
ACADEMIC EXPERTISE REPRESENTATION USING
WIKIPEDIA

by

Mahsa Forati

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2016

c© Copyright by Mahsa Forati, 2016

To my parents.

ii

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . x

List of Abbreviations Used . xi

Acknowledgements . xii

Chapter 1 Introduction . 1

Chapter 2 Related Work . 4

2.1 Expert Finding . 4

2.2 Expertise Representation . 8

2.3 Document Representation . 9

2.4 Concept Similarity Measures . 10

Chapter 3 Methodology . 11

3.1 Document Representation . 12
3.1.1 Bag of Words . 13
3.1.2 Bag of Concepts . 14
3.1.3 Bag of Categories . 17

3.2 Feature Extraction . 19
3.2.1 Combined Papers Features . 20
3.2.2 Individual Papers Features . 26

Chapter 4 Experiments and Results 31

4.1 Data Collection . 31
4.1.1 Topic Representation . 31
4.1.2 Paper Selection . 32

4.2 Evaluation Measures . 34

4.3 Comparing Classifiers and Baselines 35

iii

4.4 Parameter Tuning . 37
4.4.1 Wikipedia Miner Concept Probability Score 37
4.4.2 Sunflower Graph Depth and Width 38

4.5 Filtering . 39

4.6 Feature Selection . 40

Chapter 5 Conclusion . 43

5.1 Future Work . 44

Bibliography . 46

Appendix A List of Research Topics and Keyterms 49

Appendix B List of Conferences . 51

Appendix C Filtering . 53

Appendix D Sunflower . 56

Appendix E Wikipedia Miner . 60

Appendix F Weka Parameters . 62

F.1 Decision Tree . 62

F.2 Random Forest . 62

F.3 SVM . 62

F.4 Multilayer Perceptron . 62

iv

List of Tables

3.1 Classification performance of single papers using random forest,
SVM and decision tree classification methods. We do not use
the data used to train this classifier in any other part of the
system. Performance measures are reported based on the 10
fold cross validation testing as the results indicate, random forest
outperforms the other two models. 29

4.1 Example list of NSERC research topics used in this thesis. Each
topic is described with a set of keyterms. 32

4.2 List of conferences and the total number of research paper gath-
ered for each research topic. Full list of conferences is available
in Appendix B . 33

4.3 Classification performance is measured for different classifiers.
The best performance belongs to SVM. 35

4.4 Evaluation of baseline methods. The first baseline finds the most
similar NSERC research topic to each virtual author by calcu-
lating cosine similarity of TF-IDF vectors of each pair. In the
second baseline we use the union of words and concepts and
calculate the cosine similarities. In the last method, we apply
a Naive Bayes classifier to the bag of words representation of
virtual authors to find the most similar class to them (NSERC
research topic). 37

4.5 The system performance is reported for different values as the
threshold of wikification weight. 38

4.6 Different values of depth and width of Sunflower graph is tested
to find the best configuration. 38

4.7 The system accuracy is reported for different values of depth and
width of Sunflower graph when width=2 and when depth=2,
respectively. 39

4.8 The performance of system in terms of precision, recall and
f-measure after applying three different feature selection algo-
rithms. The number of selected features using each algorithm is
available in the second column. 40

v

4.9 We analyzed the top 50 selected features using three feature
selection method and report the number of features that are
selected from each subset. 41

4.10 Evaluating performance of the system using different sets of fea-
tures to measure importance of each set. The first two rows
are using combined papers and individual papers features. The
next three experiments are done based on the similarity features
extracted from each of the bag of words, bag of concepts and
bag of categories representation. The last result belongs to the
features extracted from classification of individual papers. . . 42

vi

List of Figures

1.1 A rephrasing example of a text with only a few shared words.
These two pieces of text are highly similar yet have low lexical
similarity. 2

3.1 From a researcher’s papers we extract two sets of features. The
first set is calculated based on the combination of all papers
into a single document and the second set is calculated using
individual papers. Then both sets are combined to represent a
researcher and train the classifier. 12

3.2 The upper box shows a text from Wikipedia in the plain format
and the lower one is the wikified result. This example is part
of an article from Wikipedia which is manually wikified by its
contributors. 15

3.3 Input of a wikifier is a plain document and the output is the an-
notated document containing a set of concepts. Most wikifiers
report a probability score for each detected concept. We wik-
ify all papers of a researcher using Wikipedia Miner and stores
those concepts that have a score equal to or higher than 0.5. . 15

3.4 The category graph extracted for the concept Polar Bear using
Sunflower system. 18

3.5 Features extracted from combined bag of words, combined bag
of concepts and combined bag of categories of a researcher. We
calculate four different sets of features based on these represen-
tations. Each feature is a similarity score between a researcher
and a research topic. 20

3.6 We have one TF vector for each researcher and N IDF values for
every term in the corpus. So we calculate N different TF-IDF
vectors for each researcher. 21

3.7 Each researcher has N + 1 TF-IDF vectors depending on the
corpus that is used to calculate the IDF values. One vector
is built using the entire dataset and N vectors are associated
with each one of the research topics. We calculate two cosine
similarities for each pair of researcher and research topic. First
using the TF-IDF based on the entire corpus. Second, using
the TF-IDF regarding that research topic. 22

3.8 Calculating pairwise similarities of concepts in one paper. . . . 26

vii

3.9 Features extracted from Individual papers of a researcher. We
use individual bag of words, individual bag of concepts and
individual bag of categories to calculate these features. Simi-
larity between a paper and a research topic, is calculated using
1.cosine similarity and 2.internal classifier. We aggregate the
results of each method over all papers of a researcher to get a
similarity value for a pair of researcher and research topic. . . 27

3.10 In this example cosine similarity between each paper and re-
search topic is shown in the paper. The cosine similarity in the
box shows the highest value and the assigned topic to that pa-
per. FI1(r1, t1) = 0.45, FI1(r1, t2) = 0.47, FI1(r1, t3) = 0.53, FI1(r1, t4) =
0.46 FI2(r1, t1) = 0.25, FI2(r1, t2) = 0.00, FI2(r1, t3) = 0.50, FI2(r1, t4) =
0.25 . 28

3.11 This example shows a researcher with four papers and four re-
search topics as classes. Each paper is classified separately and
its probability distribution is written in the paper body. Pi is
the probability value of research topic ti. 30

4.1 Generating virtual authors using papers collected from different
conferences. All papers assigned to a virtual author are on the
same topic, however, they may not be written by the same
physical author. 34

C.1 Word cloud representation of bag of categories for a researcher
who is expert in Computer Networks. The size of each word
corresponds to its weight in the categories vector of the author. 53

C.2 A sub-graph extracted from the first filtering graph. This graph
is constructed by subcategories of computer science, however, a
lot of unrelated nodes exist in it. This is mostly because of am-
biguity of categories or sometimes because of human mistakes.
. 54

C.3 An bag of categories example for and expert in software en-
gineering topics. The left picture shows top categories before
filtering and the right one shows the results after filtering using
the first filtering model. 55

viii

D.1 A part of the lookup data used by Sunflower. The system builds
this data for every named entity article in the Wikipedia based
on different languages. In this example, as shown in the first
row, the article “Europe” appeared in 106 languages, in 102 lan-
guages it belonged to the “Category:Europe”, in 48 languages
it belonged to the “Category:Continent” and in 12 languages it
belonged to the “Category:Geography”. 57

D.2 An example output graph of Sunflower. This graph is weighted
and directed. The direction is from the subcategory to the
parent and the weight of a node is computed by multiplying
weight of parent node by the weight of the edge between them. 58

E.1 A wikified example of a paper abstract using Wikipedia Miner
system. The selected keyterms are shown in the brackets [[keyterm]]
and if the title of associated Wikipedia article is different from
the keyterm, the title is written after | in the bracket other-
wise nothing is shown as the article title. Hovering over each
keyterm shows its relatedness score. 61

ix

Abstract

Finding experts to review a submission or to collaborate with an industry partner is
a common problem in the research enterprise that is typically solved manually or by
word of mouth. Services like LinkedIn rely on the experts themselves to keep their
profiles updated, or the system asks their friends to confirm areas of expertise. The
focus of this thesis is on the automatic extraction of expertise representations from the
experts’ publications, which could be used in a variety of applications such as paper
assignment to reviewers in conferences, automatic profile tagging and personalized
article recommendation systems.

We are representing expertise areas by a set of computer science research topics
defined by Natural Sciences and Engineering Research Council of Canada (NSERC).
Each topic is described by a number of keyterms related to different aspects of that
topic. We model representing expertise areas of a researcher as a classification prob-
lem, where classes are NSERC research topics and instances are researchers. The
input of this classifier is a set of features extracted from papers of a researcher and
the output is her expertise areas.

To model a researcher, we extract important keyterms from the title and abstract
of papers and then find their corresponding concepts and categories in Wikipedia.
Keyterm is a word n-gram that explicitly appears in the text. While concepts and
categories are the intended meaning of each keyterm without ambiguity. We extract
concepts and categories from Wikipedia using different tools like Wikipedia Miner
and Sunflower.

We represent documents associated with researchers and research topics in three
ways: bag of words, bag of concepts and bag of categories. We calculate the lexical
and semantic similarities between a researcher and an NSERC research topic using
different methods and use them as input features of the classifier. Then using a
labeled dataset first we train our classification model and then test its performance
in terms of precision and recall.

Evaluation of this task is not trivial since labeled training data is not readily
available. We train and evaluate the system using authors created by gathering
conference papers that are on different research topics. We predict the research topic
of each author and measure the prediction performance.

x

List of Abbreviations Used

ACT Author-Conference-Topic

BOW Bag of Words

BOC Bag of Concepts

BOK Bag of Categories

BPMF Bayesian Probabilistic Matrix Factorization

COV Maximum Coverage Algorithm

CBOC Combined Bag of Concepts

CBOK Combined Bag of Categories

CQA Community Question Answering

EFS Expert Finding System

IBOC Individual Bag of Concepts

IBOK Individual Bag of Categories

IDF Inverse Document Frequency

IP Integer Programming

LDA Latent Dirichlet Allocation

LM Language Model

LR Linear Regression

LtoR Learning to Rank

NSERC Natural Sciences and Engineering Research Council of Canada

POP Popularity Algorithm

TEM Topic Expertise Model

TF Term Frequency

TF-IDF Term Frequency Inverse Document Frequency

TREC Text REtrieval Conference

xi

Acknowledgements

I would like to thank my supervisor for everything he has done. Thank you for

trusting me and giving me the chance to learn and research under your supervision.

Your professional guidance and kind patience made me confident and strengthened

me towards facing the problem through this two years. I have learned how to break

down big problems and start with simple ideas instead of over-thinking. Thank you

for supporting me and providing such a great place to study and research.

I am deeply thankful to my family and friends for their support and help. My

deepest thanks to my mom and dad who always supported and encouraged me to

pursue my interests. I can never thank you enough for all you have done and your

unconditional love. My brothers that there are no limit for their love and kindness.

Because I have you, I always have a friend to trust. I am also grateful to my true

friends who have always been there for me especially through this year.

xii

Chapter 1

Introduction

There has been a huge demand for finding experts in different areas for years. Tradi-

tionally, experts are recognized manually e.g., interviewers assess the expertise areas

and the amount of knowledge that somebody has or experts themselves indicate their

expertise.

Finding experts is valuable as it leads to better assignment of tasks to the right

people and consequently increases the quality of work and decreases the time con-

sumed. In the academic area knowing the research areas of a researcher has differ-

ent applications as well. First, in conferences we can detect expertise of reviewers,

so submitted papers will be assigned to the right matches in a more efficient way.

Second, automatically updating profiles of researchers in an institute, could highly

improve collaboration among researchers and make better matching between experts

and projects. There are many other applications as well such as introducing fund-

ing agencies to the appropriate researchers or matching experts for interdisciplinary

projects.

With growing community size, detecting expertise areas will become harder and

more important. Also, as expertise of people may change over time, updating profiles

with the most recent research topics becomes another issue. So we need a system to

automatically extract and represent expertise of researchers from documents associ-

ated with them.

In this thesis we focus on representing researchers’ expertise areas using their

publications. Articles published by researchers have an strong connection with their

areas of work and knowledge. We propose a classification model to find out the

similarity between publications and research topics. Our method captures both lexical

and semantic similarities of documents.

Traditional methods such as cosine similarity between TF-IDF vectors are only

able to measure explicit overlap between documents based on the shared words. On

1

2

the other hand, semantic similarity between two documents could lead to more ac-

curate results by taking into account the meaning of words not just their surface

form. However, the semantic similarity is challenging to measure since the topics and

concepts are hidden and not mentioned explicitly in the text.

To clarify this importance we show an example of two pieces of text that have the

same topic but do not have much lexical overlap. The left text in Fig. 1.1, is about

the effects of a woman’s image of her physical shape on eating disorder. The right

text is a paraphrasing1 of the first i.e., both texts have exactly the same topic. As

shown here, two documents could be highly similar without sharing a lot of words

together. The opposite is also possible by generating documents that are sharing a

lot of words but are in two different topics. However, the latter is less common.

Figure 1.1: A rephrasing example of a text with only a few shared words. These two
pieces of text are highly similar yet have low lexical similarity.

Lexical similarity of documents is calculated using bag of words representation.

Here, we use the popular TF-IDF vector space model to represent documents related

to each researchers. Then the overlap between two documents is calculated using

conventional methods e.g., cosine similarity.

The semantic similarity of documents could be measured in different ways. Before

measuring the similarity, we need to find hidden concepts in the text. In order to

find these concepts, we locate keyterms in the text and map them to their related

concepts in Wikipedia.

The meaning of a term is defined within the context and is unique. To repre-

sent this unique meaning we use Wikipedia assuming that each article in Wikipedia

represents a single concept. For instance, the word “tree” has different articles in

1An example of paraphrasing from www.merriam-webster.com/

3

Wikipedia for each of the meanings as “a plant” and “a data structure”.

With focus of researchers on Wikipedia in the recent years, different similarity

measures have been proposed for the relatedness between two concepts. We use

the Wikipedia Miner toolkit [Milne and Witten, 2013] to estimate the similarity of

concepts. Since each document contains a set of concepts we define different methods

to aggregate these scores and calculate the semantic similarity of a researcher’s papers

with research topics.

To enrich our document representations we also extract categories using Wikipedia.

Categories are extracted for the concepts mentioned in each document. Each cate-

gory is also a concept but it has a more general meaning. For instance, “plant” is a

category for “flower”. These categories provide a different approach to calculate the

similarity of researchers with research topics.

We calculate similarity of researchers’ papers with each of the NSERC research

topics in many different ways. These similarities form the input of our classifier.

NSERC research topics are the classes. By training a classification model, we are able

to associate each researcher to the NSERC research topics based on her publications.

Chapter 2

Related Work

In this chapter we review the literature that are related to our work. In the following

sections, first we introduce some important work on both expert finding and expertise

representation. Since we are using Wikipedia as an external knowledge source to

enhance our document representations, we review a few related work in this area, too.

Finally, we have a discussion on methods that measure similarity between concepts

using Wikipedia.

Before going further we would like to clarify the difference between expert finding

and expertise representation which is also discussed in [Balog et al., 2012]. The former

is the answer to the question“Who is expert in topic X?”, and the latter is the answer

to “What are the topics that person Y is expert in?” which is also called the profiling

task. The two problems are the same in many aspects, however it is not practical to

use the same solution for both of them.

Since the knowledge and expertise are not observable, we have to look for indirect

evidence of knowledge that is associated with people. Depending on the context of

expert search, this evidence varies. It could be documents associated with people

e.g., books, papers, reports and resume, online contents e.g., homepage, blogs and

emails or pieces of code written by software developers. Due to the differences in

the resources associated with people and availability of these resources, providing a

general framework that is applicable on any environment is not easy. Most of proposed

solutions are application or domain specific.

2.1 Expert Finding

After announcing expertise retrieval as a new task of Text REtrieval Conference

(TREC) in 2005, it received more attention from researchers. To find experts in area

X based on their related evidence, two general approaches are commonly used [Balog

et al., 2012]. The first approach represents researchers based on their associated

4

5

documents and then evaluates the similarity of query with this new representation.

This is known as query-independent model. The second approach, also called query-

dependent, first locates and ranks documents that are similar to the query. Then, it

estimates each expert’s score based on their association with the selected documents.

The query independent models tend to be faster and more efficient in terms of

data management. Since each expert is summarized and modeled based on the related

documents, we are dealing with a significantly smaller model than the original data.

However, query dependent models calculate the relatedness of documents on the fly

and the impact of every related document is measured, which leads to a more precise

query matching [Deng et al., 2008].

Topic modeling has been widely used to extract the existing topics from a collec-

tion of data [Blei et al., 2003]. A probabilistic topic modeling method is proposed

to extract profiles of researchers from online resources associated with them in the

Arnet miner system [Tang et al., 2008]. This model is called Author-Conference-

Topic (ACT) and is applicable on papers, authors and publication venues to extract

important topics as stated in the paper.

Finding the expertise of people in Community Question Answering (CQA) is also

related to our work. Instead of research papers, people’s questions and their answers

to the other questions are used to extract their expertise. Topic modeling approaches

are also useful in finding experts and prompt them to answer questions in CQA [Riahi

et al., 2012] and [Yang et al., 2013]. The data gathered from Stack Overflow1 is used

to detect expertise topics and expertise levels of users in both papers. Two topic

modeling methods, LDA and STM are used to capture the semantics of a user profile

in [Riahi et al., 2012]. LDA combines all posts by a person to extract the topics from

a person’s profile. STM looks at each post as a separate unit and extracts the topics

from each one of them. Moreover, TF-IDF and language model is used to represent

the word based profile model of experts.

Besides expert finding, SemEval introduced a task for selecting best answer in

CQA in 20152. The methods proposed for this task use lexical features related to

the question and answer such as length, words and n-grams. Semantic features also

introduced to measure similarity between the question and answer such as features

1A popular question and answering website in topics related to computer programming
2http://alt.qcri.org/semeval2015/task3/

6

based on word embedding vectors, language modeling or topic modeling [Alessandro-

Moschitti et al., 2015].

One of the systems that performed well in this competition is introduced by [Nicosia

et al., 2015]. The semantic features of this system are calculated based on word

embedding vectors generated by different approaches. It is also mentioned that

word2vec-based [Mikolov et al., 2013] features did not perform well so they were dis-

carded. The next successful system uses word2vec to calculate the similarity between

a question and answer. Using doc2vec, they calculate a single vector to represent ev-

ery question and answer and calculate their cosine similarity. To get better accuracy

they also generate the vector representation for every sentence and find the highest

cosine similarity between any two sentences of question and answer.

The semantic features that we introduce here are different from these work since

we are using Wikipedia as our knowledge source and represent each document as a

vector of concepts. We also consider categories that are related to the concepts in the

text for calculating the semantic similarity of two documents.

One important application of expert finding in the academic area is matching ap-

propriate reviewers to review submitted papers to a conference or submitted propos-

als to a grant competition. Currently, this is done manually in most conferences and

grant competitions, based on comfort ratings of reviewers, or by manually searching

for experts in an expert database. Automatically suggesting suitable pairs of papers

and reviewers could find an optimal solution in a shorter time.

Suitability score is defined in [Charlin et al., 2012] as a relevance measure for a

given pair of reviewer and paper. A subset of suitability scores are known (manu-

ally specified) and the rest of it will be estimated using side information of papers

and reviewers. The unseen scores will be learned using three methods of Language

Model (LM), Linear Regression (LR) and Bayesian probabilistic matrix factorization

(BPMF) from specified scores. In the next stage the problem is formalized as an op-

timization problem and Integer Programming (IP) is used to solve it. New variations

to IP is proposed in this paper to support constraints such as balancing the load on

reviewers and assigning sufficient number of reviewers to a paper.

Another approach that fulfills the constraints associated with expert finding is pro-

posed by [Tang et al., 2012]. First, both reviewers’ publication papers and submitted

7

papers are modeled using ACT topic modeling approach. Second, a hybrid similarity

score between a given paper and reviewer is defined based on the combination of a

language model and the resulting topic model. Finally the matching problem with

its constraints is modeled as a minimum convex cost flow which guarantees to find

optimal solution.

Textual and semantic concepts associated with a person are not the only resources

to use for expertise representation. Other sources such as statistical information based

on citation graph and publication records could be used to infer expertise. Besides

the textual similarities such as TF, IDF and Okapi BM25 extracted from papers,

[Moreira et al., 2015] uses statistical information. Number of publications, average

number of publications per year, researcher’s h-index and g-index are examples of

statistical features. To perform expert finding, a ranking function is learned using

Supervised Learning to Rank (LtoR) from training data. This function is able to

sort experts based on their expertise level regarding the input query. Performance of

various LtoR approaches are explored in this framework.

CiteseerX3 is a digital library that automatically extracts and stores articles re-

lated to computer and information science. The metadata provided by this library

is used to build an expert recommendation system by [Chen et al., 2013]. They use

keyphrases extracted from a researcher’s papers to retrieve her expertise. A set of

candidate keyphrases is built using n-grams of words which appear at least three

times in the titles of papers. This set is expanded using Wikipedia hyperlinks. The

relevance of a query and a researcher is then estimated by considering lexical rele-

vance (TF) of them. Quality of this estimation is measured based on the citation

count of her papers.

There are two important reasons that we did not use Citeseer data. First, this li-

brary only contains computer science papers. Second, it does not include information

about expertise of authors. Although we have selected computer science research top-

ics to develop our method and perform our experiments, all the steps from gathering

data to training model is applicable on other research fields.

3http://citeseerx.ist.psu.edu/index

8

2.2 Expertise Representation

Researchers’ papers are usually representative of their expertise and are easily acces-

sible comparing to other resources. Hence, it is common to use information available

in papers to represent researchers’ profile. Different tools and methods are used to

extract information from papers. In most cases, first, important terms from text of

papers are extracted. TF-IDF is a traditional criterion to determine terms that are

informative in the text and usually used as a baseline for term extraction [Bogers

et al., 2006]. Term Frequency (TF) is the number of times a term appears in the text

which could be an indicator of its importance. Inverse Document Frequency measures

the commonness of term with respect to the whole corpus. The vector of words with

the corresponding TF-IDF weights is a representation that reduces a text to a vector

of scores. The system proposed by [Ribeiro et al., 2015], builds researchers’ profiles

by applying algorithms such as TF-IDF, POP and COV [Venetis et al., 2011] on title,

abstract and keywords of papers. This work is evaluated through a user study on

researchers in Brazil.

Expertise of people changes over time as people may change their research areas

or gain more experience in a specific topic. Keeping track of these changes is also

another important and yet time taking task. In order to track the changes in an

expert’s profile [Rybak et al., 2014] developed a hierarchical expertise representation

over time. The idea is to find the focus nodes in this hierarchical graph in each

timestamp. Shifting focus from a node to another indicates that the expertise area

has been changed.

People tend to ask questions from experts, solve colleagues’ problems and talk

about their areas of interest via emails. Mining topics within emails sent in an or-

ganization could help unveiling experts in different areas [Campbell et al., 2003].

Unsupervised clustering is used in this paper to analyze the content of messages. In

addition, the relation patterns of emails are used to create the graph of communica-

tions to locate and rate experts.

Depending on the application or available data, other sources could also be used

for expertise representation. For instance, in a software development company source

code developed by individuals could be evidence of their knowledge [Alonso et al.,

2008].

9

2.3 Document Representation

One of the most basic representations of documents is bag of words model which

converts the text into a vector of words that could be weighted or unweighted. The

popular TF-IDF approach captures importance of each unit in the text. However,

treating documents as a set of separated units without considering the relation among

words and the concepts behind them, could lead to a poor representation of document

and consequently less accurate document similarity measures. In order to compare

documents effectively, we need to measure the semantic relatedness between them as

well as the syntactical similarity.

Finding the semantics of a document is quite challenging. The semantic units of a

document are not explicitly mentioned in the text. So we need to find this information

using the evidence exists in the text. Different methods have been introduced to

perform this task. Following, we will review two important approaches that are more

related to our work.

Topic modeling is a statistical approach to discover topics that are hidden in the

document and is being extensively used. This approach has been improved during

the years from early work of LSI [Deerwester et al., 1990] and pLSI [Hofmann, 1999]

to the popular Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. There are lots

of variants to the original LDA that extend it and make it suitable for different

applications and frameworks [Tang et al., 2008].

Another approach to model the semantics of a document is to infer topics and

concepts based on the terms that appear in the text. It is challenging since first,

informative terms should be detected from the text and second, each term should

be disambiguated to reflect the right concept behind that term. There are different

keyterm extraction systems. Some systems such as Wikipedia Miner [Milne and

Witten, 2013] and Illinois Wikifier [Ratinov et al., 2011] wikifies documents i.e., they

extract and link terms to the corresponding Wikipedia article. Other systems such

as Maui [Medelyan, 2009] uses a controlled vocabulary and only extracts keyterms.

10

2.4 Concept Similarity Measures

Associating terms with Wikipedia articles in order to represent the intended meaning

of that term without ambiguity is a common approach called wikification [Mihalcea

and Csomai, 2007]. Wikification means finding the important terms from text and

map them to the corresponding Wikipedia article. One approach to measure semantic

similarity of documents is to measure similarity of its detected concepts. There are

different methods proposed to calculate the similarity of two Wikipedia articles. One

of the widely used methods is introduced by [Gabrilovich and Markovitch, 2007].

They represent each word as a weighted vector of Wikipedia articles and then the

similarity of each pair of terms in this space is reduced to calculating similarity of

two vectors.

Wikipedia as a rich source of knowledge with connected articles and categories

in different languages has been used in many different ways. The content of articles,

category graph, hyperlink graph and other languages links, all have been used for

this purpose. Using the hyperlink structure of Wikipedia articles and by consider-

ing amount of common in-links4 and out-links5, [Witten and Milne, 2008] defined a

relatedness measure for two articles.

Another Wikipedia-based word similarity measure is defined by [Yazdani and

Popescu-Belis, 2013]. They explored a random walk algorithm on the Wikipedia

article graph to compute the distance between words using the visiting profitabil-

ity. They also used the hyperlink structure and word co-occurrence information to

improve the system performance.

4The links that exist in an article and connect different sections of it to other articles in Wikipedia
5The incoming links from other Wikipedia articles that points to this article.

Chapter 3

Methodology

In this chapter, we will discuss the details of our system which is designed to automat-

ically extract and represent researchers’ expertise based on their publications. The

input of our system is titles and abstracts of a researcher’s papers and the output

is one or more research topics that represents her research areas. We capture the

semantic similarity between papers of a researcher and research topics as well as their

lexical similarities in order to improve the accuracy.

We are modeling the problem of representing research areas of researchers as a

classification problem where research topics are classes and each researcher is an

instance. We extract several features from the researcher’s papers and feed them to a

classifier as input. These features are different similarity scores between a researcher’s

papers and research topics.

We use the research topics defined by Natural Sciences and Engineering Research

Council of Canada (NSERC)1 to represent the research areas of researchers. NSERC

has divided natural sciences and engineering into twelve disciplines and each discipline

has between eight to twenty-nine different research topics. Each research topic is

described with a set of keyterms. In this thesis we have chosen ten research topics of

computer science (see section 4.1.1) to develop and evaluate our method. However,

our method is applicable to other topics and disciplines, too.

In our system, each researcher and research topic is represented in three formats:

bag of words, bag of concepts and bag of categories. For each researcher, we use these

representations to calculate two separate sets of features as illustrated in Fig. 3.1.

Combined papers features are extracted from all papers combined together as they are

a single document. To calculate Individual paper features, first we extract intermediate

features from each of her publications and then aggregate the results to calculate the

final features. We use both sets of features together as the input of our classification

1http://www.nserc-crsng.gc.ca/

11

12

model. Using a set of labeled training data and these features, we train a classifier.

Figure 3.1: From a researcher’s papers we extract two sets of features. The first set
is calculated based on the combination of all papers into a single document and the
second set is calculated using individual papers. Then both sets are combined to
represent a researcher and train the classifier.

Note that the total number of features only depends on the number of research

topics. Each feature measures the overall similarity between a researcher’s papers

and a research topic.

In the following sections, first we describe details of different document repre-

sentations used to represent both researchers and research topics. Next we discuss

features extracted from the combined papers of researchers and individual papers.

3.1 Document Representation

To represent a researcher’s expertise we need to know how similar her publications

are to each research topic. Both researchers and research topics are associated with

documents in this system. Each NSERC research topic is described by a set of

keyterms. We assume that each topic is a document that consists of its associated

keyterms. In order to represent a researcher, we use all of her publications i.e., a set

of documents created by concatenation of title and abstract of each paper.

Document similarity is measured in different ways. One common approach is to

measure the surface overlap between two documents which is known as lexical simi-

larity. Lexical similarity has been widely used to measure text document similarity.

However, it has two disadvantages. The first one is known as vocabulary mismatch.

13

It happens when the same concept is represented by different terminologies. The sec-

ond one is ignoring order of words in documents. All words in the text are connected

together to form a coherent topic and considering this connection leads to a more

accurate similarity measure.

Beyond the lexical similarity of two documents, semantic similarity measures are

able to capture the similarity between hidden topics and concepts in the text and

uncover the connections between text components. To measure both kinds of similar-

ities we need better ways of representing documents. Hence, we represent researchers

and research topics using words that are explicitly mentioned in the text, to capture

the lexical similarity, and concepts and categories related to them, to capture the

semantic similarity. For this purpose, we introduce bag of words, bag of concepts and

bag of categories.

In the rest of this thesis we refer to a word n-gram as a term. The keyterms

are the selected terms from the text which consist of up to three words. Each term

can have several different meanings and the related meaning could be distinguished

considering the context. We call the very unique meaning of a term within the text,

concept and we represent each concept using its Wikipedia article.

3.1.1 Bag of Words

Representing documents as bag of words is a traditional approach to measure lexical

overlap. As a preprocessing step, we remove stop-words and extract all words from

the remaining text. Then each document is represented as a vector of word scores.

These scores are a function of Term Frequency (TF) and Inverse Document Frequency

(IDF) [Manning et al., 2008]. The pre-processing step and TF calculations are done

using Lucene search engine2 with the standard analyzer.

Each researcher is represented in two ways: individual bag of words and combined

bag of words which are used in extraction of individual paper features and combined

papers features, respectively. Individual bag of words consists of a set of TF-IDF

vectors each one associated with a single paper of the researcher. Combined bag of

words is a TF-IDF vector extracted from the combination of individual vectors. Score

of each word in this vector equals the average of non-zero values for that word in all

2https://lucene.apache.org/

14

individual vectors.

Each NSERC topic is also represented as a binary vector using all words appearing

in its keyterms i.e., the score of a word is 1 if it is (part of) a keyterm and it is 0

otherwise. We use the binary vector since we assume that all the keyterms of a topic

are important and have equal weight.

3.1.2 Bag of Concepts

Having a good representation of hidden concepts in the text is an initial step towards

measuring the semantic similarity. Here we use the Wikipedia articles in order to

represent our concepts. Enriching documents with Wikipedia concepts is a popular

method which has been used for both classification [Wang and Domeniconi, 2008]

[Huang et al., 2012] and clustering [Hu et al., 2008] purposes.

Each article in Wikipedia corresponds to an unambiguous concept and has a

unique article ID. Even though Wikipedia covers a large number of concepts, which

is about 5 million English articles by the end of 20153, not every concept has a

corresponding Wikipedia article. Our function is limited to the concepts that appear

in Wikipedia.

The task of annotating documents with Wikipedia articles is called wikifica-

tion [Mihalcea and Csomai, 2007]. Wikification is the process of extracting keyterms

from a document and map them to the corresponding Wikipedia articles (Fig. 3.2).

Wikipedia Miner [Milne and Witten, 2013] is a toolkit that offers wikification

service. The input is a plain text and output is the annotated text that contains a set

of Wikipedia concepts (Fig. 3.3). Moreover, for each detected concept a probability

score is calculated that depends on the disambiguation confidence (see Appendix E).

We name it wikification weight and only accept those concepts that have a wikification

weight equal to or higher than 0.5. We wikify every paper in the dataset and store the

resulting set of concepts. In addition, we extract the associated Wikipedia concepts

for each keyterm related to NSERC topics (see Sec. 4.1.1). Our concept space includes

the concepts from every paper in the dataset through the wikification process and

the concepts that are associated with NSERC topics.

Definition 3.1. Wikification weight wc is a probability score given to every detected

3https://stats.wikimedia.org/EN/Sitemap.htm

15

Figure 3.2: The upper box shows a text from Wikipedia in the plain format and the
lower one is the wikified result. This example is part of an article from Wikipedia
which is manually wikified by its contributors.

Figure 3.3: Input of a wikifier is a plain document and the output is the annotated
document containing a set of concepts. Most wikifiers report a probability score for
each detected concept. We wikify all papers of a researcher using Wikipedia Miner
and stores those concepts that have a score equal to or higher than 0.5.

concept c through wikification process.

Definition 3.2. Concept space C is a vector space defined by an alphabetically

ordered set of concepts (bag of concepts) derived from union of concepts associated

with papers and NSERC research topics. Concepts from papers are extracted through

a wikification process. Concepts associated with NSERC research topics are extracted

from their keyterms as described in Sec. 4.1.1. Each concept ci defines a dimension

of the concept space.

Each researcher is represented by concepts extracted from her papers in two ways.

First, individual bag of concepts, which is a set of vectors each one belongs to a single

paper of the researcher. Second, a combined bag of concepts, a single vector that

includes the concepts from all papers of the researcher.

16

Definition 3.3. Bag of concepts representation for a single document d in document

set D is a vector Ed = (wc1,d, wc2,d, ..., wcn,d) in concept space C with n concepts,

where wci,d is the weight of concept ci in document d.

Definition 3.4. Individual bag of concepts representation IBOCR for the researcher

R with a set of publications DR ⊆ D is the set of bag of concepts representation of

her publications. IBOCR = {Ed1 , ..., Edj , ...Ed|DR|}, where dj ∈ DR.

Definition 3.5. Combined bag of concepts representation of the researcher R, whose

publications are all in DR ⊆ D, is a single vector CBOCR = (w′
c1
, w′

c2
, ..., w′

cn) in

concept space C, where w′
ci

is the average over the non-zero scores of concept ci in

all publications of researcher R (Eq. 3.1).

w′
ci

= Avg(wci,d)
wci,d

6=0

, d ∈ DR (3.1)

For each vector Ed we define two weighting schemes to determine wci,d values

using binary weights or wikification weights. As a result, each researcher has two

representation for each individual bag of concepts and combined bag of concepts based

on these weighting scheme.

Definition 3.6. Wikification weighting scheme: In vector Ed that represents bag of

concepts of document d, weight of concept ci equals the wikification weight reported

by Wikipedia Miner. 0.5 ≤ wci,d ≤ 1 if the concept ci belongs to the concepts of

document d and wci,d = 0 otherwise.

Definition 3.7. Binary weighting scheme: in vector Ed that represents bag of con-

cepts of document d, weight of a concept is 1 if it belongs to the concepts of document

d and is 0 otherwise.

Definition 3.8. Bag of concepts for each NSERC research topic t is defined as Et =

(wc1,t, ..., wcn,t), where wci,t is a binary weight that equals 1 if concept ci is associated

with topic t and equals 0 otherwise. We only consider binary values for this vector

since all of the concepts are assumed to have the same importance.

17

3.1.3 Bag of Categories

Another representation of documents is bag of categories. Categories of a concept are

higher-level concepts in Wikipedia. For instance, the concept “Polar Bear” belongs

to the categories “Marine Mammal”, “Mammal” and “Animal”.

There are several ways to find out the categories of a concept. One trivial solu-

tion would be using Wikipedia categories. All Wikipedia concepts have one or more

categories that are manually created by different people and they are frequently re-

viewed by other contributors to correct mistakes and errors. However, they are not

necessarily error free and consistent.

Sunflower [Lipczak et al., 2014] is a Wikipedia based generalization system that

extracts and represents categories of a concept. Sunflower has three characteristics.

First, it uses different languages of Wikipedia to find the most related categories.

Second, for each category it calculates the relatedness score. Third, it builds a graph

of categories with configurable depth and width. We modified the original Sunflower

based on our problem requirements (more details available in Appendix D).

Sunflower’s input is a concept and the output is a category graph as shown in

Fig. 3.4. This example shows the category graph for the concept “Polar Bear”. The

number of edges between the input concept and each category in the shortest path

shows depth of the category. For each category, a generalization weight is reported

that measures the relatedness between the input concept and that category.

To represent a document as the bag of categories, all of its concepts extracted

in Sec. 3.1.2 are separately given to the Sunflower, one at a time. Bag of categories

consists of the union of categories in the resulting category graph of each concept.

Each category ki is extracted by generalizing the concept ci′ . We refer to ci′ as the

associated concept with category ki.

Definition 3.9. 4 Generalization weight G(ki) for category ki is calculated in the

generalization process and shows the similarity between category ki and its associated

concept ci′ .

Definition 3.10. Category space K is a vector space defined by an alphabetically

4Some of the definitions in this section is the same as definitions in Sec. 3.1.2. To avoid confusion
and to be more clear we repeated them here, too.

18

Figure 3.4: The category graph extracted for the concept Polar Bear using Sunflower
system.

ordered set of categories (bag of categories) derived from concept space C through

generalization. Each category ki defines a dimension of the category space.

We define a researcher’s category representations with two formats. First, indi-

vidual bag of categories, which is a set of vectors each one belongs to a single paper.

Second, a combined bag of categories that is a single vector consists of the categories

from all papers of the researcher.

Definition 3.11. Bag of categories representation for a single document d in doc-

ument set D is a vector Vd = (wk1,d, wk2,d, ..., wkm,d) in category space K with m

categories, where wki,d is the weight of category ki in document d. The categories are

extracted by generalizing all concepts belong to document d.

Definition 3.12. Individual bag of categories representation IBOKR of the researcher

R with a set of publications DR ⊆ D is defined as the set of bag of categories repre-

sentations of her publications Vdj . IBOKR = {Vd1 , ..., Vdj , ..., Vd|DR|}, where dj ∈ DR.

Definition 3.13. Combined bag of categories representation of the researcher R,

with a set of publications DR ⊆ D, is a single vector CBOKR = (w′
k1
, w′

k2
, ..., w′

km
)

in category space K, where w′
ki

is the average over the non-zero weights of category

ki in all documents of DR (Eq.3.2).

19

w′
ki

= Avg(wki,d)
wki,d 6=0

, d ∈ DR (3.2)

We define three weighting schemes for every vector Vd to determine the values of

wki,d. Generalization, wikification and binary weighting schemes. Using each method,

we generate the corresponding category representations of researchers for individual

bag of categories and combined bag of categories.

Definition 3.14. Generalization weighting scheme: In vector Vd, weight of cate-

gory ki equals the generalization weight calculated by Sunflower G(ki) multiplied by

wikification weight of its associated concept W (ci′) (Eq. 3.3).

wki,d = G(ki)×W (ci′), 0 ≤ wki,d ≤ 1 (3.3)

Definition 3.15. Wikification weighting scheme: In vector Vd, weight of category ki

equals the wikification weight of its associated concept ci′ (Eq. 3.4). 0.5 ≤ wki,d ≤ 1

if the category ki belongs to the categories of document d and wki,d = 0 otherwise.

wki,d = W (ci′,d), 0.5 ≤ W (ci′,d) ≤ 1 (3.4)

Definition 3.16. Binary weighting scheme: in vector Vd weight of a category is equal

to 1 if it belongs to the categories of document d and is equal to 0 otherwise.

Definition 3.17. The category vector for each NSERC research topic Vt is extracted

by generalizing all of its concepts and is defined as Vt = (wk1,t, wk2,t, ..., wkm,t). The

wki in Vt equals the generalization score G(wki).

3.2 Feature Extraction

Our feature vector that is calculated for each researcher, consists of different similarity

scores with each NSERC research topic. These scores are calculated using different

tools and methods and are meant to capture different aspects of similarities. By

combining these features using a classifier we will get a single relatedness score for

each pair of researcher and research topic.

In the following sections, first we will introduce features extracted from combined

papers and then features extracted from individual papers.

20

3.2.1 Combined Papers Features

To calculate features in this section we use combined bag of words, bag of concepts

and bag of categories representations. We are calculating four sets of features, where

each feature shows the similarity between a researcher and a research topic (Fig. 3.5).

Figure 3.5: Features extracted from combined bag of words, combined bag of concepts
and combined bag of categories of a researcher. We calculate four different sets of
features based on these representations. Each feature is a similarity score between a
researcher and a research topic.

Cosine Similarity

We use TF-IDF vectors to calculate cosine similarity between documents. TF is the

number of times a word appears in the text and it is calculated by counting this

number for every term. The IDF value is calculated as stated in Eq. 3.5. In this

formula the IDF value for word w is calculated while D is the corpus that consists

of all documents. The TF-IDF score for each term in the input document is the

21

multiplication of Term Frequency by Inverse Document Frequency.

IDF (w,D) = log
|D|

|d ∈ D,w ∈ d|
+ 1 (3.5)

The cosine similarity between two vectors of X and Y is calculated using the

Eq. 3.6.

similarity =
X · Y
| X || Y |

=

∑n
0 XiYi√∑n

0 X
2
i

∑n
0 Y

2
i

(3.6)

TF is a constant value and it only depends on the document itself. While, IDF

could take different values depending on the other documents in the reference corpus.

Here we are trying different sets as our reference corpus to capture importance of a

word in different settings.

First, we consider all papers in our dataset (see Sec. 4.1.2) which is all of documents

in all topics and calculate IDF values. Then we calculate TFIDF vector for every

researcher. We define the first feature as:

Definition 3.18. For researcher R and research topic ti, FC1(R, ti) is the cosine

similarity between combined bag of words of R and bag of words of ti, where the

TF-IDF values of first vector is calculated using the entire corpus D.

Figure 3.6: We have one TF vector for each researcher and N IDF values for every
term in the corpus. So we calculate N different TF-IDF vectors for each researcher.

22

Second, we take all documents in only one topic as our corpus and calculate IDF

values for all words. We repeat this step for each one of our N topics. Finally, we

have N different IDF values for each word. The TF vector related to a researcher

is constant. So we have N different TF-IDF vectors (Fig. 3.6) representing each

researcher and we define the second feature as:

Definition 3.19. For researcher R and research topic ti, FC2(R, ti) is the cosine

similarity between combined bag of words of R and bag of words of ti. TF-IDF

values of first vector is calculated using the corpus Dti ⊂ D where the topic of every

paper in Dti is ti.

As described, we calculate two cosine similarities for each pair of researcher and

research topic using two different TF-IDF vectors related to each researcher (Fig. 3.7).

Figure 3.7: Each researcher has N + 1 TF-IDF vectors depending on the corpus that
is used to calculate the IDF values. One vector is built using the entire dataset and N
vectors are associated with each one of the research topics. We calculate two cosine
similarities for each pair of researcher and research topic. First using the TF-IDF
based on the entire corpus. Second, using the TF-IDF regarding that research topic.

23

Concept-based Similarity

One approach to measure the semantic similarity of two documents is computing the

similarity of their concepts. In this section we propose different methods to measure

this similarity. First, we calculate the pairwise similarity of every concepts that we

have extracted using Wikipedia Miner toolkit (Eq. 3.7). This service receives two

Wikipedia IDs as input and outputs their similarity score. We compute this score for

every pair of concepts exist in the corpus.

∀i ∈ I, j ∈ J(∀a ∈ Ai,∀b ∈ Bj calculate−−−−−−→ Similarity(a, b)) (3.7)

In this equation, A is combined bag of concepts for a researcher, B is the bag of

concepts for a research topic, I indicates set of researchers and J indicates set of

NSERC research topics. Note that in the implementation we do the calculations on

the fly and store every new similarity in the look up table. However, we demonstrate

the worst case scenario in this section.

We have two weighting schemes for concept vectors as mentioned in Sec. 3.1.2. We

calculate the following features for a pair of researcher and research topic based on

each weighting scheme. Each feature is calculated for the researcher R and research

topic ti.

1. Cosine similarity of vector of concepts

FC3 = cosine(CBOWR, BOWti) (3.8)

2. Average Wikipedia Miner similarity

FC4 =

∑
a∈Ai

∑
b∈Bj

Similarity(a, b)

|Ai| × |Bj|
(3.9)

3. Maximum Wikipedia Miner similarity

FC5 = max (Similarity(a, b))
a∈Ai,b∈Bj

(3.10)

4. Minimum Wikipedia Miner similarity

FC6 = min (Similarity(a, b))
a∈Ai,b∈Bj

(3.11)

24

5. Average of maximum Wikipedia Miner similarity

FC7 =

∑
a∈Ai

max (Similarity(a, b))
b∈Bj

+
∑

b∈Bj
max (Similarity(a, b))

a∈Ai

|Ai|+ |Bj|
(3.12)

Category-based Features

Our assumption is that two concepts that have common categories are more similar

to each other than two concept that does not have any shared categories. So we

are using bag of categories representation of documents, to calculate the similarities

between them. Each category is a concept, too. So similarity of categories can be

calculated the same as the similarity of concepts. Therefore, we calculate the same

set of features as we described in Sec. 3.1.2 for categories, too.

First, we calculate the pairwise similarities between categories using Wikipedia

Miner (Eq.3.7). Where A is combined bag of categories for a researcher, B is the bag

of categories for a research topic, I indicates set of researchers and J indicates set of

research topics. Second, we calculate the following features for each researcher5.

1. Cosine Similarity of vector of categories

FC8 =

∑
a∈Ai

∑
b∈Bj

Similarity(a, b)

|Ai| × |Bj|
(3.13)

2. Average Wikipedia Miner similarity

FC9 = max (Similarity(a, b))
a∈Ai,b∈Bj

(3.14)

3. Maximum Wikipedia Miner similarity

FC10 = max (Similarity(a, b))
a∈Ai,b∈Bj

(3.15)

4. Minimum Wikipedia Miner similarity

FC11 = min (Similarity(a, b))
a∈Ai,b∈Bj

(3.16)

5 The definitions in this section is the same as definitions in concept-based similarity. To avoid
confusion and to be more clear we just repeated them here.

25

5. Average of maximum Wikipedia Miner similarity

FC12 =

∑
a∈Ai

max (Similarity(a, b))
b∈Bj

+
∑

b∈Bj
max (Similarity(a, b))

a∈Ai

|Ai|+ |Bj|
(3.17)

Category representation of each researcher have three weighting schemes as de-

scribed in Sec. 3.1.3. We calculate each feature using all three vectors. Hence, the

total number of features in this section equals 5× 3×N , where N is the number of

research topics.

Weighted Concept Feature

In this section we calculate a new weight for every concept in the bag of concepts

representation of each researcher which shows the importance of concept in the doc-

ument. The idea is to reduce the importance of those concepts that are less relevant

to the researchers and have entered to the representation due to keyterm detection,

disambiguation or other kinds of errors. We are ranking concepts based on their av-

erage relatedness to all other concepts in the text. Similar to the context centrality

in [Huang et al., 2012] we are assuming that the concept that is more similar to all

other concepts in the text is more important because it could be an indicator of a

central topic that other components are there to support these core topics.

The ideal way is to calculate the pairwise similarity of all concepts detected for

each researcher as we are representing each researcher as a combined document of her

publications. However, because of the inefficiency of this method, we calculate weight

of every concept within each individuals paper instead of all papers of a researcher.

As indicated in Fig. 3.8, C1 to C5 are concepts extracted from one paper. We

calculate the pairwise similarity between all these concepts using Wikipedia Miner.

For each concept, average similarity to other concepts is calculated. For instance for

concept C1 we calculate the average value of S1 to S4.

For all concepts in a researcher’s papers we calculate this score. If a concept

appears in more than one paper, we take the average value as its score. Finally, we

have a weighted vector of concepts for each researcher. Using cosine similarity, a

feature that shows the similarity of researcher and a research topic is measured. We

calculate this feature for all pairs of researcher and research topic.

26

Figure 3.8: Calculating pairwise similarities of concepts in one paper.

3.2.2 Individual Papers Features

In this section, first, we estimate expertise of a researcher based on each of her

publications separately. Then we aggregate the results extracted from all papers

to calculate the similarity between a researcher and each research topic (Fig. 3.9).

For extracting expertise of a researcher based on one paper we use two methods:

1) cosine similarity 2) internal classification of individual papers.

Cosine Similarity

In this section we use all three representations of documents i.e., individual bag

of words, individual bag of concepts and individual bag of categories. Using each

representation, we compute the following features for every pair of researcher and

research topic.

First, we calculate the pairwise cosine similarity between each NSERC research

topic and each individual paper of researcher R. Second, we aggregate these simi-

larity scores to get a single value for a pair of researcher and research topic. Using

these cosine similarities we define two features. The first feature, aggregated cosine

similarity is the average values of cosine similarities between a research topic and

every paper of a researcher. The second feature, aggregated topic rank is the average

27

Figure 3.9: Features extracted from Individual papers of a researcher. We use indi-
vidual bag of words, individual bag of concepts and individual bag of categories to
calculate these features. Similarity between a paper and a research topic, is calcu-
lated using 1.cosine similarity and 2.internal classifier. We aggregate the results of
each method over all papers of a researcher to get a similarity value for a pair of
researcher and research topic.

number of times that a research topic has been assigned to a paper. A research topic

is assigned to a paper if it has the highest cosine similarity comparing to all other

topics.

Definition 3.20. Aggregated cosine similarity FI1(R, ti) between the researcher R

and the research topic ti is the average cosine similarity between all papers d with ti,

where d ∈ DR and DR denotes the set of papers belongs to the researcher R.

Definition 3.21. Aggregated topic rank FI2(R, ti) between the researcher R and the

research topic ti is defined as FI2(R, ti) =
|Dti |
|DR| , where Dti ⊆ DR is the set of papers

that are assigned to topic ti based on the cosine similarity values and T is the set of

all NSERC research topics (3.18).

∀d ∈ Dt → argmax(cosine(d, ti))
ti∈T

= t (3.18)

Calculation of these two features is illustrated in Fig. 3.10. To simplify this ex-

ample, we assume that the researcher have only 4 papers. Also the total number of

research topics equals four. The cosine similarity between a paper and the research

topic ti is denoted by cosineti and is shown in the body of that paper.

28

Figure 3.10: In this example cosine similarity between each paper and re-
search topic is shown in the paper. The cosine similarity in the box shows
the highest value and the assigned topic to that paper.
FI1(r1, t1) = 0.45, FI1(r1, t2) = 0.47, FI1(r1, t3) = 0.53, FI1(r1, t4) = 0.46
FI2(r1, t1) = 0.25, FI2(r1, t2) = 0.00, FI2(r1, t3) = 0.50, FI2(r1, t4) = 0.25

As mentioned earlier, we compute these two features based on all of three doc-

ument representations. Therefore, for each pair of research topic and researcher we

have six features extracted from individual bag of words, individual bag of concepts

and individual bag of categories.

Internal Classification of Individual Papers

In the second method we are building an internal classifier which is able to classify

each individual paper and assign it to one of the NSERC research topics. Note that

this classifier is different from the classifier that we are going to build to classify

researchers. In fact, this internal classifier is built and used for the purpose of gen-

erating features as the input of outer classifier. The classes of internal classifier are

NSERC research topics and instances are individual papers of researchers. The set

of features that we use to train the classifier are the same as what we have discussed

in Sec. 3.2.1. The only difference is that for this classifier, we use individual bag of

words, individual bag of concepts and individual bag of categories to extract features

from every paper of the researcher, separately.

In order to build and test the classifier we have randomly selected a subset of

research papers in each topic from the original data. We do not use this data later

for training or testing in any other part of the system. For classifying papers we

have tested three different classification method: random forest, SVM and decision

29

Classification Method Precision Recall F1-score
Random Forest 0.555 0.556 0.526
SVM 0.524 0.394 0.405
Decision Tree 0.437 0.435 0.436

Table 3.1: Classification performance of single papers using random forest, SVM and
decision tree classification methods. We do not use the data used to train this classifier
in any other part of the system. Performance measures are reported based on the
10 fold cross validation testing as the results indicate, random forest outperforms the
other two models.

tree. The performance of each classifier is tested using 10 fold cross validation and

the results are available in Table 3.1. We used Weka6 implementation to train and

evaluate each classifier. Based on the evaluation results we selected random forest as

our internal classification method.

The output of random forest for each input instance is a probability distribution

over all classes which indicates the probability of being member of each class. Each

probability is represented as a number between zero and one and the summation of all

of the probabilities equals one. After getting these distributions for each individual

paper, we aggregate the results to extract features. For each pair of researcher R and

research topic ti we calculate three features.

Definition 3.22. For researcher R (with the set of papers DR) and research topic ti

we define: FI3(R, ti) = Avg(p(d, ti))
d∈DR

. Where p(d, ti) denotes the probability of topic

ti in the probability distribution calculated based on the classification of paper d.

Definition 3.23. For researcher R and research topic ti we define: FI4(R, ti) =
|Dti |
|DR| .

Where Dti ⊆ DR and ∀d ∈ Dti → argmax(p(d, ti))
ti∈T

= ti. This feature compute the

average number of papers in DR that are assigned to topic ti.

Definition 3.24. For researcher R and topic ti we define: FI5(R, ti) = Avg(p(d, ti))
d∈Dti

.

This feature takes an average over class probability values only if p(d, ti) is the highest

value in the probability distribution related to paper d.

Fig. 3.11 is an example to illustrate calculation of these three features. To simplify

the example, we assume that researcher has four papers and we have only four classes

6http://www.cs.waikato.ac.nz/ml/weka/

30

as research topics. The probability distribution related to each paper is denoted by

Pi and is written in the paper body. FI3(R, ti), FI4(R, ti) and FI5(R, ti) is calculated

for the researcher R and each research topic ti and the values are as following:

1. FI3(1, 1) = 0.215, FI3(1, 2) = 0.162, FI3(1, 3) = 0.392, FI3(1, 4) = 0.237

2. FI4(1, 1) = 0.25, FI4(1, 2) = 0.00, FI4(1, 3) = 0.75, FI4(1, 4) = 0.00

3. FI5(1, 1) = 0.35, FI5(1, 2) = 0.00, FI5(1, 3) = 0.466, FI5(1, 4) = 0.00

Figure 3.11: This example shows a researcher with four papers and four research
topics as classes. Each paper is classified separately and its probability distribution
is written in the paper body. Pi is the probability value of research topic ti.

Chapter 4

Experiments and Results

In this chapter first we describe the data we have used to train and evaluate our

model. We discuss the details of gathering and processing data. Then, we compare the

results of different classification approaches and the baseline methods and discuss our

findings. Finally, to improve the system performance, we conduct a set of experiments

including parameter tuning, filtering and feature selection.

4.1 Data Collection

Like most of other data mining and classification problems, finding a good dataset

which is labeled and is large enough to be used in a machine learning process is

challenging. In order to train our classification model, we need a dataset that includes

abstract and title of researchers’ papers and their related research areas. As far as

we have searched there is no such publicly available dataset, which contains abstract

and title of researchers’ papers and also research topics of researchers.

4.1.1 Topic Representation

Gathering the required data for training the model needs a lot of time and resources.

Thus, we have randomly selected 10 NSERC research topics examples of which are

shown in Table 4.1, with each topic described by a set of keyterms (see Appendix A

for the full research topics).

Most of these terms are main branches of computer science that have definition

pages in Wikipedia. We have access to the titles of Wikipedia pages and developed

a simple system which looks through the list of articles and find the ones that are

most related to each keyterm by comparing the words available in the keyterm and

Wikipedia articles titles. Then we manually select the ones that are most related

to each keyterm. We need these concepts to be selected carefully so that they are

good representatives of our research topics, however, by skipping the last step we

31

32

Topic Title Keyterms

Web-Enabled Applications
and Services

E-health; e-business; e-government; e-learning;
e-commerce; e-culture; e-education; e-science;

mobile applications

Mathematical Computing
Symbolic computing; scientific computing;
numerical optimization; computer algebra;

numerical modelling and simulation

Theory of Computing

Theoretical foundations of computation; complexity
theory; structural complexity; logic and proof
complexity; descriptive complexity; automata

theory; information theory; coding theory

Table 4.1: Example list of NSERC research topics used in this thesis. Each topic is
described with a set of keyterms.

can automatically match articles which obviously decrease the accuracy. Finally, we

have a few Wikipedia concepts for each NSERC research topic that describe different

aspects of that topic.

4.1.2 Paper Selection

To create a dataset that consists of authors and their papers, we collect papers from

different sources. To gather papers on a specific topic, we use conferences. We choose

conferences that are concentrated on only one of the topics and do not have overlap

with other topics. In total 43 conferences are selected and from each one, we use

a random subset of 20 to 260 papers that were published after 2000. The name of

conferences that we use for each topic are shown in Table 4.2. In the first column of

this table, we have the topics and in the second column the set of conferences related

to each topic. The last column shows the total number of papers selected on that

topic.

For collecting these papers, we use the Microsoft Academic API1 to extract title

and abstract of papers and label each paper with the research topic of its conference.

At this stage we have a few hundred papers on each topic which we then divide ran-

domly into smaller sets between 30 to 50 papers to create virtual authors. We assume

that all papers assigned to a virtual author are on the same topic, however, they are

not from the same conference or the same physical author. These virtual authors are

1http://academic.research.microsoft.com/

33

Topic Conferences
Number

of
Papers

Mathematical
Computing

1. Mathematical Foundations of Computer Sci-
ence (MFCS)

2. Discrete Mathematics and Theoretical Com-
puter Science (DMTCS)

287

Theory of
Computing

1. Annual Symposium on Logic In Computer
Science (LICS)

2. Annual ACM symposium on Theory of com-
puting (STOC)

3. Journal of Computer and System Sciences
(JCSS)

4. International Symposium on Information
Theory (ISIT)

436

Human
Computer
Interaction

1. International Conference on Advanced Visual
Interfaces (AVI)

2. International Conference on Human-
Computer Interaction (HCI)

1225

Table 4.2: List of conferences and the total number of research paper gathered for
each research topic. Full list of conferences is available in Appendix B

34

used as the input of our classification model. Four virtual authors, extracted from

papers published in three conferences are shown in Fig. 4.1.

Figure 4.1: Generating virtual authors using papers collected from different confer-
ences. All papers assigned to a virtual author are on the same topic, however, they
may not be written by the same physical author.

4.2 Evaluation Measures

In the following experiments we test and report evaluation measures such as precision,

recall and F1-score to indicate performance. The precision is calculated based on

Eq. 4.1. Tp/ FP is the number of virtual authors whose expertise topic is correctly/

incorrectly recognized.

P =
Tp

Tp + Fp

(4.1)

Recall is defined in Eq. 4.2 where Fn is the number of virtual authors that incorrectly

was not recognized with an expertise and Tp is as described previously.

R =
Tp

Tp + Fn

(4.2)

35

The F1-score is the harmonic mean of precision and recall and is calculated as shown

in Eq. 4.3. High F1-scores will be achieved only when we have high values for both

precision and recall.

F1 = 2
P ×R

P + R
(4.3)

The reported values for precision and recall are all micro-average which means we

count the Tp, Fp and Fn for every single class and then calculate the average values

for precision and recall. All the values reported for classifiers are the weighted average

values based on the output of Weka as we used Weka for all classification tasks.

4.3 Comparing Classifiers and Baselines

In this section, we test different classification methods and compare the effectiveness

of our proposed system with the baseline methods. The data we used for training

and testing contains 80 virtual authors and 2592 papers in total. In the following

experiments 10 fold cross validation is used to evaluate each method.

We test and evaluate four different classification methods on our feature set. All

of these classification experiments are done using Weka. The classification models

that we train are decision tree, random forest, SVM and multilayer perceptron. Eval-

uations results of each classifier is available in Table 4.3. For decision tree we used

“J48” module of Weka. In the second experiment we used “RandomForest” module

where all variables have default values. For SVM classification, we used “LibSVM”

method in Weka. We set the cost parameter to 10 and used a linear kernel in this

module. Finally, the last experiment is done using “MultilayerPerceptron” function

in Weka with default settings for all parameters.

Classifier Precision Recall F1-score
Decision tree 0.715 0.725 0.717
Random forest 0.888 0.875 0.860
SVM 0.907 0.900 0.896
Multilayer perceptron 0.853 0.850 0.847

Table 4.3: Classification performance is measured for different classifiers. The best
performance belongs to SVM.

As indicated, the best performance belongs to the SVM classification method.

36

Because of the nature of our dataset that contains authors who are expert in only

one research topic, we train a single label classifier i.e., only one class will be assigned

to each virtual author. However, our features are generic and we can train a classifier

to detect more than one expertise per author on a training dataset that contains

instances with multiple expertise.

The first baseline we test here is based on the cosine similarity between TF-IDF

vectors of every virtual author and NSERC research topic pair. We use combined

bag of words representation for virtual authors and bag of words representation of

NSERC research topics as described in 3.1.1. The similarity between a researcher and

a research topic then equals the cosine similarity of their vectors. For each virtual

author, the research topic(s) with the highest similarity score is assigned to her. In

case that more than one research topics have the same scores or their differences are

less than one percent we assign all of them to the virtual author. In the other words,

we select the NSERC research topics that have the highest lexical similarity with

documents of a researcher as her expertise.

In the second baseline we add the concepts to the vector representation of virtual

authors and NSERC research topics. So each virtual author is represented as the

union of her combined bag of words and combined bag of concepts using the wiki-

fication weighting scheme as discussed in 3.1.2. Each NSERC research topic is also

described as the union of its bag of words and bag of concepts vector. Again, both

virtual authors and NSERC research topics are described by vectors and we can find

a researcher’s expertise based on the cosine similarity.

In the third baseline we use Naive Bayes classification model to detect expertise

of researchers. The input feature vector is the bag of words of virtual authors. We

use Weka to build this input vector. First, we build a document that has a single

line per virtual author. This line is the concatenation of titles and abstracts of all of

her papers together. Second, we use the “StringToWordVector” option to build the

vector representation of researchers. Third we give this representation to Naive Bayes

module in Weka and use the 10 fold cross validation to train and test this classifier.

The evaluation results of all three baseline methods are available in Table 4.4.

As the evaluation results indicate, our system significantly outperforms all baseline

methods. The best classification result in our system belongs to the SVM which

37

Method Precision Recall F1-score
Cosine Similarity of Word Vectors 0.4895 0.5875 0.5340

Cosine Similarity of Word and Concept Vectors 0.5172 0.5625 0.5389
Naive Bayes Classification 0.644 0.70 0.631

Table 4.4: Evaluation of baseline methods. The first baseline finds the most similar
NSERC research topic to each virtual author by calculating cosine similarity of TF-
IDF vectors of each pair. In the second baseline we use the union of words and
concepts and calculate the cosine similarities. In the last method, we apply a Naive
Bayes classifier to the bag of words representation of virtual authors to find the most
similar class to them (NSERC research topic).

outperform the best baseline, Naive Bayes with about 0.27 improvement in terms of

F1-score. The decision tree classifier has performed as the worst classifier based on

our features with the F1-score equals 0.71. However, even the results of this classifier

outperforms all of the baseline methods.

4.4 Parameter Tuning

4.4.1 Wikipedia Miner Concept Probability Score

We have used Wikipedia Miner to wikify our documents. This system uses the sur-

rounding words of each keyterm in order to find the right concept for it, however, it

is not guaranteed that each keyword match with the right concept. Thus, for each

detected keyterm in the text, Wikipedia Miner also reports the probability that the

relevant concept is mapped to it (wikification weight).

Concepts with low probability scores are less likely to be accurate. So we ignore

all concepts with probability score below a threshold. To find the best value of

this threshold, we conduct a set of experiments. These experiments are done on a

separate validation dataset which is 20 percent of our original data and contains 20

virtual authors and 730 papers. For each experiment all features with the current

configuration have been calculated and the result is based on SVM classification

model. We do not use the validation data for training or testing other parts of the

system.

We have tried five different values and reported the weighted average precision,

recall and F1-score for each value in Table 4.5. As indicated by this experiment the

38

best threshold equals 0.5.

Threshold Precision Recall F1-score
35 0.633 0.70 0.66
40 0.633 0.70 0.66
50 0.70 0.70 0.70
60 0.73 0.70 0.69
70 0.525 0.60 0.556
80 0.523 0.55 0.519

Table 4.5: The system performance is reported for different values as the threshold
of wikification weight.

4.4.2 Sunflower Graph Depth and Width

The Sunflower’s output is a graph that shows the related categories of the input

concept. This graph is directed and weighted which means each edge has a direction

from subcategory to category and each node has a weight that shows its relatedness

to the root.

We can configure the width and depth of the output graph in order to avoid getting

unrelated or too general categories. The width parameter indicates the maximum

number of branches and the depth parameter indicates the maximum level of nodes

in the graph. We have tested different values for depth and width to find the best

configuration in our problem.

For each of the virtual authors in the validation dataset, we will calculate the entire

feature set based on the desired depth and width and run the experiments using SVM

classifier. We used 10 fold cross validation for the testing and the weighted average

precision, recall and F1-score for the first experiment is reported in Table 4.6.

Width Depth Precision Recall F1-score
1 1 0.442 0.45 0.43
2 2 0.633 0.75 0.677
3 3 0.623 0.75 0.667
4 4 0.583 0.65 0.61
5 5 0.608 0.70 0.643

Table 4.6: Different values of depth and width of Sunflower graph is tested to find
the best configuration.

39

The best configuration so far is depth=2 and width=2. Based on the results of

table 4.6 we limit our experiments to the values that either depth or width equal 2.

In the next experiment we are testing different values for depth from 3 to 5 when

width=2 and different values for width from 3 to 5 when depth=2 and the results are

available in Table 4.7.

Width Depth Precision Recall F1-score
2 5 0.617 0.70 0.65
2 4 0.608 0.70 0.643
2 3 0.592 0.65 0.613
2 2 0.633 0.75 0.677
3 2 0.617 0.70 0.65
4 2 0.633 0.70 0.66
5 2 0.625 0.70 0.65

Table 4.7: The system accuracy is reported for different values of depth and width of
Sunflower graph when width=2 and when depth=2, respectively.

Based on these experiments and analyzing the trend of F1-score the best choices

for Sunflower parameters are width=2 and depth=2.

4.5 Filtering

After visualizing bags of categories for a few virtual authors we noticed that there

are unrelated categories among them. We are assuming that if we can find these non

relevant categories we could get better results. However, finding a filtering method

to detect these words is challenging. Since all the categories that we are using are

extracted from Wikipedia, we have tried a few different methods to extract all cate-

gories of Wikipedia that are related to computer science. As the results of filtering

are not satisfying we put more details about approaches used in the appendix C to

simplify this section.

40

4.6 Feature Selection

Feature selection (also called attribute or variable selection), refers to the process of

reducing number of features that are used in the training of a classifier. Since each

feature has a different impact on the accuracy of a classifier we can find a good subset

of features that are more important and remove the remaining.

Two main benefits of feature selection are: 1. increasing accuracy and 2. de-

creasing training time. The accuracy of classification could be increased by removing

non relevant features or decreasing the importance of less informative features. In

addition, as the calculation of some features could be time consuming, lowering the

number of features to be calculated will decrease the entire training time, too.

There are different approaches to feature selection. However, finding the optimal

subset is a combinatorial problem. Hence, most of the times we are looking for

near optimal solutions. We apply three different feature selection methods to our

set of features to select the most important ones. These methods are Information

Gain, RELIEF and Chi-squared. We use their Weka implementations. The system

performance is measured and reported in Table 4.8 using each algorithm. The number

of features remaining after applying each method is available in the second column.

Feature Selection
Method

Number of Selected
Features

Precision Recall F1-score

Information Gain 51 0.916 0.913 0.912
RELIEF 116 0.916 0.900 0.892

Chi-squared 74 0.904 0.900 0.899

Table 4.8: The performance of system in terms of precision, recall and f-measure after
applying three different feature selection algorithms. The number of selected features
using each algorithm is available in the second column.

The results of feature selection shows improvement in terms of F1-score. In addi-

tion, since the training time for our current dataset is very short (about 2 seconds) we

do not measure the improvement of feature selection to this running time. However,

we analyzed the top 50 selected features using Information gain, RELIEF and Chi-

squared in order to recognize importance of each of the features. We have divided

our features into four subsets:

1. Combined word-based features (2 features)

41

2. Combined concept-based features (10 features)

3. Combined category-based features (15 features)

4. Individual papers features (9 features)

The number of features selected from each group is available in Table reftable:exps-

featSel-ddd. Based on the results of this table, the semantic features introduced are

highly important comparing to the lexical features.

Feature Set Information gain Chi-squared RELIEF
Combined word-based features 2 4 0

Combined concept-based features 19 19 23
Combined category-based features 15 10 16

Individual papers features 14 17 11

Table 4.9: We analyzed the top 50 selected features using three feature selection
method and report the number of features that are selected from each subset.

We conduct a series of experiments to evaluate the importance of each set of

features without presence of others. We apply the SVM classification method to each

set of features and report precision, recall and f-measure. First, we classify the authors

based on combined papers features and individual papers features separately. Next,

using each of the bag of words (BOW), bag of concepts (BOC) and bag of categories

(BOK) we perform three different experiments. All of these 3 feature sets are a

part of combined papers features. The BOW features include all cosine similarities

discussed in Sec. 3.2.1. The BOC and BOK features consist of features discussed in

concept-based similarity and category-based similarity of Sec. 3.2, respectively. The

last feature set we evaluate is the classification of individual papers. Results of all

theses experiment are available in Table 4.10.

42

Feature Set Precision Recall F1-score
Combined papers features 0.809 0.802 0.802
Individual papers features 0.751 0.75 0.747

BOW similarities 0.48 0.542 0.506
BOC similarities 0.749 0.75 0.748
BOC similarities 0.578 0.583 0.576

Individual papers-classification features 0.75 0.74 0.742

Table 4.10: Evaluating performance of the system using different sets of features
to measure importance of each set. The first two rows are using combined papers
and individual papers features. The next three experiments are done based on the
similarity features extracted from each of the bag of words, bag of concepts and bag
of categories representation. The last result belongs to the features extracted from
classification of individual papers.

Chapter 5

Conclusion

In this thesis we proposed a system that uses researchers papers to characterize their

expertise. We used a classification approach to solve this problem. In our classifier,

input is the set of titles and abstracts of papers related to a researcher and classes

are the research topics. First, we extract different sets of features from papers. Each

feature measures the relatedness of a researcher’s papers to the research topics. We

used different lexical and semantic similarity measures to accurately estimate the

research areas of a researcher.

To represent the research topics we used the NSERC categorization model. NSERC

divides natural sciences and engineering into twelve disciplines and each discipline is

defined by a few research topics. Each research topic is described by keyterms related

to different aspects of that topic. To train our classification model and evaluate our

system performance we used a subset of research topics in computer science.

We introduce different document representations to calculate similarity between

every pair of researcher and research topic. Each document is represented by bag

of words, bag of concepts and bag of categories. The bag of words contains all uni-

grams that explicitly appear in the documents text. The bag of concepts contains

the concepts i.e., intended meaning of important keyterms in the document. We

use Wikipedia Miner toolkit to extract concepts and wikify documents. We selected

Wikipedia to represent concepts because of its rich set of concepts and unique features

such as categories and inner connections between articles. The bag of categories

is built using Sunflower system. Sunflower is a Wikipedia based system that uses

different versions (languages) of Wikipedia to build a category graph for the input

concept. We give all concepts extracted from a document to the Sunflower and use

the output category graphs to build the bag of categories.

Features are extracted from both individual and combined papers of the re-

searcher. The number of features always depends on the number of research topics.

43

44

To calculate combined papers features we take the union of bag of words, bag of con-

cepts and bag of categories for each document that is associated with a researcher.

For individual papers features, first we compute similarity of each paper to the classes

and then define similarity measures such as average similarity of papers to each class.

Evaluation results show a high accuracy of the system in representing expertise

of researchers. We trained and tested different classification approaches using our

feature set and reported the results. All of the classifiers trained based on our features

significantly outperform the baseline methods.

To improve the system performance we used feature selection algorithms and

removed less informative features which increased the accuracy. Analysis of top 50

selected features based on each of the feature selection methods, shows the high impact

of semantic features we have introduced. We also conduct a series of experiments to

evaluate importance of each set of features without presence of others. Based on the

results of feature selection, features extracted from classification of individual papers

are at the top of selected feature list and followed by features related to concept

similarities extracted from combined papers features. The ranking of features in the

results of all three feature selection methods also indicate the importance of semantic

similarity between documents comparing to their lexical similarity.

5.1 Future Work

One direction of the future work in this problem is to scale up the system and solve

the problem for more than one discipline. Since the research topics that we are using

have a hierarchical structure, one possibility is to use hierarchical classification models

to scaling up to a dozen disciplines and hundreds of research topics.

Second idea is to use multi-label classifiers with training data where an instance

comes with multiple labels. Because of the nature of our dataset we were not able to

train a multi-label classifier since all instances have only one class assigned to them.

Using a proper dataset that contains instances with more than one class, we are able

to use the proposed features to train and evaluate a multi-label model.

In addition to the specific multi-label classification approaches, we also can use

one-vs-rest or one-class classification. These methods use a binary approach to decide

if an instance belongs to a classes or not and repeat this for all classes. In the

45

training phase, one-vs-rest takes all instances in a class as positive instances and all

other instances as negative. While the one-class classification only use the positive

instances that belong to a class and do not use the rest of data as negative instances.

Bibliography

PreslavNakov LluısMarquez WalidMagdy AlessandroMoschitti, James Glass, and Bi-
lal Randeree. Semeval-2015 task 3: Answer selection in community question an-
swering. SemEval-2015, page 269, 2015.

Omar Alonso, Premkumar T Devanbu, and Michael Gertz. Expertise identification
and visualization from CVS. In Proceedings of the 2008 international working
conference on Mining software repositories, pages 125–128. ACM, 2008.

Krisztian Balog, Yi Fang, Maarten de Rijke, Pavel Serdyukov, and Luo Si. Expertise
retrieval. Foundations and Trends in Information Retrieval, 6(2–3):127–256, 2012.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.
J. Mach. Learn. Res., 3:993–1022, March 2003.

Toine Bogers, Willem Thoonen, and Antal Van Den Bosch. Expertise classification:
Collaborative classification vs. automatic extraction. Advances in Classification
Research Online, 17(1):1–20, 2006.

Christopher S Campbell, Paul P Maglio, Alex Cozzi, and Byron Dom. Expertise iden-
tification using email communications. In Proceedings of the twelfth international
conference on Information and knowledge management, pages 528–531. ACM, 2003.

Laurent Charlin, Richard S Zemel, and Craig Boutilier. A framework for optimizing
paper matching. arXiv preprint arXiv:1202.3706, 2012.

Hung-Hsuan Chen, Pucktada Treeratpituk, Prasenjit Mitra, and C Lee Giles. CSSeer:
an expert recommendation system based on CiteseerX. In Proceedings of the 13th
ACM/IEEE-CS joint conference on Digital libraries, pages 381–382. ACM, 2013.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
society for information science, 41(6):391, 1990.

Hongbo Deng, Irwin King, and Michael R Lyu. Formal models for expert finding on
dblp bibliography data. In Data Mining, 2008. ICDM’08. Eighth IEEE Interna-
tional Conference on, pages 163–172. IEEE, 2008.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using
Wikipedia-based explicit semantic analysis. In IJCAI, volume 7, pages 1606–1611,
2007.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pages 50–57. ACM, 1999.

46

47

Jian Hu, Lujun Fang, Yang Cao, Hua-Jun Zeng, Hua Li, Qiang Yang, and Zheng
Chen. Enhancing text clustering by leveraging Wikipedia semantics. In Proceed-
ings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’08, pages 179–186, 2008. ISBN
978-1-60558-164-4.

Lan Huang, David Milne, Eibe Frank, and Ian H Witten. Learning a concept-based
document similarity measure. Journal of the American Society for Information
Science and Technology, 63(8):1593–1608, 2012.

Marek Lipczak, A. Koushkestani, and E. Milios. Tulip: Lightweight entity recog-
nition and disambiguation using Wikipedia-Based topic centroids. In ERD 2014
Challenge, Workshop of the 37th Annual ACM SIGIR 2014 conference, Gold Coast,
Australia, July 6-11 2014.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
information retrieval, volume 1. Cambridge university press Cambridge, 2008.

Olena Medelyan. Human-competitive automatic topic indexing. PhD thesis, The
University of Waikato, 2009.

Rada Mihalcea and Andras Csomai. Wikify!: linking documents to encyclopedic
knowledge. In Proceedings of the sixteenth ACM conference on Conference on in-
formation and knowledge management, pages 233–242. ACM, 2007.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in contin-
uous space word representations. In HLT-NAACL, pages 746–751, 2013.

David Milne and Ian H Witten. An open-source toolkit for mining Wikipedia. Arti-
ficial Intelligence, 194:222–239, 2013.

Catarina Moreira, Pvel Calado, and Bruno Martins. Learning to rank academic
experts in the DBLP dataset. Expert Systems, 32(4):477–493, 2015. ISSN 1468-
0394. doi: 10.1111/exsy.12062. URL http://dx.doi.org/10.1111/exsy.12062.

Massimo Nicosia, Simone Filice, Alberto Barrón-Cedeno, Iman Saleh, Hamdy
Mubarak, Wei Gao, Preslav Nakov, Giovanni Da San Martino, Alessandro Mos-
chitti, Kareem Darwish, et al. Qcri: Answer selection for community question
answeringexperiments for arabic and english. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation, SemEval, volume 15, pages 203–209,
2015.

Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algo-
rithms for disambiguation to Wikipedia. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pages 1375–1384. Association for Computational Linguistics, 2011.

http://dx.doi.org/10.1111/exsy.12062

48

Fatemeh Riahi, Zainab Zolaktaf, Mahdi Shafiei, and Evangelos Milios. Finding expert
users in community question answering. In Proceedings of the 21st international
conference companion on World Wide Web, pages 791–798. ACM, 2012.

Isac S. Ribeiro, Rodrygo L.T. Santos, Marcos A. Gonçalves, and Alberto H.F. Laen-
der. On tag recommendation for expertise profiling: A case study in the scientific
domain. In Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining, WSDM ’15, pages 189–198, 2015.

Jan Rybak, Krisztian Balog, and Kjetil Nørv̊ag. Temporal expertise profiling. In
Advances in Information Retrieval, pages 540–546. Springer, 2014.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:
Extraction and mining of academic social networks. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’08, pages 990–998, 2008.

Wenbin Tang, Jie Tang, Tao Lei, Chenhao Tan, Bo Gao, and Tian Li. On optimization
of expertise matching with various constraints. Neurocomputing, 76(1):71–83, 2012.

Petros Venetis, Georgia Koutrika, and Hector Garcia-Molina. On the selection of tags
for tag clouds. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 835–844. ACM, 2011.

Pu Wang and Carlotta Domeniconi. Building semantic kernels for text classification
using Wikipedia. In Proceedings of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’08, pages 713–721, 2008.
ISBN 978-1-60558-193-4.

Ian Witten and David Milne. An effective, low-cost measure of semantic relatedness
obtained from Wikipedia links. In Proceeding of AAAI Workshop on Wikipedia and
Artificial Intelligence: an Evolving Synergy, AAAI Press, Chicago, USA, pages 25–
30, 2008.

Liu Yang, Minghui Qiu, Swapna Gottipati, Feida Zhu, Jing Jiang, Huiping Sun, and
Zhong Chen. Cqarank: jointly model topics and expertise in community question
answering. In Proceedings of the 22nd ACM international conference on Conference
on information and knowledge management, pages 99–108. ACM, 2013.

Majid Yazdani and Andrei Popescu-Belis. Computing text semantic relatedness using
the contents and links of a hypertext encyclopedia. Artificial Intelligence, 194:176–
202, 2013.

Torsten Zesch and Iryna Gurevych. Analysis of the Wikipedia category graph for nlp
applications. In Proceedings of the TextGraphs-2 Workshop (NAACL-HLT 2007),
pages 1–8, 2007.

Appendix A

List of Research Topics and Keyterms

Algorithms and Data Structures: Analysis of algorithms; data structures; par-

allel and distributed algorithms; graph algorithms; computational combinatorics;

computational geometry; randomized algorithms; computational game theory; theo-

retical cryptography.

Computer Networks: Network protocols; protocol performance; data commu-

nications; simulation and emulation of networks; multimedia systems and networks;

network management; wireless and mobile networks and ad hoc networks; sensor net-

works; optical networks; overlay networks and peer to peer networks; information

and communication theory; network algorithms; pervasive computing (ubiquitous

computing); green networks; cognitive networks; protocol testing.

Information Systems: Models and principles; database systems information;

storage and retrieval; information systems; information interfaces and presentations;

information integration; visual data analysis; geographic information systems; man-

agement information systems; decision support systems; health information systems;

medical informatics

Mathematical Computing: Symbolic computing; scientific computing; nu-

merical optimization; computer algebra; numerical modelling and simulation

Theory of Computing: Theoretical foundations of computation; complexity the-

ory; structural complexity; logic and proof complexity; descriptive complexity; au-

tomata theory; information theory; coding theory

Software Engineering: Requirements; specification; software design; software

49

50

architecture; software implementation; quality management-testing; validation; verifi-

cation; software development environments; software analysis; evaluation; reliability;

maintenance; user interface development; re-engineering and migration; user inter-

faces; software evolution; process life-cycle models; agile methods; model-driven de-

velopment; reactive, embedded, and cyber-physical systems; software product lines;

data mining from software repositories

Parallel and Distributed Computing: Distributed models and algorithms;

distributed architectures; distributed and parallel programming and languages; de-

sign, validation and verification; distributed storage; file systems; management; fault

tolerance; performance analysis; parallelism and concurrency; parallel processing;

parallel models and algorithms; high-performance computing; clusters; symmetric

multi-processors; applications; peer-to-peer; grid computing; pervasive computing;

map-reduce paradigm; cloud computing; multi-core architectures; service-oriented

computing

Web-Based Systems: Social computing; social media; social networks; inter-

net theory; Web services; standards; Web architectural styles (e.g. REST); design of

Web systems; Web security; portals and portal frameworks; wikis; blogs; crowdsourc-

ing; recommender systems

Human Computer Interaction: Usability engineering; user interface design

and evaluation; multi-modal user interaction; computer-supported cooperative work;

haptics; HCI in visualization; virtual reality; human-robot interaction; computer

game interfaces; entertainment computing; mixed reality; HCI for mobile devices,

modelling/simulation/synthesis of user interfaces

Web-Enabled Applications and Services: E-health; e-business; e-government;

e-learning; e-commerce; e-culture; e-education; e-science; mobile applications

Appendix B

List of Conferences

Algorithms and Data Structures: Proceedings of the International Symposium

on Algorithms and Computation (ISAAC) - 207

Computer Networks: Computer Communications and Networks (ICCCN),

International Conference on Computer Communication (INFOCOM), International

conference on networks (ICN), International Conference on Pervasive Computing and

Communications (PerCom), International Conference on Network Protocols (ICNP),

International Conference on Sensing, Communication and Networking(SECON), Spe-

cial Interest Group on data Communications (SIGCOMM), International symposium

on Mobile ad-hoc networking and computing (MobiHoc) - 546

Information Systems: Proceedings of the International Conference on Infor-

mation Systems (ICIS), Conference on Research and development in information

retrieval (SIGIR), Text REtrieval Conference (TREC), International workshop on

Geographic information retrieval (GIR), International conference on Information and

knowledge management (CIKM) - 529

Mathematical Computing: Mathematical Foundations of Computer Science

(MFCS), Discrete Mathematics and Theoretical Computer Science (DMTCS) - 287

Theory of Computing: Annual Symposium on Logic In Computer Science

(LICS), Annual ACM symposium on Theory of computing (STOC), Journal of Com-

puter and System Sciences (JCSS), International Symposium on Information Theory

(ISIT) - 436

Software Engineering: International Conference on Software Engineering (ICSE),

51

52

Proceedings of the Conference on Software Maintenance (ICSM), International Sym-

posium on Software Testing and Analysis (ISSTA), International Conference on Re-

quirements Engineering (RE), International conference on Automated software engi-

neering (ASE) - 437

Parallel and Distributed Computing: International Conference on Paral-

lel Processing (ICPP), Object Oriented Real-Time Distributed Computing (ISORC),

International Conference on Parallel Computing Technologies (PaCT), Parallel Com-

puting: Architectures, Algorithms and Applications (PARCO), International Sympo-

sium on Parallel and Distributed Computing (ISPDC), International Conference on

Cluster, Cloud and Grid Computing (CCGrid) - 480

Web-Based Systems: Workshop on Web Services and Model-Driven Enter-

prise Information Systems (WSMDEIS), AAAI CONFERENCE ON WEB AND SO-

CIAL MEDIA (ICWSM), conference on Hypertext and hypermedia (HT),international

conference on World wide web (WWW) - 359

Human Computer Interaction: International Conference on Advanced Vi-

sual Interfaces (AVI), International Conference on Human-Computer Interaction (HCI)

- 1225

Web-Enabled Applications and Services: International Conference on Ad-

vances in Web-Based Learning (ICWL), International Conference on Web Services

(ICWS), Commerce and Enterprise Computing (CEC), International Conference on e-

Technology, e-Commerce and e-Service (EEE), International conference on Electronic

commerce (ICEC), International conference on Electronic Government (EGOV), Con-

ference on Electronic Commerce (EC) - 436

Appendix C

Filtering

The cloud visualization of bag of top categories for a researcher who is expert in

computer networks is available in Fig. C.1. There are some irrelevant categories such

as “latin words and phrases”, “history” and “2001”.

Figure C.1: Word cloud representation of bag of categories for a researcher who is
expert in Computer Networks. The size of each word corresponds to its weight in the
categories vector of the author.

One trivial method to filter unrelated categories is retaining all categories that

are connected to computer science and remove everything else. For this purpose, first

we use the Wikipedia category graph. Wikipedia categories have a graph structure

in which categories are connected to their subcategories. This graph has both cycles

and isolated nodes [Zesch and Gurevych, 2007], too. As we are looking for all cate-

gories related to computer science, we find the “Computer Science” category node in

this graph and extract all of its subcategories. So we have a connected graph with

53

54

computer science as its root.

After analyzing the result graph we found lots of nodes that are not related to

computer science. They have been added to the graph because of either human errors

while editing Wikipedia or ambiguity of categories. A part of this graph hierarchy

is available in Fig. C.2. Because of the ambiguity of “bio-informatics” category, two

unrelated branches are merged together. At some point in this graph categories such

as “Nervous System”, “Senses” and “Organ System” has been added to the filtering

list which are not relevant.

Figure C.2: A sub-graph extracted from the first filtering graph. This graph is
constructed by subcategories of computer science, however, a lot of unrelated nodes
exist in it. This is mostly because of ambiguity of categories or sometimes because of
human mistakes.

To improve the previous graph we try two approaches to find unrelated nodes and

remove them. First, we find related categories based on their similarity to the root

node. We use Wikipedia miner similarity score and calculate the pairwise similarity of

every category in the graph with the computer science. Second, we measure similarity

of every category with its direct parent. The average value of these two scores shows

its relatedness to the computer science. Then we filter out unrelated categories in two

ways: 1. Removing only the node that its score is lower than a specific threshold. 2.

55

Pruning the whole branch from the node that has a score lower than the threshold.

Using each of these methods we will have a category list that are more likely to be

related to computer science.

Using all categories in the filtering graph, we filter bag of categories representation

of researchers i.e., removing any category that exists in bag of categories but does

not appear in the filtering graph. After evaluating the system using each of the

filtering methods, the system performance decreased in terms of precision and recall.

Analyzing the results of bag of categories, before and after filtering shows that filtering

removes a lot of categories that are informative and retains a portion of non related

categories, too (see Fig. C.3).

Figure C.3: An bag of categories example for and expert in software engineering
topics. The left picture shows top categories before filtering and the right one shows
the results after filtering using the first filtering model.

Appendix D

Sunflower

Wikipedia is a large multilingual encyclopedia that has about 38 million pages as of

December 2015 and new contents are added each day. It currently has 290 active

languages growing around the world. Articles are created, edited and maintained

by volunteer contributors. A Wikipedia article doesn’t necessarily have a unique

structure, however, all articles have an id, title, content, references and one or more

categories.

Sunflower is an open sourve system developed in Dalhousie university with the

purpose of generalizing concepts and finding their categories. It was initially designed

to be used for generalization of named entities. The basic idea of Sunflower is to use

Wikipedia in different languages in order to find categories of a concept. It uses

Wikipedia since each article in Wikipedia is associated with a single concept.

One trivial approach to this problem is using the provided categories for each

article to generalize it. Unfortunately, not all of the Wikipedia categories are in-

formative for the purpose of logical categorization. For example there are a large

number of categories such as “Wikipedia articles in need of updating”, “Wikipedia

Bad Jokes and Other Deleted Nonsense”, “Wikipedia backlog” and “Wikipedia fea-

tured articles” that does not have information about that concept. Moreover, articles

do not necessarily have a heterogeneous categories list in terms of number of related

categories that are covered and the generality levels of categories.

The key idea of Sunflower is using different languages of Wikipedia to generalize

a concept. To decide if an article belongs to a category or not, Sunflower takes

each version (language) of that article as an evidence. In addition, the categories in

Wikipedia have a hierarchical structure. The graph of categories in each language

has a unique structure. Sunflower finds the graph of categories for an article in each

language and then unifies these graphs to build a single output graph. The probability

that article a belongs to the category c is calculated as Eq D.1 where L is all articles

56

57

in one language of Wikipedia.

probability(a, c) =
|{a ∈ L, c ∈ a}|
| a ∈ L|

(D.1)

To find categories of a concept, Sunflower extracts all category information of

articles and builds a lookup table. A part of the table is available in Fig. D.1. In

the first column the article title is shown and in the second column the number of

languages that have that Wikipedia article. The next five columns contain title of

five most used categories with the corresponding number of occurrence. The first row

shows that article “Europe” appeared in 106 languages, in 102 languages it belonged

to the “Category:Europe”, in 48 languages it belonged to the “Category:Continent”

and in 12 languages it belonged to the “Category:Geography”. In this case the prob-

abilities that article “Europe” belongs to the categories “Europe”, “Continents” and

“Geography” are 0.962, 0.452 and 0.113, respectively.

Figure D.1: A part of the lookup data used by Sunflower. The system builds this
data for every named entity article in the Wikipedia based on different languages. In
this example, as shown in the first row, the article “Europe” appeared in 106 lan-
guages, in 102 languages it belonged to the “Category:Europe”, in 48 languages it
belonged to the “Category:Continent” and in 12 languages it belonged to the “Cate-
gory:Geography”.

The input of Sunflower is a Wikipedia article and its output is a weighted and

directed graph of categories. In this graph, direction of edges are from subcategory

to the parent category. The weight of edges are calculated by Eq. D.1. To calculate

the weight of each node, the parent’s weight is multiplied by edge’s weight. If a node

has more than one parent, we select the highest score as its weight. Considering the

graph in Fig. D.2, the weights of nodes are computed as following:

• weight(B) = 1× 0.63 = 0.63

• weight(C) = 1× 0.0.28 = 0.28

• weight(D) = 0.63× 0.77 = 0.485

58

• weight(E) = max(0.63× 0.4, 0.485× 0.9) = 0.436

Figure D.2: An example output graph of Sunflower. This graph is weighted and
directed. The direction is from the subcategory to the parent and the weight of a
node is computed by multiplying weight of parent node by the weight of the edge
between them.

To specify the generality level or the minimum relatedness of category to the

initial concept, Sunflower provides two configurable parameters of depth and width.

The former is used to define the maximum level of nodes in the output graph and the

latter determine the highest number of branches in each level of the graph.

As mentioned Sunflower was designed for the named entities, while we needed

to work with all concepts of Wikipedia. Thus, we extracted the required category

information for all articles from Wikipedia dump files and extended the Sunflower

lookup table to support all Wikipedia articles.

Contribution of people to Wikipedia varies significantly in different languages.

The top five languages based on number of articles are English, Swedish, German,

Dutch and German1 as of November 2015 where English has significantly more articles

than any other languages. In order to consider the importance of English as it seems

to be the most active language in Wikipedia, we decided to change the calculation of

1https://stats.wikimedia.org/EN/Sitemap.htm

59

lookup table. We count the number occurrences of a category in different languages

for an article and store the top most used categories only if that category exist in

the English article up to maximum of 5 categories. This way only categories that

exist in the English version will be considered as the direct category of that article.

However, we still use the category graph from different languages and calculate the

probabilities as mentioned before.

Finally we provide a web service to generalize a Wikipedia concept and build its

category graph. The system supports all articles of Wikipedia. It receives a Wikipedia

article as input and two parameters as the depth and width of the output graph. The

output provided by this service is the information to build the category graph of input

concept that contains nodes (categories), paths and a relatedness score for every node

to show similarity of that node to input. In our system we only use nodes of the graph

and their associated relatedness score.

Appendix E

Wikipedia Miner

Wikipedia as a huge source of knowledge with articles that cover various subjects in

different languages has been popular among researchers. The content of Wikipedia

is available to download and contains everything from articles, categories, structure,

links between languages, in-links, out-links and everything else that exists in the

Wikipedia website. However, working with this amount of data needs a lot of resources

and effort.

Wikipedia Miner [Milne and Witten, 2013] is a system developed by University

of Waikato and provides services to make working with Wikipedia easier and more

feasible. Wikipedia Miner offers a variety of tasks that could be done using Wikipedia.

In order to do that, Wikipedia Miner stores content and structure of Wikipedia and

provides a Java API to access different services.

Two important services we have used in this thesis are called annotation and com-

parison. The annotation service is able to wikify documents. It receives a document

as input and detect important terms in it. To detect these terms first it calculate

the prior link probability for all article titles, redirects and link anchors of Wikipedia.

This probability is computed based on the usage statistics in Wikipedia. For instance,

in 76% of the times the term dog is linked to the article pet [Milne and Witten, 2013].

The term detector then extract all terms from the text of input document with the

link prior probability higher than a specific threshold. These labels are then dis-

ambiguated and for each label a single Wikipedia article is returned with a score

that shows the relevance of that article to the document. An example of a wikified

document belong to the abstract of a paper is shown in Fig E.1.

The next service we used is called comparison. This service receives two terms

and evaluate the semantic relatedness of them. In case that input terms are both

Wikipedia articles, it computes a set of features based on the in-links and out-links

of associated articles e.g., normalized link distance which is modeled using Google

60

61

Figure E.1: A wikified example of a paper abstract using Wikipedia Miner system.
The selected keyterms are shown in the brackets [[keyterm]] and if the title of associ-
ated Wikipedia article is different from the keyterm, the title is written after | in the
bracket otherwise nothing is shown as the article title. Hovering over each keyterm
shows its relatedness score.

distance and link vector similarity which is modeled using the TF-IDF vectors. Based

on these features a model is trained and its performance on automatic calculation of

input terms’ relatedness is tested.

Appendix F

Weka Parameters

In this section we report the configuration and parameters we used to perform clas-

sification using Weka. We use the Weka documentation to describe each parameter.

We use the version 3.6 and anything that is not reported here has the default config-

uration.

F.1 Decision Tree

The “confidenceFactor” is the threshold that is used for pruning and equals 0.25 and

“minNumObj” is the minimum number of instances per leaf which is equal to 2.

F.2 Random Forest

“MaxDepth” is equal to zero which allows the unlimited depth for the tree and

“numTrees” equals 100 which builds 100 trees.

F.3 SVM

For the SVM we are using the “LibSVM” library which is an integrated plug-in in

Weka. We use a linear kernel and the “cost” parameter equals 10. The “coef0” is

set to 10 which indicates the coefficient to use and “eps” is equal to 0.1 that is the

termination tolerance.

F.4 Multilayer Perceptron

For this task we use “multilayerPerceptron” wihch is a multi-class classifier. The

“hiddenlayers” is set to “a” which is a default value and set the number of hidden

layers to (classes+attributes)/2. The learning rate is 0.3 and momentum is 0.2. The

“trainingtime” equals 500 which is the number of epochs used in training.

62

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Related Work
	Expert Finding
	Expertise Representation
	Document Representation
	Concept Similarity Measures

	Methodology
	Document Representation
	Bag of Words
	Bag of Concepts
	Bag of Categories

	Feature Extraction
	Combined Papers Features
	Individual Papers Features

	Experiments and Results
	Data Collection
	Topic Representation
	Paper Selection

	Evaluation Measures
	Comparing Classifiers and Baselines
	Parameter Tuning
	Wikipedia Miner Concept Probability Score
	Sunflower Graph Depth and Width

	Filtering
	Feature Selection

	Conclusion
	Future Work

	Bibliography
	List of Research Topics and Keyterms
	List of Conferences
	Filtering
	Sunflower
	Wikipedia Miner
	Weka Parameters
	Decision Tree
	Random Forest
	SVM
	Multilayer Perceptron

