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Abstract

The spread of social contagion is an active area in social network analysis. Assume

that we want to spread a message among all the users of a network. Knowing the

structure of the network, we may ask how fast can we do this and what is the best

strategy? Graph burning is a new graph process which is used as a model for the

spread of social contagion. Burning number is a graph parameter associated with the

burning process and measures the speed of contagion in the underlying graph of a

social network.

In the thesis, we provide several results on the burning number. In particular, we

study the relationship of the burning number to other graph structural parameters,

the burning number of some specific graphs, the computational complexity of this

problem, and the probabilistic versions of this parameter. We also consider the com-

petitive diffusion game on graphs that was our first motivation to define the graph

burning process, and we discuss the existence of pure Nash-equilibrium for this game

on some specific graph families.
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Chapter 1

Introduction

Assume that we have a message or a piece of information (such as a new idea, or a

rumour) that we want to distribute among all the users in a network such as Facebook

or Twitter. Our goal is to accomplish this task in the fastest possible way with the

minimum cost. That is, we want to send the message to only a few of the users, that

we refer to as the target users. The hope is that, through the interactions or links

between the individuals in the network, the message will reach to everyone in the

network in the shortest possible time.

At the end of the process, every individual in the network is to receive the message

either directly or indirectly from a source of information. At the same time, we may

think that every user that is already influenced by the message, sends it to all or

a subset of its neighbours. By its neighbours, we mean those individuals that have

direct interaction with that user; for example, our neighbours in the Facebook are

our friends who can see the shared posts directly from our timeline. We can think of

many different possible ways for doing so, and there are several recent studies that

model these types of processes; see [6, 13, 41].

Usually in studies of models of the spread of influence in social networks, every user

or individual in the network is either active, when it is influenced by the information

(or it has adopted the idea), or is inactive, when it has not received the influence from

any other user. In these models we use graphs as the abstract mathematical objects

to show the structure of a network. Simply put, we construct a graph in which every

node is corresponding to an individual in the network, and two nodes are adjacent

if and only if there is an interaction or link between the corresponding users of the

network.

As a new simple deterministic approach for modelling these sort of real world

phenomenon, we define a new graph process called graph burning. Graph burning is

inspired by graph theoretic processes like Firefighting [7, 19, 27], graph cleaning [3],

1
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and graph bootstrap percolation [5]. In a graph burning process, we have a simple

finite graph G (representing a network), and we want to burn its nodes in the fastest

possible way. We start the burning process by burning one of the nodes in the first

round. Then in each subsequent round, we burn one new unburned node if such a

node is available, and at the same time the fire spreads from the set of burning nodes

(from earlier stages) to their unburned neighbours. Throughout the process, each

node is either burned or unburned ; if a node is burned, then it remains in that state

until the end of the process. The process ends when every node is burned. Our goal

is to minimize the number of steps needed for burning G.

The burning number of a graph G, denoted by b(G), is the minimum number of

rounds needed for a burning process of G to end. For example, it is straightforward

to see that b(Kn) = 2. However, even for a relatively simple graph such as the path Pn

on n nodes, computing the burning number is more complex; in fact, b(Pn) = ⌈n1/2⌉
as stated in Theorem 19. Burning may be viewed as a simplified model for the spread

of social contagion in a social network such as Facebook or Twitter. The lower the

value of b(G), the easier it is to spread such contagion in the graph G. Below are the

known problems that are related to the burning problem, and that are our motivation

for defining this new parameter.

A well-known example of a problem for modelling the propagation processes in so-

cial networks is the r-neighbour bootstrap percolation introduced in 1979 by Chalupa,

Leath and Reich [21], and is defined as follows. Suppose that we have a graph G

and A is a subset of nodes in G. We start the process (at time t = 0) by infecting

the nodes in A, and setting A0 = A. Then in each round t ≥ 1, a new node becomes

infected if and only if it has at least r neighbours in At−1, where At−1 is the set of

the nodes that are infected at the end of round t − 1. If a node is infected at round

t ≥ 0, then it remains infected until the process ends. The process ends, when we

cannot infect a new node by the above rules. We say set A percolates, if the process

terminates by infecting the whole graph G. The r-neighbour bootstrap percolation

has been widely studied by both mathematicians and physicists due to its interesting

applications; see [1, 14].

One of the most extensively studied graph theory parameters since its introduc-

tion in the 1950’s (see [11, 48]) is the domination number, which naturally arises in
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problems involving social networks, and computer social networks; see [11, 29, 43].

Assume that we have a graph G and we want to find a set of nodes, say D, such

that every node in V (G) ∖D is adjacent to a node in D. If G is representing a social

network, then it means that the users corresponding to the nodes in D are able to

spread an influence to any other user out of this set. If D is a small set, then it can

be a good candidate for being a target set in a rumor propagation process, or a con-

venient set for placing agents that can serve the rest of the network in an emergency

situation. Such a set of nodes in G is called a dominating set, and we call the size

of a minimum dominating set in graph G as the domination number of G, denoted

by γ(G). There are many different variations of the dominating set problem, such as

the r-distance domination and the broadcast domination which are defined below.

In r-distance domination, we want to find a set of nodes like Dr in a graph G

such that every node in V (G) ∖Dr is within distance r from a node in Dr. A simple

interpretation of this problem could be efficiently placing some utilities such as fire

stations in a city, so as to be within r units of any building in the city. Another

example could be building radio transmitters in the cities of a province or a country;

see [34, 35, 56]. Imagine that every radio transmitter has a restricted power and people

can hear it while they are within distance r from a city that has a transmitter. Since

building transmitters is costly, we want to minimize the total number of transmitters

needed.

However, this model does not include the case where each transmitter has a differ-

ent power. In such as case, the broadcast domination, introduced in 2002 by Erwin

[25], would be the appropriate problem for modelling the situation. In broadcast dom-

ination, we have a graph G and a function f ∶ V (G) → Z+ that describes the power

of a transmitter located at each node. The set of nodes Df = {v ∈ V (G) ∶ f(v) ≥ 1}
is called the set of dominators, and any node in G ∖Df is called receiver. In fact,

for any node v ∈ Df , f(v) is the power of the transmitter located at v. We say that

the function f is a broadcast domination for G if for any node u ∈ V (G) there is a

transmitter v in Df for which d(u, v) ≤ f(v). The goal here is finding a broadcast

domination with minimum cost ; that is, ∑v∈V (G) f(v).

The (k, r)-centre problem is a facility location problem or clustering problem that
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is similar to both r-domination and broadcast domination (see [8]), and has similar-

ities to the burning problem as well. Assume that for a graph G, we want to find a

set of nodes S ⊆ V (G) of size at most k for which every node in G is within distance

r from a node in S. If r is fixed, then it is the r-domination problem. If r is not

fixed and k is fixed, then it is known as the k-centre problem [32], where the goal

is to obtain the minimum r for which we have a r-dominating set of size at most k.

The (k, r)-centre problem was introduced by Barilan et al. [8] in 1993, and since then

has been widely studied due to its applications in facility location and clustering.

For example, suppose that we are tasked with building k fire stations (or any sort of

utilities or services) in a city, knowing that each fire station would work efficiently for

those houses within distance at most r blocks away from the station. The question

is: Which set of buildings in the city are the best candidates for having the minimum

cost in setting fire stations under the above constraint?

The Firefighter problem is a deterministic discrete time process on graphs that

was first introduced by Hartnel in 1995 [33] for modelling the spread of fire (or social

contagion). At the beginning of this process, a fire is initiated on a node of a graph.

Then at each round of the process, the firefighter will defend one unburned (unpro-

tected) node against the fire. After the firefighter protects a node, the node is called

defended or protected, and can not be burned any more throughout the process. At

the end of each round, the fire spreads from the burning nodes to their unburned,

unprotected neighbours. Once a node is burned, it stays in this status until the end

of the process. The process terminates when the fire can not be spread to any un-

burned node. An objective of the Firefighter problem is to determine the maximum

number of nodes that can be saved from burning by firefighter. Another approach

would be finding the fastest way for stopping the fire; see the survey [27]. There have

been many studies on the Firefighter problem, considering the problem from different

perspectives as it has beautiful applications in viral marketing, spread of virus in

computers, and spread of disease (see [26, 27]).

In all problems we mentioned above, except for the Firefighter, we consider a

single idea or influence that must dominate the entire body or a large portion of a

network. For instance, in the domination problem, the goal is just to influence the

nodes out of the dominating set by the same idea. However, many real examples of
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social contagion are more complex. These may involve more than one agent, all of

whom are in competition with each other; see [13, 24, 41]. There are many studies

considering these kind of social interactions, where we have a set of parties or agents

outside of the network with the objective to influence a large number of the users

in the network by their own idea using some representatives inside the network; see

for example, the Voronoi games [24, 44]. One of these models that motivates the

burning problem (as we will see in Chapter 5) is the competitive diffusion model that

was introduced by Alon et al. in 2009 [2]. They defined a game on graphs modelling

competition among different agents inside of a network.

In this game, we have a set of players (corresponding to the agents) each with its

exclusive colour (product being advertised) that tries to colour (influence) as many

as possible number of nodes (individuals) in a graph (network) with its own colour.

Initially, each player chooses one node and colour the node with its own colour (as her

strategy). If two or more players choose the same node, then the node becomes gray,

and those players have to leave the game. Hence, we may assume that this is illegal.

Then in each subsequent round, any uncoloured node that has coloured neighbours

with only one colour gets the same colours from them. If an uncoloured node has two

or more neighbours with different colours, then it becomes gray, and is deleted from

the graph. The game continues till we can not colour any more node by the above

rules. The gain or payoff of each player is the number of the nodes that the player

achieves at the end of the game with its own colour.

Finally, a well-studied non-deterministic rumour spreading model for the social

networks is the push and pull protocol which was introduced by Demers et al. in

[22]. Suppose that one node in a network is aware of a piece of information or a

message, and wants to spread it to all nodes quickly. The push and pull protocol

is a randomized graph process for this goal and proceeds in discrete time-steps or

rounds as follows. In each round, every informed node contacts a random neighbour

and influences it by the message; that is, it pushes the message. At the same time,

every uninfluenced node contacts a random neighbour and receives the message if the

neighbour knows it; that is, it pulls the message; also see [40].
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1.1 Preliminaries

In this section we briefly explain some mathematical concepts and notation that we

use in the thesis. If A is a finite set, then the cardinality or size of A is the number

of the elements in A, and is denoted by ∣A∣. For example, the cardinality of set

A = {a, b,3} is 3, and we can show this simply by ∣A∣ = 3. We usually denote the set

of numbers {1,2, . . . , n} by [n]. The Cartesian product of two sets such as A and B,

denoted by A ×B, is defined as below.

A ×B = {(x, y) ∶ x ∈ A,y ∈ B}.

We sometimes use the following asymptotic notation that is used frequently in

mathematics to describe the asymptotic behaviour of a complicated function in terms

of a simplified function. Suppose that f and g are two functions defined on the set

of positive integers with the same domain.

We say that f is asymptotic to g, and we write f ∼ g, if

lim
n→∞

f(n)
g(n) = 1.

We say that function f is big oh of g, and we denote it by f = O(g), if there exists

a positive constant c and a positive integer n0, such that for every n ≥ n0, we have

that

f(n) ≤ cg(n).

We say that f is omega of g, and we write f = Ω(g), if there exists a positive

constant a and a positive integer n0, such that for every n ≥ n0, we have that

f(n) ≥ ag(n),

or equivalently, g = O(f).

We say that f is theta of g, and denote it by f = Θ(g), if we can find positive

constants a and c, and a positive integer n0, such that for every n ≥ n0, we have that

ag(n) ≤ f(n) ≤ cg(n),
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or equivalently, f = O(g) and f = Ω(g).
If for all large enough values of n, f(n) is negligible compared to g(n), then we

say that f is little oh of g, and we write f = o(g). More precisely, if

lim
n→∞

f(n)
g(n) = 0,

or even we sometimes write f ≪ g. In particular, f = o(1) implies that limn→∞ f(n) =
0. Hence, by definition of the little oh notation, we can say that f ∼ g if and only if

f = (1 + o(1))g.

If f(n) grows faster than g(n), then we say that f is little omega of g, and we

write f = ω(g). More precisely, if

lim
n→∞

f(n)
g(n) = ∞,

or we sometimes write f ≫ g.

1.2 Graph Theory

Graphs model the relations between elements in a set. In this section, we provide

some preliminaries that we need in the thesis from graph theory. We refer the readers

for more information on graph theory to [58].

A graph G = (V (G),E(G)) consists of a non-empty set of nodes or vertices de-

noted by V (G) or simply V , and a set of edges denoted by E(G) or simply E. Each

edge e ∈ E(G) consists of a pair of nodes in V (G) that are called the the end points

of e and they can be equal. If the end points of an edge e are equal, then the edge e is

called a loop in G. For convenience, we sometimes denote an edge e with end points

u and v by uv. Also, we may have different edges such as e1 and e2, with exactly the

same end points. In this case, we call e1 and e2 as parallel or multiple edges in G. We

may use G = (V,E) for representing graph G whenever it does not cause a confusion.

Throughout the thesis we show generally a graph G = (V (G),E(G)) simply just by

G assuming that the reader knows that graph G consists of a vertex set V (G) and

an edge set E(G); unless we need to define G by a specific set of nodes and edges.

Every edge e = uv in a graph G represents a connection between the nodes u and
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v in G. In this case, we say that u and v are joined, adjacent, or neighbours. We

can represent any finite graph G = (V,E) with a drawing or diagram in the plane, in

which every node is represented by a distinct point or tiny circle in the plane. We

then connect two different points by an arbitrary line in the plane, if and only if the

corresponding nodes are adjacent in G. For example, Figure 1.1 demonstrates the

diagram of graph G = (V (G),E(G)), with V (G) = {a, b, c} and E(G) = {ab, ac} in

the plane.

Figure 1.1: A drawing of the graph G.

A graph G that does not contain any loop or multiple edges is called a simple

graph. We only work with simple graphs throughout this thesis. The cardinality of

the node set V (G) is called the order of graph G, and we call the number of the edges

in G the size of G. All the graphs discussed in this thesis are finite; that is, graphs

with finite orders and sizes.

Assume that e is an edge in a simple graph G. The contraction of edge e is an

operation on G in which we delete edge e from G, and simultaneously we merge the

end points of e. We also delete any possible parallel edges or loops created by this

operation. We denote the resulting graph by G ⋅ e.
A graph H = (V (H),E(H)) is a subgraph of a graph G, and is denoted by H ⊆ G,

if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of the graph G is an induced

subgraph of G, if for every edge e ∈ E(G) for which the end points of e are in V (H),
we have that e ∈ E(H). If S ⊆ V (G), then the subgraph induced by S, denoted by

G[S], is the subgraph of G with V (G[S]) = S, and E(G[S]) is the set of all edges

e in G whose end points are in S. A subgraph H is a spanning subgraph of G if

V (H) = V (G). If S ⊆ V (G), then G−S is the subgraph induced by V (G)∖S. When

S = {x}, then we simply write G − x, instead of G − {x}.

A sequence of nodes and edges such as v1, e1, v2, e2, . . . , vk−1, ek−1, vk, in which ei =
vivi+1, for 1 ≤ i ≤ k−1, and vi’s are all distinct nodes of G, is called a path in graph G.

The nodes v1 and vk are called the end points of the path. We can simply show the
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path only by the nodes that appear in it; that is, by v1, v2, . . . , vk, since every edge is

determined by its end points uniquely (in a simple graph). We usually denote a path

on n nodes by Pn. The length of a path P is the number of edges in P . A cycle in a

graph G is a path in which the end points are equal, and all other nodes are distinct.

We denote a cycle on n nodes by Cn. Note that in a cycle the number of nodes and

edges are equal. The length of a cycle is the number of edges in the cycle. A cycle

whose length is an even integer is called an even cycle, and a cycle with odd number

of edges is called an odd cycle. A cycle of length three is sometimes called a triangle.

The graph distance or geodesic distance between two nodes u and v in a graph

G is the length of a shortest path in G with end points u and v, and is denoted by

dG(u, v) or simply by d(u, v) whenever this does not cause confusion. It is a known

fact in graph theory that, the distance defined above is a metric on V (G) × V (G).
That is, for each pair of nodes such as u and v in V (G), we have that,

1. d(u, v) ≥ 0, and d(u, v) = 0 if and only if u = v.

2. d(u, v) = d(v, u).

3. d(u, v) ≤ d(u,w) + d(w, v), for any node w ∈ V (G).

For a nonnegative integer r, the r-th open neighbourhood of a node u in graph G,

denoted by NG
r (u), or simply by Nr(u), is defined as the set {v ∈ V (G) ∶ 0 < d(u, v) ≤

r}. If r = 0, then Nr(u) = ∅, and if r = 1, then we denote N1(u) by N(u), which is the

set of the neighbours of u in G. The r-th closed neighbourhood of a node u, denote by

NG
r [u] or simply Nr[u], is the set {v ∈ V (G) ∶ d(u, v) ≤ r}. If r = 0, then N0[u] = {u},

and if r = 1, then we denote N1[u] by N[u]. We note that Nr[u] = Nr(u) ∪ {u}.

A graph G is called connected, if for every pair of distinct nodes u and v in G

there is a path with end points u and v. A graph G that is not connected, is called

a disconnected graph. A component of a graph G is a maximal subgraph of G that

is connected. If G is connected, then G by itself is the only component of G. If G is

disconnected, then it must consist of at least two distinct components. A connected

graph without any cycles is called a tree. A tree is typically denoted by T . It is known

that trees are connected graphs with n nodes and n− 1 edges. In fact, every minimal

connected graph is a tree. This implies that every connected graph contains at least

one spanning tree. It is also known that a graph T is a tree if and only if every pair
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of the nodes in T are connected by a unique path. Every subgraph of a graph G that

is a tree is called sometimes a subtree of G. A disconnected graph in which every

component is a tree is called a forest. In other words, a forest is a disconnected graph

without any cycle, or an acyclic disconnected graph. If each component of a forest F

is a path, then we call F a path-forest.

A graph G is planar if there is a drawing of G in the plane such that no two edges

of G cross each other except at the end-points. Assume that C is a cycle in a graph G

of length at least 4. A chord in C is an edge that connects two non-successive nodes

in C. We call the graph G a chordal graph if the induced subgraph on the node set of

any cycle of length at least 4 in G has at least one chord. In other words, any cycle

in a chordal graph is triangulated.

The degree of the node u in a graph G is the number of neighbours of u in G, and

is denoted by degG(u), or dG(u). We usually use the notation d(u), when we talk

about a specific graph and it does not cause a confusion. An isolated node is a node

of degree zero, that is a node that does have any neighbour. A universal node is a

node that is adjacent to every other node in graph G. The maximum degree of graph

G is the largest degree that a node in G has, and is denoted by ∆(G). The minimum

degree of graph G is the smallest degree among the set of degrees of the nodes in G,

and we denote it by δ(G). If a graph G contains an isolated node, then δ(G) = 0,

and if G contains a universal node and is of order n, then ∆(G) = n − 1. A node u

with deg(u) = 1 is called a pendant node or a leaf.

The eccentricity of a node u in graph G is defined as max{d(v, u) ∶ v ∈ V (G)}.

The radius of G is the minimum eccentricity over the set of all nodes in G, and

is denoted by rad(G). The centre of G consists of the nodes in G with minimum

eccentricity. That is, a node u is in the centre of G if and only if u attains rad(G) as

its eccentricity. Each node u that is in the centre of G is called a central node of G.

The diameter of G, denoted by diam(G), is the maximum eccentricity over the node

set of G. In other words, diam(G) = max{d(u, v) ∶ u, v ∈ v(G)}.

A complete graph of order n is a graph in which every pair of nodes are connected

by an edge, and is denoted by Kn. The complement of a graph G, denoted by G

or sometimes by Gc, is a graph with V (G) = V (G) in which two nodes u and v are

adjacent if and only if u and v are not adjacent in G. In other words, the edge set of
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G is the complement of the edge set of G with respect to the edge set of the complete

graph on the node set of G. For example, we can easily see that Kn is a graph with

n nodes and no edges.

A set of nodes S in a graph G is called an independent set of G, if no two nodes

in S are adjacent. In other words, G[S] does not have any edge. A graph G is

called a bipartite graph if the node set of G can be partitioned into two subsets X

and Y such that X and Y are each an independent set in G. Then (X,Y ) is called

a bipartition for G, and we sometimes denote G by G[X,Y ]. Note that G does not

have necessarily a unique bipartition, for example, when G is bipartite and it also

contains an isolated node. It is known that a graph is bipartite if and only if it does

not contain an odd cycle. A complete bipartite graph is a bipartite graph for which

there is a bipartition (X,Y ) such that every node in X is adjacent to each node in Y .

We denote a complete bipartite graph G[X,Y ], in which ∣X ∣ = n and ∣Y ∣ =m by Kn,m.

A star is a complete bipartite graph in which one of the parts consists of a single

node. In other words, a graph G is a star if for some positive integer n, G = K1,n.

That is, G is a star if it has a universal node u, and G − u forms an independent set.

In a star K1,n with n ≥ 2, the central node is the only node of degree more than 1

and every other node is a leaf.

We call a tree that has only one node c of degree at least three a spider graph,

and the node c is called the spider head. In a spider graph every leaf is connected to

the spider head by a path which is called an arm. Figure 1.2a shows an example of

a spider graph.

(a) A spider graph with spider head c. (b) A spider graph SP (5,4).

Figure 1.2: Spider graphs.

If all the arms of a spider graph with maximum degree s are of the same length r,

then we denote it by SP (s, r). The spider graph shown in Figure 1.2b is an example

of SP (5,4).
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A dominating set in a graph G is a set of nodes D for which every node in G−D
is adjacent to at least one node in D. The cardinality of a minimum dominating set

in G is called the domination number of G and is denoted by γ(G).

An isomorphism between a graph G and a graph H is a bijection f ∶ V (G) Ð→
V (H) such that for any two nodes u, v ∈ V (G), u and v are adjacent in G if and

only if f(u) and f(v) are adjacent in H. In such a case, we say that the graph G is

isomorphic to the graph H.

There are various ways for creating a new graph by combining a set of two or more

graphs. Suppose that G = (V (G),E(G)) and H = (V (H),E(H)) are two distinct

graphs with V (G)∩V (H) = ∅. The disjoint union of G and H, denoted by G⊍H, is

a graph with node set V (G) ∪V (H), and the edge set E(G) ∪E(H). The Cartesian

product of graphs G and H, denoted by G◻H, is a graph with node set V (G)×V (H),
in which two nodes (u1, v1) and (u2, v2) are adjacent if and only if, either u1 = u2 and

v1v2 ∈ E(H), or u1u2 ∈ E(G) and v1 = v2.

The strong product of graphs G and H, denoted by G ⊠H, is a graph with node

set V (G) × V (H), in which two nodes (u1, v1) and (u2, v2) are adjacent if and only

if v1v2 ∈ E(H), or u1u2 ∈ E(G). By definition, we can see that G ◻H ⊆ G ⊠H. The

lexicographic product of graphs G and H, denoted by G ○H, is a graph with node set

V (G)×V (H), in which two nodes (u1, v1) and (u2, v2) are adjacent if and only if either

u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H). Intuitively, if V (G) = {u1, u2, . . . , un}, then

G ○H is isomorphic to the graph that is constructed by replacing each node ui in

G by a copy of H, called Hi, and then adding all the edges uv, where u ∈ V (Hi),
v ∈ V (Hj), and uiuj is an edge in G. For any two nodes (ui, vj) and (ul, vs) in G ○H,

we have the following possibilities: If ui ≠ ul, then

dG○H ((ui, vj), (ul, vs)) = dG(ui, ul);

If ui = ul and vj ≠ vs, then

dG○H ((ui, vj), (ul, vs)) = min{2, dH(vj, vs)}.

For more on graph products see [37].
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1.3 Complexity Theory

In this section, we give a brief review of some concepts from computational complexity

theory. Computational complexity theory is a branch of the theory of computing

that considers computational problems and their classifications according to their

difficulty. A computational problem is a problem that can be solved by a computer,

or equivalently, by an algorithm in finite number of steps. All problems we refer to in

this chapter are computational problems. Here, indeed the word “problem” applies

to an infinite collection of instances. For example, finding a minimum dominating set

for graphs is a problem, and an instance of it would be finding a minimum dominating

set for a specific graph (among infinitely many graphs that we could imagine). By an

algorithm, we mean a detailed step by step procedure designed for solving a problem.

Each algorithm, designed for solving a problem, starts from an initial state called its

input, and after performing a finite number of steps it terminates providing us with

an output. This output represents a solution to the problem.

There are different types of computational problems such as optimization prob-

lems and decision problems. In an optimization problem, we try to minimize or

maximize a parameter over a set of feasible solutions for a problem. For example,

finding the minimum order of a dominating set in a graph is an optimization prob-

lem. A decision problem is a problem whose answer (or output) is either Yes or No.

Many mathematical problems, including graph theory problems can be written as

a decision problem. For example, finding a minimum dominating set for a graph is

a computational optimization problem whose decision version would be: For some

positive integer k, is there a dominating set in a graph of order at most k or not? It

is a computational problem, as we can write a computer code that takes a graph G

as its input (for instance by encoding its adjacency matrix or its adjacency list), and

then consider all of the k-subsets of nodes in G to check if they form a dominating

set for G or not.

Algorithms can be time-consuming and when run on computers they also require

space considerations. Hence, for solving a problem we wish to design efficient al-

gorithms; that is, algorithms that consume a reasonable amount of time and space.

Here, we only consider the time-complexity of the problems. Suppose that we are

given a specific problem and an algorithm for solving that problem. Fix an encoding
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scheme for all the instances of this problem. The length of input or input length is

a positive integer-valued function on the set of all possible instances of the problem

that measures the size of the input for every instance of this problem, and is defined

in Section 4.2.1 of the book [30]. Usually in graph theory problems, the length of the

input is the number of nodes in a given graph.

Assume that we have a specific problem and an algorithm designed for solving

that problem. Also, suppose that we fix the input length n. The time-complexity

or complexity or running time of the algorithm is the number of steps for solving

the worst case input of the problem which is described as a function of n. In this

definition, we ignore the actual time for performing each step of an algorithm, as we

take it as the unit of time. For example, given an algorithm for solving the dominating

set problem, and a fixed positive integer n, a worst case input is a graph of order

n that requires the maximum number of steps for the algorithm to find a minimum

dominating set for the graph.

The time-complexity or the complexity of a problem is the complexity of the best

algorithm over the set of all possible algorithms designed for solving the problem.

Accordingly, decision problems are divided into some known classes such as P, NP,

and NP-complete. We provide a brief overview of these concepts that are commonly

used in the literature, and refer the reader to [30] for more formal and detailed

definitions.

We say that a decision problem is solvable in polynomial time if its complexity

is bounded above by a polynomial in terms of the length of input. The set of all

decision problems that are solvable in polynomial time is called P. Unfortunately,

as we see later on, there is no polynomial time algorithm known for the dominating

set problem (see [30, 34]). There are however many graph theory problems that are

known to be in P. For example, determining whether a graph is Eulerian or not

is a decision problem that is solvable in polynomial time. Namely, we can write a

computer code that takes a graph as input, and checks the degrees of its nodes. If the

degrees are all even, then the answer is Yes; otherwise, the answer is No. Similarly,

an algorithm is called a polynomial time algorithm, if the number of steps it takes

to get the output is bounded by a polynomial in terms of the length of the input.

Hence, equivalently a problem is in P, if there is a polynomial time algorithm that
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solves all the instances of the problem.

As we prefer to design efficient algorithms, determining whether or not a problem

is solvable in polynomial time is an important question. For some problems it is not

known whether a polynomial time algorithm exists or not, and it is highly possible

that there is no such algorithm. However, we can usually check the truth of a candi-

date solution for an instance of these problems in polynomial time. We say a decision

problem is in class NP, if for any instance of the problem for which the answer is Yes

and any certificate (or a candidate solution) for the answer, the truth of the certificate

can be checked in polynomial time (in terms of the length of the input). For example,

the dominating set problem is in NP. Given any graph G and a subset D of order at

most k, we can check in polynomial time if every node in V (G) ∖D has a neighbour

in D or not.

We have that P ⊆ NP, as given any certificate for an instance of a problem in P,

we can just ignore the certificate, and solve the problem in polynomial time. Hence,

intuitively the problems in NP sound harder that the problems in P, and it is a

well-known conjecture in computational complexity theory that P ≠ NP; that is,

P ⫋ NP, see [30]. However, there are some problems in NP that look to be more

difficult than all other problems in NP, and they are NP-complete problems. Before

going through the definition, we first define the concept of polynomial reduction.

A polynomial reduction, or simply a reduction, from a decision problem A to a

decision problem B is a polynomial time algorithm that transforms every instance I

of the problem A to an instance J of the problem B, such that I is a Yes instance of

A if and only if J is a Yes instance of B. If such a reduction from A to B does exist,

then we say that the problem A is polynomially reducible (or for short, reducible) to

the problem B, and we denote it by A ⪯ B. In such a case, if there is a polynomial

time algorithm for B, then it can be transformed to a polynomial time algorithm

for solving problem A. Thus, if A ⪯ B, and problem B is in P, then so is A. By

contraposition, we conclude that, if A ⪯ B and A is not in P, then B is not in P either.

Intuitively, it means that problem B is at least as hard as problem A. Note that the

relation “ ⪯ ” defined on the set of decision problems, is reflexive and transitive.

A problem A ∈ NP is called NP-complete if for each problem B in NP we have

that B ⪯ A. That is, all the problems in NP are reducible to A. The set of all
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NP-complete problems is denoted by NPC. By definition, NPC ⊆ NP. Intuitively,

a problem in NPC is as hard as any other problem in NP. Thus, a significant

advantage of defining reductions is to show the NP-completeness of a new problem,

by reducing from a problem that is already known to be NP-complete. More precisely,

suppose that we know that a problem A is NP-complete, and for a new problem B,

we show that B ∈ NP, and also A ⪯ B. Since the relation “ ⪯ ” is transitive, and for

all problems such as C ∈ NP, C ⪯ A, then we conclude that C ⪯ B, for each C ∈ NP.

Therefore, it follows that B is also NP-complete.

Stephen Arthur Cook in 1971 and Leonid Levin in 1973 [30] independently showed

the existence of NP-complete problems by proving the NP-completeness of the

Boolean Satisfiability Problem or the SAT problem. Since then there have been

many problems that have been proved to be NP-complete, such as the dominating

set problem. The 3-SAT problem (a special case of the SAT problem) is one of the

most famous problems that is known to be NP-complete, and has been widely used

to show the NP-completeness of other problems, using the reductions. We need to

provide some required concepts before stating the 3-SAT problem.

A Boolean variable is a variable that can take value either True or False. Assume

that U = {u1, u2, . . . , uk} is a finite set of Boolean variables. A 3-element set C =
{x1, x2, x3} in which each xi is an element of U such as ui or its negation (denoted by

ui), and we do not have both ui and ui in the same set C, is called a clause over U . By

a truth assignment for the variables in U , we mean a function f ∶ U → {True,False},

that assigns to each variable in U a truth value; that is, a value chosen from the set

{True,False}. Here is the statement of the 3-SAT problem.

Problem: 3-SAT

Instance: A finite set U = {u1, u2, . . . , un} of Boolean variables and a collection

C = {C1,C2, . . . ,Cm} of 3-element clauses over U .

Question: Is there any truth assignment for the variables in U such that every clause

in C contains at least one True assigned variable?

The decision version of the dominating set problem that we state below, was first

proven by Johnson [34] to be NP-complete, by a reduction from the 3-SAT problem.

Below we bring the formal statement of this problem and its NP-completeness proof,

as an example that demonstrates the above concepts and definitions. Although, today



17

we can find other proofs with different reductions for this theorem; see [30].

Problem: Dominating Set Problem

Instance: A graph G = (V (G),E(G)) of order n and a positive integer k ≤ n.

Question: Is there any dominating set such as D for G with ∣D∣ ≤ k?

Theorem 1 ([34]). The dominating set problem is NP-complete.

Proof. To show the NP-completeness of the dominating set problem, we need to do

two things. First, we have to show that it is in NP. This was discussed earlier as

an example of a problem in NP. Second, we must show that there is a reduction

from a problem in NPC to the dominating set problem. We will show that there is

a polynomial time reduction from the 3-SAT problem to the dominating set problem

as follows.

Figure 1.3: The graph G(C).

Suppose that we are given an instance of the 3-SAT problem; that is, a finite

set U = {u1, u2, . . . , un} of Boolean variables and a collection C = {C1,C2, . . . ,Cm}
of 3-element clauses over U . We then construct a graph called G(C) as follows.

Corresponding to each variable ui ∈ U , we make a 3-cycle with nodes ui, ui, and vi.

For each clause Ci = {ui1 , ui2 , ui3} ∈ C, we add a new node, called Ci, and then we join

the node Ci to the nodes ui1 , ui2 , and ui3 . Therefore, we have a graph G(C), consisting

of 3n+m nodes, that is a polynomial of the length of the input. For example, assume

that U = {u1, u2, u3, u4, u5}, and C = {C1,C2,C3,C4,C5}, where C1 = {u1, u2, u3},

C2 = {u1, u4, u5}, C3 = {u2, u3, u4}, C4 = {u1, u4, u5}, and C5 = {u2, u4, u5}. Then the

graph G(C) that we defined above is shown in Figure 1.3.

We want to show that U and C is a Yes instance of the 3-SAT problem if and only

if G(C) has a dominating sat of order at most n (that is, G(C) is a Yes instance of

the dominating set problem for k = n).
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First, suppose that there is a truth assignment for the variables in U such that

every Ci ∈ C contains at least one True-assigned variable. We then define a set

S ⊆ V (G(C)) as follows. For 1 ≤ i ≤ n, if ui has value True, then we add the node

ui to S; otherwise, we add ui to S. Thus, S is set of order n in G(C), such that

for each triangle of G(C) such as ui, ui, vi, either ui or ui is in S. Therefore, set S

dominates all the ui’s, ui’s, and vi’s in G(C). It remains to show that S dominates

the nodes Ci’s as well. However, by assumption each clause Ci contains at least

one true-assigned value variable, that is by definition corresponding to a node in S.

Thus, S is a dominating set of order n for G(C). For example, in the specific instance

that we mentioned above, f ∶ U → {True,False}, with f(u1) = False, f(u2) = True,

f(u3) = True, f(u4) = True, and f(u5) = False, is a satisfying truth assignment. Also,

S = {u1, u2, u3, u4, u5} is a dominating set for the graph G(C). We show the nodes in

S with a circles around them in Figure 1.3.

Now, suppose that G(C) has a dominating set S of order at most n. Since every

node vi, for 1 ≤ i ≤ n must be dominated by at least one node in S, then it implies that

∣S∣ ≥ n. Hence, we have that ∣S∣ = n, and there must be at least one node from each

triangle in S. Therefore, we do not have any of the nodes Ci’s in S, and each Ci must

have at least one neighbour in S. We define a truth-assignment f ∶ U → {True,False}
as follows. For 1 ≤ i ≤ n, if ui ∈ S, then we define f(ui) = True; otherwise, we define

f(ui) = False. Since every node Ci must have a neighbour in S, and we assigned

a value of True to any variable corresponding to a node in S, it then implies that

each clause Ci contains at least one True-assigned variable. Thus, U and C is a Yes

instance of the 3-SAT problem.

The argument above shows a polynomial reduction from the 3-SAT problem to

the dominating set problem, and thus, the proof follows.

For some problems, for example the Subset-Sum problem (as stated below), the

input contains a list of numerical parameters. In such a case, we can have a positive

integer-valued function on the set of all instances of the problem that measures the

maximum numeric parameter in the given input list for every instance of the problem,

and is defined in Section 4.2.1 of the book [30]. We call this function the maximum of

input. A number problem is a problem in which the input contains a list of numerical

parameters such that the maximum of input is not bounded polynomially above by
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the length of input. For example, the following problem which is called the Subset-

Sum problem is a number problem.

Problem: Subset-Sum

Instance: A finite multi-set X = {a1, a2, . . . , an} of positive integers, and a positive

integer t.

Question: Is there any subset S ⊆X such that the numbers in S add up to t?

The Subset-Sum problem is an example of a number problem, since the numbers in

a given set X can be exponentially large in the length of input. The number problems

that are NP-complete are divided into two classes: the weakly NP-complete problems

and the strongly NP-complete problems. A number problem that is NP-complete,

even when restricted to the numbers that are bounded by a polynomial in terms of the

length of the input, is called a strongly NP-complete problem, or equivalently, NP-

complete problem in the strong sense; Otherwise, it is called weakly NP-complete.

For example, it is known that the Subset-Sum problem is weakly NP-complete, while

the 3-Partition problem that is stated below is strongly NP-complete.

Problem: 3-Partition

Instance: A finite multi-set X = {a1, a2, . . . , a3n} of positive integers, and a positive

integer B where ∑3n
i=1 ai = nB, and B/4 < ai < B/2, for 1 ≤ i ≤ 3n.

Question: Is there any partition of X into n triples such that in each triple the

elements add up to B?

Usually a graph theory problem that is NP-complete is automatically strongly

NP-complete, since there is only one parameter in the input which is often bounded

by the number of the nodes in the given graph that is the length of the input; see

[30].

1.4 Chapter Overview

Many of the results in this thesis appeared in [16, 17, 18, 46, 51]. The thesis is

organized as follows. In Chapter 2, we first define graph burning and the burning

number of a graph, and we investigate the burning number as the minimum of i-

burning numbers. We then consider the fundamental facts about the burning number

such as bounds on the burning number of disconnected graphs, and the equivalence
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of graph burning and covering problems. We also give a characterization for the

burning number of a graph in terms of its subtrees and its spanning subtrees, where

the graph is connected. We provide a characterization for the graphs with burning

number 2, and we find the burning number of some specific graphs such as paths,

cycles, and complete bipartite graphs. Moreover, we consider the monotonicity of

the burning number on the specific isometric subgraphs of a graph, such as isometric

subtrees. We then provide some tight bounds on the burning number in terms of

radius and diameter. We show a strong connection between the burning number and

the distance domination, that we use it for finding bounds on the burning number,

as well as proving Nordhaus-Gaddum type-results on the burning number of a graph

and its complement. We present a bound on the burning number of a graph in terms

of its order, and we suggest a conjecture on the best possible upper bound for the

burning number of a graph in terms of its order. We determine the burning number

in the Iterated Local Transitive model for social networks. We finish Chapter 2 by

considering the burning number of graph products. We find asymptotic results on

the burning number of Cartesian grids, toroidal grids, strong grids, and hypercube

graphs. We state a conjecture on the burning number of hypercube graphs. We

present bounds on the burning number of the Cartesian, strong, and lexicographic

product of graphs.

In Chapter 3, we prove that the Graph Burning problem is NP-complete even

for acyclic graphs with maximum degree three, and we find the burning number of

perfect binary trees. Then we state a conjecture for finding a lower bound on the

burning number of a tree, and we prove the truth of this conjecture in some specific

cases, for instance, for spider graphs SP (s, r) with s ≥ r. As a result, we find the

exact value of the burning number of spider graphs SP (s, r) with s ≥ r. The Graph

Burning problem is shown to be NP-complete for spider graphs. We also prove that

Graph Burning is NP-complete for path-forests. We finish Chapter 3 by presenting

two algorithms that find the burning number of path-forest and spider graphs with

bounded parameters.

In Chapter 4, we first consider the burning number of the random geometric

graphs. Using Poisson random processes, we then introduce a random variation of

graph burning, called Poisson random burning. We consider this random process for
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the graphs in general, and for paths in particular.

In Chapter 5, we consider the competitive diffusion game on graphs that was our

first motivation for defining graph burning. We first consider the two-player case of

this game on some specific graphs such as paths, cycles, trees, unicyclic graphs, and

Cartesian grids. Then we present some results on the k-player case of this game,

where k ≥ 3.

Finally, we provide a conclusion on the thesis, and we finish the thesis by sug-

gesting some further directions for the future work on graph burning and the burning

number of graphs, and the competitive diffusion game on graphs.



Chapter 2

Graph Burning

In this chapter, we explore the core properties of the burning number, ranging from

characterizations, bounds, to computing the burning number on certain kinds of

graphs. We first state the formal definition of the burning process and the burning

number of a graph.

Graph burning is a discrete-time graph process that is defined on the node set of a

simple finite graph G as follows. There are discrete time-steps or rounds. Throughout

the process, each node is either burned or unburned. Initially at time t = 0 all the

nodes are unburned. Then in each round t ≥ 1, we choose one unburned node to burn,

if such a node is available. Once a node is burned in round t, in round t + 1, each of

its unburned neighbours becomes burned. If a node is burned, then it remains in that

state until the end of the process. The process ends when all nodes are burned. The

burning number of a graph G, written by b(G), is the minimum number of rounds

needed for the burning process to end.

For example, b(Kn) = 2, for n ≥ 2. To see this, first note that for each graph with

at least two nodes, we need at least two burning steps, since we can not burn two

distinct nodes at the first step. Thus, for n ≥ 2, we have that b(Kn) ≥ 2. On the other

hand, since each node in Kn is a universal node, in any burning process for Kn all

nodes will receive the fire in the second step. Therefore, two steps for burning Kn is

efficient; that is, b(Kn) = 2, when n ≥ 2. Note that our argument here implies that

K1 is the only graph that requires only one step to be burned, and for a graph G

with at least two nodes, we have that b(G) ≥ 2.

Suppose that in the process of burning a graph G, we burn the whole graph G in

k steps. For each i, 1 ≤ i ≤ k, we denote the node that we choose to burn directly in

the i-th step by xi. We call such a node a source of fire. The sequence (x1, x2, . . . , xk)
is called a burning sequence for G. With this notation, the burning number of G is

the length of a shortest burning sequence for G; such a burning sequence is referred

22
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to as optimum. For example, for the path P4 with node representation v1, v2, v3, v4

the sequence (v2, v4) is an optimum burning sequence; see Figure 2.1 (the open circles

represent the fire sources).

Figure 2.1: Burning the path P4.

As we mention in Theorem 23 and we can see in Lemma 53 in Chapter 3, the

burning number of a spider graph SP (r, r) equals r + 1; that is, radius plus one.

Moreover, an optimum burning sequence for SP (r, r) could be started by choosing

the spider head, that in this case is the centre of the graph, as the first fire source. In

such a case, choosing the rest of the fire sources is not a concern, as it does not make

the speed of burning faster. In general, for any graph G with b(G) = rad(G) + 1, by

burning a central node of G every node in G will be burned after rad(G) + 1 steps,

and therefore, we do not need to care for the best possible choices for the rest of the

fire sources. That is, for i ≥ 2, we can choose the i-th fire source to be any unburned

node in stage i−1, and still the graph G will be burned optimally in rad(G)+1 steps.

Also, as we will see in Conjecture 41 for the hypercube graphs, we think that the

burning number of the hypercube graph Qn equals k = ⌈n2 ⌉ + 1, and is achieved by a

burning sequence (x1, x2, . . . , xk) in which d(x1, x2) = n. In other words, the selection

of xi, for i ≥ 2 is not a concern.

In general, assume that for a fixed positive integer i, we define a new graph process

for G similar to the graph burning process, but we only change one of the rules: We

only burn i fire sources in the first i steps of the process, and we let the fire to be spread

by the same rules to the rest of the unburned nodes. We call this new process an

i-graph burning, or simply an i-burning process. We define bi(G) to be the minimum

number of steps that we need to burn the whole graph G in an i-burning process for

G. If in an i-burning process for G we denote the node that we choose to burn in

the j-th step by xj for 1 ≤ j ≤ i, then (x1, x2, . . . , xi) is called an i-burning sequence

for G. An i-burning sequence for G is referred to be optimum if it corresponds to an

optimum i-burning process for G.

With this notation, we can easily see that b1(G) = rad(G) + 1, since by burning
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a central node in G everything in G will be burned after rad(G) more steps, and

by definition, rad(G) is the minimum eccentricity over the node set of G. Moreover,

we can see that bi(G) ≥ bi+1(G) for i ≥ 1. Namely, by definition, for any optimum

(i + 1)-burning sequence for G such as (x1, x2, . . . , xi+1), the sequence (x1, x2, . . . , xi)
forms an i-burning sequence for G. Consequently, we have the following lemma.

Lemma 2. For any graph G we have that

b(G) = inf
i≥1
bi(G).

As we prove in Chapter 3, finding the burning number of a graph G is a difficult

problem. Hence, finding the minimum number i for which b(G) = bi(G) is difficult

too. Thus, in this thesis, we only consider the burning number of a graph G rather

than considering bi(G)’s.

2.1 Properties of the Burning Number

In this section, we present some basic facts and bounds for the burning number, as

well as some useful techniques for finding these bounds. We characterize the graphs

with burning number 2, present an alternative way for defining the burning process in

terms of subtrees of a graph, give a general characterization for the burning number

in terms of the burning number of trees, find the burning number of paths and cycles,

and we show the relation between the distance domination numbers of a graph and its

burning number. The relationship with distance domination leads to some interesting

bounds on the burning number.

Suppose that (x1, x2, . . . , xk) is a burning sequence for a given graph G. For

1 ≤ i ≤ k, the fire started at xi will burn only all the nodes within distance k − i from

xi by the end of the k-th step. On the other hand, every node v ∈ V (G) must be

either a source of fire, or burned from at least one of the sources of fire by the end

of the k-th step. In other words, every node of G must be an element of Nk−i[xi],
for some 1 ≤ i ≤ k. Moreover, for each pair i and j, with 1 ≤ i < j ≤ k, we must have

d(xi, xj) ≥ j − i. Since otherwise, if d(xi, xj) = l < j − i, then xj will be burned at

stage l + i (< j), which is a contradiction. Therefore, we have the following useful

observation.
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Lemma 3. A sequence (x1, x2, . . . , xk) forms a burning sequence for a graph G if and

only if for each pair i and j with 1 ≤ i < j ≤ k, we have that d(xi, xj) ≥ j − i, and the

following set equation holds:

Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G). (2.1)

A covering of a graph G is a set of subsets of the nodes of G whose union is V (G).
The above lemma, shows that the burning problem is basically a covering problem

using a set of closed neighbourhoods with a restriction on their radius. Hence, it

seems that by finding a covering for a graph G using a limited number of connected

subgraphs with restricted radius, we may find a bound on the burning number of G,

as the following theorem shows.

Theorem 4. If {C1,C2, . . . ,Ct} is a collection of connected subgraphs in a graph G,

each of radius at most k, which cover all the nodes of G, then b(G) ≤ t + k.

Proof. We define a burning sequence (x1, x2, . . . , xt′+k′), where t′ ≤ t and k′ ≤ k, for

G as follows. Let x1 be a centre of the subgraph C1. Then for i ≥ 2, we let xi be a

central node in Cj, with j ≥ i, if none of the central nodes of Cj are burned before

the i-th step, where j is the smallest index that satisfies this condition. We continue

to choose xi’s by the above rule until at some step t′ ≤ t, by burning x1, x2, . . . , xt′ ,

each Ci, 1 ≤ i ≤ t, contains a burned centre.

Now, for j ≥ 1, we choose xt′+j to be a node in G that is not burned before the

(t′ + j)-th step. Since the radius of each Ci is at most k, after k′ ≤ k steps every node

in G must be burned. Thus, b(G) ≤ t′ + k′ ≤ t + k.

Below we present another bound for the burning number of a graph using cover-

ings. The proof is analogous to the one of Theorem 4.

Theorem 5. If {C1,C2, . . . ,Ct} is a covering for the nodes of a graph G, where each

Ci is a connected subgraph of radius at most k − i, and t ≤ k, then b(G) ≤ k.

Proof. Let x1 be a centre of the subgraph C1. Then for i ≥ 2, we let xi be a central

node in Cj, with j ≥ i, if none of the central nodes of Cj are burned before the i-th

step, where j is the smallest index that satisfies this condition. We continue to choose

xi’s by the above rule until at some step k′ ≤ k, by burning x1, x2, . . . , xk′ , each Ci,
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1 ≤ i ≤ k, contains a burned centre. Since the radius of each Ci is at most k − i, after

k steps every node in G must be burned. Thus, b(G) ≤ k.

The following corollary is sometimes helpful.

Corollary 6. If (x1, x2, . . . , xk) is a sequence of nodes in a graph G, such that

Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G), then b(G) ≤ k.

Proof. Set Ci = Nk−i[xi], for 1 ≤ i ≤ k, and apply Theorem 5.

The following theorem gives us a slightly different covering technique than Theo-

rem 4, and we use it for finding upper bounds on the burning number of graphs. The

idea of the proof is similar to the proof of Theorem 4 though.

Theorem 7. If C1,C2, . . . ,Ct+1 is a collection of connected subgraphs in a graph G

with radius at most k, k+1, . . . , k+ t, respectively, which cover all the nodes of G, then

b(G) ≤ k + t + 1.

Proof. We define a burning sequence (x1, x2, . . . , xt′+k′), with t′ ≤ t + 1 and k′ ≤ k, for

G as follows. Let x1 be a centre of the subgraph Ct+1. Then for i ≥ 2, we let xi be a

central node in Cj, with 1 ≤ j ≤ t + 1, if none of the central nodes of Cj are burned

before the i-th step, where j is the largest index that satisfies this condition. We

continue to choose xi’s by the above rule until at some step t′ ≤ t + 1, by burning

x1, x2, . . . , xt′ , each Ci, 1 ≤ i ≤ t + 1, contains a burned central node.

Now, for j ≥ 1, we choose xt′+j to be a node in G that is not burned before the

(t′+ j)-th step. Since the radius of each Ci is at most k+ i−1, after k′ ≤ k steps every

node in G must be burned. Thus, b(G) ≤ t′ + k′ ≤ t + 1 + k = k + t + 1.

The following theorem characterizes the graphs with burning number 2.

Theorem 8. A graph G of order n satisfies b(G) = 2 if and only if G is of order at

least 2, and has maximum degree n − 1 or n − 2.

Proof. Suppose that G is a graph of order n with b(G) = 2, and (x1, x2) is an optimum

burning sequence for G. Clearly, n = ∣V (G)∣ ≥ ∣{x1, x2}∣ = 2, and by Equation (2.1)

we know that V (G) = N[x1] ∪ {x2}. It follows that every node in V (G) ∖ {x1, x2} is

adjacent to x1, since these nodes can only receive the fire from x1, and have to be
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burned in the second step. There are two possibilities for x2: either x2 is adjacent to x1

or not. If x2 ∈ N[x1], then it implies that ∆(G) = d(x1) = n−1. If x2 /∈ N[x1], then we

must have ∆(G) ≥ d(x1) = n−2. In both cases, we conclude that ∆(G) ∈ {n−1, n−2}.

Conversely, suppose that G is a graph of order n ≥ 2 with maximum degree

n − 1 or n − 2. Since G has at least two nodes, then we have that b(G) ≥ 2. If

∆(G) = n − 1 = d(u), for some node u ∈ V (G), and v ≠ u is another node in V (G)
(note that ∣V (G)∣ ≥ 2), then (u, v) must be a burning sequence for G, as u is a

universal node. If ∆(G) = n − 2 = d(u), for some node u ∈ V (G), then there is a

unique node v ≠ u that is not adjacent to u. Therefore, V (G) = N[u] ∪ {v}. Hence,

by Lemma 3, the sequence (u, v) is a burning sequence for G. In either case we

conclude that b(G) ≤ 2. Thus, we conclude that b(G) = 2.

In the thesis, we mostly consider the burning problem for connected graphs. Note

that as it is the case for many graph parameters, the burning number of a disconnected

graph G with components G1,G2, . . . ,Gt, where t ≥ 2, does not necessarily satisfy the

equality

b(G) = b(G1) + b(G2) +⋯ + b(Gt).

For example, let G be the disjoint union of t paths of order 2.

Figure 2.2: A burning sequence of length t + 1 for G.

In order to burn all the components in G we have to choose at least one fire source

from each of them. Thus, b(G) ≥ t. On the other hand, let b(G) = j for some j ≥ t.
Also, let Gi be the last component from which we choose a fire source, where 1 ≤ i ≤ t.
Since P2 has two nodes, then we need exactly two steps for burning each component.

Hence, the rest of the components are all burned by the end of the j-th step, and the

last node in Gi will be burned by one more step. Therefore, G can not be burned in
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t steps. Thus, we conclude that

b(G) = t + 1 <
t

∑
i=1

b(Gi) = 2t,

as we can see an optimum burning sequence for G with t + 1 burning steps in Figure

2.2. Generally, we have the following theorem for the burning number of disconnected

graphs.

Theorem 9. Let G1,G2, . . . ,Gt, with t ≥ 2 be the components of a disconnected graph

G. Then we have that

t ≤ b(G) ≤
t

∑
i=1

b(Gi).

Proof. The lower bound is true, as for burning all the components, we need to choose

at least one fire source from each of them. The upper bound holds, since by burning

the nodes in a burning sequence for Gi, in order, for 1 ≤ i ≤ t, we can burn all the

nodes in G in exactly ∑t
i=1 b(Gi) steps.

Note that both the lower bound and the upper bound in the above theorem is

achieved by a disconnected graph G in which each component is an isolated node.

The upper bound in the above theorem also is obtained by a graph G = G1⊍G2,

where G1 is an isolated node, and G2 is a path of squared order n2. The proof of

this is in Chapter 3, where we talk about the burning number of path-forests. Let

G be a disconnected graph with components G1,G2, . . . ,Gt, with t ≥ 2, in which G1

is a graph of radius t − 1, and for i ≥ 2, Gi is a single node. Then the lower bound

in Theorem 9 is achieved by G, as by burning a central node of G1 at the first step,

and burning the rest of the components in the next t − 1 steps, the entire G will be

burned. This follows since every node in G1 is within distance t − 1 from a central

node of G1.

Here is another lower bound for the burning number of the disconnected graphs.

Theorem 10. If G is a disconnected graph with components G1,G2, . . . ,Gt, then

b(G) ≥ max{b(Gi) ∶ 1 ≤ i ≤ t}.

Proof. Assume that b(G) = k, and (x1, x2, . . . , xk) forms a burning sequence for G.
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By Lemma 3, we know that

V (Gi) ⊂ V (G) = Nk−1[xi] ∪ . . . ∪N0[xk],

for 1 ≤ i ≤ t. Note that by proof of Theorem 9, at least one of the xj’s must be from

Gi. Suppose that {x1, x2, . . . , xk}∩V (Gi) = {xi1 , xi2 , . . . , xil}, for some 1 ≤ l ≤ k, where

ij is the j-th smallest index among the elements in {x1, x2, . . . , xk} ∩ V (Gi). We can

see that for 1 ≤ j ≤ l, ij ≥ j. Therefore, {Nk−ij[xij]}lj=1 forms a covering of Gi such

that k − ij ≤ k − j, for 1 ≤ j ≤ l. Thus, by Theorem 5, we conclude that b(Gi) ≤ k.

Since this is true for any 1 ≤ i ≤ t, we have that b(G) ≥ max{b(Gi) ∶ 1 ≤ i ≤ t}.

Note that in Theorem 8, we do not need to assume that G is connected. Hence,

Theorem 8 together with Theorem 9 helps us to characterize the disconnected graphs

with burning number 2.

Corollary 11. Let G be a disconnected graph. Then b(G) = 2 if and only if G has

exactly two components, say G1 and G2, such that G1 has a universal node and G2 is

a single node.

Proof. Suppose that G is a disconnected graph of order n with b(G) = 2. By the lower

bound in Theorem 9, we conclude that G must have exactly two components such as

G1 and G2. Since every graph with a universal node is connected, then Theorem 8

implies that ∆(G) = n − 2 = d(u), for some node u ∈ V (G). Thus, there must be a

node v ≠ u that is not adjacent to u. It implies that v is an isolated node, otherwise,

it must be connected to a neighbour of u which is a contradiction. Hence, without

loss of generality, we conclude that V (G1) = N[u] and G2 = {v}.

Conversely, assume that G = G1 ⊍G2, such that G1 has a universal node such as

u, and G2 = {v}. Then Theorem 8 and Theorem 9, imply that (u, v) is an optimum

burning sequence for G. Thus, the proof follows.

In the rest of the thesis we assume that all graphs are connected, unless we specify

that we talk about a disconnected graph. As another simple example, and a corollary

of Theorem 8, we can find the burning number of complete bipartite graphs as follows.

Theorem 12. Let G = Km,n be a complete bipartite graph of order m + n, where

m,n ≥ 1. If min{m,n} ≥ 3, then b(G) = 3; otherwise, b(G) = 2.
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Proof. If m,n ≥ 3, then we know that the maximum degree of such a complete bi-

partite graph is not in {m + n − 1,m + n − 2}. Thus, by Theorem 8, we have that

b(Km,n) > 2, where m,n ≥ 3. On the other hand, let (x1, x2, x3) be a sequence of

nodes in G such that all xi’s are in the same part of G. Since N2[x1] = G, then by

Equation (2.1), we conclude that (x1, x2, x3) is a burning sequence for G. Therefore,

b(G) = 3.

If one of m and n equals one, then it implies that G is a star, and the central

node of the star is a node of degree ∆(G)−1. Therefore, by Theorem 8, we have that

b(G) = 2. If min{m,n} = 2, then ∆(G) =m+n−2. Thus, by Theorem 8, we conclude

that b(G) = 2.

We note that in Chapter 3, we show that the burning problem is NP-complete

for bipartite graphs in general. The following theorem provides an alternative char-

acterization of the burning number. The depth of a node in a rooted tree T is the

number of edges in a shortest path from the node to the tree’s root; in other words,

the distance between the node and the root of T . The set of the nodes in T that have

depth i is called the i-th level of the rooted tree. The height of T is the greatest depth

in T . A rooted tree partition of G is a collection of rooted trees which are subgraphs

of G, with the property that the node sets of the trees partition V (G).

Theorem 13. Burning a graph G in k steps is equivalent to finding a rooted tree

partition into k trees T1, T2, . . . , Tk, with heights at most (k − 1), (k − 2), . . . ,0, respec-

tively such that for every 1 ≤ i, j ≤ k the distance between the roots of Ti and Tj is at

least ∣i − j∣.

Proof. Assume that (x1, x2, . . . , xk) is a burning sequence for G. For all 1 ≤ i ≤ k, after

xi is burned, in each round t > i those unburned nodes of G in the (t−i)-neighborhood

of xi will burn. Hence, any node v is burned by receiving fire via a shortest path of

burned nodes from some fire source xi (this path can be of length zero in the case

that v = xi). Hence, we may define a surjective function f ∶ V (G) → {x1, x2, . . . , xk},

with f(v) = xi if v receives fire from xi, where i is chosen with the smallest index

if needed. Now {f−1(x1), f−1(x2), . . . , f−1(xk)} forms a partition of V (G) such that

G[f−1(xi)] (that is, the subgraph induced by f−1(xi)) forms a connected subgraph of

G. Since every node v in f−1(xi) receives the fire spread from xi through a shortest
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path between xi and v, by deleting extra edges in G[f−1(xi)] we can make a rooted

subtree of G, called Ti with root xi. Since every node is burned after k steps, the

distance between each node on Ti and xi is at most k − i. Therefore, the height of Ti

is at most k − i.

Figure 2.3: A rooted tree partition.

Conversely, suppose that we have a decomposition of the nodes of G into k rooted

subtrees T1, T2, . . . , Tk, such that for each 1 ≤ i ≤ k, Ti is of height at most k − i.
Assume that x1, x2, . . . , xk are the roots of T1, T2, . . . , Tk, respectively, and for each

pair i and j, with 1 ≤ i < j ≤ k, d(xi, xj) ≥ j − i. Thus, by Lemma 3, (x1, x2, . . . , xk)
must be a burning sequence for G.

Figure 2.3 illustrates Theorem 13. The burning sequence is (x1, x2, x3). We have

shown the decomposition of G into subgraphs T1, T2, and T3 based on this burning

sequence by drawing dashed curves around the corresponding subgraphs. Each node

has been indexed by a number corresponding to the step that it is burned.

The following corollary is useful for determining the burning number of a graph,

as it reduces the problem of burning a graph to burning its spanning trees. Note that

for a spanning subgraph H of G, we have that b(G) ≤ b(H). This follows since by

Equation (2.1), every optimum burning sequence for H induces a node covering for

V (G) = V (H), and therefore, by Corollary 6, induces a burning sequence of at most

the same length for G.
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Corollary 14. For a graph G we have that

b(G) = min{b(T ) ∶ T is a spanning tree of G}.

Proof. By Theorem 13, we assume that T1, T2, . . . , Tk is a rooted tree partition of G,

where k = b(G), derived from an optimum burning sequence for G. If we take T to

be a spanning subtree of G obtained by adding edges between the Ti’s which do not

induce a cycle in G, then b(T ) ≤ k = b(G) ≤ b(T ), where the second inequality holds

since T is a spanning subgraph of G.

A subgraph H of a graph G is called an isometric subgraph if for every pair of

nodes u and v in H, we have that dH(u, v) = dG(u, v). For example, a subtree of a

tree is an isometric subgraph. As another example, if G is a connected graph and

P is a shortest path connecting two nodes of G, then P is an isometric subgraph

of G. Let W5 be the wheel graph formed by adding a universal node to a 5-cycle.

Then the 5-cycle C5 is an isometric subgraph of W5, while b(C5) = 3 > 2 = b(W5).
Thus, we conclude that the burning number is not monotonic even on the isometric

subgraphs of a graph. However, the following theorem shows that the burning number

is monotonic on the isometric subgraphs in certain cases.

Theorem 15. Suppose that H is an isometric subgraph of a graph G such that, for any

node x ∈ V (G) ∖ V (H), and any positive integer r, there exists a node fr(x) ∈ V (H)
for which Nr[x] ∩ V (H) ⊆ NH

r [fr(x)]. Then we have that b(H) ≤ b(G).

Proof. It suffices to show that for any optimum burning sequence such as (x1, . . . , xk)
for G we can assign a burning sequence of length at most k to H. Without loss of

generality, we may assume that ∣V (H)∣ > k (otherwise, H can be burned in at most

∣V (H)∣ ≤ k steps).

We define the function f ∶ {x1, x2, . . . , xk} → V (H) as follows. For 1 ≤ i ≤ k,

if xi ∈ V (H), then we define f(xi) = xi; otherwise, by assumption, there is a node

fk−i(xi) ∈ V (H) for which Nk−i[xi] ∩ V (H) ⊆ NH
k−i[fk−i(xi)]. In this case, we define

f(xi) = fk−i(xi). Since H is an isometric subgraph of G, then for each node xi with

f(xi) = xi, and for every node v ∈ Nk−i[xi]∩V (H), we have that dH(xi, v) = dG(xi, v) ≤
k − i. Thus, if f(xi) = xi, then Nk−i[xi] ∩ V (H) = NH

k−i[xi] = NH
k−i[f(xi)]. Hence, we
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derive that

V (H) = V (G) ∩ V (H)

= (Nk−1[x1] ∪ . . . ∪N0[xk]) ∩ V (H)

= (Nk−1[x1] ∩ V (H)) ∪ . . . ∪ (N0[xk] ∩ V (H))

⊆ NH
k−1[f(x1)] ∪ . . . ∪NH

0 [f(xk)].

Therefore, {Nk−i[f(xi)]}ki=1 forms a covering for the node set of H, with k closed

neighbourhoods. Thus, by Corollary 6, we conclude that b(H) ≤ b(G).

The following theorem shows that the isometric subtrees of a graph satisfy the

conditions in Theorem 15.

Theorem 16. For any isometric subtree H of a graph G, we have that b(H) ≤ b(G).

Proof. By Theorem 15, it suffices to show that for any node x ∈ V (G) ∖ V (H), and

any positive integer r, there exists a node fr(x) ∈ V (H) for which Nr[x] ∩ V (H) ⊆
NH
r [fr(x)]. Fix x ∈ V (G) ∖ V (H).

Set Xr = Nr[x]∩V (H). If Xr is empty, then we can choose fr(x) to be any node in

H. If Xr = {v}, then we take fr(x) = v, and in this case, Nr[x]∩V (H) = {v} ⊆ NH
r [v].

Hence, we assume that ∣Xr∣ ≥ 2. Since H is a tree, there is a unique path (consisting

of the nodes in H only) between every pair of distinct nodes in Xr ⊆ V (H). Let yr

and zr be two nodes in Xr with the maximum distance over all possible pairs of nodes

in Xr, and let wr be a node in H that is of almost equal distance with respect to yr

and zr. That is, d(wr, yr) = d(wr, zr), if d(yr, zr) is even, and d(wr, zr) = d(wr, yr) + 1

(without of loss of generality) in the case that d(yr, zr) is odd. We claim that for each

v ∈Xr, d(v,wr) ≤ r.
Since H is an isometric subtree of G, the length of the path between yr and zr

in H is equal to d(yr, zr) in G. Thus, we have that d(yr, zr) = d(wr, yr) + d(wr, zr) ≤
d(x, yr) + d(x, zr). On the other hand, we have that d(v,wr) ≤ d(zr,wr). To show

this, we have to consider two possibilities; either v is on the path in H that connects

zr to wr, or it is not. If the former holds, then d(v,wr) ≤ d(zr,wr). If the latter holds,

then suppose u is the first node that appears in both paths that connect v and zr to
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wr. If u = wr, then we have that

d(v,wr) + d(wr, zr) = d(v, zr) ≤ d(yr, zr) = d(yr,wr) + d(wr, zr).

This implies that d(v,wr) ≤ d(yr,wr) ≤ d(zr,wr). If u ≠ wr, then we have that

d(v,wr) + d(wr, yr) = d(v, yr) ≤ d(zr, yr) = d(zr,wr) + d(wr, yr).

Hence, we again conclude that d(v,wr) ≤ d(zr,wr). Consequently, we have that

d(v,wr) ≤ d(zr,wr) ≤
d(yr, zr) + 1

2

≤ d(yr, x) + d(zr, x) + 1

2

≤ r + r + 1

2
= r + 1

2
.

Since d(v,wr) is an integer, it implies that d(v,wr) ≤ r. Therefore, if we define

fr(x) = wr, then Xr ⊆ NH
r [fr(x)]. Thus, the proof follows.

The above inequality however may fail for non-isometric subtrees. For example,

let H be a path of order 5, and form G by adding a universal node (that is, one joined

to all others) to H. Then b(H) = 3, but b(G) = 2.

The following corollary is a consequence of Theorem 16.

Corollary 17. If H is a subtree of a tree T , then we have that b(H) ≤ b(T ).

Proof. It is derived from Theorem 16, since H is an isometric subtree of T .

Here is a generalization of Theorem 16.

Corollary 18. If H is an isometric subforest of a graph G, then we have that b(H) ≤
b(G).

Proof. It is derived from Theorem 15, since H is an isometric subgraph of G with

the desired property. Namely, every component of H is an isometric subtree of a

component of G. Hence, by Theorem 16, we conclude that H satisfies the conditions

in Theorem 15. Note that in proof of Theorem 15, we do not need the connectivity

as part of the assumption.
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The burning number of paths is derived in the following result.

Theorem 19. For a path Pn on n nodes, we have that b(Pn) = ⌈n1/2⌉.

Proof. Suppose that (x1, x2, . . . , xk) is an optimum burning sequence for Pn. By

Equation (2.1), and the fact that for a node v in a path, ∣Ni[v]∣ ≤ 2i+1 we derive that

(2(k − 1) + 2(k − 2) + . . . + 2(1)) + k

= 2(k(k − 1)
2

) + k

= k2 ≥ n.

Since k is the minimum number satisfying this inequality, we conclude that b(Pn) ≥
⌈n1/2⌉.

Now, assume that k = ⌈n1/2⌉, and let Pn ∶ v1, v2, . . . , vn. Since n = 1 + 3 +⋯ + 2k −
3 + (n − (k − 1)2), then we have a partition for the nodes of Pn into paths of orders

1,3, . . . ,2k−3, and n−(k−1)2. We can choose the paths in such a partition to appear

from the right to the left of Pn in the following order:

P1, P3, . . . , P2k−3, Pn−(k−1)2 .

Now, for 0 ≤ i ≤ k − 2, we choose xk−i = vn−i2−i. Also, if n ≥ (k − 1)2 + k, we take

x1 = vn−(k−1)2−(k−1); otherwise we take x1 = v1. We can see that, every node xi, for

2 ≤ i ≤ k, is the centre of the path of order 2(k−i)+1 that appears in the given partition

for the nodes of Pn. Besides, the node x1 is a node in the subpath Pn−(k−1)2 such that

d(x1, xj) ≥ j − 1, for 2 ≤ j ≤ k, and every node in the path Pn−(k−1)2 is within distance

at most (k − 1) from x1. Therefore, by Lemma 3, we conclude that (x1, x2, . . . , xk) is

a burning sequence for Pn. Hence, b(Pn) ≤ k. Thus, b(Pn) = ⌈n1/2⌉.

Note that since every subtree of a path is a subpath, then by Theorem 13, burning

a path Pn is equivalent to decomposing Pn into some rooted subpaths that the root

of each of them is a fire source. In the above proof, the optimum burning sequence

that we defined is indeed the sequence of the roots of such a path-decomposition for

Pn. More precisely, for 2 ≤ i ≤ k, the fire source xi is the middle node of a path of

order 2(k − i) + 1, and x1 is a node of a path of order at most 2(k − 1) + 1 (depending
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on whether or not n is a square number) in such a path decomposition for Pn. In

particular, if n is a square number, then burning Pn in k = n1/2 steps is equivalent to

decomposing Pn into paths of orders 1,3, . . . ,2k − 1.

We state the following lemma since we use it for proving some of the results on

the burning problem. Assume that G and H are two disjoint graphs, and u ∈ V (G)
and v ∈ V (H) are two nodes. We can make a new graph G + uv +H by adding edge

uv to G ⊍H.

Lemma 20. If G and H are two disjoint non-empty graphs then we have that

b(G + uv +H) ≤ b(G ⊍H),

where u ∈ V (G) and v ∈ V (H).

Proof. Since V (G + uv + H) = V (G ⊍ H), then every burning sequence for G ⊍ H
induces a covering for G + uv +H; in particular, any minimum burning sequence of

G ⊍H induces a covering for G + uv +H. Therefore, b(G + uv +H) ≤ b(G ⊍H).

For example, we can combine Lemma 20 and Theorem 19 to conclude the following

result for path-forests. As we mentioned in Chapter 1, by a path-forest we mean a

graph that is a disjoint union of paths.

Theorem 21. If G is a path-forest of order n and with t ≥ 1 components, then we

have that

⌈n1/2⌉ ≤ b(G) ≤ ⌈n1/2⌉ + t − 1.

Proof. Assume that Q1,Q2, . . . ,Qt are the components of G. Then we glue the paths

Q1,Q2, . . . ,Qt together by adding edges e1, e2, . . . , et−1 in which each edge ei connects

a leaf of the path Qi and a leaf of the path Qi+1, for 1 ≤ i ≤ t − 1. Thus, we have a

path of order n, called P such that G is a subforest of P . Hence, by Theorem 19 and

by applying Lemma 20, we conclude that b(G) ≥ b(P ) = ⌈n1/2⌉ = k.

On the other hand, by Theorem 19, we know that burning P in k steps is equivalent

to decomposing P into k subpaths such that the i-th subpath in such a partition is

of order at most 2i − 1, for 1 ≤ i ≤ k. Thus, by deleting each edge ei from P , we

may break down at most one of the subpaths in this partition for P into two parts.

Hence, by deleting e1, e2, . . . , et−1 from such a partition for P we will have at most
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k + t − 1 subpaths that partition G such that the i-th subpath in this partition is of

order at most 2i − 1, where 1 ≤ i ≤ k + t − 1. Thus, by Corollary 6, we conclude that

b(G) ≤ k + t − 1.

We also have the following corollaries from Theorem 19.

Corollary 22. 1. For a cycle Cn, we have that b(Cn) = ⌈n1/2⌉.

2. For a graph G of order n with a Hamiltonian path, we have that b(G) ≤ ⌈n1/2⌉.

Proof. 1. The only spanning subtree of cycle Cn is the path Pn that is obtained by

deleting an edge from Cn. Thus, by Corollary 14 and Theorem 19, we conclude

that

b(Cn) = min{b(T ) ∶ T is a spanning subtree of Cn} = b(Pn) = ⌈n1/2⌉.

2. Suppose that G is a graph of order n with a Hamiltonian path Pn. Since Pn is a

spanning subgraph of G, then by Theorem 19, we conclude that b(G) ≤ b(Pn) =
⌈n1/2⌉.

We recall from Chapter 1 that a spider graph is a tree that has only one node

of degree at least three, and SP (s, r) denotes a spider graph with s arms in which

all arms are of the same length r. The following theorem gives sharp bounds on the

burning number.

Lemma 23. For any graph G with radius r and diameter d, we have that

⌈(d + 1)1/2⌉ ≤ b(G) ≤ r + 1.

Proof. Assume that c is a central node of G with eccentricity r. Since every node

in G is within distance r from c, then Nr[c] forms a covering for V (G). Hence, by

Theorem 4, r + 1 is an upper bound for b(G).
Now, let P be a shortest path connecting two nodes u and v in G with d(u, v) = d.

Since P is an isometric subtree of G of order d + 1, by Theorem 16 and Theorem 19,

we conclude that b(G) ≥ b(P ) = ⌈(d + 1)1/2⌉.
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The lower bound is achieved by paths as we show in Theorem 19, and the upper

bound is achieved by spider graphs SP (s, r), where s ≥ r, and also by perfect binary

trees (as we prove in Chapter 3).

We finish this section by providing some bounds on the burning number in terms

of certain domination numbers. A k-distance dominating set Dk for G is a subset

of nodes such that for every node u ∈ V (G) ∖Dk, there exists a node v ∈ Dk, with

d(u, v) ≤ k. The number of nodes in a minimum k-distance dominating set of G is

denoted by γk(G) and we call it the k-distance domination number of G. For example,

let G be the graph shown in Figure 2.4. Then the nodes with a circle around them

form a minimum 2-distance dominating set for G.

Figure 2.4: An optimum 2-distance dominating set for G.

We have the following results on connections between burning and distance dom-

ination.

Theorem 24. If G has burning number k, then k ≥ γk−1(G).

Proof. Assume that b(G) = k, for some positive integer k, and (x1, x2, . . . , xk) is an

optimum burning sequence for G. Then by (2.1), we know that every node v in G must

be within the distance k − i ≤ k − 1 from one of the xi’s. Hence, D = {x1, x2, . . . , xk}
forms a (k − 1)-distance dominating set for G.

We have the following lemma.

Lemma 25. For any graph G, if m = mink≥1{γk(G) + k}, then m+1
2 ≤ b(G) ≤m.
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Proof. Assume that m = mink≥1{γk(G) + k}, and b(G) = k0. Then by Theorem 24,

b(G) = k0 ≥ γk0−1. Hence,

k0 + (k0 − 1) ≥ γk0−1 + k0 − 1 ≥ min
k≥1

{γk(G) + k} =m.

Therefore, k0 ≥ m+1
2 .

On the other hand, assume that Dk = {x1, x2, . . . , xγk} is a minimum k-distance

dominating set for G. Then {S1, S2, . . . , Sγk}, with Si = {v ∈ V (G) ∶ d(v, xi) ≤ k},

where 1 ≤ i ≤ γk, is a covering for the nodes of G which consists of γk(G) subsets each

of radius at most k. Thus, by Theorem 4, we have that b(G) ≤ γk + k. The result

follows since this is true for any k ≥ 1. Therefore, we have that

m + 1

2
≤ b(G) ≤m,

and the Theorem follows.

We have the following fact about the k-distance domination number of graphs.

Theorem 26 ([45]). If G is a connected graph of order n, with n ≥ k + 1, then we

have that

γk(G) ≤ n

k + 1
.

We now provide the following general bound for the burning number of graphs.

Corollary 27. If G is a connected graph of order n, with n ≥ k+1, then we have that

b(G) ≤ 2⌈n1/2⌉ − 1.

Proof. By Lemma 25 and Theorem 26, we derive that for any positive integer k ≤ n−1

b(G) ≤ min
k≥1

{ n

k + 1
+ k} .

Now, the function n
k+1 + k is minimized for k = ⌈n1/2⌉ − 1, and we note that k ≤ n − 1.
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Therefore, we have that

b(G) ≤ min
k≥1

{ n

k + 1
+ k}

≤ n

(⌈n1/2⌉ − 1) + 1
+ ⌈n1/2⌉ − 1

≤ 2⌈n1/2⌉ − 1,

and the proof follows.

We have the following conjecture.

Conjecture 28. If G is a graph of order n with s components, then b(G) ≤ ⌈n1/2⌉ +
s − 1. In particular, if G is a connected graph of order n, then b(G) ≤ ⌈n1/2⌉.

Note that by Theorem 19 and Theorem 21, we already know the truth of this

conjecture for paths and path-forests. We will also see in Chapter 3 that the bound

in Conjecture 28 is achieved by specific spider graphs.

2.2 Nordhaus-Gaddum Type Results

Nordhaus and Gaddum [47] gave bounds on the sum and product of the chromatic

number of a graph and its complement, in terms of the order of the graph. Analogous

relations have been discovered for many other graph parameters; see [4] for a survey.

In this section, we present Nordhaus-Gaddum type results for the burning number.

We need first the following simple observation. Let G be a graph of order n ≥ 2

with maximum degree ∆. If G does not have a universal node, then we have that

b(G) ≤ n −∆; otherwise, b(G) = 2. Namely, we can take a node such as v of degree

∆, and then by burning v and V (G) ∖N[v], respectively, we burn all nodes of G in

at most 1 + ∣V (G) ∖N[v]∣ = n − ∆ steps. If G contains a universal node v, then by

Theorem 8, we have that b(G) = 2.

We first present some bounds on the sum of the burning numbers of a graph and

its complement.

Theorem 29. If G is a graph of order n ≥ 2, then

4 ≤ b(G) + b(G) ≤ n + 2.
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Proof. Suppose that b(G) = k, and (x1, x2, . . . , xk) is a burning sequence for G. By

Lemma 3, xk cannot be adjacent to xi, for 1 ≤ i ≤ k − 2. Therefore, ∆(G) ≥ dG(xk) ≥
k − 2. If G does not have an isolated node, then G does not have a universal node.

Thus, by the above observation, b(G) ≤ n −∆(G) ≤ n − (k − 2), and consequently, we

have that b(G) + b(G) ≤ n + 2.

If G has an isolated node v, then G must have a universal node. Therefore,

b(G) = 2, and clearly, b(G) ≤ n. Thus, b(G) + b(G) ≤ n + 2. Finally, since both G and

G are of order at least two, then b(G) + b(G) ≥ 2 + 2 = 4.

The upper bound in Theorem 29 is the best possible, since for the complete

graph Kn we have that b(Kn) + b(Kn) = n + 2. However, there are cases where the

upper bound is strict; for example, using Corollary 22, we have that b(Cn) + b(Cn) =
⌈n1/2⌉ + 3 < n + 2. Also, the lower bound in Theorem 29 is achieved for the complete

graph K2, and star graph K1,s, where s ≥ 2.

We cite here two useful Nordhaus-Gaddum type results for distance domination.

Theorem 30 ([4]). For any graph G of order n ≥ k + 1 with k ≥ 2, we have that

γk(G) + γk(G) ≤ n + 1

and

γk(G)γk(G) ≤ n.

Theorem 31 ([4]). If G and G are both connected with n ≥ k + 1 nodes for integer

k ≥ 2, then γk(G) + γk(G) ≤ n
k+1 + 1 and γk(G)γk(G) ≤ n

k+1 .

We now have the following result for the product of the burning numbers of a

graph and its complement.

Theorem 32. For any graph G of order n, we have b(G)b(G) ≤ 2n, and the equality

is achieved by complete graphs.

Proof. First, by direct checking we can see that b(G)b(G) ≤ 2n, for any graph G of

order n ≤ 5. Now, assume that G is a graph of order n ≥ 6. By Lemma 25, we have
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that b(G) ≤ γk(G) + k, for k ≥ 2 with n ≥ k + 1. Thus, we have that

b(G)b(G) ≤ (γk(G) + k)(γk(G) + k)

≤ γk(G)γk(G) + kγk(G) + kγk(G) + k2.

Now, if G and G are both connected, then using Theorem 31, we have that

b(G)b(G) ≤ γk(G)γk(G) + kγk(G) + kγk(G) + k2

≤ n

k + 1
+ k ( n

k + 1
+ 1) + k2

= n + k + k2.

By taking k = 2, the above inequality implies that b(G)b(G) ≤ n + 6.

If G is connected while G is disconnected, then either G has a component with

at most two nodes, or every component of G has at least three nodes. If G has a

component with at most two nodes, then G must have either a universal node, or it

must contain two nodes such as u and v (corresponding to the component of G with

exactly two nodes), such that G = N[u] ∪ {v}. Thus, by Theorem 8, b(G) = 2, and

obviously b(G) ≤ n. Hence, in this case, b(G)b(G) ≤ 2n.

Now, suppose that G1,G2, . . . ,Gt are the components of G with n1, n2, . . . , nt

nodes, respectively, where each ni ≥ 3. By Theorem 26, and taking k = 2, we know

that

γ2(G) = γ2(G1) + γ2(G2) +⋯ + γ2(Gt)

≤ n1

3
+ n2

3
+⋯ + nt

3

= n
3
.

Also, note that b(G) ≤ 3, since in such a case the radius of G is at most 2. Namely,

suppose that x ∈ V (G1) and y ∈ V (G) ∖ V (G1). We know that such nodes x and y

exist since G is disconnected. Thus, in graph G, any node in V (G1 − x) is adjacent

to y, and x is adjacent to all the nodes in V (G) ∖ V (G1). Hence, all the nodes in

V (G) are within distance at most 2 from x in graph G. Therefore, by Theorem 24
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and Theorem 26, for k = 2, we have that

b(G)b(G) ≤ 3(γ2(G) + 2)

≤ 3(n
3
+ 2)

= n + 6,

and the proof follows.

Corollary 33. If graphs G and G are connected graphs of order n ≥ 6, then b(G) +
b(G) ≤ 3⌈n1/2⌉ − 1, and b(G)b(G) ≤ n + 6.

Proof. First, by Lemma 24, we have that

b(G) + b(G) ≤ (γk(G) + k) + (γk(G) + k) = γk(G) + γk(G) + 2k.

By applying Theorem 31 with k = ⌈n1/2⌉ − 1, we conclude that

b(G) + b(G) ≤ n

k + 1
+ 1 + 2k ≤ 3⌈n1/2⌉ − 1.

Finally, b(G)b(G) ≤ n + 6 follows from the proof of Theorem 32.

We end this section by the following conjecture.

Conjecture 34. If G and G are both connected graphs of order n, then we have that

b(G)b(G) ≤ n + 4.

It is straightforward to check that the bound in the conjecture is tight for the

cycle C5.

2.3 Burning in the ILT Model

In this section, we consider the burning number of the graphs generated by the

ILT model. The Iterated Local Transitivity (ILT) model was introduced in [15], and

simulates on-line social networks (or OSNs). The central idea behind the ILT model

is what sociologists call transitivity : if u is a friend of v, and v is a friend of w, then
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u is a friend of w. In its simplest form, transitivity gives rise to the notion of cloning,

where u is joined to all of the neighbours of v.

Figure 2.5: The graph G1 generated from G0 = C4.

In the ILT model, given some initial graph as a starting point, nodes are repeatedly

added over time which clone each node, so that the new nodes form an independent

set. The only parameter of the model is the initial graph G0, which is any fixed finite

connected graph. Assume that for a fixed t ≥ 0, the graph Gt has been constructed.

To form Gt+1, for each node x ∈ V (Gt), add its clone x′, such that x′ is joined to x

and all of its neighbours at time t. Note that the set of new nodes at time t + 1 form

an independent set of cardinality ∣V (Gt)∣. Figure 2.5 shows the graph G1 generated

by the ILT model starting from the graph G0 = C4. The nodes and edges with colour

blue are those nodes and edges that we add to G0 in order to make G1.

The ILT model shares many properties with OSNs such as low average distance,

high clustering coefficient densification, and bad spectral expansion; see [15]. The

ILT model has also been studied from the viewpoint of competitive diffusion which

is one model of the spread of influence; see [54].

We have the following theorem about the burning number of graphs obtained

based on ILT model. Even though the graphs generated by the ILT model grow

exponentially in order with t, we see that the burning number of such networks

remains constant. First, we need the following elementary lemma for proving the

main result of this section.

Lemma 35. For each i ≥ 0, let Gi be the graph generated at time i based on the ILT

model with initial graph G0. Then Gi is an isometric subgraph of Gj, for any 0 ≤ i < j.
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Proof. We need to prove that dGj(u, v) = dGi(u, v), for every two nodes u, v ∈ V (Gi).
Assume that u and v are two distinct nodes in Gi. Since Gi is a subgraph of Gj, then

dGj(u, v) ≤ dGi(u, v).

By contradiction, suppose that dGj(u, v) = m < dGi(u, v), for some positive integer

m. Thus, there must be a shortest path P ∶ u,u1, u2, . . . , um−1, v between u and v in

Gj, such that at least one of the nodes in P is not in Gi; otherwise, it implies that

dGj(u, v) = dGi(u, v), which is a contradiction.

For any shortest path (of length m) such as Q between u and v in Gj, let nQ denote

the number of the nodes in Q that are in Gj ∖Gi. Assume that s is the smallest index

for which us /∈ Gi. Let u′ be the clone of us in Gi. Note that by definition, we know

that us−1 and us+1 are also both adjacent to u′ in Gj.

First, we claim that u′ ≠ ut, where 1 ≤ t ≤ m − 1. Otherwise, if u′ = ut, for some

1 ≤ t ≤m−1, we have two possibilities: either t ≤ s−1, or t ≥ s+1. If 1 ≤ t ≤ s−1, then

since u′ = ut is adjacent to us+1, then the path P ′ ∶ u,u1, . . . , ut = u′, us+1, . . . , um−1, v

will be a shorter path between u and v in Gj, which is a contradiction. If u′ = ut, where

t ≥ s + 1, then since u′ = ut is adjacent to us−1, then the path P ′ ∶ u,u1, . . . , us−1, ut =
u′, ut+1, . . . , um−1, v will be a shorter path between u and v in Gj, which is again a

contradiction. Thus, u′ ≠ ut, where 1 ≤ t ≤m − 1.

Now, by above claim, we conclude that Q ∶ u,u1, . . . , us−1, u′, us+1, . . . , um−1, v is a

path between u and v in Gj of length m = dGj(u, v). However, nQ < nP . Therefore,

by the same argument as above, after finite number of times, we can find a path of

length m between u and v such that none of its nodes are in Gj ∖ Gi, which is a

contradiction. Thus, we must have dGj(u, v) = dGi(u, v).

Theorem 36. Let Gt be the graph generated at time t ≥ 1 based on the ILT model with

initial graph G0. If G0 has an optimum burning sequence (x1, x2, . . . , xk) in which xk

has a neighbor that is burned in the (k − 1)-th step, then b(Gt) = b(G0). Otherwise,

b(Gt) = b(G0) + 1.

Proof. First, assume that (x1, x2, . . . , xk) is an optimal burning sequence for G0.

Since every node x′ ∈ V (Gt) ∖ V (G0), with t ≥ 1, is adjacent to a node in G0,

then (x1, x2, . . . , xk) is also a burning sequence for the subgraph of Gt induced by
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V (Gt) ∖ (NGt[xk] ∖NG0[xk]). Thus, b(Gt) ≤ b(G0) + 1. With a similar argument, we

conclude that b(Gt) ≤ b(Gt−1) + 1.

On the other hand, by Lemma 35, we know that Gt−1 is an isometric subgraph of

Gt, for any t ≥ 1. Also, for any x ∈ V (Gt−1) and its clone x′ ∈ V (Gt), we have that

NGt[x] = NGt[x′]. Thus, for any r ≥ 1, Nr[x′] ∩ V (Gt−1) = NGt−1
r [x]. Therefore, by

Theorem 15, b(Gt) ≥ b(Gt−1). Hence, by induction we conclude that b(Gt) ≥ b(G0),
for any t ≥ 1, and therefore, we have that either b(Gt) = b(G0), or b(Gt) = b(G0) + 1.

We now characterize where b(Gt) equals b(G0) or b(Gt) = b(G0) + 1 as follows.

Let (x1, x2, . . . , xk) be an optimal burning sequence for Gt. By the following

algorithm, we find a burning sequence (y1, y2, . . . , yk) for Gt where at least all the

first k − 1 fire sources are in Gt−1. Note that by above argument, either b(Gt−1) = k
or b(Gt−1) = k − 1.

Step 1. If x1 ∈ V (Gt−1), then we take y1 = x1. Otherwise, we set y1 = x, where x

is a node in V (Gt−1).
Go to Step 2.

Step 2. For each 2 ≤ i ≤ k − 1, we do the following steps.

Step 2.1. If xi ∈ V (Gt−1) and xi is not burned in step i−1 by burning y1, y2, . . . , yi−1,

then we take yi = xi.

Step 2.2. If xi ∈ V (Gt−1) and xi is burned in step i−1 by burning y1, y2, . . . , yi−1,

then we set yi = x, where x is a node in V (Gt−1) that is not burned in step i − 1. We

are sure that such a node x exists, since b(Gt−1) ≥ k − 1.

Step 2.3. If xi is the clone of x′i ∈ V (Gt−1), and x′i is not burned in step i − 1 by

burning y1, y2, . . . , yi−1, then we take yi = x′i.

Step 2.4. If xi is the clone of x′i ∈ V (Gt−1), and x′i is burned in step i − 1 by

burning y1, y2, . . . , yi−1, then we set yi = x, where x is a node in V (Gt−1) that is not

burned in step i − 1. We are sure that such a node x exists, since b(Gt−1) ≥ k − 1.

Go to Step 3.

Step 3. We perform the following steps, and we return the sequence (y1, y2, . . . , yk)
as a burning sequence for Gt.

Step 3.1. If xk ∈ V (Gt−1), and xk is not burned in step k − 1 by burning

y1, y2, . . . , yk−1, then we take yk = xk.
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Step 3.2. If xk ∈ V (Gt−1), and xk is burned in step k−1 by burning y1, y2, . . . , yk−1,

then we take yk = x, where x is a node in V (Gt−1) that is not burned in step k − 1, if

such a node x is available; Otherwise, we choose x to be a node in V (Gt) that is not

burned in step t − 1.

Step 3.3. If xk is the clone of x′k ∈ V (Gt−1), and x′k is not burned in step k − 1 by

burning y1, y2, . . . , yk−1, then we take yk = x′k.

Step 3.4. If xk is the clone of x′k ∈ V (Gt−1), and x′k is burned in step k − 1 by

burning y1, y2, . . . , yk−1, then we set yk = x, where x is a node in V (Gt−1) that is not

burned in step k − 1, if such a node x is available; Otherwise, we choose x to be a

node in V (Gt) that is not burned in step t − 1.

The sequence (y1, y2, . . . , yk) obtained by the above algorithm is a burning se-

quence for Gt. Namely, by burning the nodes in the sequence (y1, y2, . . . , yk), each

node xi or its clone x′i is burning at stage i, for 1 ≤ i ≤ k. Therefore, for 1 ≤ i ≤ k,

NGt
k−i[xi] or NGt

k−i[x′i] is burned by the end of the k-th step. Since for 1 ≤ i ≤ k,

NGt[xi] = NGt[x′i], then we have NGt
k−i[xi] = N

Gt
k−i[x′i]. Hence, it implies that

V (Gt) ⊇ NGt
k−1[y1] ∪NGt

k−2[y2] ∪ . . . ∪NGt
0 [yk]

⊇ NGt
k−1[x1] ∪NGt

k−2[x2] ∪ . . . ∪NGt
0 [xk]

= V (Gt).

Thus, by Equation (2.1), we conclude that (y1, y2, . . . , yk) is a burning sequence for

Gt.

Suppose that for every optimal burning sequence (x1, x2, . . . , xk) of G0 all the

neighbours of xk are burned in the k-th step. We claim that b(G1) = b(G0)+1. Assume

not; that is, b(G1) = b(G0). Let (y1, y2, . . . , yk) be an optimal burning sequence for

G1 that is obtained from an optimal burning sequence (z1, z2, . . . , zk) for G1 by the

algorithm above. Hence, {y1, . . . , yk} ⊆ G0. Otherwise, it implies that b(G0) = k − 1,

which is a contradiction. But, then to burn y′k ∈ V (G1) (the clone of yk) by the end

of the k-th step, one of the nodes in the neighbourhood of yk must be burned in an

earlier stage, which is a contradiction with the assumption. Therefore, in this case

b(G1) = b(G0) is impossible, and hence, b(G1) = b(G0) + 1.

Conversely, suppose that b(G1) = b(G0) + 1, and (x1, x2, . . . , xk) is an optimal



48

burning sequence for G0. If xk has a neighbour that is burned at stage k − 1, then x′k

is also burned at stage k. Therefore, (x1, x2, . . . , xk) is also a burning sequence for G1,

and we have that b(G1) = b(G0), which is a contradiction. Thus, b(G1) = b(G0) + 1,

if and only if for every optimal burning sequence of G0, say (x1, x2, . . . , xk), all the

neighbours of xk are burned in stage k. By induction, we can conclude that b(Gt) =
b(G0)+1 if and only if for every optimal burning sequence of G0, say (x1, x2, . . . , xk),
all the neighbours of xk are burned in stage k. Since starting from any graph G0, for

any t ≥ 1, either b(Gt) = b(G0), or b(Gt) = b(G0) + 1, we conclude that b(Gt) = b(G0)
if and only if for every optimal burning sequence of G0, say (x1, x2, . . . , xk) one of the

neighbours of xk is burned at stage k − 1.

We finish this section with an example that illustrates Theorem 36. Let Pn be a

path on n nodes such that ⌈n1/2⌉ = k, for a positive integer k. Then by Theorem 19,

we know that b(Pn) = k. Moreover, if (x1, x2, . . . , xk) is an optimum burning sequence

for Pn, then burning Pn is equivalent to decomposing Pn into paths of orders at most

1,3, . . . ,2k − 1, in which each path is a rooted path of radius at most k − i and with

root xi, for some 1 ≤ i ≤ k. Thus, xk is the path of order 1 in such a decomposition

for Pn in terms of neighbourhoods of xi’s. There are two possibilities for n; either

n = k2, or n ≠ k2.

If n = k2, then it implies that the order of each path in decomposing Pn is exactly

equal to 2(k − i) + 1, for some 1 ≤ i ≤ k. Therefore, the end points of such paths are

burned in the k-th steps. Hence, both neighbours or the only neighbour of xk must

burn in the k-th step, depending on the position of xk in Pn. Thus, by Theorem 36,

if G0 = Pn in the ILT model, then we have that b(Gt) = b(Pn) + 1 = k + 1, for t ≥ 1.

On the other hand, if n ≠ k2, then there is at least one i for which the rooted path

with root xi is of order less than 2(k − i) + 1. That is, one of the end points of this

path called x is not burned at the k-th step. If in decomposing Pn, we choose xk to

be the neighbour of x, then we have a burning sequence for Pn such that at least one

of the neighbours of xk is not burned at step k. Therefore, by Theorem 36, if G0 = Pn
in the ILT model, then we have that b(Gt) = b(Pn) = k.
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2.4 Graph Products

In this section, we first state two simple bounds on the burning number of the Carte-

sian product of two graphs in general, and then we find the asymptotic value of the

burning number for the Cartesian grids and toroidal grids. We also obtain the asymp-

totic value of the burning number of hypercube graphs, and we state a conjecture on

the exact value of the burning number of hypercube graphs. We then consider the

burning number of the strong product of two graphs in general, and the burning

number of strong grids in particular. We finish this section by giving some bounds

on the burning number of the lexicographic product of two graphs.

Here are some simple bounds on the burning number of the Cartesian product of

two graphs.

Theorem 37. If G and H are two connected graphs, then we have that

max{b(G), b(H)} ≤ b(G ◻H) ≤ min{b(G) + rad(H), b(H) + rad(G)}.

Proof. First, note that each of G and H is an isometric subgraph of G◻H that satisfies

the conditions in Theorem 15. Namely, suppose that V (G) = {u1, u2, . . . , um} and

V (H) = {v1, v2, . . . , vn} for some positive integers m and n. Let uk, where 1 ≤ k ≤m,

be a central node of G. By definition of the Cartesian product, the subgraph of G◻H
induced by the set of the nodes {(uk, vi) ∶ 1 ≤ i ≤ n} is isomorphic to H. We denote

this subgraph by Hk. We can see that, for any node (ui, vj) in G ◻H and a positive

integer r, we have that

NG◻H
r [(ui, vj)] ∩Hk ⊆ NHk

r [(uk, vj)].

Namely, for any node (uk, vl) ∈ G◻H (where 1 ≤ l ≤ n), with dG◻H ((uk, vl), (ui, vj)) ≤
r, we have that

r ≥ dG◻H ((uk, vl), (ui, vj)) = dG(uk, ui) + dH(vl, vj)

≥ dH(vl, vj)

= dG◻H ((uk, vl), (uk, vj)) .
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Hence, H is an isometric subgraph of G◻H that satisfies the conditions in Theorem

15. Similarly, by symmetry of the Cartesian product, we can conclude that G is also

an isometric subgraph of G◻H that satisfies the conditions in Theorem 15. Therefore,

we conclude that

b(G ◻H) ≥ max{b(G), b(H)}.

Now, for proving the upper bound, let r = rad(G). Also, assume that b(H) = s,
and (x1, x2, . . . , xs) is an optimum burning sequence for H. We now define a burning

process for G ◻ H with a burning sequence of length s + t, where t ≤ r as follows.

Suppose that uk is a central node for G, and Hk is the subgraph of G ◻H that is

isomorphic to H corresponding to uk, as defined above. For 1 ≤ i ≤ s, let yi = (uk, xi).
Thus, (y1, y2, . . . , ys) forms a burning sequence for Hk. For i ≥ s + 1, let yi be a node

in G◻H that is not burned by burning the nodes in the sequence (y1, y2, . . . , yi−1) in

the first i − 1 steps, if such a node is available. Since every node in G ◻H is within

distance r from a node in Hk, then for some t ≤ r, we will have a burning sequence

(y1, y2, . . . , ys+t) for G◻H. Thus, we conclude that b(G◻H) ≤ s+ t ≤ s+ r. Similarly,

we have that b(G ◻H) ≤ b(G) + rad(H). Hence, the proof follows.

Note that the lower bound in Theorem 37 is achieved by K1 ◻G, for any graph

G. Also, it is achieved by K2 ◻ Pn, where n ∈ {k2 + 1, k2 + 2}, for a positive integer

k. The upper bound is tight if G is any graph of radius one and H is a path of

square order. For example, let G = P3 and H = P4. Then by Theorem 8, we can show

that b(G ◻H) > 2. On the other hand, by Theorem 37, we have that b(G ◻H) ≤ 3.

Therefore, we conclude that b(P3 ◻ P4) = 3, which is suggested by the bound in

Theorem 37.

The Cartesian m×n grid is the Cartesian graph product Pm ◻Pn. Note that the

r-th closed neighbourhood of a node x in the Cartesian grid plane is a diamond of

radius r with centre x. By direct checking, the number of nodes in such a diamond

of radius r equals

1 + 4 +⋯ + 4r = 1 + 2r(r + 1). (2.2)

We have the following asymptotic result for the burning number of the Cartesian

grids.
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Theorem 38. Let G be a m×n Cartesian grid with 1 ≤m ≤ n, where m =m(n) is a

function of n. Then we have that

b(G) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Θ(n1/2) if m = O(n1/2)

(1 + o(1))(3/2)1/3(mn)1/3 if m = ω(n1/2).

Proof. First, we find a general lower bound by applying the covering idea in Lemma 3

as follows. Let (x1, x2, . . . , xk) be a burning sequence for G. Thus, every node in G

must be in the (k− i)-th neighborhood of a node xi, for some 1 ≤ i ≤ k. Note that the

r-th closed neighbourhood of a node x in a grid is a subset of a diamond with centre

x and with radius r. Hence, by (2.2), we have that ∣Nr[x]∣ = ∣{y ∈ G ∶ d(x, y) ≤ r}∣ ≤
1 + 2r(r + 1). Therefore, by Equation (2.1), we conclude that

mn = ∣V (G)∣ ≤ ∣Nk−1[x1]∣ + ∣Nk−2[x2]∣ + ⋯ + ∣N0[xk]∣

≤ k +
k−1

∑
i=1

2i(i + 1) = 2k3 + k
3

.

Let f(k) = 2k3+k
3 . It follows that for any k with f(k) < mn, we can not cover V (G)

with any collection of closed neighbourhoods {Nk−i[xi]}ki=1. Therefore, for such a k,

we must have b(G) > k. Let k = (3/2)1/3(mn)1/3 − 1. Then we have that

f(k) = 2k3 + k
3

< 2

3
(k + 1)3

= 2

3
((3/2)1/3(mn)1/3)3

=mn.

Thus, we conclude that b(G) > ⌈(3/2)1/3(mn)1/3 − 1⌉. Hence, if m = ω(n1/2), then

this is the lower bound. Also, we know that the path Pn is an isometric subtree of

G. Thus, by Theorem 16, we have that b(G) ≥ n1/2. This is the lower bound that we

need for proving the case m = O(n1/2) in the theorem statement.

Now, we prove the upper bounds using the covering idea in Theorem 7 and some

technical counting arguments, as follows. By assumption, m ≤ n. Let m = αnn1/2,

for some 1 ≤ αn ≤ n1/2 (note that αn ≤ n1/2, since otherwise, we must have m > n,

which is a contradiction). In the following, we present a way for covering G with
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some diamonds of successive radii.

Here is a brief description of the idea for defining these strips and diamonds. Let a

and b, with a ≥ b, be two positive integers. Assume that we want to cover the area of

a Cartesian grid with a set of diamonds with distinct successive radii, ranging from a

to b. We may have trouble to set them up without overlapping. Without any effort to

optimize the areas that overlap, playing with the diamonds like a child, a natural way

for arranging the diamonds would be putting them diagonally in diagonal strips and

ignoring the overlapping parts. This is the idea in the rest of the proof for covering

the grid with a set of diamonds. We will present an algorithm that partitions the

Cartesian grid G from right to left into some diagonal strips S1, S2, . . . , Sl (for some

positive integer l), in which the width of the strips Si’s is increasing. We define the

width of each strip Si inductively. While defining each strip Si, simultaneously we

also cover Si with disjoint diamonds (from top to bottom), even though they may

overlap with the diamonds that are used for covering the other strips.

Algorithm 39. Let G be the Cartesian m × n grid with 1 ≤ m ≤ n, such that m =
αnn1/2, for some 1 ≤ αn ≤ n1/2. Suppose k1 = (mn)1/3

α
1/6
n

. Then we perform the following

steps to cover G with a set of diamonds of successive radii ranging from k1 to rl for

some integer rl ≥ k1.

Stage 1. The rightmost diagonal strip S1 is a diamond that contains the top right

corner of G as its centre, and is of radius k1 (equivalently of width
√

2k1). Hence, the

top-right part of this strip covers some areas out of G and only a quarter of S1 falls

in G (as we can see in the layout shown in Figure 2.6). The strips are shown Figure

2.6 with colour blue, and the black areas demonstrate the overlaps. Then go to Stage

2.

Stage 2. If the top-left corner of G is not covered by Si−1, then we do the following

steps; Otherwise go to Stage 3.

Stage 2.1. We take ui−1 to be the left-most node of Si−1. Let vi−1 be the left

neighbour of ui−1 on the top border line of G. Also, assume that the last diamond that

we take for covering Si−1 is of radius ri−1. Then we take r = ri−1 + 1, and we create a

diagonal strip, called Si, of width
√

2r on the left side of Si−1 (parallel to Si−1) such

that vi−1 is on its border. Note that Si contains exactly 2r + 1 nodes of the top border

line of G as it is shown in Figure 2.6.
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Stage 2.2. We cover V (G) ∩ Si from top to bottom with diamonds of successive

increasing radiuses ranging from r to r + j, for some j ≥ 0, respectively, such that

the left side border of these diamonds is on the left border of Si, and they all have

non-empty intersection with G. The centre of the first (top-most) diamond is on the

border line of G, and the last (bottom-most) diamond has non-empty intersection with

the bottom boarder line of G.

Stage 3. If for some i ≥ 1, the top-left corner of G is covered by Si−1, and the

left bottom corner of G is not covered yet, then we define Si as follows; otherwise we

stop making strips (as at this point, the entire G has been covered by the strips that

we have defined till this step).

Stage 3.1. We define r = ri−1 + 1, where ri−1 is the radius of the last diamond

that is used for covering Si−1. Also, let ui−1 be the bottom most node of Si−1 that is on

the left border line of G, and take vi−1 to be its neighbour on the left border line of G

below Si−1. We make a diagonal strip, called Si, of width
√

2r, such that its top most

node on the left border line of G is vi−1, and it contains exactly 2r + 1 nodes on this

line. Then we put from top to bottom diamonds of successive increasing radii ranging

from r to r + j, for some j ≥ 0 on Si, such that the centre of the first diamond is on

the left border line of G. Also, the left border line of these diamonds is on the left

border line of Si.

Figure 2.6: A covering of the Cartesian grid.
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Suppose that by applying Algorithm 39, we have that V (G) ⊆ S1 ∪ . . . ∪ Sl, for

some l ≥ k1. Let rl be the radius of the last diamond that we put on Sl.

Thus, we have made a covering for G with diamonds of radii k1, k1 + 1, . . . , rl. We

now estimate the number of the nodes in the diamonds defined above that are wasted ;

that is, those nodes that are either placed in the overlapping areas, or fallen out of

G in the Cartesian plane. Let S be one of the strips we defined above, and r be the

radius of its smallest diamond; that is, the first diamond that we place on S. Note

that in the above algorithm, we place those diamonds vertically, from top to bottom.

The order of the width of G is m, and the diamonds defined for covering S are of radii

r, . . . , r+ j, for some j ≥ 0. Since (j −1)r ≤m, then the total number of the diamonds

that we put on S, which is j + 1, is smaller than 2m
r . On the other hand, the radius

of each diamond is increased by 1. Therefore, the radius of the largest diamond we

put on S is of order is smaller than r + 2m
r .

Hence, the area that is overlapped in the largest diamond in S is at most

(r + 2m

r
)2m

r
= (1 + 2m

r2
)2m. (2.3)

By assumption, we know that r ≥ k1 = (mn)1/3

α
1/6
n

, and m = αn
√
n. Thus,

r ≥ (mn)1/3

α
1/6
n

= α1/6
n

√
n.

Since αn ≤
√
n, then we conclude that

m

r
≤ m
k1

= m

α
1/6
n

√
n
= αn

√
n

α
1/6
n

√
n
= α5/6

n ≤ n5/12.

Therefore, by the above inequalities, we have that

0 ≤ m
r2

≤ n
5/12

r
≤ n5/12

α
1/6
n

√
n
= 1

α
1/6
n n1/12

.

Since 1

α
1/6
n n1/12 tends to zero, as n goes to infinity, we conclude that

lim
n→∞

m

r2
= 0. (2.4)
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Hence, by (2.3) and (2.4), the area that is overlapped in the largest diamond in S is

asymptotically at most 2m. Therefore, the number of the nodes that are wasted in

other diamonds in S is also asymptotically at most 2m. Thus, the total number of

the nodes in S that are overlapped is asymptotically at most

2m(2m

r
) = 4m2

r
. (2.5)

On the other hand, note that in each strip including S, there are at most three

diamonds that contains some areas out of G; that is, the first diamond (only half of

it) and probably the last two largest ones. Hence, the number of the nodes in covering

S with diamonds that fall out of G is asymptotically at most

lim
n→∞

r2

2
+ 2(r + 2m

r
)2 = lim

n→∞

r2

2
+ 2r2(1 + 2m

r2
)2 = 3r2

2
. (2.6)

Now, we show that rl ≤ k2, where k2 = (3/2)1/3(mn)1/3 (1 + C

α
1/6
n

), and C is a

large constant to be determined later. By (2.5) and (2.6), we conclude that the total

number of the nodes that are wasted in covering S by the diamonds is asymptotically

of order at

O(r2) +O(m
2

r
) = O(k2

2) +O(m
2

k1

),

since by assumption, k1 ≤ r ≤ k2. Note that this bound is independent of S, and applies

for all strips. Note that the strips Si’s are disjoint. Also, we put them diagonally on

G, such that the diameter of the first diamond in each strip (which is a path of order

2r + 1 for some r ≥ k1) is on the top-left border line of G (which is a path of order

n +m ≤ 2n). Therefore, the total number of strips is of order O( nk1 ). Thus, for the

total number of the nodes that are wasted in covering G by those diamonds, denoted

by error1, we have that

error1 = O( n
k1

) (O(k2
2) +O(m

2

k1

)) = O(α1/6
n n3/2) +O(α5/3

n n).

On the other hand, the maximum number of the nodes in G that can be covered by
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those diamonds with successive radii ranging from k1 to k2 equals

k2

∑
i=k1

(1 + 2i(i + 1)) = f(k2 + 1) − f(k1)

= 2(k2 + 1)3

3
+ k2 + 1

3
− 2k3

1

3
− k1

3

> 2

3
((k2 + 1)3 − k3

1)

> 2

3
(k3

2 − k3
1)

= 2

3
(3

2
mn(1 + C

α
1/6
n

)3 − mn

α
1/2
n

)

Since for any positive number x, we have that (1 + x)3 ≥ 1 + 3x, then we have that

2

3
(3

2
mn(1 + C

α
1/6
n

)3 − mn

α
1/2
n

) ≥ 2

3
(3

2
mn(1 + 3C

α
1/6
n

) − mn

α
1/2
n

) .

Therefore, we conclude that

k2

∑
i=k1

(1 + 2i(i + 1)) ≥ 2

3
(3

2
mn(1 + 3C

α
1/6
n

) − mn

α
1/2
n

)

=mn + 2

3
( 9C

2α
1/6
n

mn − mn

α
1/2
n

)

≥mn + 2

3
( 9C

2α
1/6
n

mn − mn

α
1/6
n

)

=mn + 9C − 2

3α
1/6
n

mn

=mn + 9C − 2

3
n3/2α

5/6
n .

We denote the term 9C−2
3 n3/2α

5/6
n in the above equality by error2. Hence, by this

notation, the number of the nodes in G that can be covered by those diamonds is

at least mn + error2. We will show that by choosing an appropriate value for C, we

can have error2 ≥ error1, and consequently, we can cover all the mn nodes in G. This

implies that k2 is an upper bound on rl. If m = ω(√n), then αn must be a function

of n that goes to infinity, as n grows (But still αn ≤
√
n).
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Hence, by taking C = 1, we have that error1 = o(error2). Thus, we showed that

covering G by at most t+ 1 = k2 − k1 + 1 diamonds with distinct radii ranging from k1

to k2, is possible. Therefore, by Theorem 6, we conclude that b(G) ≤ k2 + 1. Thus, if

m = ω(√n), then we have that

b(G) = (1 + o(1))(3

2
)1/3(mn)1/3.

If m < c√n, where c is a constant, then by Theorem 19, we burn the path Pn

on the top border of G in ⌈√n⌉ steps. Since in this case, every node in G is within

distance c
√
n from a node in Pn, after at most c

√
n more steps all the nodes in G must

be burned. Therefore, we have that b(G) = O(√n). Thus, in this case b(G) = Θ(√n),
and the proof follows.

By a m×n toroidal grid we mean the Cartesian product of Cm and Pn. Note that

a m×n Cartesian grid is a spanning subgraph of a m×n toroidal grid. Also, as in the

Cartesian grid plane, the r-th closed neighbourhood of a node x in a toroidal grid is

a diamond with centre x and of radius r. Hence, we have the following corollary.

Corollary 40. Let G be a m × n toroidal grid with 1 ≤ m ≤ n, where m = m(n) is a

function of n. Then we have the following asymptotic results:

b(G) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Θ(n1/2) if m = O(n1/2)

(1 + o(1))(3/2)1/3(mn)1/3 if m = ω(n1/2).

Proof. For proving the upper bound, we just use the fact that a m × n Cartesian

grid is a spanning subgraph of a m × n toroidal grid. To prove the lower bound,

note that we can have exactly the same argument as in proof of Theorem 38 without

any adjustment, since the whole argument was only based on the covering technique

and counting the number of the nodes in each closed neighbourhood, which will be a

subset of a diamond. Thus, the proof follows.

The hypercube graph, or the n-cube, or the n-dimensional hypercube, denoted by

Qn, is a graph of order 2n in which every node is corresponding to a binary string of

length n, and two nodes are adjacent if and only if their corresponding binary strings
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differ in exactly one bit. It is known in graph theory that

Qn = Qn−1 ◻Q1

where Q1 is the path on two nodes. We have the following conjecture for the optimum

burning of the hypercube graphs.

Conjecture 41. Let n be a positive integer, and k = ⌈n2 ⌉ + 1. Then for the hypercube

Qn we have that b(Qn) = k. Moreover, if n is even, then in any optimal burning

sequence (x1, x2, . . . , xk) for Qn we must have d(x1, x2) = n = diam(Qn).

Note that if we choose x1 and x2 as two nodes with d(x1, x2) = n, then every node

in Qn will be burned after k = ⌈n2 ⌉ + 1 steps. Therefore, we have that b(Qn) ≤ ⌈n2 ⌉ + 1.

However, it seems challenging to prove the truth of the lower bound for the burning

number of the n-cube. Note that Q1 is a path of order 2, and by Theorem 19, we

know that b(Q1) = b(P2) = ⌈
√

2⌉ = 2. Since 2 = ⌈1
2⌉ + 1, the conjecture is true for Q1.

Also, Q2 is a 4-cycle, and by Corollary 75, we know that b(Q2) = b(C4) = ⌈
√

4⌉ = 2.

Since 2 = ⌈2
2⌉ + 1, then we can see the truth of the conjecture for Q2 as well.

Using an approximation in terms of the well-known binary entropy function, we

can find a weaker lower bound on the burning number of the hypercube graph Qn as

follows. This lower bound leads to an asymptotic result for the burning number of

the hypercube graph Qn. The binary entropy function is defined by the rule:

H(x) = −x log2 x − (1 − x) log2 (1 − x),

where 0 < x ≤ 1 is a real number. The Taylor series of the entropy function is known

to be

H(x) = 1 − 1

2 ln 2

∞

∑
n=1

(1 − 2x)2n

(2n − 1) ,

for any x with 0 < x ≤ 1. It is also known that for an integer 1 ≤ k ≤ n, if ε = k
n , and

ε ≤ 1
2 , then

k

∑
i=0

(n
i
) ≤ 2H(ε)⋅n;

see [28]. Here are the bounds that we can prove on the burning number of n-cubes.
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Theorem 42. For the hypercube graph Qn, we have that

b(Qn) = (1 + o(1)) (⌈n
2
⌉ + 1) .

Proof. We will prove this by showing that

⎡⎢⎢⎢⎢⎢

n

2
+ 1 −

√
ln 2(n

2
log2

n

2
)
⎤⎥⎥⎥⎥⎥
≤ b(Qn) ≤ ⌈n

2
⌉ + 1. (2.7)

As we mentioned earlier, by burning two nodes such as x1, x2 ∈ V (Qn) with d(x1, x2) =
n in the first and second steps of a burning process for Qn, we will have every node

burning at time t = ⌈n2 ⌉ + 1. Therefore, we know that b(Qn) ≤ ⌈n2 ⌉ + 1. On the

other hand, if b(Qn) ≥ ⌈n2 ⌉ + 1, then we conclude that b(Qn) = ⌈n2 ⌉ + 1, and theorem

statement is clearly true in this case. Hence, without loss of generality assume that

b(Qn) = k ≤ ⌈n2 ⌉, for some positive integer k. We consider this case as follows.

Since for n ≥ 1, Qn is of order at least two, then it implies that b(Qn) = k ≥ 2.

Note that for a fixed node u ∈ V (Qn), the nodes that are at distance i from u in Qn

are those nodes whose corresponding n-binary strings differ in exactly i bits from the

corresponding n-binary string of node u. Thus, the number of nodes in Qn that are

at distance i from node u equals (n
i
). Hence, the number of nodes in the r-th closed

neighbourhood of u in Qn equals
r

∑
i=0

(n
i
).

Now, suppose that (x1, x2, . . . , xk) is an optimum burning sequence for Qn. By Equa-

tion (2.1), we have that

2n = ∣V (Qn)∣ ≤
k

∑
i=1

∣Nk−i[xi]∣

=
k

∑
i=1

k−i

∑
j=0

(n
j
)

=
k−1

∑
i=0

(k − i)(n
i
).

By assumption, we know that 2 ≤ k ≤ ⌈n2 ⌉. Thus, we have that 1 ≤ k−1 ≤ n
2 . Therefore,

we conclude that 0 ≤ k−1
n ≤ 1

2 . Hence, by the above inequalities, and the facts about
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the binary entropy function that we mentioned earlier, we have that

2n ≤
k−1

∑
i=0

(k − i)(n
i
)

≤
k−1

∑
i=0

(k − 1)(n
i
)

= (k − 1)
k−1

∑
i=0

(n
i
)

≤ (k − 1)2H(ε)⋅n,

where ε = k−1
n . Thus, if b(Qn) = k, then we must have that (k − 1)2H(ε)⋅n ≥ 2n.

Therefore, we must have k − 1 ≥ 2n(1−H(ε)). On the other hand, by the Taylor series of

the entropy function, we know that

1 −H(ε) = 1 − 1 + 1

2 ln 2

∞

∑
n=1

(1 − 2ε)2n

(2n − 1) ≥ (1 − 2ε)2

2 ln 2
.

Hence, we must have that

k − 1 ≥ 2n(1−H(ε)) ≥ 2n
(1−2ε)2
2 ln2 .

Since by assumption, ε = k−1
n , then k − 1 = εn. By substitution of this in the above

inequality, we conclude that εn ≥ 2n
(1−2ε)2
2 ln2 . By taking the logarithm from both sides

of this inequality, we have that

log2 nε ≥ n
(1 − 2ε)2

2 ln 2
.

Since ε ≤ 1
2 , then log2 nε ≤ log2

n
2 . Therefore, we have that

log2

n

2
≥ log2 nε ≥ n

(1 − 2ε)2

2 ln 2
.

Thus, we derive that

(1 − 2ε)2 ≤
2 ln 2 log2

n
2

n
.
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This implies that

ε ≥ 1

2
− 1

2

√
2 ln 2 log2

n
2

n
.

Since ε = k−1
n ≤ 1

2 , then we conclude that

k − 1 ≥ n
2
− n

2

√
2 ln 2 log2

n
2

n
= n

2
−
√

ln 2

2
n log2

n

2
.

Therefore, if b(Qn) = k, then we must have that

k ≥
⎡⎢⎢⎢⎢⎢

n

2
+ 1 −

√
ln 2(n

2
log2

n

2
)
⎤⎥⎥⎥⎥⎥
.

Hence, (2.7) is true. Since limn→∞

√
ln 2(n

2
log2

n
2
)

n
2

= 0, we derive the desired result from

the inequalities in (2.7).

Now, we consider the burning number of the strong product of graphs. We first

present some simple general bounds similar to Theorem 37.

Theorem 43. If G and H are two connected graphs, then we have that

max{b(G), b(H)} ≤ b(G ⊠H) ≤ min{b(G) + rad(H), b(H) + rad(G)}.

Proof. First, note that each of G and H is an isometric subgraph of G⊠H that satisfies

the conditions in Theorem 15. Namely, suppose that V (G) = {u1, u2, . . . , um} and

V (H) = {v1, v2, . . . , vn} for some positive integers m and n. Let uk, where 1 ≤ k ≤m,

be a node in G. By definition of the strong product, the subgraph of G⊠H induced by

the set of the nodes {(uk, vi) ∶ 1 ≤ i ≤ n} is isomorphic to H. We denote this subgraph

by Hk. We can see that, for any node (ui, vj) in G ⊠H and a positive integer r, we

have that

NG⊠H
r [(ui, vj)] ∩Hk ⊆ NHk

r [(uk, vj)].

Namely, for any node (uk, vl) ∈ G⊠H (where 1 ≤ l ≤ n), with dG⊠H ((uk, vl), (ui, vj)) ≤
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r, we have that

r ≥ dG⊠H ((uk, vl), (ui, vj)) = max{dG(uk, ui), dH(vl, vj)}

≥ dH(vl, vj)

= dG⊠H ((uk, vl), (uk, vj)) .

Hence, H is an isometric subgraph of G⊠H that satisfies the conditions in Theorem

15. Similarly, by symmetry of the Cartesian product, we can conclude that G is also

an isometric subgraph of G⊠H that satisfies the conditions in Theorem 15. Therefore,

we conclude that

b(G ⊠H) ≥ max{b(G), b(H)}.

For proving the upper bound, note that G ◻H is a spanning subgraph of G ⊠H.

Thus, by Theorem 37, we conclude that

b(G ⊠H) ≤ b(G ◻H) ≤ min{b(G) + rad(H), b(H) + rad(G)}.

Hence, the proof follows.

We now consider the burning number of the strong grids. By a m × n strong

grid we mean the strong product of Pm and Pn. Figure 2.7 shows an example of a

3 × 3 strong grid. Note that the r-th closed neighbourhood of a node x in a strong

grid is a small strong subgrid which is a subset of a (2r + 1) × (2r + 1) strong grid

with centre x. By direct checking, we can see that the number of the nodes in a

(2r + 1) × (2r + 1) strong grid equals (2r + 1)2. We have the following theorem about

the burning number of the strong grids.

Figure 2.7: A 3 × 3 strong grid.

Theorem 44. Let G be a m × n strong grid with 1 ≤ m ≤ n, where m = m(n) is a
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function of n. Then we have the following asymptotic results:

b(G) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Θ(n1/2) if m = O(n1/2)

Θ((mn)1/3) if m = ω(n1/2).

Proof. Note that a m×n strong grid such as G contains a m×n Cartesian grid H as

its spanning subgraph. Hence, we have that b(G) ≤ b(H), and we can apply Theorem

38 for finding upper bounds. That is, if m = O(n1/2), then b(G) = O(n1/2); while if

m = ω(n1/2), then b(G) = O((mn)1/3).
Now, we find a general lower bound by applying the covering idea in Lemma 3

as follows. Let (x1, x2, . . . , xk) be a burning sequence for G. Thus, every node in G

must be in the (k − i)-th neighborhood of a node xi, for some 1 ≤ i ≤ k. Therefore, by

Equation (2.1), we conclude that

mn = ∣V (G)∣ ≤ ∣Nk−1[x1]∣ + ∣Nk−2[x2]∣ + ⋯ + ∣N0[xk]∣

≤
k

∑
i=1

(2i − 1)2

= k(2k − 1)(2k + 1)
3

.

Let f(k) = k(2k−1)(2k+1)
3 . Then it implies that for any k with f(k) < mn, we can

not cover V (G) with any collection of closed neighbourhoods such as {Nk−i[xi]}ki=1.

Therefore, for such a k, we must have b(G) ≥ k. Let k = ⌊(3/4)1/3(mn)1/3⌋. Then we

have that

f(k) = 4k3 − k
3

< 4

3
k3

≤ 4

3
((3/4)1/3(mn)1/3)3

=mn.

Hence, we conclude that b(G) > ⌈(3/4)1/3(mn)1/3⌉. Also, we know that the path Pn is

an isometric subtree of G. Thus, by Theorem 16, we have that b(G) ≥ n1/2. Therefore,

the proof follows.

We now present bounds on the burning number of the lexicographic product of
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two graphs in general.

Theorem 45. For any two graphs G and H we have that

b(G) ≤ b(G ⋅H) ≤ b(G) + 2.

Proof. Suppose that V (G) = {u1, u2, . . . , un}, and V (H) = {v1, v2, . . . , vm}, where m

and n are two positive integers. Note that the subgraph of G ⋅ H induced by the

nodes {(u1, v1), (u2, v1), . . . , (un, v1)} is isomorphic to G. We call this subgraph G1,

and we claim that G1 is an isometric subgraph of G ⋅H that satisfies the conditions in

Theorem 15. Namely, suppose that (ui, v1) and (uj, v1) are two nodes in G1, where

1 ≤ i < j ≤ n. As we mentioned in Section 1.2, the graph distance between the nodes

(ui, v1) and (uj, v1) in the graph G ⋅H equals dG(ui, uj). Hence, G1 is an isometric

subgraph of G ⋅H. Now, suppose that (ui, vj) is a node in G ⋅H, with j ≠ 1, and r

is a positive integer. We have the following possibilities for NG⋅H
r [(ui, vj)] ∩ G1. If

r = 1 and vj ∈ N(v1), then NG⋅H
r [(ui, vj)] ∩ G1 = NG1

r ((ui, v1)) ⊂ NG1
r [(ui, v1)]. If

r ≥ 2 or vj /∈ N(v1), then NG⋅H
r [(ui, vj)] ∩G1 = NG1

r [(ui, v1)]. Thus, the claim is true.

Therefore, by Theorem 15, we conclude that

b(G ⋅H) ≥ b(G1) = b(G).

Now, for proving the upper bound, assume that b(G) = k. Let (x1, x2, . . . , xk) be

an optimum burning sequence for G. We now define a burning process for G⋅H with a

burning sequence of length k+t, where t ≤ 2 as follows. For 1 ≤ i ≤ k, take yi = (xi, v1).
Thus, (y1, y2, . . . , yk) forms a burning sequence for G1. For i ≥ k+1, let yi be a node in

G ⋅H that is not burned by burning the nodes in the sequence (y1, y2, . . . , yi−1) in the

first i−1 steps, if such a node is available. Since every node (ui, vj) in G ⋅H is within

distance 2 from the node (ui, v1) in G1, then we will have a burning (y1, y2, . . . , yk+t)
for G ⋅H, for some t ≤ 2. Hence, we conclude that b(G ⋅H) ≤ b(G) + 2.



Chapter 3

Complexity of the Graph Burning Problem

In this chapter, we consider the computational complexity of the burning problem.

3.1 Trees with Maximum Degree Three

In this section, we prove that the decision version of the burning problem is NP-

complete even for trees with maximum degree three. We show this by a reduction

from a variant of the 3-Partition problem which is also known to be strongly NP-

complete. Here is the statement of this problem.

Problem: Distinct 3-Partition

Instance: A finite set X = {a1, a2, . . . , a3n} of distinct positive integers, and a positive

integer B where ∑3n
i=1 ai = nB, and B/4 < ai < B/2, for 1 ≤ i ≤ 3n.

Question: Is there any partition of X into n triples such that in each triple the

elements add up to B?

Note that in the original 3-Partition problem ai’s are not necessarily distinct; that

is, X is a multi-set. However, in the Distinct 3-Partition problem, X is a set of distinct

integers. A proof for the NP-completeness of the Distinct 3-Partition problem which

is shown in fact to be strongly NP-complete is given in Corollary 7 from [36].

In the following, we show the NP-completeness of the Graph Burning problem by

a reduction from Distinct 3-Partition. Here is the statement of the decision version

of the burning problem.

Problem: Graph Burning

Instance: A finite simple graph G with V (G) = {v1, v2, . . . , vn}, and an integer k ≥ 2.

Question: Is b(G) ≤ k?

Note that the only graph with burning number 1 is the complete graph K1. Also,

by Theorem 8 in Chapter 2, we know that for a graph G of order n, b(G) = 2 if

and only if ∆(G) ∈ {n − 1, n − 2}. Since finding the maximum degree of a graph is a

65
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polynomial time problem, then the burning problem for k = 2 is in P. Now, we prove

that the burning problem for k ≥ 3 is NP-complete even for trees of maximum degree

three, as follows.

A spider graph is a tree with only one node of degree at least three. Such a node

in a spider graph is called the spider head. In the rest of this chapter, by Oi we mean

the set of odd integers {1,3, . . . ,2i − 1}.

Theorem 46. The Graph Burning problem is NP-complete for trees of maximum

degree three.

Proof. First, we need to show that the burning problem is in NP. Given a graph G

of order n and a sequence (x1, x2, . . . , xk) of the nodes in G, we can find Nk−i[xi] in

polynomial time, for 1 ≤ i ≤ k. Thus, we can check in polynomial time if V (G) =
⋃ki=1Nk−i[xi]. Hence, the burning problem is in NP.

Now, we show the NP-completeness of the burning problem for trees of maximum

degree 3 by a reduction from the Distinct 3-Partition problem, as follows.

Suppose that we have an instance of the Distinct 3-Partition problem; that is, we

are given a non-empty finite set X = {a1, a2, . . . , a3n} of distinct positive integers, and

a positive integer B such that ∑3n
i=1 ai = nB, and B/4 < ai < B/2, for 1 ≤ i ≤ 3n. Since

the Distinct 3-Partition problem is NP-complete in the strong sense, without loss

of generality we can assume that B is bounded above by a polynomial in the length

of the input. Assume that the maximum of the set X is m which is by assumption

bounded above by B/2. We now construct a tree of maximum degree 3 as follows.

Let Y = {2ai − 1 ∶ 1 ≤ i ≤ 3n}. Hence, Y ⊆ Om, and 2nB − 3n = ∑3n
i=1 2ai − 1 is the

sum of the numbers in Y . Let Z = Om ∖ Y . Note that 1 ≤ ∣Y ∣ ≤m, and consequently,

∣Z ∣ ≤m − 1. Let ∣Z ∣ = k, for some k ≤m − 1. For 1 ≤ i ≤ k, let Q′
i be the path of order

li, where li is the i-th largest element in Z. For 1 ≤ i ≤ m + 1, we define Ti to be a

spider SP (3,2m+ 1− i) with centre ri. We also take Qi to be a path of order 2B − 3,

for 1 ≤ i ≤ n. Then we combine the graphs that we created above from left to right in

the following order:

Q1, T1,Q2, T2, . . . ,Qn, Tn,Q
′
1, Tn+1,Q

′
2, Tn+2, . . . ,Q

′
k, Tn+k, Tn+k+1, . . . , Tm+1

such that each graph in this order is joined by an edge from one of its leaves to a leaf
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of the next graph in the presented order. The resulting graph is called T (X); note

that it is a tree of maximum degree three.

Figure 3.1: A sketch of the tree T (X).

For example, let X = {10,11,12,14,15,16}, and B = 39. Then n = 2, and m =
max{ai ∶ ai ∈ X} = 16. Therefore, Y = {19,21,23,27,29,31}, and Z = O16 ∖ Y =
{1,3,5,7,9,11,13,15,17,25}. Thus, k = ∣Z ∣ = ∣O16 ∖ Y ∣ = 10. The graph T (X) is

depicted in Figure 3.1. For simplicity, we do not draw the nodes in the paths Qi and

Q′
j, and the spiders Ti’s in the figure.

For 1 ≤ i ≤ m + 1, let vi be a leaf of T (X) that is also a leaf of Ti, as a subgraph

of T (X). Note that for 1 ≤ i ≤ m + 1 the two arms of Ti that do not contain vi,

together with its centre ri, form a path. We call this path T ′
i . The order of T ′

i is

2(2m + 1 − i) + 1 ∈ O2m+1. Also, note that ∑n
i=1 ∣Qi∣ = ∑ai∈X 2ai − 1, where ∣Qi∣ is the

order of each path Qi. Moreover, ∑n
i=1 ∣Qi∣+∑k

i=1 ∣Q′
i∣ = ∑m

i=1 2i−1. Hence, the subgraph

of T (X) induced by

(
m+1

⋃
i=1

T ′
i)⋃(

n

⋃
i=1

Qi)⋃(
k

⋃
i=1

Q′
i)

forms a path of order

m

∑
i=1

(2i − 1) +
m+1

∑
i=1

2(2m + 1 − i) + 1 =
2m+1

∑
i=1

2i − 1 = (2m + 1)2,
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that we denote it by P . Therefore,

T (X) − P =
m+1

⋃
i=1

(Ti ∖ P ),

which is a disjoint union of paths of orders {2m + 1 − i}m+1
i=1 . Note that Ti ∖ P is the

arm of Ti that contains vi. Thus, we have that

∣V (T (X))∣ = (2m + 1)2 +
m+1

∑
i=1

(2m + 1 − i) = (2m + 1)2 + 3(m2 +m)
2

.

Since m is bounded by B and by assumption, B is bounded above by a polynomial

in the length of the input, then T (X) is obtained in polynomial time in the length of

the input.

We can see that, there is a partition of X into triples such that the elements in

each triple add up to B if and only if we can decompose the paths Q1,Q2, . . . ,Qn

into subpaths of orders 2ai − 1 ∈ Y . First, assume that there is a partition of X

into triples such that the elements in each triple add up to B. Equivalently, we have

a partition for the paths Q1,Q2, . . . ,Qn in terms of subpaths {Pl ∶ l ∈ Y }. Hence,

there is a partition for the subgraph (⋃ni=1Qi)⋃(⋃ki=1Q
′
i) in terms of the subpaths

{Pl ∶ l ∈ Om}. For m + 2 ≤ i ≤ 2m + 1, let xi be the centre of a path Pl of order

l = 2(2m+ 2− i)− 1 ∈ Om =X ∪Y in such a partition. For 1 ≤ i ≤m+ 1, let xi = ri (the

centre of Ti). Thus, we have that

V (T (X)) =
2m+1

⋃
i=1

N2m+1−i[xi].

Consequently, by Equation (2.1), we conclude that (x1, x2, . . . , x2m+1) forms a burning

sequence of length 2m + 1 for T (X). Therefore, b(T (X)) ≤ 2m + 1.

Conversely, suppose that b(T (X)) ≤ 2m + 1. Note that the path P of order

(2m+1)2 is a subtree of T (X). Therefore, by Theorem 19 and Corollary 18, we have

that

b(T (X)) ≥ b(P ) = 2m + 1.

Thus, we conclude that b(T (X)) = 2m + 1. Assume that (x1, x2, . . . , x2m+1) is an

optimum burning sequence for T (X).
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We claim that each xi must be in P . First, since T (X) = P ⋃(⋃m+1
j=1 (Tj ∖ P )),

every xi is either in P or in Tj ∖ P , for some 1 ≤ j ≤m + 1. On the other hand, every

node in P must receive the fire from one of the xi’s. Note that the only connection

of P to T (X)∖P is through the nodes ri’s. Hence, for 1 ≤ i ≤ 2m+ 1, N2m+1−i[xi] ∩P
must be a path of order at most 2(2m+ 1− i) + 1. If for some 1 ≤ i ≤ 2m+ 1, the node

xi is out of P , then N2m+1−i[xi] ∩P will be a path of order less than 2(2m+ 1− i) + 1.

Therefore, the total sum of the orders of the subpaths {N2m+1−i[xi] ∩ P}2m+1
i=1 will be

less than (2m+1)2 = ∣V (P )∣, which is a contradiction. Thus, every xi must be selected

from P .

Now, we claim that for 1 ≤ i ≤m+1, we must have xi = ri. We prove this by strong

induction on i. Note that for 1 ≤ i ≤m + 1, each vi receives the fire from a fire source

xj ∈ P (by the above argument), where 1 ≤ j ≤ 2m+1. Therefore, d(xj, vi) ≤ 2m+1−j,
for some 1 ≤ j ≤ 2m + 1. For i = 1, since the only node in P that is within distance

2m + 1 − i = 2m from v1 is r1, then we must have x1 = r1. Suppose that for 1 ≤ i ≤ m
and for every 1 ≤ j ≤ i, xj = rj. Since the only node in P within distance 2m+1−(i+1)
from vi+1 is the node ri+1, and by induction hypothesis, we conclude that xi+1 = ri+1.

Therefore, the claim is proved by induction.

Note thatN2m+1−i[ri] = V (Ti). Therefore, for 1 ≤ i ≤m+1, the fire started at xi = ri
will burn all the nodes in Ti. Hence, without loss of generality, we can assume that xi ∈
T (X)∖⋃m+1

i=1 Ti, for m+2 ≤ i ≤ 2m+1. Now, the above argument implies that the nodes

in T (X)∖⋃m+1
i=1 Ti must be burned by receiving the fire started at xm+2, xm+3, . . . , x2m+1

(the last m sources of fire). Since T (X) ∖ ⋃m+1
i=1 Ti is a disjoint union of paths, then

we derive that for m+2 ≤ i ≤ 2m+1, N2m+1−i[xi]⋂(T (X)∖⋃m+1
i=1 Ti) is a path of order

at most 2m + 1 − i (≤ 2m − 1). On the other hand, the path-forest T (X) ∖ ⋃m+1
i=1 Ti is

of order
m

∑
i=1

(2m + 1 − i) =m2.

Thus, we conclude that for m + 2 ≤ i ≤ 2m + 1, N2m+1−i[xi]⋂(T (X) ∖ ⋃m+1
i=1 Ti) is a

path of order equal to 2m + 1 − i; since otherwise, we can not burn all the nodes

in T (X) ∖ ⋃m+1
i=1 Ti in m steps, which is a contradiction. Therefore, there must be a

partition of T (X)∖⋃m+1
i=1 Ti (induced by the burning sequence (xm+2, xm+3, . . . , x2m+1))

into subpaths {Pl ∶ l ∈ Om}.

Now, considering the partition described in the previous paragraph, we claim that
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there is a partition of T (X) ∖ ⋃m+1
i=1 Ti into subpaths of orders in Om in which the

paths Q1,Q2, . . . ,Qn are decomposed into paths of orders in Y , and each path Q′
i is

covered by itself. Note that by definition, for 1 ≤ i ≤ k, each path Q′
i is a component of

T (X)∖⋃m+1
i=1 Ti. Hence, it suffices to prove that there is a partition of T (X)∖⋃m+1

i=1 Ti

into subpaths of orders in Om such that each Q′
i is covered by itself. Assume that in a

partition of T (X)∖⋃m+1
i=1 Ti into subpaths of orders in Om, there is a path Q′

i of order

l ∈ Om ∖Y = Z that is partitioned by a union of paths of orders in Om rather than by

Pl itself. We know that Pl must have covered some part of a path Q′
j with j ≠ i, or

must be used in partitioning Q1,Q2, . . . ,Qn. Hence, we can modify the partition by

switching the place of Pl and those paths that have covered Pl (as they have equal

lengths). Therefore, we have decreased the number of such displaced paths in our

partition for T (X) ∖ ⋃m+1
i=1 Ti. Since the number of Q′

i’s, where 1 ≤ i ≤ k, is finite, we

will end up after finite number of switching in a partition for T (X)∖⋃m+1
i=1 Ti in which

every Q′
i, 1 ≤ i ≤ k, is covered by itself.

In the partition described above, every Qi (1 ≤ i ≤ n) is decomposed into paths

of orders {l ∶ l ∈ Y }. Since each Qi is of order 2B − 3, there must be a partition of

Y into triples such that the elements in each triple add up to 2B − 3. Equivalently,

there must be a partition of X into triples such that the elements in each triple add

up to B. Since T (X) is a tree of maximum degree 3, then we have a polynomial time

reduction from the Distinct 3-Partition problem to the Graph Burning problem for

trees with maximum degree 3.

Since any tree is a chordal graph, and also planar and bipartite, then we conclude

the following corollary.

Corollary 47. The burning problem is NP-complete for chordal graphs, planar

graphs, and bipartite graphs.

We have the following immediate corollary since a tree of maximum degree three

is a graph of maximum degree three.

Corollary 48. The burning problem is NP-complete even for graphs of maximum

degree three.

We also have the following corollary.
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Corollary 49. (i) The burning problem is NP-complete even for the forests of max-

imum degree three.

(ii) The burning problem is NP-complete even for the disconnected graphs of

maximum degree three.

Proof. First, if in the proof of Theorem 46 we keep the graphs Qi’s, Q′
i’s, and Ti’s

disjoint, and take T (X) as a forest with those graphs as its components, then still we

can have the same argument and reduction from the Distinct 3-Partition problem.

Thus, we conclude the result in part (i). Now, part (ii) is a corollary of part (i),
since every forest (with at least two components) of maximum degree three is a

disconnected graph of maximum degree three.

A binary tree is a rooted tree in which every node has at most two children. In a

full binary tree or a proper binary tree, every node that is not a leaf has two children.

A perfect binary tree is a full binary tree in which all the leaves have the same depth

(or they are all at the same level); that is, they are all at the same distance from the

root.

Let T be a perfect binary tree of radius r. Assume that s is the root of T , and

u and v are the neighbours of s. By definition, we can see that, there is only one

node of degree two that is the root s, and every other node except for the leaves is

of degree three. Moreover, s is the unique centre node of T , and each of u and v by

itself is the root of a perfect binary tree of radius r − 1. Also, note that every perfect

binary tree of radius r has 2r leaves. In Figure 3.2 we have examples of binary trees.

(a) A binary tree with root s. (b) A full binary tree with root s.

(c) A perfect binary tree with root s.

Figure 3.2: Some examples of binary trees.

Note that in the proof of Theorem 46, the gadget graph that we construct is a
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binary tree. To see this, we can take the end point of path Q1 that is a leaf as a root

for T (X) and then every other node is a descendant of the root and has at most two

children. Therefore, as another corollary of Theorem 46, we can say that the burning

problem is NP-complete even for binary trees. However, we can find the burning

number of the perfect binary trees as stated below.

Theorem 50. If T is a perfect binary tree of radius r, then b(T ) = r + 1.

Proof. We prove the theorem statement by induction on r as follows. First, by def-

inition, a perfect binary tree T of radius 1 consists of only a root node and its two

neighbours. Thus, T is a path on three nodes, and hence, by Theorem 19 from Chap-

ter 2, b(T ) = 2. Now, assume that the burning number of a perfect binary tree of

radius r − 1 equals r, and T is a perfect binary tree of radius r. Since the root of

a perfect binary tree is its centre, then by burning the root at the first step, every

other node will be burned after r more steps. Let s be the root of T with neighbours

u and v. As we mentioned right after the definition of a perfect binary tree, u and v

are the roots of two perfect binary trees of radii r − 1 that we call them T1 and T2,

respectively. Since T includes a perfect binary tree of radius r − 1 as its isomorphic

subtree, and by Corollary 17 and Lemma 23, we conclude that r ≤ b(T ) ≤ r + 1.

By contradiction, suppose that b(T ) = r, and (x1, x2, . . . , xr) is an optimum burn-

ing sequence for T . Note that V (T ) = V (T1) ⊍ V (T2) ⊍ {s}. Therefore, to burn T we

have to burn T1 and T2 as well. Also, we have to consider two possibilities: x1 /∈ T1,

or x1 /∈ T2. First, assume that x1 /∈ T1. We know that T1 has r levels (including u) and

the only connection of T1 to the rest of the nodes in T is through the node s. Hence,

the distance between every leaf in T1 and any node in T ∖ T1 is at least r. Since T1

has 2r−1 leaves, and every leaf in T1 must be burned by the end of the r-th step, then

at least one source of fire must be chosen from T1.

Now, let L denote the set of the leaves in T1. Since the number of the leaves in

a perfect binary tree of radius r − i equals 2r−i, then we conclude that for 2 ≤ i ≤ r,
∣Nr−i[xi] ∩L∣ ≤ 2r−i (where the equality holds only if we choose xi from the (i − 1)-th
level of T1). Hence, by following this greedy argument, even in the case that we choose

all the xi’s, for 2 ≤ i ≤ r, from T1, we will burn at most 2r−2+2r−3+⋯+1 = 2r−1−1 leaves

in L, which is a contradiction. By symmetry of T , we have a similar argument for
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not choosing x1 from T2. Hence, we conclude that burning T in r steps is impossible.

Therefore, b(T ) = r + 1, and the proof follows by induction.

3.2 Path-forests and Spider Graphs

In this section, we prove that the Graph Burning problem is NP-complete even for

spider graphs and path-forests. We first provide some background on the burning

number of trees.

A terminal path in a tree T is a path P in T such that one of the end points of

P is a leaf of T . The other end point of P , that is not necessary a leaf, is called the

non-terminal end point of P (if P is of order one, then the non-terminal end point of

P and the leaf in P coincide). Assume that {Qi}ti=1 is a set of disjoint terminal paths

in T , and let vi denote the non-terminal point of the path Qi, for 1 ≤ i ≤ t. We call

{Qi}ti=1 a decomposed spider in T if the path between every pair vi and vj does not

contain any node of Qi and Qj except vi and vj. In Figure 3.3, we see an example

of a decomposed spider {Qi}5
i=1 in a tree. The paths shown with colour blue are the

terminal paths.

Figure 3.3: An example of a decomposed spider in a tree.

Theorem 51. Suppose that {Qi}ti=1, where t ≥ 3, forms a decomposed spider in a tree

T , and let vi be the non-terminal end point of Qi, for 1 ≤ i ≤ t. If d(vi, vj) ≥ 2k for

all 1 ≤ i, j ≤ t, and t ≥ k, then b(T ) ≥ k + 1.

Proof. Let T ′ be the smallest connected subgraph of T that contains ⋃ti=1Qi. Since

T ′ is an isometric subtree of T , to prove that b(T ) ≥ k + 1 it suffices to show that

b(T ′) ≥ k + 1, as follows.
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First, we show that the burning number of T ′ is at least k. Let wi denote the leaf

of T ′ in Qi. Note that we may have wi = vi (in the case that Qi is of order one). We

claim that there is no fire source xj that spreads the fire to two distinct leaves. By

contradiction, suppose that there are two distinct leaves wi and wr, and a fire source

xj for which we have that d(xj,wi) ≤ k − j and d(xj,wr) ≤ k − j (that is, wi and wr

both receive the fire started at xj). By triangle inequality, we conclude that

2k ≤ d(vi, vr) ≤ d(wi,wr) ≤ d(wi, xj) + d(xj,wr) ≤ 2k − 2j < 2k,

which is a contradiction. Therefore, it implies that corresponding to every leaf wi

there is a unique fire source xj such that the fire spread from xj only burns one leaf

of T , that is wi. Thus, the number of fire sources must be at least as large as the

number of the leaves in T ′ that is t ≥ k. Hence, we must have b(T ′) ≥ k.

Now, we claim that b(T ′) ≠ k. By contradiction, suppose that b(T ′) = k, and

(x1, x2, . . . , xk) is an optimum burning sequence for T ′. If t > k, then the above

argument leads to the same contradiction, as the number of the fire sources has to

be as large as the number of the leaves. If t = k, then let wi be the leaf that receives

the fire from xk. Since b(T ′) = k, then it implies that xk = wi. We claim that there

is no fire source xj ≠ xk with d(vi, xj) ≤ k. By contradiction, suppose that there is a

fire source xj ≠ xk with d(vi, xj) ≤ k, and let wr be the leaf of T ′ that receives the fire

spread from xj. Thus, we have that

2k ≤ d(vr, vi) ≤ d(wr, vi) ≤ d(wr, xj) + d(xj, vi) ≤ k − j + k < 2k,

which is a contradiction.

Let s be a neighbour of vi that is not in the path between vi and wi = xk. Since

t ≥ 3, we are sure that such a node s does exist. By assumption, we know that

xk = wi, and therefore s can not receive the fire spread from xk. On the other hand,

the distance between s and any other fire source must be at least k. Thus, s can not

be burned by the end of the k-th step, which is a contradiction. Hence, we have that

b(T ′) ≥ k + 1.

By Theorem 19 from Chapter 2, we know that for a path P with b(P ) = k, burning

P in k steps is equivalent to decomposing P into k subpaths such that each of them is
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a closed neighbourhood of a fire source. Let (x1, x2, . . . , xk) be an optimum burning

sequence for such a path P . As we mentioned Nk−1[x1] is a subpath of P . If x1 is

close enough to the end points of P , then P ∖Nk−1[x1] is path that can be burned in

k −1 steps. If x1 is faraway enough from the end points of P , then Nk−1[x1] is a path

of order 2k − 1, and P ∖Nk−1[x1] is a path-forest with two components that can be

burned in k − 1 steps. We would like to generalize this idea for an arbitrary tree, as

follows.

Assume that we want to find the burning number and an optimum burning se-

quence for a given tree T . If there is an optimum burning sequence (x1, x2, . . . , xk) for

T such that V (T ) ⊆ Nk−1[x1], then we claim that b(T ) = rad(T ) + 1. Namely, it im-

plies that there is at least one node such as v for which d(v, x1) = k−1; otherwise, we

conclude that V (T ) ⊆ Nk−2[x1], and therefore, b(T ) ≤ k − 1, which is a contradiction.

Thus, the eccentricity of the node v is k − 1. Since rad(T ) is the smallest eccentricity

of a node in T , then we conclude that k−1 ≥ rad(T ). Therefore, b(T ) = k ≥ rad(T )+1.

On the other hand, by Theorem 23 from Chapter 2, we know that b(T ) ≤ rad(T ) + 1.

Hence, we conclude that b(T ) = k = rad(T ) + 1.

If T ∖Nk−1[x1] is non-empty, then this implies that

T ∖Nk−1[x1] ⊆ Nk−2[x2] ∪Nk−3[x3] ∪ . . . ∪N0[xk].

Note that it does not imply that b(T ∖ Nk−1[x1]) ≤ k − 1. For example, let T be

the tree shown in Figure 3.4. We can check that the sequence (x1, x2, x3, x4) is an

optimum burning sequence for T . However, T ∖N3[x1] consists of 5 disjoint isolated

nodes. Thus, b(T ∖N3[x1]) = 5 /< 2.

Figure 3.4: A tree T with an optimum burning sequence.

Hence, we are motivated to state the following conjecture.
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Conjecture 52. Suppose that {Qi}ti=1, where t ≥ 3, forms a decomposed spider in a

tree T , and let vi be the non-terminal end point of Qi, for 1 ≤ i ≤ t. If b(⊍ti=1Qi) ≥ k,

and d(vi, vj) ≥ 2k for all 1 ≤ i, j ≤ t, then b(T ) ≥ k + 1.

Conjecture 52 may be helpful in finding a lower bound on the burning number

of a tree T (as we can see the conjecture is true for paths by Theorem 19, and

also we will see later on the conjecture is true for some specific spider graphs). In

particular, if the burning number of a tree T is strictly less than rad(T ) + 1, and the

conjecture was true, then we guess that by starting from the leaves of T we could

probably find a good lower bound on b(T ). Note that by Theorem 51, when t ≥ k,

the above conjecture is true. Also, we can prove the following lemma, since the leaves

in any spider graph SP (s, r), with s ≥ r, form a decomposed spider that satisfies the

conditions in Theorem 51. We use this lemma in the proof of the NP-completeness

of the Graph Burning problem for spider graphs.

Lemma 53. For a spider graph SP (s, r), with s ≥ r, we have that b(SP (s, r)) = r+1.

Moreover, for s ≥ r + 2, every optimal burning sequence of SP (s, r) must start by

burning the central node.

Proof. By Theorem 23, we know that b(SP (s, r)) ≤ r + 1, as SP (s, r) has radius r.

Since SP (r, r) is an isometric subgraph of SP (s, r) where s ≥ r, then it suffices to

show that b(SP (r, r)) = r + 1.

First, we prove that b(SP (r, r)) ≥ r + 1. We index the leaves of SP (r, r) with

w1,w2, . . . ,wr. For 1 ≤ i ≤ r, let Qi be the graph induced by wi; that is, Qi is a path

of order one. Hence, every Qi is a terminal path in SP (r, r) with the non-terminal

end wi, and for every distinct pair 1 ≤ i, j ≤ r, we have that d(wi,wj) = 2r. Therefore,

by Theorem 51, we conclude that b(SP (r, r)) ≥ r + 1.

Now, suppose that s ≥ r + 2 and there exists an optimal burning sequence for

SP (s, r) such as (x1, x2, . . . , xr+1) in which x1 is not the central node. Since s ≥ r + 2

and b(SP (s, r)) = r+1, then by Pigeonhole Principle, one of the arms does not include

any source of fire, unless we choose the central node as a fire source. Note that by

assumption, x1 is not the central node. Since the only connection between the nodes

in that arm to the rest of the nodes in SP (s, r) goes through the central node, then

in both cases, we need at least 1 + (r + 1) steps for burning the leaf on that arm,
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which is a contradiction. Thus, every optimal burning sequence for SP (s, r) starts

by burning the central node, where s ≥ r + 2.

Using the above lemma, we now prove that the burning problem is NP-complete

for trees with an elementary-seeming structure as spider graphs. We note that The-

orem 54 and Corollary 55 were proven independently in [12] and in a preprint of the

paper [18] on arXiv.

Theorem 54. The burning problem is NP-complete for spider graphs.

Proof. By Theorem 46, the burning problem is in NP. As in the proof of Theorem 46,

we give a reduction from the Distinct 3-Partition problem into the burning problem,

in which the gadget graph that we construct is a spider graph.

Given an instance of the Distinct 3-Partition problem, that is, a setX = {a1, . . . , a3n}
of positive distinct integers and a positive integer B such that each B/4 < ai < B/2,

we construct a graph G as follows. Since the Distinct 3-Partition problem is strongly

NP-complete (as in the proof of Theorem 46), without loss of generality we assume

that B is bounded above by a polynomial in the length of the input.

Suppose that maxX =m + 1, and let Y = {2ai − 1 ∶ ai ∈ X}. Therefore, Y ⊆ Om+1.

We then make a copy of the spider graph SP (2m + 5,m + 1) with centre s, called

Gs. Now, for any positive odd integer l ∈ Om+1 ∖ Y , we connect by an edge a leaf

of a copy of Pl (a path on l nodes) to a distinct leaf of SP (2m + 5,m + 1). We

connect (by an edge) n copies of P2B−3, called Q1,Q2, . . . ,Qn to distinct leaves of

SP (2m+5,m+1) that we have not used for attaching any other Pl, with l ∈ Om+1∖Y .

We call the resulting graph G. We can see that G is a spider tree with spider head s.

Since V (G) is the disjoint union of the spider graph SP (2m+5,m+1) and the paths

Q1,Q2, . . . ,Qn, and the paths Pl, with l ∈ Om+1 ∖ Y , we have that

∣V (G)∣ =
m+1

∑
i=1

(2i − 1) + (2m + 5)(m + 1) + 1 = (m + 1)2 + (2m + 5)(m + 1) + 1,

which is of order O(B2) in terms of B. Since B is bounded above by a polynomial

in the length of the input, it implies that we construct graph G in polynomial time

in the length of the input. We want to show that, there is a partition of X into n

triples such that the numbers in each triple add up to B if and only if b(G) ≤m + 2.
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Figure 3.5: A sketch of the tree G.

First, assume that there is a partition of X into n triples such that the numbers

in each triple add up to B. Consequently, paths Q1,Q2, . . . ,Qn can be partitioned

into smaller paths of orders {2ai − 1 ∶ ai ∈ X}. For l ∈ Y , we set xm+2−( l−1
2
) to be the

middle node of the paths Pl, applied in such a partition of Q1,Q2, . . . ,Qn. Then we

take x1 = s, and for any l ∈ Om+1 ∖Y , we set the middle node of Pl as xm+2−( l−1
2
). The

sequence (x1, x2, . . . , xm+2) is a burning sequence for G. Thus, b(G) ≤m + 2.

For example, let X = {10,11,12,14,15,16}, and B = 39. Then the graph G is

shown in Figure 3.5. Here, we have that n = 2, and m = max{ai ∶ ai ∈ X} − 1 = 15.

Therefore, Y = {19,21,23,27,29,31}, and O16∖Y = {1,3,5,7,9,11,13,15,17,25}. The

red nodes in Figure 3.5 denote a burning sequence of length 17 for tree G.

Conversely, suppose that b(G) ≤m+2. Since Gs is an isometric subtree of G, then

Theorem 18 and Lemma 53 imply that b(G) =m+2. Thus, G has a burning sequence

(x1, x2, . . . , xm+2). We have to show that there is a partition of X into n triples such

that the numbers in each triple add up to B. First, note that we use at most m + 1

leaves of Gs for attaching the paths Pl, with l ∈ Om+1, and the paths Q1,Q2, . . . ,Qn.

Thus, there is a copy of SP (m + 4,m + 1) that is an isometric subtree of G and the

only connection of its leaves to the rest of G is through node s. Therefore, by Lemma

53, we conclude that x1 = s. On the other hand, by burning node s at the first step,

all the nodes in Gs will be burned by the end of the (m + 2)-th step. Thus, without

loss of generality we can assume that for 2 ≤ i ≤m+2, all xi’s are selected from G∖Gs.



79

Now, by Equation (2.1), we know that G ∖Gs = ⋃m+2
i=2 Nm+2−i[xi]. Since G ∖Gs is

a path-forest, then Nm+2−i[xi] must be a path of order at most l = 2(m+2− i)+1, for

2 ≤ i ≤m + 2. Besides, we have that

∣V (G ∖Gs)∣ = 2nB − 3n + ∑
l∈Om+1∖Y

l

=
m+2

∑
i=2

(2(m + 2 − i) + 1) .

Therefore, it implies that Nm+2−i[xi] must be a path of order exactly equal to l =
2(m + 2 − i) + 1, for 2 ≤ i ≤ m + 2. Hence, there must be a partition of G ∖Gs by the

set of paths of orders in Om+1, in which the centre of each path in the partition is a

fire source.

We claim that there is a burning sequence for G in which the central node of each

Pl, l ∈ Om+1 ∖ Y (that we attached to a leaf of Gs), is selected as a fire source. We

can prove this claim by switching the paths that are possibly displaced in the current

partition for G ∖Gs. Thus, the closed neighbourhoods of the rest of the fire sources

form a partition for Q1,Q2, . . . ,Qn in terms of paths of orders 2ai − 1 ∈ Y . Since each

Qi is of order 2B − 3, then it implies that there is partition for X into triples such

that the elements in each triple add up to B.

We conclude the following corollary.

Corollary 55. The burning problem is NP-complete even for path-forests.

Proof. If we delete the spider graph SP (2m + 5,m + 1) in the proof of Theorem 54,

and keep the rest of the parts of the gadget graph G the same, then we will still

have the analogous argument for the disjoint union of the paths Q1,Q2, . . . ,Qn, and

the paths Pl with l ∈ Om+1 ∖ Y . Thus, we can have a reduction from the Distinct

3-Partition problem to the Graph Burning problem for path-forests. Therefore, we

conclude that the burning problem is strongly NP-complete for path-forests.

Note that in Theorem 53 and the above corollary, we do not have any restriction

on the number of the arms in SP (2m + 5,m + 1) and on the length of the paths in

constructing the gadget graphs. In other words, the parameter m is unbounded.
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3.3 Algorithms for finding the Burning Number of Path-forests and

Spider Graphs

In this section, we present a polynomial time algorithm that finds the burning number

of path-forests when the number of components and their orders are restricted, and

then we find another polynomial time algorithm that finds the burning number of

spider trees with restricted number of arms and with restrictions on the length of the

arms. We first provide some terminology and background.

From Theorem 19 in Chapter 2, we know that burning a path in k steps is equiv-

alent to decomposing the path into k smaller subpaths of restricted orders. In par-

ticular, burning a path P of order k2 in k steps is equivalent to decomposing P into

paths of orders 1,3, . . . ,2k − 1. Similarly, since the closed neighbourhood of a node

in a path-forest G is a path, by Theorem 19 from Chapter 2, burning G in k steps is

equivalent to decomposing G into k smaller paths of restricted orders. In particular,

if G is of order k2, and b(G) = k, then it means that we are lucky enough to have

a decomposition of G into k paths of orders 1,3, . . . ,2k − 1. Here in Figure 3.6 we

see an example of a path-forest of order 25 that has been decomposed into paths of

orders 1,3,5,7, and 9. The path of order 5 is shown with colour blue.

Figure 3.6: A path-forest of order 25.

As we saw in Theorem 19 from Chapter 2, a path such as P8 that is not of

square order has burning number 3, but the paths appearing in its decomposition

are not necessary all of odd orders 1, 3, and 5. Similarly, there are path-forests like

G with burning number k that can not be decomposed into paths of the odd orders

1,3, . . . ,2k − 1, as we see an example in Figure 3.7. However, such a path-forest is a

subgraph of a path-forest that can be partitioned into paths of orders in Ok.
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Figure 3.7: A path-forest of order 23.

That is the key idea for our algorithm. We say that G is a maximal path-forest if

it can be decomposed into paths of orders 1,3, . . . ,2t−1 for some positive integer t. In

such a case, it is clear that G is of order t2. For example, the graph G in Figure 3.6 is

a maximal path-forest of order 25. In general, if G is a path-forest with s components

and with burning number t, then G corresponds to a sequence of positive integers

such as (l1, l2, . . . , ls), where l1 ≥ l2 ≥ ⋯ ≥ ls, and li denotes the order of the i-th

component of G. Note that by Theorem 9 from Chapter 2, we know that b(G) is at

least at large as the number of the components in G. Hence, s ≤ t. Therefore, from

now on we represent a path-forest with burning number t by a sequence of integers

as defined above.

Here is briefly what we do in the algorithm, and the detailed explanation follows

after. For each k ≥ 1, we first build up all the maximal path-forests with burning

number k that have at most t − 1 components, where t is a fixed parameter. Then

recursively, we construct all the maximal path-forests with exactly t components, and

at each stage we check if G is a subgraph of them or not.

We denote the set of maximal path-forests with t components and with burning

number k by MPFtk. For example, for k = t = 1, as we mentioned in Chapter 2,

the only graph with burning number one is K1 = P1, which is a maximal path-

forest. Thus, MPF1
1 = {P1} = {(1)}. In general, we can see that for any k ≥ 1,

MPFkk = {(2k − 1,2k − 3, . . . ,1)}. This is true, since first by Theorem 9 from Chapter

2, we know that b(H) is at least at large as the number of the components that is

k. On the other hand, we can cover the node set of (2k − 1,2k − 3, . . . ,1) by supaths

of orders 1,3, . . . ,2k − 1. Hence, b(H) is at most k. Therefore, b(H) = k. Also, note

that for any k ≥ 1, MPF1
k = {Pk2} = {(k2)}.
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Algorithm 56. Suppose that G = (s1, s2, . . . , st), for a constant t ≥ 1, represents a

path-forest in which si denotes the order of the i-th component of G, and s1 ≥ s2 ≥ ⋯ ≥
st. Let m be a positive integer such that s1 ≤m; that is, the order of the components

of G is bounded above by m. Then we perform the following steps.

Stage 1. First, for each 1 ≤ r ≤ t − 1, we perform Stages 1.1 and 2.1:

Stage 1.1. We set MPFrr = {(2r − 1,2r − 3, . . . ,1)}.

If (s1, s2, . . . , sr) /∈ MPFrr, then go to the next stage.

Stage 1.2. For k ≥ r + 1, we perform the following steps:

Stage 1.2.1. For each H = (l1, l2, . . . , lr−1) ∈ MPFr−1
k−1, we form the sequence

H ′ = (2k − 1, l1, . . . , lr−1).

We rearrange the numbers in the sequence H ′ if they do not appear in a decreasing

order, and we add it to the set MPFrk.

If (s1, s2, . . . , sr) ⊆H ′, then finish Stage 1.2.1.

Stage 1.2.2. For each H = (l1, l2, . . . , lr) ∈ MPFrk−1, and each 1 ≤ i ≤ r, we form

the sequence Hi = (l1, . . . , li−1, li + 2k − 1, li+1, . . . , lr).

We rearrange the numbers in the sequences Hi if they do not appear in a decreasing

order, and we add them to the set MPFrk.

If (s1, s2, . . . , sr) ⊆Hi, then finish Stage 1.2.2.

Stage 2. For r = t, we perform the following steps:

Stage 2.1. We set MPFtt = {(2t − 1,2t − 3, . . . ,1)}.

If G ⊆ (2t − 1,2t − 3, . . . ,1), then stop and return b(G) = t.

Stage 2.2. For k ≥ t + 1, we perform the following steps:

Stage 2.2.1. For each H = (l1, l2, . . . , lt−1) ∈ MPFt−1
k−1, we form the sequence

H ′ = (2k − 1, l1, . . . , lt−1).

We rearrange the numbers in the sequence H ′ if they do not appear in a decreasing

order, and we add it to the set MPFtk.

If G ⊆H ′, then stop and return b(G) = k.

Stage 2.2.2. For each H = (l1, l2, . . . , lt) ∈ MPFtk−1, and for each 1 ≤ i ≤ t, we

form the sequence Hi = (l1, . . . , li−1, li + 2k − 1, li+1, . . . , lt).
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We rearrange the numbers in the sequence Hi if they do not appear in a decreasing

order, and we add it to the set MPFtk.

If G ⊆Hi, then stop and return b(G) = k.

The algorithm works since every graph G that is not a subgraph of a graph in

MPFti, for all 1 ≤ i < k, but G is a subgraph of a graph in MPFtk, has burning number

k. This is true since first, by Corollary 18 from Chapter 2, b(G) ≤ k. On the other

hand, if b(G) = i ≤ k, then it implies that we can cover the nodes set of G by paths

of orders 1,3, . . . ,2i − 1; that is, G is a subgraph of a graph in MPFti, which is a

contradiction. Namely, in such a case the algorithm should have stopped at Stage

2 for value i, and would not have proceeded till value k. Therefore, we must have

b(G) = k. We have the following fact about Algorithm 56.

Theorem 57. Suppose that G = (s1, s2, . . . , st), for an integer constant t ≥ 1, rep-

resents a path-forest in which si denotes the order of the i-th component of G, and

s1 ≥ s2 ≥ ⋯ ≥ st. Let m be a positive integer such that s1 ≤ m; that is, the order of

the components of G is bounded above by m. If t is a fixed constant in terms of m,

then Algorithm 56 finds the burning number of G in polynomial time in terms of the

input.

Proof. Given the graph G, suppose that for some k ≥ t, Algorithm 56 stops by recog-

nizing G as a subgraph of a graph in MPFtk. Note that t is a fixed constant in terms

of m. Thus, by Theorem 21 from Chapter 2, we derive that if H = (l1, l2, . . . , lr) is a

graph in MPFri (generated by Algorithm 56), with 1 ≤ r ≤ t and i ≥ r, then

b(H) ≤
⎡⎢⎢⎢⎢⎢

¿
ÁÁÀ

r

∑
j=1

lj

⎤⎥⎥⎥⎥⎥
+ r − 1 ≤

√
mt + t − 1 = O(

√
m).

On the other hand, since b(H) = i, then there is a partition of the set Oi into subsets

{Aj}rj=1 such that lj = ∑a∈Aj a, for 1 ≤ j ≤ r. It implies that lj ≤ ∑a∈Oi a = i2 = O(m),
for 1 ≤ j ≤ r. Hence, the length of the longest lj that appears in the representation of

such a graph H is of order m. Let l = O(m) be the length of the longest component in

a graph H generated by Algorithm 56. Thus, any graph H generated by Algorithm

56 is a subgraph of the graph G0 = (l, l, . . . , l) with t components. Since these graphs

are distinct, then the total number of the graphs that is generated by Algorithm 56
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is of order O(mt).
Moreover, note that for r = t and k ≥ t, each time that we add a new graph

H = (l1, l2, . . . , lt) to MPFtk, we check to see if G is a subgraph of H or not. We

simply can do this comparison by checking if si ≤ li, for 1 ≤ i ≤ t. Thus, the total

number of the steps that we perform in Algorithm 56 is bounded above by O(tmt).
Since t is a fixed constant in terms of m, then Algorithm 56 is a polynomial time

algorithm in terms of the input.

In the following, we try to find the burning number of spider graphs, again using

a bottom-up dynamical programming approach. First we need some facts to use for

this algorithm. The following theorem is a key in the algorithm that we will present,

and shows that for a spider tree we always can have an optimum burning sequence

in which the first source of fire is close to the spider head.

Theorem 58. If G is a spider graph with s ≥ 3 arms and the spider head c, then

there is an optimum burning sequence (x1, x2, . . . , xk) for G such that d(x1, s) ≤ k−1.

Proof. We prove this by strong induction on the number of the nodes in G. The

smallest order spider graph is a star with three leaves. By Theorem 8 from Chapter

2 we know that the burning number of such a star equals 2 and in every optimum

burning sequence for this graph the first fire must be the centre that is the spider

head. Hence, the theorem statement is true for this spider.

Now, suppose that the theorem statement is true for every spider graph of order

at most n − 1, and G is a spider graph of order n with s ≥ 3 arms and spider head

c. Also, assume that L1, L2, . . . , Ls are the arms of G, and v1, v2, . . . , vs are their

corresponding leaves. Finally, suppose that the order of each arm Li is denoted by li.

Let (x1, x2, . . . , xk) be an optimum burning sequence for G. By Equation (2.1), we

know that

V (G) = Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk].

If d(x1, c) ≤ k−1, then we are done. Hence, let d(x1, c) ≥ k, and x1 ∈ Li where 1 ≤ i ≤ s.
We have two possibilities for li: either li ≤ 2k − 2 or li ≥ 2k − 1.

Case 1. If li ≤ 2k − 2, then it implies that d(c, vi) ≤ 2k − 2. Let x be the node in

Li for which d(x, vi) = k−1. Therefore, we have that d(c, x) ≤ k−1. Note that we can
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cover all the nodes in Li∪{c} with Nk−1[x]. Hence, V (G)∖Nk−1[x] ⊆ V (G)∖Nk−1[x1].
Thus, we still have that

V (G) = Nk−1[x] ∪Nk−2[x2] ∪ . . . ∪N0[xk].

Note that some of the fire sources xj’s, with j ≥ 2, might be in Nk−1[x]∩Li. Therefore,

we have that b(G ∖Nk−1[x]) = t ≤ k − 1. Hence, we can find a burning sequence of

length t such as (x′2, x′3, . . . , x′t) for G ∖ Nk−1[x]. Also, for t + 1 ≤ j ≤ k, we define

x′j to be a node of distance j − 1 from x. Thus, for t + 1 ≤ j ≤ k, d(x′j, x) ≥ j − 1,

and d(x′j, xr) ≥ r − 1 + j − 1 ≥ j − r, for any 2 ≤ r ≤ t. Therefore, the sequence

(x′1 = x,x′2, . . . , x′k) forms a desired optimum burning sequence for G.

Case 2. If li ≥ 2k − 1, then either d(vi, x1) ≤ k − 1 or d(vi, x1) ≥ k. We claim

that there is a burning sequence for G such as (x′1, x′2, . . . , x′k) such that x′1 ∈ Li and

d(x′1, vi) ≤ k − 1, or equivalently, G ∖Nk−1[x′1] is connected. If d(x1, vi) ≤ k − 1, then

we are done. If d(vi, x1) ≥ k, then G∖Nk−1[x1] is the disjoint union of a spider graph

G′ and a path P , such that P is a subpath of Li containing vi. Let u be the leaf of

G′ that is in Li, and v be the other end point of P that probably is different from vi.

We know that b(G ∖Nk−1[x1]) ≤ k − 1. Hence, by Lemma 20, we have that

t = b(G′ + uv + P ) ≤ b(G′ ∪ P ) = b(G ∖Nk−1[x1]) ≤ k − 1.

Note that G′ + uv + P is a subtree of G that is (isomorphic to) a spider of the same

number of arms as G. In fact, the i-th arm of G′+uv+P is (isomorphic to) a subpath

of Li with exactly 2k − 1 less nodes than Li. Also, note that some of the fire sources

xj’s, with j ≥ 2, might be in Nk−1[x1]∩Li. Let (x′2, x′3, . . . , x′t) be an optimum burning

sequence for G′ + uv + P , and x′1 be the node in Li with d(x′1, vi) = k − 1. Also, for

t + 1 ≤ j ≤ k, we take x′j to be a node of distance j from x′1 that is on the path

connecting x′1 and vi. Thus, the sequence (x′1, x′2, . . . , x′k) forms a burning sequence

for G, such that x′1 ∈ Li, and G ∖Nk−1[x′1] is connected. Hence the claim is true.

Now, by above claim, without loss of generality, we assume that Nk−1[x1] contains

vi. That is, we have a burning sequence (x1, x2, . . . , xk) for G such that G′ = G ∖
Nk−1[x1] is a spider graph with smaller number of nodes than G, and with the same

number of arms and the same spider head c. In fact, for j ≠ i, and 1 ≤ j ≤ s, Lj is the
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j-th arm of G′ too, and the i-th arm of G′ is a subset of Li that contains exactly 2k−1

nodes less than Li. Hence, we have that b(G′) = t ≤ k−1, and by induction hypothesis,

G′ must have a burning sequence (x′2, x′3, . . . , x′t) such that d(x′2, c) ≤ t− 1 ≤ k − 2. We

have two possibilities: either x′2 ∈ Li, or x′2 ∈ Lj for some j ≠ i.

If j = i, then let x be the neighbour of x′2 that is on the path which connects x′2 to

vi. Also, let x′ be the neighbour of x1 that is on the path connecting x1 to vi. Hence,

we have that

G ∖ (Nk−1[x] ∪Nk−2[x′]) = G ∖ (Nk−1[x1] ∪Nk−2[x′2]).

Now, for t+ 1 ≤ r ≤ k, we take x′r to be the node in Li on the path connecting vi to x′

that is of distance r−2 from x′. Finally, we take x′1 = x, and we redefine x′2 = x′. Thus,

the sequence (x′1, x′2, . . . , x′k) forms a burning sequence for G in which d(x′1, c) ≤ k −1.

If j ≠ i, then let x be the neighbour of x′2 that is on the path connecting x′2 to c.

Also, let x′ be the neighbour of x1 that is closer to vi. Hence, we have that

Li ∖ (Nk−1[x] ∪Nk−2[x′]) = Li ∖ (Nk−1[x1] ∪Nk−2[x′2]),

(by isomorphism). Also,

Lj ∖ (Nk−1[x] ∪Nk−2[x′]) = Lj ∖ (Nk−1[x1] ∪Nk−2[x′2]).

But,

G ∖ (Nk−1[x] ∪Nk−2[x′]) ⊆ G ∖ (Nk−1[x1] ∪Nk−2[x′2]),

and we know that Nt−2[x′3]∪Nt−3[x′4]∪ . . .∪N0[x′t] forms a covering for G∖(Nk−1[x]∪
Nk−2[x′]). In fact, G∖(Nk−1[x]∪Nk−2[x′]) is an isometric subforest of G∖(Nk−1[x1]∪
Nk−2[x′2]). Thus, by Corollary 18 from Chapter 2, we have that

b(G ∖ (Nk−1[x] ∪Nk−2[x′])) ≤ b(G ∖ (Nk−1[x1] ∪Nk−2[x′2]))

≤ t − 1 ≤ k − 2.

Hence, there must be an optimum burning sequence (x′′3 , x′′4 , . . . , x′′t′), where t′ ≤ t for

G ∖ (Nk−1[x] ∪Nk−2[x′]). Now, for t′ + 1 ≤ r ≤ k, we take x′′r to be the node in Li on
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the path connecting vi to x′ that is of distance r − 2 from x′. Finally, we take x′′1 = x,

and we define x′′2 = x′. Thus, the sequence (x′′1 , x′′2 , . . . , x′′k) forms a burning sequence

for G in which d(x′′1 , c) ≤ k − 1.

The following lemma provides us with another key tool for finding the burning

number of spider graphs.

Lemma 59. Let G be a spider graph with spider head c. Also, suppose that for

a positive integer k and a node x ≠ c in G, G ∖ Nk−1[x] is a path-forest (that is,

d(x, c) ≤ k − 1) with at least two components, and b(G ∖ Nk−1[x]) ≤ k − 1. If x ≠
c, and the neighbour of x on the path connecting x to c is x′, then we have that

b(G ∖Nk−1[x′]) ≤ k − 1.

Proof. Assume that a spider graph G with the above conditions is given, and we have

the nodes x and x′ as mentioned in the lemma’s statement. Let x be in an arm of G

called Ls. We have two possibilities for Ls: either Ls ∖Nk−1[x] is empty or not.

First, suppose that Ls ∖Nk−1[x] is not empty. Hence, since in this case one of the

components of G ∖Nk−1[x] is contained in Ls, then it implies that Ls is of order at

least k + d(x, c). By assumption, we know that each component of G1 = G ∖Nk−1[x]
is a subset of one of the arms in G. Let G2 be the path-forest G∖Nk−1[x′]. We know

that G2 is a path-forest since by assumption, d(x′, c) ≤ d(x, c) ≤ k − 1. Hence, each

component of G2 is also a subpath of an arm in G. We call the components of G1 and

G2 that are subpaths of Ls by P and P ′, respectively. In fact, P ′ is a superset of P

with exactly one more node. Also, each non-empty component of G2 such as Q′ ≠ P ′

is a subset of the corresponding component Q ≠ P of G1, and has exactly one node

less than Q.

Since by assumption, b(G1) = t ≤ k − 1, then there must be a burning sequence

(x1, x2, . . . , xt) for G1. Note that each Nt−j[xj] is a path of order at most 2(t− j) + 1.

Therefore, the closed neighbourhoods of the xi’s cover all the nodes in G2, except

for probably the extra node in P ′ that is a superset of P . We have two possibilities:

either there is a component Q ≠ P in G1 that is of order one, or the order of each

component of G1 is of order at least two.

If there is a component Q ≠ P of G1 that is of order one and is burned by xi, then

let x′i be the extra node in P ′∖P . If (x1, x2, . . . , xt) does not burn x′i, then the sequence
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(x1, . . . , xi−1, x′i, xi+1, . . . , xt) is a burning sequence for G2. Thus, b(G2) ≤ k − 1.

If every component of G1 like Q ≠ P is of order at least two, then we have again

two possibilities: either xt is in P , or xt /∈ P .

If xt is in P , then let i be the smallest index for which xi ∈ P , but xi−1 is not in

P . We know that such an index i does exist, since otherwise, it means that all the

xi’s must be in P , and consequently, it implies that P is the only component of G1,

which is a contradiction. Thus, there must an index i such that xi ∈ P , but xi−1 is in

a component of G1 that we call it Q, with Q ≠ P .

Since each Nt−j[xj] is a path of order at most 2(t−j)+1, then without loss of gen-

erality we can assume that Nt−i[xi] covers at least two nodes less than Nt−(i−1)[xi−1].
Now, let x′i = xi−1 and x′i−1 = xi. Therefore, we have a new covering for G2 induced

by (x1, . . . , xi−2, x′i−1, x
′
i, . . . , xt) in which all the nodes of P ′ plus one extra node of

Ls ∖ P ′ is covered, while we may have lost covering one node in Q. Now, by moving

xt to cover such a uncovered node in Q, and shifting the place of the fire sources used

for covering P without changing their order (if it is necessary), we find a covering

for G2 with t closed neighbourhoods of restricted radii. Hence, by Corollary 6 from

Chapter 2, b(G2) ≤ k − 1.

If xt /∈ P , then there must be a component Q of G1 for which xt ∈ Q. Let Q′

be the corresponding component of G2 that has exactly one node less than Q. By

moving xt to cover the extra node in P ′ (and shifting the place of the fire sources

used for covering Q without changing their order, if it is necessary), we find a covering

for G2 by t closed neighbourhoods with restricted radii. Hence, again in this case,

b(G2) ≤ k − 1.

Now, assume that Ls ∖ Nk−1[x] is empty, and G1 = G ∖ Nk−1[x], and G2 = G ∖
Nk−1[x′]. If Ls ∖ Nk−1[x′] is empty, then G2 is an isometric subforest of G1, and

therefore b(G2) ≤ b(G1) ≤ k − 1.

If Ls ∖ Nk−1[x′] is non-empty, then it means that P ′ = Ls ∖ Nk−1[x′] contains

exactly one node. Also, we know that all the non-empty components of G2 are

subsets of the corresponding components of G1, with exactly one less node. Assume

that (x1, x2, . . . , xt) is an optimum burning sequence for G1. Since Ls ∖ Nk−1[x] is

empty, then there must be non-empty component of G1 like Q for which xt ∈ Q. By

moving xt to cover the extra node in P ′ (and shifting the place of the fire sources used
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for covering Q without changing their order, if it is necessary), we find a covering for

G2 by t closed neighbourhoods with restricted radii. Hence, again in this case we

conclude that b(G2) ≤ k − 1.

As a consequence of the above lemma we have the following result.

Lemma 60. Let G be a spider graph with spider head c. Also, suppose that for a

positive integer k and a node x in G, G∖Nk−1[x] is a non-empty path-forest (that is,

d(x, c) ≤ k − 1) with at least one component, and b(G∖Nk−1[x]) ≤ k − 1. If x ≠ c, then

we have one of the following possibilities:

(i) The graph G∖Nk−1[c] has at least two components, and b(G∖Nk−1[c]) ≤ k−1.

(ii) There is a leaf in G that is of distance k − 1 from c, and G∖Nk−1[c] has only

one component, and b(G ∖Nk−1[c]) ≤ k − 1.

(iii) There is a node x′ /∈ {x, c} on the path connecting x to c for which G∖Nk−1[x′]
has only one component (that is a subset of Ls), and b(G∖Nk−1[x′]) ≤ k−1, and there

is a leaf of G that is of distance k − 1 from x′.

Proof. Since the spider graph G satisfies the conditions in Lemma 59, after finite

number of times of applying Lemma 59, we derive the desired result. Here, in Figure

3.8 we see a layout of the three different cases stated in the lemma.

(a) Part (i) (b) Part (ii)

(c) Part (iii)

Figure 3.8: Three possible cases for Lemma 60.
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A perfect spider of radius r is a spider graph G with a unique centre node c such

that d(v, c) = r for every leaf v ∈ G. We denote the set of all perfect spider trees of

radius k with PSk.

A k-burning maximal spider graph, is a spider graph with spider head c that its

node set can be decomposed into a perfect spider graph F = Nk−1[s] ∈ PSk−1, where

s is a node with d(s, c) ≤ k − 1, and a graph H ∈ MPFk−1. We denote the set of all

k-burning maximal spider graphs by k-BMS. By above Lemma, we can see that there

are two different types of the graphs in k-BMS like G: either G is a graph for which

the centre node s of the perfect spider graph in the decomposition of G is the spider

head, or G is a graph such that the centre node s is not the spider head. If the latter

holds, then by Lemma 60 part (iii), we conclude that the path-forest G ∖ Nk−1[s]
must be a single path of order (k − 1)2.

Note that the path-forest that appears in decomposing a k-BMS forms a decom-

posed spider as described in Conjecture 52. Now, we have the following useful theorem

that proves the truth of Conjecture 52 for k-BMS trees.

Theorem 61. If G is a k-BMS with spider head c, then b(G) = k.

Proof. Let G be a k-BMS with spider head c. If the centre of the perfect spider in

decomposing G equals c, then it implies that b(G ∖ Nk−1[c]) = k − 1. In this case,

G1 = G∖Nk−1[c] is in MPFk−1. By contradiction suppose that b(G) = t ≤ k −1. Thus,

by Theorem 58, there must be an optimum burning sequence for G like (x1, x2, . . . , xt)
such that d(x1, c) ≤ t − 1 ≤ k − 2.

If x1 = c, then G ∖Nk−1[c] is an isometric subforest of G ∖Nt−1[c], and therefore,

b(G ∖Nt−1[c]) ≤ t − 1 ≤ k − 2, which is a contradiction.

If x1 ≠ c, then note that all the arms of G are of length at least k − 1, and since

b(G ∖Nk−1[c]) = k − 1, there must be at least one arm of G that is of length at least

k−1+2k−3 = 3k−4. Thus, G∖Nt−1[c] must have at least two non-empty components,

and therefore, by Lemma 59, we have that b(G ∖Nt−1[c]) ≤ t − 1 ≤ k − 2, which is a

contradiction, as G∖Nk−1[c] is an isometric subforest of G∖Nt−1[c]. Hence, in both

cases we find a contradiction, and therefore, b(G) ≥ k.

If the centre of the perfect spider in decomposing G is a node s ≠ c, then as we

discussed before the theorem statement, the graph G1 = G ∖Nk−1[s] is a single path

of order (k − 1)2. Let Ls be the arm of G with s ∈ Ls, and assume that vs is the node
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in Ls such that d(s, vs) = k − 1. Also, assume that P is the path between vs and s,

and P ′ is the path connecting s to c excluding s.

By contradiction suppose that b(G) = t ≤ k − 1. Thus, by Theorem 58, there must

be an optimum burning sequence for G like (x1, x2, . . . , xt) such that d(x1, c) ≤ t− 1 ≤
k − 2. We consider different possibilities for x1 as follows:

If x1 is in G∖ (Ls ∖P ′), then G∖Nk−1[s] is an isometric subforest of G∖Nt−1[c],
and therefore, we must have b(G1) ≤ t − 1 ≤ k − 2, which is a contradiction.

If x1 is in P , then let x′ be the neighbour of s on the path connecting s to c. Note

that all the leaves of G, except for the leaf in Ls, are of distance k − 1 from s. Thus,

G∖Nt−1[x1] must have at least two non-empty components, and therefore, by applying

Lemma 59 for a finite number of times, we have that b(G ∖Nt−1[x′]) ≤ t − 1 ≤ k − 2,

which is a contradiction, as G ∖ Nk−1[s] is an isometric subforest of G ∖ Nt−1[x′].
Hence, in both cases we find a contradiction, and therefore, b(G) ≥ k.

By the argument in proof of Theorem 61, we can conclude that the spider graphs

in 2-MBS can be decomposed into a perfect spider SP (s,1) and a single node P1, with

s ≥ 3; that is, a spider with s − 1 arms of length one and an arm of length two. Now,

we can present an algorithm for finding the burning number of a spider tree with a

constant number of arms and a restriction on the length of the arms, as follows. Note

that the burning number of every spider graph is at least two. We show the set of

all perfect spider trees with t arms and of radius k by PStk. We denote the set of all

k-burning maximal spider graphs with t arms by k-BMSt.

Algorithm 62. Suppose that G is a spider tree with arms L1, L2, . . . , Lt, for a con-

stant t ≥ 1, such that the length of each arm Li is denoted by li, and l1 ≥ l2 ≥ ⋯ ≥ lt.
Let m be a positive integer for which l1 ≤ m; that is, the length of each arm in G

is bounded above by m. Then we perform the following steps until G ⊆ H, for some

H ∈ k-BMSt where k ≥ 2.

Stage 1. For the initial case k = 2, we perform the following steps:

Stage 1.1. We put the graph SP (t,1) in PSt1.

Stage 1.2. We add a single node to one of the arms in SP (t,1) ∈ PSt1, and we

put the resulting graph H in 2-MBSt.

If G ⊆H, then return b(G) = 2; otherwise, go to Stage 2.
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Stage 2. For k ≥ 3, we perform the following steps:

Stage 2.1. For 0 ≤ i ≤ k − 2, we make a spider graph with t − 1 arms of length

k − 1 − i, and then we add an additional arm of length i + k − 1 to it. We call the

resulting spider (with t arms) by Hi and we put it in PStk−1.

Stage 2.2. For 1 ≤ s ≤ k − 1, and each F ∈ MPFsk−1 (generated by Algorithm 56

for the graph G′ = (l1, l2, . . . , lt)), we join an end point of each component of F to a

distinct leaf of H0 ∈ PStk−1, and we call the resulting graph by F ′. Then we add F ′ to

k-MBSt.

If G ⊆ F ′, then stop and return b(G) = k.

Stage 2.3. For 1 ≤ i ≤ k − 2, we join the end point of longest arm of Hi to a path

of order (k − 1)2 in MPF1
k−1, and we call the resulting graph by H ′

i . Then we add H ′
i

to k-MBSt.

If G ⊆H ′
i , then stop and return b(G) = k.

If Algorithm 62 stops at i = k, then it means that G is a subgraph of a graph in

k-MBSt. By Theorem 61, we know that the burning number of a graph in i-MBSt

equals i. Hence, by Corollary 18 from Chapter 2, we conclude that b(G) = k.

On the other hand, if b(G) = k, then by Lemma 58, we know that there is an

optimum burning sequence (x1, x2, . . . , xk) for G such that d(x1, c) ≤ k − 1. Hence,

b(G ∖Nk−1[x1]) ≤ k − 1. It implies that G ∖Nk−1[x1] is a subgraph of a path-forest

F in MPFsk−1, for some 1 ≤ s ≤ t − 1. Let H be a spider tree with t components that

is a supergraph of G, such that NH
k−1[x1] forms a perfect spider in PStk−1. Moreover,

H ∖NH
k−1[x1] = F . Hence, H ∈ k-MBStk. Therefore, the algorithm presented above

works, and we have the following theorem about its complexity.

Theorem 63. Suppose that G is a spider tree with arms L1, L2, . . . , Lt, for a constant

t ≥ 1, in which the length of each arm Li is denoted by li, and l1 ≥ l2 ≥ ⋯ ≥ lt. Let m

be a positive integer for which l1 ≤m; that is, the length of each arm in G is bounded

above by m. If t is a constant in terms of m, then Algorithm 62 finds the burning

number of G in polynomial time in terms of the input.

Proof. Given the graph G, suppose that for some k ≥ t, Algorithm 62 stops by rec-

ognizing G as a subgraph of a graph in MBStk; that is, b(G) = k. In Algorithm 62,
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we first generate all the perfect spider graphs of radius i with t arms, for 1 ≤ i ≤ k.

Then at Stage 2.2, we need to perform Algorithm 56 for the graph (l1, l2, . . . , lt) which

satisfies all the conditions in Theorem 57. Hence, we perform at most O(tmt) steps

to find all the maximal path-forests generated by Algorithm 56 at Stage 2.2.

On the other hand, by Theorem 23 from Chapter 2, we know that k = b(G) ≤
rad(G) + 1 ≤ m + 1 = O(m). Thus, k(k+1)

2 = O(m2). Note that the number of the

perfect spider graphs that we generate in Algorithm 62 for each 1 ≤ i ≤ k equals i.

Therefore, the total number of the graphs that we create and consider by Algorithm

62 is of order
k

∑
i=1

kO(tmt) = k(k + 1)
2

O(tmt) = O(tmt+2).

Finally, note that each time that we add a new spider graph F to MBStk, for k ≥ 2, we

compare G with F . We can simply do this comparison by comparing the lengths of

the arms between G and F . Since G and F both have t arms, then the total number

of the steps that we perform in Algorithm 62 is bounded above by O(t2mt+2). Since

t is a fixed constant in terms of m, then Algorithm 62 is a polynomial time algorithm

in terms of the input.



Chapter 4

Graph Burning and Random Models

In this chapter, we consider the burning number of the random geometric graphs.

Also, we define a random version of the burning process for the graphs which we call

the Poisson burning process. We present some results on the Poisson burning process

of graphs in general, and for the paths, in particular. For more probabilistic results

on graph burning, see [46].

4.1 Random Geometric Graphs

In this section we present our result on the burning number of random geometric

graphs. We need first to provide some background and preliminaries.

Suppose that n is a positive integer and r is a nonnegative real number. Also, let S

be the unit square [0,1]2 in the 2-dimensional Cartesian plane. A random geometric

graph G is defined as follows. First, we choose n points independently and uniformly

at random from S as the node set of G, denoted by V (G). That is, the probability of

choosing each point from a subset A of S equals to the area of the set A. We connect

two nodes u and v in V (G) if and only if the Euclidean distance between u and v in

the plane is less than or equal to r.

Note that since by definition, the probability of choosing a point in S more than

once is zero, then we can assume here that ∣V (G)∣ = n. Also, each node u in V (G)
can be represented by (ux, uy), where ux is the first coordinate of u in the Cartesian

plane, and uy is the second coordinate of u in the plane. Note that here we have two

metrics on the node set of G: The Euclidean metric and the geodesic metric. Based

on the definition of the Euclidean metric on V (G), the Euclidean distance between

two nodes such as u = (ux, uy) and v = (vx, vy), denoted by dE(u, v), equals

(∣ux − vx∣2 + ∣uy − vy ∣2)
1/2
.

94
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According to the geodesic metric on V (G), the geodesic distance or graph distance

between u and v is the length of a shortest path between u and v in G (as we defined

in Chapter 1). Hence, we can say that two nodes u and v are adjacent in the geometric

graph G if and only if dE(u, v) ≤ r.
The set of all random geometric graphs as defined above on S is denoted by

G (n, r). As usual for the random graph models, here we consider asymptotic proper-

ties of G (n, r) as n→∞, where r = r(n) may and usually does depend on n. Assume

that {Gn}∞n=1 is a sequence of graphs in which the n-th graph is of order n, for n ≥ 1.

Also, let P be a property of graphs (for instance, connectivity). In graph theory, we

say that asymptotically almost surely a graph in the sequence {Gn}∞n=1 has property

P if the probability of the event “Gn has property P” converges to 1 as n goes to

infinity. We sometimes, shortly use the notation a.a.s. instead of asymptotically

almost surely.

It is known that rc =
√

logn/nπ is a sharp threshold for the connectivity of G ∈
G (n, r). That is, for every ε > 0, if r ≤ (1−ε)rc, then the graph G is a.a.s. disconnected;

while if r ≥ (1 + ε)rc, then G is a.a.s. connected (see [50, 31]). Here, we consider the

burning number of the random geometric graph where it is connected.

Assume that u is a node in a random geometric graph G ∈ G (n, r). Let B be a

ball with centre u and radius kr in the plane, for some positive integer k. Then by

definition of G (n, r), we can see that Nk[u] is a subset of B. In other words, any node

of G that is of geodesic distance at most k from u can not be at Euclidean distance

more than kr from u in the plane. However, there may be some other nodes in B

that are for instance of graph distance s ≥ k + 1 from u. Figure 4.1 shows an example

of such a case.

Figure 4.1: In this figure, dE(u, v) ≤ 5r, while dG(u, v) = 6.
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The following result from [23] shows the relation between the geodesic distance

and the Euclidean distance between the nodes of a random geometric graph under

some constraints. The results in [23] are stated in the model of a square of side length
√
n, but they can be easily translated to our setting. In fact, in [23], a more precise

result was shown, but for our purpose the following version is enough.

Theorem 64 ([23]). There exists a constant c0 such that for any c ≥ c0, there is a

constant c′ = c′(c) for which if r ≥ crc, then a.a.s. we have that

dG(u, v) ≤ c′
dE(u, v)

r
,

for every pair of nodes u, v ∈ V (G), where G ∈ G (n, r).

For more details on the random geometric graphs, see [49].

In the proof of the main result of this section, we use the notion of d-cell-distance

that we define here. Assume that we partition the 2-dimensional Euclidean plane into

squares of equal sides, each called a cell, that appear in rows and columns. Then we

say that two points such as A and B are of d-cell-distance if the sum of the absolute

values of the differences between the first coordinates and second coordinates of A

and B equals d times the width of a cell. Figure 4.2a shows an example of such two

points and the distance between them. Similarly, we say that two cells such as C1

and C2 are of d-cell-distance if the centres of C1 and C2 are of d-cell-distance. Figure

4.2b demonstrates an example of such two cells.

(a) Point A is of 7-cell-distance from point
B.

(b) C1 is of 2-cell-distance from C2 and
of 3-cell-distance from C3.

Figure 4.2: d-distance-cell.

We need the following consequence of the Chernoff’s bound for the proof of the

main result in this section; see [38, Corollary 2.3].
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Lemma 65 ([38]). If X is a binomial random variable, then for any 0 < ε < 3/2, we

have that

P(∣X −E [X] ∣ ≥ εE [X] ) ≤ 2 exp(−ε
2E [X]

3
)

Here is our result for the burning number of random geometric graphs.

Theorem 66. There exists a constant c0 such that for any c ≥ c0, if r ≥ crc, then

a.a.s. we have that

b(G) = Θ (r−2/3) ,

where G ∈ G (n, r).

Proof. We start by proving the lower bound as follows. Let c = max{c0,32}, where

c0 is the constant that satisfies the conditions in Theorem 64, and r ≥ crc. First,

starting from the left side of S, we tessellate the area of S with squares of width

s = 4
√

logn/n which we call cells. Since 1
s might not be an integer, for the convenience

of our computations in the rest of proof, we assume that the rightmost column and the

lowest row might consist of slightly larger cells. Figure 4.3 shows such a tessellation

for the unit square S with cells of width s or more.

Figure 4.3: A tessllation of the unit square.

We claim that every cell a.a.s. contains at least one node. To prove this, for each

cell C, we assign a random variable XC that counts the number of nodes of G inside

C. For each cell C, let EC represent the event XC ≤ E [XC] /2. Also, assume that

AC denotes the area of the cell C. By definition of G, since we choose the nodes of
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G independently and uniformly at random, then we can see that

P(XC = i) = (n
i
)(AC)i(1 −AC)n−i.

Thus, XC must be a binomial random variable with parameters n and p = AC . Hence,

the expected value of XC equals np = nAC ≥ ns2. Now, by choosing ε = 1/2 in Lemma

65, we have that

P(EC) = P(XC ≤ E [XC] /2) ≤ P(∣XC −E [XC] ∣ ≥ (1/2)E [XC] )

≤ 2 exp(−(1/2)2E [XC]
3

)

≤ 2e−(1/2)
2s2n/3

= 2e−(1/2)
2( 16 logn

n
)n/3

= 2e−4/3 logn

= 2n−4/3 = o(n−1).

Therefore, we have that

P(⋂
C

Ec
C) = 1 − P(⋃

C

EC)

≥ 1 −∑
C

P(EC)

≥ 1 − 1

s2
(2n−4/3)

= 1 − 1

8n1/3 logn

= 1 − o(n−1/3).

Thus, a.a.s., none of the EC ’s occur. In other words, a.a.s., each cell C contains at

least E [XC] /2 + 1 nodes. Hence, a.a.s., each cell C contains at least one node.

Now, suppose that we choose a sequence of t arbitrary nodes in V (G) such as

(x1, x2, . . . , xt). By Equation (2.1) from Chapter 1, we know that (x1, x2, . . . , xt) forms

a burning sequence for G if and only if V (G) = Nt−1[x1] ∪Nt−2[x2] ∪ . . .∪N0[xt]. For

1 ≤ i ≤ t, let Bi denote the intersection of S and the ball of radius r(t−i) centred at xi.

As we discussed at the beginning of this section, we know that Nt−i[xi] ⊆ Bi. Hence, if
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(x1, x2, . . . , xt) is a burning sequence for G, then we must have V (G) ⊆ B1∪B2∪. . .∪Bt.

In the following, we want to show that for some specific t (that will be determined

in the proof) there exists at least one cell such as C that does not have an intersection

with ⋃ti=1Bi. This consequently shows that a.a.s., there is one node (in C) that is

not burned by the time t, and therefore, we must have b(G) > t. To do so, we find

an upper bound for the number of the cells that intersect with the union of Bi’s, as

follows.

First, note that by assumption, c ≥ 32. Therefore, it implies that

r ≥ crc >
32√
π

√
logn

n
> 32

2

√
logn

n
= 4s.

For 1 ≤ i ≤ t− 1, the radius of Bi is at least r. Since r > 4s, and the largest cell in the

given tessellation is possibly of length at most 2s, then we conclude that there must

be a cell that falls completely inside Bi. Also, the area of Bi is larger than the area

of any cell in the tessellation. Note that we have two types of cells that intersect Bi:

those cells that fall completely inside of Bi, called regular cells, and those cells that

also intersect S ∖Bi, called boundary cells.

We claim that for 1 ≤ i ≤ t − 1, the total number of the cells that intersect Bi is

asymptotically at most equal to

c1(
π(t − i)2r2

s2
),

where c1 is a sufficiently large constant that we find in the following. By the above

argument, we know that for 1 ≤ i ≤ t − 1, there is at least one regular cell in Bi. Note

that every boundary cell is within 4-cell-distance from a regular cell. Figure 4.4 gives

us an intuition of this fact.

Figure 4.4: Every boundary cell is within 4-cell-distance from a regular cell.
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Therefore, if we denote the total number of regular cells with Mi, then the total

number of cells that intersect with Bi is at most 25Mi. On the other hand, since

every regular cell falls completely inside of Bi, then it implies that

Mis
2 < ∣Bi∣,

where ∣Bi∣ is the area of Bi. Let Ti denote the total number of the cells that intersect

Bi. Thus, by the above argument we have that

Tis
2 ≤ 25Mis

2

≤ 25∣Bi∣.

Therefore, Ti ≤ 25 ( ∣Bi∣s2 ). Hence, any constant c1 ≥ 25 is sufficient for the truth of the

claim. Thus, we have that asymptotically

Ti ≤ c1 (
π(t − i)2r2

s2
) .

For i = t, the ball Bt is of radius zero; that is, it contains only the point xt. Hence

for i = t, the total number of cells that intersect Bt is at most 4, in a case that xt is a

corner point in the given tessellation. Thus, the total number of cells that intersect

with at least one of the Bi’s, denoted by T , is asymptotically at most

T ≤
t−1

∑
i=1

c1
(t − i)2r2π

s2
+ 4 ≤ c1

t3r2π

3s2
.

We want to have at least one cell that does not intersect with any of the Bi’s. The total

number of cells in the tessellation of S is (⌊1
s⌋)

2
. Therefore, if we take t ≤ ( 2

c1πr2
)1/3

,

then asymptotically

T ≤ c1
t3r2π

3s2
≤ 2

3s2
< (⌊1

s
⌋)

2

.

Thus, there must be a cell C that does not intersect with any of Bi’s. Consequently,

we conclude that burning G in t steps is impossible. Hence, b(G) > ( 2
c1πr2

)1/3
; in other

words, asymptotically b(G) = ω( 1
r2/3 ).

Now, we prove the upper bound using Theorem 64 as follows. First, remember

that c is sufficiently large such that the condition in Theorem 64 is satisfied. That is,



101

there exists c′ = c′(c) for which

dG(u, v) ≤ c′
dE(u, v)

r
,

for every pair of nodes u and v in G. Then we tessellate the unit square S into

cells of width ar1/3, where a = (3
√

2c′)−1/3. Since 1
ar1/3 may not be an integer, for

the convenience of our computations, we assume that the rightmost column and the

lowest row might consist of slightly larger cells (similar to the tessellation shown in

Figure 4.3). Note that the side lengths of the larger cells would be at most 2ar1/3,

and the area of each cell is at least a2r2/3.

Again we claim that each cell in such a tessellation contains at least one node. To

show this, assume that XC denotes the number of nodes of G that fall in the cell C.

As we discussed in the proof of the lower bound, XC is a binomial random variable

with parameters n and p = AC , where AC is the area of C. Moreover, the expected

value of XC equals np = nAC ≥ na2r2/3. Let EC represent the event XC ≤ E [XC] /2,

for each cell C. By choosing ε = 1/2 in Lemma 65, we have that

P(EC) = P(XC ≤ E [XC] /2) ≤ P(∣XC −E [XC] ∣ ≥ (1/2)E [XC] )

≤ 2e−(1/2)
2 a2r2/3n

3

≤ 2e
−(1/12)((3√2c′)−2/3nC2/3 (logn)1/3

(πn)1/3
)

= 2e
− C2/3

12(3√2πc′)−2/3 (n
2 logn)1/3

.

Note that the total number of cells in the tessellation is T = (⌊ 1
ar1/3 ⌋)

2 ≤ 1
a2r2/3 . Let

k = 1
a2r2/3 (which is not necessarily an integer, but it is a bound on T ). Therefore, we

have that

P(⋂
C

Ec
C) = 1 − P(⋃

C

EC) ≥ 1 −∑
C

P(EC)

≥ 1 − 1

a2r2/3
P(EC)

≥ 1 − (3
√

2c′)2/3

(crc)2/3
P(EC).



102

Since P(EC) ≤ 2e
− C2/3

12(3√2πc′)−2/3 (n
2 logn)1/3

, and by replacing rc in the above inequality,

we conclude that

P(⋂
C

Ec
C) ≥ 1 − 2(3

√
2πc′

c
)

2/3

( n

logn
)

1/3

e
− c2/3

12(3√2πc′)−2/3 (n
2 logn)1/3

.

Note that in the last inequality above, both terms ( n
logn)

1/3
and (n2 logn)1/3 (inside

the exponential function) go to infinity as n grows. However, since the term ( n
logn)

1/3

asymptotically is much smaller than the term (n2 logn)1/3, then it implies the whole

expression in the last line approaches to 1, as n goes to infinity. Therefore, a.a.s., none

of the EC ’s occur. In other words, a.a.s., each cell C contains at least E [XC] /2 + 1

nodes. Hence, a.a.s., each cell C contains at least one node.

Note that the node set of G is covered by T ≤ k cells, denoted by C1,C2, . . . ,CT .

Assume that for 1 ≤ i ≤ T , we choose a node in each cell Ci, called ui (we know by the

above argument that such a node does exist). Now, since the maximum side length

of a cell is at most 2ar1/3, then the maximum Euclidean distance between any two

points in a cell Ci is at most 2
√

2ar1/3. Thus, by Theorem 64, for any node such as

v in the cell Ci, we have that

dG(ui, v) ≤ c′
dE(ui, v)

r
≤ 2

√
2c′ar−2/3 ≤ k.

This is true since 2
√

2c′ar−2/3 ≤ k = 1
a2r2/3 if and only if 2

√
2ac′ ≤ 1

a3 = 3
√

2c′, which

is correct. Therefore, {Nk[ui]}Ti=1 is a covering for the node set of G. Hence, by

Theorem 4 from Chapter 2, we conclude that b(G) ≤ T + k ≤ 2k. Thus, the upper

bound follows.

4.2 Poisson Burning Process

In this section we define the Poisson burning process and we consider this process for

the graphs in general, and for the paths in particular. We start by providing some

background and terminology.

A Homogeneous Poisson process with parameter λ is a counting (or point) stochas-

tic process that counts the number of events that occur in the given intervals of time.
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We denote a Poisson process by {N(t)}t≥0, where the parameter t represents the time,

and N(t) denotes the number of events that happen in the time interval [0, t]. The

sequence {N(t)}t≥0 satisfies the following properties:

(i) N(0) = 0.

(ii) The number of events in non-overlapping time intervals are independent.

(iii) For a positive real number h, we have that

P (N(t + h) −N(t) = 1) = λh + o(h),

and

P (N(t + h) −N(t) ≥ 2) = o(h).

The properties (i), (ii), and (iii) imply that

P (N(t + h) −N(t) = k) = P (N(t) −N(0) = k)

= P (N(t) = k) .

Let T1 denote the time of the occurrence of the first event in a Poisson process with

parameter λ, and for i ≥ 2, suppose that Ti denotes the time that we wait after the

occurrence of the (i − 1)-th event until the i-th event happens. Since the occurrence

of each event happens randomly, each Ti is a random variable that is called the i-

th inter-arrival time. The time that the i-th event occurs is called the i-th waiting

time and is denoted by Si. Thus, by definition, S1 = T1, and for j ≥ 2, Sj = ∑j
i=1 Tj.

Moreover, for j ≥ 1, Tj = Sj − Sj−1.

It is known in probability theory that for every natural number n, the random

variables T1, T2, . . . , Tn are independent and identically distributed exponential ran-

dom variables with rate λ; that is, the probability density function of each Ti is

defined by the function f(x) = λ exp(−λx), where x ≥ 0. Hence, the expectation or

mean of each Ti equals 1
λ , and its variance equals 1

λ2 . Moreover, each Sn is a gamma

random variable Γ(n,λ); that is, the probability density function of Sn is defined by

f(x) = λnxn−1 exp(−λx)
Γ(λ) , for x ≥ 0. In this formula, Γ(λ) is the gamma function that is

defined as follows:

Γ(t) = ∫
∞

0
xt−1 exp(−x)dx,
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for t > 0. In fact, the gamma function is an extension of the factorial function; that

is, for a positive integer n, we have that

Γ(n) = (n − 1)!

Also, N(t) is a Poisson random variable with rate λt; that is, the probability distri-

bution function of Sn is defined by

P(N(t) = i) = exp(−λt)(λt)i
i!

,

where i ≥ 0 is an integer.

Hence, each Poisson process is uniquely determined by one of the sequences

{N(t)}t≥0, or {Ti}i=1, or {Si}i=1. We can also see that the event N(t) < i happens if

and only if the event Si > t. Thus, we have that

P(N(t) < i) = P(Si > t). (4.1)

For more details on Poisson process see [52]. The following concentration inequal-

ity is called the Chebyshev’s inequality ; see [53].

Theorem 67 ([53]). Suppose that X is a random variable with finite mean µ, and

finite non-zero variance σ2. Then for any t > 0, we have that

P (∣X − µ∣ ≥ t) ≤ σ
2

t2
.

Now, we are ready to define the Poisson graph burning process as follows. Suppose

that we consider the burning process for a graphG of order n, with b(G) = k. However,

the time for choosing the i-th source of fire is the waiting time for the i-th event in a

Poisson process with parameter λ, and we choose the i-th source of fire uniformly at

random to be any node in G. We continue this until at some time t the whole graph

G is burning. We may or may not consider to continue the Poisson process after time

t as every node in G will be burning after t. Such a burning process on G is called

a Poisson burning process for G. We call the time t at which the whole graph G

is burning in a Poisson burning process the burning time of G, and we denote it by
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bp,λ(G), or simply by bp(G) when we know the parameter λ.

Note that in a regular random burning process for G, we choose the i-th source

of fire at time t = i. However, in a Poisson burning process the time for choosing the

i-th source of fire can be any time t either before i or after i. Moreover, here bp(G)
is a random variable as it depends on the Poisson process, and also on the way that

we choose the fire sources. Our goal is here to consider the asymptotic behaviour of

bp(G).

Theorem 68. If G is a graph of order n with b(G) = k, then in a Poisson burning

process with λ = 1 on G we have that

bp(G) = O(k
√

logn).

Proof. Assume that (x1, x2, . . . , xk) is a fixed burning sequence for G (in the regular

burning process), and t = k + k
√

logn. In a Poisson burning process for G let A be

the event that “all the nodes in G are burning at time t”. Also, let B be the event

“⋂ki=1Ai”, where Ai is the event that “Si ≤ t−(k − i) and the node xi is burned in the

i-th step” (or equivalently, t−Si ≥ (k − i) and the node xi is burned in the i-th step),

for 1 ≤ i ≤ k. We can see that B is a special case of the event A (or equivalently,

B ⊆ A), and hence, P(B) ≤ P(A). Namely, if B occurs, then it implies that Sk ≤ t,
and for 1 ≤ i ≤ k, the node xi is burning at time t − (k − i). Therefore, {Nt−Si[xi]}ki=1

forms a covering for the node set of G. Hence, G must be burning at time t in such

a case.

Thus, if we show that limn→∞ P(B) = 1, then it implies that limn→∞ P(A) = 1.

Consequently, it shows that a.a.s. bp(G) ≤ t. For this, it suffices to prove that

limn→∞ P(B) = 0. In the rest of the argument, we will try to prove this by Chebyshev’s

inequality.

Assume that λ = 1. Therefore, E [Ti] = Var(Ti) = 1, for each 1 ≤ i ≤ k. Note that

Si = ∑i
j=1 Tj. Since Tj’s are independent exponentially distributed random variables,

then for 1 ≤ i ≤ k,

Var(Si) =
i

∑
j=1

Var(Tj) = i = (
√
i)

2
.
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Moreover,

E [Si] =
i

∑
j=1

E [Tj] = i.

Thus, by Chebyshev’s inequality, for 1 ≤ i ≤ k, we have that

P(Ai) = P(Si > t − (k − i))

= P (Si − i > k
√

logn)

≤ P (∣Si −E [Si] ∣ ≥ k
√

logn)

≤ i

k2 logn
.

Since B = ⋂ki=1Ai, then we have that

P(B) = P(
k

⋃
i=1

Ai)

≤
k

∑
i=1

P(Ai)

≤
k

∑
i=1

i

k2 logn

= k(k + 1)
2k2 logn

.

Therefore, we conclude that

lim
n→∞

P(B) = lim
n

k(k + 1)
2k2 logn

= 0.

Thus,

P(A) = P(B) = 1,

a.a.s.; that is, a.a.s., all the nodes of G are burning at time t = k + k
√

logn. Since

k ≤ k
√

logn, then the proof follows.

Note that the whole probability argument above is only dependent on the Poisson

process and a fixed optimum burning sequence for G. Since by Corollary 27 from

Chapter 2, the burning number of every connected graph G of order n, is of order
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O(√n), then we conclude the following result on the Poisson burning for bp(G).

Theorem 69. If G is a connected graph of order n, then in a Poisson burning process

with λ = 1 on G we have that

bp(G) = O(
√
n logn).

4.3 Poisson Burning for Paths

In this section, we consider the Poisson random burning process for paths, and we

find the asymptotic order of bp(Pn).

Theorem 70. In a Poisson burning process with λ = 1 on the path Pn we have that

bp(Pn) = Θ(
√
n logn)

Proof. Suppose that we burn path Pn according to a Poisson burning process with

mean λ. Assume that we decompose path Pn into smaller paths of order d, where

d ≤ n is a positive integer. Then we can decompose the current Poisson process on Pn

into N = ⌈nd ⌉ disjoint Poisson processes each with mean 1
Nλ, since the smaller paths

are all disjoint.

Intuitively, if we choose d in a way that, with high probability, there is no fire

source chosen from each smaller path of order d at time t0 =
√
n logn, then it implies

that asymptotically almost surely, bp(Pn) > t0.

For 1 ≤ i ≤ N , let Ai be the event “no fire source is chosen from the i-th path (in

the given partition of Pn) at time t0”. Equivalently, Ai is the event “T1 > t0”. By

taking λ = 1 and d = ⌈
√
n

logn⌉, we will have that

P(Ai) = P(T1 > t0)

= ∫
∞

t0

1

N
e−

1
N
xdx

= e−
t0
N .
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Note that

lim
n→∞

e−
t0
N = lim

n→∞
e
−
t0
⌈n
d
⌉ ≥ lim

n→∞
e−

(√n logn)⌈
√
n

logn
⌉

n = 1.

Therefore, we conclude that a.a.s., there is no fire started at any of the small paths

of order d in the partition for Pn. This implies that a.a.s. bp(Pn) ≥ t0 =
√
n logn. On

the other hand, by Theorem 69, we have the upper bound. Thus, we conclude that

bp(Pn) = Θ(
√
n logn).



Chapter 5

The Competitive Diffusion Game in Classes of Graphs

In this chapter, we consider a game on graphs that is based on a model for the

spread of influence in social networks. Indeed, this game was the first motivation

for us to define the burning problem (as a one player game). First, we explain some

preliminaries for the results in this chapter, the model and the game.

A game consists of a set of N players denoted by [N] = {1,2, . . . ,N} (for a

positive integer N), a set of strategy profiles S = S1 × S2 × ⋯ × SN , where Si is the

strategy set of player i, and a pay-off function defined on S, defined by f(x) =
(f1(x), f2(x), . . . , fN(x)), where x ∈ S and fi(x) describes the out-come of player i

for strategy x. In such a game, a strategy for each player is a plan that is determined

in the beginning of each play of the game, and describes what the player does at

every possible situation. The strategy space or strategy set of each player is the set of

all possible strategies available for the player in the game. A strategy profile x in a

N -player game, is a vector x = (x1, x2, . . . , xN) in which xi ∈ Si denotes the strategy

of the i-th player, for 1 ≤ i ≤ N .

In 2009, Alon et al. [2], introduced a new model for the competitive diffusion

process in social networks. Their approach is a novel way of modelling the spread of

influence as a game, where the aim of this game is to influence users in the network

through “infection” with a particular brand, spreading through the links of the net-

work. In other words, suppose that we have a set of firms that want to advertise their

products. Initially they target a small group of people that they hope will extend into

a larger group of society. Any individual, who has learned about a product brand

from one of these firms first, either directly or through a social link, will be biased

in favour of that brand. However, if a user is getting the influence from different

products, she becomes confused and we cancel her out of the game. The gain of each

firm is the total number of users that at the end of the diffusion process are biased

towards its brand. In the language of mathematics, we can model this competitive

109
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propagation process as a game on an undirected finite graph, representing the under-

lying graph of a social network, in which the users form the node set of the graph, and

the agents are the players. Also, the product of each agent is denoted by a distinct

colour.

We now provide a formal definition of the game based on the competitive diffusion

model. A game Γ = ⟨G,N⟩ as a discrete-time deterministic process is played on a

graph G with a set of N players. We identify each player with a distinct number i,

where 1 ≤ i ≤ N . The strategy space of each player is the set V (G). That is, at time

t = 0, each player i, where 1 ≤ i ≤ N selects a single node and colours it in colour i,

and the rest of the nodes are uncoloured. If two or more agents select the same node

at time t = 0, then that node becomes gray, and those players automatically leave the

game. If St is the set of coloured nodes at time t ≥ 0, then at time t + 1 each player

colours the uncoloured nodes in the neighbourhood of St. If v is an uncoloured node

that has coloured neighbours only in colour i, then v receives colour i. If v is an

uncoloured node that has coloured neighbours with different colours, then it becomes

gray. The players continue until no one can colour any uncoloured node. At the end,

the pay-off of the i-th player is the number of nodes in G with colour i. Note that

in this game, after choosing the strategies of the players everything in the process is

deterministic. Hence, in the rest of the chapter, we represent each play of the game

by the corresponding strategy profile of the players in that play.

As an example, let G be a graph as shown in Figure 5.1, and take N = 2.

Figure 5.1: An example of the two-player game on a graph.

If the first player with colour 1, and the second player with colour 2, choose the

two nodes with the circles around them at the beginning, then the pay-off of them will

be the number of the nodes which are indexed by 1 and 2 in the figure, respectively.
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As we can see in Figure 5.1, there are four nodes that become gray by the rules of the

game, and three nodes which are not reachable by any player and therefore, remain

uncoloured at the end.

Note that throughout this game, it is as if we delete all the gray nodes, so the

metric of the graph is changing within the rounds of the game. This is unlike the

Voronoi games [24], in which the gain of each agent is the number of individuals whose

distance to the agent representative is less than the other agents.

In real networks finding a kind of stable situation in which every agent is satisfied

is called a Nash-equilibrium. This is often of more interest than finding the winner

of the game. In a N -player game, a pure Nash-equilibrium is a strategy profile such

as x = (x1, x2, . . . , xN) in which the strategy of each player is the best against the

strategies of the others. That is, for every 1 ≤ i ≤ N , and for each x′i ∈ Si,

fi(x) ≥ fi(x1, . . . , xi−1, x
′
i, xi+1, . . . , xN).

In other words, in a pure Nash-equilibrium (x1, x2, . . . , xN) by choosing xi the i-th

player has maximized her pay-off with respect to the strategy of the other players

in this profile; that is, no player can gain more by changing only her own strategy

unilaterally. In the rest of this chapter, we simply use the word Nash-equilibrium

instead of pure Nash-equilibrium. Also, note that we do not care about the order of

players in this game, as they are supposed to choose their strategies simultaneously at

the beginning of the game. In other words, we use the numbers in the set [N] only to

distinguish the players not to order them. Hence, in some of the results, for instance

in Theorem 77, we say that there is a unique Nash-equilibrium (c1, c2), where c1 and

c2 are the centroidal nodes of the graph T , as we do not consider (c1, c2) different

from (c2, c1). For further information about game theory concepts we refer the reader

to [9].

Note that not every game necessarily admits a Nash-equilibrium in its strategy

profile. For example, assume that we have the 3-player case of the competitive diffu-

sion game on a path of order 6. Then there can not be any Nash-equilibrium for this

game, as we see in Theorem 89.

Alon et al. [2] in their paper, proved the existence of Nash-equilibriums for the

game on graphs of diameter 2, and gave an example of a graph with diameter more
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than 2 which does not admit a Nash-equilibrium in the two-player case of the game.

Takehara et al. [57] however, provided a counter example with a graph of diameter 2

that does not admit a Nash-equilibrium, and presented a restatement of the theorem

(about graphs with diameter at most 2) in [2] by putting some restrictions on the

graph structure. Recently, Small and Mason [55] considered the existence of Nash-

equilibriums for the two-player game on trees, and also for the ILT model of online

social networks, with focus on utility functions. In [39], Janssen and Vautour consider

some results on the safe strategies (see Definition 3.1.3 from [9]) of the game on trees.

In [10], Etesami and Basar show that the problem of determining whether there exist

a Nash-equilibrium or not for this game is NP-hard. They also prove that there is a

Nash-equilibrium for the two-player case of the game on lattices and hypercubes.

In this thesis, we will consider the above game for some families of graphs. How-

ever, we take a novel approach based on the graph properties of these families. In

Section 5.1, we prove the existence of Nash-equilibriums for the special two-player

case of the game for trees, paths, cycles, and unicyclic graphs. Our proof for trees is

much simpler and shorter compared to previous work [55]. In Section 5.2, we show

that the two-player game on the Cartesian grids always admit a Nash-equilibrium.

In Section 5.3, we consider the game with at least three players. Throughout this

chapter, we assume that the graphs are connected.

5.1 Trees, Paths, Cycles, and Unicyclic Graphs

In this section, we consider some simple facts about the game, and use them to find

Nash-equilibriums for different known families of graphs. The following definitions

help us to describe the obtained results.

Assume that we are playing the game on a graph G. Suppose that in some round of

the game there is a shortest path P ∶ u, v1, . . . , vn−1, v between two distinct nodes u and

v such that the only coloured nodes of P are u and v with two different colours. If for

each 1 ≤ i ≤ n−1, and every coloured node w /∈ {u, v}, min{d(vi, u), d(vi, v)} < d(vi,w),
then we call path P a blocked path induced by the nodes u and v, or simply, a blocked

path. In other words, in a blocked path P , the closest coloured nodes to each node

in P are the end points of P .

We need the following lemma to find a better understanding of the dynamic of a
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path between a pair of nodes with different colours throughout the game.

Lemma 71. Suppose that we have a k-player game on a graph G. If P is a blocked

path of length n induced by nodes u and v in G, such that u is coloured by the i-th

player and v is coloured by the j-th player, where 1 ≤ i < j ≤ k. Then each of the i-th

and the j-th players wins the first ⌊(n + 1)/2⌋ nearest nodes in path P by the end of

the game. Moreover, if the length of P is even, then the middle node of P becomes

gray.

Proof. Since by assumption, the closest coloured nodes to any node in P are u and

v, then the nodes in P will be coloured only by the colours of u or v, or they may

become gray throughout the rounds of the game. Without loss of generality, assume

that the colour of u is 1 and the colour of v is 2. By definition of the game, we can see

that a node z ∈ P receives colour 1 from u if and only if d(z, u) < d(z, v). Moreover, z

becomes gray if and only if d(z, u) = d(z, v). Therefore, each of the i-th and the j-th

players wins the first ⌊(n + 1)/2⌋ nearest nodes in path P by the end of the game. If

the length of P is even, then the middle node of P becomes gray.

Before going through the next results, note that the following lemma is true for

any graph.

Lemma 72. If we play the k-player game on a graph G of order n, where n ≤ k, then

there is always a Nash-equilibrium.

Proof. Assume that V (G) = {u1, u2, . . . , un}. Then we define a strategy profile

(x1, x2, . . . , xk) as follows. For each 1 ≤ i ≤ n, we take xi = ui. For n ≤ i ≤ k, we

define xi = uj in which j is the smallest integer that is congruent to i mod n. We

claim that (x1, x2, . . . , xk) forms a Nash-equilibrium. Note that by definition, every

node is a strategy that is either achieved by only one player, or becomes gray, when at

least two players have selected that node. Hence, the gain of each player is either one

or zero, accordingly. If any player changes her strategy to a non-gray node, then the

new node (strategy) will become gray, as it was selected by another player before. If a

player changes her strategy to any gray node, then she does not gain anything. Thus,

in such a case no one can increase her pay-off by changing her strategy. Therefore,

(x1, x2, . . . , xk) is a Nash-equilibrium for this game.
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A node v of a graph G is called a cut node if removing v from G results in a

graph which is not connected. An edge uv is a cut edge if deletion of uv from G is a

disconnected graph. The following lemma is useful for some of the results as we will

see later on.

Lemma 73. Suppose that graph G = G1 ∪G2 is the union of two subgraphs G1 and

G2 such that V (G1) ∩ V (G2) = {v}, where v is a cut node of G. Then any possible

Nash-equilibrium of the two-player game on G consists of either two nodes in G1 or

two nodes in G2.

Proof. Suppose that (u1, u2) is a strategy profile such that u1 ∈ V (G1) ∖ V (G2) and

u2 ∈ V (G2) ∖ V (G1). Note that by assumption u1 ≠ v and u2 ≠ v. There are three

possibilities: (i) the first player wins the node v, (ii) the second player gains v, or

(iii) the node v becomes gray throughout the game. We claim that each player by

changing her strategy to v will increase her pay-off. To show this, first we consider

the case in which the first player changes her strategy to v. Let P1 be the set of the

nodes that the first player gains in (u1, u2), and P ′
1 denote the set of the nodes that

she wins in game (v, u2).
If case (i) happens, then it implies that the first player now gains v in round t = 0,

while before she was gaining v in a round t ≥ 1. Thus, not only P ′
1 contains all the

nodes in G1, but also she gains the nodes in P1 ∩ V (G2) in at least one round earlier

than before. Hence, P1 ⊂ P ′
1.

If case (ii) or (iii) happens, then it implies that P1 ⊂ G1 ⊆ P ′
1, since P1 does not

contain v while P ′
1 contains v.

Hence, (u1, u2) can not be a Nash-equilibrium. By symmetry, with a similar

argument, we prove that the second player also can increase her pay-off by choosing

v instead of u2. Thus, such a (u1, u2) can not be a Nash-equilibrium in any case.

Therefore, in any possible Nash-equilibrium strategies of the players should either

both be in G1 or both be in G2.

Assume that P is a path of order n with centre C. If n is odd, then C consists of

the node in the middle of P that is of equal distance with respect to the end points. If

n is even, then C consists of two adjacent nodes in the middle of P such that deleting
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them from P results in two isomorphic paths. We now state and prove our first result

on the competitive diffusion game for paths.

Theorem 74. Suppose that we play the two-player game on a path P of order n with

centre C.

(i) If n is even, then the two adjacent central nodes in C form the only possible

Nash-equilibrium of this game, and the equilibrium pay-offs are equal to n
2 .

(ii) If n is odd and N(v) = {u1, u2}, where C = {v}, then the set of the Nash-

equilibriums of this game consists of (u1, v) and (u2, v). Moreover, the equilibrium

pay-offs are n+1
2 and n−1

2 .

Proof. If n = 1 or n = 2, then by Lemma 72, the theorem statement is true. Hence,

assume that P is a path of order n ≥ 3. Note that any non-pendant node of P is a

cut-node. First, we claim that in a possible Nash-equilibrium, the strategies of the

players must be two adjacent nodes. In other words, if the strategy of one of the

players is node u, then the best strategy for her opponent with respect to v is to

choose a node adjacent to v which separates v from a larger number of the nodes in

P .

Namely, suppose that each player i ∈ {1,2} chooses node ui as her strategy. If

(u1, u2) forms a Nash-equilibrium, and u1 and u2 are not adjacent, then there must

be a node v /∈ {u1, u2} in the path between u1 and u2. Since v is a cut-node, we find

a contradiction by Lemma 73. Therefore, such a strategy profile (u1, u2) is not a

Nash-equilibrium.

However, if the players choose two adjacent nodes as their strategies which are not

selected as in (i) or (ii), then the player who is closer to one of the end points can

improve her pay-off by changing her strategy to another neighbour of her opponent’s

strategy. Hence, such a case is not a Nash-equilibrium.

Finally, if they both choose their strategies as in (i) or (ii), then no one can

improve her pay-off by changing her strategy. Therefore, (i) and (ii) form the only

possible Nash-equilibriums of this game.

Theorem 75. In a two-player game on cycle Cn we have the following statements.

(i) If n is odd, then every two nodes on Cn form a Nash-equilibrium, and the

pay-offs are equal to n−1
2 .
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(ii) If n is even, then two nodes on Cn form a Nash-equilibrium if and only if they

are of odd distance, and the equilibrium pay-offs are equal to n
2 .

Proof. When we have a two player game on a cycle Cn, the strategies of the players

divide the cycle into two blocked paths. If n is odd, then one of the blocked paths

is always of odd length and the other one is of even length. Hence, by Lemma 71,

every player wins (n − 1)/2 nodes, and one node in the middle of the even subpath

becomes gray. Since this happens for any selection of the nodes, then any two nodes

form a Nash-equilibrium when n is odd.

If n is even, then the two blocked paths are both even or odd. If they are both

of odd length, then by Lemma 71, each player wins exactly half of the nodes on Cn,

and no one can improve this. If the blocked paths are both of even length, then every

player wins (n/2)−1, and one of the nodes in each blocked path becomes gray. Thus,

each player can improve her pay-off by changing her strategy to a neighbour of her

first strategy. Hence, two nodes of Cn form a Nash-equilibrium if and only if they are

of odd distance.

A maximal subtree which contains a node v of a tree T as a leaf is called a branch

of T at v. The weight of a node v of T , denoted by wt(v) is the maximum number of

nodes in a branch at v (not including v). A node u is a centroid node of T if it has the

minimum weight among all nodes. The centroid of T is the set of all centroid nodes

of T . The following theorem about the centroid of trees is known in graph theory.

Theorem 76 ([59]). If C is the centroid of a tree T of order n, then we have the

following statements.

(i) C consists of either a single node or two adjacent nodes. Moreover, wt(u) ≤ n
2

if and only if u ∈ C.

(ii) If C = {c1, c2}, then wt(c1) = wt(c2) = n/2.

(iii) C = {c} if and only if wt(c) ≤ (n − 1)/2.

Note that according to case (i) of the above theorem, if v /∈ C, then wt(v) > n/2.

In the following theorem, we use centroidal nodes and we apply Theorem 76 to find

the Nash-equilibriums of the two-player game on a tree.

Theorem 77. In a two-player game on a tree T of order n with centroid C, we have

the following statements.
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(i) If C = {c1, c2}, then (c1, c2) is the unique Nash-equilibrium of the game, and

the equilibrium pay-offs are equal to n/2.

(ii) If C = {c}, and v is a neighbour of c in a branch with maximum weight

attached at c, then (c, v) forms a Nash-equilibrium. Moreover, any Nash-equilibrium

for this game consists of such two nodes.

Proof. Suppose that for i ∈ {1,2}, ui is the strategy of the i-th player, and gi denotes

her pay-off. Also, assume that (u1, u2) forms a Nash-equilibrium for this game. Note

that there exists a unique path between any two nodes in a tree. First, we claim that

(u1, u2) must be two adjacent nodes such that g1 = wt(u2) and g2 = wt(u1). Namely,

if u1 and u2 are not adjacent, then there must be a node v /∈ {u1, u2} in the path

between u1 and u2. Since v is a cut-node, then we find a contradiction by Lemma 73.

Now, let e be the edge between u1 and u2 in T . We can see that the pay-off of the

first player is a subset of a branch attached at u2 called B2 which contains e. Thus,

we have that

g1 ≤ ∣B2∣ ≤ wt(u2), (5.1)

and the equality holds only if u1 is the neighbour of u2 in a branch with maximum

weight attached at u2. Namely, if u1 is in a branch at u2 that its weight does not

equal wt(u2), then the inequality (5.1) will be strict. Similarly, we can see that the

gain obtained by choosing u2 is a subset of a branch attached at u1 called B1 which

contains e. Therefore, g2 ≤ wt(u1), and the equality holds only if u2 is the neighbour

of u1 in a branch with maximum weight attached at u1. Therefore, the best strategy

for each player is to choose a node adjacent to the strategy of her opponent that is in

a branch with maximum weight attached to it. Hence, in a possible Nash-equilibrium

the strategies of the players must be adjacent, and g1 = wt(u2) and g2 = wt(u1).
Now, we assume that u1 and u2 are adjacent nodes with g1 = wt(u2) and g2 =

wt(u1). We claim that at least one of them must be in C. By contradiction, suppose

that both u1 and u2 are not in C. Thus, by Theorem 76, wt(u1) > n
2 , and wt(u2) > n

2 .

Note that g1 + g2 ≤ n, since we may have some gray nodes. Therefore, we conclude

that wt(u1) = g2 ≤ n − g1 < n
2 , which is a contradiction. Therefore, in a possible

Nash-equilibrium at least one of the players’ strategies must be in C.
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Hence, without loss of generality, assume that u1 ∈ C. Thus, by Theorem 76,

wt(u1) = n
2 . By Theorem 76, we also know that either C consists of two adjacent

nodes, or C contains a single node. If C consists of two adjacent nodes, and u2

is not in C, then by Theorem 76, g1 = wt(u2) > n
2 . Therefore, we conclude that

wt(u1) = g2 ≤ n− g1 < n
2 , which is a contradiction. On the other hand, if {u1, u2} = C,

then each player has the best strategy with respect to the strategy of her opponent.

Thus, in such a case, C forms the only Nash-equilibrium of this game. If C contains

a single node, then by the above argument, the best strategy for the second player

is to choose a node adjacent to u1 ∈ C that is in a branch with maximum weight

at u1. Also, note that in such a case, the strategy of each player is the best with

respect to the strategy of her opponent. Hence, if C = {c}, then (u1, u2) forms a

Nash-equilibrium if and only if u1 = c and u2 is a node adjacent to c in a branch with

maximum weight at c.

Suppose that G is a unicyclic graph, that is, G has only one cycle C. We can see

that G ∖C is a forest such that each component of this forest is adjacent to exactly

one node on C. For each node v ∈ C, if there are t = d(v)−2 > 0 different components

in G ∖C that are connected to v, then for each of these trees, we label the union of

the tree together with v and the edge connecting v to the tree by Tiv, for 1 ≤ i ≤ t;
that is, all Tiv’s share v.

Suppose that we have a two-player game on a unicyclic graph G with cycle C. By

the above definition, we can assume that every node v on C has a weight wtC(v) =
∣V (⋃d(v)−2

i=1 Tiv)∣. As we will see, sometimes we play the game on the weighted cycle

C (instead of G) with a slightly different rule; that is, we only choose the nodes on

C, and the gain of each player after taking node v ∈ C is increased by the weight of

v. In such cases, we replace G by CW . Hence, when we refer to CW , we mean that

instead of playing on G we are playing the game only on C with weighted nodes.

We use the above notations for the results on unicyclic graphs. We use the follow-

ing lemma, which is an immediate result of Theorem 76, to prove the next theorem.

Lemma 78. Suppose that T is a tree with centroid C. Then for any node u which is

not in C the maximum branch attached at u is the one that contains C (which is the

only branch attached at u with weight more than n
2 ).
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Proof. Suppose that u is a node in T that is not in C. We want to show that any

branch attached at u which does not contain C is not maximum. We know that there

is a unique path between u and the closest node in C which goes through a branch B

attached at u. Hence, B contains C. Now, assume that B′ ≠ B is a branch attached

at u. We can see that B′ is a proper subset of a branch attached at a node c in C.

Therefore, by Theorem 76 part (i), we have that

∣B′∣ < wt(c) ≤ n
2
.

On the other hand, by Theorem 76 part (i), we know that the weight of any node

outside C is greater than n/2. Since u is not in C, then by the above argument, we

conclude that B must be the maximum branch attached at u.

In general, we have two possibilities for a unicyclic graph G with cycle C; either

there is a node v in C with ∣Tiv ∣ ≥ n
2 + 1, for some 1 ≤ i ≤ d(v) − 2, or ∣Tiv ∣ ≤ n

2 for all

v ∈ C, and 1 ≤ i ≤ d(v) − 2. Hence, we have the following theorem.

Theorem 79. Suppose that G is a unicyclic graph with cycle C. If there is a node v

on C with ∣Tiv ∣ ≥ n
2 + 1, for some 1 ≤ i ≤ d(v) − 2, then there exists a Nash-equilibrium

with both players playing on Tiv. Otherwise, if there exists a Nash-equilibrium for this

game, then it must consist of a set of two nodes either on C or on a Tiv, for some

v ∈ C and 1 ≤ i ≤ d(v) − 2.

Proof. First, suppose that there is a node v on C with ∣Tiv ∣ ≥ n
2 + 1, for some i. We

show that in a possible Nash-equilibrium (u1, u2), both ui’s must be in Tiv as follows.

If none of ui’s are in Tiv, then the player with the smaller gain can improve her pay-off

by changing her strategy to v. Namely, this way she wins more than half of the nodes

in G. Hence, in a possible Nash-equilibrium for this game, at least one of the players

must choose her strategy on a node in Tiv.

Note that node v has a unique neighbour in Tiv, called v′. Without loss of gener-

ality, suppose that u1 = v, and u2 is in G ∖ Tiv. Then the second player can improve

her pay-off by changing her strategy to v′. To see this, suppose that g1 and g′1 de-

note her pay-off before and after changing her strategy, respectively. We can see that

g1 < ∣G ∖ Tiv ∣ < n
2 , since her first gain is a proper subset of the complement of Tiv in

G, while she gains all the nodes in Tiv − v by changing her strategy to v′. Hence,
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g′1 = ∣Tiv − v∣ ≥ n
2 . Thus, such a strategy profile does not form a Nash-equilibrium.

Therefore, by Lemma 73 (since v is a cut node), we conclude that both ui’s must be

in Tiv.

Now, we show that in such a case, there is always a Nash-equilibrium. Note that

since v is a cut node, then any player who gains v will gain all the nodes in G ∖ Tiv.
Now, we delete G ∖ Tiv and connect node v to a path P consisting of ∣G ∖ Tiv ∣ nodes.

We call the resulting graph T . We can see that T is a tree, since it is connected and

has no cycle. Let u be the neighbour of v on P . Since more than half of the nodes

of T are in Tiv, then the maximum-weighted branch at u is the one that contains v;

that is, we have that

wtT (u) = ∣Tiv ∣ ≥
n

2
+ 1 > n

2
.

Thus, by Lemma 78, we conclude that the centroid of T , called C(T ), must be a

subset of Tiv. On the other hand, by Theorem 77, we know that tree T always has a

Nash-equilibrium which involves C(T ). Also, note that the weight of the branch at

node v which contains Tiv −v is at least n
2 . Hence, Tiv −v must be a maximum branch

attached at v. Therefore, we conclude that (u1, u2) forms a Nash-equilibrium for the

game on T if and only if it is a Nash-equilibrium for the game on G. Hence, in such a

case, there exists a Nash-equilibrium for the game on G, that is obtained by finding

the Nash-equilibriums of T , according to Theorem 77.

Now, assume that for every v ∈ C and each 1 ≤ i ≤ d(v) − 2, ∣Tiv ∣ ≤ n
2 , and there

exists a Nash-equilibrium (u1, u2) for this game. Since every node v of weight greater

than one in C is a cut node, then by Lemma 73, both ui’s must be either in a Tiv,

or in G ∖ Tiv. Hence, in this case, if the equilibrium nodes both are not included

simultaneously in any Tiv, for a node v on C, and some 1 ≤ i ≤ d(v) − 2, then we

conclude that both ui’s must be selected on CW .

Note that for the game on a unicyclic graph G when the weight of all the nodes

in cycle C is at most half of the order of G, Theorem 79 does not guarantee the

existence of Nash-equilibrium. It only says where we should be looking for a possible

Nash-equilibrium in case that there exist one for this game. The unicyclic graph G

in Figure 5.2, with 6-cycle C is an example of a unicyclic graph that does not admit

any Nash-equilibrium, as we explain below.
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Figure 5.2: The game on the unicyclic graph G does not admit a Nash-equilibrium.

Note that in the graph of Figure 5.2, the weight of each tree attached at a node

in cycle C is less than half of the whole number of nodes. By Theorem 79, we know

that if there is a Nash-equilibrium (u1, u2) for the game on G, then both ui’s must be

either in Tv, for some v ∈ C, or in C. By direct checking, we can consider all different

possibilities to conclude that there can not be any Nash-equilibrium in which one of

the players chooses a strategy out of C. Hence, by Theorem 79, we have to consider

the game on CW .

Now, we have the following bimatrix as the pay-off matrix (see [9], Chapter 3) of

the players for the game on CW ; That is, each row of this matrix corresponds to a

strategy of the first player, and each column of this matrix corresponds to a strategy

of the second player. Note that it is a symmetric game and the columns correspond

to nodes v1, v2, v3, v4, v5, and v6, as well as the rows, respectively. Moreover, the (ij)-
th entry of this matrix has two components in which the first component shows the

pay-off of the first player and the second component shows the pay-off of the second

player when they choose the strategy profile (vi, vj).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0,0) (21∗,15) (14,10) (19,17∗) (16,8) (25∗,11)
(15,21∗) (0,0) (19,17) (16,8) (25∗,11) (14,10)
(10,14) (17,19) (0,0) (25∗,11) (14,10) (15,21∗)
(17∗,19) (8,16) (11,25∗) (0,0) (15,21) (10,14)
(8,16) (11,25∗) (10,14) (21,15) (0,0) (17,19)

(11,25∗) (10,14) (21∗,15) (14,10) (19,17) (0,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
From game theory (see [9], Chapter 3, Definition 3.1.2), we know that a possible

Nash-equilibrium for such a game is determined by an entry of this matrix in which

the first component is the largest in the same column and the second component is the
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largest in the row. Here, for each column and each row we indicate such components

with a star. As we can see, there is no entry with a star on both components. Thus,

there is no Nash-equilibrium for this game.

If in a unicyclic graph the weight of every node on the cycle is at most half of the

number of nodes, and there is a Nash-equilibrium for the game on the weighted cycle,

then the following lemma could be helpful.

Lemma 80. Assume that G is a unicyclic graph with weighted cycle CW such that

wt(v) ≤ n
2 for all v ∈ C. If there is a Nash-equilibrium (u, v) for the two-player game

on CW , then we have that,

(i) either (u, v) is a Nash-equilibrium for the regular game on G, or

(ii) one of the neighbours of u together with v, or one of the neighbours of v

together with u forms a Nash-equilibrium for the game on G.

Proof. Assume that (u, v) is a Nash-equilibrium for the game on CW . Also, suppose

that gx denotes the pay-off of a player who takes node x as her strategy, where x ∈ G.

By assumption, we know that no one can increase her pay-off by changing her strategy

to another node on CW . Hence, we must have that gu ≥ gz, for any z ∈ CW . Now, we

consider the changes in the pay-off of the first player after changing her strategy to

a node such as w ∈ G − C while the strategy of the second player is the fixed node

v. By the structure of G, such a node w must be in a tree attached at a node z ∈ C.

There are two possibilities for z: either z ≠ v, or z = v.

If z ≠ v (note that w ≠ z), and the first player changes her strategy to node w,

then gw < gz. Namely, this way she gains the nodes on CW at a later time, since

d(w, v) > d(z, v). Therefore, she loses at least one of the nodes that she was able to

take by choosing z. Thus, we have that gu ≥ gz > gw. Hence, the only possible way for

the first player to increase her pay-off is to change her strategy to a node w in Tiv,

for some 1 ≤ i ≤ d(v) − 2. We consider such a case as follows.

If z = v, that is, w ∈ (⋃d(v)−2
i=1 Tiv) − v, and the first player changes her strategy to

w, then assume that P is a path of order ∣G−⋃d(v)−2
i=1 Tiv ∣. Let T be the tree obtained

by deleting G ∖ (⋃d(v)−2
i=1 Tiv), and connecting P to ⋃d(v)−2

i=1 Tiv via v. Since the second

player’s gain includes node v and all the nodes in G ∖ (⋃d(v)−2
i=1 Tiv), then finding the

best strategy for the first player with respect to v among the nodes in ⋃d(v)−2
i=1 Tiv for

the game on G, is equivalent to finding such a strategy for the game on T . Hence, we



123

consider the best possible strategy for the first player with respect to v among the

nodes in ⋃d(v)−2
i=1 Tiv, as follows.

By the proof of Theorem 77, we know that in a game on a tree always the best

strategy against an opponent is to choose the neighbour of her strategy that is in a

branch with maximum weight. Hence, if for some neighbour of v such as w ∈ Tiv,
for some 1 ≤ i ≤ d(v) − 2, gw > gu and gw is the maximum over such neighbours of v,

then the best strategy for the first player (against v) is to change her strategy to w.

We claim that in such a case, {w, v} forms a Nash-equilibrium for the game on G.

Namely, in this case, in one side w is the best strategy against v in game on G (not

CW ). On the other side, if the second player changes her strategy to a node z ≠ w in

Tiv, then she will gain gz < ∣Tiv ∣ ≤ n
2 ≤ ∣G − Tiv ∣ = gv. If she changes her strategy to a

node z in Tjv, with j ≠ i, then her gain will be a proper subset of Tjv (since she does

not gain v any more) while her gain included Tjv when her strategy was v. Thus,

gz < gv. If she changes her strategy to a node z ∈ G ∖ (⋃d(v)−2
j=1 Tjv), then she does not

gain node v, and therefore, she achieves a proper subset of her previous gain (since

v is a cut node). Thus, the claim is true; that is, (v,w) forms a Nash-equilibrium in

this case.

However, if for every neighbour of v, like w, gw ≤ gu, then we conclude that u

is the best strategy against v in G. We can do the same discussion for the second

player, and conclude that, either u together with one of its neighbours form a Nash-

equilibrium for the game on G, or otherwise, v is the best strategy against u in the

game on G. If u and v are the best strategies with respect to each other, then (u, v)
forms a Nash-equilibrium for the game on G.

Figure 5.3: (u, v3) is a Nash-equilibrium for the game on G.
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In reverse, if there is a Nash-equilibrium for the game on a unicyclic graph G with

cycle C, such that both strategies are in cycle C, then it is also a Nash-equilibrium

for the game on CW , since no player can increase her pay-off. However, if there is a

Nash-equilibrium (u1, v1) for the game on G in which u1, v1 ∈ Tiv, for some v ∈ C, then

we may not have necessarily a Nash-equilibrium for the game on CW . For example,

Figure 5.3 shows an example of a unicyclic graph with cycle C in which the weight of

every node in CW is less than half of the order of G, and there is a Nash-equilibrium

(u, v3) as shown in the figure. By checking the pay-off matrix of the game on CW as

shown below, we can see that there is no Nash-equilibrium for this game, since there

is no entry with stars on both columns (see [9], Chapter 3, Definition 3.1.2).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0,0) (17,27) (8,24) (11,33∗) (10,14) (29,15)
(24,8) (0,0) (11,33∗) (10,14) (29∗,15) (22,10)
(10,14) (33∗,11) (0,0) (29∗,15) (22,10) (27,17∗)
(33∗,11) (14,10) (15,29∗) (0,0) (27,17) (24,8)
(14,10) (15,29∗) (10,22) (17,27) (0,0) (33∗,11)
(15,29) (10,22) (17∗,27) (8,24) (11,33∗) (0,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assume that G is a unicyclic graph with trees of equal orders attached at the nodes

of the cycle C. Then the two-player game on G is like playing on a weighted cycle

with equal weights assigned to all nodes. Hence, with the same argument as in proof

of Theorem 75, we can see that the set of Nash-equilibriums is determined exactly

as for a regular cycle. The only difference is that here the pay-off of the players is a

multiple (a constant multiple, which is equal to the weight of the nodes on C) of the

pay-off in the regular game on a cycle without weights. Thus, in this case, there is

always a Nash-equilibrium for the game on CW .

From Lemma 80 we conclude that, if we find a Nash-equilibrium for the game

on CW , then we can find a Nash-equilibrium for the game on G. This conclusion

shows the importance of the next theorem. We first prove the following lemma that

is needed in the proof of Theorem 82.

Lemma 81. Let C ∶ v1, v2, v3, v4, v5 be a weighted cycle of order 5 such that the weight

of each node vi ∈ C is denoted by wt(vi). Then there are always three nodes say u, v,

and w in C such that d(u, v) = 2 = d(u,w), wt(v) ≥ wt(u), and wt(w) ≥ wt(u).
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Proof. First, note that if the weights of the nodes in C are equal, then {v1, v3, v5} forms

a triple in C that satisfies the desired property in the statement of the lemma. Hence,

we assume that the weight of the nodes in C are not all equal. By contradiction,

suppose that there is no such a triple of nodes in C. In particular, for {v1, v3, v4},

at least one of v3 and v4 must have a weight that is at most as large as the weight

of v1. Thus, without loss of generality, by symmetry, we can assume that either

wt(v3) < wt(v1) and wt(v4) ≥ wt(v1), or wt(v3) < wt(v1) and wt(v4) < wt(v1).
If wt(v3) < wt(v1) and wt(v4) ≥ wt(v1), then we must have wt(v3) ≥ wt(v5). Since

otherwise, the triple {v1, v3, v5} will be a desired triple, which is a contradiction.

Again, by assumption, since there is no desired triple of nodes in C, then at least

one of the nodes v4 and v5 must have a weight that is at most as large as the weight

of v2. Hence, either wt(v5) < wt(v2) and wt(v4) ≥ wt(v2), or wt(v5) < wt(v2) and

wt(v4) < wt(v2), or wt(v5) ≥ wt(v2) and wt(v4) < wt(v2). If either of the first two

cases happens, then we conclude that the triple {v2, v3, v5} forms a desired triple,

which is a contradiction. If the third case happens, that is, wt(v5) ≥ wt(v2) and

wt(v4) < wt(v2), then by the transitivity of the “≤” relation on the set of numbers,

we conclude that all the nodes in C must have equal weights, which is a contradiction.

If wt(v3) < wt(v1) and wt(v4) < wt(v1), then we conclude that wt(v3) ≥ wt(v5)
and wt(v4) ≥ wt(v2). Otherwise, the triple {v1, v3, v5} or {v1, v2, v4} forms a desired

triple, which is a contradiction. We ave two possibilities: either wt(v2) ≥ wt(v5), or

wt(v2) < wt(v5). If the former happens, then the triple {v2, v3, v5} forms a desired

triple, which is a contradiction. If the latter happens, then the triple {v2, v4, v5}
forms a desired triple of nodes, which is a contradiction again. Therefore, the lemma

is true.

Now, we can prove the following theorem as the last result of this section.

Theorem 82. In a two-player game on a unicyclic graph G with cycle C (or weighted

cycle CW ) of length 3,4, or 5 there exists a Nash-equilibrium.

Proof. By Theorem 80, we know that if there is a Nash-equilibrium for the game on

CW , then there must be a Nash-equilibrium for the game on G too. Hence, it suffices

to show that in such a case always there is a Nash-equilibrium for the game on CW .

We consider the following possibilities for CW .
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If ∣CW ∣ = 3, then assume that C consists of three nodes with weights a, b, and c.

We can see that the two nodes with the largest weight among a, b, and c always form

a Nash-equilibrium, since no one can increase her pay-off unilaterally, and the third

node becomes gray.

If ∣CW ∣ = 4, then assume that C ∶ v1, v2, v3, v4, v1 consists of four nodes with weights

wt(v1), wt(v2), wt(v3), and wt(v4). We claim that in a possible Nash-equilibrium

for this game, the strategies of the players must be adjacent. Namely, if the players

choose two non-adjacent nodes in CW , then the other two nodes in CW become gray.

Therefore, every player by changing her strategy to one of her neighbours can improve

her pay-off. Hence, such a case can not be a Nash-equilibrium.

Now, without loss of generality, assume that the players select two adjacent nodes

such as v1 and v2. Also, suppose that g1 and g2 denotes the pay-off of the first player

and the second player, respectively. Then (v1, v2) form a Nash-equilibrium if and only

if,

g1 = wt(v1) +wt(v4) ≥ wt(v3) +wt(v4),

g2 = wt(v2) +wt(v3) ≥ wt(v4) +wt(v3).

By simplification, this is equivalent to say that (v1, v2) form a Nash-equilibrium if

and only if,

wt(v1) ≥ wt(v3),

wt(v2) ≥ wt(v4).

With a simple discussion, by considering different possibilities, we conclude the fol-

lowing statements:

If wt(v1) ≥ wt(v3) and wt(v2) ≥ wt(v4), then (v1, v2) form a Nash-equilibrium.

If wt(v1) < wt(v3) and wt(v2) ≥ wt(v4), then (v2, v3) form a Nash-equilibrium.

If wt(v1) ≥ wt(v3) and wt(v2) < wt(v4), then (v1, v4) form a Nash-equilibrium.

If wt(v1) < wt(v3) and wt(v2) < wt(v4), then (v3, v4) form a Nash-equilibrium.



127

Thus, for the game on a weighted 4-cycle always we have a Nash-equilibrium.

If ∣CW ∣ = 5, then assume that cycle C ∶ v1, v2, v3, v4, v5, v1 consists of five nodes with

weights wt(v1), wt(v2), wt(v3), wt(v4), and wt(v5). First, note that if the weight of

all the nodes in C are equal, then by the same argument as in proof of Theorem 75,

we conclude that any two nodes in C from a Nash-equilibrium. Hence, we assume

here that the weight of the nodes in C are not all equal.

Suppose that g1 and g2 denote the pay-off of the first and the second player in

this game, respectively. We have two possibilities for a Nash-equilibrium: either it

consists of two adjacent nodes, or two non-adjacent nodes.

Case 1. If the players select two non-adjacent nodes such as v1 and v3 as their

strategies, then v2 becomes gray. By definition, (v1, v3) form a Nash-equilibrium if

and only if

g1 = wt(v1) +wt(v5) ≥ wt(v1) +wt(v2),

g1 = wt(v1) +wt(v5) ≥ wt(v5) +wt(v4),

for the first player; and

g2 = wt(v3) +wt(v4) ≥ wt(v3) +wt(v2),

g2 = wt(v3) +wt(v4) ≥ wt(v5) +wt(v4),

for the second player. After simplifying, we say (v1, v3) form a Nash-equilibrium if

and only if,

wt(v5) ≥ wt(v2), (5.2)

wt(v1) ≥ wt(v4), (5.3)

wt(v3) ≥ wt(v5), (5.4)

wt(v4) ≥ wt(v2). (5.5)

Case 2. If the players select two adjacent nodes such as v4 and v5 as their strategies,
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then v2 becomes gray. By definition, (v4, v5) form a Nash-equilibrium if and only if

g1 = wt(v4) +wt(v3) ≥ wt(v1) +wt(v2),

g1 = wt(v4) +wt(v3) ≥ wt(v3) +wt(v2),

for the first player; and

g2 = wt(v5) +wt(v1) ≥ wt(v3) +wt(v2),

g2 = wt(v5) +wt(v1) ≥ wt(v1) +wt(v2),

for the second player. After simplification, we say (v4, v5) form a Nash-equilibrium if

and only if,

wt(v4) ≥ wt(v2), (5.6)

wt(v5) ≥ wt(v2), (5.7)

wt(v3) +wt(v4) ≥ wt(v1) +wt(v2), (5.8)

wt(v1) +wt(v5) ≥ wt(v2) +wt(v3). (5.9)

Note that parts (2) and (5) from Case 1 imply that, if (v1, v3) form a Nash-equilibrium,

then the triple {v2, v4, v5} is a triple that satisfies the conditions in Lemma 81. Also,

parts (6), (7) from Case 2 imply that, if (v4, v5) form a Nash-equilibrium, then the

triple {v2, v4, v5} is a triple that satisfies the conditions in Lemma 81. By Lemma 81,

we know that such a triple always exists in any weighted cycle of order 5. Hence, with-

out loss of generality, we assume that in CW , wt(v4) ≥ wt(v2) and wt(v5) ≥ wt(v2).
Therefore, by parts (3) and (5) from Case 1, and by parts (6), (7) from Case 2, to

prove the existence of a Nash-equilibrium for the game on CW , it suffices to consider

the occurrence of conditions (4) and (5) in Case 1, or conditions (8) and (9) in Case

2, as follows.

Note that there are two possibilities for wt(v1) and wt(v3): either wt(v1) ≤ wt(v3)
or wt(v1) > wt(v3). Assume that, the conditions in Case 1, that is, wt(v3) ≥ wt(v5)
and wt(v1) ≥ wt(v4) do not hold. Thus, without loss of generality and by symmetry,

we can assume that we have two possibilities for conditions in Case : either wt(v3) <
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wt(v5) and wt(v1) ≥ wt(v4), (or similarly, by symmetry, wt(v3) ≥ wt(v5) and wt(v1) <
wt(v4)), or wt(v3) < wt(v5) and wt(v1) < wt(v4). Hence, we need to consider four

possibilities as follows.

First, assume that wt(v1) ≤ wt(v3). Then this together with wt(v4) ≥ wt(v2)
imply that wt(v4) + wt(v3) ≥ wt(v1) + wt(v2), that is, the condition (8) in Case 2

holds. If wt(v3) < wt(v5) and wt(v1) ≥ wt(v4), then by transitivity of the “≤” relation

on the numbers, we conclude that wt(v1) ≥ wt(v2). This implies that wt(v1)+wt(v5) ≥
wt(v2) +wt(v3). Thus, in this case, (v4, v5) forms a Nash-equilibrium, as we have all

the conditions in Case 2.

If wt(v3) < wt(v5) and wt(v1) < wt(v4), then we we have to consider inequality (9).
Note that in this case we have another triple {v1, v3, v4} with the same conditions as in

Lemma 81. By replacing {v1, v3, v4} in Case 1, regarding to this new triple we conclude

that (v2, v5) is a Nash-equilibrium if and only if wt(v5) ≥ wt(v3) and wt(v2) ≥ wt(v4).
Also, by replacing {v1, v3, v4} in Case 2, (v3, v4) forms a Nash-equilibrium if and only

if wt(v2) +wt(v3) ≥ wt(v1) +wt(v5) and wt(v4) +wt(v5) ≥ wt(v1) +wt(v2). But, we

already know that wt(v4) ≥ wt(v2). Moreover, wt(v4) + wt(v5) ≥ wt(v1) + wt(v2),
since wt(v4) ≥ wt(v1) and wt(v5) ≥ wt(v2). Therefore, we only need to check

wt(v2) +wt(v3) ≥ wt(v1) +wt(v5). (5.10)

Since always one of (9) or (10) is true, then in this case, we also have a Nash-

equilibrium.

Now, assume that wt(v1) > wt(v3). Then this together with assumption wt(v5) ≥
wt(v2), imply that inequality (9) holds. Hence, we have to consider inequality (8).
By the above argument, we have to consider two possibilities: either wt(v3) < wt(v5)
and wt(v1) ≥ wt(v4), or wt(v3) < wt(v5) and wt(v1) < wt(v4). Note that in both

cases, we assume wt(v3) < wt(v5). Hence, in both cases triple {v1, v3, v5} satisfies the

conditions in Lemma 81. By replacing {v1, v3, v5} in Case 1, regarding to this new

triple, we can say that (v2, v4) forms a Nash-equilibrium if and only if wt(v2) ≥ wt(v5)
and wt(v4) ≥ wt(v1). Also, by Case 2, (v1, v5) forms a Nash-equilibrium if and only
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if

wt(v4) +wt(v5) ≥ wt(v2) +wt(v3), (5.11)

and

wt(v1) +wt(v2) ≥ wt(v3) +wt(v4). (5.12)

Since by assumption, wt(v5) ≥ wt(v2), then Case 1 for triple {v1, v3, v5} may not

happen. On the other hand, since by assumption wt(v4) ≥ wt(v2), and in both

possibilities wt(v3) < wt(v5), then we conclude that inequality (11) holds. Thus,

in both cases, we have to consider inequalities (8) and (12). Since always one of

(8) or (12) is true, then in this case, we have a Nash-equilibrium (similarly, for the

case wt(v3) ≥ wt(v5) and wt(v1) < wt(v4)). That is, if (8) holds, then (v4, v5) is a

Nash-equilibrium. If (12) holds, then (v1, v5) forms a Nash-equilibrium.

Note that as we discussed earlier, the game on the weighted cycle shown in Figure

5.2 does not admit a Nash-equilibrium, and in this example the cycle is of order 6.

Hence, Theorem 82 is the best possible.

Note that for a complete bipartite graph G = G[X,Y ], any pair of nodes such as

(u, v), where u ∈X and v ∈ Y forms a Nash-equilibrium for the two-player game on G.

Namely, by playing (u, v), each player wins all the nodes in the opposite part except

for the strategy of her opponent. On the other hand, if the first player changes her

strategy to a node in Y , then all the nodes in X become gray at the beginning. Thus,

her new pay-off will be zero. If she changes her strategy to a different node in X, then

by symmetry, her pay-off will not change. Similarly, by symmetry, the second player

can not improve her pay-off by changing her strategy unilaterally in such a case.

Therefore, (u, v) forms a Nash-equilibrium. However, finding a Nash-equilibrium for

an arbitrary bipartite graph in general seems challenging.

5.2 Cartesian Grids

In this section we investigate the existence of Nash-equilibriums for the game on

Cartesian grids. In a grid G, we call a subgraph of G which is also a grid by itself,
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a subgrid of G. Assume that A and B are two nodes of a grid G. We denote the

maximal subgrid of G which contains A and B as the corner points and consists of

all the shortest paths between A and B in G by GAB.

We have the following fact about the centre of a grid, which follows directly using

definition.

Theorem 83. Assume that G is a m × n grid with centre C, where m and n are

positive integers. Then we have the following statements for C.

(i) If m and n are odd, then C consists of a single point in the middle.

(ii) If one of m and n is odd and the other one is even, then C consists of two

adjacent nodes in the middle.

(iii) If m and n are even, then C is the 4-cycle in the middle of G.

Using the centre of a grid, we can always find a Nash-equilibrium for the two-player

competitive diffusion game on grids.

Theorem 84. Suppose that we have a two-player game on a m×n grid G with centre

C, where m and n are positive integers, and m ≤ n. Then there is always a Nash-

equilibrium (u, v) for the game on G. Moreover, we have the following statements

about {u, v}.

(i) If m and n are odd, and C = {c}, then {u, v} = {c, x} where x is one of the

neighbours of c which is placed in the same row as c.

(ii) If one of m and n is odd and the other one is even, and C = {c1, c2}, then

{u, v} = {c1, c2}.

(iii) If m and n are even, then {u, v} is a pair of adjacent nodes in C.

Proof. Assume that A and B are the strategies of the players, with g1 and g2 as their

pay-offs, respectively.

Figure 5.4: The rectangles containing point A on their perimeter.



132

Then there is a vertical as well as a horizontal line which passes through point

A in the grid plane, and forms part of the perimeter of some rectangles created by

A (in total, there are at most four possible such rectangles as we see in Figure 5.4,

depending on the position of A). We observe that B is always inside of one of those

rectangular regions created by A. Now, if GAB is a square, then the distance between

A and B is even. Thus, by Lemma 71, there must be some gray nodes appearing

on the diagonal points of GAB throughout the game. Hence, each of the players

by changing her strategy to one of the neighbours of her previous strategy on the

boarder lines of GAB will decrease the distance between A and B by exactly one unit.

Hence, the gray nodes vanish and she will gain more. Therefore, this can not be a

Nash-equilibrium.

If GAB is not a square, then B is further with respect to one of these rectangles

like RAi than the others. Thus, assuming that B′ is the closest point of RAi with

respect to B, for any point like x on the perimeter of RAi, we have that

d(x,A) ≤ d(x,B′) + d(B′,B) = d(x,B).

Therefore, through the rounds of the game, the first player (choosing A) gets x before

the second player. Thus, the first player wins at least all the nodes in RAi. Hence, in

a possible Nash-equilibrium we have that

g2 ≤mn − ∣RAi∣ ≤mn −min{∣RAj ∣ ∶ RAj is a rectangle created by A}. (5.13)

Note that this bound can be achieved only when B is the neighbour of A opposite to

the smallest rectangle created by A. Otherwise, the first player wins all the nodes in

the smallest rectangle created by A, plus at least the neighbour of A opposite to this

rectangle. Thus, the best strategy for the second player is to achieve this bound as

discussed. Similarly, we can consider the rectangles created by B, and again we have

that

g1 ≤mn − ∣RBi∣ ≤mn −min{∣RBj ∣ ∶ RBj is a rectangle created by B}, (5.14)

which can be achieved only when A is the neighbour of B opposite to the smallest
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rectangle created by B. Hence, in a possible Nash-equilibrium, the strategies of the

players should be adjacent.

Now, assume that A and B are two adjacent nodes. Thus, each players wins all

the nodes in a rectangle. If the players do not choose their strategies as in (i), (ii),
or (iii), then one of the players can gain a larger rectangle by changing her strategy

to one of the neighbours of her opponent’s strategy. Thus, such a case is not a Nash-

equilibrium. On the other hand, suppose that players choose their strategies as in

(i), (ii), or (iii). Then no one can increase her pay-off, since no one can enlarge the

smallest rectangle created by her strategy. Therefore, (i), (ii), and (iii) form the

Nash-equilibriums of this game.

5.3 The Game with at Least Three Players

In this section, we investigate the competitive diffusion game with three players or

more for paths, cycles, grids, and trees.

First, we start considering the three-player game on trees. The following lemma

gives us a necessary condition for having a Nash-equilibrium for the three player game

on trees.

Lemma 85. Assume that we have a three-player game on a tree T . If (u, v,w) form

a Nash-equilibrium for this game, then u, v, and w must be three consecutive nodes

in the same path. Moreover, if diam(T ) ≥ 5, then we must have d(v) ≥ 3.

Proof. First, we claim that in any possible Nash-equilibrium (u, v,w) for this game,

u, v, and w must be in the same path. Note that in a tree there is a unique path

between any pair of nodes. Without loss of generality, suppose that u and w are of

the furthest distance within this triple. By contradiction, suppose that node v is not

in the path that connects u to w. Thus, the path between u and v must intersect

the path between u and w. Otherwise, the distance between v and w must be larger

than the distance between u and w, which is a contradiction. Assume that, the first

node that appears in both of these paths is called x. We can see that, each player by

changing her strategy to x can increase her pay-off, which is a contradiction. Hence,

in a possible Nash-equilibrium the strategies of the players must be in the same path.
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Now, if u, v, and w are in the same path, but they are not three consecutive nodes,

then every player whose strategy is the furthest with respect to the others’ strategy

can increase her pay-off at least one unit by moving toward the middle strategy. Thus,

in a possible Nash-equilibrium the strategies of the players must be three consecutive

nodes.

Finally, assume that diam(T ) ≥ 5, and there are three consecutive nodes u, v,

and w in T that form a Nash-equilibrium for this game, where d(v) = 2. Then the

gain of v is only one node. Since diam(T ) ≥ 5 and d(v) = 2, then there must be a

neighbour of u or w, called x which has more than one neighbour. Thus, the player

with strategy v can increase her pay-off by moving to x, which is a contradiction.

Therefore, in a possible Nash-equilibrium we have d(v) ≥ 3.

We need the following immediate corollary of Lemma 78 for proving the last result

of this section.

Corollary 86. Let u and v be two adjacent nodes in a tree T with centroid C. If the

maximum branches attached at u and v have empty intersection, then {u, v}∩C ≠ ∅.

Proof. By contradiction, suppose that {u, v}∩C = ∅. Then by Lemma 78, we conclude

that C is a subset of the maximum branch attached at u and the maximum branch

attached at v, which is a contradiction.

The following theorem is helpful for finding the possible Nash-equilibriums of the

three player game on a tree.

Theorem 87. Suppose that we have a three-player game on a tree T . Assume that u,

v, and w are three consecutive node in T , and u′ denotes the node in T ⋅ uv which is

obtained by contraction of edge uv, and w′ represents the node obtained by contraction

of edge vw in T ⋅vw. If (u, v,w) forms a Nash-equilibrium, then we have the following

statement.

(i) In T ⋅ vw one of the nodes w′ or u is a centroidal node.

(ii) In T ⋅ uv one of the nodes u′ or w is a centroidal node.

(iii) C(T ) ∩ {u, v,w} ≠ ∅.

Proof. By definition, we know that a set of three consecutive nodes such as {u, v,w}
forms a Nash-equilibrium if and only if no one can increase her pay-off unilaterally.
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Assume that g1, g2, and g3 are the pay-offs of the players with strategies u, v, and

w, respectively. Let P3 be the path u, v,w. We denote the set of branches attached

at u, v, and w which do not have a common edge with path P3, by {Ai}i∈I , {Bj}j∈J ,

and {Ck}k∈K . By definition of a Nash-equilibrium, the player with strategy u can not

increase her pay-off by changing her strategy to a node x in a Ai, where i ∈ I. Namely,

her gain when playing with x is a subset of her gain by playing on u. Thus, the only

way that she might be able to increase her pay-off is to change her strategy to a node

in Bj or in Ck, where j ∈ J and k ∈K. We can have a similar argument for the players

with strategies v and w. Hence, we can say that the three consecutive nodes u , v,

and w form a Nash-equilibrium if and only if we have the following conditions.

g2 = ∑
j

∣Bj ∣ ≥ ∣Ai∣, for each i ∈ I. (5.15)

g2 = ∑
j

∣Bj ∣ ≥ ∣Ck∣, for each k ∈K. (5.16)

g1 = ∑
i

∣Ai∣ ≥ ∣Bj ∣, for each j ∈ J. (5.17)

g1 = ∑
i

∣Ai∣ ≥ ∣Ck∣, for each k ∈K. (5.18)

g3 = ∑
k

∣Ck∣ ≥ ∣Ai∣, for each i ∈ I. (5.19)

g3 = ∑
k

∣Ck∣ ≥ ∣Bj ∣, for each j ∈ J. (5.20)

Thus, by (5.15) and (5.19), we conclude that for i ∈ I, Ai can not be a maximum

branch attached at u in T or T ⋅ vw. Therefore,

wt(u) = ∑
j

∣Bj ∣ +∑
k

∣Ck∣ + 2, in T ⋅ vw, and in T , (5.21)

Also, by (5.17) and (5.18), we conclude that for k ∈K, or j ∈ J , Ck or Bj can not be

a maximum branch attached at w in T ⋅ vw. Therefore, we have that

wt(w′) = ∑
i

∣Ai∣ + 1, in T ⋅ vw.

Hence, by Corollary 86, we conclude that {w′, u} ∩C(T ⋅ vw) ≠ ∅.
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Similarly, by (5.16), (5.19), and (5.20), we conclude that

wt(w) = ∑
j

∣Bj ∣ +∑
i

∣Ai∣ + 2, in T ⋅ uv, and in T , (5.22)

and

wt(u′) = ∑
k

∣Ck∣ + 1, in T ⋅ uv.

Therefore, by Corollary 86, we conclude that {u′,w} ∩C(T ⋅ uv) ≠ ∅.

Finally, by (5.21) and (5.22), we know that the maximum branch attached at u

is the one that contains v and w, and the maximum branch at w is the one that

contains u and v. Hence, the intersection of the maximum branch at u and the

maximum branch at w in T consists of v. Therefore, if u or w are not in C(T ), then

by corollary 86, we conclude that, v ∈ C(T ). Thus, at least one of the nodes u, v,

and w must be in C(T ).

Stars are a well-known family of trees that always admit a Nash-equilibrium. More

precisely, for every star K1,n, with n ≥ 3, the node in the centre together with any

pair of the leaves make a Nash-equilibrium for a three-player game on K1,n. Namely,

the central node is the unique centroidal node of K1,n. Let c be the centre node of

K1,n, and u, v be two leaves in K1,n. Then we can see that the triple (u, c, v) satisfies

all the conditions (5.15), (5.16), (5.17), (5.18), (5.19), and (5.20) in proof of Theorem

87. Hence, it forms a Nash-equilibrium for the three player game on K1,n. Moreover,

by Lemma 85 and Theorem 87, we conclude that any Nash-equilibrium of K1,n is of

this form.

Figure 5.5: A tree of diameter 6 that does not admit a Nash-equilibrium.

Let T be the tree in Figure 5.5. Then we can see that the centroid of T consists of

the single node v shown in the figure. Thus, by Lemma 85 and Theorem 87, the only
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possible Nash-equilibrium for this game is the triple (u, v,w) or (z, v,w). By direct

checking, we can see that none of these triples satisfy the conditions in Theorem 87.

Therefore, there is no Nash-equilibrium for the three player game on T .

We have the following result for the three-player case of the competitive diffusion

game on trees.

Theorem 88. If T is a tree of diameter at most 4, then there is always a Nash-

equilibrium for the three-player game on T .

Proof. Let d = diam(T ) ≤ 4. We have the following possibilities for d.

First, assume that d = 1. Then we can see that the only tree of diameter 1 is

the path P2. If u and v are the nodes of P2, then we can see that (u, v, v) form a

Nash-equilibrium for this game. Namely, in this case, node v becomes gray, and the

player with strategy u gains one node. If any of the players with strategy v changes

her strategy to u, then u becomes gray, and she will gain nothing again. If the player

with strategy u changes her strategy to v, then she gains nothing. Thus, no one can

increase her pay-off by changing her strategy.

If d = 2, then T must be a star, because, we know that a tree is of diameter

two if and only if it is a star. Hence, as we mentioned earlier, there is always a

Nash-equilibrium for the three player game on K1,n.

Now, assume that d = 3. Thus, the length of every longest path in T is three.

Suppose that u, v,w are three consecutive nodes in a longest path P in T . Then

we claim that these three nodes form a Nash-equilibrium for the three player game

on T . Note that since d = 3, then exactly one of u or w is a leaf. Without loss of

generality, assume that u is a leaf. Again, since d = 3, we conclude that T ∖ {v,w}
is a set of isolated nodes; That is, every node in T is a neighbour of either v or w.

Hence, if any player changes her strategy to any other node in T ∖{u, v,w}, then she

only gains one node. Thus, she can not improve her pay-off. Therefore, (u, v,w) is a

Nash-equilibrium.

Finally, suppose that d = 4. By assumption, any longest path in T is of length 4 or

equivalently, of order 5. By direct checking, we can see that, T has a unique central

node called c (that is, node c has the minimum eccentricity). More precisely, c is the

middle node of a longest path in T .
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Assume that three consecutive nodes u, v, and w form a Nash-equilibrium for

the three player game on T . Then we claim that none of u, v, and w is a leaf. By

contradiction, suppose that w is a leaf. Hence, the player with strategy w gains only

one node that is w. Since d = 4, then it implies that she can improve her pay-off

by changing her strategy to a neighbour of u that is different from v. Namely, this

way she gains at least two nodes, which is a contradiction. Hence, the claim is true.

Consequently, in a possible Nash-equilibrium for this game, we have that v = c, and

u and w must be two neighbours of c.

Note that since d = 4, then all the neighbours of u and w, except c, are leaves of

T . Suppose that u and w are two neighbours of c in two different branches, called

B1 and B2, at c such that the weight of B1 and B2 is not smaller than the weight of

any other branch attached at c. Then we claim that {u, v,w} is a Nash-equilibrium

for this game. Note that the pay-off of the player with strategy c is at least one.

By proof of Theorem 87, we know that the only possible way for her to increase her

strategy is moving to a node that is a neighbour of u or w. However, if she changes

her strategy to a node x ∈ N(u) ∪N(w), then she gains only one node, because x is

a leaf. Therefore, c is the best strategy for her with respect to u and w.

Note that the gain of the player with strategy u is at least two. By proof of

Theorem 87, we also can conclude that, the only possible way for the player with

strategy u to increase her pay-off is moving to a node x ∈ T ∖ (N[u] ∪ {w}). If

x ∈ N(w), then she gains only a leaf. If x is in a branch attached at c, then she gains

only a subset of that branch. Hence, by assumption, her gain can not be increased.

Thus, u is the best strategy for her. By symmetry, we conclude that, the player with

strategy w also can not improve her pay-off. Thus, (u, v,w) as defined above is a

Nash-equilibrium.

Theorem 88 helps us to prove the following result for the paths, as paths are the

simplest trees. The following results have been proved independently in paper [20].

Theorem 89. In a k-player game on a path of length n, where k ≥ 3, we have the

following statements.

(i) If k = 3 and n ≤ 5, then there is a Nash-equilibrium for the game. If k = 3 and

n > 5, then there is no Nash-equilibrium.

(ii) If k > 3, then there is at least one Nash-equilibrium.
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Proof. First, note that if n ≤ k, then by Lemma 72, there is always a Nash-equilibrium

for this game. Hence, in the following argument we assume that n > k.

If k = 3 and n ≤ 5, then note that any path of order at most 5 is a tree of diameter at

most 5. Hence, by Theorem 88, we conclude that there is always a Nash-equilibrium

for the game in such a case.

If k = 3 and n ≥ 6, then the diameter of Pn is at least 6. Therefore, by Lemma 85,

we conclude that in a possible Nash-equilibrium (u, v,w), d(v) ≥ 3. However there

is no node of degree at least 3 in a path. Thus, there is no Nash-equilibrium for the

game in this case.

If k > 3, then we find a Nash-equilibrium as follows. Assume that each player

chooses a strategy. We call the player who has selected the i-th strategy regarding its

order of appearance in the path by the i-th player, where 1 ≤ i ≤ k. By Lemma 1, each

player wins half of the nodes in any blocked path started from her strategy. Since

every path geometrically has two sides and k ≥ 4, then there must be at least two

strategies between the strategy of the first and the k-th player. If there is a blocked

path of length more than one between the first and the second strategy (or, similarly

between the k-th and (k−1)-th strategy), then the corresponding players can increase

their pay-off by moving one node toward the middle of the blocked path. Thus, such a

strategy is not a Nash-equilibrium. Therefore, in any possible Nash-equilibrium, the

strategy of the first and the second players must be adjacent. Similarly, the strategy

of the (k − 1)-th and k-th strategies must be adjacent.

Now, assume that in a strategy profile the strategies of i-th and (i + 1)-th player

are adjacent, for i ∈ {1, k − 1}. That is, there is no node between the first and the

second strategy as well as the (k − 1)-th and the k-th strategy. Suppose that m1 is

the number of nodes on the left side of the first strategy, and mk−1 is the number of

the nodes on the right hand side of the k-th strategy. We can see that, m1 + 1 and

mk−1+1 are the pay-offs of the first and the k-th player, respectively. For 2 ≤ i ≤ k−2,

let mi denote the number of the middle nodes (that is, not including the end points)

in the blocked paths induced by the strategies of the (i − 1)-th player and the i-th

player. Thus, the pay-off of the second and the (k−1)-th players are equal to ⌊m2

2 ⌋+1

and ⌊mk−22 ⌋ + 1, respectively. Moreover, for 3 ≤ i ≤ k − 3, the pay-off of the i-th player

is equal to ⌊mi/2⌋ + ⌊mi+1/2⌋ + 1.
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If 2 ≤ i ≤ k−1, and the i-th player changes her strategy to a node that is in placed

before the strategy of the (i + 1)-player or after the strategy of the (i − 1)-th player,

then her new pay-off will be

⌊x/2⌋ ≥ ⌊(mi +mi+1 − x)/2⌋ + 1.

If she changes her strategy to a node between the strategy of the j-th player and the

(j + 1)-th player, then her new pay-off will be

⌊mj − x − 1

2
⌋ + ⌊x

2
⌋ + 1,

where 0 ≤ x ≤mj −1. Since ⌊mj−x−1

2 ⌋+⌊x2 ⌋+1 is maximized at x = 0, then by definition

of a Nash-equilibrium, we conclude that such a strategy profile is a Nash-equilibrium,

if and only if the set of the following constraints has a non-empty solution for variables

m1,m2, . . . ,mk−1 in the set of nonnegative integers:

m1 +m2 +⋯ +mk−1 = n + 1 − k,

m1 ≥ ⌊(mi − 1)/2⌋, for 2 ≤ i ≤ k − 2, and m1 ≥ mk−1 − 1,

mk−1 ≥ ⌊(mi − 1)/2⌋, for 2 ≤ i ≤ k − 2, and mk−1 ≥ m1 − 1,

⌊m2/2⌋ ≥ ⌊(mi − 1)/2⌋, for 3 ≤ i ≤ k − 2,

and ⌊m2/2⌋ ≥ m1 − 1, and ⌊m2/2⌋ ≥ mk−1 − 1,

⌊mk−2/2⌋ ≥ ⌊(mi − 1)/2⌋, for 2 ≤ i ≤ k − 3,

and ⌊mk−2/2⌋ ≥ m1 − 1, and ⌊mk−2/2⌋ ≥ mk−1 − 1,

For 3 ≤ i ≤ k − 3, ⌊mi/2⌋ + ⌊mi+1/2⌋ ≥ ⌊(mj − 1)/2⌋,

where 2 ≤ j ≤ k − 2, j ≠ i, i + 1,and ⌊mi/2⌋ + ⌊mi+1/2⌋ ≥m1 − 1,

and ⌊mi/2⌋ + ⌊mi+1/2⌋ ≥mk−1 − 1.

We can see that one solution for this set of constraints is when we take mi’s to be all

equal or almost equal (that is, their difference is at most 1), for 2 ≤ i ≤ k−2, and m1 =
mk−1 = max{mi ∶ 2 ≤ i ≤ k − 2}/2. Moreover, whenever there is no 2 ≤ j ≤ k − 1 where

mj and mj+1 are both odd. Hence, for k > 3, there is always a Nash-equilibrium.

Now, we consider the game with three players or more on cycles.
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Theorem 90. In a k-player game on a cycle Cn, where k ≥ 3, there is always a

Nash-equilibrium.

Proof. Suppose that we have a k-player game on a cycle Cn with strategy profile

(v1, v2, . . . , vk) where the strategies are indexed according to their order of appearance

in Cn. For 1 ≤ i ≤ k − 1, let ni denote the number of the nodes in the blocked path

induced by vi and vi+1. Also, let nk be the number of nodes in the blocked path

induced by v1 and vk. Then the gain of the player with strategy vi equals ⌊ni−12 ⌋+⌊ni2 ⌋,
for 2 ≤ i ≤ k. Moreover, the gain of the player with strategy v1 is ⌊nk2 ⌋ + ⌊n1

2 ⌋. On

the other hand, if the player with strategy vi changes her strategy to a node v′i which

is between vj and vj+1, for 1 ≤ j ≤ k − 1, such that v′i is of distance x from vj, then

her new pay-off will be ⌊nj−x+1

2 ⌋ + ⌊x2 ⌋. If v′i is between vk and v1 such that v′i is of

distance x from vk, then her new pay-off will be ⌊nk−x+1
2 ⌋ + ⌊x2 ⌋. Thus, by definition,

(v1, v2, . . . , vk) forms a Nash-equilibrium if and only if the following constraint holds:

⌊ni
2
⌋ + ⌊ni+1

2
⌋ ≥ ⌊nj − x + 1

2
⌋ + ⌊x

2
⌋, for any 1 ≤ i ≤ k − 1, and for 1 ≤ j ≤ k,

where 0 ≤ x ≤ nj.

⌊nk−1

2
⌋ + ⌊nk

2
⌋ ≥ ⌊nj − x + 1

2
⌋ + ⌊x

2
⌋, for any 1 ≤ j ≤ k, where 0 ≤ x ≤ nj.

Since ⌊nj−x+1

2 ⌋+⌊x2 ⌋ is maximized at x = 0, then we conclude that (v1, v2, . . . , vk) forms

a Nash-equilibrium if and only if the following constraint holds:

⌊ni
2
⌋ + ⌊ni+1

2
⌋ ≥ ⌊nj + 1

2
⌋, for any 1 ≤ i ≤ k − 1, and for 1 ≤ j ≤ k.

⌊nk−1

2
⌋ + ⌊nk

2
⌋ ≥ ⌊nj + 1

2
⌋, for any 1 ≤ j ≤ k.

We can see that one solution for this set of constraints is when we take mi’s in a way

that their difference is at most 2. Moreover, there should be no 2 ≤ j ≤ k − 1 where

nj and nj+1 are both odd. Also, n1 and nk can not be both oddd. Hence, for k > 3,

there is always a Nash-equilibrium.

In [20], Bulteau et al. prove a conjecture about the three player game on the

Cartesian grids that we suggested in [51]. Below is the statement of the theorem.

Theorem 91 ([20]). If n ≥ 5 and m ≥ 5, then there is no Nash-equilibrium for the
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three player game on the Cartesian grid Pn ◻ Pm.

As discussed in [20], the existence of Nash-equilibriums for the k-player game on

grids, where k > 3 is left as a open problem.



Chapter 6

Conclusion

In this thesis, we introduced the graph burning process and its corresponding graph

parameter the burning number. We defined graph burning as a model for the spread

of influence in social networks mainly motivated by two other well-known models: the

competitive diffusion game [2] and Firefighter [27]. It turned out that graph burning

is related to several other graph theory problems such as graph bootstrap percolation

[5], push and pull protocol [22], and graph domination [34], and also, other variations

of domination in graphs like the distance domination, broadcasting, facility location,

and (k, r)-centre problem [8, 25, 32, 34].

By definition, graph burning is quite different from the Firefighter problem, the

competitive diffusion game, and graph bootstrap percolation and broadcasting, as

its underlying model is new. Despite the fact that the burning problem is tightly

related to distance domination problem as we saw in Theorem 30 in Chapter 2, it

has a different nature compared to domination problems. Namely, as we discussed in

Chapter 3, it is NP-complete even for trees with a simple structure as spider graphs

and trees with maximum degree three, and even for path-forests. However, it is known

that domination problems are solvable in polynomial time for trees [34].

As we considered the burning problem from different perspectives in this thesis, it

seems that graph burning has its unique personality among all these problems. The

most significant conjecture that we have on the burning number is Conjecture 28.

That is, for any graph G of order n with t components, where n and t are positive

integers, we conjecture that

b(G) ≤ ⌈
√
n⌉ + t − 1.

We have seen the truth of this conjecture for paths, path-forests, perfect binary trees,

and some specific spider graphs in Chapter 2 and Chapter 3. However, the problem

remains open in general.

Conjecture 24 from Chapter 2 suggests that: If G and G are both connected
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graphs of order n, then we have that b(G)b(G) ≤ n + 4. We can see that the bound

in this conjecture is tight for C5. However, it remains open in general for connected

graphs.

Another interesting problem from Chapter 2 is presented in Conjecture 41 for

the exact value of the burning number of the hypercube graphs. That is, for the

n-dimensional hypercube graph Qn, we conjecture that

b(Qn) = ⌈n
2
⌉ + 1.

Moreover, if n is even, then in any optimum burning sequence for Qn, the first and

the second sources of fire must be two nodes of distance n.

In an effort to prove Conjecture 28, we came out to conclude Conjecture 51 in

Chapter 3, that suggests a relation between a structural property of a graph and its

burning number. Here is the statement of this conjecture:

Assume that {Qi}ti=1, where t ≥ 3, forms a decomposed spider in a tree T , and let vi

bes the non-terminal end point of Qi, for 1 ≤ i ≤ t. If b(⊍ti=1Qi) ≥ k, and d(vi, vj) ≥ 2k

for all 1 ≤ i, j ≤ t, then b(T ) ≥ k + 1.

We know the truth of this conjecture for t ≥ k in general, and for some specific

spider graphs, as discussed in Chapter 3. Also, we know that it is true for paths by

Theorem 19 from Chapter 2. However, we have not proved it is true for many other

special families of trees. Note that if the conjecture was true, it can not be useful for

finding a lower bound on the burning number of all trees. For example, by Theorem

3.2, we know that for a perfect binary tree T with radius r, b(T ) = r + 1. By direct

checking, we can see that there is no decomposed spider in T with r terminal paths

that satisfies the condition in the conjecture. Hence, we guess that it might be helpful

in finding a lower bound on b(T ) for a tree T , where b(T ) < rad(T ) + 1.

In Chapter 4, we introduced and considered the new non-deterministic Poisson

graph burning process. We obtained a general upper bound on the burning time,

and an asymptotic order for the burning time of paths. We plan to consider this new

parameter for other families of graphs.

In Chapter 5, we considered the competitive diffusion game only in a some families

of graphs. Considering the existence of Nash-equilibriums for this game remains open

for many other families of graphs such as outer planar graphs, bipartite graphs, and
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the Cartesian grids for more than three players.

This thesis was just the beginning for the study of the graph burning and still

we are left with many open problems and unexplored directions that move toward a

deeper understanding of this new graph parameter. Here are some future directions:

Determining the burning number remains open for many classes of graphs, includ-

ing trees and disconnected graphs. It remains open to consider the burning number

in real-world social networks such as Facebook or LinkedIn. As Theorem 36 suggests,

the burning number of on-line social networks is likely of constant order as the network

grows over time. We remark that burning number generalizes naturally to directed

graphs; one interesting direction is to determine the burning number on Kleinberg’s

small world model [42], which adds random directed edges to the Cartesian grid.

By Lemma 2 from Chapter 2, we know that

b(G) = min
i≥1

bi(G).

A different direction that remains open to explore is considering the bi(G)’s of a graph

G.

A simple variation which leads to complex dynamics is to change the rules for

nodes to burn. As in graph bootstrap percolation [5], the rules could be varied so

nodes burn only if they are adjacent to at least r burned neighbors, where r > 1. We

plan on studying this variation in future work.

Finally, we can also think of the idea of combining the burning process and the

competitive diffusion game on graphs. That is, we can think of having a N -player

game on the node set of a graph G with the following rules:

Each player i, where 1 ≤ i ≤ N , has a distinct colour i. Initially all the nodes are

uncoloured. In each round of the game, each player chooses an uncoloured node and

colours the node with its own colour, if such a node is available. If two or more players

choose the same node, then that node becomes gray and goes out of the game. At the

same time, every uncoloured node that has coloured neighbours, receives the colours

from them. If such a node receives more than one colour, then it becomes gray and

goes out the game. The game ends when nobody can colour a new uncoloured node.

The pay-off of each player i, where 1 ≤ i ≤ N , is the number of the nodes in G with

colour i. One could study the existence of Nash-equilibrium, or finding the fastest
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time of ending this game.
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[38] S. Janson, T.  Luczak, A. Ruciński. Random graphs, Wiley, New York, 2000.

[39] J. Janssen, C. Vautour, Finding safe strategies for competitive diffusion on trees,
Internet Mathematics 11 (2014), 232–252.

[40] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, Randomized Ru-
mor Spreading, In:Proceedings of 41st Symp. Foundations of Computer Science
(FOCS), 565–574, 2000.
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