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Abstract

Entropy is a well-known quantity that is used to describe verious phenomena in physics

and information theory. Like energy or information, entropy cannot be measured directly

and traditionally is used to describe the state of other physical quantities. Recently,

a Russian physicist Anatoly Panchenkov introduced a new, more general, notion of

entropy.

In view of the principle of maximum P -entropy, a system evolves in the direction of its

maximum lifespan , e.g., the life expectancy of humans, or business structures increases.

An important feature of the differential equations that follow from the principle of

maximum P -entropy is that they can be used to describe not only evolution, for example,

as the equation of classical mechanics, but also events.

In this thesis we will investigate how to employ the P -entropy to construct mathematical

models that can be used in the theory of monitoring.
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Chapter 1

Introduction

Mathematical modelling is one of the most challenging scientific undertakings. It has

been used to describe and study the evolution of different phenomena in the real world

in terms of mathematical laws that also availed us of new mathematical theories [18].

For example, calculus was developed by Newton and Leibnitz to describe the laws of

mechanics, but its development has also created a new field of mathematics.

The use of mathematical models is instrumental in understanding the behaviour of

complex systems. Ideally, we wish to have a model that can be used to describe not only

the dynamics of such an evolution (that is its motion, or a continuous change in time),

but also any special events, such as, for instance, emergence or collapse. The latter is

especially difficult and is a relatively underdeveloped area of mathematical modelling.

The importance of such problems is well-documented, and they are studied by scientists

in social siences as well. For example, an American historian J. Tainter, who is a

professor at the University of Utah, in his famous book ”Collapse of Complex Societies”

[23] has investigated the evolution and collapse of complex societies, using mainly the

tools of social sciences.

In this thesis we will study the methods of mathematical modelling developed recently

by a Russian physicist A. Panchenkov to see how they can be applied to monitoring-type

problems in economics and elsewhere. Panchencov’s theory is based on a new, extended

notion of entropy and utilises various techniques and notions of geometry, physics, fluid

dynamics and asymptotic theory.

1.1 Background

Throughout the thesis we will call the new, extended notion of entropy from A. Panchenkov

the P -entropy. The development of the P -entropy is rooted in earlier works by Panchenkov,

in which he developed certain asymptotic methods applied to the problems of fluid dy-

namics. More specifically, he developed mathematical models that were used to design
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the so-called “ground effect vehicles (GEV)” in the former USSR. “A ground effect ve-

hicle is one that attains level flight near the surface of the Earth, making use of the

aerodynamic interaction between the wings and the surface known as ground effect.

Best known are the Soviet ekranoplanes, but names like wing-in-ground-effect (WIG),

flarecraft, sea skimmer, or wing-in-surface-effect ship (WISE) are also used. In recent

years a large number of different GEV types have been developed for both civilian and

military use. However, these craft have yet to enter widespread use. The German Tan-

dem Airfoil Flairboats or Skimmerfoils constructed by Gunther Jörg differ in their use

of self-stabilizing wings. Although they might look similar and/or have related tech-

nical characteristics, ground effect vehicles are not aircraft, seaplanes, hovercraft, or

hydrofoilsground effect is a separate technology altogether” (by International Maritime

Organization). A. Panchenkov has 12 patented inventions that were implemented dur-

ing the course of the design and construction of Soviet ekranoplanes, in particular, the

ekranoplanes of the series ADP. Panchenkov developed an asymptotic method, called

the method of limiting correctness which was used to solve the boundary value problems

arising in fluid dynamics that were instrumental in describing the unique vortices created

in the wake of ekranoplanes.

The P entropy introduced by Panchenkov is an independent quantity, which unlike the

conventional entropy of information theory or thermodynamics, is not linked to other

physical quantities. It is a conserved quantity under that arises from the variational

principle of maximum (P -) entropy, introduced by Panchenkov to derive the underlying

differential equations. According to this principle, the evolution of an object of study

occurs in a new medium, called the virtual continuous medium.

In what follows, we will describe how the behaviour of complex systems can be studied

from this viewpoint in the framework of the monitoring-type problems.

1.2 Literature Review

There is a vast literature on mathematical modelling. While working on this thesis, I

used various works on entropy in information theory and thermodynamics, for example,

those by Clausius (see [5]), who developed the modern terminology, Boltzmann (see [3]),

Gibbs (see [9]), Shannon (see [21]) and others.

In spite of the many achievements in the fields of thermodynamics and information

theory releated to entropy, these results are still rather limited, especially because they

are linked to specific areas of science. A more general notion of entropy that generalizes

known results in the entropy theory was proposed by Panchenkov, who has been studying

entropy since the 1960s, subsequently developing in recent years a theory based on the

new notion of entropy [15]. It must be mentioned that his theory was influenced by the

results of I. Prigogine on the entropy of open systems [17]
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Based on what has been done, it is conceivable that there is a substential potential of

application of the new theory based on the notion of the P -entropy to the problems

arising in social siences, particularly, in economics.

1.3 Outline

The thesis is organized as follows. Chapters 2 and 3 provide necessary mathematical

background. Specifically, in Chapter 2 I review basic notions of calculus of variations.

Chapter 3 is devoted to Hamiltonian mechanics and related topics of differential geome-

try. In Chapter 4, I introduce and describe the properties of the P -entropy, as well as the

new variational principle - the principle of maximum entropy due to Panchenkov. Chap-

ter 5 deals with geometric structures necessary for the implementation of Panchenkov’s

method. In Chapter 6 I implement Panchenkov’s results and apply them to a spe-

cific model, that results in a system of differential equations. In Chapter 7 I make the

conclusions.
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Chapter 2

Calculus of Variations

2.1 The Fundamental Problem of Calculus of Variations

The calculus of variations is concerned with the maxima or minima of functionals, which

are collectively called extrema. The notion of a functional, which can be described

as “function of a function”, plays an important role in applied mathematics, physics,

mechanics and other sciences. More precisely, functional is a correspondence which

assigns a determined real or complex number to each function or curve belonging to

some class. [19]. This chapter is based on the Chapter 3 in the Mathematical Methods

of Classical Mechanics by Arnold [2].

Let us see the following example to get a better understanding.

Example 2.1. (Circular motion) Consider a weight swung in a circle with constant

radius r and constant speed v. Then we want to find uniform circular motion in this

plane. The motion of the system can be described in terms of a single parameter q = q(t)

via the map x(q) = (r cos q, r sin q). Then the motion is parametrized by (t, q(t)) for

(t0, t1), where q(t0) = q0 and q(t1) = q1. The quantity I, the action of the weight, we

want to minimize depends on the specific evolution being followed, and thus is a function

of q, I[q]. This I[q] is a functional.

2.1.1 Variations

Definition 2.1. Let I[y] be a functional defined on some normed linear space and let

∆I[y, h] = I[y + h]− I[y]
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be its increment, corresponding to the increment h = h(x) of the independent variable

y = y(x). If y is fixed, ∆I[h] is a functional of h, in general a non-linear functional.

Suppose that

∆I[y, h] = δI[y, h] + ε‖h‖,

where φ[h] is a linear functional and ε → 0 as ‖h‖ → 0. Then the functional I[y] is

said to be differentiable, and the principal linear part of the increment ∆I[h], i.e., the

linear functional φ[h] which differs from ∆I[h] by an infinitesimal of order higher than

1 relative to ‖h‖, is called the variation (or differential) of I[y] and is denoted by δI[h].

2.1.2 Extrema

As we previously mentioned, the calculus of functionals is mostly concerned with the

minima or maxima of functionals, which are collectively called extrema.

Definition 2.2. A functional I[y] is said to have an extremum at the function y0 if

∆y = I[y]− I[y0] has the same sign for all y in an arbitrarily small neighbourhood of y0.

The function y0 is called an extremal function. The extremum I[y0] is called a maximum

if ∆I 6 0 everywhere in an arbitrarily small neighbourhood of y0, and a minimum if

∆I > 0 therein.

2.1.3 Function spaces

Functionals are defined on spaces of functions.

Definition 2.3. A function space is a Banach space made of functions. Each function

in the space can be thought of as a point.

We regard each function y = y(x) in this framework as a point in some space and the

space whose elements are functions will be called a function space.

Example 2.2. 1. C0(a, b) is the space of all continuous functions in [a, b] ⊂ R

2. C1(a, b) is the space of all functions y(x) defined in [a, b] which are continuous and

have continuous first derivatives.

3. Cn(a, b) is the the space of all functions y(x) in [a, b] that are continuous and have

continuous derivatives up to the order n, where n ∈ N.

Theorem 2.4. [8] A necessary condition for a differentiable functional I[y] to have an

extremum at y = y∗ is that its variation vanish at y = y∗, i.e. δI[y, h] = 0 at y = y∗

and for all admissible h.
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Proof. Suppose I[y] has a minimum at y = y∗. Hence ∆I[y, h] = δI[y] + ε‖h‖, where

ε → 0 as ‖h‖ → 0. Thus, for a sufficiently small ‖h‖ the sign of ∆I[y, h] will be the

same as the sign of δI[y, h]. Suppose δI[y, h0] 6= 0 for some h0. Then ∀α ∈ R, we have

δI[y, αh0] = αδI[y, h0]. Hence ∆I[y, h] = δI[y, h] + ε‖h‖ can be made to have either

sign for an arbitrary small ‖h‖. But this is impossible since by the hypothesis I[y] has

a minimum at y = y∗(x), that is

∆I[y∗, h] = I[y∗ + h]− I[y∗] > 0

for sufficient small ‖h‖.

Remark 2.1.1. The theorem 2.4 does not always work in many cases the functional is

not even differentiable. In practice we usually employ variational principle to achieve

for the extrema.

2.1.4 The fundamental problem of calculus of variations

The fundamental problem of calculus of variations can be formulated as follows: given

a function F = F (t, q, q̇), find the functions q(t) corresponding to the extremal points

of the integral

I =

∫ t2

t1

F (t, q, q̇)dx,

subject to the boundary conditions




q(t1) = q1,

q(t2) = q2.
(2.1)

How do we identify the functions y(x) that maximize or minimize the integral I? Like

the vanishing derivative for variables, the Euler-Lagrange condition represents precisely

these functions.

2.2 Euler-Lagrange Equation

Definition 2.5. The equation

d

dt

∂F

∂q̇
−
∂F

∂q
= 0
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is called the Euler-Lagrange equation for the functional

I[q] =

∫ t2

t1

F (t, q, q̇)dx.

where [t1, t2] ⊂ R, q = q(t), q̇ is the derivative of q.

Theorem 2.6. [2] A necessary condition for the integral

I =

∫ t2

t1

f(t, q, q̇)dx

to attain an extremum subject to the boundary conditions





q(t1) = q1,

q(t2) = q2.

(2.2)

is that the function y=y(x) satisfy the Euler-Lagrange equation

d

dt

∂F

∂q̇
−
∂F

∂q
= 0.

Now let q be a vector in the n-dimensional coordinate space Rn, and F : Rn×R
n×R → R

as a function of 2n+ 1. We can generalize the Euler-Lagrange equation as follows:

The equation
d

dt

(
∂F

∂q̇

)
−
∂F

∂q
= 0.

is the generalized Euler-Lagrange equation for the functional

I[q] =

∫ t2

t1

F (t,q, q̇)dx.

2.3 Hamilton’s Principle of Least Action

Here we present Newton’s equations of dynamics

d

dt
(miq̇i) +

∂U

∂qi
= 0, i = 1, 2, . . . , n

where U = U(qi) is potential energy, t is time, mi are masses, qi are positions and q̇i are

momenta.
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Theorem 2.7. [2] Motions of the mechanical system above coincide with extrema of the

functional

I[q] =

∫ t2

t1

L(t,q, q̇)dt,

where L = T − U is the difference between the kinetic and potential energy, called the

Lagrangian. It is subject to the Euler-Lagrange equations

d

dt

(
∂L

∂q̇

)
−
∂L

∂q
= 0.

Proof. Since U = U(q) and T =
∑ miq̇i

2 , where q = (q1, q2, . . . , qn) We have ∂L
∂q̇i

= ∂T
∂q̇i

=

miq̇i and
∂L
∂qi

= − ∂U
∂qi

. It satisfies the Euler-Lagrange equations.

Definition 2.8. L(t, q, q̇) = T −U is the Lagrangian function or Lagrangian, qi are the

generalized coordinates, q̇i are generalized velocities, ∂L
∂q̇i

= pi are generalized momenta,

∂L
∂qi

are generalized forces,
∫ t2
t1
L(t,q, q̇)dt is the action.

Now let us see how Euler-Lagrange equations are applied.

Example 2.3. Consider the example 2.1 again. Since the system has no external forces

acting on it, there is no potential energy, i.e. U = 0. But it has kinetic energy:

T =
1

2
r2q̇2.

Hence, the Lagrangian function for this system is given by

L(q, v) =
1

2
r2v2,

where v = q̇. Hence ∂L
∂q

= 0 and ∂L
∂v

= r2v, the Euler-Lagrangian equation according to

Theorem 2.7 is
d

dt

(
r2v
)
= 0.
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Chapter 3

Hamiltonian Mechanics

This chapter is a review of Hamiltonian mechanics compatible with Chapter 7 in First

Steps in Differential Geometry [11].

3.1 Hamiltonian Function and Hamilton’s Equations

We start from the Lagrangian equations ṗ = ∂L
∂q
, where p = ∂L

∂q̇
, with a given Lagrangian

L: Rn × R
n × R → R, that is L(q, q̇, t), where q is the position, q̇ is the generalized

velocity. Using these functions, we can define a new function H : Rn × R
n × R → R by

Legendre transformation [2] as follows:

H(q,p, t) = pq̇− L(q, q̇, t).

The new function is called Hamiltonian function for the system.

Theorem 3.1. [2] The system of Lagrange equations is equivalent to the system of 2n

first order equations (canonical Hamilton’s equations)

ṗi = −
∂H

∂qi
; q̇i =

∂H

∂pi
, (3.1)

where H(p,q, t) = pq̇−L(q, q̇, t), q = (q1, q2, . . . , qn) is position, p = (p1, p2, . . . , pn) is

momentum.

Proof. The total differential of the Hamiltonian

dH =
∂H

∂pi
dpi +

∂H

∂qi
dqi +

∂H

∂t
dt

9



is equal to the total differential of RHS

dH = q̇idpi −
∂L

∂qi
dqi −

∂L

∂t
dt.

Therefore,

q̇i =
∂H

∂pi
,

∂H

∂qi
= −

∂L

∂qi
= −ṗi,

∂H

∂t
= −

∂L

∂t
,

where i = 1, . . . , n.

Example 3.1. Returning to Example 2.3. We had L(q, v) = 1
2r

2v2. The momentum

coordinate is given by p = ∂L
∂v

= r2v, and then we can solve for v to obtain v(p, q) = p
r2
.

Hence

H(q, p) = pv − L = p
( p
r2

)
−

1

2
r2
( p
r2

)2
=

p2

2r2
.

Hamilton’s equations for this system, then are,

q̇ =
∂H

∂p
=

p

r2

ṗ = −
∂H

∂q
= 0

Now back to the Hamilton’s system, the time evolution of H system is

dpi
dt

= −
∂H

∂qi
,

dqi
dt

=
∂H

∂pi
.

The state r(p1, p2, . . . , pn; q1, q2, . . . , qn) of the system at a given time is determined by

2n numbers. The space of positions and momentum is called the phase space [2].

Now consider (p1, p2, . . . , pn, q1, q2, . . . , qn), which are coordinates on the cotangent bun-

dle T ∗
R
n. Hence,

H : T ∗
R
n → R, H ∈ C∞(U), U ⊂ R

2n

Definition 3.2. Let α be a k-form on R
n. Then α is closed if dα = 0, where d denotes

the exterior derivative[4].

Definition 3.3. LetM2n be an even-dimensional differentiable manifold. A symplectic structure

on M2n is a closed non-degenerate differential 2-form α on M2n :

dα = 0; αij = −αji and ∀ε 6= 0, ∃ηsuchthatα(ε, η) 6= 0 (ε, η ∈M2n)

10



Theorem 3.4. [2] The cotangent bundle T ∗
R
n has a natural symplectic structure:

ω =
n∑

i=1

dpi ∧ dqi. (3.2)

It follows ω is closed since dω = 0.

And ω is non-degenerate since ∀XH 6= 0, ∃Xf , such that ω(XH , Xf ) 6= 0, where

XH , Xf ∈ T ∗
R
n. Also, ω−1 is a contravariant since ω is non-degenerate.

In this case, starting with a Hamiltonian function H ⊂ C∞(Rn), it produces a vector

field XH :

H → XH : ω(XH , ·) = i(XH)ω,

where i(XH)ω is the interior product [4] of ω with XH and is an 1-form.

Thus, i(XH)ω = −dH, according to which we can verify

dH(XH) = −ω(XH , XH) = 0.

Since

ω(X,Y ) = −ω(Y,X),

substitute

X = Y = XH ,

yields

ω(XH , XH) = 0.

The i(XH)ω = −dH defines the vector field XH uniquely.

It follows that

−dH = −
n∑

i=1

∂H

∂qi
dqi −

n∑

i=1

∂H

∂pi
dpi,

and

i(XH)
n∑

XH

dpi ∧ dqi.

Therefore,

XH = −
n∑

i=1

∂H

∂qi

∂

∂pi
+

n∑

i=1

∂H

∂pi

∂

∂qi
.

11



3.2 Hamiltonian Vector Field

First we note that the Cartan’s Lemma [11],

£XH
ω = i(XH)dω + d(i(XH)ω)

= d(i(XH)ω)

= d(−dH) = 0,

where £ denotes the Lie derivaive [12] . Thus, £XH
ω = 0

Definition 3.5. Let X be a smooth vector field on a domain U ⊂ R
n. A first integral

of X is a smooth function f : U → R such that £Xf = X[f ] = df(X) = 0.

It follows the Hamiltonian function H and its corresponding vector field XH that

£XH
H = XH(H) = dH(XH) = −ω(XH , XH) = 0.

Naturally, the Hamiltonian function H is a first integral of the vector field with Hamil-

tonian function H, XH which is defined in the following.

Definition 3.6. A vector field X that satisfies £XH = 0 is called a Hamiltonian vector

field and is denoted by XH = ω−1dH.

Since dH = 0 along XH , we have

Proposition 3.7. Let f, g : T ∗
R
n → R be smooth functions with Hamiltonian vector

fields Xf and Xg, respectively. Then

dg(·) = −ω(Xg, ·),

dg(Xf ) = −ω(Xg, Xf ) = ω(Xf , Xg) = {f, g} ,

where {f, g} is the Poisson bracket defined below.

A coordinate transformation is called canonical if it preserves the canonical Hamiltonian

equations (3.1).

3.3 Poisson Bracket

The symplectic structure ω (3.2) gives rise to the Poisson bracket of two smooth functions

on R
2n :

{f, g} = ω(Xf , Xg),
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where f, g ∈ C∞(U), U ⊂ R
2n are any smooth Hamiltonian functions and Xf , Xg ∈

T ∗
R
n are corresponding Hamiltonian vector fields, respectively. Specially, Poisson bracket

in canonical coordinates can be defined as follows:

Definition 3.8. In canonical coordinates (pi, qi) on the phase space, given two functions

f(pi, qi), g(pi, qi), the Poisson bracket is denoted by {f, g} and defined as follows:

{f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)
.

More generally,

{f, g} = ω−1(df, dg),

where d denotes the exterior derivative and thus df, dg are one-form, accordingly.

The Poisson bracket satisfies:

{f, g} = −{g, f} ,

X{f,g} = [Xf , Xg],

and

{{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0 ⇔ dω = 0.
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Chapter 4

The P-entropy

In 1865, Rudolf Clausius for the first time described entropy as the “transformation-

content” [5] on the basis of Carnot’s theorem, which begun its study. Later, scientists

such as Ludwig Boltzmann, Erwin Schrodinger and James Maxwell described entropy

from a statistical point of view. In 1877 Boltzmann employed a probabilistic method

to measure the entropy of an ensemble of ideal gas particles, in which he defined en-

tropy to be the measurement of chaos. In 1948, Shannon introduced the concept of the

entropy into information theory and defined entropy to measure the probability distri-

bution of events. Recently, Panchenkov presented a new notion of entropy, in which he

separated the entropy from the energy. As a result, Panchenkov obtained entropy as an

independent quantity.

4.1 Thermodynamical Entropy

4.1.1 Clausius entropy

Recall that Rudolf Clausius discovered that the algebraic sum of all the transformations

occurring in a reversible cyclical process can only be zero. In other words,

∮
δQR
T

=
∑ δQR

T
= 0,

where δQR is energy flow into the system due to heating and T is the absolute tem-

perature of the body when that energy is absorbed in any process that is cyclical and

reversible.

Moreover,
∮
δQR

T
is independent of path and only determined by the initial and final

states. In a way,
∮
δQR

T
is an increment of a state function. Thus, Clausius [22] defined
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the state function to be entropy, that is,

dS =
δQR
T

,

or

∆S = Sa − Sb =

∫ b

a

δQR
T

,

where S is entropy, dS is the infinitesimal change of entropy S and ∆S is the increment

of entropy S from a to b.

For any irreversible cyclic process, Clausius proved:

∮
δQI
T

=
∑ δQI

T
< 0,

where δQI is the energy flow into the system due to heating and T is the absolute

temperature of the body when that energy is absorbed in any process that is cyclical

and irreversible.

Therefore, for any cyclic process, such inequality, which is called Clausius inequality,

must hold: ∮
δQ

T
=
∑ δQ

T
6 0,

where δQ is the energy flow into the system due to heating and T is the absolute

temperature of the body when that energy is absorbed in the cyclic process.

Now, if we have a cyclic process which contains both a reversible process and a process

which can be either reversible or irreversible, we have

∮
δQ

T
=

∫ b

a

δQ

T
+

∫ a

b

δQR
T

6 0,

which yields ∫ b

a

δQ

T
6

∫ b

a

δQR
T

,

that is

∆S >

∫ b

a

δQ

T
,

or

dS >
δQ

T
,

where equality holds true only for the reversible process.

And for an isolated system, since δQ = 0, we have

dSiso > 0, (4.1)
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where Siso is the entropy of an isolated system and dSiso is the infinitesimal change

of entropy Siso. The second law of thermodynamics [3] states: the entropy of an iso-

lated system never decreases, i.e. such a system will spontaneously proceed towards

thermodynamic equilibrium.

4.1.2 Boltzmann entropy

Clausius entropy describes the irreversibility of thermodynamics in a macroscopic way.

Later, Ludwig Boltzmann re-defined the entropy microscopically and statistically.

Boltzmann, for the first time, gave the definition of a microstate, which is a specific

microscopic configuration of a thermodynamic system that the system may occupy with

a certain probability in the course of its thermal fluctuations [3]. He defined the ther-

modynamic probability W , which he also defined to be the density in phase space, to be

the number of ways the atoms or molecules of a thermodynamic system (also called the

amount of microstates) are arranged. The value of W is proportional to the probability

of a macroscopic state under certain probability distribution. Thus, thermodynamic

probability can describe the amount of chaos in a thermodynamic system.

Example 4.1. Let us toss a coin. If it comes up a head, it will be labelled 1. Otherwise,

it will be labelled 0. Now toss the coin 10 times, we have a series s = (s1, s2, . . . , s10),

where 1 6 i 6 10, si = 0 or 1. If the head appears i times, we call it “case-i”. And

it can be proved that the number of microstates, which is the number of all possible

head-upward outcomes, is Ci10 in the system. Apparently, case-0 and case-10 are most

ordered two cases. The case-5, which has C5
10 = 252 different microstates, is the most

chaotic one since the number of microstates is the greatest among all the cases. Thus,

the greater the number of microstates in a system is, the more chaotic the system is and

vice versa.

Eventually, Boltzmann made a conclusion about the relation between the entropy S and

thermodynamic probability W , that is S ∝ lnW . Hence,

S = kB lnW, (4.2)

where S is the Boltzmann entropy,W is the number of microstates to a given macrostate,

and kB is the Boltzmann constant, which is equal to 1.38065× 1023 J/K. The equation

(4.2) is called the Boltzmann principle and acts as a link between the microscopic and

the macroscopic worlds.

Remark 4.1.1. According to either macroscopic or microscopic definition of entropy,

it is always a measure of chaos or disorder. The Boltzmann principle can be generalized
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to Gibbs entropy [9]

S = −kB
∑

ρ ln ρ, (4.3)

where ρ is the density in phase space, under the condition that microstates have non-

equal probabilities of a thermodynamic system.

In addition from (4.2), the entropy as a function of the thermodynamic probability W

can also describe the amount of chaos in a thermodynamic system. In other words,

entropy is a measure of disorder for a certain thermodynamic system. The more chaotic

the system is, the larger the entropy is and vice versa. Boltzmann’s re-explanation of

entropy gives opportunity for people to understand the theory of entropy deeply and

widely. As a result, the explanation of entropy from then has more applications outsides

of thermodynamics, and can be extensively applied to other scientific fields.

4.2 Information Entropy

By the end of 1940s, Shannon published his epochal paper A Mathematical Theory of

Communications [21], in which he for the first time introduced the Boltzmann entropy

into information theory. He then defined it to be a measure of unpredictability of

information content and presented the information entropy theory.

Now consider a discrete random variable X with possible values x1, x2, . . . , xn (n ∈ N),

the probability of ith value is pi, and pi > 0,
n∑
i=1

pi = 1. To better characterize the

unpredictability H of the X, H has to satisfy the following properties[6]:

• H(p1, p2, . . . , pn) is a continuous function of pi, where i = 1, 2, . . . , n and n ∈ N;

• H
(
1
n
, . . . , 1

n

)
is a monotone increasing function of n, where n ∈ N;

• H(p1, p2, . . . , pn) (n ∈ N) is subadditive, namely:

H(p1, p2, . . . , pn) = H

(
k∑

i=1

pi, pk+1, . . . , pn

)
+

(
k∑

i=1

)
H(p′1, p

′
2, . . . , p

′
k),

where p′i =
pi
k∑

i=1

pi

, k < n, n ∈ N.

Note: The subadditivity here means that if we treat part of X to be a whole new

subject, then the unpredictability of X is equal to the sum of the unpredictability of the

new X, in which part of it is a new subject, and the unpredictability within the whole

new subject. Therefore, the subadditivity states the relation between the unity H and
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its parts. For example, we want to choose 5 students from a math division, suppose

there are 5 classes of the division. Then the unpredictability that we choose a student

from the division is the same the unpredictability that we firstly choose the student’s

class plus the unpredictability that we then choose the student from the class.

Thus, follows the function H satisfying the above three properties:

H(p1, p2, . . . , pn) = −
n∑

i=1

pi logc pi,

where n ∈ N, c > 0 and we regulate 0 logc 0 = 0. And H(X) = H(p1, p2, . . . , pn) is the

information entropy of the discrete random variable X. The new definition of entropy

identifies two important properties:

H(X) > 0;

[6]

H(X) 6 ln(n),

where the second equality holds only forX that is uniformly distributed, that is ∀ 1 6 i 6

n, pi =
1
n
, H(x) = ln(n), n ∈ N, which is stated as the principle of maximum entropy.

Hence, Shannon entropy is related to negative entropy (often noted as neg-entropy),

which is a term introduced by physicist Erwin Schrodinger in his 1944 articleWhat is Life,

[20] to explain how living systems export entropy to their environment to maintain them-

selves to exist as long as possible, in other words, it is the negative of entropy, described

by a physicist Léon Brillouin, who found out an equation to state that the changing bit

value information requires at least kBT ln(2) energy, where kB is Boltzmann constant,

T is temperature. As a result, he defined the principle of negentropy [10], that is, infor-

mation is the increase of the neg-entropy and is also the decrease of the entropy. There

is no violation of the Second Law of Thermodynamics involved, since a reduction in any

local system’s entropy results in an increase of entropy elsewhere.

4.3 Panchenkov’s Entropy

4.3.1 Preliminary

After Shannon introduced his new version of entropy, the subject received a lot attention

in the scientific world and many scientists contributed to the theory of entropy. Basically,

they had the following goals:

(1) to extend the entropy theory from a closed system to an open system;
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(2) to introduce the neg-entropy theory to describe how a system can evolve to an

ordered system under the influence of the outside world.

In 1969 Ilya Prigogine, whose focused study on the self-organization, introduced and

developed the dissipative system theory. In his famous paper entitled Time, strcutre

and fluctuations he wrote that “a dissipative structure was an open thermodynamic

system which was operating out of, and often far from, thermodynamic equilibrium in

an environment with which it exchanges energy and matter, and moreover, in such a

system, the non-equilibrium may become a source of order” [17].

In particular, he has pointed out that there is no exchange of energy and matter between

an isolated system and the outside world. On the other hand, for an open system there

exists an exchange of entropy between the local system and its outside environment.

Hence, the entropy of the open system consists of the following two parts: the entropy

produced within the system and the entropy that system gets from the outside world.

The dual presentation of the total entropy is formed as follows:

dS = diS + deS, (4.4)

where dS is the total entropy of an open system, diS is the entropy produced within the

system, or, to be more specific, it is only produced by the irreversible process within the

system; deS is the entropy flow generated by the exchange between the system and its

outside environment.

Moreover, it follows from the equation (4.1) that the second law of thermodynamics

assumes that the entropy produced within the system is always non-negative, that is

diS > 0. But for dS and deS, there is no such law bounding them. Thus, from (4.4) it

can be concluded that deS 6 −diS quantitatively is a necessary condition to maintain

the total entropy dS at a low level, that is to keep the system evolving in the direction

of becoming more and more ordered.

Thus, Prigogine drew a conclusion that a thermodynamically open system, moving from

thermodynamic equilibrium, can reduce the entropy to a low level and then keep the

system ordered in a time, space or a structural sense if it can extract sufficient energy

flow, matter flow or information flow form its outside world. He also mentioned fluctu-

ations are very essential to the order of an open system, in such a way that it can be

interpreted that the fluctuations lead to the order of the open system. As for an open

system away from thermodynamic equilibrium, a stochastic small fluctuation can grow

into a large one, while an ordered system can emerge from such a process even if it is

originally unstable. This phenomenon offers opportunities for the system to become a

dissipative one. It is natural to call such changes events.

However, the completion of the modern entropy theory has never come to an end. We

still want to
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(1) describe events of any systems and then monitor them;

(2) extend the entropy theory so that it is based on a more general notion of entropy.

This motivated Panchenkov to introduce a new notion of entropy. We will call it the

P -entropy in what follows.

The P -entropy can be interpreted in a number of ways. For instance, the P -entropy can

be described, roughly speaking, as a measure of order of a complex system. In his theory,

a complex system is modelled by a virtual continuous medium, which contains certain

geometric structures, evolving along the direction in which the system can maximize its

time of existence.

We will explain the conceptions of P -entropy in what follows. This part is compatible

with Entropy, a book by Panchenkov [14].

4.3.2 Virtual continuous medium

The world that we live in is physically “a random distribution of mass and energy in

time and in space” [7]. To describe such a complex and various world, it is necessary

to simplify and match it to such a virtual continuous medium (which is abbreviated by

VCM in what follows) where we can rebuild the construction. This idea can be obtained

from Albert Einstein, who wrote in General relativity [7] that “according to the general

theory of relativity, space is endowed with physical qualities” [7]. On the basis of such a

hypothesis, we can view the world as a virtual medium of certain geometrical structures

that evolves continuously with time.

The virtual continuous medium is an abstract continuum, characterized according to

Panchenkov by several important properties, namely [14]:

1) The virtual continuous medium is embedded in a bounded area of the phase space;

so it is determined by the coordinates (q,p), where q ∈ Ωq ⊂ R
n is the generalized

position coordinate and p ∈ Ωq ⊂ T∗
R
n is the generalized momenta coordinate;

2) Motion in the phase space is characterized by q and p;

3) The virtual continuous medium evolves over time t ∈ R, which is a continuous

variable, such that one can perform a continuous motion with same direction of x;

4) The virtual continuous medium has a continuous density, the state function of

which is ρ = ρ(q,p, t);

5) The mass of the virtual continuous medium is preserved;

6) Entropy is defined in the virtual continuous medium;

7) The underlying variational principle of the virtual continuous medium is the prin-

ciple of maximum entropy;

8) The entropy of the virtual continuous medium satisfies a dual representation.
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4.3.3 Rationale

The P -entropy, macroscopically, is defined to be a measure of “perfectness” of a system

rather than disorder or chaos. The idea comes from the neg-entropy theory. There is no

contradiction with Clausius’ definition, in which the entropy is a state function of how a

thermodynamic system extracts work from its outside environment. Now, if you define

it from the point of view of how a system tries to keep itself ordered and exists as long

as possible, that is to extract the “entropy” of the system outside, you will find this new

entropy has a “positive” meaning. It is compatible with Prigogine’s dissipative structure

theory. However, it is clear, according to the second thermodynamic law, that we are

referring here to an open system, only, which can make exchanges with the outside. Since

the time of Arthur Eddington, the entropy has been treated as the “arrow of time”. The

concept of P -entropy leads to a further generalization of this, and furthermore, by its

definition, the P -entropy measures the largest possible existing time of a system. Thus,

as a matter of fact, the P -entropy is the representation of the longest possible existing

time of a system.

Microscopically, the Boltzmann entropy offers us opportunities to reconsider the notion

of entropy under various conditions. From the equation (4.3), we can derive a formula

in the corresponding VCM. Firstly, let us describe how one can pass from a stochastic

environment to the VCM.

Definition 4.1. Define Ω to be the phase space, where the statistical ensemble is lo-

cated.

Ω ⊂ R
n ⊕ Rn,

where R
n is vector space and Rn is dual vector space.

It can be represented as:

Ω = Ωq × Ωp,

where Ωq ⊂ R
n is the configuration space and Ωp ⊂ Rn is the momentum space.

Remark 4.3.1. Note that here and throughout this thesis, following Panchenkov’s

notations, we use the brackets { , } to define a space with structures and coordinates,

rather than a set.

Definition 4.2. The stachostic environment is as follows :

S = {f, t|f = f(q,p, t),q ∈ Ωq,p ∈ Ωp,Ω = Ωq × Ωp; Ω ⊂ R
n ⊕ Rn; t ∈ [0, T ]} ,

where the f = f(q,p, t) is the density function of the virtual continuous medium.
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Now, in stachostic environment we rewrite equation (4.3) to be :

Bf = −

∫

Ω
f ln f dΩ,

where Bf is the total entropy. Recall what we saw in the Shannon entropy, the total sum

of probability is unity. Here density function f acts like probability in the stochastic

environment, such that the total sum of density is unity, that is,

m =

∫

Ω
f dΩ = 1. (4.5)

Applying the fact that P -entropy represents the longest possible existing time of a

system:

Hf = max Bf .

To conclude, Panchenkov proposed the fundamental theorem of Panchenkov’s entropy.

Theorem 4.3. Panchenkov’s entropy always obtains the maximum value in the evolu-

tion process and is a constant.

Hf = constant

The theorem is proven in[14] (see p. 46) by treating the integral
∫
Ω f ln f dΩ as the

distribution < ln f, f > with the constraint < 1, f >= 1 and deriving the conditions

< Uf , ϕ >= 0, < 1, ϕ >= 0, where ϕ is a test function and Uf = ln f0 + λ and f0 is the

extremal value of f . It follows then f0 = const, or Hf = const. The fact that f0 is a

maximum is verified directly.

As an extension of Prigogine’s theory, Panchenov’s theory completely separates entropy

flow from energy flow. It is a fundamental principle of Penchenkov’s theory of entropy,

under this hypothesis, that the P -entropy becomes an quantity independent of energy,

for which the energy exchange between the system and its outside can not change the

entropy of a system since it is a constant.

4.3.4 Continuity of P-entropy

Continuity is a necessary property for entropy no matter how it is defined. Let us now

explore the continuity of the P -entropy.

The P -entropy is a continuous function since we have proven Hf = constant always

in the stochastic environment by equation (??), which proves f is a constant function,

f(q,p, t) = constant . This implies,

∂f

∂t
= 0 and Of = 0. (4.6)
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The equation (4.5) has proved the conservation of mass, which is guaranteed by the

condition that the time derivative of the mass inside a control volume is equal to the

mass flux F, across its boundaries. Mathematically,

∂m

∂t
=

∫

S

F · n dS,

where m is the unity mass, S = ∂Ω is the surface of Ω, n is the unit outward normal

vector on S.

Here, without loss of generality, we take n = −1, which also ensures that outward flow

results in a decrease in the mass with respect to time. Then use the divergence theorem,

∫

S

F dS = −

∫

Ω
O · F dΩ.

Also take partial derivative to equation (4.5) with respect to time,

∂m

∂t
=

∂

∂t

∫

Ω
f dΩ =

∫

Ω

∂f

∂t
dΩ.

Therefore, ∫

Ω

∂f

∂t
= −

∫

Ω
O · F dΩ.

Now take F = f ·A, whereA = ∂q
∂t
+ ∂p

∂t
is the flow velocity in the stochastic environment.

Hence,
∂f

∂t
= −O · (f ·A)

yields,
∂f

∂t
+ Of ·A+ f · (O ·A) = 0. (4.7)

We know f = f(q,p, t), thus the total derivative of it with respect to time is:

df

dt
=
∂f

∂q
·
∂q

∂t
+
∂f

∂p
·
∂p

∂t
+
∂f

∂t
= Of ·A+

∂f

∂t
,

Since f = Const, we get the continuity equation in the stochastic environment:

∂f

∂t
+ Of ·A = 0.

Besides, under the condition of equation (4.6), we can get an important property from

the equation (4.7), which is physically the subject of incompressibility, as follows:

O ·A = 0.
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4.3.5 Duality of P-entropy

We have already known the additivity of entropy in microscopic condition from the

Boltzmann’s Principle, and also learnt that an important condition for Shannon en-

tropy. Now for the P -entropy, we will find that the additivity of entropy also exists

macroscopically.

Let us explore the volume of the stochastic environment. Physically,

m = f · V, (4.8)

where m is the mass of the stochastic environment, f is the density function in the

stochastic environment and V is the volume of the stochastic environment. Then from

the equation (4.5), ∫

Ω
f dΩ = f · V,

V =
1

f

∫

Ω
f dΩ

Taking reciprocal of f inside the integral we obtain V =
∫
Ω dΩ. Because of the incom-

pressibility, O · A = 0, hence divA = 0, where A = ∂q
∂t

+ ∂p
∂t
, we get the following

equation by Liouville theorem:

dV

dt
=

∫

Ω
O ·A dΩ,

hence,
dV

dt
= 0.

Therefore, V is a constant and is preserved in any time transformation.

Since Hf and V are both constant, we can represent Hf in terms of V following from

the equation (4.5) and (4.8), namely:

f · V = 1 and

∫

Ω
fdΩ = 1,

where mass is unity in the stochastic environment.

Also,

Hf = −

∫

Ω
f ln f dΩ
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We know f is constant, hence,

Hf = − ln f

∫

Ω
f dΩ

= − ln f

= ln
1

f

= lnV.

(4.9)

Now look back to the definition of phase space Ω = Ωq×Ωp, the P -entropy must inherit

the separability from the dual definition of the phase space, in which we can be allowed

to define two kinds of entropy Hq and Hp located in Ωq and Ωp, respectively. The former

one is called structural entropy while the other is called impulse entropy.

Since P -entropy is microscopically additive, there must exist such a property in macro-

state. Thus, we can say

Hf = Hq +Hp,

where Hq ∈ Ωq and Hp ∈ Ωp. Hence,

Theorem 4.4. P -entropy has a dual representation, that is Hf = Hq + Hp, where

Hq ∈ Ωq and Hp ∈ Ωp, which is also called the duality of Panchenkov’s entropy.

Proof. We will prove the duality from the point of view of phase volume. Define

fq = f(q, t) as the stochastic density in the configuration space and fp = f(p, t) as

the stochastic density in the momentum space. Then fq and fp are independent since

Ωq
⋂
Ωp = ∅. Hence, the total density is multiplicative, that is f = fq · fp. The conser-

vation of mass in the two different spaces are

∫

Ωq

fq dq = 1 and

∫

Ωp

fp dp = 1.

The relations fq · Vq = 1 and fp · Vp = 1 hold true as well. The structural entropy

Hq and the impulse entropy Hp has similar representations with total entropy in their

corresponding spaces, that is:

Hq = −

∫

Ωq

fq ln fq dq and Hp = −

∫

Ωp

fp ln fp dp.

Similar to the proof of the relation between the phase volume and the total entropy, we

can obtain:

Hq = lnVq and Hp = lnVp,
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where Vq is the volume of Ωq and Vp is the volume of Ωp. Then,

Hf = −

∫

Ω
f ln f dΩ

= − ln f

∫

Ω
f dΩ

= − ln(fq · fp)

= −(ln fq + ln fp)

= lnVq + lnVp.

Therefore,

Hf = Hq +Hp,

which is the duality of P -entropy.

The duality is a very important property for P -entropy and a key principle for the model

involving P -entropy.

Remark 4.3.2. Recall that the total entropy Hf = Hq + Hp, Hf = const, where Hq

is the structural entropy (measures the quality of the structure of the system), and Hp

is the impulse entropy (measures the resources of the system). From this viewpoint all

processes in the universe can be described as the transformation of Hp into Hq and vice

versa. In a conservative system we have a complete transformation of one component

of the total entropy into the other. In a dissipative system the situation is different:

dissipation conserves a part of the impulse entropy Hp and prevent it from transforming

it into the structure. The same phenomena in this case destroys a part of the structure

entropy Hq, and so we have [15]

Hq := H0
q −Hε, Hp := H0

p +Hε,

where H0
q and H0

p are the structural and impulse entropies respectively and Hε is the

“frozen” entropy. We can show that dHε

dt
≥ 0 and so it is natural to connect Hε with

the thermodynamical entropy HT . On the other hand, if we identify p with a vector

v in the Bolzman formula HT = −
∫
Ωp
f(u, t)lnf(u, t)du we can identify in this way

Hp with HT . We can assume that in a dissipative system the conservative component

H0
p = 0 we can identify Hp with Hε, which means that in a dissipative system we

have a transformation of structural entropy into the impulse entropy. Since this process
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irreversible, the impulse entropy in this case is “passive”, i.e., it becomes the “frozen”

entropy Hε.

4.3.6 Variational principle

As we discussed in Chapter 2, a variational problem is constrained by some variational

principle. The whole model is evolving along the direction that maximizes the existing

time of the system, which is precisely the variational principle of the P -entropy model-

the principle of maximum P -entropy. In addition, it is also the maximum principle

of P -entropy, as mentioned, that P -entropy actually represent the existing time of a

system. As detailed by Schrodinger, all systems follow the principle that they will try

to extend their existing time, through which the maximum principle of P -entropy is

employed.

Based on this variational principle, an evolution can be described as the transformation:

Hq � Hp, which assumes different forms according to the models in question.
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Chapter 5

Geometric Structures of the VCM

In the previous chapter we introduced following the notion of the P -entropy, and de-

scribed how it could be used to describe a model for a complex system, called “virtual

continuous medium”. In this chapter we will develop the ideas by introducing more

structures within the VCM.

5.1 From a Stochastic Environment to a VCM

To pass from a stochastic environment to a VCM, Pachenkov employed the following

identification:f → ρ, where ρ is a continuous physical density of the VCM, such that the

property in the stochastic environment could be preserved in the process. As a result,

the P -entropy model could be generalized and applied to the VCM.

Mathematically, we can think of the stochastic environment and the VCM as two dif-

ferent sets with certain structures. As we know, there always exist such morphisms

between them. Panchenkov assumed that a special one satisfying certain requirement

can be established among all of such morphisms.

In this view the P -entropy model can be generalized from the stochastic environment

to the whole VCM.

Thus, the VCM can be defined as follows:

M = {q,p| ρ = ρ(q,p, t);q ∈ Ωq,p ∈ Ωp,Ω = Ωq × Ωp; Ω ⊂ R
n ⊕ Rn; t ∈ [0, T ]} .

5.2 Entropy Manifold

We obtain the first reduction of the phase space Ω by introducing the invariant Hf . It

is the entropy manifold:

E = {q,p| E ⊂ Ω, Hf = constant} ,
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where Hf is the P -entropy. By the theorem 4.4, we have the following representation of

entropy manifold as a direct product:

E = Eq × Ep,

where Eq = {q| Eq ⊂ E , Hq} is the configuration entropy manifold and Ep = {p| Ep ⊂ E , Hp}

is the impulse entropy manifold.

5.3 Solenoid Manifold

We mentioned the divergence divA = O · A = 0 in the last chapter, thus, with the

divergence we obtain a new manifold as following:

M =

{
∂q

∂t
,
∂p

∂t

∣∣∣∣ M ⊂ E , σ = divA,A ∈ TE

}
,

where TE is the tangent bundle of the entropy manifold.

Hence, Panchenkov called the new one a solenoid manifold and stated that the σ = 0 as

we have proved in the last chapter by the continuity equation.

Then he introduced a physical quantity commonly used in the fluid dynamics: the

acceleration potential Θ = Θ(q,p). Now we can narrow the entropy manifold to the

acceleration potential manifold, namely,

Π =

{
∂q

∂t
,
∂p

∂t

∣∣∣∣ Π ⊂M,Θ, ω0

}
,

where ω0 is a canonical symplectic form, that is i(XΘ)ω0 = dΘ, we can formally identify

Θ = −H, where H is an Hamiltonian function.

Remark 5.3.1. Θ and H are derived from different variational principles. We may find

the projection of Θ satisfying a Hamiltonian variational principle in some manifolds.

But it is necessary to note that Θ and H are totally different quantities.

Upon the identification A = XΘ we arrive at the following canonical equations:

∂q

∂t
= −

∂Θ

∂p
; (5.1)

∂p

∂t
=
∂Θ

∂q
, (5.2)

which is shown via the identification, where (∂q
∂t
, ∂p
∂t
) ∈ Π. In conclusion, it can also

be represented as A = OΘ, where OΘ = −∂Θ
∂p

+ ∂Θ
∂q

= ∂q
∂t

+ ∂p
∂t
, which justifies the

assumption Θ = −H above.
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5.4 Hilbert Manifold

Finally, Panchenkov introduced another new quantity: the scalar impulse potential Ψ =

Ψ(q, t). Introducing Ψ into the acceleration potential manifold we can finally construct

the Hilbert manifold:

Γ = {q,p| Γ ⊂ Π,Ψ} .

In the Hilbert manifold it can be obtained immediately from its physical meaning that

∂Ψ

∂t
= Θ. (5.3)

Then, if taking the equation (5.3) partial derivative with respect to q, we get

∂

∂q

∂Ψ

∂t
=
∂Θ

∂q
.

Also it follows from (5.2), the last equality

∂

∂q

∂Ψ

∂t
=

∂

∂t

∂Ψ

∂q
=
∂p

∂t
.

Integrating with respect to t, it yields

p =
∂Ψ

∂q
. (5.4)

Note that gradΨ = ∂Ψ
∂q

. Hence, the equation (5.4) can be rewritten as

p = gradΨ.

Also, the Hilbert manifold can be constructed from the point of view of the Hamiltonian

function as follows:

Now take the total derivative of Ψ, we get

dΨ =
∂Ψ

∂q
dq+

∂Ψ

∂t
dt.

By the equations (5.3) and (5.4), it can be written as

dΨ = pdq+Θdt.

Since Θ = −H, it is also

dΨ = pdq−Hdt.
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Thus, Panchenkov defined a new variable ε = dΨ in the Hilbert manifold as follows:

Γ̂ =
{
q,p| Γ̂ ⊂ Π, ε,H,Ψ

}
.

It is the same Hilbert manifold constructed from the point of view of Hamiltonian

function, finally, a Hamilton-Jacobi equation can be derived in the Hilbert space, namely:

∂Ψ

∂t
= −H,

which describes an evolution equation of a complex system.

Thus we have a model that can be used, for example, to study monitoring problems.
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Chapter 6

Theory of Monitoring and

P-entropy

In the previous chapter we constructed certain geometric structures for the VCM, which

is a model for complex systems. It is necessary to mention that the VCM also has

subsystems evolving inside of it. The VCM can be seen as a general model for the

universe, in which biological, technological, social and natural systems exist and evolve.

Such enormous and complex systems are abstractly described as different subsystems

evolving in the VCM.

For a given system, one can consider an evolutionary problem. With the Hilbert manifold

constructed, it is possible now to consider evolution type problems in this framework.

Note that since the Hilbert manifold is a submanifold of the VCM, it “inherits” any

invariants defined in the VCM, which we will describe in what follows. Since the total

entropy is conserved within the Hilbert manifold, an evolutionary process is described in

Panchenkov’s theory as a conversion between the structural entropty Hq and the impulse

entropy Hp, since Hq +Hp = const.

Having introduced certain structures in the Hilbert manifold allowed Panchenkov to

geometrically describe the motion, which is composed of the evolution and the events,

of complex systems. This approach can be reduced to the study of differential equations

with initial or boundary conditions to characterize a trajectory of a system evolving in

the Hilbert manifold.

A solution to such a differential equation (or a system of differential equations) describes

the evolution of the system in question. If a solution has singularities, they will corre-

spond to a singularity in the Hilbert manifold; such a singularity together with a small

neighbourhood forms the kernel of the Hilbert manifold, which is the object used in

describing events of the evolution studied. The singularity is also the location where a

system collapses and a new system emerges.
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6.1 Entropy in the Hilbert Manifold

The Hilbert manifold inherits the volume, entropy and mass from the stochastic envi-

ronmnent as invariants via the following identification: f → ρ.

6.1.1 Phase volume

The phase volume in the Hilbert manifold is an oriented volume defined as follows

V = signV |V |,

where signV =





−1, V<0,

0, V=0,

1. V>0.

The entropy equation (4.9) is rewritten as:

Hf = signV ln |V |.

6.1.2 Duality on the Hilbert space

Recall that ρ denotes the density of the virtual continuous medium. The decomposition

Ω = Ωq × Ωp implies

ρ = ρq · ρp,

where ρq is the density of the configuration space and ρp is the density of the momentum

space.

Then the structural entropy Hq and the impulse entropy Hp can be represented as

follows:

Hq = signVq ln |Vq| and Hp = signVp ln |Vp|.

Their sum is the total entropy: Hf = Hq +Hp.

6.1.3 Continuity on the Hilbert space

Since the mass of the Hilbert space is constant, it follows that both the mass of the

configuration space and the mass of the momentum space are also constant.

This arrangement leads to the following decomposition of the continuity equation, which

assumes the following respective forms on the two spaces:

dρq
dt

+ ρqdivU = 0, U =
∂q

∂t
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dρp
dt

+ ρpdivV = 0, V =
∂p

∂t

Hence,
1

ρq

dρq
dt

= −divU,

1

ρp

dρp
dt

= −divV,

Finally, we have

−
d ln ρq
dt

= divU,

−
d ln ρp
dt

= divV.

Next, Panchenkov defined the following new quantities: σ1 := divU and σ2 := divV .

6.2 The Inner Time

To describe the evolution within the VCM one can employ two types of time: the

astronomical time t and the entropy time s.

Now look back on the continuity of P -entropy:

A = q̇+ ṗ, q̇ = Aq, σ1 = divq̇,

where A = Aq × Ap, which is the flow velocity in the VCM and Aq is the flow velocity

in the configuration space of VCM.

Then by Euler’s equations:

Aq = q̇ =
σ1
n
q. (6.1)

Note Aq is measured in [L]
[T ] , while σ1 - 1

[T ] , q - [L] and n is dimensionless.

Panchenkov defined the inner time s through a generalization of the equation (6.1),

namely:
ds

dt
, signV

σ1
l
, (6.2)

where the dimension of s is [L], t - [T ] and l - 1
[L] .

We also have the equation:
dHq

dt
= signV σ1. (6.3)

Then it follows from the equations (6.2) and (6.3) that the structural entropy is the

inner time, namely, Hq = s.
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6.3 The Boundary Conditions

The initial and final conditions are defined as follows:

{Hq = 0, Hp = Hf} ∀t = t0;

{Hp = 0, Hp = Hf} ∀t = T,

where t0 is the initial time and T is the final time.

Also, along with structural conditions: q is the wear of the system

q = 0, ∀t = t0, q = 0, ∀t = T ;

q = I, ∀t = t0, q = 0, ∀t = T.

6.4 Evolution Equations

The system theory provides a natural framework for the study of objects on the Hilbert

manifold.

A system can be defined by the following three axioms[13]:

• A system is determined by a space of states E and a space of parameters M . The

latter defines the behaviour of a system;

• The space of states E contains a subspace (i.e., the number of elements of E is at

least two);

• A system possesses the emergent property.

To describe the evolution of a system on the Hilbert manifold, we need to derive and

solve the corresponding evolution equations, solving of which by exact methods in many

cases is nearly impossible due to their nonlinearity and complexity in general. Therefore

Panchenkov employed the asymptotic method to deal with such equations.

However, not all systems can be studied by the asymptotic method. Thus, we introduce

three more axioms and describe a class of systems that can be investigated by asymptotic

methods. These axioms are listed below [13].

• There exists a region Ω in the Euclidean space R
n (Ω ⊂ R

n) such that the space

of states E is the dual pace on Ω: E = E(Ω);

• The space E(Ω) is a metric space;

• The space of parameters M(Ω) is a region in the Euclidean space R
k (M ⊂ R

k).

In this view we will denote a system by S(E,M) or, simply, S.
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Here we attain a generalized equation to describe the evolution process, which can be

written as: Γφ = X, where Γ is a generalized operator that may include boundary or

initial conditions or even both of them, φ ∈ E(Ω) and X is an inhomogeneous part.

We further can obtain φ = L(ε)φε0 , where L(ε) is an evolution operator depending on ε

and an element in the space of the evolution operators ε(M0).

Naturally, it is necessary to talk about the scale of comparison ε(M0): ε(M0) is an

ordered set of elements δα(ε), where ε ∈ M0, α is in an index set Aα, which define the

corresponding structure in ε(M0), namely, δα(ε) < δβ(ε) if α < β.

Let us construct the corresponding space of operator Eε(M0) such that L(ε) ∈ Eε.

As a result, φ ∈ E(Ω) is an asymptotic expansion in E0(M0) up to δ0(ε), in which one

has to confirm that the ordered sets must be convergent, thus Panchenkov has assumed

[13] there exists a set of elements αλ ∈ E(Ω), λ < α for which

‖ φ−
∑

λ<α

αλδλ(ε) ‖Eε
∼ O[δα(ε)].

Depending on the particular space Eε(M0) one can always formalize an asymptotic

expansion for function φ in terms of different types of L(ε), for which Panchenkov has

given the asymptotic expansion in the following way:

L(ε) = 1 + δ1(ε)L1 + δ2(ε)L2 + . . .+ δα−1(ε)Lα−1 +O(δα(ε)).

This method is called the limiting correctness by Panchenkov and is used to simulate the

behaviour of a system as precise as possible. Roughly speaking, the limiting correctness

is a much generalized asymptotic method, which is also more accurate. Occasionally,

when applying the regular asymptotic method, we have some solutions of a differen-

tial equation that fail to cover some boundary or initial conditions or ones at infinity,

for which in order to modify the inaccuracy, Panchenkov introduces the limiting in-

correctness analysis. With such method one can have a result that can feasibly include

the whole behaviour of the original equation.

Thus, let the state of a system S at ε = ε0 be described by the following mathematical

model:

Γ0φ0 = X0; φ0 ∈ E(Ω0); ε = ε0, X0 ∈ X.

which can be analysed by the limiting correctness method, that is,

1) choose φ ∈ Eε(M0);

2) use the asymptotic expansion in order to simulate the system, limε→0(Γφ−Γ0φ0) = 0

and limε→0(Ω− Ω0) = 0.
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Now the evolution of the systems on the Hilbert manifold can be formed as follows:

Γφ = X; q ∈ Ωq; φ ∈ E(Ωq); Ωq ⊂ Rn; X ∈ X; ε ∈M ; M ⊂ R+,

where φ is a dual vector in state space E.

Note the small parameter ε here. In order to construct it, Panchenkov has introduced

two variables t0 and T , where t0 and T are accordingly the small character time and

the great character time in the evolution. Consequently, the small ε is defined as ε = t0
T
,

which can be called a gauge parameter.

Eventually, we can present the state system S of a continuum on the Hilbert manifold

in what follows:

S =
{
φ, t,q, ε| q ∈ Ωq; Γφ = X; φ ∈ E(Ωq); ε ∈M ;M ⊂ R+; X ∈ X; t ∈ J

}
,

where J is a time interval.

Setting ε = 0, we reduce the above set to

S0 = {φ0, t,q, ε| q ∈ Ω0q; Γ0φ0 = X0; t ∈ J} .

Provided there exists an isomorphism S → S0, we can identify the operator L(ε) ∈

E(M0) such that φ = L(ε)φ0 and therefore obtain the corresponding asymptotic expan-

sion Γφ = X.

However, the asymptotic expansion can not cover all of the original evolution, i.e. its

solution may fail to be regular at some initial or boundary points. Such a local incor-

rectness is called limiting incorrectness by Panchenkov. Thus, we need to employ an

extra analysis in the area of the local incorrectness, the analysis of which will be used

to describe the events on the Hilbert manifold within the framework of Panchenkov’s

theory.

One can ask why such a limiting incorrectness exists. Suppose an object on the Hilbert

manifold evolves in a time interval J = [T−, T+], the limiting in-correctness can be

seen as some sufficiently small time interval δJ =
{
t | |t|

T
6 ε
}

where the evolution of

the object is discontinuous. Such a small neighbourhood is called the kernel of Hilbert

manifold and the system may acquire some new properties through this. Panchenkov

called such a process an event.

So far we can split the state system S into two models:

1. The outer interval where the evolution is regular:

Sp = {φ, t,q, ε|Sp ⊂ S; t ∈ J0, J0 = J − δJ}
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2. The kernel where the events occur:

Sδ = {φ, t,q, ε|Sδ ⊂ S; t ∈ δJ}

Again, as ε→ 0,

S →

{
S0 if t ∈ J0,

Sδ if t ∈ δJ.

We can subsequently use the asymptotic limiting correctness method to characterize

both the evolution as well as any events that the object may go through on the Hilbert

manifold.

Recall the generalized evolution process Γφ = X on the Hilbert manifold. Firstly, the

operator Γ can be decomposed into three parts:

Γ = Γp + Γ−
c + Γ+

c ,

where Γp is the regular operator as t ∈ J0, Γ
−
c is the left operator as t ∈ δJ and Γ+

c is

the right operator as t ∈ δJ .

Remark 6.4.1. The kernel is mathematically a discontinuity and thus regular operator

can not characterize it. To resolve this difficulty, Panchenkov utilized the left and right

ones in the vicinity of the kernel as it is sufficiently small.

Next, let us choose a set of scale of comparison E(ε) = {εγ}, where γ = −1, 0, 1, 2, 3, . . . , n

and take an asymptotic expansion of φ in the kernel t ∈ δJ provided it exists:

φ =
φ−1

ε
+ φ0 + φ1ε+ φ2ε

2 + · · ·+O(εn); t ∈ σJ ; ‖φn‖ ∼ O(1).

Also for Γ−
c and Γ+

c :

Γ±
c =

Γ±
c−1

ε
+ Γ±

c0 + Γ±
c1ε+ · · ·+O(εn); t ∈ δJ.

Since the kernel interval is sufficiently small, we can see ‖X‖ ∼ O(1), accordingly, the

asymptotic expansion of Γφ = X in the kernel t ∈ δJ is:

(
Γ±
c−1

ε
+ Γ±

c0 + Γ±
c1ε+ · · ·+O(εn)

)(
φ−1

ε
+ φ0 + φ1ε+ φ2ε

2 + · · ·+O(εn)

)
= 0

Now open the brackets and collect the equation in terms of ε:

O( 1
ε2
) terms: Γ−

c−1φ−1 + Γ+
c−1φ−1 = 0; t ∈ δJ ;

O(1
ε
) terms: (Γ−

c−1 + Γ+
c−1)φ0 + (Γ−

c0 + Γ+
c0)φ−1 = 0; t ∈ δJ ;
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· · · ,

where the · · · are the terms of the order higher than −1.

We are only interested in the O( 1
ε2
) terms. Substitute a new expansion φ−1

∼= εΨ+O(ε)

in terms of a new parameter ‖Ψ‖ ∼ 1
O(ε) in the O( 1

ε2
) terms:

Γ−
c−1(εΨ+O(ε)) + Γ+

c−1(εΨ+O(ε)) = 0,

It follows that

ε(Γ−
c−1Ψ+ Γ+

c−1Ψ) + Γ−
c−1O(ε) + Γ+

c−1O(ε) = 0,

Since

Γ±
c−1O(ε) ∼= O(εn),

from which we obtain

ε(Γ−
c−1Ψ+ Γ+

c−1Ψ) = O(εn);

Dividing by the small parameter ε gives

Γ−
c−1Ψ+ Γ+

c−1Ψ
∼= O(1); t ∈ δJ.

Thus, Sδ can describe the kernel quite precisely in the vanishing of ε:

Sδ =
{
φ,q, t| Γcφ = 0; Γc = Γ−

c−1 + Γ+
c−1; t ∈ δJ

}
.

Now let us consider again:

∂Ψ

∂t
= Θ, the acceleration potential equation; (6.4)

∂p

∂t
=
∂Θ

∂q
, the impulse equation. (6.5)

The acceleration potential on the Hilbert manifold can be written:

Θ = −K −Π, (6.6)

where K = K(p, t) is the ratio of the pressure to the fluid density and Π = Π(q, t) is

the potential of the force field acting on a fluid .

Without loss of generality we can assumethe ratio takes on the following form:

K =
1

2
Λ(p,p), p = gradΨ.
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Panchenkov assumed Π(q, t) ∈ C2(Ωq) and Π(q, 0) = 0. Define σJ to be a small

interval in time. Hence, take t ∈ σJ

p̄(q, t) = tp; p̄(q, t) ∈ C2(Ωq × σJ);

Ψ̄(q, t) = tΨ; Ψ̄(q, t) ∈ C2(Ωq × σJ).

Linearising around t = 0, we get:

p̄(q, t) = p̄(q) + p̃(q, t); p̄ = p̄(q, 0) ∼ O(t).

Ψ̄(q, t) = Ψ̄(q) + Ψ̃(q, t); Ψ̃(q) = Ψ̃(q, 0) ∼ O(t).

Next, via t→ τ ; τ = t
ε
, such that

p ∼=
p̄(q)

ετ
; ∀p̄(q) ∼ O(1); τ ∈ σJ̄ ; σJ = εσJ̄ ;

Ψ ∼=
Ψ̄(q)

ετ
+O(1); ∀Ψ̄(q) ∼ O(1).

Correspondingly,

K =
1

2ε2τ2
‖p̄‖2; p̄(q) =

∂Ψ̄

∂q
;

∂Ψ

∂t
= −

Ψ̄

ε2τ2
;

∂p

∂t
= −

p̄

ε2τ2
. (6.7)

Note: The negative sign of the equation (6.7) is inherited from the sing of the acceler-

ation potential in the equation (6.6).

Now substitute the above equations into the equations (6.4) and (6.5):

−
Ψ̄

ε2τ2
+

1

2

1

ε2τ2
‖p̄‖2 = 0;

−
p̄

ε2τ2
+

1

2ε2τ2
∂

∂q
‖p̄‖2 = 0,

Also,

Γ−
c−1 + Γ+

c+1 = O,

from which we get

p̄−
1

2

∂

∂q
‖p̄‖2 = 0;

Ψ̄−
1

2
‖
∂Ψ̄

∂q
‖2 = 0; τ ∈ σJ̄.
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Note that in this case φ = p.

6.5 Monitoring Problem

We are now in a position to formulate and summarize the idea of Panchenkov, which

was discussed through the previous chapters. In view of the results of the considerations

we are led to the conviction that, according to the principle of the maximum entropy,

the total entropy is conserved among different systems, such as biological, engineering,

social and political ones, and with which we can forecast and even possibly control the

behaviour of complex structures, both regular evolutions and events.

6.5.1 Virtual continuous medium

Referring to the axioms defining the virtual continuous medium (See Section 4.3.2),

which can be expressed as:

S = {q,p, t, ρ|ρ = ρ(q,p, t),q ∈ Ωq,p ∈ Ωp,Ω = Ωq × Ωq; Ωq ⊂ R
n;

Ωp ⊂ T∗
R
nΩ ⊂ R

n ⊕ Rn;m;Hf} .

Another three postulates can be drawn from the above[14]:

1) Entropy is the main object of the virtual continuous medium;

2) The phase volume is oriented.

3) The entropy of the virtual continuous medium is determined by the Boltzmann

formula for an inertial continuum with respect to ρ.

More precisely, the oriented phase volume is given by

V = signV |V |,

where signV =





−1, V<0,

0, V=0,

1, V>0.

V =

∫

Ω
dΩ.

Let us investigate conservation of mass m. Suppose m=constant,

signV

∫

Ω
ρdΩ = 1 ⇒

∫

Ω
ρdΩ = signV.
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We introduce the virtual entropy through both:

Hf = −

∫

Ω
ρ ln ρdΩ ⇒ Hf = signV ln |V |.

6.5.2 Fundamental properties of the entropy model

Theorem 6.1. (The preservation of the entropy) In the virtual continuous medium

(VCM), the phase volume and the entropy remain constant according to the principle of

maximum of entropy:

Hf = constant, V = constant

and are related in the following equation:

Hf = signV ln |V |.

Now we have a dual representation of entropy

Hf =




−
∫
Ω ρ ln ρdΩ,

signV ln |V |.

The density of the virtual continuous medium is ρ, the duality of which naturally inherits

from the bi-fold representation of the phase space Ω = Ωq × Ωp,

ρ = ρq · ρp,

where ρq = ρq(q, t) and ρp = ρ(p, t) are the density of the configuration space Ωq and

the momentum space Ωp respectively.

Now integrating the two densities correspondingly,

∫

Ωq

ρqdq = signVq and

∫

Ωp

ρpdp = signVp.

As we know Hf = Hq +Hp,

from which we attain the formulae for Hq and Hp,

Hq = −signVp

∫

Ωq

ρq ln ρqdq;

Hq = −signVq

∫

Ωp

ρp ln ρpdp.
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Then we substitute V = Vq · Vp, namely,

Hq = signV ln |Vq|,

Hp = signV ln |Vp|.

6.5.3 Monitoring problem

In order to have a complete description of the movement in the VCM, we must specify

how systems evolve in time. The information must be supplemented by such a definition

of time that, in virtue of this definition, these time-values can be regarded as magnitudes

capable of observation. We introduce time scales for the monitoring problem: the inner

time Hq and the regular time t.

Panchenkov defined such time variables [14]:

1) Astronomical time t;

2) Time of the existence of the system Hq.

and the boundary points in a time interval:

1) Initial time t0;

2) Final time T .

To illustrate the monitoring problem, let us consider a general biological system.

The system evolves in the VCM:

S = {q,p, t, ρ|ρ = ρ(q,p, t),q ∈ Ωq,p ∈ Ωp,Ω = Ωq × Ωp; Ωq ⊂ R
n;

Ωp ⊂ Rn; Ω ⊂ R
n ⊕ Rn;m;Hf} .

In order to give a more exact description, we must obtain more properties and geomet-

rical structures, namely, the Hilbert manifold:

Γ = {q,p| Γ ⊂ Ω; Θ; Ψ; ω0} .

with the boundary conditions

{Hq = 0; Hp = Hf} ∀t = t0,

{Hq = 0; Hp = Hf} ∀t = T.

It satisfies the global symmetry:

Hf = Hq +Hp.
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More specifically, the biological evolution can be characterized as follows:

Hp → Hq → Hp,

{Hq = 0; Hp = Hf} ∀t = t0;

{Hq = 0; Hp = Hf} ∀t = T.

Remark 6.5.1. Possibly, in many circumstances the following additional conditions are

required:

q = 0, ∀t = t0, q = 0, ∀t = T ;

q = I, ∀t = t0, q = 0, ∀t = T.

Let us investigate the two periods of the evolution of a biological system.

1. Development: Hp → Hq;

Hq = 0, ∀t = t0;
dHq

dt
> 0, t ∈ (t0, T1);

Hq = Hf ,
dHq

dt
= 0, ∀t = T1,

where the T1 is the end time of the development.

2. Senescence: Hq → Hp;

Hq = Hf ,
dHq

dt
= 0, ∀t = T1;

dHq

dt
< 0, t ∈ (T1, T );

Hq = 0, ∀t = T.

As a result of the analysis presented above of the biological system, it is evident that

in reality varieties of systems can possibly be characterized with respect to the new

conserved quantity, namely, the entropy subjected to certain conditions and the evolution

of a system can be described by solving for the differential equation of the structural

entropy.

6.5.4 Acceleration potential and potential impulse

Now we revisit the properties and geometrical properties on the Hilbert manifold

Γ = {q,p| Γ ⊂ Ω; Θ; Ψ; ω0} ,

in which ω0 is a canonical symplectic form, i.e., ω0 =
∑n

i=i dqi ∧ dpi.
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As we know,

Θ → A = OΘ → divA = 0,

where A = ∂q
∂t

+ ∂p
∂t
; OΘ = (−∂Θ

∂p
, ∂Θ
∂q

).

Upon the identification A = XΘ, we arrive at

∂q

∂t
= −

∂Θ

∂p
;

∂p

∂t
=
∂Θ

∂q
.

We take another observation: on the Hilbert manifold we have

∂Ψ

∂t
= Θ.

Then it follows that,
∂O2Ψ

∂t
= O2Θ.

At this point we have the following equations involving important geometrical structures

on the Hilbert manifold:
∂p

∂t
=
∂Θ

∂q
, q ∈ Ωq, t ∈ J ;

∂Ψ

∂t
= Θ;

∂O2Ψ

∂t
= O2Θ,

with which we can study the evolution of a system defined in the VCM.

6.5.5 Momentum tensor and structural entropy

Since the Ωq is a linear subspace of Rn, let us define Ψ as a quadratic function,

Ψ =
1

2
Λ(q,q),

where Λ is momentum tensor defined by a symmetric n× n matrix.

Note,

p = Λq, (6.8)

Furthermore,

O2Ψ = TrΛ,

where TrΛ is the trace of the n× n matrix Λ.

Observe that A = U +W, where U = ∂q
∂t

and W = ∂p
∂t
.
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Hence,

divA = divU + divW.

If we set σ1 = divq̇, then

p = gradΨ ⇒ σ1 = O2Ψ = TrΛ.

Note that the σ1 is invariant when Ψ is a homogeneous function of order 2.

Now we can obtain
dHq

dt
= signV σ1. (6.9)

Remark 6.5.2. This is the first fundamental equation of the monitoring theory, char-

acterizing the evolving process of a system in time.

6.5.6 The boundary layer

In order to solve for Hq we need to have corresponding boundary conditions, which can

be determined by analysing the kernel of the Hilbert manifold.

We now have the following equations in the neighbourhood of singular points (say cor-

responding to t0 = 0),

p̄−
1

2

∂

∂q
‖p̄‖2 = 0, p̄ =

p

t
; (6.10)

Ψ̄−
1

2
‖
∂Ψ̄

∂q
‖2 = 0, Ψ̄ =

Ψ

t
; t ∈ σJ. (6.11)

The density matrix has the following asymptotic representation

Λ '
Λ̄

t
+O(1),

where one of the values of Λ̄ is

Λ̄ = diag
{
Λ̄11, Λ̄22, . . . , Λ̄nn

}
,

in which Λ̄ii = 0
∨
1, i = 1, . . . , n.

Then

TrΛ '
n

t
, ∀t ∈ σJ, (6.12)

where n is the dimension of the monitoring system.
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6.5.7 Conservative environment

Consider Θ to be of the following forms:

Θ = −
1

2
‖p‖2 −

1

2
A(q,q),

which is common in the problem of fluid dynamics and in which A is an n×n symmetric

matrix.

It follows from the Hamilton’s canonical equations that

q̇ = p,

from which we obtain
∂p

∂t
= −

1

2

∂

∂q
‖p‖2 −Aq.

From this, we can obtain that the momentum density satisfies the Riccati equation by

using p = TrΛ,

Λ̇ = −Λ2 −A.

Also we know
dHq

dt
= signV TrΛ.

Without loss of generality we can take signV = 1, then arriving at two problems for a

biological system:

1.The event:

Λ̇ = −Λ2 −A, t ∈ (t0, T );

Hq = 0; t = t0.

2.The regular evolution:
dHq

dt
= TrΛ,

Hq = 0; t = t0.

The trajectory of the system on the VCM is accordingly determined by

q̇ = −
∂Θ

∂p
→ q̇ = p → q̇ = Λq. (6.13)

Remark 6.5.3. This is the second fundamental equation of the monitoring theory,

describing the movement of a system in the VCM and, moreover, through the solution

of q revealing us exactly where the system is.
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6.6 A Harmonic Model

Let us investigate a 2-dimensional harmonic motion from fluid dynamics:

Θ = −
1

2
(p21 + p22)−

1

2
A1q

2
1 −

1

2
A2q

2
2,

where Ai > 0, i = 1, 2, with q = 0 when t = 0 and q = 0 when t = 1.

Now introduce a complex coordinate system (x, y) such that z = x+ iy, in the manner

of which we can express the entropy as follows:

H̄q = H̄q(x, y) where Hq = H̄q|y=0,

H̄p = H̄p(x, y) where Hp = H̄p|y=0.

Naturally the complex velocity potential [1] is

f(z) = φ(x, y) + iψ̂(x, y),

where φ is the velocity potential and ψ̂ is the stream function.

It follows that the complex velocity is

W =
∂f

∂x
=
∂φ

∂x
+ i

∂ψ̂

∂x
= u+ iv.

Since the fluid flow in the VCM is ideal, therefore, u = ∂φ
∂x

is the horizontal velocity and

v = −∂ψ̂
∂x

is the vertical one.

Now we can identify the structural entropy with the stream function ψ̂, namely, H̄q = ψ̂,

which leads to v = −∂H̄q

∂x
.

Then consider a rigid body moving forward with a identical concentration along the real

axis x. According to Fick’s law of diffusion [16], by assuming that the diffusion region

is sufficiently small we can obtain

∂Hq

∂x
=
D

x
, (6.14)

where D is a diffusion coefficient and will be determined in the following.

Integrating the above equation (6.14) we can have

Hq = D ln |x|. (6.15)
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It follows from the equations (6.9) and (6.12) that

D = signVn.

By the recognition Θ = −H, the canonical Hamilton’s equations are in the following

way:

q̇1 = p1, q̇2 = p2.

Also recall the equation (6.8), from which we have

p1 = λ1q1, p2 = λ2q2.

The above dual representations yield the following expressions:

λ1 =
q̇1
q1
, (6.16)

λ2 =
q̇2
q2
. (6.17)

Also,

λ̇1 = −λ21 −A1,

λ̇2 = −λ22 −A2.

Therefore,

q̈1 +A1q1 = 0, (6.18)

q̈2 +A2q2 = 0. (6.19)

Solving the equation (6.17) subject to q(0) = 0 and q(1) = 0 we arrive at

q1 = a1 sin(πt),

where a1 is a constant.

Similarly,

q2 = a2 sin(πt),

where a2 is a constant.

Substituting the above q1 and q2 into the equations (6.16) and (6.17) correspondingly

we get

λ1 = λ2 = π cot(πt).
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Asymptotically,

λ1 = λ2 '
1

t
+O(t),

which implies that

TrΛ '
2

t
+O(t).

Notice that x in the equation (6.15) can be generalized to other coordinates, that is, we

can say

Hq = signVn ln |q|,

where q = q1 + q2 here.

We can take, without loss of generality, signV = −1, hence,

Hq = −2 ln |q1 + q2|

= −2 ln |a1 sin(πt) + a2 sin(πt)|.
(6.20)

Let us investigate its kernel, in which we can obtain the above initial conditions. From

the equation (6.20), immediately, we can see there are singularities at t ∈ Z. To illustrate

we take t = 0, 1, which can also explain the above boundary conditions.

Now choose a neighbourhood δJ0 = (0, ε) of the singular point 0, where ε is sufficiently

small.

In the δJ0 we can asymptotically take

Ψ̄ =
Ψ

t
'
∂Ψ

∂t
, p̄ =

p

t
'
∂p

∂t
.

It follows the equations (6.4) and (6.5) that

Ψ̄ = Θ, p̄ =
∂Θ

∂q
.

That is,

Ψ̄1 = −
1

2
p̄21 −

1

2
A1q

2
1; Ψ̄2 = −

1

2
p̄22 −

1

2
A2q

2
2, (6.21)

p̄1 = −A1q1; p̄2 = −A2q2. (6.22)

Note: We do not assume Θ = −H for the kernel and thus new equations (6.22) do not

contradict with the above dual presentations of q.

Substituting into (6.10) and (6.11) we can obtain

Ψ̄1 −
1

2
‖
∂Ψ̄1

∂q1
‖2 = 0; Ψ̄2 −

1

2
‖
∂Ψ̄2

∂q2
‖2 = 0,

p̄1 −
1

2

∂

∂q1
‖p̄1‖

2 = 0; p̄2 −
1

2

∂

∂q2
‖p̄2‖

2 = 0,
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from which by substituting the above equations (6.21) and (6.22) we arrive at

q1 = q2 = 0 ⇒ q = 0 when t ∈ δJ0.

Taking ε→ 0 we can conclude that q = 0 when t = 0.

Analogously, q = 0 when t = 1 via another kernel analysis in the vicinity of the singular

point 1.
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Chapter 7

Conclusions

In this thesis we have studied the mathematical models based on a generalized notion of

entropy introduced by Panchenkov and his principle of maximum of entropy. This setting

is quite appropriate for the mathematical treatment of monitoring type problems. We

have shown how differential equations can be derived from the aforementioned variational

principle and illustrated the procedure with an example. The method based on the

Panchenkov’s approach can be applied to a broader class of problems in which one can

describe mathematically both the evolution and events of a phenomenon in question.

At the same time it must be mentioned that the implementation of the method is a very

difficult undertaking due to to the highly non-trivial mathematical techniques based on

advanced asymptotic methods involved.
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