

case/control status, we showed that a hypothesis test based on the partial likelihood

for Cox’s proportional hazards model is equivalent to McNemar’s test, which is the

usual approach to testing for paired binary observations.

We then carried out a simulation study comparing unconditional and conditional

likelihood based methods. Data were simulated from separate non-homogeneous Pois-

son processes for cases and controls, including additional predictor variables in some

simulations. The results of the simulation suggest that there is little reduction in

power or increase in bias or MSE in moving from a matched to an unmatched method

of analysis, even when data were generated in a matched fashion, and that there is a

potential gain in power for unmatched procedures when the proportion of unmatched

cases is moderately large.

In the simulations carried out, additional predictor variables were not confounded

with vaccination status in determining the outcome, case vs control. Further research

will address the performance of the methods when one or more additional predictor

variables are confounded with vaccine status such that they change the probability

of case/control status.

In addition, futher work will be carried out to modify the algorithm used for data

simulation. In the present thesis, matched data were generated by simulating from one

Poisson process, and then randomly selecting one observation from each contiguous

52
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pair as a case, with the other set as the time matched control. A better approach

would be to simulate from independent processes for vaccinated cases, vaccinated

controls, unvaccinated cases and unvaccinated controls, and then process these data

to select matched pairs.
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