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Abstract   
 

Biogenic components of the marine environment such as eelgrass (Zostera marina L.) 

provide numerous valuable ecosystem services and function as ecosystem engineers in 

the coastal environment.  The spatial distribution and arrangement of eelgrass in the 

coastal landscape greatly influences ecological functions, necessitating mapping and 

monitoring of eelgrass habitat for effective management, though quantification of 

landscape structure has been hindered by challenges collecting and analyzing spatial data 

in the coastal zone.  In this thesis, the spatial structure and distribution of eelgrass was 

studied through the application of acoustic and optical remote sensing and spatial analysis 

to quantify aspects of eelgrass landscape pattern.  Single-beam acoustic data representing 

a seagrass landscape were collected and analyzed at multiple spatial scales through 

geostatistical methods and local spatial statistics (i.e., Getis-Ord Gi
*), identifying areas of 

high and low cover in a spatially continuous seagrass bed.  Acoustic data from the same 

site were compared to a satellite-derived dataset using remote sensing techniques for the 

evaluation of map accuracy.  Performance of the satellite classification algorithm was 

found to vary depending on the spatial scale and degree of fragmentation in the 

landscape, highlighting the strengths and weaknesses of the method, and contrasting the 

landscape conceptualization of acoustic and aerial remote sensing.  The spatial resolution 

of modern satellite data has greatly improved, though at pixel size of 2.4 m the ability to 

discern fine-scale patterns is limited.  In contrast, very high-resolution aerial photography 

(pixel size ~3 cm) collected at a second site from a tethered helium-balloon platform was 

classified to depict a complex landscape mosaic comprised of eelgrass and blue mussels 

(Mytilus edulis L.).  The application of landscape pattern metrics with high-resolution 

imagery additionally allowed tracking the temporal change in eelgrass patch metrics over 

a period of 26 months.  The multidisciplinary approach of this thesis advance the 

application of spatial analysis in coastal ecosystems through the novel use of spatial 

statistics and remote sensing.  Continued research and technological developments 

promise to improve management and provide new insights to the spatial dynamics and 

function of coastal landscapes.   
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Chapter 1.  Introduction 
 

 Coastal ecosystems are incredibly important, providing a wealth of resources and 

ecosystem services and serving key roles in global ecological function.  They are also 

under immense pressures due to intensive coastal development and climate change 

leading to widespread declines.  As a primary interface between humanity and the global 

ocean, the coasts are exposed to numerous direct and indirect anthropogenic stressors.  

Coastal populations are expanding at a high and accelerating rate, dramatically increasing 

the pressures on coastal resources.  Recent estimates suggest that as much as 44% of the 

global human population lives within 150 km of the oceans, and population growth in 

these areas is accelerating (UN 2014).  As a result, coastal habitats are threatened and 

declining, and continued provision of the numerous services provided by coastal 

resources are at risk (Lotze et al. 2006, Waycott et al. 2009). 

 Understanding the distribution of coastal habitats such as seagrass beds is a 

complex undertaking.  The processes that regulate the spatial distribution of coastal 

habitats operate over a range of spatial and temporal scales.  Collaborative and 

interdisciplinary approaches are needed to understand and protect these crucial areas.  

This thesis addresses issues associated with the spatial distribution of coastal habitats, 

combining elements of remote sensing, spatial statistics, and landscape ecology to 

increase understanding of the spatial dynamics of coastal marine habitats. 

 Below, I introduce and briefly review several of the main concepts and themes 

recurring throughout my thesis, with relevant history and background details to lay the 

foundation for the remainder of the manuscript. 
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1.1  Seagrass Ecology 

 

 Seagrasses are a group of marine angiosperms that are distributed over a near-

global extent, occurring on 6 continents (Green & Short 2003, den Hartog & Kuo 2006).  

Seagrasses perform a wide range of functions in coastal ecosystems, and rank among the 

most valuable and productive habitats worldwide (Costanza et al. 1997).  They provide a 

variety of important services including primary production, nutrient cycling, water 

filtration , attenuation of wave energy, carbon sequestration, sediment stabilization and 

erosion protection (Orth et al. 2006, Chen et al. 2007, Barbier et al. 2011).  They function 

as autogenic ecosystem engineers, creating and maintaining environmental conditions 

that support a diverse assemblage of species (Jones et al. 1994).  The biogenic structure 

of seagrass provides substrate for epiphytic species, nursery habitat for fish and 

invertebrates, and a direct source of food for grazing invertebrates, megafauna, and 

waterfowl (Valentine & Heck 1999, Hanson 2004, Borowitzka et al. 2006, Boström et al. 

2006).  Seagrasses are also an important source of nutrients exported as subsidies to 

neighboring ecosystems (Heck et al. 2008). 

 In Atlantic Canada, the seagrass community is comprised primary of eelgrass 

(Zostera marina L.) and to a much lesser extent the salt-tolerant widgeon grass (Ruppia 

maritima L.).  Eelgrass can be found along the coast of North America extending 

northwards from North Carolina, USA to Labrador, Canada, spanning a range greater 

than 20 degrees of latitude (Green & Short 2003).  Z. marina is also found along the 

eastern Atlantic coastline as well as both sides of the Pacific (den Hartog & Kuo 2006).  

Other members of the Zostera genus are found in temperate coastal waters of both 

hemispheres.  Eelgrass occurs in both intertidal and shallow-subtidal areas, particularly in 
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estuaries and coastal embayments with soft sediments and adequate protection from 

hydrodynamic stress.  Eelgrass is widely distributed throughout the coastal areas of New 

Brunswick, Prince Edward Island, and Nova Scotia excepting the Bay of Fundy. 

 The importance of aquatic vegetation to coastal ecosystems has prompted diverse 

efforts to understand the factors that govern its growth and mortality.  Seagrasses 

experienced a sharp decline beginning in the 1930s, believed to be due to the effects of 

the slime mold Labyrinthula zosterae, leading to a condition termed “wasting disease” 

(Moore & Short 2006).  Following this episode, eelgrass was either locally exterminated 

or experienced only partial recovery, leading to widespread changes in the function of 

coastal ecosystems.  More recently, declines in the extent and abundance of seagrasses 

have been detected over near-global extent (Orth et al. 2006, Waycott et al. 2009), 

including Atlantic Canada (Seymour et al. 2002, Garbary et al. 2014), due to several 

factors.  Seagrasses are threatened by changes in environmental conditions over a range 

of spatial and temporal scales, and are vulnerable to cumulative effects from multiple 

stressors.  In particular, seagrass declines have been linked to various anthropogenic 

pressures such as eutrophication, sedimentation, fisheries and aquaculture, pollution, 

invasive species, and direct and indirect destruction through coastal development (Lotze 

et al. 2006, Orth et al. 2006).  Expected global-scale changes associated with climate 

change such as increasing temperatures and sea level rise will likely cause additional 

impacts in the near- and long-term future (Orth et al. 2006, Short et al. 2011). 

 The comprehensive value and keystone role played by seagrasses in marine 

ecosystems has led to their inclusion in various aspects of coastal management.  In 

Canada, the value of eelgrass habitat has been formally recognized through the definition 
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of Z. marina as an ‘ecologically significant species’ (ESS) (DFO 2009), and its 

sensitivity and vulnerability has been evaluated for inclusion in habitat management 

programs (Vandermeulen 2005, Vandermeulen 2009, DFO 2011).  The distribution and 

health of seagrass habitat can be used as an indicator of ecosystem health due to its need 

for high water quality (Dennison et al. 1993, Moore & Short 2006, Krause-Jensen et al. 

2008, Martínez-Crego et al. 2008).  Seagrasses are often used in habitat restoration as a 

means for restoring lost ecosystem services through compensatory mitigation (Fonseca et 

al. 2000, van Katwijk et al. 2009), and play an important role in marine spatial planning 

(MSP) and integrated coastal zone management (Foley et al. 2010).   

 

 

 

Figure 1-1.  Hierarchy of spatial scales represented in a seagrass landscape: (left) 

individual plant with leaf and rhizome structures, (center) a collection of plants forming a 

patch, and (right) landscape-scale mosaic of patches.  All photos taken by J. Barrell at 

Eastern Passage, Nova Scotia, Canada. 
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1.1.1 Seagrass Spatial Structure 

 Seagrass habitat occurs naturally in configurations ranging from highly 

fragmented to continuous meadows (Duarte et al. 2006).  The spatial structure of seagrass 

habitat can be conceptualized as a hierarchy of spatial scales ranging from individual 

shoots to patches to landscape-scale meadows (Figure 1-1).  The spatial pattern of 

seagrass habitat is shaped by a number of spatially and temporally variable biotic and 

abiotic processes.  Meadow structure is biologically mediated through intrinsic processes 

of seedling recruitment and clonal expansion through horizontal rhizome elongation 

(Duarte et al. 2006).  External processes governing seagrass spatial structure include the 

hydrodynamic regime (Fonseca et al. 1983), sediment characteristics and geochemistry 

(Koch 2001, Bradley & Stolt 2006), light availability (Dennison et al. 1993, Hauxwell et 

al. 2006), bioturbation and grazing (Townsend and Fonseca 1998, Valentine & Heck 

1999, Hughes et al. 2004, Rivers & Short 2007), and periodic disturbances from storms, 

ice scouring, and other natural or anthropogenic events (Bell et al. 2008). 

 The high economic and ecological value of seagrass and its sensitivity to 

disturbance has prompted efforts to understand and quantify its distribution and 

relationship with ecological processes.  Threats to the health of seagrass ecosystems 

occur at a wide range of spatial scales, from molecular processes (e.g., disease) to global 

(e.g., climate change).  Addressing these threats requires the consideration of seagrass 

pattern at multiple spatial scales and an interdisciplinary approach (Neckles et al. 2011).  

A necessary prerequisite of seagrass management is understanding of the natural spatial 

and temporal dynamics of seagrass distribution.  Tools and methods for monitoring and 

predicting the distribution of seagrasses in Atlantic Canada are currently lacking, and 
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represent a critical priority for maintaining the integrity of coastal ecosystems and the 

services they provide. 

 

 

1.2  Spatial Analysis and Landscape1 Ecology 

 

 The study of spatial pattern has long been a central theme of ecology (Watt 1947, 

Hutchinson 1953, MacArthur & Wilson 1967, Legendre & Fortin 1989, Levin 1992, 

Legendre & Legendre 1998).  Ecosystems are structured by biotic and abiotic processes, 

creating spatially heterogeneous habitat mosaics that influence ecological function over a 

range of spatial and temporal scales.  The causes and consequences of this heterogeneity 

are fundamental to numerous ecological theories, and have thus been the focus of efforts 

to characterize and quantify spatial patterns in diverse sectors of ecology (Li & Reynolds 

1995, Wagner & Fortin 2005).  Efforts to understand the spatial ecology of marine 

habitats such as seagrass beds have lately been aided by technical and theoretical 

developments in spatial analysis, spatial statistics, and the field of landscape ecology. 

 Landscape ecology explicitly emphasizes the causes and consequences of 

environmental heterogeneity through an interdisciplinary approach to the quantification 

and modelling of spatial pattern in natural ecosystems (Turner et al. 2001).  The 

fundamental principles of landscape ecology originated from the theory of island 

biogeography, where spatial characteristics of islands (e.g., size, geometry, spatial 

arrangement) directly and indirectly influence the ecological function of the habitat 

                                                 
1 Alternate terminology is frequently applied to denote the “landscape” in a marine context, with varying 

usage in the literature (e.g., “seascape”, “benthoscape”).  The author prefers the convention of “landscape” 

to emphasize linkages with the terrestrial discipline, and will do so throughout this manuscript. 
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(MacArthur & Wilson 1967).  It emerged as a recognized scientific discipline in the 

1980s, though the term had been coined several decades prior to describe the mosaic of 

land parcels visible from the rapidly-developing medium of aerial photography (Troll 

1939).  The establishment and expansion of landscape ecology was in large part fueled by 

improvements in remote sensing, computing power, and GPS technology, leading to 

extensive applications particularly in terrestrial environments (Turner et al. 2001). 

 

 

Figure 1-2.  Aerial photograph showing patches of eelgrass and mussels distributed 

through a background matrix of soft sediments.  Image collected from Eastern Passage, 

Nova Scotia, Canada (see Chapter 4). 
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 The concept of the “landscape” in ecology has evolved from its origins in 

representing the broad-scale mosaic of natural and human habitats visible from aerial 

photography to a more flexible definition that can be applied to diverse systems (Turner 

et al. 2001, Turner 2005).  The landscape can generally be defined as a spatially 

heterogeneous mosaic of patches.  This heterogeneity can be defined over a broad range 

of spatial scales, depending on the characteristics of the organisms or ecological 

processes under study.  Consideration of spatial scale (grain and extent) is a primary 

concern of landscape ecology, fundamental to both the theory and practice of spatial 

analysis in ecological systems (Wiens 1989, Levin 1992, Pickett & Cadenasso 1995, Wu 

& Hobbs 2002). 

 Recognition of the value of the landscape approach led to its extension to the 

marine environment in the 1990s, focusing primarily on patch-forming biogenic marine 

habitats such as corals, bivalves, and aquatic vegetation (Hinchey et al. 2008).  The 

landscape approach was first formally applied to seagrasses in the 1990s (Robbins & Bell 

1994) and has since expanded to encompass diverse aspects of seagrass spatial patterns, 

patch and gap dynamics, biotic interactions, and relationships with physical processes 

(Irlandi et al. 1995, Bell et al. 2006, Boström et al. 2006, Boström et al. 2011).  The 

integrative approach of landscape ecology is well-suited to patch-forming seagrass 

habitat that varies over a hierarchy of spatial scales (Figure 1-1) (Bell et al. 2006).  In the 

context of seagrasses, the landscape can be considered a heterogeneous mix of seagrass 

patches embedded in a background matrix of soft sediments, often coexisting with 

patches of other features such as bivalves (Figure 1-2). 
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1.2.1 Quantification of Landscape Pattern 

 

 Several types of spatial statistics and metrics are used for the quantification of 

spatial structure in seagrass habitats, often conducted within a geographic information 

system (GIS) using data collected through remote sensing (Fortin & Dale 2005). Spatial 

statistics are used to quantify the degree of spatial dependence present in a dataset, neatly 

encapsulated by Tobler’s first law of geography: “...everything is related to everything 

else, but near things are more related than distant things” (Tobler 1970).  Several 

approaches including geostatistical methods, global spatial statistics (e.g., Moran’s I, 

Geary’s C), and local spatial statistics (e.g., local indicators of spatial association; LISAs) 

have been applied for quantifying spatial dependence in ecological datasets (Goovaerts 

1997, Legendre & Legendre 1998, Wagner & Fortin 2005, Kent et al. 2006, Getis 2008). 

 Landscape ecology commonly involves the use of spatial pattern metrics to 

quantify aspects of the composition, configuration, and complexity of patches in the 

landscape, often at multiple spatial scales (O’Neill et al. 1988, Turner 1989).  Pattern 

metrics are now widely applied for establishing relationships between spatial pattern and 

ecological processes in diverse systems (Turner 2005).  A variety of metrics can be 

implemented through powerful freeware programs such as FRAGSTATS (McGarigal et 

al. 2012).  However, despite their widespread use, many problematic issues complicate 

the formulation and analysis of landscape metrics.  Many metrics are sensitive to spatial 

scale and uncertainty (Wagner & Fortin 2005), and statistical interpretation is confounded 

by non-independence, the presence of spatial autocorrelation, and redundancy between 

indices (Legendre 1993, Li & Wu 2004, Turner 2005).  Landscape metrics focus 

primarily on categorical or thematic maps of seagrass habitat despite difficulties in 
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establishing and interpreting patch boundaries in certain landscapes (Arnot et al. 2004, 

Wagner & Fortin 2005), and some landscapes exhibit continuous variation that is difficult 

to capture with a discrete patch-mosaic model (McGarigal et al. 2009).  Improving the 

technical and theoretical rationale of landscape pattern analysis is recognized as an 

important area of future research (Li & Wu 2004, Turner 2005, Hoechstetter et al. 2008, 

Kupfer 2012). 

 Though landscape ecology has been effectively applied to many types of marine 

habitats, questions remain about the application of landscape principles to seagrasses and 

the marine environment (Sleeman et al. 2005, Bell et al. 2006, Wedding et al. 2011).  

Most landscape metrics were developed for use with terrestrial data and may require 

adaptation or reformulation for use in the marine context.  A recent review of the flagship 

journal Landscape Ecology found that studies of coastal, marine, and freshwater habitats 

were extremely rare, comprising less than 4% of studies examined for the review 

(Newton et al. 2009).  This paucity of studies highlights the need for further research into 

the causes and consequences of landscape pattern in the marine environment. 

 

 

1.3  Remote Sensing of Coastal Habitats 

 

 Data representing marine habitats can be difficult to collect through direct 

observation or sampling due to the overlying water column, requiring costly and time-

consuming efforts.  Analysis of landscape pattern requires high-quality data at fine spatial 

resolution in order to capture patterns, often over a broad extent.  The cost of direct 

sampling for covering large areas at fine resolution is generally prohibitive.  As a result, 
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most studies of marine landscapes utilize spatial data captured through some form of 

remote sensing. 

 The type and scale of remote sensing can have dramatic consequences on the 

results of spatial and landscape analysis.  Pattern is recognized to be spatial-scale 

dependent, with different patterns emerging depending upon the spatial scale of 

investigation (Turner et al. 1989, Wiens 1989).  In particular, the spatial resolution of 

remote sensing has been shown to correlate strongly with the results of landscape metrics, 

necessitating careful consideration of scale when using remote sensing data to quantify 

pattern.  The accuracy of remote sensing data also exerts a strong influence on the results 

of landscape pattern analysis and can be a major source of errors (Hess 1994, Shao & Wu 

2008).  Issues of accuracy, uncertainty, and unreported errors are considered a critical 

point of emphasis for new research in landscape ecology (Wu & Hobbs 2002).   

 For marine benthic habitats, remote sensing can be broadly categorized as either 

acoustic or optical.  Acoustic sensors use pulses of sound to gather information on the 

seabed.  Data from acoustic sensors are used to produce detailed maps of bathymetry as 

well as the geological and biological components of the seabed, providing a wealth of 

information for mapping and analyzing benthic habitats (Brown et al. 2011).  Seagrasses 

exhibit strong acoustic reflectivity due to the presence of oxygen-filled lacunae that 

provide buoyancy to their leaves, aiding detection with acoustic methods.  Many types of 

acoustic sensors have been applied to mapping vegetated marine habitats, including 

single-beam, sidescan, and multibeam sonars, as well as other types of acoustic 

instruments such as acoustic Doppler current profilers (ADCPs) (Duarte 1987, Pasqualini 

et al. 1998, Sabol et al. 2002, Warren & Peterson 2007).   
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 In contrast to acoustics, optical remote sensing makes use of reflected light energy 

to infer the composition of the seabed, and can be collected either in-water or from aerial 

platforms.  In-water optical remote sensing consists of underwater photography and 

videography, and is commonly used as a source of ground-reference data in studies of 

seagrass landscapes (McKenzie et al. 2002, McDonald et al. 2006).  Aerial optical remote 

sensing includes several forms of imaging collected from airborne or spaceborne 

platforms including analog and digital photography as well as multi- and hyperspectral 

imaging and LiDAR (Dekker et al. 2006).  The collection of analog aerial photography 

for mapping marine habitats has a long history (e.g., Edwards & Brown 1960), and 

remains a common source of spatial data in the modern era (McKenzie et al. 2001).  

However, particular care must be taken when using optical remote sensing in the marine 

environment due to the absorption of light in seawater and the confounding effects of 

water depth and clarity (Silva et al. 2008). 

 Acoustic and optical remote sensing produce inherently different 

conceptualizations of the seagrass landscape, requiring different processing and 

interpretation.  Single-beam acoustic surveys are commonly conducted along transect 

tracks, sampling a subset of the study area and interpolating or extrapolating the results to 

create maps (e.g. Guan et al. 1999, Valley et al. 2005).  In contrast, optical remote 

sensing provides synoptic data that requires image classification to delineate separate 

habitats.  Aerial and acoustic methods also have distinct strengths and weaknesses 

depending on spatial scale, extent, and differences in site-specific conditions such as 

water clarity and depth. 
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 With the proliferation of remote sensing techniques delivering spatial data 

representing seagrass landscapes, efforts to locate, quantify, and monitor the distribution 

of seagrasses have increased, offering many potential benefits for the management and 

understanding of these valuable habitats (Bell et al. 2006).  However, many of these 

efforts have been hampered from a lack of integration between the disciplines of 

landscape ecology, spatial statistics, and remote sensing (Newton et al. 2009).  Further 

investigation of landscape pattern through the lens of remote sensing holds much promise 

for elucidating the causes and consequences of heterogeneity in seagrass habitats and the 

marine environment. 

 

 

1.4 Objectives and Outline 

 

 Scientific investigations of spatial ecology are rapidly evolving, driven in part by 

improvements in remote sensing and computing.  Researchers now have greater access to 

high-resolution, broad extent spatial data than ever before, opening new avenues for 

studying spatial patterns at both very fine and very broad scales.  These advances have 

highlighted the need for new and adapted statistical techniques and metrics for analyzing 

ecological patterns, particularly for the marine environment (Sleeman et al. 2005, Bell et 

al. 2006).  Analysis of marine landscapes requires input from multiple disciplines 

including oceanography, biology, ecology, geography, geomatics, remote sensing, and 

statistics.  Increasing collaboration among these fields promises to fuel new advances to 

benefit the management of coastal and marine landscapes (Newton et al. 2009, Boström 

et al. 2011). 
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 Improved analysis of spatial pattern in seagrass habitat benefits conservation and 

management through multiple pathways.  Knowledge of the amount of disturbance that 

can be accommodated by seagrass habitat would be beneficial for the evaluation of 

coastal development and habitat restoration projects (e.g., recovery potential).  

Knowledge of the spatial and temporal variability of seagrass habitat is also a necessary 

prerequisite for monitoring and change detection.  Crucially, understanding of spatial 

scale and its effects on seagrass mapping and monitoring requires further attention.  

Knowledge of characteristic scales of patterning is necessary for estimating the 

uncertainty of remote sensing data and derived map products that are regularly used for 

management decisions, and for the sampling design of monitoring and other ecological 

investigations.  Spatial scale takes on added importance with the increasing prevalence of 

high-resolution remote-sensing data allowing greater freedom in the spatial resolution of 

data and study design, and raising questions about comparisons with datasets derived 

from older methods.  The selection of spatial scale has great implications, and should be 

undertaken with consideration of the ecological relevance for the intended application. 

 This thesis addresses the spatial arrangement of seagrass habitat through a 

combination of field data collection and spatial analysis.  The works contained herein 

represent original and novel applications of spatial analysis to seagrasses and coastal 

marine habitats.  Data for this thesis were collected from two study sites in Atlantic 

Canada: Richibucto, New Brunswick and Eastern Passage, Nova Scotia.  Chapters 2-4 of 

this thesis are structured as stand-alone manuscripts, followed by a summary of findings 

and conclusions in Chapter 5.  Additional technical details not included in the body of the 

document can be found in the Appendix. 
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 Chapter 2, “Detecting hot and cold spots in a seagrass landscape using local 

indicators of spatial association”, examines the spatial structure of seagrass habitat at a 

study site in Richibucto, New Brunswick, Canada, through the analysis of single-beam 

acoustic data.  Local spatial statistics (Getis-Ord Gi
*) and geostatistics are applied to 

extract spatial information from the acoustic dataset, with a multi-scale approach unique 

to acoustic seagrass habitat mapping.  This approach allows for the quantification of 

pattern and the detection of boundaries in a spatially continuous seagrass bed.  This 

chapter was recently published in the journal Landscape Ecology (Barrell & Grant 2013).  

All of the data collection, analysis, and writing was performed by the author of this 

thesis, with guidance and editing provided by the coauthor. 

 Chapter 3, “Evaluating the accuracy of seagrass landscape mapping through 

comparison of acoustic and satellite remote sensing data”, examines two seagrass beds in 

the same estuary as the previous chapter using a combination of acoustic and satellite 

remote sensing data.  This paper compares the spatial representations produced by each 

dataset, contrasting their results to characterize the effects of remote sensing on map 

accuracy.  For this chapter, the classified satellite image was obtained from colleagues at 

Environment Canada / Canadian Wildlife Service (Mahoney & Hanson 2007).  All other 

data analysis and writing was performed by the author of this thesis.  This paper is 

currently in preparation and will be submitted for publication in the near future. 

 Chapter 4, “Use of high-resolution low-altitude aerial photography for the 

characterization of eelgrass (Zostera marina L.) and blue mussel (Mytilus edulis L.) 

landscape structure at multiple spatial scales”, focuses on a multi-species biogenic 

landscape located at Eastern Passage, Nova Scotia, Canada.  Aerial photography 
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encompassing the landscape was gathered from a helium balloon-mounted digital camera 

platform and analyzed using several landscape pattern metrics.  This method allows for 

the collection of very high resolution data, aiding in the calculation and tracking of 

spatial landscape metrics through time.  All data collection, analysis, and writing was 

done by the author of this thesis, with guidance and editing provided by the coauthor.  

This manuscript is currently under review.  
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Chapter 2.  Detecting Hot and Cold Spots in a Seagrass 

Landscape Using Local Indicators of Spatial Association2 
 

 

 

2.1  Introduction 

 

Seagrasses are widely recognized as important features of coastal areas, acting as 

ecosystem engineers and providing a suite of ecosystem services that ranks among the 

most valuable worldwide (Costanza et al. 1997, Barbier et al. 2011).  They provide a 

significant source of primary production, influence hydrodynamic and sedimentary 

regimes, regulate nutrient cycling, and provide habitat and substrate for a variety of 

species (Orth et al. 2006).  They are also sensitive to environmental change and 

disturbance, with extensive declines reported globally resulting from stressors acting over 

multiple spatial and temporal scales (Waycott et al. 2009).  In particular, seagrasses are 

vulnerable to direct physical disturbance and declining water quality resulting from 

watershed and coastal development.  Despite recognition of the threats to seagrass 

ecosystems, conservation efforts have been limited by a lack of knowledge regarding 

their present extent and the ecological processes regulating their spatial distribution 

(Duarte 2002).  Given the ecological importance of seagrass habitat, there is a strong 

need for methods to characterize and monitor its distribution, and to assess and predict 

the potential impacts of changing environmental conditions in coastal ecosystems. 

                                                 
2 This chapter is a manuscript version of a paper published as: Barrell J, Grant J (2013) Detecting hot and 

cold spots in a seagrass landscape using local indicators of spatial association. Landscape Ecology 28:2005-

2018.  The final publication is available at Springer via http://dx.doi.org/10.1007/s10980-013-9937-2 
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Seagrasses form habitat mosaic patterns of varying configurations ranging from 

highly fragmented to continuous meadows over a continuum of spatial scales (Duarte et 

al. 2006).  Their spatial arrangement can be expressed through the conceptual framework 

of landscape ecology, where a simplified landscape consists of a heterogeneous mosaic of 

seagrass patches embedded in a background matrix of unvegetated soft sediments 

(Robbins & Bell 1994, Turner et al. 2001).  The landscape ecology framework commonly 

involves the use of quantitative spatial pattern metrics or indices to quantify important 

aspects of habitat spatial pattern such as patch size, shape, configuration, and 

composition (O’Neill et al. 1988).  Though the extension of these techniques to the 

marine realm has been limited by difficulties in acquiring and processing data, recent 

advances in remote sensing technology and geographic information systems (GIS) have 

increased the ability of researchers to acquire spatially explicit data and apply 

quantitative spatial analyses to marine ecosystems (Hinchey et al. 2008, Boström et al. 

2011). 

The application of landscape analysis techniques to seagrass ecosystems is a 

recent occurrence (Robbins & Bell 1994), and it is as yet unknown which data models 

and statistical techniques best represent the spatial structure of seagrass landscapes 

(Sleeman et al. 2005, Bell et al. 2006).  Recent reviews have highlighted the need for 

further research on seagrass landscapes from both theoretical and practical perspectives, 

particularly regarding its use for the assessment and monitoring of landscape change 

(Boström et al. 2011, Wedding et al. 2011).  Beyond the marine context, the application 

of landscape ecology methods with ever-improving remote sensing platforms and 
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consideration of associated uncertainty and errors remains an active area of research (Wu 

& Hobbs 2002). 

Data representing seagrass patch structure are primarily drawn from aircraft or 

satellite-based optical sensors (McKenzie et al. 2001, Dekker et al. 2006).  These 

methods are relatively inexpensive compared to direct sampling and provide synoptic 

coverage and high-resolution data.  However, aerial methods are influenced by water 

clarity and weather conditions, require extensive ground-truthing, and create binary or 

categorical maps of seagrass presence-absence that can be strongly affected by spatial 

scale and classification bias (Wagner & Fortin 2005).  These categorical representations 

of landscape structure, consistent with the “patch-mosaic” or “patch-matrix” landscape 

models derived from island biogeography (MacArthur & Wilson 1967, Wedding et al. 

2011), apply well to fragmented seagrass beds showing distinct patch structure and 

unambiguous boundaries.  However, seagrasses often grow in what appears to be 

continuous coverage as designated by optical remote sensing.  Meaningful within-patch 

spatial patterns exist in these areas that are difficult to resolve accurately using standard 

optical methods, particularly in turbid waters.  In these cases, the patch-matrix model of 

landscape structure may be inappropriate, necessitating a different model for the 

depiction of landscape structure in continuous seagrass beds. 

Hydroacoustic methods are an alternative approach for mapping seagrass spatial 

structure at a scale intermediate to direct physical sampling and optical remote sensing.  

Single-beam sonar has been shown in several studies to provide an effective, sensitive, 

and repeatable mapping technique for several species of aquatic macrophytes in both 

freshwater and marine systems (Sabol et al. 2002, Sabol et al. 2009).  Aquatic vegetation 
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exhibits strong acoustic reflectivity due to the presence of oxygen and other dissolved 

gases present in plant tissues; this effect is particularly strong with seagrasses due to the 

presence of oxygen-filled lacunae (Sabol et al. 2002, Warren & Peterson 2007, Paul et al. 

2011).  This signature can be extracted from acoustic data to provide the high-resolution 

broad-extent data required for landscape analysis.  Though acoustic methods can also be 

negatively impacted by some weather conditions (e.g. waves), these effects are minimal 

compared to aerial methods, and water clarity is not a limiting factor in the shallow 

waters preferred by seagrasses.  Acoustic data can be acquired without the extensive 

labor required for direct sampling and without the high costs and operational constraints 

of aerial optical methods.  Single-beam sonar can also provide accurate measures of 

water depth, canopy height, and percent cover, going beyond binary measures of 

presence-absence and improving the thematic resolution of output maps. 

Despite the apparent advantages of acoustic techniques, quantitative studies of 

seagrass landscape structure using acoustic data are rare or nonexistent.  Previous studies 

examining seagrass with single-beam sonar have focused on the production of maps 

through contouring or geostatistical interpolation procedures such as kriging (e.g. Guan et 

al. 1999, Valley et al. 2005).  These maps provide synoptic broad-scale depiction of the 

seagrass bed, though the interpolation process tends to smooth the data, underestimating 

the spatial variability inherent in the landscape, particularly in patchy environments 

(Fortin & Dale 2005).  These interpolated maps are often unable to delineate distinct 

patch boundaries, and as such are unable to provide data suitable for the application of 

many patch-focused indices common in terrestrial landscape ecology.  The ability of 

acoustic methods to measure percent cover of aquatic vegetation at high resolution and 
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broad extent in turbid coastal waters should allow for the detection of heterogeneity and 

patch structure at a scale inaccessible to aerial methods.  Nonetheless, this capability has 

not yet been demonstrated in the literature. 

A variety of methods for the analysis of ecological spatial structure have been 

developed, each with specific goals and assumptions (Fortin & Dale 2005).  Global 

spatial statistics (e.g. Moran’s I, Geary’s c) and related geostatistical methods such as 

variography and kriging are commonly applied techniques that estimate spatial 

autocorrelation over the entire study area.  While useful in many systems, these 

approaches fail to capture local patterns by summing and averaging variability in the 

dataset as a function of distance without consideration of location (Fortin & Dale 2005).  

In most naturally occurring landscapes where several processes interact to create apparent 

structure, it is likely that the magnitude of each process varies over the study area 

resulting in distinct areas or patches (Legendre & Legendre 1998).  These processes 

commonly occur over a wide range of spatial scales and interact non-linearly, 

complicating the interpretation of ecological relationships.  Furthermore, these 

interactions violate the assumption of stationarity required for global measures of spatial 

autocorrelation, including assessment of significance. 

In contrast to global measures, local spatial statistics are applied to examine local 

patterns in the intensity of spatial dependence.  This group of methods (e.g. local Moran’s 

I, local Geary’s c, Getis-Ord Gi and Gi
*) are commonly referred to as local indicators of 

spatial association, or LISA (Anselin 1995).  These statistics can be used to locate 

clusters of similar values higher or lower than the mean that represent local patterns of 

spatial dependence, commonly termed “hot spots” and “cold spots” respectively (Nelson 
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& Boots 2008).  As a tool for exploratory spatial data analysis, these operators can be 

calculated at multiple local neighborhood sizes in order to assess the scale-dependence of 

detected patterns. Local spatial statistics have previously been applied to the 

quantification of terrestrial patterns derived from aerial remote sensing (Wulder & Boots 

1998), the mapping of patterns in marine sediments (Harris & Stokesbury 2010), and 

detection of patch boundaries in simulated datasets (Philibert et al. 2008), but have not 

previously been applied to seagrass ecosystems. 

The purpose of this study was to utilize remote sensing techniques with local 

spatial statistics to develop methods appropriate for detecting patch structure at a scale 

relevant to an estuarine seagrass bed.  Single-beam acoustic data representing the 

seagrass landscape were collected, processed, and analyzed with the Getis-Ord Gi
* LISA 

statistic (Getis & Ord 1992).  These clusters were then used to quantify localized patches 

of high and low cover and produce spatial maps of their distribution.  This approach is 

intended to facilitate the assessment, monitoring, and management of these ecologically 

valuable and vulnerable ecosystems. 
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Figure 2-1.  Map of the Richibucto estuary with the primary study location highlighted. 

(Inset) Location in eastern Canada. 
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2.2  Methods 

 

2.2.1 Study Site and Acoustic Survey 

 

The Richibucto estuary is located on the eastern coast of New Brunswick, Canada 

in the southern Gulf of St. Lawrence (64°51' W, 46°42' N)(Figure 2-1).  It is a semi-

enclosed barrier island system that is similar in characteristics to several other estuaries 

along the New Brunswick Gulf coastline.  The estuary is fed by the Richibucto, 

Aldouane, and St. Charles Rivers, representing a primarily suburban, agricultural, and 

forested watershed.  Oyster and mussel aquaculture occurs in moderate densities 

throughout the estuary. 

The study site was located in a basin of the northwestern branch of the estuary, 

characterized by depths of 1-2 m outside of a narrow channel that reaches up to 7 m in 

depth.  Tidal range at the site is approximately 1-2 m (Guyondet et al. 2005).  A large 

peninsula that is part of the adjacent Kouchibouguac National Park shelters the study site 

from most wind-generated wave action.  Eelgrass (Zostera marina) occurs subtidally 

throughout the estuary (excepting the channel), and areas where eelgrass is absent occur 

as bare sediment.  The sediments consist mostly of muddy sand with relatively uniform 

grain size (Lu et al. 2008). 

 Acoustic data were collected using a vertically-oriented 430 kHz 6.2° beam angle 

transducer and BioSonics DE-X echosounder mounted on a small vessel.  This high-

frequency acoustic system is optimal for detecting aquatic vegetation with high accuracy 

(Sabol et al. 2002).  The narrow beam angle results in a small footprint size, balancing 

resolution and spatial coverage along the sampled transect.  Given the 6.2° beam angle, 

the circular footprint of a single ping at 1 m depth has a diameter of 11 cm (0.01 m2).  To 
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avoid sonic saturation due to shallow depth, a power-reduction setting of -8.8 dB and 

pulse duration of 0.1 ms were used.  The echosounder system generated acoustic pings at 

a rate of 5 Hz.  All acoustic data were georeferenced with a JRC differential GPS (DGPS) 

with positional accuracy of approximately 3 m recording positions at a frequency of 1 

Hz.  The receiver was linked to DGPS reference station 332 in Port Escuminac, New 

Brunswick (64° 48’ W, 47° 04’ N). 

 The acoustic survey was conducted on 10 October 2007 at high tide in calm 

conditions.  Data were collected on transects separated by 30-50 m where possible.  The 

survey vessel was kept at a constant speed of 2 m s-1 (7.2 km h-1) to minimize noise and 

disruptive cavitation around the transducer face and to maintain consistent spatial 

coverage.  Ground-truthing data for verification were collected with an underwater video 

camera deployed at several locations throughout the study site.  The camera was used to 

observe the seafloor directly below the transducer for seagrass presence/absence and later 

compared to ping output reports for verification.  

 

 

2.2.2 Data Processing and Analysis 

 

Characteristics of the seagrass bed were extracted from raw acoustic data using 

BioSonics EcoSAV v1.2 software.  The software is based on a heuristic algorithm 

designed by the US Army Corps of Engineers to extract distinctive features from each 

acoustic ping to determine the water depth, canopy height, and presence or absence of 

seagrass (Sabol et al. 2002).  These values are then summarized for a collection of 

sequential pings and output as report points.  Each output point contains measures of the 

percent cover of vegetation (‘plant’ pings divided by total pings per cycle), mean canopy 
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height for ‘plant’ pings, and mean water depth.  The accuracy of the algorithm has been 

independently tested and verified for several species of macrophytes in diverse 

environments (Guan et al. 1999, Sabol et al. 2002, Valley et al. 2005). 

The analysis procedure georeferences the acoustic data by summarizing all pings 

between two DGPS positions.  With DGPS positions recorded at 1 Hz and a ping rate of 

5 Hz, this results in one report every 2 seconds.  Through the course of analysis it was 

observed that this would result in uneven ping counts per report point due to a slight 

offset between the ping rate and GPS time.  The software settings were therefore adjusted 

in order to ensure that each report represented a consistent spatial data support of 15 

pings.  This provides a balance between consistent spatial coverage for each point and 

maximum geospatial accuracy.  Minor adjustments were also made to the default analysis 

settings to account for the power reduction setting and ambient temperature and salinity 

conditions.  To streamline data processing and prevent false detection of vegetation, a 

depth limit of 3 m was imposed, as no vegetation was observed below this depth in the 

study area. 

Acoustic measurements of water depth and canopy height were corrected to 

account for changes in tidal height over the survey duration and the depth of the 

transducer face in the water column.  The resulting data were output as XYZ comma-

separated text files and converted into ESRI shapefile format for GIS analysis.  The 

relationship between water depth and seagrass percent cover was explored using 

Pearson’s correlation. 

Global spatial autocorrelation was assessed through the analysis of variograms 

using ArcGIS v10 (Geostatistical Analyst extension) and SpaceStat v2.1 software.  
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Variograms were modeled for a range of lag sizes to best represent the spatial structure of 

the site and the scale of sampling.  Both isotropic and anisotropic variograms were 

examined to detect any directionality (anisotropy) in the dataset.  A variogram map was 

created to provide a visual depiction of anisotropy in the landscape.  The variogram map 

was constructed according to values derived from the variogram, with a lag size range of 

2 - 200 m.  Additionally, an interpolated map of percent cover was produced through 

ordinary kriging based on the isotropic variogram for visual comparison to Getis-Ord Gi
* 

results. 

Local regions with percent cover values higher or lower than the overall mean 

were identified by calculating the Getis-Ord Gi
* statistic.  Gi

* is a local spatial statistic 

that measures the ratio of the weighted local neighborhood sum to the overall dataset: 

 

 

(Eq. 2-1)  Gi
*(d) = 

∑ 𝑊𝑖𝑗(𝑑)𝑥𝑗
𝑛
𝑗=1

∑ 𝑥𝑗
𝑛
𝑗=1

        

  

Where d is neighborhood size, Wij is the weight matrix of sample location i and its 

neighbor(s) j, and x is the quantitative variable of interest.  The Gi
* statistic differs from 

the related Getis-Ord Gi in that the sample location itself (the ego) is included in each 

calculation (i=j).  The equation produces a z-score where high values (Gi
* ≥ 2) represent 

local clusters of high values relative to the whole area, also referred to as “hot spots”, 

while low values (Gi
* ≤ -2) represent “cold spots”. 
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 The neighborhood size and weights can be set to a constant search radius or can 

be variable to include the same number of neighbors in each calculation.  The constant 

radius approach was taken in order to maintain consistent spatial resolution.  The weight 

matrix Wij was defined so that all points falling within the neighborhood radius distance 

were given an equal weight of one, while all points outside that radius were given a 

weight of zero.  The Gi
* statistic was initially calculated for five neighborhood search 

radii (10, 20, 30, 40, and 50 m) in order to determine the optimal analysis scale and to 

visualize the effects of altering spatial scale on the statistic.  Neighboring point weights 

were standardized within each search area.  The expected value of Gi
* under the 

assumption of complete spatial randomness depends on the number of neighboring 

points, but has been shown to approximate a normal distribution when n ≥ 8 neighbors 

(Ord & Getis 1995).  The number of neighboring points within the search radius were 

tallied for each point in order to meet this criterion (i.e. the number of j around each i, for 

each of the 5 distance classes). 

Significance testing was conducted through a Monte Carlo randomization 

procedure (n = 999 simulations) with a null hypothesis of complete spatial randomness.  

The Simes correction (Simes 1986) was applied to adjust p-values to account for multiple 

comparisons, as each sample location i is included in the neighborhood calculation for 

several neighboring points (Boots 2002).  The Simes correction is less conservative than 

the similar Bonferroni procedure, allowing the detection of significance in the presence 

of highly correlated test statistics.  Notably, there are difficulties associated with the 

assessment of statistical significance with the presence of multiple testing and global 

spatial autocorrelation.  Accordingly, local spatial statistics were used in the context of 
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exploratory spatial data analysis as per suggestions in the literature (Boots 2002, Fortin & 

Dale 2005). 

Formulation of seagrass patch polygons from punctual hot and cold spots was 

conducted with ArcGIS v10 software.  Buffer rings of a size matching each neighborhood 

search radius were drawn around each statistically significant cluster location.  Groups of 

buffer rings of the same class were merged into polygons representing a contiguous 

neighborhood zone for both hot and cold spots.   Overlapping zones were identified to 

indicate boundaries or areas of rapid change between high and low seagrass cover.  Data 

values of the points falling within these polygons were then compiled and 

summarized to describe the seagrass characteristics within each class of polygon. 
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Figure 2-2.  (Above) Acoustic data tracks, showing the distribution of percent cover 

values. (Below) Histogram of the distribution of percent cover values.  
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Figure 2-3.  Variogram map depicting anisotropy in the dataset with a lag size range from 

2 -200 m.  
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Figure 2-4.  (Above) Modeled omnidirectional variogram.  (Below) anisotropic empirical 

variograms representing the east-west (crosses) and north-south (points) axes.  
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2.3  Results 

 

2.3.1 Acoustic Survey 

 

The acoustic survey produced a total of 2677 output points over a total transect 

length of 14.7 km, sub-sampling an extent of 29.7 ha (Figure 2-2).   Mean seagrass cover 

was 41.8 ± 18.1% (SD).  The distribution of percent cover values was approximately 

normal.  Notably, only 21/2677 points (<1%) registered a value of 0% cover, indicating 

that at least a small quantity of seagrass was present throughout nearly the entire study 

area.  Water depth was relatively uniform with a mean depth of 1.39 ± 0.12 m (SD).  No 

notable relationship was found between water depth and percent cover over the surveyed 

area (Pearson’s R = 0.124).  Compared to the ground-reference video data, the acoustic 

survey was 100% accurate in discriminating SAV from bare sediments (see Appendix A). 

 

2.3.2 Geostatistical Analysis 

 

Geostatistical procedures were initially used to assess spatial autocorrelation 

structure and anisotropy in the dataset.  A variogram map was produced to graphically 

depict any directional trend indicating the presence of anisotropy in the dataset (Figure 2-

3).  The variogram map is a geometric representation of semivariance in the dataset, with 

directionality preserved so that each pixel represents the sum of all data pairs at that 

direction and distance from the center of the map.  Minimum semivariance was found in 

approximately the north-south direction, indicating the presence of anisotropy.  This was 

reflected in observed differences between the omnidirectional and anisotropic variograms 

(Figure 2-4). 
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The omnidirectional variogram of seagrass percent cover was modeled to show a 

range of 143 m, a sill equivalent to the variance of the dataset at 0.0327, and a nugget 

effect of 0.014 (42.8% of variance), representing measurement errors and any variation 

occurring at a spatial scale less than that of distance between sampling points (Figure 2-

4).  The bi-directional anisotropic variogram reflects the directionality visible in the 

variogram map, with the north-south axis curve exhibiting a smaller sill and shorter range 

than the east-west axis.  This pattern is consistent with zonal anisotropy (Goovaerts 

1997). 

 

 

Figure 2-5.  Map of seagrass percent cover interpolated using ordinary kriging. 
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The percent cover dataset was interpolated to produce a smoothed surface through 

ordinary kriging implemented with ArcGIS Geostatistical Analyst (Figure 2-5).  The 

resulting map shows a contoured representation of seagrass cover within the study area.  

This map does not facilitate the application of patch-focused landscape analysis, as 

boundaries are not discernible.  However, it is possible to see distinct patterns, and note 

that the anisotropy indicated through variography is likely due to locally clustered 

patches of high cover in the northwest corner of the study area and low cover throughout 

the central, southern and eastern regions. 

 

 

Table 2-1.  Results of Gi
* at five search radii indicating the number and proportion of 

points identified as hot or cold spots, and the mean and minimum number of neighboring 

points found around each hot or cold spot. 

 

2.3.3 Local Spatial Statistics 

 

The Getis-Ord Gi
* statistic identified acoustic report points representing 

significant hot and cold spots, or regions of locally high and low mean percent cover 

respectively, at each of the five spatial scales examined.  Between 10 – 22% of the 

dataset points (n = 2677) were identified as significant hot or cold spots at each scale 
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(Table 2-1).  The largest number significant hot and cold spots were found at a search 

radius of 30 m. 

The mean number of neighbors for each significant point (i.e. the number of j for 

each i) grew with increasing neighborhood radius (Table 2-1).  At a search radius of 10 

m, the mean number of neighbors was insufficient to meet the assumption of normality (n 

≥ 8) as recommended by Ord & Getis (1995).  At a search radius of 20 m, the mean 

number of neighbors exceeded this threshold, but the minimum did not.  Accordingly, 

subsequent analysis focused on the 30, 40, and 50 m neighborhood radius sizes to ensure 

that this assumption was treated consistently. 

 

 

 

Table 2-2.  Neighborhood values for the Gi
* analysis at each of 3 spatial scales along with 

average seagrass percent cover and the number of discrete “patches” formed via buffering 

procedures. 
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Figure 2-6.  Zones of high and low seagrass cover as derived from Gi
* analysis for (A) 30 

m, (B) 40 m, and (C) 50 m neighborhood search radii.  Overlap zones are indicated in 

blue. 
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Neighborhood statistics indicated that percent cover in hot spots was consistently 

higher than in cold spots (Table 2-2).  This difference decreased with increasing 

neighborhood size as the patches aggregated into larger areas and encompassed a larger 

number of neighboring points.  The within-patch variance remained relatively uniform at 

each scale, and was smallest at the 30m neighborhood radius.  

Patches representing contiguous neighborhoods of hot and cold spots at each 

spatial scale produced a visual pattern that was similar to the interpolated map, with a 

region of high percent cover in the northwest, a large central patch of low percent cover, 

and smaller variable patches throughout the remainder (Figure 2-6).  This distributional 

pattern, and the total number of hot and cold patches, remained mostly consistent 

regardless of the neighborhood radius definition. 

Zones of overlap occurred between the neighborhoods of hot and cold spots at 

each spatial scale.  These regions correspond to areas of rapid change in seagrass cover 

that can be considered analogous to patch boundaries or ecotones. The amount of overlap 

area increased with neighborhood size.  A small number of significant points fell within 

the overlap areas at two of the three analysis scales (15 points at 40 m scale; 2 points at 

50 m scale).  For these points, the neighborhood encompasses both hot and cold spots and 

likely indicates an especially sharp gradient of change.  These points also may indicate 

that the neighborhood size is too large, suggesting that the optimal spatial scale for 

detecting pattern is less than 40 meters. 
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2.4  Discussion 

 

2.4.1 Gi
* Considerations 

 

The use of local spatial statistics in this study provided information on local 

spatial heterogeneity not captured at the scales commonly used for monitoring, and 

explicitly described pattern at multiple spatial scales as defined by the neighborhood 

search radius.  Of the three spatial scales considered, the 30 m neighborhood radius 

appears to best characterize the local variability within the study area (Figure 2-6a).  

Analysis at this scale detected the largest proportion of significant hot and cold spots, 

represented the largest difference in neighborhood percent cover (52.3% in hot spots vs. 

31.6% in cold spots), and resulted in the lowest within-patch variance.  This scale also 

produced the smallest area of overlap between hot and cold neighborhoods, and resulted 

in no significant points occurring in overlap zones.  However, all three spatial scales 

produced maps with similar numbers and distributional patterns of hot and cold spots, 

highlighting the robust nature of the technique.   

When conducting multi-scale analysis, it is important to differentiate between 

scales of observation and analysis (Qi & Wu 2004).  The scale of observation can be 

adjusted through manipulating the spacing and orientation of survey tracks, boat speed, or 

software data collection settings.  In contrast, the analysis scale can be adjusted by 

changing the neighborhood size when calculating Gi
*.  The interaction between 

observation scale (i.e. transect spacing) and analysis scale (neighborhood radius) in 

seagrass beds is not well understood, as site-specific factors can result in variation over 

very short distances. 
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Global measures of spatial association generally require assumptions and prior 

knowledge of habitat structure that is often unavailable prior to study design.  Further, it 

is often not possible to determine a single ‘correct’ scale when the magnitude and 

directionality of variation changes over relatively small extents, as in this study (i.e., 

Figure 2-3).  A major strength of the LISA approach is the ability to detect localized 

patterns and define characteristic scales of variation in complex systems without prior 

knowledge of habitat structure.  This allows the detection of distinct regions regardless of 

spatial scale without requiring the assumptions of global methods, and broadens the 

applicability of the method to many different types of seagrass beds. 

 Analysis of the proximity of high and low clusters detected by local spatial 

statistics can provide information on the locations of boundaries separating distinct 

within-patch regimes.  Areas of overlap in the neighborhoods around high and low cluster 

points may be of particular interest, indicating zones of rapid change in seagrass cover 

(Figure 2-6).  These areas may be considered analogous to boundaries between distinct 

regions, or ecotones: transitional zones between ecological communities (Hufkens et al. 

2009).  The detection and analysis of boundaries is an important part of landscape 

ecology, and has been widely applied in terrestrial systems.  In the context of aquatic 

vegetation, prior research has focused on how boundaries affect fauna, particularly in 

patchy areas with clearly defined boundaries.  In contrast, the overlap areas detected in 

this study represent 2D boundary zones between distinct areas within an extent of mostly 

continuous seagrass cover.  Boundary characteristics such as width, magnitude of change, 

position, and orientation could be quantified and studied in the landscape context.  Better 
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understanding of how to detect and analyze boundaries in seagrass habitat has previously 

been recognized as an important area of future research (Bell et al. 2006). 

In a few instances, a small number of hot or cold spots were fell within 

overlapping boundary areas (Figure 2-6). This most likely indicates an especially sharp 

gradient of change; for these hot and cold spots, adjacent neighborhoods are determined 

to be significantly dissimilar despite sharing a large number of data points between both 

‘hot’ and ‘cold neighborhood zones.  The presence of overlap implies that the analysis 

scale (neighborhood radius) is too large to detect structure in these areas.  Depending on 

the sharpness of the boundary, these areas may or may not have been detected with aerial 

imaging. 

Notably, hot and cold spots are defined according to the structure of the sampled 

area, as they are calculated relative to the site mean.  Accordingly, the interpretation of 

“hot” and “cold” is site-specific and requires additional contextual considerations when 

comparing disparate locations.  For example, a cold spot in a highly fragmented or patchy 

bed may contain little to no seagrass, while in a dense continuous meadow an area 

identified as “cold” may still contain substantial plant biomass, though at a level below 

the site mean. 

 

 

 

2.4.2 Implications for Landscape Analysis 

 

The ability to detect and quantify landscape pattern is strongly influenced by the 

spatial scales of mapping and analysis relative to the features of interest (Wiens 1989, 

Wedding et al. 2011).  Landscape indices are highly sensitive to scale and are at risk for 

scale mismatch, where landscape elements can be obscured or misrepresented if 
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examined at an inappropriate scale (Qi & Wu 2004). Recognition of these issues and 

analysis of the associated errors and uncertainties is crucial when applying the results of 

landscape analysis. 

While many landscape studies of seagrass ecosystems have attempted to quantify 

spatial patterns of patch structure, these have been primarily based on categorical 

thematic maps derived from aerial remote sensing data (Wedding et al. 2011).  The 

analysis of aerial imagery has long been the standard method for mapping aquatic 

macrophytes, offering a relatively low-cost and repeatable method for surveying large 

areas (McKenzie et al. 2001).  However, the classification of aerial imagery of marine 

environments is fraught with uncertainty, and errors can propagate through to the results 

of landscape analyses (Shao & Wu 2008).  Aerial sensors can be negatively affected by 

weather conditions, and are subject to confounding effects from water depth and clarity 

that can be further exacerbated by classification bias.  Although aerial photography and 

some satellite sensors are able to achieve sub-meter spatial resolution, these methods 

have limited thematic resolution, or ability to discern between different patch classes.  In 

effect, image classification reduces the landscape to a binary map of seagrass 

presence/absence, potentially resulting in significant data loss and classification errors.  

The presence/absence threshold for detection of seagrass in a given pixel for is also 

unknown.  These errors are often ignored or unreported despite the widespread use and 

increasing availability of remote sensing data of seagrass beds.  Accordingly, issues 

associated with accuracy and unidentified error are recognized as a main research priority 

in the field of landscape ecology (Wu & Hobbs 2002). 
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Acoustic survey methods hold a major advantage over aerial remote sensing in 

their ability to quantify seagrass cover at and below the patch scale.  Image analysis is 

able to achieve high accuracy when differentiating between gross vegetated and 

unvegetated areas, but is less able to detect transition zones or within-patch patterns. The 

use of local spatial statistics in conjunction with acoustic data in this study demonstrated 

a method for detecting clusters of anomalously high and low values in what would 

otherwise be classified as a patch or area of continuous cover, quantifying an aspect of 

seagrass spatial structure inaccessible to aerial remote sensing.  These areas may be of 

particular interest to habitat managers, as the ability to detect within-patch changes prior 

to visually apparent fragmentation could be very valuable to conservation efforts.  This 

approach also allows for the identification of areas of interest for future studies, as well as 

conservation and restoration efforts, such as local regions of exceptionally high or low 

cover, or boundary zones that may be of great importance for faunal interactions 

(Boström et al. 2006). 

Most prior studies using single-beam sonar to map seagrasses have used the 

output to interpolate continuous broad-scale maps representing SAV distribution at 

landscape scale (e.g. Guan et al. 1999, Valley et al. 2005).  These representations have 

proven useful for monitoring long-term change, but are much less effective for 

quantifying spatial structure at and below the patch level.  Interpolation in these cases is 

used to predict or estimate seagrass cover in unsampled locations, and is by nature a 

smoothing process that overestimates low and underestimates high values.  In contrast to 

these broad-scale mapping exercises, this study demonstrates the use of acoustic data to 

detect and quantify local spatial patterns at the patch level in a manner consistent with a 
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landscape model of heterogeneity.  The quantification of characteristic scales of 

variability at the patch level is critical for monitoring the disturbance and fragmentation 

of valuable seagrass habitat.  Patch scale has many important implications for both the 

persistence and loss-gain dynamics of seagrass itself (Fonseca et al. 2002, Duarte et al. 

2006), and for the ecosystem services it provides to diverse faunal communities (Boström 

et al. 2006).  The methods outlined here are able to detect changes in habitat distribution 

and configuration beyond simple loss and gain, adding a valuable extra dimension to the 

study and management of seagrasses and marine habitat in general. 

Not all types of marine data are suitable for analysis within the dominant patch-

matrix paradigm of landscape structure, where the landscape consists of a mosaic of 

discrete patches with clear boundaries dispersed throughout a background matrix.  When 

boundaries are not readily apparent, such as in beds that appear continuous to remote 

sensing, it is difficult to apply common landscape metrics that utilize spatial patch 

characteristics such as area and perimeter.  However, as this study demonstrated, there is 

still spatial structure in these areas that can be quantified to increase our understanding of 

seagrass structure and the mechanisms that create and maintain it.  Although the patch-

matrix model has proven to be of great value in diverse ecosystems both terrestrial and 

marine, it is unable to describe continuous variation without significant loss of 

information (McGarigal et al. 2009).  Recent work has begun to describe ways of 

quantifying continuous heterogeneity outside of the patch-matrix paradigm, such as 

through surface metrics designed for 3D landscape patterns such as those found in 

topographical analysis (Hoechstetter et al. 2008, McGarigal et al. 2009).  Although not 

pursued in the current study, acoustic seagrass detection can also measure the canopy 
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height of vegetation, providing further information on habitat structure and indicating the 

potential to extend analysis of within-patch variability to three dimensions (Sabol et al. 

2002, Valley et al. 2005).  This 3D approach may be particularly valuable for elucidating 

fine-scale patterns in habitat as experienced by fauna.  Further modifications to the 

traditional landscape model, such as in the current study, serve to increase understanding 

of marine landscape dynamics in areas that do not neatly fit the common framework 

derived from terrestrial landscape ecology. 

Seagrass maps derived from aerial remote sensing overlook local spatial 

heterogeneity through the process of boundary delineation and patch classification, 

leading to significant uncertainties and errors.  In contrast, acoustic methods provide data 

at much finer resolution representing the quantitative variation of seagrass cover through 

space.  Analysis of these data through methods such as those described in the present 

study allow for the quantification of continuous heterogeneity, improving the ability of 

researchers to describe real-world landscapes.  This helps to merge the interrelated 

concepts of boundary and landscape analysis, allowing for further insights into seagrass 

landscape structure.  Methods for the quantification of structure are required to fuse the 

continuous and discrete models of landscape structure and allow for comparisons 

between different sites and bed types (Wagner & Fortin 2005).  Integration of diverse 

sectors of spatial analysis (e.g. landscape metrics, geostatistics, GIS, spatial modeling), 

will lead to greater understanding of the spatial dynamics of ecological landscapes. 
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2.4.3 Conclusions 

 

The application of the Getis-Ord Gi
* LISA statistic to acoustic survey data 

detected distinct patterns in seagrass distribution within a continuous bed.  These results 

demonstrate the ability of the technique to identify local zones of high or low seagrass 

cover relative to the mean and an improved way to extract spatial data through remote 

sensing of seagrass landscapes, especially in areas that would otherwise be described as 

“continuous”.  Beyond maps of seagrass presence or absence, this method allows for the 

measurement of heterogeneity at multiple spatial scales, providing important information 

for the design of specific studies, such as the impacts of patch arrangement on faunal 

interactions (e.g., the use of habitat by slow-moving or sessile organisms such as bivalves 

vs. highly mobile fish), or the impacts of local vs. broad-scale stressors.  This approach 

can help gain a better understanding of the factors and processes that govern seagrass 

patterns and persistence, with a mind to improving predictive abilities, restoration, and 

management decisions through statistical modeling or predictive vegetation mapping.  

Increased understanding of the scale-dependence of seagrass patterns will also assist in 

the comparisons among and between sites located in different geographic regions, and to 

deal with scaling issues associated with extrapolating trends from small-scale studies to 

larger extents. 

The information produced through local spatial statistics can be used to help guide 

the spatial scale of future mapping and monitoring efforts.  A fine-scale, small extent 

acoustic survey such as that conducted here could be used as an exploratory tool to 

determine the baseline spatial structure and characteristic patch size of a site prior to a 

more intensive mapping effort.  Initial acoustic surveys could complement broad-scale 
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mapping and monitoring by identifying high-priority areas of high or low cover, and as 

ground-truthing or accuracy assessment for broad-scale aerial remote sensing methods.  It 

also can describe fragmentation and other changes in the arrangement of seagrass 

throughout a study area that would not be reflected in simple measures of percent cover.  

These results can be used for the further application of landscape ecology concepts to 

seagrass habitat and the marine environment in general, and contribute to further 

understanding of the spatial dynamics of these ecosystems. 
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Chapter 3.  Evaluating the Accuracy of Seagrass Landscape 

Mapping through Comparison of Acoustic and Satellite 

Remote Sensing Data 
 

 

 

 

3.1  Introduction 

 

Seagrass meadows are widely recognized for their valuable contributions to 

ecological function and provision of ecosystem services in coastal environments 

(Costanza et al. 1997).  Seagrasses provide a significant source of primary production 

supporting a diverse assemblage of species.  In Atlantic Canada, the seagrass species 

eelgrass (Zostera marina L.) acts as an ecosystem engineer (Jones et al. 1994) in the 

coastal zone by providing physical substrate as habitat for many species and by altering 

hydrodynamics, sedimentary conditions, and nutrient cycling where it occurs (Bradley & 

Stolt 2006, Berkenbusch & Rowden 2007, Chen et al. 2007, Vandermeulen 2009).  In 

addition to their apparent ecological value, seagrasses are also sensitive to disturbance, 

with extensive declines reported worldwide attributed to both anthropogenic and natural 

causes such as coastal development and eutrophication (Orth et al. 2006, Waycott et al. 

2009).  As a result of their value and sensitivity, seagrasses are often used as indicators of 

ecosystem health and as a monitoring and assessment tool for the management and 

protection of coastal habitat (Dennison et al. 1993, Neckles et al. 2012).  In Canada, 

eelgrass has been recognized as an ‘ecologically significant species’ (ESS) by the 

Department of Fisheries and Oceans (DFO 2009), and its sensitivity to stressors has been 

evaluated for inclusion in habitat management programs and policies (Vandermeulen 

2005, Vandermeulen et al. 2006, DFO 2012). 
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Effective mapping and monitoring of seagrass ecosystems is recognized as a 

crucial component of the management and protection of coastal landscapes and the 

ecosystem services they provide (Duarte 2002, Bell et al. 2006, Neckles et al. 2012).  

Seagrasses naturally form habitat mosaic patterns of varying configurations ranging from 

highly fragmented to continuous meadows (Duarte et al. 2006).  Their spatial 

arrangement can be expressed through the conceptual framework of landscape ecology, 

where a typical “landscape” consists of a heterogeneous mosaic of seagrass patches 

embedded in a background matrix of soft sediments (Robbins & Bell 1994, Turner et al. 

2001).  Increased recognition of the ecological value and vulnerability of seagrasses has 

led to a proliferation of studies investigating the landscape pattern of seagrass beds (Bell 

et al. 2006, Boström et al. 2011, Wedding et al. 2011). 

Accurate maps representing the spatial distribution of seagrasses are a prerequisite 

for effective ecosystem monitoring (Neckles et al. 2012), change detection (Roelfsema et 

al. 2013), understanding species-environment relationships (Boström et al. 2006), and 

predictive modeling with respect to the processes that structure the landscape (Bell et al. 

2006).  However, many questions remain regarding the accuracy of mapping and the 

application of statistical tools and indices for seagrasses and marine landscapes in general 

(Sleeman et al. 2005, Bell et al. 2006, Wedding et al. 2011). 

Maps of seagrass distribution are most commonly produced through the manual 

or automated classification of imagery drawn from aerial photography or satellite remote 

sensing (McKenzie et al. 2001, Dekker et al. 2006).  Compared to direct sampling, 

remote sensing offers a cost-effective and repeatable approach providing high-resolution 

data with synoptic coverage.  Aerial photography has been the primary source of seagrass 
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imagery for several decades, though satellite-based sensors are quickly becoming a major 

source of data at landscape or regional scales (Dekker et al. 2006).  Recent improvements 

in the spatial and spectral resolution of satellite remote sensing platforms and declining 

costs have led to a growing number of studies using high-resolution satellite imagery for 

the detection and monitoring of seagrass habitat (e.g., Mumby & Edwards 2002, Fornes 

et al. 2006, Urbański et al. 2009, Knudby & Nordlund 2011). 

Several studies have highlighted the need to account for sources of error when 

using remote-sensing data to map and quantify landscape pattern (Lunetta et al. 1991, 

Hess 1994, Li & Wu 2004, Shao & Wu 2008, Boyd & Foody 2011).  Most studies of 

landscape pattern are conducted using maps derived from the classification of optical 

remote-sensing data, but the image classification procedure is subject to numerous errors 

that can propagate through landscape analysis (Shao & Wu 2008).  Spatial scale 

(resolution & extent) has been shown to influence the results of landscape studies, 

creating uncertainty in the measurement of pattern and in any subsequent analysis 

(Turner et al. 1989, Wu & Hobbs 2002).  Spatial resolution also affects the ability of 

remote-sensing to distinguish between landscape features (e.g., the smallest detectable 

patch is directly proportional to the pixel size) (Qi & Wu 1996).  Landscape analysis 

focuses largely on patch/gap dynamics, necessitating accurate measures of the location 

and shape of patch boundaries.  In some cases, sharp boundaries are relatively easy to 

delineate from aerial imagery.  However, boundaries may be complex and difficult to 

capture through optical methods, and this difficulty is compounded if spatial resolution is 

too coarse (Arnot et al. 2004).  This can contribute to classification errors, particularly in 
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fragmented seagrass meadows with many small patches, creating a large proportion of 

“mixed pixels” that are difficult to interpret (Fisher 1997). 

Maps produced through image classification are also limited by their thematic 

resolution, defined as the number of categories or classes that they depict.  In contrast to 

terrestrial applications, the absorption of light in seawater limits the amount of spectral 

information that can be used in classification of marine benthic habitats (Dekker et al. 

2006), often resulting in binary maps of seagrass presence or absence, equivalent to a 

thematic resolution of only two categories.  These maps are useful for the calculation of 

landscape metrics, but they reduce the landscape into discrete patch units that are 

assumed to be homogeneous with abrupt, “hard” boundaries.  These sharp boundaries 

imply certainty or accuracy, though this is rarely evaluated or stated explicitly in mapping 

studies (Arnot et al. 2004, Philibert et al. 2008).  The degree of uncertainty introduced 

through classification is a function of the spatial and thematic characteristics of the data 

and classification scheme, and could be expected to differ when considering beds with 

differing spatial patterns (Barrell & Grant 2013). 

  In contrast to optical methods, acoustic methods detect aquatic vegetation with 

pulses of sound from a boat-mounted transducer.  Many acoustic sensors have been used 

to detect aquatic vegetation, including side-scan (e.g., Pasqualini et al. 1998) and single-

beam sonars (e.g., Sabol et al. 2002, 2009).  Acoustic methods are less affected by water 

clarity, and thus in many cases are more effective than optical methods for mapping 

seagrasses in turbid coastal waters.  Acoustic methods are also able to detect aspects of 

spatial heterogeneity at local scales inaccessible to optical methods, while still covering a 

large extent relative to direct observation methods (Barrell & Grant 2013).  Seagrass beds 
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have been studied at the bed-scale using acoustics in many contexts (Guan et al. 1999, 

Valley et al. 2005), but acoustic data does not readily lend itself to the formation of 

categorical maps, and thus has not been much explored in the context of landscape 

analysis. 

Acoustic and aerial remote sensing measure fundamentally different aspects of 

seagrass landscape structure, and may offer value in different applications.  Aerial 

remote-sensing data produce categorical maps with sharp boundaries well-suited for 

landscape analysis of discrete patches.  In contrast, acoustic surveys produce continuous 

data representing seagrass percent cover (Sabol et al. 2002, 2009, Barrell & Grant 2013).  

The effects of the contrast between discrete and continuous data models on the accuracy 

of seagrass maps are not well understood.  Though both aerial and acoustic remote 

sensing methods have been widely applied to the mapping of seagrasses, comparative 

studies are lacking. 

In the field of remote sensing, map classification accuracy is commonly evaluated 

against reference data using an error matrix, also often referred to as a confusion matrix 

or contingency table (Congalton 1991, Congalton & Green 2009).  In a typical error 

matrix (e.g., see Table 3-1), the predictions of the remote sensing classification are 

compared to reference data to identify agreement (true positives and true absences), 

errors of omission (false negatives), and errors of commission (false positives).  

Numerous metrics can then be derived from the error matrix for assessing map accuracy.  

Though reference data is often assumed to be error-free, this assumption is often violated, 

particularly when both the prediction and reference datasets are derived from different 

types remote sensing (Foody 2010).  It is not currently known if acoustic data can be used 
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as reference data for satellite seagrass maps.  Aside from the implications for accuracy 

assessment, there is potentially utility in using the error matrix to investigate the 

comparative performance of satellite and acoustic remote sensing of seagrass beds. 

Although continuous acoustic percent cover data is itself valuable for detecting 

patterns in seagrass beds (e.g., Sabol et al. 2002, Barrell & Grant 2013), this output is not 

directly comparable to presence-absence maps produced by aerial remote sensing.  

Comparison requires the application of a decision threshold to classify the continuous 

acoustic dataset into binary format.  This is analogous to converting probability of 

occurrence to presence-absence in species distribution modeling for evaluating model 

performance and prediction errors (Fielding & Bell 1997).  There are many possible 

approaches to threshold selection, largely depending on the goals of the application.  The 

threshold can be established subjectively, for example at an arbitrary value of 0.5, or can 

be selected to maximize summary statistics such as overall accuracy or kappa.  

Alternatively, the threshold can be selected to maximize the prediction success rate for 

either presences or absences, or so that presences and absences have an equal chance of 

being predicted correctly.  Similarly, the use of receiver operating characteristic (ROC) 

curves represents another common approach for evaluating the performance of binary 

classification using information derived from the error matrix (Fielding & Bell 1997).  

Several recent studies have investigated the effects of threshold selection through 

multiple criteria with the goal of maximizing prediction accuracy as measured by metrics 

derived from the error matrix (Liu et al. 2005, Jiménez-Valverde & Lobo 2007, Freeman 

& Moisen 2008). 
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In this study, issues of accuracy in seagrass mapping were addressed through the 

comparison of thematic maps derived from satellite remote sensing with acoustic data.  A 

map of seagrass distribution produced through classification of Quickbird satellite 

imagery was acquired from Environment Canada (Mahoney & Hanson 2007) and 

evaluated against independent acoustic survey data using an error matrix to identify 

differences between the two techniques.  Multiple binary classification thresholds were 

examined with the following goals:   

 

1) Estimate the accuracy of satellite remote sensing for seagrass mapping through 

comparison to acoustic data, 

2) Compare the performance of satellite and acoustic classifications between 

seagrass beds with differing landscape structure, and 

3) Assess the implications of thematic accuracy and uncertainty on studies of 

landscape pattern in the marine environment. 

 

 

Despite their fundamental differences, acoustic and satellite remote sensing have 

been independently demonstrated to produce accurate maps of seagrasses in many 

contexts (Sabol et al. 2002, 2009, Mahoney & Hanson 2007, Barrell & Grant 2013).  

With respect to comparing remote sensing techniques, evaluating the effects of threshold 

selection on binary classification performance allowed insight into the differences 

between the two methods, and was not intended to identify the ‘best’ threshold for 

maximizing classification accuracy.  Reducing the acoustic dataset to a binary 

representation inevitably results in some loss of data, and may result in a lack of 
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agreement between the satellite map and acoustic data.  It therefore was expected that 

maps derived from satellite and acoustic remote sensing would exhibit a high degree of 

correlation, and any lack of agreement would result primarily from the binary 

classification of the continuous acoustic dataset.  Other potential sources of disagreement 

include spatial uncertainty (i.e., georeferencing and GPS errors), classification errors, 

systematic errors related to the sensors, and environmental effects such as water clarity 

and the local composition of the seagrass community. 
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3.2  Methods 

 

 

3.2.1 Study Site 

 

 

 
 

Figure 3-1.  Map of the study locations Site A and Site B within the Richibucto estuary, 

New Brunswick, Canada.  

 

 

 The study was conducted in the Richibucto estuary, New Brunswick, Canada 

(64°51' W, 46°42' N) (Figure 3-1).  The estuary consists of a semi-enclosed barrier island 

system similar in physical characteristics to several nearby estuaries along the Gulf of St. 

Lawrence coastline.  Eelgrass occurs at varying densities in most areas with suitable 
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depth and substrate conditions.  The estuary is fed by the Richibucto, Aldouane, and St. 

Charles Rivers, representing a mainly suburban, agricultural, and forested watershed.  

Aquaculture of the Eastern oyster (Crassostrea virginica) occurs in moderate densities at 

several locations within the estuary.  The tidal range is approximately 1-2 m (Guyondet et 

al. 2005). 

Focus was given to two locations within the estuary.  Site A was located in a 

basin of the northwestern branch of the estuary (Figure 3-1).  This basin is characterized 

by depths of 1-2 m outside of a narrow channel that reaches up to 7 m in depth.  The land 

to the north of site A is part of Kouchibouguac National Park, and is used very 

infrequently outside of limited non-motorized recreational activities.  A few small oyster 

and mussel aquaculture sites are located in this portion of this estuary.  The eelgrass 

community at site A is widespread, ranging from high to intermediate density (Barrell & 

Grant 2013).  Sediments in this area are mainly muddy sand with relatively uniform grain 

size (Lu et al. 2008). 

 Site B was located in a basin of the eastern part of the estuary locally referred to 

as Baie du Village (Figure 3-1).  This area is on average slightly deeper than site A (~2-3 

m) and does not have any significant riverine sources of freshwater input.  Oyster and 

mussel aquaculture occurs in this part of the estuary at a higher density than at site A, and 

limited access to some areas for the acoustic survey.  This area also contains a seafood 

processing plant with effluent feeding into the estuary. 

 

 

 



58 

 

3.2.2 Image Acquisition and Classification 

 

The image acquisition and classification procedure of this research was performed 

by Matthew Mahoney and Al Hanson of Environment Canada/Canadian Wildlife Service 

as part of a collaboration with a Fisheries and Oceans working group on eelgrass 

mapping, of which the author is a participant (Mahoney & Hanson 2007).  Only the final 

map product was used for comparison to acoustic data.  Production of this map product is 

summarized below. 

New Quickbird satellite imagery covering the full extent of the Richibucto estuary 

(70 km2) was acquired at low tide on 27 August 2007 (Mahoney & Hanson 2007).  Both 

multispectral and panchromatic products were acquired.  Multispectral imagery at 2.4 m 

spatial resolution consisted of four bands: blue (430-545 nm), green (466-620 nm), red 

(590-710 nm), and near-infrared (715-918 nm).  The panchromatic image consisted of a 

single band (405-1053 nm) at 0.6 m spatial resolution.  The raw multispectral and 

panchromatic images were combined through pan-sharpening to create a multispectral 

image with 0.6 m spatial resolution. 

Prior to classification, dry land and the navigation channel were manually 

identified and excluded from further analysis with the assumption of eelgrass absence in 

these locations.  The remainder of the image was segmented into distinct regions and 

classified using an object-based image analysis (OBIA) procedure with Definiens 

eCognition software into four categories: eelgrass present, eelgrass absent, aquaculture, 

and intertidal mudflat (see Mahoney et al. 2007).  Only the categories of eelgrass 

presence and absence were considered for the present study, forming a binary 

classification of seagrass distribution throughout the Richibucto estuary. 
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Ground reference data for image classification were collected with a towed video 

camera survey conducted 2-5 July 2007, encompassing 8.82 hours of video over a total 

transect length of 33km (Vandermeulen 2013).  Areas of dense cover and eelgrass 

absence were recorded over a 3m transect “window” of video with the goal of classifying 

for presence-absence; areas of intermediate cover were excluded.  Ground reference 

points were then allocated with 60% used for training the OBIA algorithm and 40% 

reserved for the purposes of accuracy assessment. 

 

 

3.2.3 Acoustic Survey and Analysis 

 

 Acoustic data representing seagrass landscape structure were collected using a 

BioSonics DE-X 430 kHz, 6.2° single beam sonar unit.  Sites A and B were extensively 

sampled within the Richibucto estuary on 10-11 October 2007.  All surveys were 

conducted during calm conditions within 2 hours of a low tide.  Each survey was 

designed with tracks separated by approximately 30m where possible, while allowing for 

deviations around obstacles such as shoals and aquaculture gear.  Vessel speed was kept 

constant at 7 km h-1 to minimize noise and maintain consistent spatial resolution of the 

output data.  Ping data were recorded at a rate of 5 Hz.  Position was recorded using a 

JRC differential GPS (DGPS) receiver referenced to the Point Escuminac, New 

Brunswick DGPS beacon located at a distance of approximately 41 km (64° 48’ W, 47° 

04’ N), achieving an estimated ≤2m horizontal accuracy. 

Characteristics of the seagrass habitat were extracted from raw ping data using the 

heuristic algorithm within BioSonics EcoSAV v1.2 software (Sabol et al. 2002).  The 
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effectiveness of this method has been verified for diverse species of macrophytes in both 

fresh and salt water (Guan et al. 1999, Sabol et al. 2002, Valley et al. 2005, Sabol et al. 

2009, Barrell & Grant 2013).  The algorithm examines each individual ping and extracts 

information on seagrass presence/absence, canopy height (if present), and water depth.  

Successive pings are then summarized into one cycle of 10-15 pings and exported for 

analysis with geographic information systems (GIS) software.  The resulting output 

points were separated by 4-6 m in the along-transect direction.  For this study, focus was 

given to the output variable of percent cover, defined as the proportion of ‘plant’ pings 

divided by the total number of pings per cycle. 

 Some data points at site A were manually removed prior to analysis to account for 

the effect of crossing the channel.  Additional manual editing was conducted to remove 

any points falling within aquaculture leases, and to remove extra points where boat was 

stationary. 

 

 

3.2.4 Error Matrix and Threshold Formulation 

 

 Comparisons between the acoustic and optical datasets were performed using 

ArcGIS v10.l software.  Multiple presence/absence thresholds were applied to the 

continuous acoustic percent cover dataset for conversion to a binary classification 

scheme.  Thresholds were established at increments of 10% cover from 0 - 100%, notated 

as t0 – t100.  Percent cover values in the acoustic dataset at or below the threshold percent 

were assigned a value of “0” for absence, notated as A0, while all points at or above the 

threshold were assigned a value of “1” for presence (A1).  The acoustic output points 
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were then overlaid on the classified map and assigned values of either “2” or “4” for 

eelgrass presence (S1) and absence (S0), respectively.  These acoustic and satellite values 

were then summed together to produce a unique integer value for each possible outcome.  

This procedure was then repeated for each threshold t0 – t100. 

 At each threshold, there were four possible outcomes in the comparison: 1) 

presence in both datasets (S1A1); 2) absence in both datasets (S0A0); 3) satellite presence 

and acoustic absence (S1A0); and 4) satellite absence with acoustic presence (S0A1).  

These outcomes are represented by the error matrix, depicting classification accuracy 

through comparison between observed ground reference data and the value predicted by 

remote sensing (Table 3-1).  For this study, the acoustic dataset was effectively treated as 

ground reference data for the validation of predictions made by the classification scheme.  

In this context, S1A1 represents the true positives (TP) and S0A0 represents true negatives 

(TN) where both datasets agree; S1A0 represents the false positives (FP), also known as 

errors of commission; and S0A1 represents the false negatives (FN), or errors of omission.  

One error matrix was produced for each threshold value at both study sites. 

 

Satellite 

classification 
Acoustic data (Reference) 

(Prediction) Present Absent 

Present S1A1  (TP) S1A0  (FP) 

Absent S0A1  (FN) S0A0  (TN) 

Table 3-1.  Error matrix representing the possible outcomes in the comparison between 

acoustic and satellite datasets. 
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 Various statistics and ratios can be derived from the error matrix, and details of 

these measures and their calculation are found in the relevant literature (e.g., Congalton 

& Green 2009).  Emphasis was placed on trends in overall accuracy, prevalence, 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) (Table 3-2).  It is useful to note that all of these metrics are highly correlated, as 

each is derived from some combination of the 4 possible outcomes of the error matrix 

(i.e., TP, TN, FP, FN). 

Each statistic was calculated for both sites A and B at threshold values t0 – t100 

and expressed as a proportion from 0 - 1.  Due to the development of error matrix 

analysis in multiple fields (e.g., diagnostic testing, remote sensing, species distribution 

modelling), many terms are interrelated or used interchangeably, occasionally leading to 

confusion.  In this study, the terminology generally follows that of diagnostic testing, 

forgoing the common terminology of remote sensing and cartography to focus on the 

statistical aspects of comparing two sensors with a binary classification scheme.  For 

example, in the remote sensing literature, sensitivity and specificity are referred to as the 

“producer’s accuracy”, while NPV and PPV represent the “user’s accuracy” for their 

respective categories.  In this study, the acoustic dataset is treated as the reference (or 

“ground-truth”) data, and the classified pixel value as a prediction, though it is generally 

acknowledged that some error is always present in reference data as well (Foody 2010). 

The kappa statistic was also calculated in order to compare satellite and acoustic 

methods.  Kappa corrects the estimate of overall accuracy by accounting for correlations 

occurring by random chance, and is commonly applied to remote sensing classifications 
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(Congalton 1991, Congalton & Green 2009).  Kappa (κ) was calculated according to the 

following formula: 

 

(Eq. 3-1) κ = 
(
TP+TN

n )−(
(TP+FP)(TP+FN)+(FN+TN)(FP+TN)

n2
)

1-(TP+FP)(TP+FN)+(FN+TN)(FP+TN)

n2

 

 

Where n represents the total number of samples and TP, FP, TN, and FN represent true 

positives, false positives, true negatives, and false negatives, respectively (Table 3-1). 

Kappa estimates the agreement of two binary classifications relative to random chance, 

ranging from 1 (perfect agreement) to 0 (random agreement) to -1 (systematic 

disagreement below that expected by random chance) (Congalton 1991, Congalton & 

Green 2009). 

In addition to the error matrix comparisons, the raw acoustic percent cover dataset 

was also directly compared to the classified map.  All acoustic points falling in the 

respective categories of presence or absence at each site were grouped together and 

summary statistics were calculated for each class. 
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Metric Value Description 

Overall Accuracy (TP + TN) / n 
Proportion of all predictions that were 

correct 

Prevalence (TP + FN) / n 
Proportion of observations (acoustic points) 

classified as presence 

Sensitivity TP / (TP + FN) Proportion of correctly predicted presences 

Specificity TN / (TN + FP) Proportion of correctly predicted absences 

Positive Predictive 

Value (PPV) 
TP / (TP + FP) 

Proportion of positive predictions that are 

true positives 

Negative Predictive 

Value (NPV) 
TN / (TN + FN) 

Proportion of negative predictions that are 

true negatives 

 

Table 3-2.  Description of metrics derived from the error matrix along with the 

calculation used for their derivation.  
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3.3 Results 

 

 

 

 

 
Figure 3-2.  Classified map of sites A (left) and B (right) with the location of sampled 

acoustic points overlaid.  

 

 

3.3.1 Image Classification 

 

The OBIA classification produced a binary categorical raster map of eelgrass 

presence and absence throughout the estuary (Figure 3-2).  The classification scheme 

based on eelgrass presence-absence resulted in an accuracy of 72.3% when compared to 

the video transect reference data across the entire study area (Mahoney & Hanson 2007).  

When analyzed with a fuzzy classification method, accuracy increased to 81.5%. 
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Figure 3-3.  Spectral banding at site B affected the 2.4 m resolution multispectral imagery 

(left) more strongly than the 0.6 m resolution panchromatic image (right). 

 

 The raw imagery was subject to a spectral banding issue that affected a large 

proportion of the image (Figure 3-3).  This is caused by a systematic problem at the level 

of the satellite sensor and could not be managed from an end-user perspective; it 

generally occurred in large groups of conjoined pixels that exhibit very low reflectance.  

The occurrence of this distortion was minimal at site A and likely did not influence 

classification.  However, the effect was much more prevalent at site B, though it was still 

possible to visibly discern eelgrass patches from the raw multispectral image. 

 

 

 

 

3.3.2 Acoustic Survey Results 

 

The acoustic survey of site A covered an extent of 29.7 ha over 14.7 km transect 

length with mean seagrass percent cover of 41.8 ± 18.1% (SD) (Figure 3-4).  At least a 

small amount of vegetation was detected essentially throughout the entire study area, 
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with only 21 out of 2677 report points (0.78%) indicating 0% cover.  Water depth was 

relatively constant with a mean depth of 1.39 ± 0.12 m (SD). 

At site B, the acoustic survey covered an area of 53.2 ha over transect length of 

26.4 km (Figure 3-5).  Mean percent cover of seagrass was more variable than at site A: 

33.2 ± 24.5% (SD).  Areas lacking seagrass were much more prevalent than at site A, 

with 0% cover detected at 626 of the 4932 survey points (12.7%), indicating a patchy 

heterogeneous landscape structure.  Water depth was slightly deeper at 2.00 ± 0.21 m 

(SD) throughout the study area. 

 

 

 

 

 

 



68 

 

 

 
Figure 3-4.  (above) Acoustic track map of site A from the October 2007 survey depicting 

percent cover of eelgrass; (below) histogram of seagrass percent cover at site A; mean 

41.8 ± 18.1% (SD), n = 2677 points. 
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Figure 3-5.  (above) Acoustic track map of site B from October 2007 showing percent 

cover of seagrass.  (below) Histogram of seagrass percent cover at site B; 33.2 ± 24.5% 

(SD), n = 4932 points. 
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 In the optically classified map of site A, acoustic points falling in areas classified 

as seagrass showed a mean of 49.4% cover, and areas classified as lacking seagrass were 

found to have a mean of 38.7% cover, representing a difference of 10.7% cover between 

the presence-absence categories.  Of the 2677 acoustic points at site A, 29.3% occurred 

within areas classified optically as seagrass and 70.7% fell into areas classified optically 

as bare (Figure 3-2).  At site B, seagrass presence areas were acoustically measured at a 

mean of 36.2% cover and bare areas at 24.3% cover for a differential of 11.9% cover.  Of 

the 4932 acoustic points at site B, 74.4% occurred in areas classified optically as seagrass 

while 25.6% were classified optically as bare (Figure 3-2).  Notably, the classification 

predicted lower seagrass cover at site A relative to site B (29.3% vs. 74.4% respectively), 

in contrast to the acoustic results that showed higher cover at site A than site B (41.8% 

vs. 33.2%).  This highlights the general disagreement between the two remote sensing 

datasets. 
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3.3.3 Error Matrix Analysis 

 

 

 
Figure 3-6.  Prevalence of seagrass presence determined from the acoustic percent cover 

dataset at each examined threshold t0 - t100 for sites A and B. 

 

 

Prevalence was seen to decline with increasing threshold at sites A and B (Figure 

3-6). This matches the expected pattern as each increase in threshold corresponds to a 

decreasing number of points assigned to the category of seagrass presence.  The 

differential in prevalence between sites A and B at t0 represents the greater occurrence of 

zeroes at site B; 12.7% of points at site B were classified as absent, while only 0.78% of 

points at site A were disqualified at this most inclusive threshold.  Prevalence approached 

zero at t100, as only the small number of acoustic points with 100% cover were classified 

as present at this threshold. 
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Figure 3-7. Results of the kappa statistic at each threshold from t0 - t100 for sites A and B.  

Kappa measures the agreement of two binary classifications relative to random chance, 

ranging from 1 (perfect agreement) to 0 (random agreement) to -1 (systematic 

disagreement below that expected by random chance). 

 

 Results of the kappa statistic showed the agreement between the acoustic and 

satellite data at each threshold relative to the expected agreement due to random chance 

(Figure 3-7).  All observed values of kappa represented “poor” to “fair” agreement  

(Landis & Koch 1977).  Agreement was found to be relatively poor at every threshold at 

both sites A and B.  At site A, kappa was maximum at t50, decreasing to near zero at high 

and low thresholds.  The maximum kappa at site B occurred at t20, with a minimum at 

t100. 
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Analysis of the error matrix depicted distinctly different trends in overall accuracy 

between sites A and B (Figure 3-8).  These observed differences in overall accuracy were 

caused by the mismatch between predicted seagrass cover in the classified map and the 

observed acoustic dataset.  At site A, overall accuracy was lowest at t0 (29.9%) and 

increased with threshold value before leveling out near its maximum value (71.9%) at t70.  

Overall accuracy at site A is lowest at t0 due to disagreement between the observed 

prevalence at this threshold (~99%) and the classification in which only 29.3% of points 

occurred in areas of predicted seagrass presence.  Overall accuracy improved as 

increasingly strict threshold values decreased prevalence to more closely match the 

predictions of the classified satellite dataset.  In contrast, site B exhibited highest overall 

accuracy at t0 (72.1%) and decreased at higher thresholds to the minimal value at t100 

(25.9%).  At site B, 74.4% of the acoustic points fell within areas of predicted seagrass 

presence.  This led to maximum overall accuracy at t0 where prevalence (87.3%) was 

highest.  Overall accuracy declined at higher thresholds as prevalence decreased. 
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Figure 3-8.  Trends in overall accuracy for sites A & B at each threshold value of 

seagrass percent cover (t0 – t100). 
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Figure 3-9.  At each percent cover threshold, the proportion of points determined to be 

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for 

sites A (above) and B (below).  The sum of TP and TN is equivalent to the overall 

accuracy, while the sum of FP and FN represents the misclassification rate.  The ratio of 

classified positives (TP + FP) to classified negatives (TN + FN) is predetermined by the 

number of points falling in respective categories in the classified map. 
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Classification errors at site A were predominantly due to false negatives at lower 

thresholds, decreasing at higher thresholds with a corresponding increase in false 

positives (Figure 3-9).  A similar pattern was found at site B, though false positives 

comprised a relatively larger proportion of classification errors, particularly at higher 

thresholds due to the higher predicted cover of the classified map at site A relative to site 

B.  As a general pattern at both sites, increasing the acoustic threshold corresponded to an 

absolute decrease in true positives and false negatives and an increase in false positives 

and true negatives. 

The balance between seagrass presence and absence predictions is predetermined 

by the number of acoustic points falling in each category of the classified map.  The 

number of points classified as presence (TP + FP) and absence (TN + FN) are therefore 

fixed for each site by the predictions of the classified map (Figure 3-9).  At site A, points 

classified as presence (TP + FP) account for 29.3% of the total, compared to 74.4% at site 

B.  Due to this discrepancy, overall accuracy at site A was affected more by NPV than 

PPV, whereas site B was more strongly affected by PPV than NPV due to the higher 

proportion of points classified as presence (Figure 3-10). 

Similar relationships between PPV and NPV were found at sites A and B, with 

maximum PPV and minimum NPV at t0, while minimum PPV and maximum NPV 

occurred at t100 (Figure 3-10).  At t0 only points with 0% cover were considered absent, 

leading to maximum numbers of TPs and FNs at both sites.  Increasing the threshold 

resulted in lower observed prevalence leading to a relative increase in FPs and TNs, 

causing the observed drop in PPV and rise in NPV. 
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At site A, the classification scheme exhibited higher specificity than sensitivity at 

low threshold values, with maximum specificity and minimum sensitivity at t0 (Figure 3-

11).  Specificity declined with successive thresholds to a minimum value at t100 while 

sensitivity increased up to its maximum at t90.  High prevalence at low thresholds led to a 

high proportion of false negatives relative to true negatives, reflected by the very low 

NPV, causing low sensitivity despite high PPV.  Sensitivity increased moderately at 

successive thresholds as the decline in true positives was outpaced by the decline in false 

negatives. 

In contrast to site A, site B showed higher sensitivity than specificity at each 

threshold interval (Figure 3-11).  Presence as determined by the acoustic dataset was 

correctly identified for greater than 76% of points at all thresholds.  High prevalence at 

low thresholds resulted in a large number of true positives, and false negatives were 

limited by the classification in which 74.4% of points were predicted as presence.  This 

also led to a large number of false positives resulting from the discrepancy between the 

classification and the raw acoustic data.  Specificity was found to be relatively low, 

declining after a maximum at t0 due to the influence of false positives.   
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Figure 3-10.  Trends in positive predictive value (PPV) and negative predictive value 

(NPV) at sites A (above) and B (below) through threshold values of percent cover from 0 

– 100% (t0 – t100). 
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Figure 3-11.  Sensitivity (correctly predicted presences) and specificity (correctly 

predicted absences) of the classification scheme for sites A (above) and B (below) at 

threshold values of percent cover from 0 – 100% (t0 – t100). 
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3.4  Discussion 

 

3.4.1 Comparison of acoustic and satellite data 

 

 Contrary to expectations, the acoustic and satellite datasets did not produce highly 

similar estimates of seagrass percent cover at any threshold.  This is most clearly 

illustrated by kappa (Figure 3-7).  The maximum value achieved at either site was 0.219 

at site A (t50), representing at best “fair” agreement (Landis & Koch 1977).  This low 

level of inter-observer agreement indicates that, in the current study, acoustic data cannot 

be used as suitable ground reference data to assess the classification accuracy of satellite 

remote sensing.  However, dissecting the apparent disagreement helps to illustrate the 

differences between acoustic and optical methods, suggesting when it is appropriate to 

apply either technique.  At site A, the satellite classification underestimated the 

distribution of seagrass relative to the acoustic survey with only 29.3% of the acoustic 

points falling into areas classified as seagrass, in contrast to the acoustic estimate of 

41.8% cover overall.  An opposite result was apparent at site B, where 74.4% of acoustic 

points fell in areas classified as seagrass compared to the acoustic estimate of 33.2% 

cover.  This discrepancy explained many of the observed differences in error matrix 

metrics between sites A and B. 

One major issue associated with evaluating binary classification performance is 

the sensitivity of common metrics (e.g., overall accuracy, kappa) to prevalence (Fielding 

& Bell 1997, Manel et al. 2001, Liu et al. 2005, Allouche et al. 2006, Freeman & Moisen 

2008).  For example, Fielding & Bell (1997) describe a hypothetical example where if 

prevalence was 5%, it would be possible to achieve overall accuracy of 95% if all cases 

were simply classified as negative.  This has particular relevance for the selection of a 
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binary classification threshold.  In this study, prevalence was a function of the applied 

threshold relative to the site-specific distribution of acoustic percent cover values.  At 

both sites, increasing the threshold effectively decreased prevalence and reclassified 

acoustic points from present to absent (Figure 3-6).  Maximum kappa at both sites 

occurred when the applied threshold resulted in the closest match between acoustic 

prevalence and the satellite classification. 

This dependence on prevalence explains the contrasting overall accuracy curves 

for sites A and B (Figure 3-8).  At site A, the acoustic survey found an approximately 

normal distribution of percent cover values with a very low proportion of zeroes (0.78%).  

Overall accuracy was at its minimum at t0 (29.9%), where prevalence was maximum 

(99.2%) as all non-zero acoustic points were classified as presences, contrasting with the 

comparatively low estimate of the satellite classification (predicted 29.3% presence) and 

leading to a large number of false negatives.  The observed improvement in overall 

accuracy at higher thresholds is driven by a reduction in false negatives and improving 

NPV that outweighs the corresponding decrease in PPV (Figure 3-10).  Maximum overall 

accuracy was achieved when prevalence was reduced to the level of the satellite 

classification. 

   At site B, in contrast to site A, overall accuracy was maximized at t0 where the 

threshold established presence for all acoustic points except those with a value of zero 

percent cover.  This result was driven by agreement between the satellite classification 

(predicted 74.4% presence) and correspondingly high prevalence in the acoustic dataset 

(87.3%).  Prevalence at t0 was lower than at site A due to the comparatively large 

presence of zeroes in the acoustic dataset (12.7%).  Although the majority of these were 
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misclassified, 40.7% were correctly classified as true negatives (Figure 3-10), adding to 

the high overall accuracy measured at t0. 

 These results highlight the difficulty of comparing remote sensing methods with 

different data models.  Satellite remote sensing does not provide an effective predictive 

model of seagrass percent cover as measured by acoustics, and satellite classification 

accuracy assessment should not be evaluated with continuous acoustic data.  However, 

the observed lack of agreement does not decisively suggest that either method is more or 

less “correct” than the other.  Although both methods are able to produce objectively 

accurate maps when evaluated with independent reference data (e.g. Mahoney & Hanson 

2007, Appendix A), the lack of strong agreement belies inherent accuracy issues 

underpinning both methods.  Relative to the acoustic dataset, the satellite classification 

under- and overestimated seagrass cover at sites A and B, respectively.  This emphasizes 

the finding that site-specific differences in prevalence are crucial for understanding 

classification accuracy in seagrass ecosystems.  The potential for largely under- or over-

estimating seagrass abundance from applying bay-scale classification to multiple spatial 

regimes with different prevalence is a risk that should be accounted for in all monitoring 

and management activities associated with seagrasses.   

 

 

3.4.2 Factors affecting classification accuracy 

 

The discrepancy between acoustic and satellite maps of seagrass distribution may 

have been affected by other factors aside from the binary classification scheme.  As 

discussed above, characteristics of the seagrass bed such as prevalence can influence the 
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ability of remote sensing to detect vegetation.  The spatial scale of patchiness inherent to 

the seagrass bed interacts with the spatial resolution of remote sensing as represented by 

its fundamental unit, the pixel.  The ability to resolve seagrasses from aerial imagery is 

dependent on the size of the sampling unit (i.e., pixel) relative to the patch.  If a patch is 

smaller than the sampling unit, it results in the “mixed-pixel problem”, where one pixel 

spans multiple classes of land cover, confounding the classification scheme and leading 

to errors (Fisher 1997, Lu & Weng 2007).  Mixed pixels can also occur at patch 

boundaries when the pixel sits astride adjacent vegetated and bare areas.  As a result, the 

proportion of mixed pixels is effectively a function of the size, shape, and configuration 

of seagrass patches in the landscape.  As patch size increases relative to the sampling 

unit, the proportion of mixed pixels decreases, theoretically improving classification 

accuracy and the ability to resolve pattern (Lu & Weng 2007). 

Image classification performance is also influenced by factors associated with the 

optical sensors used by the satellite platform.  In subtidal marine ecosystems, light is 

quickly attenuated as a function of its wavelength and water depth, limiting the amount of 

information that can be extracted.  This constraint is exacerbated in mixed pixels, when 

the spectral information collected by the satellite sensor represents components from 

more than one feature.  The radiometric, spectral, and spatial resolution of the sensor 

together define the minimum resolvable unit, essentially the smallest amount of seagrass 

required to trigger a determination of seagrass presence.  Though the smallest possible 

spatial representation would be equal to one pixel, it is not generally clear what quantity 

or density of seagrass within a pixel (i.e., the “purity” of a mixed pixel) constitutes the 
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minimum resolvable unit of seagrass for satellite remote sensing, and how this quantity 

varies with factors such as water depth, vegetation density, and substrate type.   

In contrast to the regular (i.e., square) pixel produced by satellite remote sensing, 

the acoustic data analyzed in this study used an irregularly shaped sampling unit 

produced by averaging several acoustic pings over a linear distance of 4-6 m.  Though the 

spatial area represented by one acoustic point and one satellite pixel are roughly 

comparable, it is likely that the ability to detect very small amounts of eelgrass differs 

between the two methods.  The pixel size of the satellite imagery (5.76 m2) is most likely 

too coarse for detecting very small amounts of seagrass.  However, the acoustic system is 

theoretically able to detect as little as a single blade of eelgrass with a single ping, as the 

area of a single ping footprint in 1 m depth is comparatively much smaller (ca. 0.01 m2).  

Averaged over a 10 ping cycle, this single blade would theoretically result in a measure 

of 10% cover, representing a minimum resolvable unit smaller than can be achieved with 

satellite remote sensing. 

The differential sensitivity to small amounts of seagrass suggests a plausible 

explanation for the poor agreement between satellite and acoustic datasets.  For example, 

at site A the acoustic survey detected at least a low level of seagrass cover throughout 

virtually the entire survey area.  Acoustic points representing areas of sparse eelgrass 

below the minimum resolvable unit of the satellite classification scheme resulted in a 

large number of false negatives, particularly at low thresholds.  Future research should be 

conducted to evaluate the minimum resolvable unit of seagrass that can be detected 

through satellite remote sensing. 
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Despite poor overall agreement, the acoustic percent cover dataset quantified 

differences between areas of presence and absence in the satellite map.  The difference in 

percent cover between areas of predicted presence and absence was 10.7% at site A and 

11.9% at site B.  This suggests that the effective minimum resolvable unit is not an 

absolute value, but instead may be determined in terms of contrast with the surrounding 

landscape.  Previous studies have explored the ability of acoustic methods to detect 

patterns within “continuous” seagrass beds (Barrell & Grant 2013, Chapter 2 of this 

thesis).  The indeterminacy of boundaries may be a major source of error and uncertainty 

particularly in continuous seagrass beds (Barrell & Grant 2013).  Detection of boundaries 

from remote sensing can be challenging when thematic resolution is limited compared to 

variation in the landscape (Arnot et al. 2004).  The binary classification scheme that 

underpins the error matrix assumes the presence of sharp discontinuities between areas of 

presence and absence.  In locations such as site A, forcing binary classification on a 

continuously varying landscape results in the high misclassification rate observed in this 

study. 

The classified satellite map of site B depicted the seagrass bed with large areas of 

mostly continuous cover fragmented by several small gaps with visually apparent 

boundaries (Figure 3-2).  The classification qualitatively showed stronger agreement with 

the acoustic dataset in the southwest of the surveyed area where patch-gap boundaries 

were most evident, but detected many false positive errors throughout the rest of the 

landscape.  Agreement between satellite and acoustic datasets may have been stronger if 

analysis was confined to a subset of the surveyed area where confidence in satellite 

classification performance was higher.  The spectral banding problem inherent to the 
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satellite data may have been responsible for some of these errors, as a visual inspection of 

site B showed many of the heavily banded areas misclassified as seagrass (Figure 3-3).  

The satellite classification also notably misclassified a large oyster aquaculture operation 

at site B as seagrass, highlighting the potential effects of systematic errors associated with 

remote sensing.  Similarly, the lack of agreement may have been influenced by spatial 

uncertainty in the satellite and/or acoustic datasets due to georeferencing or GPS errors.  

Additionally, the sharp boundaries present at site B could potentially exacerbate any 

positional or georeferencing errors caused by mismatch between the satellite and acoustic 

datasets (Arnot et al. 2004). 

Characteristics of the satellite classification approach also may have influenced 

the results, as image classification is subject to a number of errors associated with 

interpreter bias (Lu & Weng 2007, Shao & Wu 2008).  Aside from unintentional 

classification errors, the motivation for conducting the original satellite classification of 

Richibucto likely influenced the output map.  Object-based image analysis focuses on 

detecting user-defined “objects” with particular spatial characteristics.  The goal of the 

satellite classification was to map seagrass at the bay-scale, and was focused on broad 

trends of seagrass presence-absence (Mahoney & Hanson 2007).  Spatial scale mismatch 

between the OBIA classification algorithm and the patch-scale focus of the acoustic 

survey likely contributed to the lack of agreement between the two datasets.  

Additionally, the gap between image acquisition and the acoustic survey (~1.5 months) 

may have resulted in a temporal mismatch if substantial changes in landscape structure 

occurred over the ensuing time period, though there were no major storm events or 

anthropogenic disturbances known to occur over the elapsed time span. 
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3.4.3 Conclusions 

 

In this study, acoustic and satellite remote sensing datasets representing seagrass 

distribution did not exhibit strong agreement when compared using the error matrix and 

derived metrics.  These results suggest that accuracy assessment of satellite-derived 

seagrass maps using acoustic reference data is problematic.  Acoustic surveys measure 

seagrass percent cover with a continuous data model, in contrast to the categorical 

presence-absence representation produced through the classification of satellite imagery.  

The observed lack of agreement may be the result of applying binary classification to the 

continuous acoustic percent cover dataset, as well as site-specific differences in the 

prevalence of  seagrass, environmental conditions, systematic errors with remote sensing, 

and spatial uncertainty in the output data. 

The comparison of acoustic and satellite datasets presented here illustrates the 

variable performance of satellite classification in areas with differing landscape structure.  

In particular, estimates of seagrass distribution produced from satellite data vary as a 

function of the local prevalence and patchiness of seagrass.  While both acoustic and 

satellite methods measure a comparable spatial footprint, acoustic remote sensing is more 

sensitive to small amounts of seagrass, revealing potential over- and underestimates in 

broad-scale satellite maps covering multiple spatial regimes.  These results have 

important implications for the mapping and monitoring of seagrass ecosystems.  Despite 

recognition of the sensitivity of habitat maps to error, studies investigating the magnitude 

of uncertainty in landscape analysis are relatively rare (Newton et al. 2009).  Remote 

sensing and assessment of classification accuracy should be conducted with consideration 
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of potential mismatches between the goals of the application, the structure of the area 

under study, and the sensitivity of the remote sensing approach. 
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Chapter 4.  Use of High-Resolution Low-Altitude Aerial 

Photography for the Characterization of Eelgrass (Zostera 

marina L.) and Blue Mussel (Mytilus edulis L.) Landscape 

Structure at Multiple Spatial Scales 
 

 

 

 

4.1 Introduction 

 

 Study of spatial heterogeneity and the arrangement of habitats has long been a 

primary focus of marine ecology (e.g., Paine & Levin 1981).  Understanding the 

relationship between spatial patterns and ecological processes is critical for the effective 

management of marine and coastal resources and the valuable ecosystem services they 

provide, with implications for conservation, marine spatial planning, and habitat 

restoration (Bell et al. 1997, Hinchey et al. 2008).  The discipline of landscape ecology 

addresses the causes and ecological consequences of heterogeneity through quantitative 

analysis of the ‘landscape’, a heterogeneous mosaic of patches that can be defined over a 

broad range of spatial scales (Turner 2005).  Landscape ecology is characterized by the 

use of metrics for quantifying the size, shape, and configuration of ecological phenomena 

such as habitat patches through space (O’Neill et al. 1988, Turner et al. 2001).  

Landscape metrics are used to calculate these spatial characteristics at the level of the 

individual patch, class (i.e., all patches of a particular type), and the entire landscape.  

This approach, while widespread in terrestrial ecology, is increasingly being applied to 

biogenic marine features such as coral reefs, seagrasses, and bivalves (Boström et al. 

2011). 
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Several challenges are associated with the application of landscape techniques to 

marine and coastal environments (Hinchey et al. 2008, Boström et al. 2011).  The range 

of habitats present in marine landscapes is small relative to the terrestrial context, 

particularly in temperate waters.  At mid-latitudes, landscapes consist largely of bare 

sediments or rocks, aquatic vegetation (i.e., seagrasses & macroalgae), and shellfish beds.  

These areas are highly dynamic through time and space, necessitating high-quality fine-

resolution spatial data over a relatively broad extent in order to capture pattern at relevant 

spatial scales.  In subtidal areas, the overlying water column obscures the detection of 

bottom structure, particularly in turbid waters.  For this reason, marine landscape ecology 

is well developed for habitats in clear tropical waters such as coral reefs (e.g., Mumby et 

al. 2008), but is less common in turbid temperate environments such as those prevalent in 

parts of Atlantic Canada. 

Among common intertidal and shallow subtidal habitats in Atlantic Canada, the 

seagrass species eelgrass (Zostera marina L.) stands out as a particularly important 

component of the coastal environment, acting as an ecosystem engineer through 

modification of the physical and chemical environment (Jones et al. 1994, DFO 2009).  

Eelgrass provides a suite of ecosystem services such as primary production, shoreline 

protection, and nutrient cycling, ranking among the most valuable habitats worldwide 

(Costanza et al. 1997).  Eelgrass habitats are also highly susceptible to disturbance and 

have declined in global extent over the last several decades due in large part to 

anthropogenic pressures (Orth et al. 2006, Waycott et al. 2009).  Awareness of the value 

and sensitivity of seagrass habitat has led to diverse approaches to understand and model 

the processes driving seagrass dynamics, though efforts have been hampered in part by a 
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lack of accurate maps and spatial data representing the extent and distribution of 

seagrasses at fine spatial scales (Duarte 2002, Bell et al. 2006).  Compared to most other 

marine habitats, seagrass landscapes have been relatively well-studied and have a long 

history as a focal species for landscape analysis (Robbins & Bell 1994). 

Bivalves represent a second major source of biogenic structure in intertidal and 

shallow subtidal ecosystems.  Bivalve shellfish naturally form aggregate communities, or 

reefs, that function as ecosystem engineers and support diverse ecological functions in 

the coastal environment (Gutiérrez et al. 2003, Coen et al. 2007).  Species such as the 

blue mussel (Mytilus edulis) and Eastern oyster (Crassostrea virginica) contribute 

ecosystem services such as water filtration, wave attenuation, and shoreline protection in 

addition to their value through commercial and recreational fisheries and aquaculture.  

Bivalves, along with seagrasses, are often the subject of intensive restoration efforts 

(Coen & Luckenbach 2000, van Katwijk et al. 2009), and play important roles in coastal 

management and marine spatial planning.  Though bivalve patterns on rocky intertidal 

substrate are comparatively well-studied (e.g., Paine & Levin 1981, Guichard et al. 

2003), relatively little is known about patterns in soft-sediment habitats (Crawford et al. 

2006).  In Atlantic Canada, blue mussels are found on both hard and soft substrates, often 

coexisting with eelgrass in soft-sediment areas as discrete patches juxtaposed with or 

interspersed throughout the vegetative understory. 

 Seagrasses and bivalves share many commonalities when considered from a 

landscape perspective.  Seagrasses occur as mosaics of fragmented or near-continuous 

meadows that can be conceptualized over a hierarchy of spatial scales ranging from 

individual plants to landscape-scale meadows (Bell et al. 2006, Duarte et al. 2006).  
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Similarly, bivalve reef structure has been characterized over multiple spatial scales 

ranging from individuals to dense reef agglomerations (Kostylev & Erlandsson 2001, 

Crawford et al. 2006).  Bivalves and seagrasses are both structured by processes 

operating across multiple spatial and temporal scales and are greatly affected by 

hydrodynamics and water quality.  Both also have wide-ranging impacts on the local 

ecosystem, affecting water movement, sedimentation, turbidity, faunal communities, and 

nutrient cycling where they occur. 

Marine landscapes are typically studied with emphasis on a focal patch type 

following the patch-matrix model of landscape ecology where patches are distributed 

through a background of soft sediments (Boström et al. 2011).  This results in a binary 

landscape of target patches (e.g., seagrass) embedded in a background matrix (e.g., soft 

sediments).  This model has been applied to seagrass ecosystems for study of diverse 

aspects of landscape structure such as gap dynamics, faunal interactions, ecosystem 

monitoring, and predictive modeling (Bell et al. 2006).  However, coastal habitats also 

frequently occur as larger habitat mosaics including multiple substrate types and 

additional biogenic components.  The spatial arrangement of multi-component mosaics 

influences several aspects of ecosystem function through interactions between disparate 

habitats.  For example, seagrasses affect adjacent habitats through the export of nutrient 

subsidies (Heck et al. 2008), and the presence of multiple landscape components can 

increase habitat quality for faunal species (Micheli & Peterson 1999, Grabowski et al. 

2005).  Seagrasses in particular exhibit complex interactions when paired with bivalves in 

coastal landscapes, with potential advantages and disadvantages to the relationship for 
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both species (e.g. Reusch et al. 1994, Reusch & Chapman 1995, Peterson & Heck 2001, 

Vinther et al. 2008). 

The application of landscape techniques to the marine environment is still a 

relatively recent occurrence, and questions remain as to which statistics and technical 

approaches best represent the spatial dynamics of coastal landscape mosaics as opposed 

to the terrestrial environment (Bell et al. 2006, Hinchey et al. 2008, Barrell & Grant 

2013).  Despite the acknowledged importance of landscape context, marine patch-mosaic 

landscapes have been largely understudied due to difficulties in collecting and analyzing 

spatial data along the coastal margins.  However, improvements in remote sensing, 

spatial statistics, and geographic information systems (GIS) may help to further the 

application of this approach to the marine environment (Boström et al. 2011, Wedding et 

al. 2011). 

 The primary source of spatial data for investigations of coastal landscape structure 

is optical imagery sourced from aircraft or satellite-based remote sensing (McKenzie et 

al. 2001).  These methods provide synoptic and continuous data at high spatial resolution 

while minimizing the time and labor required for collecting data through alternative 

methods (i.e., physical, acoustic, or video-survey techniques).  Optical methods have also 

been greatly improved due to recent advances in remote sensing and computing power 

and a corresponding decrease in cost (Dekker et al. 2006).  The spatial resolution of 

modern imaging satellites (e.g., QuickBird, WorldView-2) has improved into the sub-

meter range, allowing for the discernment of relatively fine-scale landscape features 

obscured at coarser resolution.  These advances in remote sensing and geographic 

information systems (GIS) have increased the availability of high-resolution data and 
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improved the ability of researchers to conduct quantitative analyses of landscape 

structure in the marine environment (Hinchey et al. 2008, Boström et al. 2011). 

 Aside from the evident strengths of optical remote sensing as a source of spatial 

data, several shortcomings limit its effectiveness.  These shortcomings commonly occur 

in the acquisition, classification, and analysis stages.  The acquisition of aerial imagery is 

affected in various ways by weather and environmental conditions; cloud cover, wind-

generated waves and ripples, sun glint, tidal height, and turbidity can all obscure image 

quality and complicate the timing of acquisition (McKenzie et al. 2001, Dekker et al. 

2006).  Image classification is subject to algorithmic or interpreter error, requires high-

quality ground-reference data, and is sensitive to spatial scale mismatch (Qi & Wu 1996, 

Wagner & Fortin 2005), causing errors that can propagate through the calculation of 

landscape metrics (Shao & Wu 2008).  Despite these drawbacks, aerial mapping of 

coastal and marine landscapes has been successfully applied at multiple spatial scales 

over a broad range of species and environments (Dekker et al. 2006). 

 The effect of spatial scale is a particularly important concern with respect to 

multi-component landscape mosaics where components vary over disparate spatial scales.  

For example, analysis of satellite imagery at fixed 2.4 m resolution will perform better in 

a landscape with large multi-pixel patches than a landscape with average patch size 

below the spatial resolution of remote sensing.  For this reason, satellite remote sensing is 

much more commonly applied to seagrasses than to bivalves that typically exhibit spatial 

structure at finer scales.  Studies of fine-scale mussel landscape patterns commonly use 

very high-resolution photography covering the extent of a sample quadrat (e.g., 1 m2), 

though these studies are mostly limited to intertidal mussel habitats (Crawford et al. 
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2006, Meager et al. 2011).  Less commonly, low-altitude aerial photography from 

airborne kite or balloon platforms can be used to collect data at spatial resolution and 

extent intermediate to airborne and quadrat-scale photography (e.g. Guichard et al. 2000, 

Bryson et al. 2013).  Low-altitude aerial photography is particularly valuable in coastal 

ecosystems because it can capture data across intertidal and shallow subtidal areas.  This 

broadens the scope for multi-scale analysis of complex landscapes including both 

macrophyte and bivalve habitats, and improves the ability of landscape metrics to detect 

and quantify mosaic patterns along the nearshore coastal margins (Bryson et al. 2013).  

Additionally, relatively inexpensive low-altitude aerial methods allow for greater 

temporal resolution and the ability to detect landscape change. 

 In this study, an intertidal landscape mosaic of mussel and eelgrass patches in 

Halifax Harbor was observed using low-altitude aerial photography from a helium 

balloon-mounted digital camera platform.  Although this is an industrial harbor with large 

areas of hardened shoreline and limited intertidal soft-sediment areas, a complex mosaic 

nonetheless has formed in Eastern Passage, a sandy intertidal area of the outer harbor.  

Imagery representing seagrass-bivalve landscape structure was captured, classified, and 

analyzed using multiple metrics of landscape composition and configuration at both the 

patch- and landscape-scale.  Newly collected patch-scale imagery was also compared to a 

previous dataset in order to track temporal changes in seagrass patch metrics.  This study 

leverages novel remote sensing technology to acquire high resolution imagery for the 

characterization and tracking of landscape metrics and to describe this unique bivalve-

macrophyte landscape occurring in close proximity to a highly developed urban area. 
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4.2 Methods 

 

 
Figure 4-1.  (above) Outline of the landscape of interest; (below) approximate location of 

the study site in Eastern Passage, Nova Scotia, Canada (63° 29.7’ W, 44° 36.5’ N).  

Imagery source: QuickBird satellite. 

 

 

 

4.2.1 Data Collection 

 

The study site was located at McCormacks Beach near Eastern Passage, Nova 

Scotia, Canada, at the mouth of Halifax Harbor (63° 29.7’ W, 44° 36.5’ N).  The site is a 

moderately sized tidal flat sheltered by nearby Lawlors Island and McNabs Island (Figure 

4-1).  The flat is bordered by a recreational provincial park in the southeast and an 
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operational fishing wharf in the northwest.  Relatively high human population density 

occurs in close proximity to the Eastern Passage area, suggesting at least a moderate level 

of human disturbance affecting water quality of the surrounding area.  At very low tides, 

a large emergent reef of blue mussels (Mytilus edulis L.) is visually apparent in addition 

to isolated patches of eelgrass.  Blue mussel patches were observed both separate from 

and within eelgrass patches. 

Fieldwork was conducted on 20 October 2010 near the afternoon low tide of 0.57 

m.  Ground control points (GCPs) consisting of 3’ x 4’ (0.914 m x 1.22 m) “X” shapes 

formed by white corrugated plastic boards were first placed and georeferenced by GPS 

prior to the aerial photography.  Five GCPs were marked, in addition to other distinctive 

landmarks such as rocks visible from the balloon camera.  Additionally, the camera 

operators on the ground carried GPS units to function as supplementary GCPs when 

included in the image frame. 

Low-altitude aerial photographs were collected using a digital camera suspended 

from a tethered helium-filled balloon.  This system allows the photographer to rotate, tilt, 

zoom, and trigger the camera remotely from a ground unit.  Images can also be monitored 

real-time from the ground station to ensure target area coverage.  The camera used was a 

7.2 megapixel Sony DSC-V3 with pixel dimensions of 3072 (width) by 2304 (height).  A 

Garmin eTrex Vista HCx GPS unit equipped with barometric pressure sensor was 

attached to the camera platform to record the precise location of each image.  The GPS 

was set to record positions at high frequency for later syncing with imagery through the 

time stamp.  Downward-facing photographs were collected in RAW format, allowing the 

highest level of detail and flexibility in post-processing.  The camera was also configured 
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with shutter speed priority in order to prevent blurring resultant from wind or other 

platform instabilities.  Images were collected continuously at multiple altitudes, reaching 

a maximum elevation of 133 m above sea level. 

Additional images collected at the same site two years previously were also 

analyzed for comparison and to estimate patch expansion through time.  This imagery 

was collected on 8 July 2008, approximately 27 months prior to the primary dataset, 

using the same camera and helium balloon system.  This imagery was not originally 

intended to encompass both the seagrass and mussel beds, and thus did not cover the 

entire extent and was used only for patch-scale comparison of eelgrass patches within a 

subset of the landscape. 

 

 

4.2.2 Data Processing & Image Classification 

 

 Images initially captured in proprietary RAW format were converted to TIFF 

(Tagged Image File Format) for further processing and analysis.  Distortion due to the 

camera lens was removed and the resulting images were imported into ArcGIS v10.1 for 

georeferencing using GCP positions.  The referenced and processed images were then 

classified with an ISODATA unsupervised classification algorithm.  The number of 

classes was initially set to a larger-than-expected number and reduced through 

aggregation until three target classes representing seagrass, mussels, and bare sediment 

remained.  Patches were then formed by the joining of contiguous cells of the same class 

as defined by the 8 nearest neighbors, with cell adjacency established for diagonal cells 

as well as immediate edge-to-edge neighbors.  
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Level Metric Units  Description 

Patch Patch area m2  Area occupied by each patch, not including any internal gaps 

 Patch perimeter m  Length of patch perimeter, including internal gaps 

 
Percent interior gap %  

Patch interior gaps expressed as % of patch area, providing an 

estimate of patch density 

 
Radius of gyration m  

Mean distance between each patch cell and patch centroid, 

estimating patch areal extent and density 

 Perimeter to area ratio -  Ratio of patch perimeter (m) to patch area (m2) 

 Shape index -  Shape complexity compared to a standard square 

 

Related circumscribing 

circle 
-  

Ratio of patch area to smallest circumscribing circle area, 

estimating patch elongation and density 

 

Circumscribing circle 

radius 
m    

Radius length of smallest circumscribing circle, estimating 

patch linear extent 

     

Class Percentage of landscape %  Percent of landscape occupied by each class 

 Number of patches -  Total number of patches for each class 

 Mean patch area m2  Mean patch area of each class, not including gaps 

 Patch density m-2  Number of patches per square meter for each class 

 

Largest patch index 

(class) 
%  Percent of landscape occupied by largest patch for each class 

 
Clumpiness index  -   

Measure of patch dispersion, ranging from -1 (most 

disaggregated) to 1 (most clumped) 

     

Landscape Landscape area m2  Total area of the entire landscape 

 

Largest patch index 

(landscape) 
%  Percent of landscape occupied by largest patch of all classes 

     

 

Table 4-1.  Landscape metrics used for characterizing configuration and composition of 

the landscape at three levels: patch, class (comprising all patches of each category), and 

landscape.  Metrics are either defined in the literature (i.e., McGarigal et al. 2012) or 

adapted from similar metrics. 

 

 

4.2.3 Landscape- and Patch-Scale Analysis 

 

Landscape configuration and composition were quantified from the classified 

images using multiple metrics of landscape structure.  Landscape metrics were applied 
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using the FRAGSTATS software utility (McGarigal et al. 2012) in conjunction with 

ArcGIS v10.1.  Patch-scale analysis focused on eight patch-level metrics, while 

landscape-scale analysis included two landscape-level and six class-level metrics (Table 

4-1).  Collectively, these metrics described multiple aspects of the composition, size, 

shape, and aggregation of patches within the landscape.  Detailed descriptions of each 

metric can be found in the FRAGSTATS documentation and other published literature 

(McGarigal et al. 2012).  Cell adjacency was defined for all metrics by the 8 nearest 

neighboring cells, same as in the image classification procedure. 

The landscape-scale analysis focused on class and landscape level metrics from a 

single classified image (taken 20 October 2010) to describe the arrangement of both 

bivalves and macrophytes.  Though multiple images of the landscape were analyzed, a 

single image was selected for the application of landscape metrics to avoid any 

confounding inconsistencies between images.  The selected image offered the best 

balance between spatial resolution and spatial extent, encompassed sufficient GCPs to 

ensure accurate georeferencing, and contained minimal distortions from sun glare.  For 

the seagrass classification, a threshold minimum mapping unit (MMU) of 350 contiguous 

pixels (~0.7 m2) was applied to maintain focus on larger patches, in part due to potential 

confusion between bivalves and macrophytes resulting in the misclassification of very 

small patches.  No MMU was applied to the bivalve class. 

In contrast to the landscape-level, patch-scale metrics focused strictly on a subset 

of four seagrass patches to view the changes in metric values between the two sampling 

dates (8 July 2008 to 20 October 2010).  The images chosen for patch-scale analysis 

covered approximately the same spatial extent and were taken at similar altitudes to 
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minimize differences in spatial resolution.  These images were then cropped down to the 

selected subset area for comparison and analysis.  Various metrics describing patch 

characteristics as well as the configuration of gaps internal to each patch were calculated 

(Table 4-1). 

 

 

  



102 

 

4.3 Results 

 

 

 
Figure 4-2.  Map showing the raw unclassified imagery (left) with classified bivalve and 

eelgrass patches superimposed (right).  The area of interest for patch-scale analysis is 

outlined at right.  The spatial resolution of the imagery is 0.045 m. 

 

 

4.3.1 Landscape-Scale Analysis 

 

Analysis at the landscape scale included metrics operating over the entire mosaic 

and at the class level (i.e., eelgrass and mussel categories).  The primary photo used for 

landscape-scale analysis was taken at an altitude of 121 meters, resulting in a spatial 

resolution (pixel edge length) of 0.045 m (4.5 cm) and a pixel area of 20.25 cm2.  
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Classification produced a categorical map of eelgrass and bivalve patches interspersed 

throughout a background matrix of soft sediments (Figure 4-2). 

 The entire landscape encompassed an area of 4881 m2, of which 27.9% was 

classified as eelgrass, 25.1% as bivalve, and the remaining balance (47%) as background 

sediments.  Seagrass and bivalve classes were comprised of 29 and 29732 patches with 

mean patch area of 47.1 m2 and 0.041 m2, respectively.  Correspondingly, patch density 

was much higher for the bivalve class (6.1 m-2) compared to seagrass (0.0059 m-2).  The 

largest patch index (LPI) for the entire landscape was 23.9%, representing the large 

contiguous area of seagrass in the lower third of the image.  At the class level, LPI for the 

bivalve category was 12.6%, and LPI for seagrass was 23.9%, resulting from the same 

patch as at the landscape level. 

 At the class level, the clumpiness index indicated relatively high patch 

aggregation for both eelgrass (0.881) and mussel (0.6566) classes.  This metric is 

calculated from a categorical adjacency matrix measuring the proportion of similar or 

dissimilar cells neighboring each pixel.  The index measures the deviation from a random 

distribution of cells, ranging from -1 (maximum disaggregation) to 0 (random) to 1 

(maximum aggregation).  The eelgrass class was highly aggregated, occurring primarily 

as large patches with a high proportion of like adjacencies.  Eelgrass occurred primarily 

in the eastern and southern regions of the landscape and was largely absent from the 

mussel-dominated western area.  Mussels are clumped to a lesser degree, reflecting the 

relatively smaller mean patch size and wider dispersion throughout the entire landscape. 
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Figure 4-3.  Depiction of the temporal change in four selected patches from imagery 

collected on 8 July 2008 (left) to 20 September 2010 (right).  The spatial resolution (i.e., 

pixel edge length) of the 2008 and 2010 images are 0.0353 m and 0.0368 m respectively. 

 

 

4.3.2 Patch-Scale Analysis of Eelgrass 

 

 Patch scale analysis focused exclusively on a multi-temporal analysis of four 

eelgrass patches representing a subset of the larger landscape (Figure 4-3).  Each of the 

four patches in the subset area persisted as distinct entities over the 26 months between 

sampling dates.  The selected image from 2008 was taken at an altitude of 103.3 m, 
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resulting in spatial resolution of 0.0353 m (3.53 cm) and pixel area of 12.5 cm2.  The 

2010 image was taken at 108.8 m, corresponding to 0.0368 m (3.68 cm) resolution and 

pixel area of 13.5 cm2. 

 

 

 

 

 
Figure 4-4.  Change in patch area (m2) for four patches from July 2008 to October 2010.  

Does not include internal gap areas. (Inset) Relative patch location by patch ID. 
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Figure 4-5.  Change in circumscribing circle radius over the sampling period, measuring 

the radius of the smallest circumscribing circle for each patch.  This metric estimates the 

maximum lateral expansion or retraction for each patch, and provides an estimate of 

patch linear extent.  (Inset) Relative patch location by patch ID. 

 
Figure 4-6.  Change in patch perimeter length (m) for four patches between the sampling 

dates, including internal perimeter associated with patch gaps (Inset) Relative patch 

location by patch ID. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4

Circumscribing 
Circle Radius

(m)

Patch ID

Jul-08 Oct-10

0

50

100

150

200

250

1 2 3 4

Perimeter
(m)

Patch ID

Jul-08 Oct-10



107 

 

 
Figure 4-7.  Change in interior patch gaps over the study period, expressed as a 

percentage of total patch area.  (Inset) Relative patch location by patch ID. 

 
Figure 4-8.  Change in perimeter-to-area ratio for each patch between the sample dates.  

This metric provides an estimate of patch shape complexity.  (Inset) Relative patch 

location by patch ID. 
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Figure 4-9.  Change in shape index over the sampling period, estimating complexity 

relative to a standardized square shape.  (Inset) Relative patch location by patch ID. 

 
Figure 4-10.  Change in the related circumscribing circle metric over the sample period.  

This metric measures the area of a patch relative to the area of its smallest circumscribing 

circle, providing estimates of patch density and elongation.  (Inset) Relative patch 

location by patch ID. 
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Figure 4-11.  Change in the radius of gyration metric for each patch, calculated as the 

mean distance from each cell of the patch to the patch centroid.  This metric estimates the 

weighted areal extent of each patch as well as patch elongation.  (Inset) Relative patch 

location by patch ID. 

 

 

 

 Collectively, the four patches increased their total area from 34.4 m2 to 52.1 m2 

over the study period.  Three of the patches increased in area over the time period, while 

patch four registered a slight areal decline (Figure 4-4).  Patch linear extent as measured 

by the radius of the smallest circumscribing circle showed an increase for all four 

patches, with the largest growth (0.99 m) occurring at patch 1 (Figure 4-5).  This 

indicates that all four patches experienced lateral expansion in at least one dimension 

over the time period despite the overall reduction in area for patch 4.  Adjusted for the 26 

month period between sampling, the mean patch radius expansion rate observed for all 
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four patches was 0.29 ± 0.14 (SD) m y-1, and the maximum rate at patch 1 reached 0.46 

m y-1. 

 All four patches experienced increases in perimeter length with the largest rise 

occurring at patch 3 (Figure 4-6).  These increases were driven by patch expansion as 

well as the growth of interior gap areas creating “interior perimeter” as patches thinned 

(Figure 4-7).  Patch 3 experienced the greatest change with internal gap area increasing 

from 8.3% to 15.8% of total patch area.  This was also the largest rise in absolute terms 

with an additional 3.16 m2 of gap area appearing over the time span, indicating a 

substantial decrease in patch density. 

 Patch shape metrics indicated increasing complexity over the time period of the 

study.  Perimeter to area ratio increased for all four patches with the largest rise observed 

at patch 4 (Figure 4-8).  This was driven in large part by the widening of interior gaps 

creating internal perimeter, as well as increasing complexity of the external borders.  Due 

to the scale-dependence of perimeter to area ratio, the shape index was also calculated.  

This metric corrects for scale-dependence through reference to a standard square shape 

equal in area to the patch so that a square produces a value of one, and increases with 

rising complexity (McGarigal et al. 2012).  Following this correction, all four patches still 

exhibited increasing complexity over the span of the study, though the largest increase 

was observed at patch 3 (Figure 4-9). 

 The related circumscribing circle metric provides another measure of patch 

elongation as well as density, based on the ratio of patch area to the area of the smallest 

circumscribing circle.  Low values generally represent regular circular shapes, though 

highly convoluted patches may still have low value if they are relatively compact.  
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Higher values indicate increasing patch elongation.  This metric increased for all four 

patches over the study period with the largest rise at patch 4 (Figure 4-10).  Modest 

increases for patches 1-3 were caused by decreasing patch density causing the patch to 

fill less of the smallest circumscribing circle.  The large increase at patch 4 was likely due 

to a similar density effect as well as apparent narrowing and elongation in the north-south 

direction. 

 The radius of gyration metric calculates the mean distance between each cell of 

the patch and the geometric patch centroid, and as such represents a density-weighted 

measure of patch areal extent and a measure of patch elongation.  This metric increased 

for all four patches, albeit to a lesser degree for patch 4 (Figure 4-11).  Increased patch 

linear extent led to increased radius of gyration, though this was tempered somewhat by 

decreased patch density, particularly for patch 4. 
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4.4 Discussion 

 

4.4.1 Landscape-Scale Investigation 

 

At landscape scale, the image data collected in this study captured classes of 

seagrass and bivalves, moving the frame of reference beyond binary classification to a 

patch-mosaic landscape model representative of increased thematic complexity (Wedding 

et al. 2011).  Although seagrasses have been a primary focus of most marine studies 

using landscape metrics, bivalve landscape structure has also been explored, particularly 

with respect to the fractal geometry of blue mussel patch shape (Snover & Commito 

1998, Kostylev & Erlandsson 2001, Crawford et al. 2006).  Co-occurrence of both 

bivalves and seagrass on soft sediments have been studied with respect to plant growth, 

sediment biogeochemistry, and water clarity (Reusch et al. 1994, Wall et al. 2008, 

Vinther et al. 2012), primarily in European waters.  However, studies applying landscape 

metrics to coexisting seagrass and bivalve habitats are absent from the scientific 

literature.  In Atlantic Canada, no previous studies have described such a mosaic due to 

the rarity of soft-bottom mussel reef formations in the region. 

The distribution of seagrass and mussels throughout the landscape depicts a 

complex assemblage of patches varying in size and configuration.  The total area of each 

patch type was very similar, though configuration and distribution were markedly 

variable.  Eelgrass formed discrete patches of various sizes in the upper part of the 

landscape that fused into a larger aggregation in the lower region.  By contrast, mussels 

formed a much larger number of patches packed in a tight matrix without visibly 

distinctive patch boundaries at landscape scale.  These differences were quantified by the 

metrics representing patch number, mean patch area, and patch density.  The clumpiness 
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index indicated that both patch types were highly clumped, though eelgrass exhibited the 

highest degree of aggregation.  This is reflected in the smaller number of patches and 

larger mean patch size of eelgrass relative to mussels. 

 Despite the very high resolution of the imagery collected in this study, fine-scale 

mussel patterns were difficult to capture due to the relatively small size of most mussel 

patches.  The mean patch size of 0.041 m2 was greatly influenced by a single complex 

aggregation comprising 50.2% of total class area.  Omission of this largest patch 

corresponded to a mean patch size of 0.021 m2 for the remaining 29,731 patches, 

equivalent to only ~10 pixels per patch.  The relative paucity of pixels introduces a large 

amount of error into the calculation of landscape metrics, suggesting that alternative 

sampling methods or higher-resolution imagery would be preferable for mapping fine-

scale mussel bed landscape structure.  Previous investigations of mussel patch structure 

focused on the extent of a sampling quadrat (e.g., ~ 0.25 - 1 m2) allowing the 

determination of very fine-scale patch metrics at the expense of spatial extent (e.g., 

Crawford et al. 2006).  This shows the importance of spatial scale in mapping patch 

patterns, as a trade-off exists between resolution and spatial extent, with the low-altitude 

photography used in this study representing a compromise between the two.  Further, the 

spatial scales appropriate for mapping seagrass patches may not be similar to those in 

bivalve assemblages.  This suggests that some of the structuring processes operate at 

different spatial scales. 

 The topography of the mussel bed exhibited high relief in the vertical dimension, 

creating multiple spectral signals between dry and inundated regions.  This was further 

complicated by difficulty in discriminating between live and dead mussels, as both return 



114 

 

a similar optical signal.  The image classification algorithm also had difficulty with the 

scattering of light caused by glare on water ripples over inundated areas of the landscape.  

Subtidally, mussels were difficult to differentiate from seagrasses under varying levels of 

inundation due to the attenuation of light in seawater creating a depth-dependent 

response.  Confusion between mussels and seagrass was also caused by the close 

coupling of mussel and seagrass patches, with mussels commonly being found within or 

underneath the seagrass canopy.  In particular, it was difficult to differentiate between 

mussel and seagrass habitats in the lower portion of the image where patch boundaries 

were not readily apparent.  The eelgrass canopy may have obscured smaller interspersed 

patches of mussels.  However, this close association of mussel and eelgrass patches 

suggests that cohabitation may confer benefits to one or both of these biogenic landscape 

components. 

 

 

4.4.2 Patch-Scale Investigation 

 

 The overall changes in seagrass metrics observed at the patch-scale are consistent 

with the expansion of patch borders at the expense of patch density and integrity.  Patches 

1-3 exhibited similar changes in several of the calculated metrics, with differences only in 

degree.  These changes generally represented increasing patch size and linear as well as 

areal extent, decreasing density due to the establishment and enlargement of internal 

gaps, and increasing shape complexity due to growth in patch perimeter length relative to 

area and internal gap expansion.  Patch 4 behaved similarly with the notable exceptions 

of a slight decline in patch area, a very small increase in patch linear extent, and a 

comparatively large increase in patch elongation as estimated by the related 
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circumscribing circle metric. Though it is difficult to separate the effects of these changes 

on each individual metric, metrics that measure multiple aspects of spatial pattern, such 

as radius of gyration, can be used to clarify the spatial dynamics of landscape change. 

 It has been frequently noted that landscape metrics can be redundant or highly 

correlated, with several metrics available to capture aspects such as the extent, density, 

and complexity of landscape structure (Wagner & Fortin 2005, Cushman et al. 2008).  

This was observed to some degree in this study.  Many metrics are derived from 

measures of patch area and perimeter length, causing inherent correlation.  Although 

recent studies have worked to determine which suites of metrics best apply to marine 

habitats such as seagrasses (e.g. Sleeman et al. 2005), more work is required, and it is 

likely that a variable suite of metrics will be required to address site-specific differences 

in landscape structure. 

Seagrass patches can be formed either through the fragmentation of an existing 

meadow or through colonization of previously unoccupied habitat (Duarte et al. 2006).  

The establishment of new patches can occur through reproductive seed dispersal or the 

uprooting and export of entire plants during storm events.  Once established, patches 

expand clonally through horizontal rhizome expansion followed by the sprouting of new 

leaves (Duarte et al. 2006).  Studies have shown that the horizontal rhizome elongation 

rate of Zostera marina, the primary mechanism of clonal patch expansion, occurs at a 

mean rate of 0.26 m y-1 (Marbà & Duarte 1998), though other seagrass species experience 

rates an order of magnitude higher. 

Patch expansion as estimated by the radius of gyration metric indicated rates well 

within values for Z. marina found in the literature.  However, this metric is weighted by 
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patch density as well as extent, confounding insight into the magnitude of lateral patch 

expansion.  Radius of gyration could have increased due to lateral expansion, through the 

“thinning” of patch interior, or through a combination of both processes.  The 

circumscribing circle radius metric was adapted to provide an estimate of the maximum 

lateral expansion for comparison to literature rates.  The mean patch expansion rate of 

0.29 m y-1 fell very close to values reported in the literature (e.g., Marbà & Duarte 1998), 

though this metric does not account for corresponding decreases in patch density. 

The use of high resolution low-altitude aerial photography added value that could 

not be easily matched using satellite imagery.  In particular, we were able to track the 

evolution of patch metrics over the course of a 26 month period.  The relatively low cost 

of the method allowed multi-temporal sampling and monitoring of the ongoing growth 

and fragmentation at the patch-scale, as opposed to most seagrass monitoring that occurs 

at coarser resolution.  The high resolution also allowed the detection of internal patch 

gaps, adding valuable information to the analysis and greatly impacting the results.  If 

these intra-patch gaps had not been detected, it would not have been possible to detect the 

decreases in density that occurred alongside overall patch growth and expansion.  This 

would likely lead to a very different interpretation of the trajectory of the landscape, with 

major ramifications for management of the resource. 

Notably, image acquisition dates for the patch-scale investigation occurred 27 

months apart, with the first acquisition in July 2008 and the second in October 2010.  In 

Nova Scotia, October is the end of the eelgrass production season, at which point new 

growth slows and some meadows may begin to decline in extent (Robertson & Mann 

1984).  Seasonal changes in the eelgrass bed may have influenced the quantification of 
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the change in patch metrics through time.  Eelgrass blades also may have begun to 

defoliate, accounting for the apparent reduction density despite patch expansion.  

Assessing the effects of seasonal dynamics would require regular data acquisition and 

monitoring throughout the growing season. 

Short-term temporal dynamics also may have impacted the results of this study.  

The tidal height at time of acquisition also differed between the two sample dates, from 

0.25 m above “lower low water, large tide” (LLWLT) in 2008 and 0.57 m above LLWLT 

in 2010, though both sampling dates were planned to coincide with the ideal tide and sun 

angle conditions.  The balloon platform can only be flown in dry, low-wind weather 

conditions, complicating the timing of repeated surveys.  However, weather-dependence 

is common to all aerial photographic methods, and is likely more easily managed given 

the simplicity of the platform in comparison to powered aircraft or satellites (McKenzie 

et al. 2001). 

 

 

4.4.3 Drivers of Landscape Structure 

 

Landscape structure is formed and maintained through the interaction of multiple 

dynamic physical, chemical, and biological processes.  Physical factors related to the 

hydrodynamic regime strongly influence the landscape structure of seagrass habitats 

(Fonseca et al. 1983, Fonseca & Bell 1998).  Seagrasses in high-energy environments 

tend to exist as fragmented meadows, while intermediate-energy areas form dense and 

continuous meadows (Bell et al. 2006).  They generally require an intermediate level of 

hydrodynamic exposure for optimal growth, as low-flow environments can create poor 
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conditions due to the establishment of epiphytes that inhibit photosynthesis and other 

effects related to light availability (Fonseca & Kenworthy 1987, Madsen et al. 2001). 

Hydrodynamic processes can also affect patch structure directly through physical 

disturbance or removal from high-energy storm events causing “blowouts” (Patriquin 

1975).  Erosion caused by current scouring can expose the rhizomes, causing mortality 

and creating internal patch gaps similar to those seen in patch 3 (Figure 4-3).  Reduced 

current speeds over dense seagrass can also lead to the deposition of suspended 

sediments, causing burial and mortality inside of larger patches.  This effect may be 

particularly apparent following mass sedimentation following storm events.  Interaction 

between these processes often result in hollowed-out “donut” shapes as blowouts increase 

in size and frequency (Fonseca & Kenworthy 1987).  Under high hydrodynamic stress, 

patches also may form “C” shapes as sediments migrate through the patch, often resulting 

in patch mortality.  Patch survival from large disturbances such as storms appears to be 

size- and density-dependent.  Larger and denser patches are able to withstand greater 

hydrodynamic stress due to mutual sheltering and greater anchoring from root and 

rhizome structures (Bos & van Katwijk 2007). 

Hydrodynamic pressures were likely a main driver of pattern at Eastern Passage at 

both landscape and patch scales.  At the patch scale, all four patches persisted over the 

course of the study, successfully resisting dislodgement from hydrodynamic forces.  All 

four similarly increased in spatial extent, and all but the smallest patch increased in area 

as well.  However, the increased internal gap area observed at each patch was most likely 

a result of hydrodynamic stress causing blowouts and sedimentation, as has been 

witnessed in previous studies (Fonseca et al. 1983, Fonseca & Kenworthy 1987).  Patch 3 
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in particular resembled the characteristic “donut” shape, and was likely progressing 

towards a “C” shape as was visible in other patches throughout the landscape.  At the 

landscape scale, the irregular pattern of the seagrass bed results from frequent blowouts 

coupled with the growth and establishment of new patches, creating a spatially and 

temporally dynamic landscape similar to the “leopard skin” pattern seen in previous 

studies (e.g., Fonseca et al. 1983).  Despite the hydrodynamic pressure, the bed shows 

some signs of stability, persisting in its present location at Eastern Passage for at least 10 

years.  This suggests that the seagrass bed has reached a dynamic equilibrium, even as 

patch and landscape structure varied widely over the same time span. 

At the scale of individual plants, the physical environment influences morphology 

as well as reproductive strategy (Moore & Short 2006).  Under high hydrodynamic stress, 

seagrasses tend to devote a greater share of resources to belowground biomass (i.e., roots 

and rhizomes) to protect against uprooting (Fonseca et al. 1983).  In Nova Scotia, the 

commonly perennial species Z. marina has been seen to occur as an annual variety in 

intertidal areas in response to ice scouring, a particularly important structuring factor in 

high-latitude areas (Keddy & Patriquin 1978, Robertson & Mann 1984).  Physical 

disturbance also correlates with the relative amount of energy devoted to reproduction vs. 

clonal growth, with seagrasses growing in highly dynamic areas typically expending 

relatively more energy on sexual reproduction. 
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Figure 4-12.  Waterfowl (probably American black duck, Anas rubripes) grazing within 

eelgrass patches at the study site during imagery acquisition on 20 September 2010.  

Internal patch gaps are clearly evident. 

 

 Seagrasses can also be subject to bioturbation from grazing species of waterfowl 

(van der Heide et al. 2012) or invasive species such as the green crab (Garbary et al. 

2014).  Eelgrass is an important food source and habitat for many migratory seabirds in 

Atlantic Canada (Seymour et al. 2002, Hanson 2004).  The effects of grazing on 

seagrasses are complex, though consumption by waterfowl has been linked to significant 

decreases in seagrass biomass in multiple studies (Valentine & Heck 1999).  Grazing by 

waterfowl may also lead to stimulation of growth, as in terrestrial ecosystems, though this 

has been relatively understudied (Valentine & Duffy 2006).  Waterfowl such as the 

American black duck (Anas rubripes) are commonly found grazing within seagrass 
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meadows at the Eastern Passage study site, as evidenced by photos captured during data 

collection (Figure 4-12).  Eelgrass beds in Nova Scotia also have historical importance 

for local and migratory populations of species such as the Atlantic Brant (Branta bernicla 

hrota) and Canada goose (Branta canadensis) (Hanson 2004).  The magnitude and 

influence of waterfowl grazing on patch growth and survival at this site are unknown, 

though it is a possible cause of increased internal gaps over the study period. 

Other factors known to affect the growth and survival of seagrasses include water 

temperature, sediment geochemistry, anthropogenic disturbance and eutrophication, and 

disease (Duarte et al. 2006).  Seagrasses can be damaged by low-oxygen sediments 

stimulating sulfide production (Pedersen et al. 2004), and this has been hypothesized as a 

driving factor of patch shape in some environments (Borum et al. 2013).  Sulfide 

dynamics are known to play an important role in nutrient cycling at the Eastern Passage 

tidal flat (Grant 1986) and cannot be ruled out as a potential driver of seagrass landscape 

structure at the site. 

 Several studies have described patterns in vegetation as a product of self-

organization, where emergent patterns are shaped by interactions between environmental 

pressure and intraspecific biological interactions (Fonseca et al. 2007, van der Heide et al. 

2010, van der Heide et al. 2012).  Patch structure is formed and maintained through 

feedback between physical forcing and seagrass response, for example when seagrasses 

respond to hydrodynamic pressure by devoting greater resources to below-ground 

biomass.  Patterns may arise from feedbacks driven by reduced stress from water 

movement and increased light availability (Fonseca et al. 2007).  High-density patches 

are also subject to increased intraspecific competition for light and nutrients.  The 



122 

 

benefits of mutual anchoring at the local or patch scale are mediated by competition for 

light and nutrients at landscape scale.  This type of self-organization can manifest as 

regularly spaced bands of patches oriented perpendicular to the flow, or as irregular 

patchiness in more complex systems.  

While the patch metrics implemented in this study effectively chart the type and 

magnitude of patch-scale change, determination of causation is a greater challenge.  

While hydrodynamics are undoubtedly a main driver of patch pattern, feedback from 

these stresses and other biotic and abiotic factors may also have played important roles.  

Currently, the ability to predict self-organized patterns in response to environmental 

drivers is lacking (van der Heide et al. 2010).  Predictive models would be greatly 

beneficial for understanding spatial and temporal dynamics, benefitting the monitoring 

and management of seagrass habitat (Bell et al. 2006). 

Principles of self-organization are also apparent in soft-sediment bivalve reef 

habitats (van de Koppel et al. 2005).  Mussels clump together into aggregations 

intertwined by byssal threads, providing mutual anchoring support against dislodgement 

(Reusch & Chapman 1995, van de Koppel et al. 2005).  Hydrodynamic forces can 

strongly influence the distribution of mussels, particularly in soft-sediment areas where 

they are not directly attached to stable hard substrate.  The positive benefits of mutual 

anchoring are mediated by competition for food suspended in the water column.  Mussel 

beds often form regular elongated patches perpendicular to the direction of flow, though 

patterning is more fractal and irregular when exposed to storms or variable hydrodynamic 

conditions (van de Koppel et al. 2005). 



123 

 

At the landscape scale, mosaic structure is shaped by physical and intraspecific 

processes as well as interspecific relationships between multiple ecosystem components, 

such as the eelgrass and mussels described in this study.  Studies of seagrass–bivalve 

relationships have been equivocal, with hypothesized positive and negative effects for 

both species.  Positive mechanisms include mutual protection against hydrodynamic 

stressors, reduced turbidity and increased light through bivalve filter-feeding, reduction in 

epiphytes, and nutrient fertilization through biodeposition to the sediments (Reusch et al. 

1994, Reusch & Chapman 1995, Peterson & Heck 2001).  These positive influences are 

offset by potential negative impacts such as changes in nutrient cycling, anoxia due to 

organic matter deposition, competition for space, and locally increased current speeds 

due to geomorphological changes (Vinther et al. 2008).  

 Eelgrass and soft-sediment mussels respond similarly to hydrodynamic forces, 

forming patch-scale aggregations to resist dislodgement.  The resultant effects on 

landscape pattern depend on feedback responses to these forces, which would be 

expected to vary greatly between bivalve and macrophyte groups.  Apparent differences 

in the size structure, configuration, and dispersion of mussel and eelgrass classes likely 

resulted from differential responses to similar hydrodynamic conditions in the tidal flat.  

Interactions between the eelgrass and mussels also influenced the persistence of both 

habitats.  Previous studies have shown seagrass to prevent the dislodgement of mussel 

beds through current attenuation, and to catch dislodged mussel aggregations (Reusch & 

Chapman 1995).  Similarly, the presence of mussels has been shown to provide shelter 

for eelgrass (van Katwijk et al. 2009). 
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4.4.4 Implications for Landscape Analysis 

 

The use of low-altitude aerial photography allowed for the detection of changes in 

patch metrics at a spatial scale that is difficult to match using other data sources.  Many 

landscape metrics are known to be highly sensitive to spatial scale, and can misrepresent 

landscape structure if there is a scale mismatch with the landscape of interest (Wiens 

1989, Qi & Wu 1996).  The high-resolution imagery collected for this study allows for 

the detection of patterns that would be obscured at coarser resolution.  The patch-scale 

component of this study focused explicitly on patch metrics at very fine resolution, with 

pixel edge lengths (< 5 cm) an order of magnitude smaller than most aircraft-based aerial 

photography, and two or more orders of magnitude finer than common satellite-based 

remote sensing.  By comparison, the highest-resolution multispectral satellite data 

currently available to non-military users is limited to a 2 m pixel edge length.  Given the 

sensitivity of landscape analysis to spatial scale (Wiens 1989, Wedding et al. 2011), 

enhanced resolution imagery offers insight to landscape patterns that are difficult to 

detect and interpret from other aerial datasets. 

The aerial photography platform used for this study provided very high-resolution 

spatial data representing the structure of an intertidal-subtidal landscape.  Image 

acquisition was inexpensive and efficient with respect to time and cost in comparison to 

aircraft or satellite platforms, allowing for frequent surveys to monitor and detect changes 

in landscape structure.  The balloon platform also allows for multi-scale analysis as 

demonstrated in this study, increasing the ability to detect and analyze scale-dependent 

patterns.  Few previous studies have used low-altitude photography from balloon or kite 
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platforms to map marine landscapes (though see Edwards & Brown 1960, Guichard et al. 

2000, Bryson et al. 2013) despite clear benefits of the approach.  Combined with 

increased flexibility for dealing with constraints due to weather and environmental 

conditions, the balloon platform used in this study represents an effective and efficient 

data source for conducting analyses of intertidal and shallow subtidal landscape structure.  

Improvements to the quality and resolution of marine landscape data add to the ability of 

researchers to understand the spatial and temporal dynamics of coastal habitats in the face 

of increasing stress on coastal health worldwide (Orth et al. 2006). 

 Most landscape metrics commonly applied to seagrasses were originally devised 

for terrestrial habitats, and direct assessments of their applicability in the marine context 

are relatively rare (though see Sleeman et al. 2005, Wedding et al. 2011).  Collection of 

landscape data in the marine environment presents challenges that may limit the 

effectiveness or complicate interpretation of certain metrics.  Determining which suite of 

metrics best describe important aspects of seagrass landscape structure is recognized as a 

crucial area for future research (Bell et al. 2006, Wedding et al. 2011).  In some cases, the 

patch-mosaic model of discrete patches that has dominated landscape analysis may not 

easily describe continuous phenomena, such as near-continuous seagrass beds lacking 

clear patch borders (Barrell & Grant 2013) or 3D features such as seafloor topography 

(McGarigal et al. 2009).  The continued establishment of landscape metrics for 

quantifying spatial structure of marine habitat will likely require further studies of metric 

applicability as well as the development of new methods for analyzing marine landscape 

structure. 
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While the discrete patch remains the focal point of most studies of seagrasses 

applying landscape metrics, the focus is commonly on class- or landscape-level metrics 

summarizing the spatial attributes of a large number of patches or over a very large extent 

(~kms) relative to the current study (Wedding et al. 2011).  This has in part been driven 

by difficulties in collecting fine-resolution data over large spatial extents at high temporal 

frequency.  Ongoing improvements in remote sensing technology, image classification, 

and landscape analysis highlights the need for continued research into the application of 

landscape ecology techniques in seagrass ecosystems and the marine environment. 

 

 

4.4.5 Conclusions 

 

The dynamics of coastal landscapes are spatially and temporally complex, 

involving multiple physical and biological processes with nonlinear interactions.  

Detection of fine-scale patch pattern is a crucial prerequisite for understanding the spatial 

dynamics of the relationship between eelgrass and blue mussels at the landscape scale.  

Quantification of landscape mosaic structure provides critical information for many 

aspects of conservation, coastal management, and marine spatial planning (Boström et al. 

2011).  Understanding of the landscape-scale relationship between seagrasses and 

bivalves has great implications for habitat restoration (Bell et al. 1997).  For example, 

landscape context can strongly influence ecosystem service valuation (Barrell et al. 

2014), and has been shown to affect the successful persistence of restored habitats (Bos 

& van Katwijk 2007).  Knowledge of the spatial scale of variation is also a critical 

component of ecosystem monitoring (Neckles et al. 2012) and predictive modeling. 
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The use of low-altitude aerial photography in this study demonstrates a low-cost 

method for collecting high-resolution data representing intertidal-subtidal landscape 

structure.  The application of spatial metrics at landscape- and patch-scale quantified 

elements of the configuration and composition of an uncommon seagrass-bivalve habitat 

mosaic.  This approach allowed for the tracking of patch metrics through time, depicting 

landscape change at the patch-scale.  Continued development and application of 

landscape metrics in marine habitats will increase understanding of the ecological 

function of these areas. 
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Chapter 5.  Conclusions 
 

 

5.1  Synopsis 

 

 This thesis represents advancement in the application of remote sensing to spatial 

landscape analysis in seagrass habitats through multiple avenues.  Acoustic (Chapters 2 

& 3) and optical (Chapters 3 & 4) remote sensing were applied for the quantification of 

seagrass landscape pattern, leading to new insights on the distribution and spatial pattern 

of coastal habitats.  Collectively, the content of this thesis integrates field data collection 

using state of the art technology with novel spatial analysis techniques to increase 

understanding of the spatial dynamics of important coastal marine habitats.  These 

advances offer many potential benefits for the management and conservation of coastal 

resources. 

 In Chapter 2, acoustic single-beam data was used to describe seagrass landscape 

pattern using the novel application of local spatial statistics.  The Getis-Ord Gi
* statistic 

allowed for the detection of areas of high and low cover within a spatially continuous 

seagrass bed.  This technique was also able to discern boundary zones not easily 

detectable with optical data, and used the quantitative measure of percent cover provided 

in the acoustic data more comprehensively than in previous studies.  Local spatial 

statistics also depicted spatial pattern at multiple spatial scales as defined by the 

neighborhood search radius. 

 Chapter 3 comprised a detailed comparison of acoustic and optical remote 

sensing for the collection of seagrass spatial data, and also served to identify multiple 

ways of conceptualizing seagrass habitat.  The implications of uncertainty in seagrass 
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mapping and monitoring were also explored.  The results highlighted the importance of 

considering spatial scale when mapping submerged aquatic vegetation. 

 Chapter 4 described a unique landscape of seagrass and bivalves occurring in 

close proximity to an urban area.  The low-altitude aerial photography platform aided in 

the collection of very high-resolution data representing this mosaic, showcasing a 

promising source of data representing coastal landscapes.  Temporal change in eelgrass 

patch structure was observed and quantified, highlighting the temporal dynamics of 

coastal landscapes. 

  

 

5.2 Future Work 

 

 Many suggestions for future work were identified in the composition of this 

thesis.  These suggestions are both theoretical and methodological in scope.  

Improvement in spatial data collection from acoustic and airborne remote sensing, as 

detailed in the preceding chapters, has opened many new avenues for research through 

the increasing availability of high-resolution broad extent spatial datasets representing 

seagrass habitat.  Researchers can now access data at spatial resolution and extent 

previously inaccessible to remote sensing, and can do so with much greater temporal 

resolution as costs continue to decline.  This wealth of data also raises many new 

questions and challenges that will need to be addressed for the advancement of spatial 

ecology in the coastal zone. 
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5.2.1 Applications to Management 

 

 The increase in spatial knowledge and tools developed through this thesis suggest 

several potential applications for the management of seagrasses and coastal marine 

habitats in general.  The foundation of landscape pattern analysis is also apparent in the 

spatially-explicit concepts of marine spatial planning, integrated coastal zone 

management, and ecosystem-based management.  These holistic approaches to marine 

management utilize and require high-quality spatial data for a diverse array of activities 

including monitoring, predictive modelling, design of marine protected areas, and habitat 

restoration. 

 The application of landscape concepts and pattern metrics to compensatory 

habitat restoration in particular stands out as a worthwhile avenue for future research.  In 

2013, I worked on a service contract with DFO-Maritimes to write a technical report 

about the use of quantitative metrics for aiding habitat restoration as part of the SPERA 

(Strategic Program for Ecosystem-Based Research and Advice) program (Barrell et al. 

2014).  In Canada, damage to marine habitat supporting commercial or recreational 

fisheries requires compensation through the restoration, construction, or enhancement of 

high-value habitat to restore lost ecosystem services.  This amount of habitat necessary to 

restore the lost services is determined through habitat equivalency analysis intended to 

balance lost habitat with gains through restoration, often of vegetated seagrass habitat.   

 The current approach does not consider landscape context in determining the 

value of damaged and restored habitat, instead scaling value to overall area, despite 

apparent benefits (Bell et al. 1997).  In reality, seagrass habitat value varies as a function 

of its landscape structure and arrangement.  The size, shape, and distribution of patches 
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affects faunal dynamics, nutrient cycling, hydrodynamics, and sedimentary processes, 

altering the provision of several services (Ackerman & Okubo 1993, Irlandi et al. 1995, 

Bradley & Stolt 2006, Hirst & Attrill 2008).  Further, several services require a minimum 

threshold quantity of habitat and may not scale linearly with habitat area (Barbier et al. 

2008, Koch et al. 2009).  For example, the service of wave attenuation varies depending 

on the density and orientation of seagrass patches relative to the direction of currents 

(Chen et al. 2007).  Landscape context also affects habitat value through relationships 

with the wider landscape mosaic.  Seagrasses support adjacent habitats through the export 

of nutrient subsidies (Heck et al. 2008), and also can benefit from close proximity to non-

vegetated areas. 

 As illustrated in Chapter 4, seagrasses often occur in conjunction with other 

ecosystem components such as mussels, potentially benefitting both habitats through 

mutualistic interactions (Peterson & Heck 2001, Bos & van Katwijk 2007).  The 

consideration of landscape principles could serve to improve the valuation of marine 

habitats, with consequent benefits to habitat restoration, by better encompassing the range 

of landscape configurations exhibited by seagrasses themselves and in the larger mosaic 

of coastal marine and terrestrial habitats.  This premise is supported by the recent release 

in the journal Landscape Ecology of a special edition focused on ecosystem services 

(Iverson et al. 2014 and references therein). 

 Predictive modelling of seagrass spatial pattern in relation to environmental 

variables remains a primary, though elusive, goal.  Previous efforts at predictive 

vegetation mapping (PVM; Franklin 1995) have had limited success predicting the 

presence or absence of seagrasses based primarily on exposure to waves and currents, 
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though largely limited to coarse resolution over broad spatial extents.  The apparent 

pattern of a seagrass bed effectively integrates the influences of historical (e.g., storms) as 

well as active processes (e.g., growth, reproduction) and their interactions.  The biotic 

and abiotic factors that shape seagrass landscapes are numerous and vary widely over 

spatial and temporal scales, and often the ability to detect and quantify these processes at 

an adequate spatial resolution is limited.  Further development of PVM will allow 

researchers to effectively link spatial patterns to the ecological processes responsible, 

with implications for numerous aspects of management. 

 The ability to detect and quantify seagrass spatial patterns at very fine scales, as 

demonstrated in this thesis, lays the foundation for greatly improved PVM capabilities.  

Linking fine-scale heterogeneity to environmental variables can improve predictions of 

response to environmental changes, with applications in assessing the impacts of changes 

to the ecosystem due to factors such as local development or long-term climate change.  

Additionally, this can benefit the application of seagrasses as indicators of ecosystem 

health through monitoring of landscape change.  The application of PVM can also assist 

in the identification of priority areas for conservation as well as candidate areas for 

habitat restoration and the establishment of marine protected areas (MPAs). 

 

 

5.2.2 Acoustic Remote Sensing 

 

 The use of single-beam acoustic data for mapping seagrasses holds great potential 

for additional insights due to its flexibility.  The spatial scale of data collection can be 

manipulated in several ways in order to view the consequences on output maps.  Most 
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simply, altering the spacing of transect lines would change the proportion of sampled to 

unsampled area and produce a different representation of the seagrass bed.  Estimates of 

the spatial heterogeneity of the bed could be compared while varying transect spacing to 

extend the analysis to multiple spatial scales.  This type of experiment could also be 

conducted with existing datasets through omission of alternating transects, or through 

analysis of random or stratified subsets of the entire dataset.  Similarly, the spatial scale 

of data collection could be altered through manipulation of vessel speed or ping rate of 

the echosounder.  Examining the impact of transect spacing or data volume on spatial 

statistics and landscape metrics would allow further insight into the characteristic scales 

of variation present at the study site. 

 The orientation of transects may also impact the quantification of pattern in 

seagrass beds.  The ability to detect directional patterns is in part dependent on the 

sampling design of the survey relative to the patch structure of the habitat.  For transect 

sampling, data density is always highest in the along-transect direction.  If transects are 

biased towards one orientation (e.g., parallel or perpendicular to the shoreline), it is 

possible to mischaracterize the heterogeneity of the landscape by over- or under-sampling 

patches formed by anisotropic processes.  For example, in Chapter 2 geostatistical 

analysis detected distinct anisotropy in the dataset, as evidenced by the variogram map 

(Figure 2-3).  Detection of anisotropic pattern aids interpolation and extrapolation of data 

to unsampled areas, and also may allow insights into the processes responsible for 

seagrass landscape structure, a crucial aspect for the formulation of predictive models. 

 Single-beam acoustic data also provides an estimate of the canopy height of 

vegetation in addition to percent cover.  This opens the possibility of extending analysis 



134 

 

of seagrass landscapes into three dimensions, and is mostly unexplored in studies of 

seagrass landscapes.  The inclusion of canopy height data could greatly add to 

understanding of the spatial dynamics of seagrass beds, but raises many questions in 

practice.  For example, it would be necessary to account for the effect of water movement 

on measured canopy height; currents cause eelgrass blades to lean down away from the 

direction of the current, making the acoustically measured canopy height a function of 

current speed and direction, and confusing the link to shoot length.  Further, this effect 

could be expected to change with the reversing of the tides. 

 Despite these obstacles, the expansion into three dimensions could help explain 

patterns that are entirely obscured to aerial optical remote sensing, allowing for new 

insights into the spatial dynamics of seagrass landscapes.  Recent advances looking at 

continuous landscapes using surface pattern metrics are promising and interesting 

(Hoechstetter et al. 2008, McGarigal et al. 2009).  This also may benefit the analysis of 

seagrass metrics such as biovolume, an estimate the proportion of the water column filled 

by aquatic vegetation (Thomas et al. 1990, Valley et al. 2005).  In general, the 

development of additional quantitative metrics derived from acoustic data would be a 

beneficent avenue for further research. 

 

  

5.2.3 Aerial Remote Sensing 

 

 Object-based image analysis is quickly becoming a new paradigm in the 

classification of remote sensing data (Blaschke 2010).  This method is particularly 

relevant to landscape analysis due to its implicit focus on multi-scale objects rather than 
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pixels.  OBIA has been used with both acoustic and image data for classifying various 

marine ecosystems such as seagrasses (e.g., Lathrop et al. 2006, Mahoney et al. 2007, 

Urbański et al. 2009, Chapter 3 of this thesis), corals, and sediments (e.g., Lucieer 2008).  

For this thesis, I was unable to secure access to the necessary software due to very high 

costs, though these are rapidly decreasing as the method increases in popularity.  

Additional research could improve upon the foundation laid in Chapter 2 by varying the 

parameters of OBIA to investigate its effects on accuracy in landscape pattern analysis, 

and to elucidate new insights on scale-dependent patterns in seagrass ecosystems. 

 One issue frequently noticed in the composition of this thesis was the recurring 

issue of boundary detection and analysis.  This problem merges both methodological and 

theoretical aspects; detection of transition zones is largely a function of sensor design, 

while the implications of landscape fragmentation and complexity are potentially very 

diverse.  The detection of boundaries between ground cover categories is very important 

for the spatial analysis of aerial imagery, in particular when applying landscape metrics 

of patch shape or complexity.  Recent studies have expounded the study of boundaries 

(e.g., Kent et al. 2006, Hufkens et al. 2009 ), and further developments specific to the 

marine environment could greatly improve the mapping of marine landscapes.  Notably, 

this issue also applies to acoustic data, as illustrated in Chapter 2. 

 Aerial seagrass mapping is now conducted in various ways, largely displacing the 

standard approach involving manual classification of analog aerial photography.  This 

raises new issues when comparing maps produced with different methodology between 

sites or regions, or when making comparisons to historical datasets.  There are currently 

no signs of deceleration in the rapid evolution of remote sensing technology, making the 
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development of static standardized methods unlikely.  Anticipation of future 

developments should continue to motivate researchers to consider the effects of spatial, 

spectral, and radiometric resolution in order to derive maximum benefits from these 

technological improvements. 
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Appendix A.  Technical Details 
 

 

 

 

A.1 Acoustic System Specifications 

 

 The single-beam acoustic sensor used to collect datasets for Chapters 2 and 3 was 

a Biosonics DE-X system operating at a frequency of 430 kHz with a 6.2° beam angle.  

The acoustic output data were georeferenced by a JRC differential GPS antenna linked to 

the nearby Port Escuminac, NB reference station for all acoustic surveys performed at the 

Richibucto site. 

 For data analysis using the EcoSAV algorithm, individual pings are first analyzed 

for features suggesting the presence or absence of vegetation.  Groups of sequential pings 

are then summarized to produce an estimate of percent cover, determined as the 

proportion of pings classified as vegetated for each group.  Group size was determined by 

the number of pings occurring between DGPS readings, and was either 10 or 15 pings for 

all of the data used in this thesis. 

 The area ensonified by each ping is a function of many factors including the beam 

angle, distance from transducer face to seafloor, water temperature and salinity, and 

vessel speed.  Most simply, through trigonometry it can be estimated that a single ping in 

water depth of 1 meter results in an ensonified circle with a diameter of 11 cm and an 

area of approximately 0.01 m2. 
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A.2 Acoustic Ground Reference Data 

 

 

 

Figure A-1.  Map of locations sampled by drop-camera for the purpose of ground-

truthing acoustic data gathered in the Richibucto estuary, with the classification of 

eelgrass presence or absence noted. 
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 The acoustic data used in this thesis were initially compared to independent 

ground-reference data collected with an underwater video camera to ensure that areas 

defined as vegetated contained eelgrass and to assist with tuning the vegetation detection 

algorithm.  The camera system used was a Seaviewer drop-camera deployed from the 

acoustic survey vessel.  At each reference site, the video was allowed to run for 30 

seconds – 1 minute, collecting video representation at and around the reference waypoint.  

The live video feed was recorded to a handheld camcorder and overlaid with GPS 

coordinates.  The camera was equipped with LED lights to provide illumination, and was 

used both with and without a wire frame mount.  Parallel lasers attached to the camera 

housing were used to specify a 10 cm distance in the collected imagery. 

 Camera drops were performed throughout the Richibucto estuary intermittently 

through the first two field seasons, 2006 – 2007, in the months from July-October (Figure 

A-1).  Drops occurred at times during acoustic surveys, and at other times in the days 

immediately before and after so that maximum time in ideal conditions could be allotted 

to surveying.  In both cases, drop locations coincided with acoustic survey areas.  The 

underwater videos were also collected in conjunction with another study into the benthic 

macrofaunal community at the same site (Lu et al. 2008).  The resultant videos were 

viewed and segmented into still images for classification of eelgrass presence-absence.  

Drop locations were primarily located in the western part of the estuary where the 

majority of acoustic work was conducted. 
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Figure A-2. Characteristic acoustic results for areas with (left) absence and (right) 

presence of vegetation.  Depicted for each category is (top) a screen capture from the 

underwater video; (center) echogram profile showing the structure of the seafloor; and 

(bottom) ping profile used through the classification algorithm. 
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 At the Richibucto site, the composition of the seabed was mostly uniform muddy 

sand (Lu et al. 2008), aside from deeper areas in tidal channels that were not surveyed for 

vegetation.  Lacking hard substrate, the seabed classification at the site was largely 

limited to two categories: vegetated, and unvegetated bare sediments.  Given the 

relatively small ensonified area for each individual ping (~0.01 m2 in water depth of 1 

meter) and the strong acoustic reflectivity of eelgrass, it was expected that even a very 

small quantity (>1 intact shoot) would result in a positive identification of vegetation 

through the processing algorithm.  This logic was applied to the analysis of ground 

reference video data for determining eelgrass presence/absence. 

 Of the 30 locations sampled by the drop-camera, 16 (53.3%) were classified as 

vegetated and 14 (46.7%) as bare sediments.  Of those classified as bare sediment, 7 

occurred inside the deep tidal channel where no live eelgrass was observed.  These results 

were compared to raw acoustic echograms as well as to output from the EcoSAV 

algorithm, and were used in part for tuning of the algorithm.  The drop camera also 

validated expectations that eelgrass would be absent inside the deep tidal channel present 

at the site. 

 Comparison of acoustic echograms to screen captures from the underwater 

camera qualitatively showed 100% agreement in the detection of presence or absence of 

submerged aquatic vegetation.  Macrophytes reflect a large amount of acoustic energy 

that can be easily recognized in raw echogram imagery, commonly appearing as a 

characteristic “double-peak” and/or a particularly wide bottom signal (Figure A-2).  By 

contrast, unvegetated seafloor results in a comparatively narrow bottom signal and a 

single peak associated with the bottom signal. 
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 Notably, the EcoSAV algorithm did not always agree with the author’s qualitative 

interpretation, requiring large amounts of effort in tweaking the algorithm to properly 

recognize vegetation.  The version of EcoSAV used in this thesis did not provide visual 

output, leading to a laborious tuning process.  Since this work was conducted, newer 

visual approaches have been implemented in software from Biosonics, and have also 

been demonstrated in the scientific literature.  This function allows for faster editing and 

additional control of the output, greatly streamlining the process. 
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Appendix B  Copyright Information 
 

 

 Chapter 2 of this thesis, “Detecting hot and cold spots in a seagrass landscape 

using local indicators of spatial association,” is a manuscript version of a paper published 

in the journal Landscape Ecology as: 

 

Barrell J, Grant J (2013) Detecting hot and cold spots in a seagrass landscape using local  

 indicators of spatial association. Landscape Ecology 28:2005-2018 

 

 

Permission was obtained from the publisher for use in this thesis as described in the email 

messages below.  The final publication is available at Springer via 

http://dx.doi.org/10.1007/s10980-013-9937-2 
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