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ABSTRACT 

 

A semi-analytical methodology based on classical mathematical physics is used 

to simulate the shock response of a submerged system consisting of two co-axial 

cylindrical shells coupled with a fluid filling the inter-shell space.  Both the fluid and 

structural dynamics of the interaction are addressed.   

The stress-strain states and the hydrodynamic fields are evaluated through 

analysis of both stress in the shells and pressure fields in the inner hull coupling fluid and 

compared to previously investigated cases of both a submerged cylindrical shell with and 

without a rigid core. 

The main contribution of the thesis is in quantifying the changes in both the stress-

strain states and peak pressures evaluated in a parametric study.  This is accomplished 

by varying the inner and outer shell thickness, coupling fluids, outer shell material, and 

sizes of the inner-hull radius effectively changing the inner-hull fluid space.  
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CHAPTER 1: INTRODUCTION 
 

Cylindrical shells subjected to shock waves have been of interest and studied in 

great detail since the late 1940s.  The majority of research has involved investigating and 

understanding the physical phenomena that occur through all stages, from the immediate 

inception of the shock wave and its propagation through the fluid medium, to the shock 

waves primary interaction with the shell, to the resulting stress-strain states of the shell 

and their resultant acoustics.  The acoustic field can usually be represented by two distinct 

components: diffracted waves which scatter off the shell and the waves generated in the 

fluid as a result of the response of the shell.  A brief description of the phenomena being 

investigated should demonstrate the complexity that must be taken into account to 

develop realistic and useful mathematical models of the interactions in question. 

It should come as no surprise that cylindrical shells are used in a wide variety of 

engineering structures on a global scale.  Examples include nuclear power plants, 

offshore platforms, as well as seafaring and submersible vessels, all of which make use 

of fluid-interacting shell structures.  Due to the importance of these examples’ 

contributions to the protection, innovation in and economics of society, and the major 

threats that shock loads pose to the safety and longevity of structures in these fields, the 

research of shock wave interactions with shells has always been of considerable interest.  

Recent disasters such as the Exxon Valdez spill in 1989 off the coast of Alaska which 

polluted the Alaskan coast with approximately 257 000 barrels of oil (Holba, 2010) and 

the Deep Water Horizon disaster in the Gulf of Mexico which polluted the gulf and 

American shore lines with an estimated 5 million barrels of oil (Mayer et al., 2013) it can 

be seen that these types of disasters cause extensive damage to environments, 

possibilities of future oil exploration, production of refined petroleum and increased oil 

prices.  A better understanding of how impact on such shell structures (ie, tanker hulls 

and underwater pipelines) occurs would allow companies to choose appropriate 

construction guidelines, which would include protective measures to avoid future risks. 

Additional interests into these types of interactions involve noise reduction 

measures.  The impact of shock waves and vibrations, which generate radiated acoustic 

fields, can vary from audible to inaudible ranges.  In areas with heavy machinery different 
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types of materials can absorb or reflect these acoustic fields, and if acoustic waves focus 

at a local point the resulting noise levels can be as low as a mild distraction or have the 

capability of causing severe damage to one’s ears.   Understanding these situations can 

provide better personal protection and reduction in potential medical claims.  

Specific materials and structural shapes are also known to have their own acoustic 

signatures, so the resulting reflected wave can indicate the shape, type and distance of 

a specific object. Reducing these levels of acoustic radiation contribute to the degree of 

stealth for many different types of vehicles and are an important area of research.  

Amongst all cylindrical shell systems of special importance are double hull arrangements, 

where an interior shell is coaxially located within an exterior shell, which can provide a 

more realistic approximation of real engineering problems. Such a design is commonly 

seen in pipelines and certain submarine designs.  Despite the importance of the double 

hull design there is far less information available discussing how shock waves can 

compromise the integrity of these designs versus a single-shell model.  Many of the above 

areas of research are directly applicable to the investigation of submarines.  Reduction 

on noise can improve the stealth capabilities of submarines for military purposes and 

understanding how shock waves interact with the exterior and interior portions of the shell 

can contribute to improving structural reinforcement at vital areas that are more likely to 

be compromised.  Submarines are very expensive vessels that contribute a large portion 

of the defense and strength of many world militaries.  Understanding how explosions will 

impact these vessels could save billions of dollars in repairs, replacements and loss of 

life. 

Research into shell-shock interaction is a challenge, both from the theoretical point 

of view, as well as an experimental one.  At the most basic level there are two mediums 

which interact with and are affected by the shock wave, a fluid and a solid (the shell), both 

of which have significant differences in how they will interact with the shock wave.  These 

interactions are not stationary and also occur on a very short time scale in which the major 

effects of concern may occur within the first few milliseconds of the interaction.  To further 

complicate the problem, we could consider additional fluid inside the shell of identical or 

different properties, varying thicknesses for the shell itself, additional shells inside the 

primary shell which could each be of varying thickness and materials, varying the strength 
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and distance of the shock wave when it occurs and the geometry of the shock wave when 

first interacting with the shell structure.  During shock wave interaction among the 

phenomena of interest are the radiated external hydrodynamic field, the diffracted 

hydrodynamic field, the internally radiated hydrodynamic field and the stress strain states 

of the structure.  Other effects such as cavitation are possible results of interest as well.  

Because of this level of complexity, physical experiments become a time consuming and 

costly endeavor.   Thus, mathematical modeling is often chosen to investigate the effects 

of changing one or more set of variables. 

Mathematical modeling is the process of using discovered mathematics and 

computational technologies to simulate the interactions described above.  Benefits to 

mathematical modeling include but are not limited to a substantial decrease in cost, time, 

materials, and the required amount of personnel.  Results can be easily stored and 

analyzed in many different ways depending on what is being investigated.  It is possible 

to generate multiple images showing how the shock wave is interacting with the shell, 

maximum and minimum pressures and possible locations of cavitation at different time 

intervals.  This allows investigators to physically “see” the interaction as it occurs.  

However, just as there are drawbacks to physical experiments, there are also drawbacks 

to mathematical models.  A proper mathematical model will first prove its accuracy by 

simulating benchmark experiments to within an acceptable range of accuracy, then the 

model can be used to simulate more complicated cases that one is interested in.  It should 

be understood that neither approach is sufficient on its own but that they complement one 

another.  Experiments are required to demonstrate the accuracy of the simulations and 

simulations are required to reduce costs and time while contributing to the future 

development and understanding of fluid-shell interactions.   

The following literary review is a description of research that has been carried out.  

Initial research into shock wave-shell interaction was driven by the naval industries and 

focused primarily on the structural components of the interaction (Haywood, 1958).  

These studies used modal method of analysis to approximate the relationship between 

the fluid pressure of either a plane or circular shock wave and its interaction with an 

infinitely long uniform cylindrical shell to translate into the structural response of the shell 

itself (Peralta and Raynor, 1964).  Integral transformations (both Laplace and Fourier 
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transforms) were used to analyze the response of a cylindrical shell containing a different 

fluid from that of its exterior through radial displacements but was limited to an early 

dimensionless time frame and only viewed the displacements and the pressure on the 

shell surface at the front of the shell.  There was a conclusion that varying the inner fluid 

as well as the shell’s thickness considerably changed the peak velocity of the shell.  The 

large time behavior of a scattered field resulting from a shock wave interacting with either 

a soft and hard spherical obstacle was generated and considered using three different 

“pulse shocks” (Cohen and Donald, 1965).  The results suggest the resulting scattered 

field is determined more by the shape of the impacted object as opposed to the shape of 

the original shock wave.  In another study, separation and analysis was performed on 

three distinct individual wave phenomena that occur during shell-shock wave interaction, 

waves tangential to the surface and travelling along the exterior of the shell, refracted 

circumferential waves and internal waves tangential to the interior surface of the shell 

(Neubauer, 1968).   

A method to simultaneously solve both governing fluid and structural equations 

was later developed for the case of an infinite cylindrical shell submerged in fluid and 

subjected to a shock wave (Geers, 1969). However, due to the extended time 

requirements results were kept to shorter time frames.  Early papers demonstrate this 

new approach to simultaneously solve the governing equations and then compare results 

for displacement, velocity and strains to previously obtained computations of modal 

expansion to prove the validity of the simultaneous solution.  This work was then 

expanded to evaluate the transient acoustic field generated by the shock wave interaction 

with an infinite elastic circular cylindrical shell along with the wave front analysis to 

separate the scattering problem into two distinct parts and compare it to the previously 

published works on rigid cylinders and cylindrical cavities (Geers, 1970).  A three-

dimensional investigation into the effect of a spherical shock wave’s impact on infinite 

cylinders was then considered by; once again, solving the governing wave and shell 

equations by use of the Laplace-Fourier transforms (Huang and Wang, 1970).  This 

approach provided numerical results and demonstrated how a spherical wave may 

generate differing phenomena and results as those generated by a plane shock wave. 
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With all the effort put into modeling of these interactions, it was still important to 

continuously provide experimental results.  Tests were conducted to visualize the 

radiation of shear and compression waves as well as internal reflection of waves 

generated from the shock loading of submerged aluminum cylinders (Neubauer, 1970).  

These images were produced using Schlieren visualization and hydrophone 

measurements.  Images show the development of a prominent wave for air and water 

filled cylindrical shells, the dependency on the thin-shell characteristics and its effect on 

transmitted compressional waves and subsequent conversion to a shear wave.   

An investigation into the three-dimensional case of transient scattering of a 

spherical pressure pulse by an infinitely long rigid circular cylinder and the time histories 

of the pressure wave fields was investigated, with the same solution being possible for a 

long elastic cylinder as well (Huang, 1975).  The solution which uses two different 

approaches of separation of variables with Laplace transformations was used to address 

the two-dimensional case, are expanded to address the three dimensional case.  Three-

dimensional diffraction was addressed and the combination of all solutions was used to 

generate a full time-history.  Another possibility was to investigate more specific 

phenomena, such as the use of shadowgraphs and pressure measurements for the 

focusing of weak shock waves (Sturtevant and Kulkarny, 1976).  In this specific case, 

plane shock waves impacted concave surfaces to act as reflectors that reflect the waves 

back towards a focusing point.  Results resemble those suggested for focusing theory in 

fluids and discuss certain phenomena that occur at the focal point such as the 

development of complex wave fields which all resemble one another and the addition of 

the diffracted wave behind the initial one.  

Use of the separation of variables continued to be deemed suitable to 

simultaneously solve the wave and structural equations, and the inverse Laplace 

transforms were determined indirectly by an integral equation method or differential-

integral method (Huang, 1979).  The study focused on the structural effects of the 

interaction primarily on the inner hulls translational motions.  It was found that a thin outer 

shell relative to the inner shell has very little effect on the basic responses in motions of 

the inner shell when the double hull case is compared to that of the single hull scenario 

and that the outer shell served primarily to reduce “breathing” of the internal shell and 
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translational motion.  This exact case was quickly expanded into an identical situation 

where instead of dealing with cylindrical objects the author examined two spherical shells 

where one is located in the centre of the other.  The system is once again submerged into 

a fluid medium with a fluid layer separating both spheres, and the transient response of 

the system is analyzed similarly to the cylindrical shell case with separation of variables 

and the use of Volterra integrals to solve the Laplace transformations.  Identical 

conclusions are drawn with regard to a thin outer sphere relative to the thickness of the 

inner sphere, which will have very little influence on the basic structural impacts on the 

inner sphere resulting from the shock wave impact to the point that the outer sphere is 

viewed as transparent for early time frames, and later on the outer sphere reduces 

“breathing” and translational motion of the inner sphere. 

As previously mentioned, there are many components to the shock wave-fluid-

structure interactions.  Specifically looked into areas, such as the non-linear phenomena 

of the reflections and effects of shock waves through specific types of fluid medium were 

the studies where the shock wave was treated as a plane surface of increased pressure 

not a surface with a decreasing pressure head (Hornung, 1987). The study analyzes the 

relations of the upstream and downstream states from the pressure wave and looks into 

the standard case of shock waves reflecting from a plane surface with varying states of 

flow and Mach numbers.  This discussion continues into detail discussing what happens 

at physical corner boundaries and reflections from different surface types, and how one 

might make improper conclusions and to be aware of such possibilities for future analysis.  

In (Yang et al., 1987) computations for shock waves acting on a circular cylinder highlight 

some of the concerns expressed in the previous article, and a wide variety of Mach 

numbers are used once the two-dimensional inviscid compressible Euler equation of gas 

dynamics is solved through second order hybrid upwind method.  The results are 

compared to previously discussed Scheirin images and that the model has high accuracy.  

There is a note that certain models do not match experimental ones because of the 

limitations of Euler’s method.   In (Summerfeld and Muller, 1988) extension of reflection 

analysis was done to investigate the non-linear relation of a plane and spherical shock 

wave that is reflected from a concave/ellipsoidal surface to focus the reflecting wave and 

compare the computational results to experimental shadowgraphs. 
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In the early nineties research for more details about specific aspects of shell shock 

interaction were possible due to advancement in experimental tools such as near field 

acoustical holography, Laser Doppler velocimetry, and accelerometers (Williams, 1988).  

These tools enabled one to produce substantially more data, often enough to produce 

complete mapping of accelerations and displacements generating large amounts of data 

for various vibrational characteristics. 

More advanced research shifted from looking at the structural effects of the shell-

shock interactions to the analysis of the hydrodynamic fields generated as a result of the 

interaction (Hasegawa, 1993).  The frequency dependence of the pressure fields was 

investigated, and the study used a theoretical approach to analyze cylindrical and 

spherical shells subjected to a shock wave, with varying thicknesses of the shells where 

the hollow cavities were either filled with air or water.  The resultant fields for elastic hollow 

shells were viewed as “more interesting” than previous results for solid cylinders and 

spheres and the acoustic pressures were different for different interior fluids.  More 

research was done to analyze the transient response of elastic cylinders subjected to a 

plane wave with emphasis towards the improving model techniques to reduce 

computation times (Zhang, 1993).  Double Fourier transforms were used to study the 

radial excitation of shell displacements and analyze the energy transfer of a shock loaded 

cylindrical pipe (Brevary and Fuller, 1994).  This was accomplished with the assumption 

that the system behavior separates all the individual components of each waves 

characteristics, so that when combined, gives the solution for total displacement of the 

shell, and leads to better understanding of noise propagations through piping systems.  

Further research contributed experimental and computational results investigating shock 

waves and resultant hydrodynamic fields from parabolic reflectors (Izumi et al., 1994).  

There was then an investigation into the potential shielding effects of an outer shell on an 

inner shell for two concentric submerged cylindrical shells coupled by an entrained fluid 

(Yoshikawa et al., 1994).  To solve the double hull problem with an infinite shell scenario, 

the wave equation and boundary conditions at the fluid-shell interfaces were used.  

(Yoshikawa et al., 1994) also carried out experimental tests with generalized near-field 

acoustical holography (GENAH), which provided experimental vibration characteristics.  

It was determined that the shielding affect of the outer shell is insufficient, the double hull 
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arrangements radiates at low level frequencies as well as high frequency due to the 

vibrations of one shell interacting with the other across the fluid barrier and the amplitudes 

of forced vibration in a single shell arrangements can be split between both shells of a 

double hull arrangement effectively reducing the total radiated sound.  However, the 

double hull arrangement was found to generate a greater amplitude than the single shell 

case.  Other works have looked at varying the radius of the shell structure with respect to 

time with generalized approximations (Pavlov, 1995).  The energy exchange between the 

exterior fluid, the elastic cylindrical shell and the internal fluid was also investigated by 

using a double Fourier integration (Brevart and Fuller, 1996).   

A preliminary set of underwater explosion benchmarks that were available and 

declassified at the time were compiled in hopes of initiating UNDEX community 

discussions on validation techniques for experimental and analytical studies (Mair, 1996). 

Summaries of the usefulness of one, two, and three-dimensional cases were provided as 

well as the drawbacks present in the obtained information.  Emphasis is placed on the 

need for greater replication of tests because of the greater importance experiments can 

have for determining useful knowledge once the validity of the experiments is ensured.  

Sufficient summaries of multiple modeling methods and hydrocodes are provided as well 

as examples of validated codes that have generated faulty tests for their own specific 

reason.  The importance to test all codes with as many validation techniques as possible 

is stressed in order to reduce the possibilities of flaws in analytical and experimental 

methods.  Reflections were again analyzed for circular reflectors impacted by spherical 

shock waves (Sun and Takayama, 1996).  Non-stationary loaded cylindrical shells were 

addressed using the Navier-Stokes equation and compared to similar results obtained 

from Eulers method with the use of adaptive grid methods for various Mach numbers 

(Ofengeim and Drikakis, 1997).  This was later used to generate contour plots and 

pressure histories to analyze different blast wave durations and their affect when 

impacted on a submerged cylindrical shell (Schedin et al, 1997).  Varying results were 

obtained from comparing viscous and inviscid fluids.  These comparisons revealed that 

the length of the blast duration significantly affects the flow over the cylinder.  Double-

pulsed interferometry has been used to investigate the reflection and focusing of shock 

waves generated inside elliptically curved chambers with varying heights and 
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quantitatively analyzed to better understand the convergence of reflected pressure waves 

(Drikakis et al, 1997).  Investigations were later expanded to address a two-layered infinite 

cylindrical shell (Lam et al, 1997).  Structural dynamics were determined by finite element 

method for the fluid-structure interactions, and varying thicknesses of the shell were 

modeled.  The effect of varying shell thicknesses on the structural dynamics was then 

compared to previously established models.  Continued research into non-linear free and 

forced vibrations with Donnell’s shallow-shell theory and Galerkin method allowed 

investigation into moderately strong vibrations (Amabili et al, 1998).  

  The effect of shock waves on the center section of a two-dimensional surface 

ship’s hull, assumed a single shell, was analyzed, as well as investigations into the 

formation and effects of cavitation at the hull surface through use of the UAS-NASTRAN-

CFA method (Shin and Santiago, 1998).  This method makes use of the Doubly-

Asymptotic Approach to model fluid-shell interactions (NASTRAN) and the CFA code to 

model the cavitation based on displacement potential.  Additional investigations into 

floating single shell vessels at a free surface, with shock waves generated directly 

beneath the structure in an infinite depth basin are investigated with focus on bulk and 

hull cavitation (Van et al, 1998). Non-linear finite-element method allowing visualization 

and analysis in two dimensions with the possibility of extensions into three dimensions 

was used.   

Experimental analysis and shadowgraphs have been used to analyze and observe 

pseudo-Rayleigh waves, which have been documented on flat surface plates, subjected 

to shock waves but were not observed during the interaction with cylindrical shells due to 

their rapid decay (Ahyi et al., 1998).  Other wave phenomena include shell and fluid borne 

circumferential waves and the repulsion of the dispersion curves on a submerged 

cylindrical shell submerged in and filled by identical and different fluids (Bao et al, 1999).  

Experimental techniques have generated accurate high-speed visualizations of the 

acoustic scattering of impulsive geometrical waves by a glass sphere in water at high 

frequencies and correlated with experimental pressure readings taken (Latard et al., 

1999).  The curvature of the impact wave, from plane to spherical, as well as differing 

decay rates, are investigated with the Fourier solution for the response of the shell 

structure (Spraque and Geers, 1999).  Smoothing techniques for finite element methods 
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were developed to improve calculations for quadrilateral grids in the analysis of shock 

reflections and channel flows (Sun, 1999). 

Additional summaries were generated for review of hydrocodes for simulations of 

underwater shock responses to explosions.  These give a description of predominantly 

used simulation methods and what needs to be included and considered for proper 

simulations (Mair, 1999, a).  This was also followed by an improved review of benchmarks 

designed to test models for the response of structures to underwater explosion previously 

seen (Mair, 1999, b). 

Shock wave interaction was experimentally tested on cooling tubes of inertial 

confinement fusion reactors by use of accelerometers and shadowgraphy for imaging of 

the flow and shock diffraction patterns (Oakley et al., 1999).  To establish a good 

benchmark model, small explosives were detonated inside an aluminum cylindrical shell 

of specific dimensions with distilled water inside; the explosions were small enough to 

prevent rupture of the cylinder (Sandusky et al., 1999).  Velocities, displacements and 

strains were directly measured in the shell and then the same can was modeled using 

codes to see how accurately the computational models could reproduce the physical 

experiment to verify the accuracy of the computer models.  Generalization of non-

reflecting boundaries for convex boundary conditions were shown to significantly improve 

the computational efficiency of finite element method for acoustic scattering problems 

without a significant loss in accuracy, being more suitable for submersible vehicles that 

are not bounded by exact circular ends (Diellouli et al., 2000).  Analysis of close-in 

explosions showed the effect of the initial shock wave generated from the explosions 

interacting with the shell as well as the contributed effect of the bubble formation and its 

collapse. This caused cavitation, which created a second loading on the surface of the 

shell.  It is suggested that deformation of the shell lowers the flow field pressure, facilitates 

cavitation and reduces initial shock loading on the shell (Andrew et al., 2000). 

Case studies of double-hull surface vessels making contact with varying surfaces, 

sharp rocks, running aground of flat surface beds ect, were considered and computational 

models were used to determine how these varying collision scenarios would impact the 

double hulls such as membrane stretching, shell ruptures, inception and spreading of 

cracks, and damage to supporting sections (Wang et al., 2000).  These simulations were 
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successfully compared to test results and could be used for statistical analysis of 

structural performance.  The wave propagation approach for coupled structural-acoustic 

analysis of a finite cylindrical shell is compared to a numerical boundary element 

method/finite element method and it is shown that the second method of analysis 

produces similarly accurate results with the benefit of being less computationally 

intensive.  Additional information states that the fluid effect of the fluid on the shell is 

substantial and if one does not take this into consideration, large errors in the simulations 

may result (Zhang et al., 2001).  The transient response of a submerged spherical shell 

impacted by a strong plane shock wave is analyzed with the coupled finite element 

method, and a doubly asymptotic approximation is used to produce time-histories of 

surface pressures, stresses on the shell as well as radial velocities; results show that a 

strong shock wave generates significantly different radial velocities (Liang, 2001).  

Benchmarks were established for modeling codes by measuring pressures, deformations 

and strain states of aluminum cylindrical shells subjected to an internal explosion 

(Chambers et al., 2001).  Stabilization of BEM/FEM coupling methods was accomplished 

enabling simulations of a variety of situations for loading of multi-domain fluid-structure 

interactions such as double shell arrangements (Lie and Yu, 2002).  A different factor 

investigated was how a plane shock wave would interact with a cylinder rotating on its 

axis (Sun et al., 2003).  It was found that the side of the cylinder rotating “into” the shock 

wave would retard the transition of regular reflection to a Mach reflection but the side 

rotating with the shock wave would promote the transition.   

The focusing of strong shock waves was investigated numerically for two- and 

three-dimensional cases in which Geometrical Shock Dynamics (GSD) method was used 

to simulate the reflection of a spherical shock wave generated at one focal point 

rebounding off the elliptical cavities at either end with different tests for varying 

eccentricities (Apazidis, 2003).  Examination of the difference between non-

homogeneous flow surrounding the shock wave and homogenous flow were considered.  

Large-scale experiments have been carried out off the coast of Korea in which underwater 

explosions were originated around different types of ships (Park et al., 2003).  Tests were 

then able to estimate the safety zone of these ships in shock environments through 
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explosive testing that registered on the instrumentation aboard the ships but that would 

not create lasting damage. 

Other benchmarks have been developed to evaluate the acoustic fields generated 

during shock-shell interactions. Semi-analytical solutions have been used to observe 

focusing of the internal radiated wave inside an elastic cylindrical shell, elastic wave 

propagation in the shell, its radiation into the fluid and the affect the inner acoustical field 

has on the stress-strain state of the shell (Iakovlev, 2006).  The effect of varying the 

parameters of the shell such as the shell thickness, and the bending stiffness of the shell 

would have on the radiated acoustic fields was also studied.  Possibility of cavitation at 

locations of significant negative pressures and how these may contribute to the internal 

acoustic field was discussed in (Iakovlev, 2007). Study (Iakovlev, 2009) addressed how 

fluids inside the shell with densities and sound speeds greater or less than that of the 

external fluid would generate acoustic fields and have their own peak pressures and 

strains at different locations.  Investigation of the acoustic fields generated by the 

presence of a rigid co-axial core inside an elastic cylindrical shell separated by, and 

submerged into, an identical fluid and impacted by an underwater explosion is presented 

in (Iakovlev et al., 2010).  Results show that cores with smaller radii interact in a similar 

manner to a cylindrical shell without a core, but as the core radius becomes larger it 

begins to have a significant impact on the acoustic fields generating higher frequency 

rebounds between the shell and the core, thus creating more complex acoustic fields. 

 The problem of acoustic scattering of rebounded pulses being detected by 

instruments attached to submerged vessels is addressed and methods are developed to 

use the fact that interference patterns often exhibit strong spatial, angular, and spectral 

dependence for particular geometries and therefore provide valuable information 

regarding the location of the object (Sorokin and Terentiev, 2006).  Explosive effects of 

shock waves generated at varying close ranges were investigated to see how the shock 

wave, bubble pulse, bubble collapse and water jetting would still contribute to the total 

interaction at the shell-fluid barrier (Brett and Yiannakopolous, 2008).  It was found 

through high-speed photography as well as sensors measuring the pressures, 

displacements and accelerations of the shell that the secondary bubble pulse caused 

minimum stress on shell equal to approximately half of the initial shock wave.  
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Additionally, the bubble collapse caused the greatest peak stress, about twice that of the 

shock wave, which contributed the most to plastic deformation of the shell structure.  

Additional experiments were carried out to observe the effects of shock loading on various 

cylindrical shells that were unstiffened and internally/externally stiffened with the 

detonation occurring at various standoff distances.  The obtained experimental results 

were then reproduced using FEM model approaches to compare accuracy for modeling 

of the linear and non-linear states of interaction (Hung et al., 2009).  Submarine analytical 

modeling of a finite cylinder capped at the ends with two bulkheads excited by external 

loading was simulated to observe the influence of the various complicating effects such 

as the bulkheads, ring-stiffeners and fluid loading on the structural and acoustic 

responses of the finite cylindrical shell. Results from the analytical models were compared 

to the FEM/BEM models (Caresta and Kessissoglou, 2009).  A time-domain Kirchhoff 

model was used to simulate the reflecting properties of polygonal surfaces that are 

submerged in water (Lee and Seong, 2009).  A new shock factor was considered as a 

means to better understand and describe the characteristics of the incident shock wave.  

It was believed that a better shock factor could describe the effects that a spherical blast 

wave could have on the cylinder that was thought to be missed in other shock factors 

(Yao et al., 2009). 

 As a general conclusion of this literature review, various types of computational 

and experimental methods have been employed in the study of both complex and simple 

geometries.  The majority of studies appear to employ numerical modeling for analysis of 

shell-shock interactions, and it appears that the majority of work for specified cases uses 

finite element method to obtain detailed results, as is the case for many investigations 

into shock wave effects on ship hulls.  However, additional methods such as converged 

analytical or semi-analytical solutions can be used as comparison for other numerical 

codes; these analytical solutions serve as benchmarks for future codes to ensure their 

reliabilities (Mair, 1999a).  All of these methods have been used to demonstrate the wave 

propagation, acoustic fields or stress-strain states of cylindrical shells subjected to a 

shock wave. 

 This thesis will demonstrate the capabilities of mathematical modeling to simulate 

the interaction of an external shock wave impacting a co-axially arranged double hulled 
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cylindrical shell structure coupled by an inter-shell fluid.  The main objective is to evaluate 

the maximum stress-strain values in both shells as well as the maximum and minimum 

pressures experienced on both the internal and external shells.  Where and when these 

maximum and minimum values occur is also of concern so that one can better understand 

the complexity of the interactions that occur.  Once the solution is obtained, a parametric 

study is then carried out to look at how the variables of concern vary in location, timing 

and magnitude.  The system’s parameters of concern are the shell materials, thicknesses 

of both the inner and outer shells and the properties of the fluids.  Conclusions will then 

be drawn aiming at better understanding how the two shells will behave after impact of 

the shock wave and how the double-hull scenario structure differs from the single shell 

one, with the ultimate goal of making better design decisions to improve safety, reduce 

cost and optimize performance of submerged double–hull structures in the context of their 

shock response.   
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CHAPTER 2: MATHEMATICAL FORMULATION 
 

 The following mathematical formulation is referencing the paper written 

simultaneously with the production of this thesis (Iakovlev et al., 2015). 

 Considering two circular cylindrical shells of radii 𝑎 and r0 with thicknesses h1 and 

h2, respectively, and assuming that h1/r0 << 1 and h2/r0 << 1, we can then use the linear 

theory of shells if we further assume that the deflections of the shell surface are small 

compared to its thickness.  The transverse and normal displacements of the internal 

and external shells are v1, v2 and w1, w2 respectively, with positive normal 

displacements described as inward.  Characteristics of the internal and external shells 

are densities ρ1, ρ2, sound speeds c1, c2, and Poisson ratios ν1, ν2, respectively.  The 

interior shell is evacuated and coaxially arranged inside the exterior shell and the two 

shells are coupled by an internal fluid with a density ρi, and sound speed ci.  This entire 

system is then submerged into external fluid with density ρe, and sound speed ce.  Both 

the internal and external fluids are linearly compressible, irrotational and inviscid.  The 

cylindrical system is subjected to an external spherical shock wave at a standoff 

distance R.  Polar coordinates (𝜚, 𝜃) based on the axis of the double-shelled co-axial 

system are employed.  The internal space of the internal shell will be considered 

evacuated.  Figure 2.1 shows the geometry of the problem. 

 

Figure 2.1.  Geometry of problem 
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 The fluids are governed by the wave equations, 
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where 𝜙𝑖 and 𝜙𝑒 are the respective internal and external fluid potential velocities and τ 

represents time. 

 Based on the Love-Kirchhoff hypothesis, the shell equations are, for the inner 
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and for the outer hull, 
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where, 𝑘1
2 = ℎ1

2 (12𝑎2⁄ ), 𝑘2
2 = ℎ2
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2⁄ ), 𝜒1 = ℎ1𝜌1𝑐1

2, 𝜒2 = ℎ2𝜌2𝑐2
2, and 𝑝 is the total 

acoustical pressure evaluated at each respective shells’ surface. The total pressure 𝑝,  
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for the external and internal shells, respectively, where 𝑝𝑜 is the incident pressure, 𝑝𝑑 is 

the diffracted pressure, 𝑝𝑟
𝑒 is the external radiated pressure, and 𝑝𝑟

𝑖  is the internal 

radiated pressure. 

 The boundary conditions of the problem are the no-flow and dynamic conditions 

at the surface of each shell, 
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and the decay conditions at the infinity, 

                               𝜙𝑑 → 0  and  𝜙𝑟
𝑒 → 0  when  𝜚 → ∞ (11) 

and the periodicity conditions θ-wise.  All initial conditions are assumed to be zero. 

 The external shell is subjected to an external shockwave with a pressure 𝑝0 and 

potential 𝜙0, which are given by, 
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where, 

𝑅∗ =  √𝑅0
2 + 𝜚2 − 2𝑅0𝜚𝑐𝑜𝑠𝜃 

(14) 

                                                      

𝑝𝛼 is the pressure in front of the wave when it first impinges on the shell, 𝜆 is the rate of 

exponential decay, 𝑆𝑅 = 𝑅0 − 𝑟0 is the standoff distance of the shockwave and H is the 

Heaviside unit step function.  The transverse stresses in the shells are given by 
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We consider a dimensionless form of the problem with the normalization of all 

variables to 𝑟0, 𝜌𝑒 , and 𝑐𝑒.  Dimensionless variables are distinguished from their 

dimensional forms by a hat symbol,    ̂ , above the variable with the exception of the time 

𝑡 = 𝜏𝑐𝑒𝑟0
−1, the radial coordinate 𝑟 = 𝜚𝑟0

−1, and the normal and transverse displacements 

𝑤 = 𝑤∗𝑟0
−1 and 𝑣 = 𝑣∗𝑟0

−1, respectively. 
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CHAPTER 3: SOLUTION METHODOLOGY 
 

 Throughout the next two sections, the methodology outlined in Iakovlev et al., 

2015 will be followed. 

 

3.1 FLUID DYNAMICS 
 

Pressure components can be obtained by applying the Laplace transform to the 

dimensionless wave equations (1) and (2), 
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where Φ̂𝑒 and Φ̂𝑖  are the dimensionless Laplace transforms of �̂�𝑒 and �̂�𝑖, respectively, 

and s is the transform variable.  We then separate the spatial variables and provide the 

general solutions of (17) and (18) with the forms 

Φ̂𝑛
𝑒 = 𝐹𝑛

𝑒𝐾𝑛(𝑟𝑠)cos (𝑛𝜃),   𝑛 = 0, 1,2 …. (19) 

and       

Φ̂𝑛
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𝑖𝐾𝑛(𝑟𝛼𝑠) + 𝐺𝑛
𝑖 𝐼𝑛(𝑟𝛼𝑠)} cos (𝑛𝜃),   𝑛 = 0,1,2 … (20) 

respectively, where 𝛼 = 𝑐𝑒 𝑐𝑖⁄ , 𝐼𝑛 is the modified Bessel function of the first kind of order 

𝑛, 𝐾𝑛 is the modified Bessel function of the second kind of order 𝑛, and 𝐹𝑛
𝑒, 𝐹𝑛

𝑖 and 𝐺𝑛
𝑖  

are arbitrary functions of 𝑠. 

 Considering the matching series expansions for the normal incident velocity on 

the surface of the outer shell and the normal displacements of the middle surfaces of 

the shells, 

𝜕�̂�0

𝜕𝑟
|𝑟=1 = ∑ 𝑏𝑛(𝑡) cos 𝑛𝜃

∞

𝑛=0

 
(21) 
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𝑤1 = ∑ 𝑤𝑛
1(𝑡) cos 𝑛𝜃

∞

𝑛=0

 
(22) 

and 

𝑤2 =  ∑ 𝑤𝑛
2(𝑡) cos 𝑛𝜃

∞

𝑛=0

 
(23) 

after application of all boundary conditions the Laplace transforms of the harmonics of 

the fluid velocity potential components are found to be 

Φ̂𝑛
𝑑(𝑟, 𝑠) = 𝐵𝑛(𝑠)Ξ𝑛

𝑒 (𝑟, 𝑠) cos 𝑛𝜃, (24) 

 

Φ̂𝑛
𝑟,𝑒(𝑟, 𝑠) = 𝑠𝑊𝑛(𝑠)Ξ𝑛

𝑒 (𝑟, 𝑠) cos 𝑛𝜃, (25) 

and 

Φ̂𝑛
𝑟,𝑖(𝑟, 𝑠) = {𝑠𝑊𝑛

1(𝑠)Ξ𝑛
1(𝑟, 𝛼𝑠) − 𝑠𝑊𝑛

2(𝑠)Ξ𝑛
2(𝑟, 𝛼𝑠)} cos 𝑛𝜃, 

 

(26) 

where 𝐵𝑛, 𝑊𝑛
1, and 𝑊𝑛

2 are the Laplace transforms of 𝑏𝑛,  𝑤𝑛
1 and 𝑤𝑛

2, respectively, and 

Ξ𝑛
𝑒 , Ξ𝑛

1 , and Ξ𝑛
1  are the Laplace transforms of the response functions of this problem, 

𝜉𝑛
𝑒 , 𝜉𝑛

1, and 𝜉𝑛
2, respectively given by, 

Ξ𝑛
𝑒 (𝑟, 𝑠) = −

𝐾𝑛(𝑟𝑠)

𝑠𝐾𝑛
′ (𝑠)

, (27) 

 

Ξ𝑛
1 (𝑟, 𝑠) =  

𝐼𝑛
′ (𝑠)𝐾𝑛(𝑟𝑠)−𝐾𝑛

′ (𝑠)𝐼𝑛(𝑟𝑠)

𝑠𝐼𝑛
′ ((𝑎𝑠)𝐾𝑛

′ (𝛼𝑠)−𝐼𝑛
′ (𝑠)𝐾𝑛

′ (𝑎𝑠))
, (28) 

and 

Ξ𝑛
2(𝑟, 𝑠) =  

𝐼𝑛
′ (𝑎𝑠)𝐾𝑛(𝑟𝑠)−𝐾𝑛

′ (𝑎𝑠)𝐼𝑛(𝑟𝑠)

𝑠(𝐼𝑛
′ (𝑎𝑠)𝐾𝑛

′ (𝑠)−𝐼𝑛
′ (𝑠)𝐾𝑛

′ (𝑎𝑠))
. (29) 

 

The response functions represent the response of the fluid to the motion of the 

shells and/or scattering by the outer shell (Iakovlev, 2006, 2008b; Iakovlev et al., 2010). 

They do not depend on the parameters of the fluid or those of the shell, and are 

determined exclusively by the geometry of the system. As a result, approaches based on 

the use of the response functions are very attractive for practical implementation due to 

their high computational efficiency. The response functions 𝜉𝑛
𝑒 and 𝜉𝑛

2 have been 

extensively addressed in earlier work (the former in Iakovlev, 2008b, and the latter in 
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Iakovlev et al., 2010, where a shell containing a rigid core was considered, a scenario 

that is geometrically identical to the present case), and we do not repeat the respective 

derivations here. For discussion of the function 𝜉𝑛
1 see (Iakovlev et al., 2015). 

 

 

Figure 3.1. Response function 𝜉1
1(𝑎, 𝑡) 

 

 

 

Figure 3.2. Response function 𝜉1
2(𝑎, 𝑡) 
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Figure 3.3. Response function 𝜉1
1(1, 𝑡) 

 

 

Figure 3.4. Response function 𝜉1
2(1, 𝑡) 

 

Taking into account the assumptions of the model we use here, for the 

dimensionless pressure �̂� and the fluid velocity potential �̂� we have 

�̂� = −
𝜕�̂�

𝜕𝑡
, 

(30) 

This allows us, after applying certain theorems pertaining to the Laplace transform to 
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(24), (25), and (26), to obtain the pressure components as   

�̂�𝑑 = ∑ �̂�𝑛
𝑑 cos 𝑛𝜃

∞

𝑛=0

, 
(31) 

 

�̂�𝑟
𝑒 = ∑ �̂�𝑛

𝑟,𝑒 cos 𝑛𝜃

∞

𝑛=0

, 
(32) 

 

�̂�𝑟
𝑖 = ∑ �̂�𝑛

𝑟,𝑖 cos 𝑛𝜃

∞

𝑛=0

, 
(33) 

where, 

�̂�𝑛
𝑑 = −

1

√𝑟
𝑏𝑛(𝑡) − ∫ 𝑏𝑛(𝜂)

𝑡

0

𝑑𝜉𝑛
𝑒

𝑑𝜂
(𝑟, 𝑡 − 𝜂)𝑑𝜂, 

(34) 

 

�̂�𝑛
𝑟,𝑒 = − ∫

𝑑2𝑤𝑛
2(𝜂)

𝑑𝜂2

𝑡

0

𝜉𝑛
𝑒(𝑟, 𝑡 − 𝜂)𝑑𝜂, 

(35) 

 

�̂�𝑛
𝑟,𝑖 = −

𝜌𝑖𝑐𝑖

𝜌𝑒𝑐𝑒
∫

𝑑2𝑤𝑛
1(𝜂)

𝑑𝜂2

𝑡

0

𝜉𝑛
1 (𝑟,

𝑐𝑖

𝑐𝑒

(t − 𝜂)) 𝑑𝜂 +  

𝜌𝑖𝑐𝑖

𝜌𝑒𝑐𝑒
∫

𝑑2𝑤𝑛
2(𝜂)

𝑑𝜂2

𝑡

0

𝜉𝑛
2 (𝑟,

𝑐𝑖

𝑐𝑒

(𝑡 − 𝜂)) 𝑑𝜂. 

 

 

(36) 

 

 3.2 STRUCTURAL DYNAMICS 
 

We consider the matching series expansion for the displacements, 

𝜐1 =  ∑ 𝜐𝑛
1 sin 𝑛𝜃

∞

𝑛=0

, 
 

(37) 

 

𝑤1 =  ∑ 𝑤𝑛
1 cos 𝑛𝜃

∞

𝑛=0

, 
 

(38) 
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𝜐2 =  ∑ 𝜐𝑛
2 sin 𝑛𝜃

∞

𝑛=0

, 
 

   (39) 

and 

𝑤2 =  ∑ 𝑤𝑛
2 cos 𝑛𝜃

∞

𝑛=0

, 
 

   (40) 

and then rewrite the dimensionless shell equations in terms of the harmonics 𝜐𝑛
1 sin 𝑛𝜃, 

𝜐𝑛
2 sin 𝑛𝜃 , 𝑤𝑛

1 cos 𝑛𝜃 and 𝑤𝑛
2 cos 𝑛𝜃.  For each 𝑛, we obtain an integro-differential system 

for 𝜐𝑛
1, 𝜐𝑛

2, 𝑤𝑛
1 𝑎𝑛𝑑 𝑤𝑛

2, 

𝛾1
2

𝑑2𝜈𝑛
1

𝑑𝑡2
+ 𝑐1

11𝜈𝑛
1 + 𝑐1

12𝑤𝑛
1 = 0, 

(41) 

 

𝛾1
2 𝑑2𝑤𝑛

1

𝑑𝑡2 + 𝑐1
21𝜈𝑛

1 + 𝑐1
22𝑤𝑛

1 =  𝜒1 {−
𝜌𝑖𝑐𝑖

𝜌𝑒𝑐𝑒
∫

𝑑2𝑤𝑛
1(𝜂)

𝑑𝜂2 𝜉𝑛
1 (𝑎,

𝑐𝑖

𝑐𝑒
(𝑡 − 𝜂)) 𝑑𝜂

𝑡

0
+

𝜌𝑖𝑐𝑖

𝜌𝑒𝑐𝑒
∫

𝑑2𝑤𝑛
2(𝜂)

𝑑𝜂2 𝜉𝑛
2 (𝑎,

𝑐𝑖

𝑐𝑒
(𝑡 − 𝜂)) 𝑑𝜂 

𝑡

0
},  

 

(42) 

 

𝛾2
2

𝑑2𝜈𝑛
2

𝑑𝑡2
+ 𝑐2

11𝜈𝑛
2 + 𝑐2

12𝑤𝑛
2 = 0, 

(43) 

and 

𝛾2
2 𝑑2𝑤𝑛

2

𝑑𝑡2 + 𝑐2
21𝜈𝑛

2 + 𝑐2
22𝑤𝑛

2 = 𝜒2 {𝑝𝑛
0 + 𝑝𝑛

𝑑 − ∫
𝑑2𝑤𝑛

2(𝜂)

𝑑𝜂2 𝜉𝑛
𝑒(1, (𝑡 − 𝜂))𝑑𝜂

𝑡

0
+

𝜌𝑖𝑐𝑖

𝜌𝑒𝑐𝑒
∫

𝑑2𝑤𝑛
1(𝜂)

𝑑𝜂2 𝜉𝑛
1 (1,

𝑐𝑖

𝑐𝑒
(𝑡 − 𝜂)) 𝑑𝜂 

𝑡

0
−

𝜌𝑖𝑐𝑖

𝜌𝑒𝑐𝑒
∫

𝑑2𝑤𝑛
2(𝜂)

𝑑𝜂2 𝜉𝑛
2 (1,

𝑐𝑖

𝑐𝑒
(𝑡 − 𝜂)) 𝑑𝜂 

𝑡

0
},  

 

 

(44) 

 

where, 

𝑐1
11 = 𝑛2 + 𝑘1

2𝑛2,           𝑐1
12 = 𝑐1

21 = −𝑛 − 𝑘1
2𝑛3, 𝑐1

22 = 1 + 𝑘1
2𝑛4 (45) 

 

𝑐2
11 = 𝑛2 + 𝑘2

2𝑛2,   𝑐2
12 = 𝑐2

21 = −𝑛 − 𝑘2
2𝑛3,      𝑐2

22 = 1 + 𝑘1
2𝑛4, (46) 

 

and 
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𝛾1 = 𝑎
𝑐𝑒

𝑐𝑠
1

, 𝛾2 =
𝑐𝑒

𝑐𝑠
2

, (47) 

 

 

𝜒1 = 𝑎2 (
𝑟0𝜌𝑒(𝑐𝑒)2

ℎ1
2𝜌1(𝑐1)2

) , 𝜒2 = (
𝑟0𝜌𝑒(𝑐𝑒)2

ℎ2
2𝜌2(𝑐2)2

), 
(48) 

 

𝑘1
2 =

ℎ1
2

12𝑎2
,   𝑘1

2 =
ℎ2

2

12𝑟0
2, 

(49) 

 

complemented by the zero-value initial conditions for, 𝑣𝑛
1, 𝑤𝑛

1, 𝑣𝑛
2, 𝑤𝑛

2 and their first 

derivatives (for brevity, the index ‘𝑛’ is omitted in the notations for the c-coefficients.) 

The systems were approached numerically using finite differences, and a simple 

explicit finite-difference scheme was used where the integrals were approximated using 

the trapezoidal rule, and the derivatives were approximated using central differences. The 

systems in question are ordinary, thus the computational costs were not an issue, and 

the step size could be decreased without any difficulty until convergence was reached for 

all cases of interest. The resulting finite-difference schemes were obtained as 

𝜈1
𝑖+1 = 2𝜈1

𝑖 − 𝜈1
𝑖−1 +

ℎ2

𝛾1
2 (−𝑐1

11𝜈1
𝑖 − 𝑐1

12𝑤1
𝑖) 

  (50) 

 

𝑤1
𝑖+1 = 2𝑤1

𝑖 − 𝑤1
𝑖−1 −

ℎ2

𝛾1
2 (𝜒1{𝛾0ℎ𝐽1𝑎

𝑖 − 𝛾0ℎ𝐽2𝑎
𝑖 } + 𝑐1

21𝜈1
𝑖 − 𝑐1

22𝑤1
𝑖) 

  (51) 

 

and 

𝜈2
𝑖+1 = 2𝜈2

𝑖 − 𝜈2
𝑖−1 +

ℎ2

𝛾2
2 (−𝑐2

11𝜈2
𝑖 − 𝑐2

12𝑤2
𝑖 ) 

 (52) 

 

𝑤2
𝑖+1 = 2𝑤2

𝑖 − 𝑤2
𝑖−1 − Ω(𝜒2{−𝑝0

𝑖 + ℎ𝐽𝑒
𝑖 − 𝛾0ℎ𝐽11

𝑖 + 𝛾0ℎ𝐽21
𝑖 } + 𝑐2

21𝜈2
𝑖 + 𝑐2

22𝑤2
𝑖 ), 

 

(53) 

 

where ℎ is the time step, 
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𝛾0 =
𝜌𝑖𝑐𝑖

𝜌𝑒𝜌𝑒
, Ω =

2ℎ2

(2𝛾2
2 + ℎ𝜒2)

,    
(54) 

 

𝐽1𝑎
𝑖 = ∑

𝑤1
𝑗+1

− 2𝑤1
𝑗

+ 𝑤1
𝑗−1

ℎ2

𝑖−1

𝑗=1

𝜉1𝑎
𝑖−𝑗

, 
(55) 

 

𝐽2𝑎
𝑖 = ∑

𝑤2
𝑗+1

− 2𝑤2
𝑗

+ 𝑤2
𝑗−1

ℎ2

𝑖−1

𝑗=1

𝜉2𝑎
𝑖−𝑗

, 
(56) 

 

𝐽11
𝑖 = ∑

𝑤1
𝑗+1

− 2𝑤1
𝑗

+ 𝑤1
𝑗−1

ℎ2

𝑖−1

𝑗=1

𝜉11
𝑖−𝑗

, 
(57) 

 

𝐽21
𝑖 = ∑

𝑤2
𝑗+1

− 2𝑤2
𝑗

+ 𝑤2
𝑗−1

ℎ2

𝑖−1

𝑗=1

𝜉21
𝑖−𝑗

, 
(58) 

 

𝐽𝑒
𝑖 = ∑

𝑤2
𝑗+1

− 2𝑤2
𝑗

+ 𝑤2
𝑗−1

ℎ2

𝑖−1

𝑗=1

𝜉𝑒
𝑖−𝑗

, 
(59) 

and 𝜈1
𝑖 , 𝑤1

𝑖 , 𝜈2
𝑖 , 𝑤2

𝑖 , 𝑝𝑛
𝑖  𝜉1𝑎

𝑖 , 𝜉2𝑎
𝑖 , 𝜉11

𝑖 , 𝜉21
𝑖  and 𝜉𝑒

𝑖  are the nodal values of 

𝜈𝑛
1(𝑡), 𝑤𝑛

1(𝑡), 𝜈𝑛
2(𝑡), 𝑤𝑛

2(𝑡), 𝑝𝑛
0(𝑡) + 𝑝𝑛

𝑑(𝑡), 𝜉𝑛
1 (𝑎,

𝑐𝑖

𝑐𝑒
𝑡) , 𝜉𝑛

2 (𝑎,
𝑐𝑖

𝑐𝑒
𝑡) , 𝜉𝑛

1 (1,
𝑐𝑖

𝑐𝑒
𝑡), 𝜉𝑛

2 (1,
𝑐𝑖

𝑐𝑒
𝑡), and 

𝜉𝑒
𝑖 (1, 𝑡), respectively. 

 Previous work regarding convergence of the finite difference schemes was used 

to establish the appropriate time step to ensure convergence (Iakovlev, 2008b).  When 

the shell thicknesses are similar, the time step of 0.001 is sufficient for all other parameter 

ranges of interest. However, when the outer shell is much thinner than the inner shell, the 

convergence was observed to worsen, so another doubling of the time step (h=0.0005) 

was evaluate for this case and determined it did ensure convergence even for the most 

dramatic differences considered (ℎ1 ℎ2⁄  = 10, Iakovlev et al, 2015).  

The convergence of the series for the displacements and pressure components 

has been analyzed as well, and it was established that 150 harmonics were sufficient to 
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accurately simulate and realistically visualize (Iakovlev, 2008b) all quantities addressed 

here except for the diffraction pressure which required 300 harmonics.  It should be made 

aware that the benefit of such a solution in terms of the implementation of its application 

in code is what makes this approach so appealing.  Due to the “simplicity” of the approach 

the ability to reduce processing time allows us to generate greater amounts of data in less 

time than other methods can provide.  This is truly beneficial for applications in preliminary 

design ideas because one could quickly, relatively speaking, determine in which direction 

the design process should proceed saving both time and money early on in the 

development process.  In summary of the processing time required; it took 221 seconds 

to compute all structural harmonics for a single set of system parameters, as compared 

to 11 seconds it would take for a single submerged fluid-filled shell, with all computations 

being carried out on an Intel i7 3.40 GHz CPU. The hydrodynamic fields and simulated 

inter-shell and external fields required 2.45 and 2.08 hours, respectively, to create.  These 

appealing features became very important for the parametric study discussed later in the 

thesis. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 
 

 4.1 HYDRODYNAMIC FIELDS 
 

 For initial investigations of the solution we consider the interior shell with radius 𝑎 

= 0.50 m and exterior shell with a radius of 𝑟𝑜 = 1.00 m, with thicknesses ℎ1 = ℎ2 = 0.01m, 

made of steel 𝑐1 = 𝑐2 = 5000 kg/m3, 𝜌1 = 𝜌2 = 7800 kg/m3, and 𝜈1 = 𝜈2 = 0.3, submerged 

in water, 𝑐𝑒 = 1400 m/s and 𝜌𝑒 = 1000 kg/m3, and with water filling the inter-shell space, 

𝑐𝑖 = 1400 m/s and 𝜌𝑖 = 1000 kg/m3.  The incident loading is assumed to be a shock wave 

originated at the distance of five radii of the outer shell from the axis of the shells (i.e., the 

standoff of 𝑆𝑟 = 4𝑟0), with the rate of exponential decay 𝜆 = 0.0001314 s and the pressure 

in the front at the moment of the initial contact 𝑝𝛼 = 250 kPa. 

 For this system, we visualize the hydrodynamic fields and address how the 

pressure waves are behaving and to better understand the dynamics of the stress-strain 

states (Iakovlev 2006, 2007), which are considered the most vital aspect of the 

interaction.  Therefore, figure 4.1 shows a sequence of pressure field images that are 

taken at times that best represent the overall dynamics of the interactions.  To better 

ensure optimal appearances, each image has been scaled separately, with the blacks 

corresponding to the lowest pressure and white to the highest; respective pressure 

ranges are noted in the figure caption.  Units are expressed in the dimensionless form for 

the snapshots in order to compare the difference in magnitude between the highest and 

lowest pressures seen in each snapshot; The unit of time is also viewed in dimensionless 

form. 
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t=0.05   max= 1.71   min= -0.0030 

 
t=0.10   max= 1.72   min= -0.010 

 
t=0.15   max= 1.56   min= -0.028 

 
t=0.20   max= 1.55   min= -0.052 

  
t=0.25   max= 1.54   min=- 0.061 

  
t=0.30   max= 1.49   min= -0.12 

Figure 4.1.  Two-dimensional Snapshots of the hydrodynamic fields. 
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t=0.35   max= 1.43   min= -0.12 

 
t=0.40   max= 1.39   min=- 0.15 

 
t=0.45   max= 1.36   min=- 0.16 

 
t=0.50   max= 1.24   min=- 0.62 

  
t=0.55   max= 1.80   min=- 0.42 

  
t=0.60   max= 1.92   min=- 0.28 

Fig. 4.1 Continued 
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t=0.65   max= 1.86   min=- 0.33 

 
t=0.70   max= 1.74   min= -0.36 

 
t=0.75   max= 1.60   min= -0.42 

 
t=0.80   max= 1.48   min=- 0.42 

 
t=0.85   max= 1.39   min=- 0.49 

 
t=0.90   max= 1.27   min= -0.55 

Fig. 4.1 continued. 
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t=0.95   max= 1.19   min= -0.59 

 
t=1.00   max= 1.11   min=- 0.60 

 
t=1.05   max= 1.03   min= -0.57 

 
t=1.10   max= 1.28   min=- 0.54 

 
t=1.15   max= 1.34   min=- 0.50 

 
t=1.20   max= 1.24   min=- 0.52 

Fig. 4.1 Continued 
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t=1.25   max= 1.12   min=- 0.50 

 
t=1.30   max= 1.00   min= -0.47 

 
t=1.35   max= 0.89   min= -0.44 

 
t=1.40   max= 0.80   min=- 0.48 

 
t=1.45   max= 0.76   min= -0.59 

 
t=1.50   max= 0.77   min= -0.72 

Fig. 4.1 Continued 
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t=1.55   max= 0.84   min=- 0.69 

 
t=1.60   max= 1.46   min= -0.75 

 
t=1.65   max= 1.47   min=- 0.74 

 
t=1.70   max= 1.46   min=- 0.85 

 
t=1.75   max= 1.33   min=- 0.87 

 
t=1.80   max= 1.23   min= -0.81 

Fig. 4.1 Continued 
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t=1.85   max= 1.11   min=- 0.76 

 
t=1.90   max= 0.91   min= -0.79 

 
t=1.95   max= 0.78   min= -0.79 

 
t=2.00   max= 0.71   min= -0.91 

 
t=2.05   max= 0.69   min=- 0.94 

 
t=2.10   max=0.70   min=- 0.96 

Fig. 4.1 Continued 
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t=2.15   max= 0.70   min=- 1.11 

 
t=2.20   max= 0.71   min= -1.14 

 
t=2.25   max= 0.70   min= -1.03 

 
t=2.30   max= 0.69   min=-0.90 

 
t=2.35   max= 0.70   min= -0.76 

 
t=2.40   max= 0.68   min=-0.75 

Fig. 4.1 Continued 
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t=2.45   max= 0.64   min= -0.78 

 
t=2.50   max= 0.66   min= -1.01 

 
t=2.55   max= 1.14   min= -0.82 

 
t=2.60   max= 1.41   min=- 0.65 

 
t=2.65   max= 1.45   min=- 0.50 

 
t=2.70   max= 1.35   min= -0.47 

Fig. 4.1 Continued 
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t=2.75   max= 1.15   min=- 0.48 

 
t=2.80   max= 0.97   min= -0.52 

 
t=2.85   max= 0.79   min=- 0.79 

 
t=2.90   max= 1.42   min=- 0.82 

 
t=2.95   max= 1.48   min=- 0.62 

 
t=3.00   max= 1.36   min=- 0.67 

Fig. 4.1 Continued 
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t=3.05   max= 1.21   min=- 0.52 

 
t=3.10   max= 1.09   min=- 0.58 

 
t=3.15   max= 1.06   min=- 0.64 

 
t=3.20   max= 1.04   min=- 0.76 

 
t=3.25   max= 0.99   min= -0.80 

 
t=3.30   max= 1.48   min=- 0.78 

Fig. 4.1 Continued 
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t=3.35   max= 1.60   min=- 0.70 

 
t=3.40   max= 1.23   min=- 0.86 

 
t=3.45   max= 1.07   min=- 1.02 

 
t=3.50   max= 1.07   min=- 1.35 

 
t=3.55   max= 1.09   min=- 0.92 

 
t=3.60   max= 1.19   min=- 0.54 

Fig. 4.1 Continued 
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t=3.65   max= 1.22   min= -0.63 

 
t=3.70   max= 1.22   min=- 0.69 

 
t=3.75   max= 1.18   min= -0.70 

 
t=3.80   max= 1.74   min=- 0.71 

 
t=3.85   max= 1.76   min= -0.77 

 
t=3.90   max= 1.36   min=- 0.84 

Fig. 4.1 Continued 
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t=3.95   max= 1.01   min=- 0.92 

 
t=4.00   max= 0.78   min=- 0.93 

 
t=4.05   max= 0.60   min=- 0.62 

 
t=4.10   max= 0.61   min= -0.65 

 
t=4.15   max= 1.02   min= -0.73 

 
t=4.20   max= 0.85   min= -0.78 

Fig. 4.1 Continued 
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t=4.25   max= 0.98   min=- 0.75 

 
t=4.30   max= 0.94   min=- 0.80 

 
t=4.35   max= 0.73   min=- 0.85 

 
t=4.40   max= 0.56   min= -0.89 

 
t=4.45   max= 0.60   min=- 0.94 

 
t=4.50   max= 0.69   min=- 1.20 

Fig. 4.1 Continued 
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t=4.55   max= 0.75   min=- 0.49 

 
t=4.60   max= 1.05   min=- 0.47 

 
t=4.65   max= 1.06   min=- 0.46 

 
t=4.70   max= 1.22   min=- 0.47 

 
t=4.75   max= 1.19   min=- 0.43 

 
t=4.80   max= 1.34   min=- 0.46 

Fig. 4.1 Continued 
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t=4.85   max= 1.17   min=- 0.44 

 
t=4.90   max= 0.94   min=- 0.55 

 
t=4.95   max= 0.77   min= -0.73 

 
t=5.00   max= 0.76   min=- 0.54 

Fig. 4.1 Continued 

 

 

 The most important features seen are the multiple reflections of the internal 

pressure wave originated in the very beginning of the interaction off the shell surfaces. 

Specifically, the reflections off the inside of the external shell as the wave travels upstream 

and its reflection off the outside of the internal shell as it travels downstream. Later, it will 

be seen that these reflections play an important role in the stress-strain states of both 

shells.  Whenever this internal pressure wave reflects off the inner surface of the external 

shell, some energy is always lost to the external fluid domain, which is manifested by the 

appearance of a pressure wave leaving the system.  The overall appearance of the 
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internal pressure field, as far as the first order effects are concerned, remain qualitatively 

similar to situations without an internal shell (Iakovlev, 2006 and 2007).  It is when we 

consider the generation of second-order waves from the multitude of sources that the 

interaction becomes phenomenally more complex. 

Concerning the second-order waves, the most important ones are those radiated 

into the inter-shell fluid by the stress waves propagating through both the external and 

internal shells (the single shell scenario was investigated in Iakovlev, 2006, 2007, and 

Iakovlev et al., 2013).  With the importance of investigating these waves their graphical 

representation presents a complication of a technical nature.  The magnitude of these are 

an order of magnitude less than that of the primary pressure waves resulting in very poor 

graphical representations of these second order wave properties.  An efficient way to 

overcome these shortfalls, as demonstrated in Iakovlev 2009, and Iakovlev et al., 2013, 

is to “accentuate” certain components or consider close-ups of areas of focus.  This is to 

ensure that these second-order, lower magnitude pressures, are not overshadowed by 

the larger magnitude pressure elsewhere.  These measures do affect the overall realistic 

representation of the fields, but are worth it for a better representation of the specific areas 

of interest.  Figure 4.2 shows two representative snapshots. 
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(a)                                                                                  (b) 

Figure 4.2. Representative snapshots in which the developing shell-induced hydrodynamic 

components can be seen, two radiated by the outer shell into the inter-shell fluid and external 

fluid, (a), and the other radiated by the inner shell, creating one wave into the inter-shell fluid, (b). 

  

 As the interaction progresses, we can see that the hydrodynamic field becomes 

more complex due to the presence of the internal shell.  The field resembles what was 

seen in Iakovlev et al., 2010 with a rigid co-axial core but even more complex because of 

the second order waves radiated by the, now, non-rigid internal shell.   

 

 4.2 STRUCTURAL DYNAMICS 
 

After discussing the hydrodynamic fields, we will now focus on the stress-strain 

states, the most important aspects of the analysis.  Three different forms of visualization 

are used to highlight specific aspects of the stress-strain state.  Such an approach has 

been shown in (Iakovlev, 2007) to be quite useful.  First, time-history plots of the normal 

displacements are considered at the head and tail points, Figures 4.3 and 4.4, 

respectively.  We can see from both graphs the time delay for the waves to reach the tail 

points of each shell, as well as the time delay for the shockwave to initially impact the 

interior shell.  These time histories have a similar pattern to those seen for evacuated 
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shells (Iakovlev, 2008a, 2009; Iakovlev et al., 2013), but are now more complex due to 

the presence of multiple reflections of the pressure waves from both shells, a 

phenomenon discussed above.  We see these affects in the outer shell displacements at 

the moments when the displacement is reduced slightly.  One can visualize this, as the 

returning shockwave rebounding off the inner shell pushing the outer shall back towards 

its initial position when it returns to the head point of the outer shell.  We can see similar 

affects in the inner shell with the second passage of the rebounding wave off the outer 

shell returning to the head point of the inner shell pushing further downstream. 

Figure 4.5 shows the dynamics of the normal displacements in their ‘natural’ 

geometrical context, but significantly scaled up as the actual displacements are a small 

fraction of the thickness of the shell. One of the immediately apparent features is the 

simultaneous shift of both shells downstream, something that could be referred to as the 

‘rigid body’ component of the motion. It is interesting to point out that the deviation of the 

distance between the shells from its initial value is always considerably lower than the 

maximum displacement of the shells themselves, which in turn are only a fraction of the 

thickness of the shells, an observation that is in agreement with the conclusion made by 

Huang (1979a) about the negligible loss of concentricity of the shells.  It is of further 

interest that the external shell retains a convex external surface, although minimal, for the 

entirety of the interactions.  Whereas, the internal shell develops a concave external 

surface at the head point beginning at t = 2.30, this could be due to the effects of the initial  
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Figure 4.3.  Normal displacement of outer shell where the solid and dashed lines represent the 

head and tail point respectively.  ‘R1’ marks the arrival to the head point of the outer shell of the 

pressure wave reflected off the inner shell after its passage upstream.  
 

 

Figure 4.4.  Normal displacement of inner shell where the solid and dashed lines represent the 

head and tail point respectively.  ‘R2’ marks the arrival to the head point of the inner shell of the 

same wave after it completed its second passage downstream upon reflecting off the outer shell.  
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shockwave impacting the head point of the internal shell.  This could be further amplified 

from the fact that the internal shell is evacuated and therefore there would be no fluid to 

reduce this deformation or allow a returning shockwave inside the internal shell to reduce 

this deformation. 

 

Figure 4.5.  Dynamics of the normal displacements in their ‘natural’ geometrical context relative 

to the initial positions of the shells. 
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The most interesting analysis are the time history plots representing the stress in 

both shells.  Figures 4.6 and 4.7 represent the inner shell and outer shell respectively.  

Two immediate differences seen between the two shells are that there is a much higher 

frequency of the stress waves propagating in the inner shell, and a much more 

pronounced tensile stress seen in the outer shell. The former is a purely geometrical effect 

due to a smaller radius of the inner shell. The latter is due to the fact that the present 

system combines two ‘ends of the spectrum’ in that the outer shell behaves more like a 

submerged fluid-filled shell as seen in Iakovlev 2006, a system for which the tensile stress 

was found to play a very significant role and the inner shell behaves more like a 

submerged evacuated shell as seen in Iakovlev 2008a, where the peak tensile stress was 

found to be much lower than the peak compressive stress, an effect observed and 

discussed in Iakovlev et al. 2015. 

 

 

Figure 4.6.  Transverse stress in inner shell where solid and dashed lines represent the head and 

tail points respectively. “PS1” is the superposition at the tail point of the shell. 
 



 

 

52 

 

Figure 4.7.  Transverse stresses of outer shell where solid and dashed lines represent the head 

and tail points respectively. “PS2” is the superposition at the tail point of the shell and “PR” is the 

impact on the outer shell from the returning pressure wave that rebounded off the inner shell. 

 

 There are many interesting features in both graphs; the wave repetition feature is 

the most apparent, especially in the outer shell where there is an obvious repetition of a 

waveform that is decreasing in amplitude at both the head and tail points.  The minor 

differences at each waveform repetition is due to the effect of the hydrodynamic waves 

generated from the internal shell.  As for the inner shell, the greater frequency of repetition 

has already been explained, and at approximately t=2.3 the appearance of repetition has 

disappeared, this is due primarily to the waves induced by the multiple hydrodynamic 

waves travelling in the inter-shell space, with the resulting wave pattern becoming 

increasingly complex as the interaction progresses.  

 Focusing on the head and tail points of the shells does not allow for a total analysis 

of the overall structural dynamics of the entire shells.  To overcome this issue, a series of 

two-dimensional images representing the magnitude of the stresses experienced 

throughout both shells are provided in figure 4.8.  The appearance is similar to the normal 
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displacement images but representing the compressive and tensile stress in the shells 

instead.  The values are scaled for visual benefits with compressive stresses being 

represented as external to the shell and tensile stress as internal.  Although, 

quantitatively, such plots are not very helpful when it comes to stress analysis, all the 

effects discussed earlier are particularly easy to see.  Examples include the onset of the 

stress wave at t = 0.50 in the inner shell caused by the impact of the pressure wave on 

its first passage downstream, the similarity of the stress propagation in the inner and outer 

shells right after the initial impact, continued with the constructive superposition of the 

stress waves as they circumnavigate the shells, and the tensile stress caused by the wave 

effects in the inter-shell fluid, as mentioned in Iakovlev et al, 2015.  

Figures 4.9 and 4.10 show time-space plots of the stress for the inner and outer 

shells respectively. The lower border corresponds to the head point of the shell and the 

upper border corresponds to the tail point, this technically only represents half the shell, 

but due to the symmetry, this is sufficient.  The waves propagating with constant velocities 

appear in such plots as straight lines, and the halftones are scaled as to allow the most 

optimal appearance of both primary and secondary features of the respective stress 

fields.  

One immediately apparent feature is the much higher frequency of the stress 

waves seen for the inner shell, an effect that we have already discussed.  In all other 

respects, the plot for the inner shell qualitatively very much resembles that seen for a 

submerged evacuated shell but at a higher frequency. The secondary, much lower in 

magnitude, waves are also seen, all being the effects of the multiple reflections of the 

internal pressure wave travelling in the inter-shell space.  

The outer shell is considerably different.  At t = 1, a tensile stress wave is originated 

at the head point due to the direct impact of the upstream-propagating internal pressure 

wave after it reflects off the inner shell at t = 0.50. This stress wave then circumnavigates 

the shell and superimposes at the tail point shortly before t = 2, leading to the highest 

tensile stress in the system that is of the same order of magnitude as the highest 

compressive stress. It then circumnavigates the shell again and superimposes at the 

head point, leading to another tensile peak there. The presence of such a high-magnitude 

tensile stress constitutes the fundamental difference between the outer and inner shells, 
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and allows us to make an argument about the influence of the outer shell on the structural 

dynamics of the inner one being much less pronounced than vice versa.  

 

 

Figure 4.8.  Series of two-dimensional images representing the stresses in the system. 
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Figure 4.8. Continued. 
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Figure 4.8. Continued. 

 So far, we have considered both the fluid and structural dynamics of the 

interaction and simulated the hydrodynamic fields induced in the system during the 

considered shock loading.  We have addressed the structural dynamics with the normal 

displacements of the shell and the stress state using three visualization techniques: the 

classical time-histories, the ‘realistic geometry’ snapshots, and the time-space plots that 

allow for a simultaneous analysis of all stages of the interaction.  However, if one 

wanted to consider the structural integrity of a system the most important information 

would be to know when, where and to what magnitude the peak stress occurs in both 

shells.  It is believed that this point is where the system is going to experience the 

greatest risk to structural integrity but it must be located within the results.  The code 

used to run these models also includes a step to calculate and consider such results.  

Furthermore, not only can it provide this information for a given set of parameters, but  
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Figure 4.9.  Time-space plot of the transverse stress in the inner shell. 
 

also, the code has been designed to accommodate the variation in whatever parameters 

involved in the system are of interest.  The following chapter will now focus on the 

parametric study carried out in order to determine the overall peak stress and pressure in 

the system, as well as their locations.  The motivation for developing such a code was to 

facilitate the extensive parametric studies that are carried out at the pre-design stage and 

are aimed at the structural optimization of industrial systems, a task that appears to be 

becoming increasingly important today.  
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Figure 4.10.  Time-space plot of the transverse stress in the outer shell. 
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CHAPTER 5: PARAMETRIC STUDY 
 

 5.1 PARAMETERS 
 

 The previous chapter demonstrated a qualitative and quantitative analysis of one 

specific scenario with a given set of parameters.  This chapter will now provide a detailed 

comparison of a range of values for several parameters of interest, most notably being 

shell thicknesses, the ratio of the shell radii, the physical properties of the shell materials, 

and the physical properties of the inter-shell fluid. The code for the study has the user 

pre-set the physical properties of the fluid and shells’ materials as well as the ratio of the 

shell radii and the range of shell thicknesses that are of interest.  After everything has 

been completed, the code returns a three dimensional plot of the maximum stress 

experienced in each shell, the total normal displacement of each shell, as well as the 

maximum positive and negative pressures experienced on the surface of each shell for 

every set of shell thicknesses of interest.  Additionally, the code provides the timing and 

location for all the previously mentioned results, excluding the total normal displacement, 

which is cumulative for the entire interaction.  Each graph provides the value of interest 

along the Z-axis, the thickness of the inner shell along the X-axis, and the thickness of 

the outer shell along the Y-axis   For this study Table 5.1 summarizes the parameters and 

their values that were considered and Table 5.2 details the physical properties of the 

necessary parameters. 
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Table 1.  Summary of parameters considered in the study. 

Parameters 
Description of 

values 
Values 

Total 

Variables 

Inner shell 
thickness, h1 

Percentage of the 
radius of the inner 
shell 

0.2-1.0%, increasing in 
0.1% intervals 9 

Outer shell 
thickness, h2 

Percentage of the 
thickness of the 
inner shell 

10-100%, increasing in 
10% increments 10 

Radius of inner 
shell 

Ratio of inner shell 
to outer shell radii 

0.5 and 0.9 2 

Interhull fluid 

Fluid between the 
inner and outer 
shells, properties 
determined by fluid 
of interest 

Diesel Fuel 
Or 

Seawater 2 

Outer shell material 
Values are 
dependent on 
material properties 

Composite Material 
Or 

Steel 

2 

 

 

Table 2.  Physical Properties of Parameters 

Substance Density, kg/m3 Acoustic Speed, m/s Poisson Ratio 

Steel 7800 5000 0.3 

Composite 1800 3430 0.15 

Water 1000 1400 - 

Diesel Fuel 880 1250 - 

 

 One can easily appreciate the amount of data that would be produced once all of 

the various scenarios were considered.  With just a small selection of 5 variables and 

predetermined ranges we have already created 720 unique scenarios and possible 

designs for the considered problem, with the potential for a much larger amount of 

possibilities. 
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5.2 STEEL INNER/STEEL OUTER/INTER-HULL WATER/RADIUS 50%  
 

 To introduce the parametric study, we will consider the initial case that was 

discussed in chapter 4 with varying inner and outer shell thicknesses, and then expand 

the parameters to the other values of interest after discussing some results in this initial 

consideration.  We consider the interior shell with radius 𝑎 = 0.50m and exterior shell with 

a radius of 𝑟𝑜 = 1.00m, both made of steel 𝑐1 = 𝑐2 = 5000 kg/m3, 𝜌1 = 𝜌2 = 7800 kg/m3, 

and 𝜈1 = 𝜈2 = 0.3, submerged in water, 𝑐𝑒 = 1400 m/s and 𝜌𝑒 = 1000 kg/m3, and with water 

filling the inter-shell space, 𝑐𝑖 = 1400 m/s and 𝜌𝑖 = 1000 kg/m3.  This loading is different 

from that discussed in chapter 4. 

For a complete detailed consideration of all aspects of interest the following values 

are reported:  The value, timing and location of the maximum stress in both the inner and 

outer shells (Figures 5.1, 5.2, 5.3 and figures 5.4, 5.5, and 5.6, respectively); the normal 

displacements of the inner and outer shells (Figures 5.7 and 5.8, respectively); value, 

timing and location of maximum pressure experienced on the surface of both the inner 

and outer shell surfaces (Figures 5.9, 5.10, 5.11 and figures 5.12, 5.13, and 5.14, 

respectively); and value, timing and location of the minimum pressure experienced on the 

surface of both the inner and outer shells (Figures 5.15, 5.16, 5.17 and figures 5.18, 5.19, 

and 5.20, respectively).  The plots are arranged so the x-axis, y-axis and z-axis are the 

inner shell thickness, outer shell thickness and value of interest, respectively.  

 Concerning the maximum stresses in each shell, an important conclusion that can 

be drawn is how the changes in one shell affects the state of the other.  The maximum 

stress in the inner shell is dramatically changed and influenced by the thickness of the 

inner shell itself, with maximum stresses at the thickest values being about half those 

experienced when the internal shell is thinnest, another way to see this is a 5 times 

increase in the internal shell thickness appears to have approximately a 50% decrease in 

the peak stress.  The same cannot be said for the outer shell’s thickness and how it 

influences the stress in the inner shell.  We can see that as the outer shell increases in 

thickness, there is a very unsubstantial decrease in the stress in the inner shell.  Similar 

to comparison of the inner shell thickness, a 10 times increase of thickness in the outer 

shell provides less than a 10% reduction in the peak internal shell stress. 
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 The scenario is not the same when considering the stress in the outer shell: once 

again, the thickness of the shell itself does influence the peak stresses, but we can see 

that the thickness of the inner shell has a far greater influence on the stress of the outer 

shell than vice versa.  This would be something that should be taken into consideration if 

the main purpose of the outer shell is to protect the integrity of the inner shell.  As for the 

timing and location of peak stresses, it is apparent that they occur at either the tail point 

or the head point, as seen in the plots of location.  An interesting feature is that the peak 

stress occurs at the head point later in the interaction than when it occurs at the tail point.  

An explanation for both the location and timing issues is that the peak stresses occur 

when the stress waves travelling around both sides of the shell superpose.  The true first 

superposition at the head point does not actually occur until the stresses have completely 

circumnavigated the entire shell and returned to superpose at the head point.  When this 

occurs, it does appear that the maximum values at both the head and tail points are similar 

in value and both points may be of interest during investigations later on in the 

development process. 

 With regards to the displacements, it is not surprising that the thinner shell had 

greater displacements, though still comparably minimal.  We can also note that the inner 

shell displaces slightly more than the outer shell, this is believed to be due in part to the 

fact that the initial impact at the head point of the external shell maintains the concentricity 

of the system and displaces both the external and internal shell simultaneously, but once 

the shockwave enters the inter-hull space, it displaces the internal shell only.  In summary, 

regarding the displacement, it appears that the inner shell is affected to a greater extent 

than the outer shell. 

 Having discussed the structural features, we will now turn our attentions back to 

the hydrodynamic pressure and its peak values at the surfaces of both the outer and inner 

shells.  For the maximum values, it appears that the peak pressure experienced on both 

surfaces are more or less similar, this is not unexpected seeing as the pressure field is 

continuous and the pressure at one side of the inter-hull space will eventually reach the 

other side with very little loss in pressure resulting in similar values at both shells.  

Regarding the location of these pressures, it is of interest to note that the maximum values 

do not occur at the head or tail points in the shell.  Instead, they occur at a specific “region” 
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somewhere along the surface of each shell.  For the inner shell, the maximum pressures 

occur towards the head point of the shell whereas they occur towards the tail point for the 

outer shell.  The fact the peak pressures occur at slightly different locations as the shell 

thicknesses change is expected, since the slight change in shell thickness will slightly 

advance or delay the propagation of the hydrodynamic fields causing a slight “shift” in 

location.  What is fascinating, with regards to the maximum pressures, is how the outer 

shell now appears to have a much greater influence on the maximum pressures 

experienced by both shells.  This is opposite of what was seen for the stresses occurring 

in each shell and should be taken into account when considering reducing the possibilities 

of large pressures in a double-hull system. 

 Finally, we turn our attention to the minimum pressure experienced at the surfaces 

of both shells.  In terms of the minimum values, the minimum negative pressures only 

amount to approximately 20% of the peak positive pressures suggesting that protecting 

against peak positive pressures may be more of an importance. With regards to the inner 

shell, there does appear to be some influence of both shells on the minimum pressure. 

As both shells become thicker, there is a noticeable increase in the negative pressures, 

with the greater values also occurring at the tail point of the shell. The timing of the 

pressure is similar with most cases occurring in a similar region along the shell surfaces.  

This is another example of the “shift” created by the slight variations in the thicknesses of 

the shells.  Turning our attention to the outer shell, the first thing we notice is that there is 

very little change in these minimum values.  However, in terms of magnitude they all are 

close to the minimum value as the few minimum value cases seen on the inner shell.  

Another note of interest is that there are two distinct locations at where these minimum 

values occur.  One being the head point of the shell, and the other being at a specific 

point towards the tail point.  The timing of these values follow the exact same pattern, 

with all values at the head point occurring at the same time for each scenario, and likewise 

for when the minimum value is closer to the tail point. 

Regarding sudden “shifts” in where and when maximum and minimum values 

occur, due to the complexity of the entire system, for purposeful conclusions we are only 

looking for moments of specific interest. These are the moments in time during the 

interaction where there is the most potential for harm.  Throughout the entire system, 
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every point’s value is in a constant state of change.  Even though we locate one specific 

point of interest that does change for each scenario, every other point in our system is 

still experiencing constant changes in value as well.  These values are all determined by 

the “sum” of every wave that is generated in the system and their specific values at each 

point in the system at each point in time.  Due to the complexity of the system, there are 

multiple waves propagating constantly creating new waves, further adding to 

complications. Gradual changes in parameters cause gradual decreases and 

simultaneous increases at each point in time for every point in the system, so a sudden 

shift in location and time is indicative of when a new region has achieved the right 

superposition of waves to create the new maximum value.  In some cases, there is no 

“shift” and the area of interest remains almost identical, with slight shifts accounted for by 

the slight change in the thickness parameters but at least for our current conditions there 

only appears to be two points where we see our maximum/minimum pressures.  One final 

note regarding the timing of the peak pressure occurrences, it appears that the maximum 

pressures are occurring closer to the beginning of the system interaction whereas the 

minimum negative pressures seem to occur much later during the interaction. 
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Figure 5.1.  Maximum stress in inner shell (MPa). 

 

 

Figure 5.2.  Location of maximum stress in inner shell (radians). 
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Figure 5.3.  Timing of maximum stress in inner shell (dimensionless time). 
 

 

Figure 5.4.  Maximum stress in outer shell (MPa). 
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Figure 5.5.  Location of maximum stress in outer shell (radians). 
 

 

Figure 5.6.  Timing of maximum stress in outer shell (dimensionless time). 
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Figure 5.7.  Maximum normal displacement in inner shell (normalised to r0). 
 

 

 

Figure 5.8.  Maximum normal displacement in outer shell (normalised to r0). 
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Figure 5.9.  Maximum pressure on surface of inner shell (MPa). 
 

 

Figure 5.10.  Location of the maximum pressure on the surface of the inner shell (radians). 
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Figure 5.11.  Timing of the maximum pressure on the surface of the inner shell  

(dimensionless time). 
 

 

Figure 5.12.  Maximum pressure on surface of outer shell (MPa). 
 

0.004

0.006

0.008

0.01
0.2

0.4

0.6

0.8

1

0.52

0.53

0.54

0.55

0.56

0.004

0.006

0.008

0.01

0.004

0.006

0.008

0.01
0.2

0.4

0.6

0.8

1

1.2

1.3

1.4

1.5

0.004

0.006

0.008

0.01



 

 

71 

 

Figure 5.13.  Location of the maximum pressure on the surface of the outer shell (radians). 
 

 

Figure 5.14.  Timing of the maximum pressure on the surface of the outer shell  

(dimensionless time). 
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Figure 5.15.  Minimum pressure on surface of inner shell (MPa). 
 

 

Figure 5.16.  Location of the minimum pressure on the surface of the inner shell (radians). 
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Figure 5.17.  Timing of the minimum pressure on the surface of the inner shell 

 (dimensionless time). 
 

 

Figure 5.18.  Minimum pressure on surface of outer shell (MPa). 
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Figure 5.19.  Location of the minimum pressure on the surface of the outer shell (radians). 
 

 

Figure 5.20.  Timing of the minimum pressure on the surface of the outer shell  

(dimensionless time). 
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 Now that one set of parameters have been considered, we can use this analysis 

as a basis for when we vary other parameters such as the internal shell radius, the outer 

shell material and the inter-hull fluid.  We can run all combination of scenarios and discuss 

the subtle differences in each variation.  The three cases we will consider for the purposes 

of this thesis are the following: Changing the inter-hull fluid from seawater to diesel fuel, 

changing the external hull material from steel to a composite metal and changing the 

internal shell radius from 50% to 90% the radius of the external shell, (effectively reducing 

the inner hull space).  We will then compare the differences when making one parameter 

change and its influence on the peak values considered, and then a final analysis with all 

the parameters changed to see if there are any new observations not noticed when 

adjusting one variable at a time.   

5.3 INTER-HULL FLUID DIESEL 
 

We consider the interior shell with radius 𝑎 = 0.50m and exterior shell with a radius 

of 𝑟𝑜 = 1.00m, both made of steel 𝑐1 = 𝑐2 = 5000 kg/m3, 𝜌1 = 𝜌2 = 7800 kg/m3, and 𝜈1 = 𝜈2 

= 0.3, submerged in water, 𝑐𝑒 = 1400 m/s and 𝜌𝑒 = 1000 kg/m3, and with deisel filling the 

inter-shell space, 𝑐𝑖 = 1250 m/s and 𝜌𝑖 = 880 kg/m3.   

 When analyzing the differences when replacing the internal fluid with diesel fuel 

the following noticeable differences occurred.  Regarding the stresses, the only noticeable 

change was that the maximum stress in the outer shell had slightly higher values across 

all thicknesses of approximately 6%, but timing and location remained identical and 

normal displacements saw no noticeable variations at all.  Regarding the pressures, there 

was a slight reduction on peak pressures on the surface of the inner shell with a minor 

delay in timing of their occurrences.  Similarly, there were no noticeable differences for 

the minimum pressures either.  There is, however, a change in the maximum pressures 

experienced on the surface of the outer shell.  First, maximum values in the entire plot 

are greater than all values in our initial conditions with some new maximums being 12% 

greater.  Furthermore, we no longer see a consistent decrease in maximum pressures 

when the shell thicknesses increase, nor is there as much influence of one shell’s 

thickness on the other, with the possibility that the outer shell thickness might influence 

the system more when the inner shell is thicker. 
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5.4 COMPOSITE OUTER SHELL 
 

We consider the interior shell with radius 𝑎 = 0.50m and exterior shell with a radius 

of 𝑟𝑜 = 1.00m, with the inner shell made of steel 𝑐1 = 5000kg/m3, 𝜌1 = 7800kg/m3, and 𝜈1 

= 0.3,  the outer shell made of a composite material 𝑐2 = 3430kg/m3, 𝜌2 = 1800kg/m3, and 

𝜈2 = 0.15, submerged in water, 𝑐𝑒 = 1400 m/s and 𝜌𝑒 = 1000 kg/m3, and with water filling 

the inter-shell space, 𝑐𝑖 = 1400 m/s and 𝜌𝑖 = 1000 kg/m3.    

Regarding the stresses, it is no surprise that there is no change to the stress in the 

inner shell values.  However, the outer shell sees an order of magnitude decrease in 

maximum stresses experienced in the shell with maximum values of 164 as opposed to 

1600, occurring at the tail point.  Furthermore, there was no change when either thickness 

varied.  This could be due to the properties of the shell material itself.  Once again, we 

see no difference in the normal displacement of the shells.  We do however, have an 

increase of 20-40% in the maximum pressure on the surface of the inner shell and 

matching the time and location as our initial situation, so we do see the external shell 

properties affecting the pressure on the surface of the inner shell.  On the outer shell, we 

see a similar range of pressure values but when they occur has now changed with regards 

to the original case. We now see the maximum values are dependant more so upon the 

thickness of the inner shell as opposed to the outer shell, and we observe an increase in 

pressure as either shell becomes thicker which is in opposition to all the other cases.  

Looking at the negative pressure, we see that the values of concern all now occur at the 

head point of the shell with insignificant changes in the minimum values.  However, one 

point of interest is that which both shells are at their thinnest.  When this occurs there 

appears to be a doubling of the negative pressures experienced at both shell.  This may 

be a unique scenario and further investigation may be of interest and may be the result 

of a superposition of to negative pressures at the head point, similar to what we see for 

peak values of the stress strain state. 

5.5 INNER RADIUS 90% 
 

We consider the interior shell with radius 𝑎 = 0.90m and exterior shell with a radius 

of 𝑟𝑜 = 1.00m, both made of steel 𝑐1 = 𝑐2 = 5000 kg/m3, 𝜌1 = 𝜌2 = 7800 kg/m3, and 𝜈1 = 𝜈2 
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= 0.3, submerged in water, 𝑐𝑒 = 1400 m/s and 𝜌𝑒 = 1000 kg/m3, and with water filling the 

inter-shell space, 𝑐𝑖 = 1400 m/s and 𝜌𝑖 = 1000 kg/m3.   

 There appears to be a unique influence when expanding the internal radius. The 

stresses in the inner shell do not change but the stress in the outer shell experience about 

a 33% increase in value, with these values now occurring exclusively at the tail point.  We 

see a 33% greater normal displacement in both shells as well, with the outer shell now 

being displaced the exact amount as the inner shell.  This seems reasonable as the shell 

surfaces are now in closer proximity to one another and behave more as a single shell 

with regards to displacements.  The maximum pressures on the inner shell are not 

affected by the shell’s increase in size and the same is true for the outer shell.  However, 

they are now occurring at the front of the shell.  Minimum pressures behave the same 

way, with the values at the inner shell remaining constant but occurring closer to the head 

point as opposed to at the tail point and almost at the earliest times during the interaction 

as opposed to later on in the original case.  The minimum pressures on the outer shell, 

however, see a 33% increase in value, now occurring exclusively at the head point and 

much earlier in the interaction.  We see that the internal radius does have an effect on the 

outer shell, but tends to have a greater effect on the overall timing of maximum value.  

This is expected because reducing the inter-hull space the inner shell is impacted earlier 

and the fields created interact earlier with the outer shell as a result, almost “speeding up” 

the process. 

5.6 COMPOSITE OUTER SHELL / INTER-HULL RADIUS 90% 
 

 Lastly, we will see if analysing two parameter changes simultaneously will create 

unique results or will they create results that could be considered an amalgamation of the 

two cases where only one parameter change was analysed.  The two parameters that 

were considered were the outer shell material (a composite outer shell) combined with 

the inner radius (at 90% the outer radius).  Such an analysis can help determine which 

parameters may have a greater influence on specific results of interest.   

We consider the interior shell with radius 𝑎 = 0.90m and exterior shell with a radius 

of 𝑟𝑜 = 1.00m, with the inner shell made of steel 𝑐1 = 5000kg/m3, 𝜌1 = 7800kg/m3, and 𝜈1 

= 0.3,  the outer shell made of a composite material 𝑐2 = 3430kg/m3, 𝜌2 = 1800kg/m3, and 
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𝜈2 = 0.15, submerged in water, 𝑐𝑒 = 1400 m/s and 𝜌𝑒 = 1000 kg/m3, and with water filling 

the inter-shell space, 𝑐𝑖 = 1400 m/s and 𝜌𝑖 = 1000 kg/m3.   

We observe both an amalgamation in some aspects and a unique case in other 

aspects.  As done in our original scenario analysis (Chapter 5.2) plots have been provided 

below for comparable analysis if the current scenario.  The value, timing and location of 

the maximum stress in both the inner and outer shells (Figures 5.21, 5.22, 5.23 and 

figures 5.24, 5.25, and 5.26, respectively); the normal displacements of the inner and 

outer shells (Figures 5.27 and 5.28, respectively); value, timing and location of maximum 

pressure experienced on the surface of both the inner and outer shell surfaces (Figures 

5.29, 5.30, 5.31 and figures 5.32, 5.33, and 5.34, respectively); and value, timing and 

location of minimum pressure experienced on the surface of both the inner and outer 

shells (Figures 5.35, 5.36, 5.37 and figures 5.38, 5.9, and 5.40, respectively).  The plots 

are arranged so the x-axis, y-axis and z-axis are the inner shell thickness, outer shell 

thickness and value of interest, respectively. Regarding the stress, the inner shell values 

stay the same as in all other cases, with identical locations of occurrence. Timing of these 

occurrences vary depending on the thickness of the inner shell only, with an appearance 

of a linear reduction in time of occurrence as the shell thickness increases up to 0.5% 

and then the time of occurrence remains constant.  The stress in the outer shell sees the 

same affect, with a full magnitude decrease as seen in the composite case, and with a 

slight increase as seen from the 90% internal radius scenario.  In comparison of the two 

shells, we could suggest that the shell material itself has a much larger effect on the stress 

than the radius, while we still observe the inner shell thickness continuing to have a 

greater effect on the stress in both shells than the outer thickness, as observed in our 

original analysis. 

 The normal displacements see an identical effect as in the scenario when we just 

considered a 90% internal radius.  This seems to confirm that, at least currently, the 

internal shell radius has the only noticeable effect on the displacement of both shells. 
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Figure 5.21.  Maximum stress in inner shell (MPa). 

 

 

Figure 5.22.  Location of maximum stress in inner shell (radians). 
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Figure 5.23.  Timing of maximum stress in inner shell (dimensionless time). 
 

 

Figure 5.24.  Maximum stress in outer shell (MPa). 
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Figure 5.25.  Location of maximum stress in outer shell (radians). 
 

 

Figure 5.26.  Timing of maximum stress in outer shell (dimensionless time). 
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Figure 5.27.  Maximum normal displacement in inner shell (normalised to r0). 
 

 

 

Figure 5.28.  Maximum normal displacement in outer shell (normalised to r0). 
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Figure 5.29.  Maximum pressure on surface of inner shell (MPa). 
 

 

Figure 5.30.  Location of the maximum pressure on the surface of the inner shell (radians). 
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Figure 5.31.  Timing of the maximum pressure on the surface of the inner shell  

(dimensionless time). 
 

 

Figure 5.32.  Maximum pressure on surface of outer shell (MPa). 
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Figure 5.33.  Location of the maximum pressure on the surface of the outer shell (radians). 
 

 

Figure 5.34.  Timing of the maximum pressure on the surface of the outer shell  

(dimensionless time). 
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Figure 5.35.  Minimum pressure on surface of inner shell (MPa). 
 

 

Figure 5.36.  Location of the minimum pressure on the surface of the inner shell (radians). 
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Figure 5.37.  Timing of the minimum pressure on the surface of the inner shell  

(dimensionless time). 
 

 

Figure 5.38.  Minimum pressure on surface of outer shell (MPa). 
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Figure 5.39.  Location of the minimum pressure on the surface of the outer shell (radians). 
 

 

Figure 5.40.  Timing of the minimum pressure on the surface of the outer shell  

(dimensionless time). 
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 The maximum pressure on the surface of the inner shell is unique entirely to these 

specific parameters, where the location is similar and effected to the extent of the 

composite-only scenario, but the timing more closely resembles the effects seen from 

having the internal radius of 90% the external radius.  However, the maximum values 

obtained are the largest seen in comparison to all other scenarios considered.  Even if 

they are not much larger than for the composite only case, we can see that all parameters 

are having an effect on the pressures in this case.  The same can also be said for the 

maximum pressures on the surface of the outer shell, with all values being equal to or 

greater than any maximum value seen in all other considered scenarios, even if it is only 

a 10% maximum increase, with the location and timing resembling that for the 90% only 

scenario, but with a shape of the graph resembling that seen in our original scenario.  

 The minimum pressures on the surface of the inner shell closely resemble those 

of the 90% case including the point of interest when both shells are at their thinnest and 

we see the doubling of the largest minimum pressure seen yet.  What is more interesting 

is the minimum pressures on the surface of the outer shell; The shape, distribution, timing 

and location values of the graphs are once again identical to the 90% scenario, however 

all values have increased, on average, 50%, with the new lowest minimum value being 

33% greater than any value seen yet, and it is once again occurring at that unique case 

of both shells being at the thinnest values. 

 From the carried out analysis, we can see that there are some qualities and effects 

that are dependent on only one parameter, while other qualities and effects may show a 

dependence on multiple parameters. 
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CHAPTER 6: CONCLUSION 

 6.1 CURRENT RESULTS 
 

 Using a semi-analytical model, based on analytical methods of mathematical 

physics and finite-difference approximation, the response of two submerged co-axial 

cylindrical shells with fluid filling the inter-shell space subjected to an external spherical 

shockwave was analysed.  The fluid and structural dynamics was analysed, and the 

hydrodynamic fields were simulated.  We found the interactions had a predominantly 

wave feature, with multiple waves reflecting off the surfaces of the two shells in the inter-

hull space, accompanied by second order waves due to structural effects, and continuous 

radiation of waves by the external shell. 

 The structural analysis was then carried out.  First, with the normal displacements 

of each shell, and then 2-dimensional snapshots, clearly demonstrating a shift of the head 

points down stream for both shells.  It was also shown that the inner shell becomes slightly 

more deformed than the outer shell. 

 We then analysed the stress state of both shells.  This was done through time-

history plots, geometrical snapshots and time-space plots, creating three visualizations 

to simultaneously analyze the entire interaction of the shells.  It was shown that both the 

stress waves circumnavigating the shells and eventually superposing at both the head 

and tail points, and pressure waves impacting the surface of the shells in the inter-hull 

space both contributed to the structural dynamics of both shells. 

  It was also determined that the outer shell and inner shell each behaved similarly 

to what was seen in the case of a single fluid filled cylindrical shell and the case of an 

evacuated cylindrical shell, respectively. Furthermore, it was seen that one different 

feature with the double hulled case is that the tensile stress in the outer shell was seen 

to be in similar magnitude to the compressive stress.  This was seen to be caused by the 

rebounding pressure waves from the surface of the inner shell and was therefore deemed 

a unique feature of the double-hull arrangement. 

 Regarding the maximum and minimum pressures, it was seen that the maximum 

pressures remained a degree of magnitude higher than the minimum pressures but when 

considering changing the thicknesses of the shells, the opposite affect was seen 
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compared to the stresses in the shells in that the outer shell appears to have a greater 

effect on the pressures experienced at the surface of both shells than vice versa. 

 Because this thesis was developed for the investigation predominantly focused on 

how such interaction would affect ships and other marine vehicles, a method was 

developed to enable the user to carry out extensive parametric studies of the entire 

system.  It was shown in detail how one could select a range of shell thicknesses and 

visualize how the peak stress, minimum and maximum pressures as well as normal 

displacement may change along with these varying thicknesses.  We found that changes 

in the inner shell thickness had a greater impact on the stress experienced by the inner 

shell than that of varying the thickness of the outer shell, which was thought to be of 

practical importance when considering how to best protect the inner shell from damage.  

What was also of interest is that varying the thickness of the inner shell was shown to 

have a more dramatic effect on the outer shell than varying the thickness the outer shell 

had on itself. 

 This parametric study went into further detail by evaluating what affects there 

would be if we changed the material of the outer shell, changed the fluid within the inter-

hull space, or increased the radius of the inner shell from 50% to 90% of the radius of the 

outer shell.  It was of interest to see if specific phenomena were dependent upon one 

parameter, or multiple parameters.  It was shown that certain parameters had a greater 

influence on certain aspects and qualities, the most noticeable being that the shell 

materials themselves had the greatest influence on the maximum stress in the respective 

shells, and that the radius of the inner shell (effectively reducing the inter-shell space) 

had the largest effect on the normal displacements of both shells as well as the timing of 

maximum values of interest and where they occur on the shells.  What was of interest 

was that even though there would appear to be some consistent effects as one parameter 

changes, this did not always appear to be the case, especially when evaluating the 

maximum and minimum pressures.  It appears that each unique combination of 

parameters will create its own unique set of results, even though some aspects will remain 

constant depending on what parameters are changed, other aspects will change.  As was 

the case when a composite outer shell greatly reduced the peak stresses in the outer 
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shell with no effect on the inner shell stress, but at the same time increases the maximum 

and minimum pressures experienced at both shells. 

 What the author wants to address is that just because there appears to be a trend 

when adjusting one parameter.  It cannot be assumed that an identical trend will be 

observed when adjusting the same parameters if other parameters are different as well.  

It is, therefore, best to run the simulations of interest and draw conclusions once the data 

has been collected. 

 

 6.2 FUTURE RESEARCH 
 

 The following research was carried out in two-dimensions and was at the early 

stages with regards to this specific configuration and the respective applied problem.  

From a practical standpoint, this thesis is meant to lay the foundation for expanding the 

effort into three-dimensions to enable better understanding of what will happen in real-life 

situations involving the systems in question. 
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