PROBABILISTIC SEISMIC SLOPE STABILITY DESIGN

Jesse Burgess

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia
April 2016

(©Copyright by Jesse Burgess, 2016



TABLE OF CONTENTS

LISTOFTABLES . . . . . . . . . . . ... .. ... ce .V
LISTOFFIGURES . . . . . . . . . . ... .. ... ...V
ABSTRACT . . . . . . . . o oo o . .ovil
LIST OF ABBREVIATIONS AND SYMBOLSUSED . . . . . . . .. . . viil
ACKNOWLEDGEMENTS . . . . . . . . .. ... ... ... .. XV
CHAPTER 1. INTRODUCTION . . . . . . . ... ... .. .... 1
1.1 GENERAL . . . . . . . . . . . o o v v v v ve e A |
1.1.1  Thesis Objective . . . . . . . . . . v v v v v v o 3
1.2 DETERMINISTIC SLOPE DESIGN METHODOLOGIES . . . . . 3
1.2.1 Limit Equilibrium Approaches . . . . . . . . . . . . 4
1.2.2 Log-Spiral Failure Surfaces . . . . . . . . . . . . .. 5
1.2.3 Chart Solutions . . . . . . . . . . . . . o oo 6

1.2.4  Finite Element Modeling of Slopes . . . . . . . . . . .
1.3 PROBABILISTIC SLOPE STABILITY ANALYSIS . . . . . . . . ... 8
13.1 RandomFields . . . . . . . . . . . . . .. . ... ... 8
1.3.2 Random Field Modelingof Soils . . . . . . . . . . .. o0 9
1.3.3 Single Random Variable Approach . . . . . . . . . .. |
1.3.4 Random Finite Element Method . . . . . . . . . . . . .. 12
14 SEISMICDESIGNOFSLOPES . . . . . . . . . . . .. ... .. 14
1.4.1 Dynamic Analysis . . . . . . . . . . . . . . . . .. .. 14
1.4.2 Pseudo-Static Analysis . . . . . . . . . . . . . . .. .. 15
1.4.2.1  Pseudo-Static Stability Charts . . . . . . . . . . .. 16
1.4.2.2  Limitations of the Pseudo-Static Approach . . . . . N

il



1.4.3 Newmark’sMethod . . . . . . . . . . . . . . ..

1.43.1  Expansion Upon Newmark’s Method . . . . . . . .

1.4.3.2  Probabilistic Seismic Hazard Analysis . . . . . . .

1.5 LIQUEFACTION . . . . . . . . .« v v v v v v v v v v
1.5.1 Empirical/In-situ Approach . . . . . . . . . . . . ..

1.5.1.1 SPTApproach . . . . . . . . . . . . . .. ..

1.5.1.2 CPT Approach . . . . . . . . . . . . . . ...

1.5.1.3 VgApproach . . . . . . . . . . . . .. . ...

1.5.14 BPTApproach . . . . . . . . . . . « .« ...

1.5.1.5 Correction Factors . . . . . . . . . . . . . ..

1.5.1.6  Additional Tests . . . . . . . . . . . . . ...

1.5.2 Probabilistic Approaches . . . . . . . . . . . . . ..

1.5.2.1  Logistic Regression and Bayesian Mapping Approaches . .
1.5.2.2  The Performance Based Model . . . . . . . . . .
1.6 ORGANIZATIONOFTHESIS . . . . . . . . . . .. . ...

CHAPTER 2. DETERMINISTIC SEISMIC ANALYSIS OF c — ¢
SLOPES . . . . . . . . . . e

21 GENERAL . . . . . . . . .. 000 s o
2.2 VALIDATIONOFRSLOPE2A . . . . . . . . . . . ... ...
2.3 ALTERNATIVE REPRESENTATION OF DATA . . . . . . . ..
24 DISCUSSION . . . . . . . . . oo 0o e e e

CHAPTER 3. PROBABILISTIC SEISMIC ANALYSIS OF ¢ — ¢
SLOPES . . . . . . . . . . e,

31 GENERAL . . . . . . . . . .« o v v v i
32 RESULTS . . . . . . . o o v v v v i e e e e e e e
3.2.1  Effectsof \,k,andv . . . . . . . . . . . ... ...
322  Effectsof@ . . . . . . . . . . .. ...

19
19
20
22
23
24
24
26
27
27
27
28
29
30
31

33
33
36
38
49

40
40
42
42
48



33 DISCUSSION . . . . . . . . . . o v e e

CHAPTER 4.

PROPOSED DESIGN PROCEDURE . . . . . . .. ..

4.1 EXISTING SLOPE DESIGN APPROACHES . . . . . . . . ..

4.2 RELIABILITY-BASEDSLOPEDESIGN . . . . . . . . . . ..

43 COMPARISON TO THE SRV APPROACH . . . . . . . . . ..

44 EVALUATING THE EXTENTOF FAILURE . . . . . . . . . ..

45 DISCUSSION . . . . . . . . . oo o 0 o vvh e

CHAPTER 5.
REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C

CONCLUSIONS . . . . . . . ... ... ...

v

49
51
51
54
56
57
59
60
62
67
72
81



LIST OF TABLES

Table 2.1 Input parameters used in the validation of RSLOPE2A
Table 2.2 Comparison of k. from Figure 2.1 with previous studies . . . .

Table 3.1 Input parameters used in the parametricstudy . . . . . . . .

Table 4.1 Input parameters for an example slope subjected to seismic loading . .

Table 4.2 Probabilities of slope failure for the example slope with v = 0.3
whenf =02Handf —oo. . . . . . . . . . . ... ...

34

37

41

57



LIST OF FIGURES

Figure 1.1 Sample diagram used in slope analysis . . . . . . . . . . .
Figure 1.2 The static slope stability problem . . . . . . . . . . . ..

Figure 1.3 Sample random field realizations for slopes with correlation length
a)0=02H,andb)0=5H . . . . . . . . . . .. ... .. ...

Figure 1.4 Mesh used in slope stability analysis . . . . . . . . . . ..
Figure 2.1 Critical seismic coefficients fora 3 =45° slope . . . . . . .

Figure 2.2 Critical seismic coefficients for slopes with n, =20° . . . . .

Figure 3.1 Probabilistic pseudo-static slope stability design chart for 1, =
20°,k=0,0 =0.2H. Solid lines plot F,. \; =4/10 . . . . . . . . .

Figure 3.2 Probabilistic pseudo-static slope stability design chart for 1, =
20°,k=0.1g,0 =0.2H. Solid lines plot F,. \; =4/10 . . . . . . . .

Figure 3.3 Probabilistic pseudo-static slope stability design chart for p, =
20°,k =0.2g,6 =0.2H. Solid lines plot F,,. \;=¢/10 . . . . . . . .

Figure 3.4 Probabilistic pseudo-static slope stability design chart for 1, =
20°,k =0.3g,0 =0.2H. Solid lines plot F,. \;=¢/10 . . . . . . . .

Figure 3.5 Influence of correlation length on the probability of slope failure
foro=20°,k=029,A=04,v=01 . . . . . ... ... ....

Figure 4.1 Evaluation of the seismic slope stability of the existing slope . .

Figure 4.2 Evaluation of seismic slope stability of alternative slope angles for
the example problem forv=03 . . . . . . . . . .. ... ...

Figure 4.3 Reconsideration of Figure 4.2 for the ) — cocase . . . . . .

vi

11

13

36

38

43

44

45

46

48

54

55

56



ABSTRACT

Deterministic slope stability design charts for cohesive-frictional (c— @) soils have been used
by geotechnical engineers to examine the effects of earthquakes on slopes by identifying
the critical seismic loading which brings the slope to a state of limit equilibrium. However,
seismic slope stability design charts have yet to be extended to probabilistic analysis. In this
study, the seismic stability of slopes, modeled using a two-dimensional spatially random
¢ — ¢ soil, is studied using finite element analysis. Probabilistic analyses of seismically
loaded slopes are performed by Monte Carlo simulations using the Random Finite Element
Method (RFEM). A series of new slope stability design charts are provided that consider
the influence of the spatial variability of soil for seismically loaded slopes with ;15 = 20°.
The charts may be used in the safe design of slopes subject to seismic loading, providing

estimates of the probability of slope failure without requiring computer simulations.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Earthen slopes and embankments are commonly occurring geotechnical structures, be they
naturally formed, cut, or constructed. Slopes can often be found near or as part of a larger
geotechnical system, such as roadways, bridges, and dams. As such, earthen slopes are
routinely analyzed for their stability so as to prevent collapse, and potential damage, from
occurring. Traditionally, evaluation of slopes, such as the one shown in Figure 1.1, was
simplified by determining the average shear strength of the soils through sampling, and
consulting existing design chart for the slopes’ particular geometries. For situations based
upon static loading, where only the gravitational load is considered, such design charts
have been extensively researched for a broad range of geometries and soil conditions both
deterministically and, to a lesser extent, probabilistically. It is often the case, however, that
the serviceability of a slope is in part reliant upon its response to extreme events such as
carthquakes, which may cause significant slope deformation due to a rapid reduction in the

strength of the soil mass.



Figure 1.1 Sample diagram used in slope analysis

Despite difficulties in predicting the dynamic response of slopes due to earthquakes, analysis
of slope stability subject to seismic loading has been given considerable attention (see, e.g.
Mostyn and Small, 1987). Geotechnical researchers have developed methodologies to
overcome computational limitations and generate rough estimates of slope stability through
application of static-forcing which is equivalent to the dynamic load. Use of such methods
has allowed for the generation of several sets of deterministic design charts (e.g. Loukidis
et al., 2003) which roughly estimate the maximum amount of seismic excitation a slope
can withstand before failing. For simple slopes, use of such charts allows geotechnical
engineers a means to quickly estimate the seismic stability of a slope without having to
determine anything more than the soil strength parameters and slope geometries already
used in static slope analysis. However, the design charts currently used in seismic slope
analysis lack the means to account for the spatial variability of soils, which may result in
weakened portions of soil being overlooked. As such, the risk of slope failure from those

weakened sections excited by seismic motion may be masked by deterministic evaluations.



1.1.1 Thesis Objective

The objective of this work is the development of a design procedure for slopes subject to
seismic loading. To provide a procedure that quantifies the margin of safety of a slope, the
analysis within this work seeks to link the traditional factor of safety approaches common
in seismic analysis with probabilities of failure which capture the influence of variability
in soil strength parameters. By incorporating the results of this work into seismic design
charts, styled similarly to existing charts commonly used in practice, a procedure may be
developed to assist geotechnical engineers in the safe design of slopes when earthquake

loading is considered.

1.2 DETERMINISTIC SLOPE DESIGN METHODOLOGIES

Static slope stability analysis has been extensively developed in the past, with several
alternative approaches being described in geotechnical textbooks such as Coduto et al.
(2011). A typical slope problem, such as the one displayed in Figure 1.2, relies upon a
variety of slope parameters. Of particular importance in slope stability analyses are the
cohesion, ¢, and the internal friction angle, ¢, which jointly determine the shear strength
of soils. Other key parameters identified in Figure 1.2 are the height of the slope, X, the
depth factor, D, the slope angle, 3, and the unit weight of soil, v. Numerous evaluation
procedures use the parameters indicated in Figure 1.2 to determine the static stability of the
slope. Typically, Young’s modulus, £, and Poisson’s ratio, v, are not of key importance in
the evaluation of slope stability (although they are used to evaluate deformation), and are

often left as nominal values (s and Lane, 1999).



Input Parameters

¢ ¢ v

Figure 1.2 The static slope stability problem

1.2.1 Limit Equilibrium Approaches

Many approaches to the static slope stability problem are based on the concept of limit
equilibrium, which seeks to determine if the soil mass will slide (fail) under gravitational
loading along a planar or circular failure surface. The determination of equilibrium is
assessed through the static factor of safety, F’, defined as the ratio of stress caused by
gravitational loading upon a slope to the stress at which the slope mass will fail. The factor

of safety is evaluated using the expression (Coduto et al., 2011):

F=2 (1.1)

Te
where s is the actual shear strength determined from the Mohr-Coulomb failure criterion for
clasto-plastic materials, and 7, is the equilibrium shear stress (the required shear strength
to maintain equilibrium) determined from the shear force acting along the failure surface.
The factor of safety is assumed to be constant along the entire failure surface (Coduto et
al., 2011). Theoretically, a value of F' > 1 indicates that the slope remains stable, however

practical design criteria tend to require a higher value, typically ¥ > 1.5 to account for



uncertainty. Lower values, for example 1.2 < F' < 1.3, may be acceptable in non-essential
and temporary slope analyses (Coduto et al., 2011; NZ Transport Agency, 2013). Duncan
(1996) summarized a large number of limit equilibrium methodologies, such as the ordinary
method of slices (Fellenius, 1936), Bishop’s Modified method (Bishop 1955), and Spencer’s
method (Spencer, 1967), which account for varying shear strength along the failure surface

by discretizing the failure surface into smaller components, or ‘slices’.

1.2.2 Log-Spiral Failure Surfaces

Another approach to the evaluation of slope stability is through a kinematical limit analysis.
Chen (1975) described the most efficient kinematical approach to slope stability problems
as one which follows a rotational failure mode, and possesses a log-spiral failure surface

defined by:

r = roexp ((w — wp) tan ¢)) (1.2)

where 7 is the radius of the log-spiral at the angle w, and ry and wy are the initial values
of these two parameters. For a static stability number, IV, defined as N = (¢/vH)(1/F),
the critical height of the slope (the maximum height a slope, with a particular combination
of slope angle and soil strength parameters, can be before failure occurs, i.e. F' = 1) is

determined by the expression:

_ 2rotan@(fy — fo — f3 = fa)
N (exp[2(wy — wp) tan @] — 1)

(1.3)

where wy; 1s the angle of the log-spiral failure surface at the critical height, and the functions
f1 to f, are dependent upon wy, wyr, and B, and are defined by Chen (1975). Alternatively,
if H, c and ~y are known, the formula may be solved for the factor of safety, F', for c-¢ soils

as follows:



2(wy — wp)tan @

7= a1.4)
In[1+2Zrytan¢(f; — f» — f5 — )]
which, for purely cohesive soils (¢ = 0), reduces to:
1 —_
F c(wy — wp) (1.5)

T YH(fi— fam 5 — [
wnere To =79 an To 1S deemed to be a radi actor whic epen S upon ang €S O
h ! /H d A/H' d dtob dial £ hich d d 1 f

rotation, wy, Wy, and the slope angle 5.

This approach to slope stability analysis generally assumes homogeneous soil masses and
no influence from pore water pressure, yielding results which are roughly equivalent to
Bishop’s simplified method. Interested readers are directed to the work of Chen (1975)
for the basis of this approach, and the work of Michalowski (1995) which compares this
approach to limit equilibrium methodologies based upon slices and translational failure

mechanisms.

1.2.3 Chart Solutions

Stability charts are traditional geotechnical design tools used to estimate the factor of safety
for simple slopes (homogeneous slopes with geometry such as illustrated in Figure 1.2).
Development of stability design charts for slopes relies upon fundamental assumptions
regarding the soil strength parameters and the failure surface. For example, Taylor (1937)
developed stability charts for purely cohesive (¢ = 0) slopes with a circular failure surface;
Cousins (1978) produced stability charts for homogeneous cohesive-frictional (c-¢) slopes
with a critical failure surface (the failure surface with which possesses the lowest F' value)
that must pass through the toe of the slope; Michalowski (2002) used a kinematic equilibrium
approach with a log-spiral failure mechanism; Baker (2003) extended Taylor’s (1937) charts
to include ¢; and Steward et al. (2011) used limit equilibrium and circular slip analysis to

produce a single-iteration chart for c-¢ soils.



1.2.4 Finite Element Modeling of Slopes

A major advantage of finite element analysis of slopes is that it does not require assumptions
regarding the shape or location of the failure surface. The finite element method discretizes
the slope into a number of finite elements called a mesh. Smith and Griffiths (1988, 1998),
describe a finite element program which models a slope, consisting of an elasto-plastic
soil (Mohr-Coulomb material), subjected to gravity loading. The program utilizes eight-
node quadrilateral elements to discretize a two-dimensional, planar slope such as the one
displayed in Figure 1.2. Factor of safety values of the slope are determined using an
incremental loop based upon the shear strength reduction technique, which defines F' as the
factor by which both ¢ and tan ¢ must be reduced in order to cause failure to occur in the
clastic-plastic analysis. Failure occurs when the numerical solution is unable to converge
within a set amount of iterations (Griffiths and Lane, 1999). The reduced, or ‘factored’,

soil strength parameters that just lead to slope failure are:

¢r = tan (tan ¢/ F) (1.6a)

crp=c/F (1.6d)

The program developed by Smith and Griffiths (1988, 1998) was extended by the work of
Griffiths and Lane (1999) to model more general slope/embankment geometries and soil
properties (such as pore water pressure). Within their work, Griffiths and Lane (1999)
showed the ability of the finite element method to examine complex problems which do
not adhere to the fundamental assumptions used in many conventional limit equilibrium
approaches, such as slopes containing secondary layers or thin weak layers, and partially
submerged embankments. Furthermore, Smith and Griffiths” (1988, 1998) program has
been combined with random field modeling to examine the stability of slopes in terms of
the probability of failure, as discussed in Griffiths and Fenton (2000, 2004) and Fenton and
Griffiths (2008).



1.3 PROBABILISTIC SLOPE STABILITY ANALYSIS

1.3.1 Random Fields

‘When examining the geotechnical failure mechanisms of slopes, realistic spatial variability
in soil properties may be accounted for using random fields. Random fields represent
collections of interdependent random variables, each associated with a spatial location,
t. For example, a random field, denoted by X (¢), would consist of the random variables
X)) = X1, X(@) = X,, ..., X(t,) = X, at positions 2y, ¢, ..., t,, where n is the number
of random variables used to represent the field. The values of the random field exhibit both
variability and dependence between pairs of random variables, X (t,) and X (¢;), separated
by distance 7 = ¢, — t;. The set of random variables X, X5, ..., X,, will, in general, have
an n-dimensional probability density function, which is usually simplified (as is the case in
this research) by assuming that X (¢) is a stationary, isotropic, Gaussian process. Interested
readers are directed to VanMarcke (1984), and Fenton and Griffiths (2008) for more details.
The resulting random field is fully described by its mean, standard deviation, and correlation
structure, p(7). To simplify calculations, this study defines p(7) as the Markov correlation

function:

-2
p(T) = exp (%) (1.7)

where 6, known as the correlation length, represents the separation distance within which

two points will be significantly correlated, and is defined to be:

0= /oo o(7)dT = 2/00 p(r)dr (1.8)
—00 0



For a two-dimensional, isotropic process, p(7) becomes:

= _ 2|Tz|)2 <2|Ty|)2 _ <_2|T|> 1.9
p(T) =exp \/( )t 0, exp|{—5 (1.9)

where the subscripts ‘x’ and ‘y’ on 7 and 6 denote their respective directional components,

and the correlation structure is assumed to be isotropic so that § = 0, = 6,, and || =

\/T%+T?,2,.

1.3.2 Random Field Modeling of Soils

As noted previously, the two most important soil strength parameters in slope stability
analysis are the cohesion, ¢, and the internal friction angle, ¢. Both c and tan ¢ are assumed
to be lognormally distributed with means . and pyy, 4, and standard deviations o, and
Oian ¢» T€SPectively. Lognormal fields may be derived from Gaussian fields using a simple
transformation. If X (%) is a Gaussian field, the lognormally distributed random field Y (¢)
is obtained through:

Y(t) = eX® (1.10)

which possesses a correlation structure, defined by (Fenton and Griffiths, 2008) as:

exp {o%px(1)} -1
explok}—1

oy (1) = (1.11)

For both soil strength parameters, the associated lognormal parameters py, , and oy, 5, Where
‘Inz’ denotes a lognormally distributed parameter (such as c or tan @), are derived from z,,

and o, through the transformations:

ol . =1In(1 +v2) (1.12)



1
Pine =In(pg) — 50—1211:1: (1.13)

where v, 1s the coefficient of variation of the parameter x, defined by

v, = —= (1.14)

Phoon and Kulhawy (1999) present ranges of the coefficient of variation for the soil strength
parameters ¢, ¢, and 7. The recommended range of values for cohesion was given to be
0.1 < v, < 0.5, and for internal friction angle was 0.1 < vy < 0.2. The coefficient of
variation for the unit weight of soil, v, found to be v, < 0.1, is typically neglected (i.c.

v., = 0) in probabilistic studies, as is done here.

These soil properties also possess associated correlation lengths, O, and O 6. Low
values of @ indicate rapid variability within the soil mass, while large values of 6 will result
in gradual variation, as illustrated in Figure 1.3. To further simplify the random field model,
it may be assumed that the correlation lengths of the two soil parameters are equal so that
Onc = Ontang = O - In practice the log-space correlation length, 0y, ;, is not very different
from its real-space counterpart 0, (see Appendix A). As such the two measures can be used

interchangeably, for most purposes, due in part to the inherent uncertainty in the measures.

10



Figure 1.3 Sample random field realizations for slopes with correlation length
a)0=0.2H,andb)0 =5H

1.3.3 Single Random Variable Approach

Many geotechnical engineers have been slow to adopt the use of random fields in their
probabilistic studies of slopes. A common alternative makes use of the Single Random
Variable (SRV) approach (e.g. Harr, 1987; Duncan, 2000; Javankhoshdel and Bathurst,
2014), which is equivalent to setting 0 to oo in a random field. An infinite correlation length
yields a homogeneous field, meaning that the soil strength parameters are constant through-
out the soil mass, but random from realization to realization. Probabilistic analysis then
typically consists of a combination of limit-equilibrium circular slip surface analysis (e.g.
Bishop’s simplified method), and Monte Carlo simulations. The soil strength parameters

vary randomly from one realization of the homogeneous soil to the next, and the probability
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of failure is determined by the ratio of failed realizations to the total number of realizations
performed. Javankhoshdel and Bathurst (2014) conducted an extensive study using the
SRV approach to extend the simplified deterministic slope stability design charts described
in section 1.2.3 into the realm of probabilistic analysis. In their study, Javankhoshdel and
Bathurst (2014) examined a wide range of slope angles (3 = 10° to 90°), various internal
friction angles (ug = 20°, 25°, 30°, 35°, 40°, and 45°), and several combinations of
coefficients of variation for ¢ and ¢ based upon recommendations by Phoon and Kulhawy
(1999) to produce probabilistic static slope design charts. The traditional factor of safety,
found through deterministic analysis, was shown to be an imperfect measure of the margin
of safety of slopes, as some slopes with /' >> 1 still exhibited considerable probabilities of
failure. This behaviour is the result of the factor of safety being evaluated at the mean values
of the random variables associated with ¢ and ¢, thereby neglecting the spatial variability
of the soil observered from one realization to the next. As homogeneous slope masses are
unlikely to occur in real-world slope problems, the SRV approach provides geotechnical
engineers with a conservative estimate of slope stability failure probabilities. To account
for realistic spatial variability in the soil strength parameters, the correlation length should
be set to a non-infinite value, as is the case in the Random Finite Element Method (RFEM),

discussed next.

1.3.4 Random Finite Element Method

Application of random fields to the slope stability problem has been implemented and
extensively investigated by Griffiths and Fenton (2000, 2004). These authors developed
a computer program, RSLOPE2D, which combines the eight-nodal finite element model
of Smith and Griffiths (1988, 1998), with random field theory (e.g., VanMarcke, 1984) to
realistically account for spatial variability in the soil strength parameters and to allow the

failure mechanism to naturally seek out the weakest failure path. Two random fields, one

12



for each of cohesion and internal friction angle, are mapped to a finite-element mesh used
to discretize a slope, such as the one illustrated in Figure 1.4, so that each element within
the mesh has assoicated random variables for c and ¢. The size of the elements the random
variables are associated with is accounted for by means of the local average subdivision

(LAS) algorithm developed by Fenton and VanMarcke (1990).

Figure 1.4 Mesh used in slope stability analysis

The random variables are correlated with one another according to the spatial correlation
length 0, in accordance with equation (1.9), as discussed previously. From Figure 1.3,
it may be observed that the homogeneous portions of the soil mass continue to grow as
0 — oo, and, as such, the SRV approach may be considered to be a special case of the
RFEM. In Griffiths and Fenton (2000), the influence of the correlation length was studied
in depth using RFEM and compared to the SRV approach for cohesive soils. It was found
that for 0 < v, < 0.5 the probability of slope failure increased as the ratio 0y, ./ H increased,
indicating that the SRV approach is more conservative than the RFEM approach for this

range. Considering the design recommendations of Phoon and Kulhawy (1999), the spatial
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variability typically used in practice will always indicate that the SRV approach is more

conservative. However, Griffiths and Fenton (2000), also noted that there are instances
in which RFEM is more conservative than SRV when F' > 1.4 for static slopes. Where
the interest is in the effects of realistic spatial-variability of soil strength parameters and

non-linear failure mechanisms, the RFEM should be considered for analysis.

1.4 SEISMIC DESIGN OF SLOPES

14.1 Dynamic Analysis

Evaluation of the response of earthen slopes to earthquakes is a dynamic geotechnical
problem in which both the input loading caused by the seismic event and the deformation
behavior of the soil mass change over time. Peak acceleration- and velocity-time curves
are often used to represent seismic motion acting upon a slope, and require the effective
stress-strain behavior of the soil material to undergo constant re-evaluation as a function of
time. Rigorous evaluation of the response of slopes to seismic events requires a numerical
solution derived from the boundary value problem defined by the slope geometry, and
typically assuming elasto-plastic materials. Such an approach is capable of accounting
for a variety of soil conditions, such as weakening soil strength due to cyclic loading,
liquefaction potential, and the effects of groundwater, allowing dynamic modeling of the
seismic slope problem to examine any failure mechanism the slope may undergo. However,
as noted by Baker et al. (2006), dynamic approaches are limited by the need for reliable
characterization of the site material, including spatial variability, and the inability to predict
the exact ground motion (acceleration, velocity) that will occur. Application of techniques
such as the RFEM may allow for the simulation of soil strength parameters in the soil

mass through the use of random variables for each finite element, however, the addition



of random ground motion acting upon each element over time and consideration of each
possible failure mechanism (sliding, liquefaction, etc.) creates a complex, computationally
demanding problem. For example, since the seismic input is random, a dynamic model
would need to simulate a variety of ground motion inputs (based upon statistical estimates of
motion for the particular region) for each realization of the random soil properties, thereby
compounding the computational demand. With regards to the complexity of the dynamic
approach, many design procedures, specifications and guidelines (USACE, 1989; Eurocode
8, 1993; IITK-GSDMA, 2005; NZ Transport, 2013; and others) use a simpler pseudo-
static (sometimes referred to as “equivalent-static’) approach to assess most conventional
slopes. Only those slopes deemed important, inherently complex, or those which fail
under the pseudo-static approach, would undergo further dynamic analysis. To keep the
computational requirements reasonable, this study will adopt only a pseudo-static approach.
Readers interested in fully dynamic seismic slope analysis are referred to the summary of

dynamic methods by Mostyn and Small (1987) as a starting point.

1.4.2 Pseudo-static Analysis

The pseudo-static analysis is a simple way to account for seismic effects upon a slope.
The pseudo-static approach applies a constant horizontal acceleration (known as the pseudo
static acceleration; vertical motion is not considered in this study) to a mass to account for
earthquake effects (Mostyn and Small, 1987). The horizontal acceleration is considered to
continue for a period of time necessary to result in slope failure, if it is going to fail, and
thus acts in a direction which destabilizes the slope as a static force (Coduto et al., 2011).
Computations proceed similar to typical limit equilibrium analysis with the added influence
of this horizontal force, which lowers the factor of safety as the seismic loading increases
(Coduto et al., 2011). For ¢ — ¢ soils, Sarma (1973) describes the pseudo-static factor of

safety as:
_(0g —ug)tang’
= —

F, (1.15)
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where oy is the total normal stress, 74 is the shear stress, u, is the dynamic pore water
pressure, all of which are induced under seismic loading, and ¢’ is the effective friction

angle of the soil. Sarma (1973) further defines o4, 74, and ug4 to be as follows:

A7
0gq= %[cos B — ksin(G — a)] (1.16)
V"/
Tg = 7[cos B+ ksin(6 — )] (1.17)
Ug = Ug + Au (1.18)

where 117 denotes the weight of the sliding block, a is the base area of the block, 3
represents the inclination angle of the slope, measured from the horizontal, o represents the
inclination of the pseudo-static force acting upon the slope, measured from the horizontal,
k is the seismic coefficient, an acceleration measured as a fraction of gravity, g, and ug and
Awu represent the static and induced pore water pressures, respectively. This work will only

consider the case of a purely horizontal pseudo-static force (o =0°).

1.4.2.1 Pseudo-Static Stability Charts

For seismic slope design, pseudo-static stability charts have been developed in numerous
studies (Leschinsky and San, 1994; Michalowski 2002, Loukidis et al. 2003, Baker et
al. 2006) to aid in the determination of whether a homogeneous slope will fail under a
certain seismic acceleration. The charts vary in what parameters are included. For instance,
Leschinsky and San (1994) provide charts for a slope angles, 3, (expressed as height to
length ratios) that plot the pseudo-static stability number, V,,, against a factored friction
angle, ¢,,, as a function of the seismic coefficient, k, and a stability factor, A. N,,, @,,, and

A are defined by:

Np=—=— (1.19)
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P— (@> (1.20)
F
C
N s (1.21)

where Fj is the target pseudo-static factor of safety, c is the cohesion of the soil, y is the
unit weight of the soil mass, H is the height of the slope, and ¢ is the internal friction angle
of the soil. Similarly, Michalowski (2002) plots F; / tan ¢ against \ for particular k values;
Loukidis et al. (2003) plot A against k, for a particular slope angle, with separate curves for
¢ values that correspond to the critical condition that F; = 1 for both finite element analysis
and log-spiral failure surfaces; Baker et al. (2006) plot k. against [V, with F; = 1 for a set

of slope angles, with curves for ¢ values.

1.4.2.2 Limitations of the Pseudo-Static Approach

While the application of a static force to represent the horizontal seismic loading during
an carthquake allows for a simplification of the model (as opposed to a fully dynamic
model), the simplification provides only an approximation of the response of a real earth
slope (Coduto et al.,, 2011). The pseudo-static approach fails to account for the cyclic
nature of the seismic motion (in that real-world seismic acceleration first occurs in one
direction, then the other), thereby neglecting the overall dynamic response of the slope to
the ground motion (Loukidis et al., 2003). Furthermore, the wavelengths of seismic waves
are generally smaller than the dimension (in the direction of the crest) of most slopes,
resulting in portions of the slope acting opposite each other (Coduto et al., 2011). Due to
these differences from reality, the pseudo-static analysis should not be based upon historical
peak ground accelerations (often greater than 0.7g) since it is likely that use of recorded
peak ground acceleration would always indicate failure (Coduto et al., 2011). The pseudo-

static approach should instead be based upon observed behavior, resulting in the analysis
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being akin to an empirical index, and commonly one which is overly conservative (Coduto
et al., 2011). It should also be noted that the pseudo-static approach is not accurate for
saturated soils with high liquefaction potential, or soils which rapidly lose strength when
loaded cyclically (Loukidis et al., 2003). Furthermore, since the psecudo-static approach is
an approximation of the seismic effects, combinations of other simplified concepts (such as
use of the distribution of pore water pressure coefficient, ) with the seismic coefficient, &,
may not appropriately capture the true safety margin of slopes (Michalowski, 2002). Most
pseudo-static stability charts are based upon circular failure surfaces, log-spiral failure
surfaces, or set failure path restrictions which are not usually representative of actual slope
failures. Nevertheless, the pseudo-static approach is still commonly used as a means to
determine whether failure is likely to occur. In practice, pseudo-static analysis is typically
reserved for use when a slope has minimal liquefaction potential and a static factor of safety
below 1.7; Hynes-Griffin and Franklin (1984) note that slopes with a static factor of safety in
excess of 1.7 have never been observed to fail from seismic loading. Existing pseudo-static
slope stability design charts allow for the assessment of a slope having a particular slope
angle over a range of friction angles. However it may be more effective for design purposes
to have stability charts which allow for a direct selection of 3 by comparing a range of
slope angles for known values of the soil strength parameters, ¢ and ¢. While pseudo-static
stability charts provide a means for designers to obtain reasonable estimates of whether a
slope may fail during a seismic event, they do not express the extent of the damage should
the critical acceleration be exceeded. When the interest is in identifying the displacement
that will occur, rather than whether it will occur or not, the method developed by Newmark

(1965), discussed next, is used.
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1.4.3 Newmark’s Method

Newmark (1965) developed an approach to predict permanent seismic slope displacements
during an earthquake by building upon the pseudo-static approach. Newmark first estimated
a critical seismic coefficient, k. (the ratio of the critical acceleration causing slope failure,
and the acceleration due to gravity), which corresponds to when equation (1.15) is equal
to unity (F, = 1). Next, an acceleration versus time plot for the design earthquake is
considered and the time intervals when the earthquake acceleration surpasses the yield
acceleration, Gy;eqq = k.g, are noted. Landslide displacement is then estimated by double

integrating (with respect to time) the acceleration curve within the noted intervals.

While Newmark’s method is an extension of pseudo-static analysis, it is still a highly sim-
plified approach, especially when considering the sensitivity of the method to the selected
critical acceleration. Bray (2007) suggested that Newmark’s model is able to capture the
part of the seismically induced permanent displacement caused by deviatoric shear deforma-
tion, but fails to account for ground motion due to volumetric compression. The simplified
nature of Newmark’s approach comes in part from the few ground-motion records available
at the time of Newmark’s publication (Jibson, 2007). Nonetheless, Newmark’s Method is
considered a landmark within the field of seismic slope modeling, and Newmarkian models

have been developed extensively to build upon it (Bray, 2007).

1.4.3.1 Expansion Upon Newmark ‘s Method

Many researchers expanded upon Newmark’s method (1965) when data and computers
became more accessible; Sarma (1973) developed a method to determine the critical seismic
cocfficient, k., directly; Makdisi and Seed (1978) developed a modification of Newmark’s
Method which was found to be better suited for deep-seated failure surfaces (Rathje and
Saygili, 2011); and Chugh (1983) used the Method of Slices to develop a dynamic model

based upon Newmark’s Method. The above are but a few among many that expanded upon
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Newmark’s work. A suggested starting point for further information regarding Newmarkian

models is the work of Bray (2007) which reviews Newmark’s method and other approaches.

1.4.3.2  Probabilistic Seismic Hazard Analysis

One example of probabilistic expansion of Newmark’s method is the work of Rathje and
Saygili (2008, 2009, and 2011). Rathje and Saygili (2008) describe a methodology for
producing displacement hazard curves. These curves provide the annual rate of exceedance,
A4, of a sliding-block displacement, d, exceeding given displacement levels, x, for a given
ground motion parameter (such as peak ground acceleration, PGA, or peak ground velocity,
PGV), using a probabilistic framework. There are two approaches in the development
of their hazard curves, a scalar approach based upon a single ground motion parameter
(typically PGA) and a vector approach based upon two or more ground motion parameters

(typically PGA and PGV). The scalar approach was defined as:
Ay(z) = /P[d > z|GM = z] * MRD(2) * dz (1.22)
and the vector approach was defined as:
Ay() = //P[d > z|GM1 = 2,GM2 = y] * MRDgy 1 gann(2,y) * dz v dy ~ (1.23)

where GM represents a placeholder variable for the ground motion variables PGA and/or
PGV, and z and y are given levels of ground motion. The first term in the integrals
represents the probability of the displacement exceeding a particular hazard level, z, given
certain ground motion levels, y and z; the second term in the integrals, MRD, is the mean

rate density of the ground motion, which is analogous to a probability density function.

The pseudo-probabilistic approach in Rathje and Saygili (2011) is directly adapted from
their 2009 paper. Rathje and Saygili (2009) modified the equations from their 2008 paper

to define a predictive model for displacement based upon probabilistic seismic hazard
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analysis (PSHA) derived ground motion levels. The PSHA-derived ground motion predicts

the displacement by using the critical acceleration, k., of the slope based upon Newmarkian
sliding block analysis. The modified model for both scalar and vector approaches and the

equations for their associated standard deviations are, for the scalar case:

Ind = i ke Y’ ke \’ ke ) In(PGA)+a;(M,, —6)
na=a;+ay PGA +as3 PGA +ay4 PGA +as PGA +ag In +a,(M,,
(1.24a)

k ke )
O;ng = ag + Qg (ﬁ) + a9 (ﬁ) (124b)

and for the vector case:

Ind =a,+ ke + e 2+ e 3+ e 4+ In(PGA)+a, In(PGV)
Ne=a0%%{pGa )" \PGa ) ™ \PGAa ) "% \pGa ) T %
(1.250)

O;mg = ag + Qo (P](€}_6A> (1.250)
where d is the sliding-block displacement of the soil mass, measured in centimeters; &,
and PGA are defined in units of gravity (g); M, is moment magnitude; PGV is in cm/s,
and a; to a,q are regression coefficients provided in Rathje and Saygili (2011). Rathje and
Saygili (2011) go on to state that the vector approach is preferable to the scalar approach
due its better ability to include frequency content, as well as having a significantly smaller
standard deviation. As with equations (1.24) and (1.25), the fully probabilistic approach of
Rathje and Saygili (2011) is defined for both a scalar and a vector case. For the scalar case
the rate of exceedance is defined by:

Ag(@) =Y Y " Pld > 2| PGA;, M,,] + PM,, | PGA;] + P[PG A;] (1.260)

? J

and for the vector case:

Ag(@) =Y Y Pld > | PGA;, PGV;] x P[PGA;, |PGV;] (1.26b)
ik
where the double summations approximate numerical integration with respect to moment

magnitude and/or the ground motion parameters PGA and PGV.
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1.5 LIQUEFACTION

Liquefaction refers to the transformation of granular material from a solid to liquefied
state due to an increase in pore-water pressure and reduced effective strength. During
a seismic event, increased pore-water pressure is induced by cyclic shear deformations
generated by ground motion, resulting in compaction of the soil framework. Increased
pore-water pressure can be especially dangerous if it results in flow failure occurring
beneath a foundation or sloping ground, the likelihood of which is dependent upon the
behavior of the soil material. In loose materials (such as silts and sands), softening is
accompanied by a loss of shear strength and a tendency to contract. Contraction occurs
when the volume of fluid-filled spaces between soil particles is reduced as a result of the soil
particles moving closer together. The combination of such contractive behaviour with shear
strength loss may lead to large shear deformations, or potential flow failure under moderate
to high shear stresses (Youd et al., 2001). Comparatively, denser materials undergoing
liquefaction experience short-term softening and increased cyclic shear strain, but have a
tendency to dilate. Dilation refers to an increase in the volume of the space between soil
particles as the particles move further apart. Dilation of dense soil particles during shear

inhibits major strength loss and large ground deformations (Youd et al., 2001).

Dramatic and destructive earthquake-induced slides are typically the result of liquefaction
(Coduto, 2011). Considering that dense, dilative soils allow for the application of the
analysis techniques described in section 1.4, whereas loose, contractive soils result in the
additional complexities of liquefaction, a common approach in seismic analysis is to first
assess the liquefaction potential of the soil. Various in-situ tests are available to estimate the
liquefaction potential of slopes. These in-situ techniques have been continuously updated
(Youd et al., 2001; Idriss and Boulanger, 2006) while probabilistic methods for assessing
liquefaction likelihood are under development (Cetin et al., 2004; Juang et al., 2002;
Boulanger and Idriss, 2012; Franke and Wright, 2013).



1.5.1 Empirical/In-situ Approach

Seed and Idriss (1971) developed a “simple procedure” which defines the factor of safety

against liquefaction, F7,, as:

CRR; 5
Fr = (W) MSF (1.27)
where C'SR is the cyclic stress ratio, which expresses the seismic demand upon a soil layer;
CRR; 5 is the cyclic resistance ratio that defines the capacity of a soil to resist liquefaction
(the critical C'S R at which liquefaction will occur) at an earthquake magnitude of 7.5; and
M SF is called the magnitude scaling factor for the evaluation of F7, at magnitudes other
than 7.5. The C'SR at a particular depth, z4, is calculated from:
amax O-'UO

CSR=0.65 (T) (z) Ta (128)
where oy, 1S the peak horizontal acceleration at the ground surface generated by the
earthquake; g is the acceleration due to gravity; o, and o, are total and effective vertical

over-burden stresses at depth, z4, respectively; and ry = stress reduction coefficient which

defines the flexibility of the soil profile at depth, z,:

~ 1.000 — 0.41132,%3 +0.04052z; + 0.0017532,"
" 1.000 — 0.417724%% +0.0572924 — 0.006205241 +0.0012102,2

Td (1.29)

MSF values are available from multiple sources, as outlined in Youd et al. (2001), and
are constantly being updated. C'RR; s values are calculated based upon the in-situ index
tests used to estimate the soil characteristics of a site. The most common tests used to
estimate liquefaction potential are the standard penetration test (SPT) and cone penetration
test (CPT), although liquefaction potential is also being assessed using shear wave velocity
(Vs) and the Becker penetration test (BPT) (Youd et al., 2001; Idriss and Boulanger, 2006).
Due to uncertainty in the in-situ tests, a variety of correction factors may need to be applied
and additional tests may need to be run to be certain of results (Youd et al., 2001). The in-

situ tests and their correction factors are constantly being improved (Idriss and Boulanger,
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2006; Bray and Sancio, 2006). In the following subsections, only the calculation of CRR; 5
for each of the above noted in-situ tests will be discussed; the use and performance of the

in-situ tests in the field is not described.

1.5.1.1 SPT Approach

The standard penetration index-test uses the value (/V;)gy, described as a normalization
of the in-situ SPT test blow count for an overburden stress of 100 kPa and a hammer
efficiency of 60%. Youd et al. (2001) suggested that C RR; 5 could be defined by the
following relationship assuming clean sands (the sample consists of sand with little to no
clay content) for (V})g < 30:

1 (N1)eo 50

CRRrs = 37— yw ¥ 135 10 (N + 45~ 200

(1.30)

In the case where (N)go > 30 the soil composition is thought to consist of clean granular
soils, which are considered to be too dense to liquefy, and are classified as non-liquefiable.
The clean sands approximation is based upon the fines content (f,) within the soil, such
that (N1)e0cs = b1 + b2(N1)eo » Where b, and b, vary based upon f.. Additional correction
factors exist to account for several equipment conditions and sampling methods as noted

by Youd et al (2001).

1.5.1.2 CPT Approach

The cone penetration index-test uses the value (g.;v).s, the clean sands cone penetration tip
resistance normalized to approximately 100 kPa (1 atm), to assess C RR; 5. Similar to the

SPT test, the CPT assessment of C RR; 5 is broken up into ranges: For (g.;x)es < 50 :

_ (QCIN)cs
CRR, 5= 0.833[ 1000 } +0.05 (1.31)
For 50 < (gyn)es < 160 :
CRR,, - 93] @]’ 0 08 (1.32)
7.3 1000
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The clean-sand cone penetration resistance, (g.;xv)es, 1S derived from the dimensionless
normalized cone penetration resistance by applying a coefficient K, which is a correction
factor for grain characteristics, such that (g.;n)cs = Kcqe1v- To solve for the value of the
clean-sand cone penetration resistance we must first evaluate the dimensionless, normalized

cone penetration resistance, ¢y, from:

qeiN = OQ(qc/Pa) (133)

where ¢, is the field test result for the cone penetration tip resistance at depth, z4; P, is
one unit of atmospheric pressure (1 atm) in the same units as o,,; and Cg is a normalizing
factor defined by:

Cq = (Pa/oyo)" (1.34)

where the value of n’ is 1 for clays, 0.5 for sands and between 0.5 and 1 (typically 0.7) for

silts. The CPT test also relies upon a soil behaviour type index, /., defined by:
I, = [(3.47 — log @)* + (1.22 +log f,)*1%3 (1.35)

where ) represents the normalized cone resistance and uses the same value n’ as Cp:

Q = [(ge = Tvo)/ PullPa /T (1.36)

and f, represents the normalized friction ratio:

fr = [fs/((Jc - Uvo)] : 100% (137)

with f; being the sleeve resistance recorded in the field CPT results.
Youd et al. (2001) procedurally evaluates the soil behavior type index, I, as follows:
1) Assume that the soil acts as a clay (n’ = 1) and compute the values of () and f,.

2) Evaluate I.. If I, > 2.6 then the soil is considered to be too clay-ish to liquefy and the
analysis of liquefaction potential is complete. If, however, I, < 2.6 then proceed to the

next step.
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3) Re-evaluate () assuming the soil behaves as a sand (n’ = 0.5) and evaluate a new ..
If the new value of I, < 2.6, then the soil is now considered to be non-plastic and
granular, and analysis of liquefaction potential is complete. In the case where the new

I, > 2.6, the soil sample is very likely a silt, and analysis proceeds to the next step.
4) Re-evaluate () with a value of n' = 0.7 and evaluate the corresponding I, value.

For all soils with a value of I, > 2.4, itis recommended to consult other soil type determining
tests for a second opinion. Once the value of I, has been found, the coefficient K, may be

cvaluated to relate (¢g.;v)cs and g.; v based upon the following relationship:
For I, < 1.64, K.=1.0

ForI, > 1.64, K, =-0.403I}+5.581I> —21.631%+33.751. — 17.88

1.5.1.3 Vg Approach

The shear-wave velocity approach is a newer test for liquefaction potential and less widely
used than the SPT and CPT tests. One factor of note is that both Vg and CRR; 5 are
influenced by the void ratio, effective confining stress (stress induced by the weight of the
overlying material), stress history, and geological age of a site (Youd et al., 2001). However,
Vs readings have an advantage in their capability of capturing information at sites where
the SPT and CPT tests are unable to penetrate the soil profile. Evaluation of C RR, 5 using

the shear-wave velocity approach is based upon the relationship:

CRRys =002 (Y5 128 ! ! (1.38)
T 100 TV -Vs, V3 '
where Vg, is the overburden-stress corrected shear wave velocity defined by:
P\ %
Vs, =Vs (7) (1.39)

and Vg, 1s the limiting upper value of for liquefaction occurrence, assumed linearly depen-
dent on fines content (200 at f, = 35%, 215 at f, < 5%). At an earthquake magnitude of
7.5 and Vg, = 100, this approach is found to be consistent with the CPT and SPT curves for

evaluating CRR; 5.
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1.5.1.4 BPT Approach

Despite the widespread use of the SPT and CPT, both have limitations. The Becker
penetration test (BPT) was designed to surmount the limitation caused by large diameter soil
and rock particles (Youd et al. 2001). According to the discussion within the liquefaction
workshops presented by Youd et al. (2001), evaluation of liquefaction through the BPT
approach was based upon the blow count to drive a casing 300 mm into the ground, Np¢,
and then related to an equivalent (/\;)g, value based upon a figure presented in Youd et al.
(2001). The equivalent (V) value is then evaluated for the SPT index test as per equation
(1.30).

1.5.1.5 Correction Factors

Numerous correction factors exist in the evaluation of C RR; 5 based upon the test used,
the methodology of the test, the equipment features (diameter, rod length, etc.), and the
soil profiles. Correction factors are constantly undergoing development as more efficient
sampling and analyzing techniques become available. As such, it is recommended that
the reader seek out the most recently developed correction factors. Youd et al. (2001)
lists numerous researchers who have worked upon these factors, and the work of Idriss and
Boulanger (2006) and Boulanger and Idriss (2012) express one such set for the SPT index

tests.

1.5.1.6 Additional Tests

As noted previously, there are times when evaluating a soil that the behavior is unclear,
such as identifying the liquefaction potential of a silty soil. In such cases additional tests
should be consulted (Youd et al., 2001). Traditionally, this consultation was done through
examination of the soil properties via the so-called “Chinese criteria” presented by Seed

and Idriss (1982), which was derived from the work of Wang (1979). Although the Chinese
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criteria and its derivatives were heavily employed in liquefaction analysis, recent studies
(Bray and Sancio, 2006; Idriss and Boulanger, 2006) have strongly urged for discontinued
use of the Chinese criteria, instead preferring to identify liquefaction potential based upon
the plasticity index (the difference in moisture/water content between when a soil acts like a
liquid and when a soil acts as a plastic). Bray and Sancio (2006) performed a re-evaluation
of the work of Wang (1979) and came to the following conclusions based upon the water
content, w,, liquid limit (the moisture content at which a soil behaves as a liquid), L L, and

plasticity index, PI:
- A soil may be susceptible to liquefaction if w./LL > 0.85 and PI < 12

- Soils that do not meet these conditions but have PI < 18 and w./LL > 0.8 may be

moderately susceptible to liquefaction; further laboratory tests should be performed

- Soils with PI > 18 will not liquefy at low effective stresses. However, structures
founded on these soils may undergo significant deformations if the dynamic strength

of the soil is exceeded by cyclic loading during a seismic event

1.5.2 Probabilistic Approaches

Probabilistic approaches to liquefaction analysis are a newer development. Juang et al.
(2002) developed a probabilistic analysis using both logistic regression and Bayesian map-
ping. Logistic regression is an established statistical method used in the analysis of datasets,
whereas Bayesian mapping applies Bayes’ Theorem to evaluate the probability of an event
occurring. Later, the work of Cetin et al. (2004) and Boulanger and Idriss (2012) led to the
development of a performance based model for assessing liquefaction potential, outlined in
GeoCongress 2013 by Franke and Wright (2013). The following sections briefly outline the
work of Juang et al. (2002) and the research that led to Franke and Wright’s performance

based model.



1.5.2.1 Logistic Regression and Bayesian Mapping Approaches

Juang et al. (2002) developed two approaches for the generation of probabilistic liquefaction
assessment curves. The developed curves are akin to those of the empirical approaches
(plotting CSR against the relevant index statistic), are applicable to the SPT, CPT, and Vg
approaches, and rely on the clean sands approximation. The logistic regression curve for

the SPT approach is defined by:

In[Pr,/(1 = Pr)] =10.1129 — 0.2572 - (N1)e0,cs + 3-4825 - In(CSR; 5) (1.40)

furthermore the CPT curve is defined by:
In[Py, /(1 — Pp)] =12.4259 — 0.0498 - (g.15)es +3.9887 - In(CSR; 5) (1.41)
and the shear-wave velocity curve is defined by:
In[Pr,/(1 — Pp)] =14.8967 — 0.0611 - Vg, s +2.6418 - In(CSR; 5) (1.42)

where P, is the probability of liquefaction. Based upon this approach, selecting a given Py,

value allows for the generation of a curve.

Alternatively, the Bayesian mapping approach solves for P;, as a function of the determin-

istic factor of safety in the form:
Py =1/[1 +(F/B)™] (1.43)

where F'is the static deterministic factor of safety, and B; and B, are regression coefficients.
The regression coefficients in equation (1.43) vary depending upon the in-situ test being
examined; for the SPT approach, B, = 0.8 and B, = 3.5; for the CPT approach, B; = 1.0
and B, = 3.3; for the shear-wave approach, B; = 0.73 and B, = 3.4. Comparison of the
Bayesian mapping to logistic regression performed by Juang et al. (2002) showed that
the Bayesian mapping curves are more conservative than the logistic regression curves. A
qualitative table which classifies the probability of liquefaction based upon the likelihood

of the event triggering is presented by Juang et al. (2002).
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1.5.2.2 The Performance Based Model

The performance based model is largely based upon an expansion of the SPT test mentioned
in the previous section. Cetin et al. (2004) defined the probability of liquefaction, P, as:
P =

'
((Nl)m-(l+0.004- £e)—13.32In(CS Reg)—29.53-In(AM)—3.70- (%ﬂ) +0.05- fc+16.85>

® -2.70

(1.44)

where C'S R, is the uncorrected cyclic stress ratio (correction occurs in equation 1.44); J/

is the earthquake magnitude; and f, is the fines content.

Cetin et al. (2004) also calculated the CRR value for a given probability of liquefaction,
P;, and earthquake magnitude, )/, by inverting equation (1.44):
CRR =

((N1)50~(1+0.004~ fe)—29.53-In(11)—3.70- (%) +0.05- fc+16.85+2.7-<1>—1(PL))

13.32 (1.45)

exp

However, the accuracy of the model developed by Cetin et al. (2004) has come under
question after inconsistencies were noticed in its source database. Boulanger and Idriss
(2012), were among those who noticed the discrepancies and proposed the following

alternative expressions for equations (1.44) and (1.45):

PL:

2 3 4
(]V )60,c.9 (N) ,c8 (N) ,c8 (JV) ,CS
Pooes o | Mges | [Oes |y | O | 2,67 — In(C'SRy5)
d| - (1.46)
9I(CRR;.5)

CRRys =

exp ((N 1)60,cs N [(Nl )60,c3] 2 _ [(Nl)so,cs] 3 N [(N 1)60,cs

4
- _ . H—1
14.1 126 23.6 25.4 ] 2.67 + OmcRrR;s - P (PL)>

(1.47)

where o1,cRg, ;) is the standard deviation in the error of the natural logarithm of C RR; s.
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Franke and Wright (2013) incorporated the Boulanger and Idriss (2012) approach into

a performance based model to solve for the probability that the factor of safety against

liquefaction, F’,, does not exceed a set level, F;, according to:

P[Fy < F}]=

2 3 4
(N1)60,cs (N1)60,cs (N1)60,c.9 (‘\71)60,cs
2.1 +[ 26 ] - [ 3.6 ] +[ 5.4 ] ~2.67—In((F7)-CSRy.5)

o (1.48)

_0’6

where o, is the model standard deviation with a value of 0.28 if taking account of parameter

measurement/estimation uncertainty (i.e. for (Ny)gocs), and 0.13 if not.

1.6 ORGANIZATION OF THESIS

This thesis concentrates on the influence of the spatial variability of soil on slopes subjected
to seismic loading, and develops a reliability-based design against seismic slope failure.
As such, the approach to seismic slope analysis taken in this study shall seek to extend
the pseudo-static methodology for examining seismic loading into probabilistic analysis
using the RFEM approach to modeling spatial variability within soils. The following
chapters shall investigate the relationship between the deterministic factor of safety and
the probability of failure, in a manner similar to the approach taken by Javankhoshdel
and Bathurst (2014). The intention of such an analysis is to create useful tools which

geotechnical engineers may use as a reference for the safe evaluation and design of slopes.

In Chapter 2, the addition of an equivalent horizontal force to the RSLOPE2D program
created by Griffiths and Fenton (2000, 2004) is used to model seismic behavior, as per
the pseudo-static approach. The accuracy of the newly introduced seismic component is
validated through comparison with existing studies. Results are compiled into deterministic

seismic slope stability design charts which plot stability factor, A, against the critical seismic



coefficient, k., which is a representation of the seismic load as a fraction of gravity, g.
Chapter 3 introduces random field modeling to the seismic slope problem. A parametric
study is performed through Monte Carlo simulation which focuses on the influence of spatial
variability in the soil strength parameters. Results are compiled into probabilistic seismic
slope stability design charts that plot the slope angle, 3, against both the pseudo-static factor

of safety, F§, and the probability of failure, p;.

Chapter 4 illustrates how the stability charts developed in Chapters 2 and 3 may be used
within a reliability-based design framework. An example slope subjected to seismic loading
1s assessed both deterministically and probabilistically and the resulting pseudo-static factor
of safety and probability of failure are compared to each other. The extent of failure, should

it occur, is discussed.

Conclusions and suggested future work are presented in Chapter 5.
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CHAPTER 2

DETERMINISTIC SEISMIC ANALYSIS OF ¢ - ¢ SLOPES

2.1 GENERAL

Based upon the pseudo-static analysis method, the RSLOPE2D model developed by Grif-
fiths and Fenton (2000, 2004) was modified to include a single constant, destabilizing
(acting in the direction of slope failure) horizontal force representative of seismic accelera-
tion, according to equations (1.16) and (1.17). Also required was the addition of the seismic
coefficient, k, as an input parameter in the RSLOPE2D model. The final program, now

modified to handle seismic accelerations for a 2-D slope mass, was renamed RSLOPE2A.

To begin examining the seismic stability of slopes with spatial variability, it was important
to first confirm that RSLOPE2A was capable of capturing the effects of seismic loading.
Validation of RSLOPE2A was performed by conducting a rigorous series of deterministic
analyses and comparing to existing studies (Leschinsky and San, 1994; Michalowski, 2002;
Loukidis et al., 2003; Baker et al., 2006). The parameters used in the validation study are

shown in Table 2.1.
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Table 2.1 Input parameters used in the validation of RSLOPE2A

Parameters Values Considered
Slope angle, 3 10° =85 °
Mean friction angle, /i, 10°,15°,20°,25°,30°,35°,40°
Mean cohesion, y, determined by A
Stability factor, A 0—1
Seismic coefficient, k& 0—1(g’s)
Poisson’s ratio, v 0.3
Young’s Modulus, F 10° kN/m?
Unit weight, 18 kN/m3
Height, I7 5m
Depth factor, D 2

The parameters selected in Table 2.1 correspond to those used in other in stability charts

appearing in the literature, both static and pseudo-static. For example:

1) slope angle, 3, values were those used in Leschinsky and San (1994) and Javankhoshdel
and Bathurst (2014),

2) mean friction angle, 14, values for the deterministic analysis were those used in Loukidis

et al. (2003) and Baker ct al. (2006),

3) mean cohesion, ., values were based upon equation (1.21), which solved for p, gives:
pe = AyH tan i 2.1)

As noted by Loukidis et al. (2003), A normalizes the data based upon the ratio p, /v H.
Since v and H are held constant, the value of v, used, for any combination of 1, and A,
is derived solely from equation (2.1). This sometimes resulted in the use of unrealistic

cohesion values, which may be ignored due to normalization,

4) the range of stability factor, A, values was based upon the works of Loukidis et al.
(2003) and Javankhoshdel and Bathurst (2014), where the case of A > 1 only occurred

for the pgy = 10° case,
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5) selection of the range of seismic coefficient values considered in this work agreed with

Loukidis et al. (2003),

6) the constant soil parameters, Poisson’s ratio, v, and Young’s Modulus, F, are not
commonly used in slope stability analyses. The values shown in Table 2.1 are the

nominal values suggested by Griffiths and Lane (1999),

7) the unit weight of soil, v, is set to be the value used in the design examples of Baker et
al. (2006). Michalowski (2002) and Javankhoshdel and Bathurst (2014) used a value
of 4 = 17 kN/m® and Loukidis et al. (2003) used a value of v = 20 kN/m?, so the value

selected in Table 2.1 is in reasonable agreement with all of these authors,

8) the depth factor, D, is in agreement with that used by Leschinsky and San (1994),
Michalowski (2002), and Javankhoshdel and Bathurst (2014),

9) the pore water pressure, ug, is neglected in this work to simplify the analysis.

The validation of RSLOPE2A proceeded through the following process for each combina-

tion of parameters:

1) A deterministic analysis, starting from the static case (k = 0) and progressing to
increasing seismic activity, was performed by increasing the seismic coefficient, &,
from O to 1g, in 0.01¢g steps. k increased until the deterministic analysis indicated

F; =1 using equation (1.15), at which point the slope was assumed to have failed.

2) The k value corresponding to the F; = 1 condition was recorded as the critical seismic
coefficient, k., for that particular combination of stability number, ), friction angle, ¢,
and slope angle, 5. At this value of k, the slope is in a state of limit equilibrium brought

on by the pseudo-static seismic loading.

3) Values of the critical seismic coefficient were plotted against the stability factor values,

for comparison with previous studies
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2.2 VALIDATION OF RSLOPE2A

Critical seismic coefficients (k.’s) obtained from the steps described in the previous section
were plotted against the stability factor, ), to obtain stability charts such as the one displayed
in Figure 2.1. The format of the stability chart in Figure 2.1 is modeled after the work of
Loukidis et al. (2003), where for a particular slope angle, curves for the critical seismic
coefficient are plotted for a variety of friction angles, ¢ (hereafter referred to as “¢-curves”).
To determine the stability of a particular slope, one first calculates \, based upon the soil
strength characteristics, and then moves across the chart until intercepting a line drawn up
from the seismic coefficient the slope is being subjected to; this point is then compared to
the line corresponding to the friction angle, ¢, of the slope. If the point at which )\ meets &
is above and/or to the left of the k. “¢-curve”, then the slope is considered stable under the
seismic load (F,; > 1). However, if this point is to the right and/or below the k. curve, the
slope will fail with F; < 1. The complete collection of “¢p-curve” stability charts from this
study may be found in Appendix B.1 for 3 =20°,25°,30°,35°,40°,45° and 50°.

0.9
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—e— 10°
0.6
—a— 15°
205 —a—  20°
—e— 25°
0.4 —— 30°

-<+-- 35°

0.3 —m- 40°

0.2

0.1

Figure 2.1 Critical seismic coefficients for a 5 = 45° slope



Points of discontinuity are observed to occur at the end of the “¢-curves” in Figure 2.1. As
discussed by Loukidis et al. (2003) these points correspond to the theoretical limit beyond
which the entire slope is expected to move as a single mass sliding over its hard base (the

hard layer). This block sliding occurs when k exceeds ky;,,,, where:

= _He .

Table 2.2 illustrates an example of the agreement between deterministic runs of RSLOPE2A
and other studies. Figure 2.1 was compared to Figure 12 of Leschinsky and San (1994), the
numerical lower bound curve of Figure 3c of Loukidis et al. (2003), and Figures 7c and 8a
of Baker et. al (2006). It can be seen in Table 2.2 that the results of this work consistently

reproduce values of existing studies.

Table 2.2 Comparison of k. from Figure 2.1 with previous studies

A L k.
’ Figure 2.1 Leschinsky & San Loukidis et al. Baker et al.
0.10 25° 0.00 0.02 0.01 0.00
0.10 30° 0.14 0.15 0.15 0.14
0.10 40° 0.37 >0.25 0.39 0.40
020 25° 0.21 0.25 0.22 0.25
0.20 30° 0.36 >0.25 0.37 0.36
0.30 20° 0.19 0.20 0.20 0.20
0.35 15° 0.05 0.05 0.05 0.05
0.35 20° 0.26 >0.25 0.27 0.27
0.40 20° 0.32 >0.25 >0.30 0.33
0.50 15° 0.20 0.20 0.20 0.20
0.75 15° 0.37 >0.25 0.37 0.39
1.00 10° 0.24 0.25 0.24 0.25
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2.3 ALTERNATIVE REPRESENTATION OF CHART DATA

Figure 2.2 presents an alternative representation of the data currently displayed in “¢p-
curves”. The approach taken in Figure 2.2 was to exchange of the roles of 3 and p,
generating “(-curves” for particular y, values. An advantage of this representation is that
Kiim (see equation 2.2), which is independent of 3 and dependent upon 1, can be plotted
as a curve alongside the “3-curves” for each p4 value. As before, points above and to the
left of a curve indicate slope survival, F,; > 1, while those below and to the right indicate
slope failure, F; < 1. The full collection of “3-curve” stability charts obtained from this
study may be found in Appendix B.2 for 15 = 10°,15°,20°,25°,30°,35° and 40° and

for the full range of 3 values considered.
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Figure 2.2 Critical seismic coefficients for slopes with p, = 20°
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2.4 DISCUSSION

The objective of this chapter was to ensure that RSLOPE2A was capable of handling the
addition of seismic loading. The program was validated through comparison with existing
pseudo-static slope stability studies. Examination of the results in Table 2.2 indicates that
the RSLOPE2A program consistently predicts critical seismic coefficients which agree with
those found in the literature. This agreement extends to the other § values examined and
suggests that the finite element analysis in RSLOPE2A is evaluating the seismic loading
correctly. The results were assembled into two sets of slope stability design charts (see
Appendix B). The first set of design charts is based upon the “¢-curves” commonly found in
the literature, and the second set is based upon the proposed alternative “G-curves". Having
confirmed that the deterministic seismic component is working, and with the knowledge that
the probabilistic component of RSLOPE?2A, inherited from RSLOPE2D, has been validated
for static slope stability before (Griffiths and Fenton, (2004); Griffiths et al., (2009)) the

pseudo-static approach was deemed ready to extend into probabilistic analysis.



CHAPTER 3

PROBABILISTIC SEISMIC ANALYSIS OF ¢ - ¢ SLOPES

3.1 GENERAL

The objective of this chapter is to develop design charts through a parametric study over
a series of correlation lengths, 6, to examine the probability of failure, py, of cohesive-
frictional (c — ¢) slopes subjected to various degrees of seismic loading. This analysis
is similar to that of Javankhoshdel and Bathurst (2014) in providing a link between the
traditional factor of safety approach and probabilistic slope analyses. The generation of
design charts presented here was done through Monte Carlo simulations based upon the
parameters shown in Table 3.1. Simulations proceed by generating many realizations of
the spatially variable slope and observing the proportion of these realizations which fail
(Fs < 1). In practice, the accuracy of this approach depends upon how well the simulated
soil fields represent possible real slopes. Considering that the simulation component of
RSLOPE2A has been tested rigorously for static slopes using Monte Carlo simulations
(Griffiths and Fenton, 2004, Griffiths et al., 2009), the interest here is in capturing the
seismic effects upon the probability of slope failure. In brief, 2000 Monte Carlo simulations
are run for each combination of the parameters outlined in Table 3.1, with a varying number
of soil finite elements (dependent upon (3) each of size 0.1 H, and treating both the cohesion,
¢, and the tangent of the friction angle, tan ¢, as lognormally distributed random fields. The
probability of failure is then estimated by dividing the number of realizations which failed
by the total number of realizations.
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Table 3.1 Input parameters used in the parametric study

Parameters Values Considered
Slope angle, 3 10° — 85°
Mean friction angle, 14 20 °
Mean cohesion, L, determined by \
Coefficient of variation, v, = Vypng = v 0.1,0.2,0.3
Stability factor, A 0.1,0.2,0.3,0.4,0.5
Seismic coefficient, & 0,0.1,0.2,0.3 (g’s)
Poisson’s ratio, v 0.3
Young’s Modulus, E 10° kN/m?
Unit weight, 18 kN/m3
Height, H 5m
Depth factor, D 2
Correlation, 0/ H 0.1,0.2,0.3,0.5,0.7,1,2,3,5,7, 10

The parameters outlined in Table 3.1 are the same as those used for the deterministic
analysis in Chapter 2 with the addition of the spatial variability parameters v and 0. The
slope angles, constant soil parameters, height, and depth factor remain the same as those in
the previous analysis. Furthermore, pore water pressure, u4, remains ignored. Selection of

the parameter values that have been changed and added are detailed as follows:

1) Only one mean friction angle, p4, was selected here for analysis. This was to allow the
investigation to focus on the effects of the spatial variability of soils subject to seismic
loading. Typical u,; values examined in study of ¢ — ¢ soils range from 0°-40°. A

reasonable intermediate value was selected here.

2) Determination of the mean cohesion, 1., values was again based upon solving equation

2.1 for the particular \ values chosen in Table 3.1.

3) The stability factor, A, values were based upon the selection of the seismic coefficient,
k, values. The k values were chosen to represent the static case, as well as three sample
seismic loads, within the typical restrictions set upon pseudo-static analysis (k£ < 0.3).

A values were selected to cover slopes which have some likelihood of failing.



4) Selection of the coefficients of variation, v, was roughly based upon the work of Phoon
and Kulhawy (1999) who suggest v, values between 0.1 and 0.5 and v, values between
0.1 and 0.2. In this study, the two separate values of coefficients of variation were taken
to be equal with v, = v, = v between 0.1 and 0.3. It should also be noted that the v
associated with the friction angle in this study is actually for the distribution of tan ¢.
Further, since Phoon and Kulhawy (1999) suggest v, < 0.1, -y is assumed deterministic

and is held constant at the same value selected in Chapter 2.

7) The correlation length, 8, which defines the spatial correlation structure of the soil, is
varied over a range to investigate whether a “worst-case” correlation length exists. The

“worst-case” correlation length would possess the highest slope failure probability.

3.2 RESULTS

Probabilistic seismic design charts were generated based upon the parametric study de-
scribed in the previous section. These charts were modeled after Figure 12 of Javankhoshdel
and Bathurst (2014), but modified by plotting 3 rather than p, against both deterministic

factor of safety (on the left y-axis) and probability of failure (on the right y-axis).

3.2.1 Effectsof )\, k, and v

For each correlation length, 6, four probabilistic design charts were generated (one for each
value of k£ considered). In each chart are a collection of twenty curves, five associated
with the deterministic factor of safety (1 per \ value), and fifteen probability curves (3 per
A corresponding to the 3 v values). To eliminate sampling jitter, the probability curves
are smoothed using logistic growth curves. Figures 3.1 to 3.4 display the probabilistic
design charts for # = 0.2H. For given values of 8 and \; = ¢/10, where i = 1,2,3,4,5
these charts provide the deterministic factor of safety and the failure probabilities, py, for

v =0.1, 0.2, and 0.3. The full collection of design charts can be found in Appendix C.
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Figure 3.1 Probabilistic pseudo-static slope stability design chart for p5 = 20°,
k=0,0=0.2H. Solid lines plot F,. \; =1/10
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Clearly visible in Figures 3.1 to 3.4 are the effects of both the stability number, A, and

the seismic coefficient, k, which have opposing roles in the slope stability problem. As
A increases, the probability of failure for a particular slope angle, 3 goes down. This is
visible when examining the different values of A\ present on a particular plot; from left to
right, increases in A are observed to shift the probability of failure curve to higher 3 values,
which means an increase in slope stability and a decreased risk of failure. This makes
sense, since for fixed friction angle an increase in A implies an increase in mean cohesive
strength. Alternatively, when increasing k from one chart to another, all of the A curves are
observed to shift to lower 8 values, which is consistent with the expected loss of stability,
and thus increased risk of failure brought on by increased seismic loading. Similarly, the
deterministic factor of safety is observed to increase for increasing A and reduce as & is

increased.

Also observed in Figures 3.1 to 3.4 are the effects of the coefficient of variation, v. Increasing
values of v were observed to broaden the range of 3 values over which there is a risk of
failure. The increase in probability of failure at lower slope angles, and decrease at higher
slope angles is due to the increased variability, which creates more regions of weaker and
stronger soils, during the Monte Carlo realizations. At low slope angles, the broadening
(3 range provides conservative estimates of slope stability, as the increased likelihood of
weaker soil being present in the slope requires lower slope angles for the slope to remain
stable. The broadening at higher 3 values may be ignored since geotechnical engineers are

interested in small p in design.
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3.2.2 Effectsof 0

In the previous section, Figures 3.1 to 3.4 presented a set of probabilistic seismic design
charts for one of the 6 values indicated in Table 3.1. For each value of 0 the entire
probabilistic analysis was repeated, producing additional sets of charts. The use of any
particular set of charts is dependent upon the estimated correlation length for a particular
slope site. To determine if there is a “worst-case” 6 value, associated with the highest
amount of risk, Figure 3.5 plots a comparison of low, medium, and high correlation length
values against the 0 — oo case (the latter of which represents the SRV approach described

in Chapter 1).
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Figure 3.5 Influence of correlation length on the probability of slope failure for
pe =20°,k =029, A=04,v=0.1
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Observed in Figure 3.5 is the broadening of the range of 8 values which experience a
risk of failure as @ increases, resulting in the § — oo case exhibiting the highest slope
failure probability at lower slope angles which is thus the most conservative case. However,
the 6 — oo case yields a Monte Carlo simulation where each realization is a different
homogeneous slope with constant soil strength parameters throughout, which is not realistic.
As the focus of this work is in the effects of spatial variability, the # — oo case is not
particularly interesting, and design should attempt to use reasonable values for . The
0 = 10H case adequately approximates the § — oo case, and the plots in Appendix C
corresponding to # = 10H may be used as conservative estimates of the SRV (0 — o0)

approach.

3.3 DISCUSSION

The RSLOPE2A program was used to conduct a parametric study over a series of correlation
lengths to examine the probability of failure of a cohesive-frictional slope subjected to
various degrees of seismic loading. Monte Carlo simulations were conducted for a single
mean friction angle, u, = 20°, and for slope angles ranging from 10° to 85° over a broad
range of correlation lengths. All simulations assumed non-liquefiable soils, and ignored
ground water effects. The results of this study were assembled into design charts (see
Appendix C) which compare the deterministic factor of safety to the probability of failure
for each slope angle over a variety of seismic loadings, stability factors, and coefficients of
variation. Included in the analysis was the static (k = 0) slope problem, which recovered
known results from previous RFEM studies (Griffiths and Fenton, 2004, Griffiths et al.,

2009), for comparison to the effects of seismic loading.

When compared to the deterministic analysis of Chapter 2, the results of the probabilistic

pseudo-static slope stability design charts identify the inability of traditional factor of
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safety measures to fully capture the margin of safety of a particular slope. Nominally,

this discrepancy is observed when two slopes with identical factors of safety but different
combinations of soil strength parameters exhibit significantly different probabilities of slope
failure. This imperfect quantification of slope stability through use of the factor of safety
rather than probabilities of failure has also been observed by Javankhoshdel and Bathurst
(2014) in their extension of static slope stability design charts into probabilistic analysis
for cohesive (¢ = 0) and cohesive-frictional (c — ¢) soils using the SRV approach. The
static (k =0, 0 = 10H — oo in Appendix C) results within this work, reproduce the results
of Javankhoshdel and Bathurst (2014) for the case v = 0.1. Again, the probabilities of
failure presented by Javankhoshdel and Bathurst (2014) and the § — oo case described in
this study lead to overly conservative estimates of the probability of slope failure, as they
do not account for realistic spatial variability in the soil strength parameters. Griffiths and
Fenton (2000) compared the use of the SRV approach to RFEM analysis and found that,
for 0.1 < v, < 0.5, the single random variable approach was more conservative, while
the opposite was found to be true for larger v, values. It is therefore not surprising that
the SRV approach is more conservative than the RFEM approach in the production of the
probabilistic pseudo-static slope stability design charts in this work, as the selection of v

values does not exceed a value of 0.3.

The design charts in Appendix C offer a means to estimate the effects of realistic, spa-
tially varying soil properties, and irregular failure paths. These charts may be useful for
geotechnical engineers for slope design purposes, both in conjunction with the work of
Javankhoshdel and Bathurst (2014) (when & = 0), and as an expansion upon existing
deterministic pseudo-static slope stability design charts (when k£ > 0). Practical applica-
tion of the developed probabilistic pseudo-static design charts in slope stability analysis is

discussed in the following chapter.



CHAPTER 4

PROPOSED ANALYSIS PROCEDURE

4.1 EXISTING SLOPE DESIGN APPROACHES

In general, existing seismic design approaches are predominately pseudo-static in nature due
to the high computational cost of fully dynamic models. Often the choice of methodology
is determined case by case, depending upon the complexity of the problem. For simplified
homogeneous slope masses existing seismic slope stability charts may be used, such as
those presented by Leschinsky and San (1994) and Loukidis et al. (2003), provided the

slope in question adheres to a few key assumptions:

1) Slopes must be comprised of soils which are not expected to experience liquefac-
tion. Determination of the liquefaction potential of soils may be conducted using the

empirical relationships described in section 1.5.

2) Effects of pore water pressure are not important (u4 = 0). This means that pseudo-static

slope stability design charts are best used when the ground water table is low.

3) Seismic coefficients used in pseudo-static design analysis are limited such that £ < 0.3g

(Hynes-Griffin and Franklin, 1984; Baker et al., 2006).

4) The static factor of safety of the slope being examined is in the range of 1.0 < F' < 1.7
(Hynes-Griffin and Franklin, 1984).

For a slope which satisfies the above conditions, geographical hazard maps are used to
determine the strongest seismic coefficient, k, that a slope within a particular region is

51



expected to experience. Soil samples taken from the site may be analyzed to determine
estimates of the soil strength parameters p., iy, and 7. Measurements can be taken to
determine the approximate slope angle (3) and height (H), and borings made to estimate
the depth to the hard layer (DH). Based upon the soil strength parameters evaluated
through sampling, the stability factor, A, (or stability number, ) is calculated. The
seismic coefficients obtained from the hazard maps are then compared to the critical seismic
coefficient, k., obtained from the pseudo-static stability charts for the particular ), 3, and
e values to determine whether the slope remains stable under the expected seismic loading
(k < k. indicates F; > 1). Newmarkian approaches (see equation 1.24) can then also be
applied to determine the expected displacement when the stability charts indicate unstable

slopes (k > k.).

As an example, consider a slope having the parameters outlined in Table 4.1 that is expected
to experience a seismic event with k£ = 0.2. Evaluation of the seismic slope stability, using

the pseudo-static slope stability design charts derived in this study proceeds as follows:

Table 4.1 Input parameters for an example slope subjected to seismic loading

Parameters Values Considered

Slope angle, 3 55°
Mean friction angle, u,, 20°

Mean cohesion, /i, 13 kN/m?
Poisson’s ratio, v 0.3

Young’s Modulus, ¥ 10° kN/m?

Unit weight, 18 kN/m3
Height, H 5m

Depth to hard layer 10 m
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1) The depth factor, D, is simply taken as the depth to the hard layer divided by the height

of the slope, D = 10m/5m = 2. The stability factor, A, is determined from equation

(1.21):

N e 13 kN/m" 04
vH tan i (18 kN/m3) (5 m)(tan 20° )

2) The deterministic factor of safety curve of Figure 3.1 (k = 0, or static loading) for
A =0.4and 8 = 55° was used to determine a static factor of safety of I = 1.37 for the
example slope described in Table 4.1. This factor of safety indicates a statically stable
slope, but one which falls within the range that should undergo pseudo-static analysis

according to Hynes-Griffin and Franklin (1984).

3) Since pg = 20°, the deterministic pseudo-static slope stability chart in Figure 2.2 is
consulted to determine if the slope remains stable under the seismic load. For 3 =55°,
a slope with A = 0.4 has k. ~ 0.25. Since k. > k the slope is considered to be stable

by the pseudo-static analysis.

The above example illustrates a typical deterministic pseudo-static stability analysis. How-
ever, this analysis assumes a deterministic (homogeneous) slope mass which in practice
does not occur. Further, consideration of the spatial variability of the soil strength, evi-
dent in real-world slopes, provides further insight into the stability of cohesive-frictional
slopes along with the ability to actually estimate failure probability. The addition of spatial

variability parameters to the example above is discussed in the next section.
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4.2 RELIABILITY-BASED SLOPE DESIGN

As an investigation of the effects of spatially varying soil strength parameters, let ¢ and
tan¢ be random fields having lognormal distributions with means i, and fi,, 4, standard
deviations o, and 0y 4, and correlation length . Suppose that 0y, ~ Opuny ~ 0.2H.
Based upon these assumptions, Figure 4.1 displays a modified version of Figure 3.3, which
pertains to slopes with § = 0.2, u, = 20°, and k = 0.2, and displays only the curves
having A = 0.4.

2.00
0.90

0.80
1.60
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1.40
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0.40
1.00

0.30
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0.60

p= 1.95%

0.40 0.00

70

B (degrees)

Figure 4.1 Evaluation of the seismic slope stability of the existing slope

For the example slope, Figure 4.1 shows F; = 1.06, which agrees with the deterministic
pscudo-static analysis of the previous section and suggests the slope survives (£, > 1).

However, the probability of slope failure ranges from about 2% to 48% for v ranging from
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0.1t0 0.3. Probabilities of failure of such magnitude are typically unacceptable, except

perhaps where the failure of the slope would have no significant consequences. In many

cases, this example slope would be considered too unsafe and have to be remediated by

excavating to a shallower slope angle, if this is an existing slope, or using a stronger fill

material, if this is a constructed slope. Reduction of the probability of failure by means of

reducing the slope angle is illustrated in Figure 4.2. Slopes angles of 50°, 45°, and 40°

(with static factor of safety I’ = 1.46, 1.57, and 1.69 respectively) might be suggested as the

remediated slope angle if v = 0.3. If geotechnical engineers are targeting the probability of

failure to p; < 1%, remediation would require that the slope angle be reduced to 3 < 40°.
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Figure 4.2 Evaluation of seismic slope stability of alternative slope angles for
the example problem for v = 0.3
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4.3 COMPARISON TO THE SRV APPROACH

Suppose that, instead of using the estimate of the correlation length provided in the previous
section, the described slope was investigated through use of the SRV approach (0 — o).
In this study, the condition that # — oo was roughly approximated by the § = 10H case.
Figure 4.3 displays the deterministic factor of safety and the probabilities of failure of the

same slope angles (55°,50°, 45°, and 40 ° ) displayed in Figure 4.2.
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Figure 4.3 Reconsideration of Figure 4.2 for the # — oo case

Clearly seen in Figure 4.3 is the general increase in the probabilities of failure caused by the
increase in 0, while the deterministic pseudo-static factor of safety, F;, remains unchanged.
F; remains unchanged due to its independence from the correlation measure, 0, as Fj is

evaluated at the mean values of the soil strength parameters (thereby neglecting spatial



variability). A comparison of the probabilities of failure from the previously considered
0 = 0.2H case to those of the § — oo approach is shown in Table 4.2 for v = 0.3. Table
4.2 shows that py, for the considered slope angles, is initially less for the SRV approach
when 3 = 55°, however p; also remains significantly higher for the SRV case than for
the § = 0.2H1 case as 3 is reduced. Since geotechnical engineers seek to minimize py, the
SRV approach may be viewed as an overly conservative estimate of the probability of slope

failure.

Table 4.2 Probabilities of slope failure for the example slope with v = 0.3
when § =0.2H and § — o

5 ps (%)
(degrees) | 0 =02H 6 — oo
55 47.53 45.77
50 16.81 34.80
45 4.31 25.25
40 1.00 17.60

4.4 EVALUATING THE EXTENT OF FAILURE

Current means for estimating the extent of failure of a slope subject to seismic loading is
predominately based on Newmarkian sliding block analysis. As an expansion upon the
pseudo-static method, Newmarkian models evaluate the displacement of the slope mass
when the seismic acceleration exceeds the critical acceleration for the slope (kK > k.).
For example, the probabilistic seismic hazard analysis equations presented by Rathje and
Saygili (2009, 2011), given by equations (1.24) and (1.25), examine the displacement when
k > k. through the ratio k./k (k is used in place of PGA). Newmarkian models determine
the displacement of the slope mass as if it were a block moving along a plane. Evaluation of

the distribution of block displacement is more difficult. In the previous section, a 3 = 55°
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slope was observed to have a probability of failure as high as 48%. The problem is that

this probability of failure was for a slope having a deterministic factor of safety F; > 1
since k < k.. When k£ < k. the Newmarkian models cannot be used to determine the
extent of slope failure, even though spatial variability indicates a significant probability that
the slope mass will actually move. This restriction is a product of the spatial variability
being analyzed, as each realization within a Monte Carlo simulation for a combination of
soil strength parameters would possess its own F; and k. values that vary from the mean
(deterministic) case. Without shifting to a dynamic analysis, a proposed method by which
to evaluate the extent of failure for the probabilistic pseudo-static slope stability design

charts is as follows:

1) For each realization within a single Monte Carlo simulation a critical seismic coeffi-
cient, k., for the realized slope mass can be estimated by varying the applied seismic
coefficient, &, and finding the smallest value of which just causes slope failure. This &

value is then k..

2) Once the series of k. values are estimated for each realization, a series of realizations
of block displacements, using Newmarkian methods, can be determined, from which a

displacement distribution may be estimated.

3) The displacement realizations could also be directly used to determine the probability

of exceeding a particular limit displacement.

Due to the computationally expensive nature of this task, requiring multiple finite element
analyses for each realization, evaluation of the extent of failure of the slope masses was not

feasible in this study.



4.5 DISCUSSION

The objective of this chapter was to illustrate the practical application of the pscudo-static
slope stability design charts developed in Chapters 2 and 3. The “G-curve” plots developed
in Chapter 2 used in conjunction with the probabilistic design charts developed in Chapter
3 allow for the consideration of the spatial variability of soil strength parameters and the
probability of slope failure under seismic loading. The results of the presented example
show that the SRV approach is overly conservative. It is advisable to estimate the correlation
length and consult the probabilistic pseudo-static slope stability design charts developed

herein to obtain safe and economical slope designs in earthquake prone regions.
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CHAPTER 5

CONCLUSIONS

In this work, the stability of cohesive-frictional (c — @) slopes subjected to seismic loading
was investigated using a finite element model combined with random-field generation
techniques to examine the influence of spatial variability of soil strength parameters. The
approach used is called the random finite element method (RFEM). This study built upon
the RSLOPE?2D program developed by Griffiths and Fenton (2004). Both deterministic and
probabilistic seismic slope analyses were performed to generate stability charts, and the
deterministic charts were validated through comparison with existing studies. The stability
charts were then used to develop a reliability-based procedure for the safe design of slopes.
The validation conducted in Chapter 2 ensured that the RSLOPE2A program (created
through the addition of a pseudo-static seismic component to the RSLOPE2D program)
agreed with previous studies which utilized pseudo-static analysis. Both traditional “¢-
curve” and alternative “3-curve” representations of the pseudo-static seismic stability charts
were presented. The complete collection of deterministic seismic stability design charts

can be found in Appendix B.

In Chapter 3, the RSLOPE2A program was used to conduct a parametric study over a series
of correlation length values to examine the probability of failure of a cohesive-frictional
(c — ¢) slope subjected to various degrees of seismic loading. Monte Carlo simulations
were conducted for a single mean friction angle, u, = 20°, with slope angles ranging
from 10° to 85°. The results of this study were assembled into design charts which
give the deterministic factor of safety and the probability of failure for each slope angle
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at particular seismic loadings, represented by the seismic coefficient, k. The probabilistic
seismic stability charts show the expected rapid loss in stability with increasing seismic
loading, as well as with increasing slope angle, 3, and decreasing stability factor, A. Said
probabilistic seismic stability charts illustrate the deterministic factor of safety and the
probability of slope failure for varying degrees of spatial variability in the soil strength
random fields, ¢ and tan ¢. The deterministic factor of safety was found to be an inadequate
measure of slope stability when the spatial variability of soil was taken into account, due to
the potential for high probabilities of slope failure to occur when the deterministic factor of
safety indicates stability (£ > 1). The complete collection of probabilistic seismic slope

stability design charts can be found in Appendix C.

Finally, the application of the design charts developed in Chapters 2 and 3 was illustrated
in Chapter 4 through a design example. The design example showed how the deterministic
plots were first used to determine the need for further analysis, and allowed for an initial
estimate of the seismic response of the slope. The probabilistic plots could then be used to
provide further insight into the probabilistic response of the slope when variability in the
soil properties was considered. The design charts were used to determine, for example, the

maximum slope angle for a target maximum acceptable failure probability.
Further research would be recommended in the following areas;

a) Expansion of the analysis performed in Chapter 3 to additional friction angles, notably

He =10° and py =30°
b) Implementation of pore-water pressure, 4, into a seismic slope analysis model
¢) Consideration of the extent of failure after it occurs, as discussed in Chapter 4

d) Development of a computationally-efficient, fully dynamic analysis
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Appendix A

Comparison of log-space and real-space correlation length
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A.1 Introduction

A key parameter in modeling spatial variability of a random field is the correlation length,0 .,
which describes the distance within which points are significantly correlated (in exceedance
of 10At times, it may be found that a random field is best characterized by a lognormal
distribution but we wish to perform normal distribution based calculations; this can be
achieved through use of the logarithm of the random field. What comes into question is
whether the correlation length of the random field and its logarithm are interchangeable, or

if a calculable relation between them exists.

A.2 Definition of the Correlation Structures

To begin relating log-space to real-space, let us first consider the correlation structure of a
random field, X, with mean 1, and variance o%. If we assume the correlation function,

px(T), is defined such that:

-2
px(T) = eXP{ glzl } (A.1)

then this is an exponentially decaying correlation structure (Fenton and Griffiths, 2008), i.e.
Cov [X(2), X(z + )] = 0% px(7) = Cx(2) (A2)

where p, (7) is parameterized by the correlation length, 0, and C(7) shall be the shorthand

representation of the covariance function for this document.

If we further consider the case where X is lognormally distributed, then InX is normally
distributed with mean py, x, and variance o2 ,. We may then rewrite equations (A.1) and

(A.2) for the lognormal case such that:

Pax(D) = exp{ —2l] } (A.3)

elnX
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and

Cov [In X (z), In X (g +7)] = 0 x 1 x(7) = Cinx(7) (A.4)

where, in accordance to the previous equations, py, (7) is parameterized by the log-space
correlation length, 6y, 5, and CY, (7) shall be the shorthand representation of the log-space

covariance function for this document.

A.3 Relation Between the Log-space and Real-space Parameters

The log-space parameters p, , and o2 , can be obtained from the real-space parameters /i,

and o2 based upon the following relationships:

1

Pnx = ln(p’X) - Eo'lzxx (AS)
0_2

02y = ln<1 + —;‘) (A.6)
P

which are derived by taking the expectation and variance of X (Fenton and Griffiths, 2008).
Equation (A.6) may be simplified further by implementing another parameter, vy = fix /0,

known as the coefficient of variation of X, such that:

ok, = 1n(1 + ui) (A7)

Finally, recalling that the log-space variance, o7, is a special case of the log-space
covariance structure occurring at 7 = 0 (Shumway and Stoffer, 2011), equation (A.6) can

be generalized to exhibit a direct relation between the correlation structures:

(A.8)

Cux(7) = ln(l + CX(I))

2
X
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A4 Solving for the Log-space Correlation Length

A relationship between the real-space and log-space correlation lengths (0 and 0y, x re-
spectively) can be derived by utilizing the relationship displayed in equation (A.8). Solving

equation (A.4) for py, (7) and substituting equations (A.8) and (A.7) for C, (1) and vinX

l+Cx('7_)
Cox(@) m( a )

Tinx ln(l +v§()

respectively, yields:

(A.9)

The log-space correlation structure displayed equation (A.9) can then be related to its

real-space counterpart by substituting equation (A.2) for Cx(7), and simplifying using vy:

Pnx(0) =1n (%) /1n(1 ; vi) - m(ligfi(;)) (A.10)

Having found the relationship between the correlation structures, we may now relate the

log-space correlation structure and the real-space correlation length by substituting the

identity for p,(7) in equation (A.1) into equation (A.10):

v% ex (-—2]’]’])
ln<1 + _Z%N_)

{1+ 22) N

P x(T) =

We are now ready derive the relationship between 6, and 6,, . Solving equation (A.3) in

terms of 0y, x and substituting equation (A.11) forpy, x(7) produces the following identity:
=2|z]

In (ln(l +v% exp (—2|g|/0X) / ln(l + v}%))

O x = (A.12)
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A.5 Evaluating the Relationships Limits with Respect to v

For any given spacing 7 and real-space correlation length 6y, it can be seen that as the
coefficient of variation approaches zero, first order Mercator series approximations (In(1 +

a) =~ a, for small values of a) in the denominator express that 0, ~ 0y, «:

—2|7] —2|7|

lim = =0y

vx =0 <ln(1 + vk exp (—ZITI/GX)/III(l +v§)> ln<(exp<—2|7|/ex>>

(A.13)
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Appendix B
DETERMINISTIC SEISMIC SLOPE DESIGN CHARTS
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Critical seismic coefficients for a 25° slope
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B.2 Beta-curves
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Figure B.10 Critical seismic coefficients for slopes with ¢ = 20°
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PROBABILISTIC SEISMIC SLOPE DESIGN CHARTS
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Figure C.1 Probabilistic pseudo-static slope stability design chart for p1 5, =20°,
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k=0.1g,0 = 0.1H. Solid lines plot F;. A; =4/10
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Figure C.3 Probabilistic pseudo-static slope stability design chart for p1, =20°,
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Figure C.4 Probabilistic pseudo-static slope stability design chart for p1, =20°,
k=03g,0 =0.1H. Solid lines plot F;. A; =4/10
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Figure C.5 Probabilistic pseudo-static slope stability design chart for p15 =20°,

k=0,0=0.2H. Solid lines plot F;. \; =%/10
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Figure C.7 Probabilistic pseudo-static slope stability design chart for p1, =20°,

k=0.2g,0 =0.2H. Solid lines plot F;. A; =4/10
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Figure C.8 Probabilistic pseudo-static slope stability design chart for p1, =20°,
k=03g,0 =0.2H. Solid lines plot F;. A; =4/10
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Figure C.9 Probabilistic pseudo-static slope stability design chart for p1 =20°,

k=0,0=0.3H. Solid lines plot F;. \; =%/10
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