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ABSTRACT  

  

Ground-level air quality depends on the ambient concentration of atmospheric aerosols and 

trace gases. We applied information on aerosols and trace gases gathered from satellite 

remote sensing, in situ observations, and atmospheric chemistry modelling to improve 

estimates of air quality. We inferred fine particulate matter (PM2.5) chemical composition 

at 0.1o x 0.1o spatial resolution for 2004-2008 by combining aerosol optical depth retrieved 

from the MODIS and MISR satellite instruments, with coincident profile and composition 

information from the GEOS-Chem global chemical transport model. Evaluation of the 

satellite-model PM2.5 composition dataset with North American in situ measurements 

indicated significant spatial agreement. We found that global population-weighted PM2.5 

concentrations were dominated by particulate organic mass (11.9 ± 7.3 g/m3), secondary 

inorganic aerosol (11.1 ± 5.0 g/m3), and mineral dust (11.1 ± 7.9 g/m3). Secondary 

inorganic PM2.5 concentrations exceeded 30 g/m3 over East China. Sensitivity simulations 

suggested that population-weighted ambient PM2.5 from biofuel burning (11 g/m3) could 

be almost as large as from fossil fuel combustion sources (17 g/m3).  

 

We developed a simple method to derive an estimate of the spatially and seasonally 

resolved global, lower tropospheric, ratio between organic mass (OM) and organic carbon 

(OC). We used the Aerosol Mass Spectrometer-measured organic aerosol data, and the 

ground-level nitrogen dioxide concentrations derived from the OMI satellite instrument, to 

develop the OM/OC estimate. The global OM/OC ratio ranged from 1.3 to 2.1 g/gC, 

with distinct spatial variation between urban and rural regions. The seasonal OM/OC ratio 

had a summer maximum and a winter minimum over regions dominated by combustion 

emissions.  

 

We assessed the sensitivity of chemical transport models to the duration of the chemical 

and transport operators used to calculate the mass continuity equation. Increasing the 

transport timestep increased the concentrations of emitted species, and the production of 

ozone. Increasing the chemical timestep increased hydroxyl radical and chemical 

feedbacks. The simulation error from changing spatial resolution exceeds that from 

changing temporal resolution.  
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CHAPTER 1: INTRODUCTION  

 

A byproduct of human technological advances over the last three centuries is an enormous 

increase in atmospheric aerosols and trace gases (IPCC, 2013) that deteriorate ground-level 

air quality. Ambient air pollution from anthropogenic and natural sources is a major human 

health burden (e.g., Dockery et al., 1993; Lim et al., 2012; WHO, 2013). Assessing 

atmospheric chemistry and improving air quality requires an in depth understanding of the 

distribution and composition of aerosols (e.g., Andreae and Crutzen, 1997).   

1.1 Ground-level air quality and aerosols 

The outdoor air which we breathe contains a heterogeneous combination of numerous gases 

and particles, some of which create health problems. The relative risks of various pollutants 

are determined by their size, chemical composition, toxicity, and its relative abundance in 

the atmosphere. Epidemiologic studies identified the major pollutant as aerosols, which are 

small particles suspended in the atmosphere. Other pollutants include ozone (O3), nitrogen 

oxides (NOx = NO2 + NO), sulfur dioxide (SO2) and carbon monoxide (CO). In fact, trace 

gases undergo chemical reactions in the atmosphere and play a key role in determining the 

abundance of aerosols. 

Fine particles induce systemic and airway inflammatory, and other vascular responses, and 

affect neural pathways (Health Effects Institute, 2004; Brook et al., 2010). Fine particles 

can enter into human lungs, deposit into the respiratory tract, and lead to cardiac and 

respiratory inflammation. People with pre-existing diseases become more susceptible to 

increased risk of mortality on further exposures (Health Effects Institute, 2004). Reduction 
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of PM2.5 (fine particulate matter with aerodynamic diameter less than 2.5 micrometers) by 

10 µg/m3 could increase life expectancy by 0.61 ± 0.2 years (Pope et al., 2009). 

In addition, aerosols and their precursor trace gases have a wide range of impacts on 

climate, ecosystem and visibility (e.g., Ramanathan and Carmichael, 2008; IPCC, 2013). 

An insight into the processes determining their atmospheric abundance is needed to 

understand air quality and climate. 

1.2 Sources and properties of aerosols 

Atmospheric aerosols exist in different size ranges and chemical compositions. Based on 

the size distribution, aerosols are broadly divided into three categories, namely ultrafine 

(particles with aerodynamic diameter < 0.1 µm), accumulation (0.1 –1 µm) and coarse (> 

1 µm) particles (Seinfeld and Pandis, 2006). The ultrafine particles in the atmosphere are 

formed by the clustering of gas molecules (aerosol nucleation) or the condensation of hot 

vapors during combustion. The growth of these particles through 1) condensation of gases, 

2) collisions (coagulation), and 3) non-precipitating cloud processing (Hoppel et al., 1986) 

leads to accumulation mode aerosols. The size transition of accumulation particles to 

coarse mode is slow as the condensation and coagulation rates diminish with increasing 

mass. Accumulation mode particles have a lifetime of days to weeks before removal 

(primarily through scavenging by cloud droplets and precipitation).  

The coarse particles, such as mineral dust and sea spray are formed by the mechanical 

action of wind on the Earth’s surface, and ocean wave breaking. Vegetative debris, 

biological materials, microorganisms, and toxic elements are also part of this coarse aerosol 

category. The condensation of semi volatile gases forms a coating on dust and sea spray. 
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The coarse particles settle out within a short time due to their high sedimentation velocity. 

Precipitation is also a major removal process.  

Atmospheric aerosols contain water. The phase transition of aerosols from their solid state 

at a low relative humidity (RH) to the liquid phase happens at a transition point known as 

deliquescence RH (DRH) (Seinfeld and Pandis, 2006). The hygroscopic growth of aerosols 

is due to the condensation of water onto the aerosol-solution. For some salts (e.g., 

ammonium sulfate), the decrease of RH does not crystallize the salt at DRH; rather it 

remains supersaturated until it crystallizes at a lower RH (DRH is ~62% for ammonium 

nitrate, and ~80% for ammonium sulfate). Internal aerosol mixtures such as salts and 

organics in the atmosphere exhibit even lower crystallization points.  

Epidemiological literatures typically distinguish the aerosol size ranges as PM0.1 

(particulate matter < 0.1 µm), PM2.5 (< 2.5 µm), and PM10 (<10 µm). PM2.5 is most 

consistently found to be deleterious to health (e.g., Chen et al., 2008) due to its small size 

to penetrate into human respiratory tracts. The effects of PM0.1 are more uncertain. 

The chemical components of PM2.5 include sulfate, nitrate and ammonium ions (secondary 

inorganic aerosols), black carbon (BC), organic carbon (OC), and mechanically driven 

particles (such as, dust, sea salt and trace metals). Sulfur dioxide and primary sulfate 

particles are emitted into the atmosphere mainly from the combustion of fossil fuels. The 

majority of the H2SO4 in the atmosphere is oxidized from SO2. Sulfuric acid then condenses 

to form aqueous sulfate particles owing to its low vapor pressure over the H2SO4-H2O 

solution. These particles can be neutralized with ammonia gas to form ammonium sulfate 

particles. The atmospheric oxidation of NOx forms nitric acid through a series of chemical 
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reactions. The reversible reaction of excess NH3 with HNO3 leads to ammonium nitrate 

formation, at low temperature and high relative humidity conditions. The excess NH3 exists 

as NH4
+ ions. The degree of ammonia neutralization varies spatially and temporally.  

The majority of secondary inorganic aerosols are formed from the emissions of trace gases, 

such as NOx, SO2 and NH3 from various anthropogenic and natural sources. The major 

anthropogenic emission sources include fossil fuel combustion and biofuel burning. Power 

plants and smelters produce much of the SO2, while NOx is emitted mainly from the 

transportation sources. Soil, fertilizers and lightning are the other sources of NOx. Biomass 

burning, wild fires and other combustion sources release a certain amount of SO2 and NO2. 

Ammonia is emitted from agriculture, fertilizers and livestock.  

Organic aerosols (OA) are mainly emitted by combustion processes, and from vegetation. 

In addition to primary organic aerosols, the volatile organic compounds (VOC) in the 

atmosphere lead to secondary organic aerosol (SOA) formation. The particulate organic 

mass (OM) contains organic carbon, and additional elements such as N, O, and H. Black 

carbon aerosols are emitted by incomplete combustion processes and from fires. 

1.3 Monitoring of aerosols  

Scientific understanding of the distribution and properties of aerosols developed in part 

through direct atmospheric measurements (McMurry, 2000). Ground level in situ 

measurements of aerosols provide size and mass distributions, aerosol composition, and 

optical properties. There are extensive operational aerosol monitoring networks especially 

across North America and Europe (e.g., Dabek-Zlotorzynska et al., 2011; Hand et al., 

2011).  
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In situ samplers usually collect aerosols on a filter pack over sampling periods of 24-hr or 

3 to 6 days (Hand et al., 2011). The different aerosol size ranges are separated out using 

various size inlets of the filter. Total PM2.5 and PM10 mass concentrations are typically 

analyzed gravimetrically by weighing a teflon filter before and after sampling. A nylon 

filter preceded by a sodium carbonate coated denuder is used to measure anions and cations 

through ion chromatography. The denuder avoids the condensation of nitric acid and 

organic gases. The carbon mass, imbedded in the quartz filter, is analyzed by thermal 

optical reflectance or thermal optical transmittance techniques. The elemental 

compositions are determined using the X-ray fluorescence methods. Assumptions about 

the oxides of these elements are used to estimate dust (e.g., Al, Si, Fe) and sea salt (e.g., 

Na, Cl) particles.  

The Tapered Element Oscillating Monitor (TEOM) provides hourly measurements of 

PM2.5. It utilizes the frequency of vibration of an oscillator by aerosols to determine the 

mass (Allen et al., 1997). Trace gases like NO2 and SO2 are also measured by continuous 

gas monitors on an hourly basis through measurement networks.  

These in situ measurement networks provide high quality concentration data which often 

is considered as the ‘truth’. However, there are inherent uncertainties and limitations in 

these measurements. Volatilization of gases from the filter, and the trapping of organic 

gases in quartz filters induce negative and positive biases respectively (e.g., Hand et al., 

2011). Other limitations of in situ monitoring are the need for manual labor and the high 

cost of instrument deployment. Many developing countries are nearly devoid of routine 

network measurements despite their being afflicted by high pollution levels. The vertical 
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mixing, horizontal transport and distribution of aerosols and trace gases could also be 

studied through the measurements of their vertical profiles. Aircraft campaigns (e.g., Kim 

et al., 2015) are usually conducted over specific regions. 

The global distribution of aerosols cannot be determined through sparse measurements or 

campaigns. Remote sensing techniques offer insights into vertically resolved aerosol 

properties. For example, ground-based light detection and ranging instruments (LIDAR) 

provide the vertical backscatter profile of aerosols. However this valuable insight into the 

vertical distribution of aerosols is local in nature (spatially sparse). A nadir pointing active 

LIDAR aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations) satellite encircling the Earth in a sun synchronous polar orbit, is providing 

aerosol and cloud information backscatter profiles in spatially extensive sheets under the 

orbit line (Winker et al., 2007). 

Remore sensing techniques generally retrieve the total atmospheric column abundance of 

aerosol and trace gases. Beer’s law describes the scattering and absorption of light 

traversing a medium,    

                                             (1.1) 

where, Io and I are the source and scattered intensity of light respectively, at a particular 

wavelength. τ is the optical depth of the traversing medium which depends on the viewing 

angle θ, wavelength and other parameters. The optical thickness of aerosols in the light 

path is referred to aerosol optical depth (AOD). The AERONET (Aerosol Robotic 

Network) is a global collection of ground-based sun photometers providing reliable and 

accurate AOD measurements (Holben et al., 1998). 

)exp(0  II
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Aerosol optical depth can be retrieved through the solar backscatter measurements of 

satellite instruments (e.g., Martin, 2008). The downward viewing satellite monitors 

typically measure the total reflectance, R(Θ) (where Θ is the scattering angle) at specific 

wavelengths. For dark scenes, and small value of AOD, aerosol induced reflectance, Ra(Θ) 

can be calculated by,                       

                       (1-2) 

where, Rm(Θ) and Rs(Θ) are the molecular reflectance and surface reflectance respectively. 

If Ra is isolated, then the AOD is retrieved by accounting for the scattering properties of 

the aerosols,                                

                   (1-3)   

where, P(Θ) is the aerosol phase function which quantifies the angular distribution of 

scattering (Hansen and Travis, 1974). ϖ is the aerosol single scattering albedo which 

quantifies the scattered fraction of the incident radiation.  

The two MODIS (Moderate Resolution Imaging Spectroradiometer) instruments onboard 

the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites 

provide near-daily global-scale observations of AOD at a resolution of 10 km x 10 km 

(Levy et al., 2007). The MISR (Multiangle Imaging Spectroradiometer) instrument aboard 

the Terra satellite uses multi-angle, multi-spectral observations to provide AOD and other 

aerosol optical properties at a spatial resolution of 18 km x 18 km (Kahn et al., 2007).  

Solar backscatter measurements by satellites in the UV-visible region of the spectrum are 

used for retrieving trace gas column density. The trace gas optical depth, τ can be written                      

)(

)(






P

R
AOD a

)()()()(  sma RRRR
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as,                          (1-4) 

where, σ is the trace gas absorption cross section. Ω is the column abundance of the trace 

gas. A suite of satellites currently measure the column density of trace gases using UV 

spectrometry. For example, the OMI (Ozone Monitoring Instrument) sensor aboard 

NASA’s Aura satellite provides reliable NO2 column density data with a near daily 

coverage at spatial resolution of up to 13 km x 24 km. Satellite retrievals based on thermal 

infrared wavelengths generally have reduced sensitivity to ground-level trace gas species 

(e.g., NASA’s Tropospheric Emission Spectrometer satellite).  

1.4 Atmospheric chemistry modeling 

Modeling of atmospheric chemistry is another useful way to understand the global 

distribution and transport of atmospheric trace gases and aerosols (e.g., Fiore et al., 2009). 

Global chemical transport models (CTMs) solve the continuity equation of the chemical 

species for individual grid boxes defined in the Eulerian model (e.g., Bey et al., 2001; 

Horowitz et al., 2003; Huijnen et al., 2010). The major inputs needed for a CTM are the 

meteorological information and emission inventories of various species. A microphysics 

model is needed to simulate the size distribution of aerosols. CTMs simulate the temporal 

and spatial evolution of trace gases and aerosols at various resolutions.  

The basic radical and oxidant processes controlling the distribution of tropospheric 

chemicals are simulated through the ozone-NOx-hydrocarbon chemistry. The secondary 

inorganic aerosols are simulated by computing H2SO4-HNO3-NH3 thermodynamics 

(Fontoukis and Nenes, 2007). The simulation of organic species involves both primary BC 


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and OC emissions, and SOA formation from the oxidation of VOCs. Sea spray and dust 

emissions are parameterized using meteorological variables (e.g., wind fields).  

The loss processes for gas-aerosol species involve dry deposition, and wet deposition 

(scavenging in wet convective updrafts and by precipitation). 

Chemical transport models have critical roles in satellite AOD retrievals (e.g., Drury et al., 

2010) and interpretation, and in deriving the ground-level concentrations of aerosols 

through the coupling of satellite column observations with simulated ratio of column to 

ground-level concentrations (van Donkelaar et al., 2006; 2010). CTMs also contain 

information on speciated aerosols and emission sources. 

1.5 Outline of the thesis 

Epidemiologic and health impact studies clearly associate ambient outdoor concentrations 

of PM2.5 and its chemical composition with adverse health impacts (Lepeule et al., 2012; 

Bell et al., 2012). The extent and cause of these health risks, the differential toxicity of fine 

particulates, the chemical and emission sources of aerosols are not yet well understood due 

to the inadequacy of aerosol measurements. Spatial mapping of PM2.5 chemical 

composition could help in elucidating the health impacts of fine particulate matter.  

Several studies have found close relationships between satellite-retrieved AOD and 

ground-level PM2.5 (Wang and Christopher, 2003; Kloog et al., 2011). Chemical transport 

models are capable of simulating the atmospheric distribution of aerosols, and can offer 

information about the local, coincident relationship of satellite-retrieved AOD with 

ground-level PM2.5 (Liu et al., 2004; van Donkelaar et al., 2010). Moreover, model 
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sensitivity simulations can be used to quantify the contributions of specific emission 

sources to PM2.5. The first and major stage of this thesis was to estimate the chemical 

composition and emission sources of PM2.5 by combining satellite-retrieved AOD with 

CTM-simulated aerosol vertical profile and composition. This contribution was published 

(Philip et al., 2014b) in the journal “Environmental Science and Technology”.  

Particulate organic matter is of interest for air quality and climate research (Kanakidou et 

al., 2005). Ambient organic aerosol is a complex mix of thousands of different organic 

molecules. OA contains organic carbon as its major constituent. Traditional ground-based 

impaction or filter-based instruments measure organic carbon (e.g., Hand et al., 2012), but 

not OM due to difficulties in characterizing different components of OM. Moreover, most 

of the global models simulate primary organic aerosol as OC (e.g., Park et al., 2003). A 

common practice is to interpret OC through the use of a continental mean value of OM/OC 

(ranges from 1.4 to 2.1 μg/μgC).   

The characterization of organic aerosol requires spatially and seasonally resolved 

information about the ratio of OM to OC. The second stage of this thesis was to estimate 

the spatially and seasonally resolved global OM/OC ratio by combining Aerosol Mass 

Spectrometer measurements of submicron OA, and satellite-derived nitrogen dioxide 

concentrations. This contribution was published (Philip et al., 2014a) in the journal 

“Atmospheric Environment”.  

Chemical transport models involve considerable computational cost as temporal and spatial 

resolution increases. Fine temporal resolution offers simulation accuracy at the expense of 

computation time. Moreover, the concentrations of the simulated species are sensitive to 

http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib14
http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib39
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temporal resolution (Mallet et al., 2007; Santillana et al., 2016). Assessment is needed to 

understand how temporal resolution affects model performance. The third stage of this 

thesis was to examine the sensitivity of chemical transport models to temporal resolution, 

and to develop a practical strategy for optimizing model performance with minimal 

computational expense.  
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2.1 ABSTRACT 

Epidemiologic and health impact studies are inhibited by the paucity of global, long-term 

measurements of the chemical composition of fine particulate matter. We inferred PM2.5 

chemical composition at 0.1o x 0.1o spatial resolution for 2004-2008 by combining aerosol 

optical depth retrieved from the MODIS and MISR satellite instruments, with coincident 

profile and composition information from the GEOS-Chem global chemical transport 

model. Evaluation of the satellite-model PM2.5 composition dataset with North American 

in situ measurements indicated significant spatial agreement for secondary inorganic 

aerosol, particulate organic mass, black carbon, mineral dust and sea salt. We found that 

global population-weighted PM2.5 concentrations were dominated by particulate organic 

mass (11.9 ± 7.3 g/m3), secondary inorganic aerosol (11.1 ± 5.0 g/m3), and mineral dust 

(11.1 ± 7.9 g/m3). Secondary inorganic PM2.5 concentrations exceeded 30 g/m3 over East 
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China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from 

biofuel burning (11 g/m3) could be almost as large as from fossil fuel combustion sources 

(17 g/m3). These estimates offer information about global population exposure to the 

chemical components and sources of PM2.5. 

 

2.2 INTRODUCTION 

A large body of evidence has established that short-term human exposure to various 

chemical constituents of particulate matter (PM) with aerodynamic diameter less than 2.5 

m (PM2.5) is associated with adverse health effects including increased hospital 

admissions (e.g., Bell et al., 2009; Ito et al., 2011; Kim et al., 2012), cardiovascular, 

respiratory, and all-cause mortality (e.g., Burnett et al., 2000; Ostro et al., 2010; Zhou e al., 

2011; Cao et al., 2012; Son et al., 2012). However, the health impacts of long-term 

exposure to PM2.5 chemical components are less well understood, in contrast to the well-

established relationship of the total PM2.5 mass with adverse health effects (e.g., Pope et 

al., 2009; Brook et al., 2010; Lepeule et al., 2012). Epidemiologic and health impact 

assessments of PM2.5 composition have been impeded by the paucity of long-term 

measurements of global PM2.5 composition. Spatial mapping of aerosol composition could 

help in elucidating the health impacts of fine particulate matter components. 

Satellite remote sensing for surface air quality has developed rapidly over the last decade 

(Martin, 2008; Hoff and Christopher, 2009). Aerosol optical depth (AOD), an optical 

measure of the column integrated aerosol abundance in the atmosphere, can now be reliably 

retrieved from satellite remote sensing over land. Several studies have demonstrated close 
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relationships between AOD and PM2.5 (e.g., Wang and Christopher, 2003; Engel-Cox et 

al., 2004; Kloog et al., 2011) to the point that AOD is being used for operational air quality 

forecasting (Al-Saadi et al., 2005; van Donkelaar et al., 2012). However, the relation of 

AOD with PM2.5 is complex (Paciorek and Liu, 2009), and despite progress in retrieving 

aerosol composition from satellite (Liu et al., 2007; Kahn et al., 2007), current satellite 

instrumentation provides incomplete information on the chemical composition of PM2.5 

(Hoff and Christopher, 2009). 

Chemical transport models (CTMs) also have developed markedly over the last decade. 

Current CTMs are capable of simulating the atmospheric distribution of aerosols and of 

calculating the local, coincident relationship of satellite AOD with ground-level PM2.5 

concentration at a regional (Liu et al., 2004) and global (van Donkelaar et al., 2010) scale. 

CTMs also offer the capability of simulating the major chemical components of PM2.5, 

including secondary inorganic aerosol (sulfate, nitrate and ammonium), primary and 

secondary organic aerosol, black carbon, mineral dust, sea salt and aerosol water. These 

model developments offer information about the relation of AOD with ground-level PM2.5 

and its chemical composition. CTMs are also being used to quantify the contributions of 

specific emission sources to PM2.5 to inform mitigation strategies (e.g., Wang et al., 2009; 

Anenberg et al., 2011). 

Scientific understanding of PM2.5 chemical composition has been closely coupled with 

advances in measurements. For example, several in situ monitoring networks across the 

U.S. and Canada routinely measure the major components of PM2.5 (e.g., Malm et al., 1994; 

Dabek-Zlotorzynska et al., 2011). Numerous studies combined these in situ data to study 
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the spatial and temporal variation of PM2.5 chemical composition (e.g., Bell et al., 2007; 

Hand et al., 2011, 2012). Other established networks are the European Monitoring and 

Evaluation Programme (EMEP; http://www.emep.int/) and the Acid Deposition 

Monitoring Network in East Asia (EANET; http://www.eanet.cc/) which measure some 

components of PM2.5. Research measurements offer additional valuable data. These in situ 

measurements are too sparse to fully represent population exposure across the world. 

However, they provide an opportunity to evaluate PM2.5 composition inferred from satellite 

remote sensing and modeling (hereafter, satellite-model). 

We combined satellite-derived AOD with global modeling of coincident aerosol vertical 

profile and composition to produce a global long-term (2004-2008) mean ambient outdoor 

satellite-model PM2.5 composition dataset at a spatial resolution of 0.1o x 0.1o. We evaluated 

this dataset with in situ measurements across North America, and where available in the 

rest of the world. We combined model sensitivity simulations with satellite-derived AOD 

to estimate three major emission sources of total PM2.5 mass. We subsequently estimated 

the population-weighted concentrations of ambient PM2.5 chemical components and its 

major emission sources. 

2.3 MATERIALS AND METHODS 

2.3.1 PROCESSING SATELLITE AOD OBSERVATIONS 

We began with AOD retrievals from the two Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites and the 

Multiangle Imaging Spectroradiometer (MISR) instrument onboard Terra. Aerosol 

retrievals (collection 5) from each MODIS instrument provide near-daily global-scale 

http://www.emep.int/
http://www.eanet.cc/
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coverage of cloud-free regions at a resolution of 10 km × 10 km (Levy et al., 2007). The 

MISR retrieval algorithm (version 22) uses multiangle, multispectral observations to 

provide aerosol optical properties at a spatial resolution of 18 km × 18 km and global 

coverage of cloud-free regions within 9 days (Kahn et al., 2007). The operational MODIS 

and MISR retrievals together provide more reliable global AOD than from either 

instrument alone (van Donkelaar et al., 2010).  

Following van Donkelaar et al. (2010), we collected daily AOD retrievals of these three 

satellite sensors from 2004 to 2008 and regridded them separately onto a resolution of 0.1° 

× 0.1°. We then divided the world into nine regions with distinct surface type based on the 

MODIS BRDF/Albedo product (MOD43, Collection 5, Schaaf et al., 2002). We used the 

available ground-based sun photometer AOD measurements (Aerosol Robotic Network, 

AERONET, Holben et al., 1998) over these regions to identify the average monthly bias of 

satellite AOD for each region. We retained the daily satellite AOD observations with a 

local monthly bias less than ± (20% or 0.1). We included two textural filters for MODIS 

AOD to reduce cloud contamination by excluding data with no adjacent retrievals and grids 

with AOD and coefficient of variation greater than 0.5 (Zhang and Reid, 2006; Hyer et al., 

2011). These three different (MODIS/Terra, MODIS/Aqua, MISR/Terra) AOD data sets at 

0.1° × 0.1° resolution are the major observational inputs for this study. 

2.3.2 INFERRING PM2.5 CHEMICAL COMPOSITION FROM AOD 

Our approach to infer the 24-hr average ground-level dry PM2.5 concentrations of each 

chemical component, i from the observed aerosol optical depth, AODSat, involved a 

chemical transport model (GEOS-Chem) to calculate that relationship,   
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    (2-1)  

The major PM2.5 components included sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), 

total secondary inorganic aerosol (SIA, sum of SO4
2- , NO3

- and NH4
+ ions), particulate 

organic mass (OM), black carbon (BC), mineral dust and sea salt. The subscript CTM 

indicates values from a chemical transport model. The simulated conversion factor for the 

ith component, defined as the ratio of the ith component to AOD, relates the observed AOD 

to the ground-level PM2.5 components. The approach of distributing the observed AOD 

across simulated aerosol composition has similarity to AOD assimilation methods (e.g. 

Saide et al., 2013).  

We used the GEOS-Chem global CTM (http://geos-chem.org) to calculate the local 

conversion factors coincident with each satellite observation. The GEOS-Chem model 

simulates the temporal and three-dimensional spatial distributions of various aerosol 

components and gases using assimilated meteorology and emission inventories as major 

inputs [details in the Supporting Information (SI), section 2.6.1]. We conducted a global 

simulation at 2o x 2.5o spatial resolution and three nested regional simulations at 0.5o x 

0.667o resolution from 2004 to 2008 using assimilated meteorological data from the 

Goddard Earth Observing System (GEOS-5) at the NASA Global Modeling Assimilation 

Office (GMAO). The global simulation outputs are overwritten with nested regional 

simulations over North America, Europe and East Asia. The top left panel of Figure 2-2 

provides the boundaries of these regions. These nested simulations improve over the 2o x 

2.5o resolution used by van Donkelaar et al. (2010). The PM2.5 dry mass composition of the 

lowest layer of the model centered approximately at 70 meters above ground was taken to 

i
i CTM
Sat Sat

CTM

component
component AOD

AOD
 

http://geos-chem.org/
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represent the ground-level concentration. We averaged the simulated AOD between 10:00 

and 12:00 hrs local solar time to correspond with Terra overpass, and 13:00 and 15:00 

hours local solar time to correspond with Aqua overpass. We calculated the daily local 

Terra and Aqua conversion factors as the ratio of 24 hr average PM2.5 components to the 

corresponding AOD at satellite overpass period.  

We applied equation 2-1 to produce PM2.5 components from individual AOD observations 

from the two MODIS and the MISR instruments from 2004 to 2008. We accounted for 

incomplete sampling by scaling the monthly data with the ratio of monthly mean simulated 

composition sampled continuously versus sampled coincidently with satellite observations. 

We capped the variation from the monthly mean simulated composition at the species-

dependent uncertainties calculated by van Donkelaar et al. (2013). This cap represents a 

level of confidence in the simulation and avoids unrealistic conditions that can arise from 

the correlation of sensor sampling with PM2.5 composition. We required 20 successful 

satellite observations for each 0.1o grid box per five-year monthly mean; otherwise monthly 

mean simulated composition was used as occurred for 0.5% of the global population. We 

averaged the monthly data to obtain the long-term mean satellite-model combined PM2.5 

composition.  

We evaluated the satellite-model estimate with PM2.5 composition measurements from 

networks over North America, Europe, East Asia and elsewhere with annually 

representative composition measurements from publications as described in the SI (section 

2.6.2).  
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Figure 2-1: Combined aerosol optical depth (AOD) from the MODIS and MISR satellite 

instruments for 2004-2008. Gray denotes water or missing satellite AOD observations.  

 

The uncertainty associated with the satellite-model PM2.5 composition arises from bias in 

the satellite AOD retrieval, from simulating the PM2.5/AOD ratio, from the simulated PM2.5 

fractional composition, and from incomplete sampling. We represented the uncertainty in 

the satellite AOD retrieval bias as the maximum of either an absolute AOD of 0.1 or a 

relative value of 20%, since AERONET was used to identify and exclude regions and time 

periods with larger expected bias. We estimated the uncertainty in the model vertical profile 

bias as the annual mean difference in the PM2.5/AOD ratio if observations from the 

CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) satellite instrument (Winker 

et al., 2007) were used to adjust the ratio following van Donkelaar et al. (2013). We 

assessed the bias in the simulated PM2.5 fractional composition for each component (ratio 

of PM2.5 components to total PM2.5 mass) by comparison with available in situ 

observations. Uncertainty due to incomplete sampling was estimated as the difference 
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between the long-term mean simulated PM2.5 composition sampled continuously versus 

coincidently with the satellite observations. We assumed 100% sampling error for grids 

without satellite observations. The estimated uncertainty from a quadrature sum of these 

uncertainty terms may be underestimated since the errors contain systematic components, 

can be asymmetric, and can be correlated with each other and with PM2.5 composition. Thus 

we added the median global PM2.5 composition to the quadrature sum to better represent 

the unresolved contributions to total uncertainty especially in the regions with low values 

of PM2.5 composition.  

2.3.3 ESTIMATING THE PM2.5 EMISSION SOURCES 

PM2.5 constituents arise from different emission source sectors such as fossil fuel 

combustion, biofuel combustion and biomass burning. Fossil fuel combustion includes 

burning of coal, oil, and gas from vehicular and industrial sources. Biofuel combustion 

includes burning of wood and crop residue for domestic cooking and heating. Biomass 

burning includes both natural open fires and anthropogenic activities such as land cleaning 

and burning in fields. Quantitative determination of these sectoral contributions to PM2.5 

can inform mitigation strategies.  

We therefore estimated the sectoral sources of total PM2.5 using sensitivity simulations to 

exclude specific emission sectors. For this, we performed three global simulations 

(sensitivity simulations) for a year (2005) by excluding fossil fuel combustion, biofuel 

combustion and biomass burning sources. We scaled the PM2.5 relative variation from 

sensitivity simulations (compared with a base simulation) to the total PM2.5 mass (sum of 
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satellite-model PM2.5 composition estimates). We calculated sectoral contributions of 

PM2.5 at 35% relative humidity to conform with PM2.5 measurement standards.  

We calculated the regional population exposure for the GBD regions (Global Diseases, 

Injuries, and Risk Factors 2010 study; the top panel of Figure 2-9 shows the 21 GBD 

regions) using the population data at 0.1o resolution for 2005 described in Brauer et al. 

(2012), and the satellite-model PM2.5 composition and emission sources.  

 

Figure 2-2: Mean ratio of PM2.5 composition to AOD for 2004-2008. PM2.5 composition is 

represented as dry mass. Abbreviations are Secondary Inorganic Aerosol (SIA; the sum of 

SO4
2-, NO3

- and NH4
+), Organic Mass (OM), and Black Carbon (BC).  Gray denotes water. 

The top-left panel contains the boundaries of the three nested GEOS-Chem regions. 
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2.4 RESULTS AND DISCUSSION 

Figure 2-1 contains a map of the long-term (2004-2008) mean AOD from the MODIS and 

MISR satellite instruments. Enhancements exist over anthropogenic pollution sources of 

South and East Asia, over mineral dust source regions of the Sahara, and over biomass 

burning regions of South America, Central Africa, and Equatorial and Southeast Asia.  

Figure 2-2 shows the long-term (2004-2008) mean GEOS-Chem simulated ratio of PM2.5 

components to AOD. The ratio represents the relative importance of various PM2.5 

components to the total AOD over different regions of the globe. The mass/AOD ratio is 

high over regions with relatively large abundance of a given PM2.5 component near the 

ground. Non-hygroscopic components (e.g. mineral dust) exhibit high conversion factors 

due to the low contribution of aerosol water to AOD. The high mass/AOD ratios for 

secondary inorganic, OM and mineral dust indicate that these components are the dominant 

contributors to global AOD over land. Secondary inorganic PM2.5 dominates over industrial 

regions. Particulate organic mass from biomass burning is the primary contributor to AOD 

over the Amazon, Central Africa, Northern India and Oceania.  Mineral dust is the primary 

contributor to AOD over deserts. Black carbon is a small component of AOD, but is more 

apparent in local hotspots. Sea salt generally has the lowest conversion factor over land.  

Figure 2-3 shows the satellite-model and in situ observations of North American PM2.5 

composition. The in situ observation of a large sulfate burden in the East is reproduced in 

the satellite-model product. Nitrate and ammonium are enhanced south of the Great Lakes 

where intense agriculture sources of ammonia and weak sulfur sources contribute to excess 

ammonia gas that is available for forming ammonium nitrate. The Californian nitrate 
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enhancements are under-predicted reflecting difficulties in representing this heterogeneous 

region (Walker et al., 2012; Heald et al., 2012). Together these secondary inorganic ions 

comprise a major fraction of the total PM2.5 in the Eastern U.S., reaching concentrations of 

approximately 10 g/m3. The spatial pattern of particulate organic mass over the 

southeastern U.S. is generally captured in the satellite-model product. Black carbon 

concentrations exhibit hotspots in industrial regions; performance elsewhere is more 

variable given the stochastic nature of fires. Fine-mode dust and fine sea salt emissions are 

weak contributors to PM2.5 mass throughout the continent with typical mass concentrations 

below 1 g/m3. The primary exception is for mineral dust over deserts in the southwest.  

Figure 2-4 shows scatter plots of satellite-model PM2.5 components with North American 

in situ observations, and Table 2-1 contains detailed comparison statistics of in situ with 

either the satellite-model or pure GEOS-Chem PM2.5 composition. The correlation between 

satellite-model sulfate and ground monitors is high (r = 0.95, slope = 0.89). Concentrations 

are also well predicted for nitrate (r = 0.68, slope = 1.01) and ammonium (r = 0.89, slope 

= 0.98). The performance for OM is weaker (r = 0.45, slope = 1.17) likely due to the 

difficulty in simulating secondary organic aerosol and fires, and due to sporadic 

measurements of stochastic fire events. Black carbon, mineral dust and sea salt have 

modest agreement with in situ measurements with correlations of 0.56, 0.58 and 0.62 

respectively. The bias for all components is within 35% (Figure 2-4). The in situ 

observations are similarly correlated with the satellite-model product and the GEOS-Chem 

simulation, with noteworthy improvements in the slope versus the GEOS-Chem simulation 

for secondary inorganic ions. 
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Figure 2-3: PM2.5 composition from satellite-model and in situ observations across North 

America. PM2.5 composition is represented as dry mass. Abbreviations are Secondary 

Inorganic Aerosol (SIA; the sum of SO4
2-, NO3

- and NH4
+), Organic Mass (OM), and Black 

Carbon (BC). Gray denotes water or missing in situ measurement data. Scatter plots are in 

Figure 2-4.  
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Figure 2-5 shows the global satellite-model estimate of long-term mean PM2.5 composition 

where the differently colored circles represent the location and value of the in situ 

observations used to evaluate the dataset outside of North America. Detailed statistics are 

given in Table 2-1. Secondary inorganic aerosol concentrations over East China exceed 30 

g/m3 (Figure 2-5). About half of the simulated secondary inorganic aerosol is sulfate 

which is consistent with in situ measurements (Yang et al., 2011). The Indo-Gangetic Plain, 

China, and biomass burning regions of South America and Central Africa are highlighted 

in the OM map. Previous studies have also noted pronounced OM in these regions 

(Chawdhury, 2004; Fu et al., 2012). Hotspots of black carbon are most apparent in China 

and the Indo-Gangetic Plain where in situ measurements also indicate enhancements (Fu 

et al., 2012; Hopke et al., 2008).  

 

Figure 2-4: Comparison of PM2.5 composition from the satellite-model product versus in 

situ observations across North America. The solid black line is the 1:1 line, and the dashed 

line is the best fit line. The inset contains the Pearson correlation coefficient as well as the 

slope and intercept from reduced major axis regression (Miller and Kahn, 1962). 
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Figure 2-5: Satellite-model global long-term mean (2004-2008) PM2.5 composition. PM2.5 

composition is represented as dry mass. Gray denotes water. Values from in situ 

observations are overlaid as colored circles. Table 2-1 contains the detailed comparison 

statistics.  

 

Mineral dust is the largest contributor to PM2.5 over the desert regions of North Africa, 

Middle East, and Central Asia with concentrations greater than 50 g/m3 over broad 

regions. The satellite-model product exhibits high correlations for secondary inorganic 

aerosol (r = 0.93) and its components, with slopes within 20% of unity (Table 2-1). 

Carbonaceous aerosols are again less well estimated; sparse in situ monitors may play a 

role for fires. The satellite-model product outperforms the pure model simulation for all 
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components (e.g., for secondary inorganic aerosols the slope improved from 0.64 to 0.91; 

for organic matter the correlation improved from 0.61 to 0.67). 

Table 2-2 summarizes the global and regional statistics of long-term (2005-2008) 

population exposure to ambient PM2.5 composition. Our estimates suggest that particulate 

organic mass is the dominant form of ambient PM2.5 with a global population-weighted 

concentration of 12 g/m3. Other major contributors to global population-weighted PM2.5 

mass are secondary inorganic components (11 g/m3) and mineral dust (11 g/m3). The 

secondary inorganic components are dominated by sulfate (6.2 g/m3), followed by 

ammonium (2.7 g/m3) and nitrate (2.2 g/m3). On a regional scale, secondary inorganic 

PM2.5 concentrations are noteworthy in East Asia (28 g/m3) and South Asia (11 g/m3). 

The mean ambient particulate organic mass concentration is 22 g/m3 in both South Asia 

and East Asia. Mineral dust concentrations exceed 20 g/m3 in West Africa, North Africa, 

Middle East, and Central Asia. These PM2.5 values are higher than previous work (van 

Donkelaar et al., 2010; 2012) arising from our use of satellite AOD for all fine mode 

fraction values, and increased carbonaceous aerosol emissions over East Asia as described 

in the SI (section 2.6).  

Figure 2-6 shows the total estimated absolute uncertainty of the satellite-model PM2.5 

composition as determined by propagation of error. For many species, the primary source 

of uncertainty arose from the simulated PM2.5 fractional composition. These uncertainties 

were 27% for sulfate, 38% for nitrate, 29% for ammonium, 29% for SIA, 45% for OM, 

36% for BC, 52% for dust, and 122% for sea salt. In regions of low AOD (below 0.1), 

uncertainty in the satellite AOD retrieval can exceed 100%. Uncertainty due to model 
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vertical profile bias was 10% - 30% in most regions with more severe exceptions in 

convective regions (Figure 2-7).  

 

Table 2-1: Comparison of PM2.5 composition from the simulation and satellite-model 

product versus in situ observations across North America, and globally (non-North 

American). Abbreviations are Secondary Inorganic Aerosol (SIA; the sum of SO4
2-, NO3

- 

and NH4
+), Organic Mass (OM), and Black Carbon (BC). “Satellite” and “Simulation” in 

the second column represents satellite-model composition, and complete model simulation 

respectively at a spatial resolution of 0.1o x 0.1o. Correlation statistics are calculated with 

reduced major axis regression (Miller and Kahn, 1962).  
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Table 2-2: Population-weighted regional PM2.5 composition and three major emission 

sources contributing to PM2.5. The top panel of Figure 2-9 shows the borders of GBD 

(Global Diseases, Injuries, and Risk Factors 2010 study) regions. Abbreviations are 

Secondary Inorganic Aerosol (SIA; the sum of SO4
2-, NO3

- and NH4
+), Organic Mass (OM), 

and Black Carbon (BC).   

 

Figure 2-9 shows the contributions to long-term mean PM2.5 from fossil fuel combustion, 

biofuel combustion, and biomass burning. Enhanced anthropogenic sources are apparent 

over industrial and populated regions. Biofuel sources over Asia reflect domestic cooking 

and heating with non-fossil fuel sources. Biomass burning dominates in Central Africa and 

the Amazon. Biogenic sources, mineral dust, and sea salt constitute the remaining portion 

of PM2.5.  

However, uncertainty on a monthly basis could be even higher due to seasonal differences 

in vertical mixing (Ford and Heald, 2012). Sampling uncertainty was below 30% 

Region PM2.5 Composition PM2.5 Emission Population 

SO4
2-

NO3
-

NH4
+

SIA OM BC Dust Seasalt Fossilfuel Biofuel Biomass

(µg/m
3
) (%)

World 6.2 2.2 2.7 11.1 11.9 2.5 11.1 0.6 17.1 11.2 1.3 100.0

Asia Pacific, High Income 5.5 1.5 2.0 9.0 4.8 1.9 3.7 0.9 16.2 2.1 0.3 2.7

Asia, Central 3.2 0.6 1.3 5.1 3.7 0.5 21.3 0.1 7.2 6.5 0.3 1.3

Asia, East 14.5 6.6 7.0 28.0 21.7 5.7 11.7 0.5 45.8 20.2 0.3 21.2

Asia, South 6.9 1.1 2.8 10.8 21.6 3.9 14.3 0.5 15.8 24.1 0.6 22.9

Asia, South East 3.6 0.2 1.1 5.0 8.0 1.2 1.6 1.0 6.7 5.4 3.2 8.7

Australasia 0.7 0.1 0.2 1.0 0.8 0.1 1.1 1.0 1.1 0.2 0.2 0.4

Caribbean 1.2 0.2 0.2 1.6 1.0 0.2 4.8 1.7 1.8 0.1 0.2 0.5

Europe, Central 3.8 3.6 2.5 9.9 4.1 0.8 3.2 0.3 13.7 4.4 0.2 1.9

Europe, Eastern 2.9 2.3 1.7 6.9 2.9 0.4 2.8 0.2 9.0 2.8 0.3 3.3

Europe, Western 2.3 3.2 1.7 7.2 2.1 0.7 3.3 0.8 10.6 1.4 0.2 6.1

Latin America, Andean 2.1 0.0 0.6 2.7 3.2 0.2 0.1 0.5 2.8 0.6 2.9 0.8

Latin America, Central 3.1 0.4 1.0 4.4 2.5 0.5 1.6 0.7 5.2 0.4 1.4 3.4

Latin America, Southern 1.9 0.1 0.5 2.4 2.7 0.3 2.4 0.5 3.0 1.2 1.0 0.9

Latin America, Tropical 1.1 0.1 0.4 1.6 3.4 0.3 0.2 0.6 2.1 1.6 1.8 2.9

North Africa/Middle East 3.5 0.3 1.2 4.9 1.7 0.4 29.0 0.6 6.7 0.8 0.2 6.4

North America, High Income 2.9 1.3 1.3 5.6 3.9 0.9 0.7 0.4 10.2 0.5 0.2 5.0

Oceania 0.5 0.0 0.1 0.6 0.2 0.0 0.1 0.5 0.1 0.1 0.1 0.1

Sub-Saharan Africa, Central 1.6 0.0 0.5 2.1 14.8 0.8 4.9 0.3 1.3 3.9 14.4 1.3

Sub-Saharan Africa, East 1.1 0.1 0.3 1.4 4.6 0.5 9.2 0.6 1.0 3.7 2.7 4.8

Sub-Saharan Africa, Southern 1.9 0.1 0.6 2.6 3.4 0.3 0.7 0.6 3.2 0.9 2.8 1.0

Sub-Saharan Africa, West 1.5 0.1 0.5 2.1 5.1 0.4 45.7 0.3 2.4 2.5 5.4 4.4
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throughout low latitudes except for seasonally convective regions (Figure 2-8) with cloud 

cover that inhibits observations. Decreases in observation frequency at high latitudes 

increased uncertainty as a result of incomplete sampling especially for nitrate and 

carbonaceous components that have large seasonal variation. The global population-

weighted mean uncertainty for sulfate (2.8 g/m3), nitrate (1.2 g/m3), ammonium (1.2 

g/m3), secondary inorganic PM2.5 (5.0 g/m3), organic mass (7.3 g/m3), black carbon 

(1.2  g/m3), mineral dust (7.9 g/m3), and sea salt (0.8 g/m3) ranged from ~45% of the 

population-weighted concentrations for many species (Table 2-2) to ~142% for sea salt. 

 

Figure 2-6: Absolute uncertainty of satellite-model PM2.5 composition determined by 

propagation of error. Gray denotes water.  
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Table 2-2 contains the global and regional statistics of population exposure to various 

source sectors of PM2.5. Population-weighted PM2.5 is dominated by fossil fuel combustion 

(17 g/m3) followed by biofuel combustion (11 g/m3) and biomass burning (1.3 g/m3). 

PM2.5 is high from emissions of fossil fuel combustion over East Asia (46 g/m3), biofuel 

combustion over South Asia (24 g/m3) and East Asia (20 g/m3), and biomass burning 

over Central Africa (14 g/m3). Although these sensitivity simulations are uncertain, it is 

noteworthy that outdoor PM2.5 from biofuel combustion is comparable to that from fossil 

fuel combustion in South Asia. This is in line with previous findings of high ambient PM2.5 

exposure from biofuel burning (Lim et al., 2012; Stone et al., 2010), in addition to PM2.5 

exposure from household air pollution (Balakrishnan et al., 2013).  

 

Figure 2-7: Uncertainty in PM2.5 due to GEOS-Chem model vertical profile bias 

determined by comparison with CALIOP satellite observations of aerosol extinction 

following van Donkelaar et al. (2013). Gray denotes water.  
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The chemical composition of ambient ground-level fine particulate mass is of relevance 

for epidemiological and health impact studies (Health Effects Institute, 2004; National 

Research Council, 2004; Bell et al., 2012; U.S. EPA., 2009). To our knowledge, these 

estimates, developed from satellite AOD observations and CTM simulations, offer the first 

assessment of the long-term exposure to all major PM2.5 chemical components throughout 

the world. 

 

Figure 2-8: Uncertainty in satellite-model PM2.5 composition due to incomplete sampling 

estimated as the difference between the long-term mean simulated PM2.5 composition 

sampled continuously versus coincidently with the satellite observations. Gray denotes 

water.  
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Multiple opportunities exist to improve the estimates. Advances in satellite remote sensing 

(Mishchenko et al., 2007) could yield more observational information on aerosol 

components. Future developments in the modeling of aerosol composition such as organic 

mass are needed. Other emerging sources of information on the sources of aerosol 

precursors include satellite observations of trace gases (Streets et al., 2013) such as NO2 

(Boersma et al., 2011), SO2 (Lee et al., 2011), and NH3 (Clarisse et al., 2009). Assimilation 

of these components into a chemical transport model would provide additional constraints 

on PM2.5 composition. Finer resolution satellite retrievals and simulations would better 

resolve intra-urban gradients. Trace metals are an important PM2.5 component that should 

be added as their simulation capability improves.  
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2.6 SUPPORTING INFORMATION: GLOBAL CHEMICAL COMPOSITION OF 

AMBIENT FINE PARTICULATE MATTER FOR EXPOSURE ASSESSMENT 

2.6.1 DESCRIPTION OF THE GEOS-CHEM AEROSOL SIMULATION 
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We used the GEOS-Chem global three-dimensional chemical transport model (version 9-

01-03; http://geos-chem.org) to calculate the local conversion factors (ratio of component 

to AOD) coincident with each satellite observation of AOD. The GEOS-Chem uses 

assimilated meteorological data from the Goddard Earth Observing System (GEOS-5) at 

the NASA Global Modeling Assimilation Office (GMAO). The meteorological data 

includes instantaneous fields, surface variables (e.g., mixed layer depth) at a temporal 

resolution of 3 hours, and other variables at 6 hours. We reduced the stratospheric layers 

of the native GEOS-5 vertical grids (72 hybrid eta levels) to 47 for computational 

expediency. The vertical layers of the current model extend from the Earth’s surface to the 

top of the atmosphere (0.01 hPa) with 47 vertical grids. The lowest layer of the model is 

centered at approximately 70 meters, and used here to represent the ground-level aerosol 

concentrations.  

The native horizontal resolution for the GEOS-5 meteorological data is 0.5o x 0.667o. First, 

we used data regridded to a coarser resolution of 2o x 2.5o for computational expediency, 

and performed the global simulation at this resolution. Second, we conducted three regional 

(nested) simulations at the native horizontal resolution of 0.5o x 0.667o for three regions of 

the globe: North America (140oW–40oW, 10oN–70oN), Europe (30oW–50oE, 30oN–70oN) 

and East Asia (70oW–150oW, 11oS–55oN). This higher resolution simulation preserves the 

finer spatial patterns of the chemical components (Chen et al., 2009; van Donkelaar et al., 

2012). The global simulation outputs were used as boundary conditions for the regional 

grids. We spun up the model for one month before each global and regional simulation to 

remove the effects of initial conditions on the aerosol simulation. The dynamical processes 

(transport and convection) have a temporal resolution of 10 minutes for the nested 

http://geos-chem.org/
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simulations, and 15 minutes for the global simulation. We used a timestep of 60 minutes 

for chemical processes and emissions for both nested and global resolutions. We used full 

mixing of species below the mixed layer, with a correction to the GEOS-5 predicted 

nocturnal mixed layer depth as described in Heald et al. (2012) and Walker et al. (2012).  

 

Figure 2-9: Estimate of three major emission sources contributing to PM2.5. Gray denotes 

water. The thick border lines in the top panel represent the GBD (Global Diseases, Injuries, 

and Risk Factors 2010 study) regions. 
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GEOS-Chem simulates HOx-NOx-VOC-ozone-aerosol chemistry in detail (Bey et al., 

2001; Park et al., 2004). Park et al. (2004) describe the simulation of secondary inorganic 

ions coupled to gas phase chemistry. The simulation of aerosol-gas interactions are through 

the aerosol extinction effects on photolysis rates (Martin et al., 2003b), and heterogeneous 

chemistry (Jacob, 2000) with updated N2O5 (Evans and Jacob, 2005) and HO2 (Thornton 

et al., 2008) uptake by aerosols. The ISORROPIA II thermodynamic scheme (Fountoukis 

and Nenes, 2007) is used for partitioning gases and aerosols (Pye et al., 2009). GEOS-

Chem uses in-cloud sulfate formation using the cloud liquid water content and cloud 

volume fractions of the GEOS-5 data (Fisher et al., 2011). We artificially limited the nitric 

acid to two thirds of its value for each timestep to correct for an overestimation in HNO3 

found in comparison with measurements over the eastern U.S. (Heald et al., 2012). GEOS-

Chem calculates AOD based on the relative humidity dependent aerosol optical properties 

as described in Martin et al. (2003b) with an updated growth factor for organic matter, and 

updates to ammonium sulfate optics. Modification to dust optics is described in Ridley et 

al. (2012).  

The GEOS-Chem simulation uses emission inventories of aerosol and its precursor gases 

as input. We used regional anthropogenic emission inventories of NOx and SO2 over 

Canada (CAC; http://www.ec.gc.ca/inrp‐npri/), the U.S. (Environmental protection 

Agency-National Emissions Inventory 2005; 

http://www.epa.gov/ttnchie1/net/2005inventory.html), Mexico (BRAVO; Kuhns et al., 

2005), Europe (EMEP; http://www.emep.int/), and East Asia (Zhang et al., 2009) for NOx; 

(Lu et al., 2011) for SO2. Elsewhere, we used anthropogenic emissions from EDGAR v32-

FT2000 global inventory for 2000 (Olivier, 2005), and scaled it based on the energy 

http://www.emep.int/
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statistics to subsequent years (van Donkelaar et al., 2008). Anthropogenic NOx emissions 

were scaled from 2006 to subsequent years based on the NO2 column density data retrieved 

from the OMI satellite sensor (Lamsal et al., 2011). GEOS-Chem includes soil NOx 

(Yienger and Levy, 1995; Wang et al., 1998), lightning NOx (Price and Rind, 1992; 

Sauvage et al., 2007; Martin et al., 2007; Hudman et al., 2007; Murray et al., 2012), ship 

SO2 from the ICOADS inventory (Lee et al., 2011; Vinken e al., 2011), and volcanic 

emissions (Fisher et al., 2011). Seasonality for NOx and SO2 is based on the statistics from 

regional inventories. GEOS-Chem includes a diurnal variation for NOx as described in van 

Donkelaar et al. (2008). Global ammonia emission in GEOS-Chem is from Bouwman et 

al. (1997) with a seasonality imposed by Park et al. (2004). Spatial and seasonal NH3 

variation over Canada is based on monthly varying agricultural activity statistics provided 

by the Agriculture Canada (Sheppard et al., 2011). Other regional inventories are over the 

U.S. (EPA-NEI), Europe (EMEP), and East Asia (Streets et al., 2003). East Asian annual 

emissions are superimposed with a relative seasonal variation (Fisher et al., 2011, Kharol 

et al., 2013), and a reduction of 30% (Kharol et al., 2013) motivated by comparison with 

other inventories  (Huang et al., 2012a; 2012b). We doubled NH3 emissions over California 

as suggested by Heald et al. (2012) and Walker et al. (2012). 

GEOS-Chem carbonaceous aerosols include black carbon (BC), organic carbon (OC), and 

secondary organic aerosols (SOA) (Park et al., 2003; Wang et al., 2011). The global 

anthropogenic OC and BC inventory is from Bond et al. (2007), with the Cooke et al. 

(1999) inventory over North America, and the Lu et al. (2011) inventory over East Asia. 

We doubled the East Asian OC and BC emissions based on a comparison with top-down 

inversion of regional inventories by Fu et al. (2012), and recognize there is ongoing 
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discussion on this topic (Wang et al., 2013). GEOS-Chem simulates the formation of SOA 

from the oxidation of volatile organic compounds (Henze and Seinfeld, 2006; Liao et al., 

2007; Fu et al., 2008). Global biomass burning emission is from the GFED-3 inventory at 

3-day temporal resolution (van der Werf et al., 2010; Mu et al., 2011), and global biofuel 

emission is from Yevich and Logan (49) superimposed with the regional inventories 

mentioned above. We calculated OM as the sum of model OC and SOA. We used the 

OM/OC ratio estimated from observations by the OMI satellite sensor and Aerosol Mass 

Spectrometer to convert OC to OM to account for the presence of non-carbon elements 

(Philip et al., 2014a).  

GEOS-Chem includes the simulation of natural particles such as mineral dust and sea salt. 

The mineral dust simulation is described by Fairlie et al. (2007). We used the first dust size 

bin and 37% of the second dust size bin (out of the 4 bins) to get a PM2.5 size range.  Sea 

salt emission in the model is described by Alexander et al. (2005) with updates by Jaegle 

et al. (2011). We use sea salt accumulation mode size range from 0.1 to 1 μm, which in 

typical coastal conditions represents the approximate PM2.5 size range.  

GEOS-Chem includes dry deposition (Wang et al., 1998), and wet deposition (Wang et al., 

2011; Liu et al., 2001; Amos et al., 2012).  

Numerous studies have evaluated the GEOS-Chem ground-level aerosol concentrations 

and its seasonal variation (e.g., Park et al., 2003; 2004; 2006;  Fairlie et al., 2007; Pye et 

al., 2009; Heald et al., 2012; Walker et al., 2012; Leibensperger et al., 2012; Fu et al., 2012; 

Zhang et al., 2012a). Vertical profiles of aerosol composition were also compared with 

various aircraft observations (e.g., van Donkelaar et al., 2008; Drury et al., 2010; Heald et 
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al., 2011), and with CALIOP satellite observations (van Donkelaar et al., 2010; 2013; Ford 

and Heald, 2012). Six-year coincident comparisons of GEOS-Chem and CALIOP suggest 

simulated near-surface to column extinction ratios are often within 25%, but can approach 

a factor of two in certain seasons and locations (van Donkelaar et al., 2013). 

 

Table 2-3: Global in situ data collected from publications. “NA” represents data not 

available or filtered out.  

 

Sl. No. Site/City Country Latitude Longitude Study Period SO4
2-

NO3
-

NH4
+

OC BC Size Source

degree degree µg/m
3

µg/m
3

µg/m
3

µg/m
3

µg/m
3

1 Beijing China 40.3 116.3 Mar 2005 - Feb 2006 15.8 10.1 7.3 34.4 8.3 PM2.5 Yang et al., 2011

2 Miyun Resevoir China 40.5 116.8 Mar 2005 - Feb 2006 13.0 6.4 6.1 21.9 3.8 " "

3 Chongqing China 29.6 106.5 Mar 2005 - Feb 2006 25.5 5.3 7.9 42.2 6.5 " "

4 Dadukou China 29.5 106.5 Mar 2005 - Feb 2006 23.4 5.1 7.6 47.2 6.4 " "

5 Jinyun China 29.8 106.4 Mar 2005 - Feb 2006 24.0 4.8 7.3 41.2 4.7 " "

6 Hok Tsui Hong Kong 22.2 114.3 Nov 2004 - Oct 2005 11.9 0.8 3.1 4.3 2.1 " So et al., 2007

7 Tsuen Wan Hong Kong 22.4 114.1 Nov 2004 - Oct 2005 13.2 1.6 4.1 7.4 6.0 " "

8 Mong Kok Hong Kong 22.3 114.1 Nov 2004 - Oct 2005 12.8 2.4 4.4 11.9 13.7 " "

9 Delhi India 28.4 77.1 Mar 2001 - Jan 2002 10.9 6.1 6.4 40.3 10.5 " Chowdhury, 2004

10 Mumbai India 22.6 88.3 Mar 2001 - Jan 2002 6.9 1.6 2.0 12.6 4.6 " "

11 Kolkata India 18.7 72.8 Mar 2001 - Jan 2002 7.2 2.9 3.6 37.1 12.1 " "

12 Lahore Pakistan 31.5 74.3 Jan 2007 - Jan 2008 10.5 6.6 3.6 64.4 11.2 " Stone et al., 2010

13 Brazil Brazil 23.0 43.2 Sep 2003 - Sep 2004 1.5 0.3 0.6 NA 2.1 " Soluri et al., 2007

14 Brazil Brazil 22.9 43.2 Sep 2003 - Sep 2004 1.9 0.4 0.7 NA 3.1 " "

15 Brazil Brazil 22.9 43.2 Sep 2003 - Sep 2004 2.2 0.5 0.7 NA 2.9 " "

16 Brazil Brazil 23.0 43.4 Sep 2003 - Sep 2004 1.4 0.3 0.4 NA 1.3 " "

17 Brazil Brazil 23.0 43.3 Sep 2003 - Sep 2004 1.8 0.5 0.5 NA 2.7 " "

18 Brazil Brazil 22.8 43.4 Sep 2003 - Sep 2004 1.5 0.4 0.5 NA 3.2 " "

19 Brazil Brazil 23.0 43.6 Sep 2003 - Sep 2004 1.5 0.4 0.5 NA 1.2 " "

20 Brazil Brazil 22.9 43.6 Sep 2003 - Sep 2004 1.7 0.4 0.6 NA 2.4 " "

21 Brazil Brazil 22.9 43.4 Sep 2003 - Sep 2004 1.7 0.4 0.6 NA 2.5 " "

22 Brazil Brazil 22.9 43.7 Sep 2003 - Sep 2004 1.7 0.3 0.5 NA 1.7 " "

23 Tel Aviv Israel 32.1 34.8 Jan 2007 - Dec 2007 5.2 0.7 NA 4.7 1.5 " Sarnat et al., 2010

24 Haifa Israel 32.8 35.0 Jan 2007 - Dec 2007 5.2 1.4 NA 3.0 1.0 " "

25 W. Jerusalem Israel 31.8 35.2 Jan 2007 - Dec 2007 4.6 1.0 NA 4.1 1.1 " "

26 Hebron Palestine 31.5 35.1 Jan 2007 - Dec 2007 3.8 0.9 NA 5.3 1.8 " "

27 E. Jerusalem Palestine 31.8 35.2 Jan 2007 - Dec 2007 4.4 0.9 NA 5.2 2.2 " "

28 Nablus Palestine 32.2 35.2 Jan 2007 - Dec 2007 4.3 1.0 NA 8.2 5.6 " "

29 Amman Jordan 32.0 35.8 Jan 2007 - Dec 2007 4.5 1.0 NA 6.2 2.4 " "

30 Balearic islands Spain 39.6 2.6 Jan 2004 - Feb 2005 3.9 0.9 2.0 2.9 0.5 " Pey et al., 2009

31 Kuwait Kuwait 29.3 48.0 Feb 2004 - Jan 2005 9.9 1.8 NA 3.7 2.5 " Brown et al., 2008

32 Chengdu China 30.7 104.0 Jan 2006 - Dec 2007 40.5 NA 14.0 36.3 10.8 PM10 Zhang et al., 2012b

33 Dalian China 38.9 121.6 Jan 2006 - Dec 2007 23.3 NA 7.7 20.2 5.3 " "

34 Dunhuang China 40.2 94.7 Jan 2006 - Dec 2007 6.6 NA 0.4 26.7 3.6 " "

35 Gaolanshan China 36.0 105.9 Jan 2006 - Dec 2007 16.7 NA 6.5 19.1 3.8 " "

36 Gucheng China 39.1 115.8 Jan 2006 - Dec 2007 35.5 NA 14.4 38.5 11.0 " "

37 Jinsha China 29.6 114.2 Jan 2006 - Dec 2007 26.6 NA 7.6 15.3 3.0 " "

38 Lhasa China 29.7 91.1 Jan 2006 - Dec 2007 2.9 NA 0.2 21.7 3.8 " "

39 LinAn China 30.3 119.7 Jan 2006 - Dec 2007 21.7 NA 6.8 15.1 4.3 " "

40 Longfengshan China 44.7 127.6 Jan 2006 - Dec 2007 10.0 NA 2.5 15.9 2.3 " "

41 Nanning China 22.8 108.4 Jan 2006 - Dec 2007 21.6 NA 5.8 17.9 4.0 " "

42 Panyu China 23.0 113.4 Jan 2006 - Dec 2007 26.8 NA 8.6 22.3 7.9 " "

43 Taiyangshan China 29.2 111.7 Jan 2006 - Dec 2007 28.8 NA 7.9 13.8 2.7 " "

44 Xian China 34.4 109.0 Jan 2006 - Dec 2007 46.7 NA 14.4 42.6 12.7 " "

45 Zhengzhou China 34.8 113.7 Jan 2006 - Dec 2007 45.0 NA 16.5 29.2 9.2 " "

46 Akdala China 47.1 88.0 Jul 2004 - Mar 2005 3.3 NA 0.6 2.9 0.4 " Qu et al., 2008; 2009

47 Shangri-La, Zhuzhang China 28.0 99.7 Jul 2004 - Mar 2005 1.6 NA 0.2 3.1 0.3 " "



41   

  

2.6.2 DESCRIPTION OF THE GROUND-BASED PM2.5 COMPOSITION 

MEASUREMENTS  

We utilized filter-based in situ measurements by several networks, such as, the National 

Air Pollution Surveillance Network (NAPS) and the Canadian Air and Precipitation 

Monitoring Network (CAPMoN) over Canada (http://www.on.ec.gc.ca/natchem). The 

U.S. measurement networks include the Clean Air Status and Trends Network (CASTNET, 

http://java.epa.gov/castnet/epa_jsp/sites.jsp), the Interagency Monitoring of Protected 

Visual Environments (IMPROVE, http://vista.cira.colostate.edu/improve/), and the U.S. 

Environmental Protection Agency Air Quality System (EPA-AQS, 

http://www.epa.gov/ttn/airs/airsaqs/). The NAPS network provides 24-hr composition 

every third day across Canada as described in Dabek-Zlotorzynska et al. (2011). We used 

weekly average sulfate and ammonium ion measurements from the CAPMoN and the 

CASTNET networks even though they are devoid of PM2.5 filters (Zhang et al., 2008). The 

IMPROVE network provides 24-hr PM2.5 composition data except for ammonium for every 

third day from several national parks in the U.S.  The EPA-AQS network mainly operates 

over rural areas which report 24-hr averages of all the major composition measurements 

every consecutive third or sixth day. Here, we used the PM2.5 composition data from EPA-

AQS and IMPROVE networks (2005-2008 mean) reported by Hand et al. (2011). We 

calculated ammonium from sulfate and nitrate measurements of EPA-AQS and IMPROVE 

networks by assuming a fully neutralized sulfuric acid by ammonia gas. We averaged the 

data reported by Hand et al. (2011), and the long-term (2004-2008) in situ measurements 

from other networks into the 0.10 x 0.10 grid for comparison with satellite-model 

composition over North America.  

http://www.on.ec.gc.ca/natchem
http://java.epa.gov/castnet/epa_jsp/sites.jsp
http://vista.cira.colostate.edu/improve/
http://www.epa.gov/ttn/airs/airsaqs/
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We treated these in situ data as ‘truth’ to evaluate our product. However, it is worth noting 

some uncertainties. Carbon measurements are prone to errors due to filter contamination 

(e.g.,  Rattigan et al., 2011). The ratio of OM to OC varies from 1.2 to 2.6 depending on 

the spatial and seasonal differences (e.g., Turpin and Lim, 2001; Simon et al., 2011). 

Mineral dust concentrations were from the elemental measurements of IMPROVE and 

EPA-AQS following Malm et al. (1994) even though measurements of five elements alone 

are inadequate to determine the ambient mineral dust (Hand et al., 2011; Malm and Hand, 

2007). Sea salt were from elemental chlorine or chlorine ion measurements, by accounting 

for 55% chlorine by weight; the selection of sea salt marker as sodium or chlorine is also 

uncertain (Hand et al., 2011; White, 2008). Hand et al. (2012) obtained relative errors for 

PM2.5 and its chemical components from a comparison of collocated IMPROVE and AQS 

measurements (17% for PM2.5, 5% for ammonium sulfate, 11% for ammonium nitrate, 10% 

for OC, 12% for EC, 33% for dust, and 77% for sea salt).  Finally, the gridded in situ data 

are prone to representation error as an individual measurement is used to represent a 10 km 

x 10 km area. 

In addition, we collected annually representative inorganic and organic composition 

measurements from the European Monitoring and Evaluation Programme (EMEP; 

http://www.emep.int/), the Acid Deposition Monitoring Network in East Asia (EANET; 

http://www.eanet.cc/), and several field measurements around the world from published 

papers (e.g., Fu et al., 2012; Zhang et al., 2008 and Cao et al., 2007 for organic 

measurements, and several others: Table 2-3). We used this dataset to evaluate the global 

satellite-model composition. We included only sites with all SIA components to achieve a 

consistent evaluation. 

http://www.emep.int/
http://www.eanet.cc/


43   

  

CHAPTER 3: SPATIALLY AND SEASONALLY RESOLVED ESTIMATE OF 

THE RATIO OF ORGANIC MASS TO ORGANIC CARBON  
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3.1 ABSTRACT 

Particulate organic matter is of interest for air quality and climate research, but the 

relationship between ambient organic mass (OM) and organic carbon (OC) remains 

ambiguous both in measurements and in modeling. We present a simple method to derive 

an estimate of the spatially and seasonally resolved global, lower tropospheric, ratio 

between OM and OC. We assume ambient NO2 concentrations as a surrogate for fresh 

emission which mostly determines the continental scale OM/OC ratio. For this, we first 

develop a parameterization for the OM/OC ratio using the primary organic aerosol (POA) 

fraction of total OM estimated globally from Aerosol Mass Spectrometer (AMS) 

measurements, and evaluate it with high mass resolution AMS data. Second, we explore 

the ability of ground-level NO2 concentrations derived from the OMI satellite sensor to 

serve as a proxy for fresh emissions that have a high POA fraction, and apply NO2 data to 

derive ambient POA fraction. The combination of these two methods yields an estimate of 

OM/OC from NO2 measurements. Although this method has inherent deficiencies over 

biomass burning, free-tropospheric, and marine environments, elsewhere it offers more 

information than the currently used global-mean OM/OC ratios. The OMI-derived global 

OM/OC ratio ranges from 1.3 to 2.1 μg/μgC, with distinct spatial variation between urban 

and rural regions. The seasonal OM/OC ratio has a summer maximum and a winter 
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minimum over regions dominated by combustion emissions. This dataset serves as a tool 

for interpreting organic carbon measurements, and for evaluating the modeling of 

atmospheric organics. We also develop an additional parameterization for models to 

estimate the ratio of primary OM to OC from simulated NOx concentrations. 

3.2. INTRODUCTION 

Organic aerosols (OA) are a major constituent of fine particulate mass which affects air 

quality, visibility, and climate. Primary OA (POA) are mostly produced by combustion 

sources, while secondary OA (SOA) form through oxidation and partitioning of volatile 

organic compounds from anthropogenic and biogenic sources. Ambient OA is a complex 

mix of thousands of different organic molecules that introduces difficulties in analytical 

measurements, leaving large measurement uncertainty (e.g., Kanakidou et al., 2005; 

Jimenez et al., 2009). OA contains organic carbon (OC) as its major constituent and other 

elements such as oxygen, hydrogen and nitrogen, which together with OC constitute the 

total organic aerosol mass. Characterization of OA requires spatially and seasonally 

resolved information about the ratio of OA with OC (OA/OC, also commonly written as 

OM/OC, where OM is “organic mass”, a synonym of OA). 

Traditional ground-based impaction or filter-based instruments routinely measure OC 

using different analytic methods (e.g., Hand et al., 2012), but not OM due to difficulties in 

characterizing different components of OM. Other specific techniques that measure OM 

directly, such as Fourier Transform Infrared spectroscopy (FTIR) (Russell et al., 2009) and 

solvent extraction techniques (El-Zanan et al., 2005), are not used extensively. A wide 

range of literature is available on the methods to determine the OM/OC ratio, and it is a 
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broadly debated issue. A common practice to interpret OC measurements is through the 

use of a continental mean value for the OM/OC ratio, such as 1.4 (Grosjean and 

Friedlander, 1975; White and Roberts, 1977), 1.6 (Malm et al., 1994), 1.4–2.1 (Turpin and 

Lim, 2001), and 1.8 (Hand et al., 2012) for North America. The spatial and seasonal 

variation in the OM/OC ratio is often neglected in the interpretation of measurement data 

due to insufficient information (e.g., Hand et al., 2012). 

These global-mean values are frequently used in aerosol models to convert between POA 

and OM (e.g., Park et al., 2003). This is because most global and regional models simulate 

POA as OC. Despite notable developments for simulating the oxidative aging of OM 

(Simon and Bhave, 2012), most models do not yet readily predict the OM/OC ratio. A 

spatially and seasonally varying estimate of the OM/OC ratio should help interpret 

simulated organic aerosols. 

The OM/OC ratio is directly related to the O/C ratio in the organic mass, since the 

contribution of non-oxygen elements to the OM/OC ratio is generally small, and both ratios 

increase with chemical aging of OA (Aiken et al., 2008; Pang et al., 2006). OM/OC has 

seasonal and spatial variation depending on the sources of POA and SOA and their degree 

of aging. The Aerosol Mass Spectrometer (AMS) offers quantitative determination of the 

size-resolved submicron OM at high temporal resolution through mass spectrometry 

(Jimenez et al., 2003; Canagaratna et al., 2007). Factor analysis of the AMS spectra can 

differentiate POA such as hydrocarbon-like OA (HOA) and several types of oxygenated 

OA (OOA) (Zhang et al., 2005a) that are typically SOA surrogates (Zhang et al., 2007; 
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Zhang et al., 2011b). POA has lower OM/OC than SOA, and fresh SOA has lower OM/OC 

than aged SOA (Aiken et al., 2008). 

The oxidative aging of organics may be indirectly estimated through different proxies. Both 

NOx and submicron POA are mainly emitted from combustion processes. NOx is oxidized 

in the atmosphere with a timescale of about a day. Over regional scales OA is dominated 

by SOA, and anthropogenic SOA is also formed with a timescale of about a day and in 

amounts much larger than the originally emitted POA (DeCarlo et al., 2010). Globally most 

SOA may be due to anthropogenic enhancement of biogenic SOA, which is also thought 

to have a similar timescale of formation (Goldstein et al., 2009; Spracklen et al., 2011). 

Once formed, all types of SOA appear to age with a characteristic timescale of about 1–2 

days, increasing the OM/OC ratio (Jimenez et al., 2009). Given the similar spatial emission 

patterns and timescales, we explore ambient NO2 concentrations as a surrogate for the 

POA/OA fraction and thus OM/OC ratios. 

Here, we introduce a parameterization for OM/OC based on the POA fraction estimated 

from AMS measurements (section 3.3.1), test global ground-level NO2 and NOx 

concentrations as a proxy for POA fraction, and thus OM/OC (sections 3.3.2 and 3.3.3), 

and develop a gridded dataset of the seasonally varying OM/OC ratio (section 3.3.4). We 

describe the spatially and seasonally varying satellite-derived OM/OC in section 3.4.  

3.3. MATERIALS AND METHODS 

3.3.1 PRIMARY OA FRACTION OF THE AMS DATA TO PREDICT OM/OC 
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We first explore a method to derive OM/OC. For this, we use the POA fraction of the AMS 

data as a proxy for combustion emissions (where combustion emissions can then be 

determined from the measurements of co-emitted species such as NOx). Aiken et al. 

(2008) demonstrate a method to use high-resolution time-of-flight AMS ambient OA 

measurements to directly quantify the OM/OC ratio. Aiken et al. (2008) report a high 

correlation for OM/OC versus O/C (r = 0.998), quantify the OM/OC ratio for urban POA 

as ∼1.3, and find that for OOA the OM/OC ratio varies from 1.9 to 2.4. Per the timescale 

discussion above, fPOA (the ratio of POA, determined from factor analysis of AMS spectra 

(Zhang et al., 2011b), to the total measured OA) is expected to be inversely related to 

OM/OC. We parameterize OM/OC from AMS using fPOA, 

                                   OM/OC = 1.3 × fPOA + 2.1 × (1 - fPOA)                                   (3-1)                    

where OM is the sum of AMS-estimated POA and OOA. This method assumes that POA 

has an OM/OC ratio of 1.3 and OOA has a value of 2.1. However it should be noted that 

the OM/OC values for OOA can range from 1.9 to 2.4, and therefore our prescribed value 

introduces an uncertainty in the OM/OC values estimated using equation 3-1. An 

independent evaluation with direct OM/OC estimates from the AMS quantifies this 

uncertainty (±0.2 μg/μgC). This evaluation consisted of collecting nine published high 

mass resolution campaign-mean AMS-estimated fPOA and AMS-measured OM/OC data 

from field campaigns to evaluate this parameterization. Figure 3-1 shows the scatter plot 

of AMS OM/OC and fPOA. It includes a representation of a typical urban POA with OM/OC 

ratio of 1.3 (fPOA = 1). We plotted equation 3-1 over this scatter plot (black line). The 

scatter points (OM/OC) are approximately within ±0.2 (μg/μgC) from the solid black line. 
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Figure 3-1: Scatter plot of Aerosol Mass Spectrometer (AMS) measured OM/OC ratio, and 

the corresponding estimated primary organic aerosol fraction (fPOA) from several field 

campaigns around the globe. The dots and the corresponding numbers on the plot represent 

AMS field campaign-mean values for (1) Whistler, Canada (Sun et al., 2009); (2) Long 

Island (Personal communication from Qi Zhang); (3) CARES T1 (Setyan et al., 2012); (4) 

Pearl River Delta, China (Huang et al., 2011); (5) SOAR 1 (Docherty et al., 2011); (6) New 

York City (Sun et al., 2011); (7) CalNex, Los Angeles (Hayes et al., 2013); (8) Beijing, 

China (Huang et al., 2010); (9) Fresno, California (Ge et al., 2012); and (10) typical urban 

POA (Jimenez et al., 2009). The solid black line is equation 3-1 (also in inset). 
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This confirms the validity of the predicted relation in equation 3-1. Moreover, the high 

correlation (r = −0.91) supports the linear relation between AMS fPOAand OM/OC in the 

continental boundary layer across a variety of regions. We can affirm this because there 

were actually few free-tropospheric, biomass burning or marine boundary layer 

observations in this dataset. This constraint limits, to a degree, the applicability of equation 

3-1 (and its validation) in Figure 3-1; it is noted, for example, that OM/OC values can 

exceed 2.1 outside of the continental boundary layer (Sun et al., 2009) and from biomass 

burning (Turpin and Lim, 2001). 

Thus, this parameterization may underestimate OM/OC in those cases. Although the 

relation in equation 3-1 offers another estimate (indirect) of OM/OC over AMS locations, 

this relation is developed only to generate OM/OC from NOx measurements (Section 3.4). 

More reliable methods to estimate OM/OC from AMS are already available (for example, 

publications listed in Figure 3-1 caption). 

Spracklen et al. (2011) and Zhang et al. (2007) collected AMS POA and OOA data for 47 

approximately month-long, observation campaigns over 37 locations. However, this 

dataset does not have reliable high mass resolution OM/OC measurements to evaluate 

equation 3-1. Nevertheless, this dataset has reliable POA fraction data for a broad range of 

locations. The prediction model in equation 3-1 can be applied to fPOA estimates of these 

47 campaign-mean dataset to generate an indirect OM/OC dataset. Figure 3-2 shows these 

global AMS measurements of OA (top left), POA (top right), fPOA (bottom left), and the 

derived OM/OC ratio (bottom right). fPOA is high over regions with fresh anthropogenic 

emissions. The OM/OC ratio typically ranges from 1.7 to 2.1.  
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We also considered the OM/OC ratio as estimated through a multiple regression analysis 

of IMPROVE data (Simon et al., 2011). However, the OM/OC ratio estimated from AMS 

and IMPROVE measurements differs from each other (r = 0.4, RMSE = 0.13 μg/μgC, 

number of points = 13), and the difference is not well understood. The O/C from the AMS 

is a more direct measurement, whereas the OM from IMPROVE is based on the measured 

OC plus extra mass needed to get closure between the total characterized mass and the total 

measured mass (Aiken et al., 2008; Simon et al., 2011). The inaccuracy of OC and 

inorganic mass measurements by IMPROVE filter techniques, and the subtraction of two 

large numbers introduce errors in the OM/OC calculation (Simon et al., 2011). In addition, 

filter measurements tend to suffer loss of semivolatile species (especially during warm 

seasons) and condensation of volatile organic compounds. Real time AMS measurements 

are less influenced by gas-particle partitioning of semivolatile species. Thus we focus 

exclusively on AMS data for the remainder of this manuscript. 

 

Figure 3-2: Aerosol Mass Spectrometer measured organic aerosol (OA), estimated primary 

OA (POA), POA fraction (fPOA), and predicted organic mass (OM) to organic carbon (OC) 

ratio using equation 3-1. Data source: Spracklen et al., 2011 and Zhang et al., 2007. 
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3.3.2 NITROGEN OXIDES AS A PROXY FOR PRIMARY OA FRACTION  

Local combustion processes are a major source of primary organic aerosol. Several studies 

reported the high correlation of AMS-estimated POA with nitrogen oxide species 

(e.g., Zhang et al., 2005b; Sun et al., 2011; Ge et al., 2012). Therefore, the fractionation of 

ambient OA to primary and oxygenated components can be determined indirectly from the 

measurements of NOx. Given the correlation between POA and NOx, we explore the 

relationship between AMS POA fraction measurements, and a spatially coincident 

modeled NOx climatology to develop a proxy for the POA fraction and then the OM/OC 

ratio. We use the GEOS-Chem (http://geos-chem.org) global three-dimensional chemical 

transport model to test the correlations between AMS-estimated fPOA and co-emitted 

combustion related species. GEOS-Chem includes a detailed simulation of oxidant-aerosol 

chemistry as described in the Appendix (section 3.7). 

We tested the spatial correlation between AMS-estimated fPOA and coincident GEOS-

Chem simulations of NOx (r = 0.73), NO2 (r = 0.74), hydrophobic OC (r = 0.42), BC 

(r = 0.57), and CO (r = 0.15). The significant correlation for NOx supports the use of this 

species as a proxy for the AMS POA fraction. Therefore, we assume that the typical 

continental POA fraction is a function of NOx concentrations. 

3.3.3. AMBIENT PRIMARY OA FRACTION ESTIMATE FROM SATELLITE-

DERIVED NITROGEN DIOXIDE CONCENTRATION 

Given the significant correlation between modeled nitrogen oxides and observed POA 

fraction, we further compare AMS fPOA with satellite retrievals of NO2 which offer finer 

spatial information than the model. Advancements in satellite remote sensing over the last 
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decade yield accurate retrievals of global NO2 column concentrations at moderate spatial 

resolution (Boersma et al., 2011; Bucsela et al., 2013). The NO2 column concentrations are 

closely related to local NOx emission (Martin et al., 2003a) and ground-level 

NO2 concentrations (Lamsal et al., 2008). We relate these satellite-derived NO2 

concentrations with the POA fraction at ground-level. We begin with NO2 columns 

retrieved by Bucsela et al. (2013) for years 2005–2008 from the Dutch–Finnish built 

Ozone Monitoring Instrument (OMI) sensor aboard the NASA Aura satellite. We retain 

column data that have cloud fraction < 0.3, solar zenith angle < 78° and near-nadir viewing 

angle (scan positions 7–53 out of 60).  

We use the daily coincident ratio of column density to ground-level concentration 

simulated with the GEOS-Chem model to derive daily ground-level NO2 concentrations at 

a spatial resolution of 0.1° × 0.1° following Lamsal et al. (2008) and Lamsal et al. (2010). 

Ground-level NO2 concentrations derived from this approach exhibit significant temporal 

(r = 0.30–0.96, mean r = 0.69) and spatial (r = 0.78) correlation versus in situ 

measurements at 307 sites across North America (Lamsal et al., 2013). 

We sampled the long-term monthly mean OMI-derived ground-level NO2 concentration 

(at a spatial resolution of 0.1° × 0.1°) with the spatially coincident AMS-estimated POA 

fraction. Figure 3-3 shows the scatter plot of AMS fPOA versus OMI NO2. Similar to model 

comparisons mentioned above, the correlation for these two species is significant 

(r = 0.73). Excluding outliers (New York City, summer 2001; New York City, winter 2004; 

and Vancouver, Canada, August 2001 campaigns) increases it further up (r = 0.87). This 
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supports the utility of OMI nitrogen dioxide measurements to predict the fractionation of 

ambient OA. 

 

Figure 3-3: Scatter plot of estimated primary organic aerosol fraction (fPOA) from the 

Aerosol Mass Spectrometer (AMS) versus ground-level NO2 concentrations derived from 

the OMI satellite instrument. The solid black line is equation 3-2 (also in inset). The circled 

dots and the corresponding numbers represent three outliers which represent mean values 

for the New York City, Summer 2001; New York City, Winter 2004; and Vancouver, 

Canada, August 2001 campaigns respectively.  

 

A linear relation can be used to derive ambient fPOA from OMI NO2 data given their high 

correlation. We used the correlation statistics obtained for a reduced major axis regression 
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(Miller and Kahn, 1962) between the AMS fPOA and OMI NO2 (r = 0.73, slope = 11.32, 

offset = −0.77, N = 47) to fit a line. We then compared fPOA estimated from OMI 

NO2 (using the linear fit) against the 47 AMS fPOA data, and obtained an RMSE of 0.31 

(r = 0.73, slope = 1.0, offset = 0, N = 47). However, we note that a fast increase of fPOA at 

low NO2 concentrations (i.e. a non-linear increase) is more consistent with Figure 3-3. OMI 

NO2 is almost constant for fPOA between 0 and 0.2, and increasing thereafter. Therefore we 

test a non-linear relation here. 

The ground-level fPOA and the OMI NO2 data (ppb) were fitted with the following non-

linear expression,        

           fPOA = ((OMI NO2 – 0.2) / 15) 0.5                                (3-2)    

where fPOA values associated with OMI NO2 values below 0.2 are assigned a value of 0. 

We reproduced the fPOA values from OMI NO2 data using equation 3-2, compared these 

computations with the 47 AMS fPOA, and obtained a high correlation when the former was 

linearly regressed against the latter (r = 0.85, slope = 1.11, offset = −0.02, 

RMSE = 0.25, N = 47). The RMSE of 0.31 for a linear fit exceeds the RMSE of 0.25 for 

the non-linear fit. Therefore, equation 3-2 is a good approximation of the relation between 

the fractionation of ambient OA versus NO2 concentrations over a broad geographic 

region. 

3.3.4. GLOBAL OM/OC FROM SATELLITE-DERIVED AND MODELED 

NITROGEN OXIDES 
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Having predicted (equations 3-1 and 3-2) and evaluated the relation for AMS OM/OC 

versus AMS fPOA (Section 3.3.1), and AMS fPOA versus OMI NO2 (Section 3.3.3), it is 

straightforward to derive seasonally varying maps of the global OM/OC ratio. Equations 

3-1 and 3-2 leads to an empirical OM/OC prediction model as, 

                               OM/OC = 2.1 - 0.8 × ((OMI NO2 – 0.2) / 15) 0.5                                           (3-3) 

We use monthly mean OMI-derived ground-level NO2 concentrations (ppb) for 2005–2008 

(Bucsela et al., 2013) to produce a global climatology of the OM/OC ratio using 

equation 3-3. For NO2 < 0.2, the OM/OC ratio is 2.1 (i.e. the POA term is set to zero, as 

indicated above) which is consistent with a ratio over regions characterized by weak 

primary emission. We imposed a lower limit of 1.3 to avoid unrealistic (fPOA exceeding 1) 

values for extremely high NO2 conditions. A cross validation of the OMI-derived long-

term monthly mean OM/OC product with the 47 AMS-derived OM/OC estimates (from 

AMS fPOA using equation 3-1) shows an RMSE of 0.06 μg/μgC (r = 0.85, slope = 1.11, 

offset = −0.21, N = 47). 

Similarly, we create a prediction model from the GEOS-Chem NOx concentrations,                      

                                    OM/OC = 2.1 - 0.8 × ((NOx – 0.5) / 18) 0.6                         (3-4)                                   

The GEOS-Chem NOx estimated OM/OC also has significant agreement (r = 0.74, 

slope = 1.08, offset = −0.15, RMSE = 0.08 μg/μgC) with the AMS data. Hence, model 

simulations of NOx also can be used as a proxy for OM/OC. 

3.4. DISCUSSION OF THE GLOBAL OM/OC RATIO 
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Figure 3-4 shows seasonal maps of the predicted OM/OC ratio based on the OMI-derived 

NO2 concentration climatology. Maximum OM/OC ratios above 1.9 are found in regions 

with low NOx emissions. Urban and industrial regions of the Northern Hemisphere tend to 

have lower OM/OC ratios. Fresh urban OA emission mainly from transportation leads to 

lower values for OM/OC in Eastern North America. The southeast U.S. with biogenic SOA 

production has high OM/OC values. Biomass burning regions have high predicted OM/OC 

ratios which are coincidently consistent with expectations; future work should extend this 

parameterization to explicitly represent the enhanced OM/OC from fires. Biases due to soil 

NOx emissions are not apparent, due to the diffuse nature of the source. Annual mean 

values for urban (∼1.5 μg/μgC) and rural (∼2.0 μg/μgC) regions are broadly consistent 

with the values recommended by Turpin and Lim (2001). FTIR spectroscopy methods 

yield annual mean values of 1.9–2.0 μg/μgC over both Pittsburg (Polidori et al., 2008) and 

a rural site in Hungary (Kiss et al., 2002), which is close to our regional estimate of 

1.8 μg/μgC. 

The OM/OC ratio has a winter minimum and summer maximum over regions dominated 

by combustion emissions. The high summer OM/OC in this dataset reflects lower 

NOx and fPOA in summer compared to winter. In general, high temperatures and sunlight in 

summer lead to high oxidant availability and enhanced photochemistry. The resulting 

oxidative aging and enhanced SOA formation increase the summertime OM/OC ratio 

compared to winter. The lower winter OM/OC is due to lower oxygen content in the aged 

OA. Simon et al. (2011) also find similar seasonality for the OM/OC ratio despite 

differences in magnitude. Xing et al. (2013) used chemical analysis of organic compounds 

extracted from PM2.5 to find OM/OC ratios for 14 Chinese cities in summer of 

http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib51
http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib41
http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib25
http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib46
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1.75 ± 0.13 μg/μgC compared with our estimate of ∼1.8 μg/μgC, and in winter of 

1.59 ± 0.18 μg/μgC compared with our estimate of ∼1.6 μg/μgC. Hence, we conclude that 

the global annual mean values for urban and rural regions, and its seasonal variation over 

urban regions are broadly consistent with the values recommended by several other studies.  

 

Figure 3-4: Seasonal OM/OC ratio estimated from the prediction model (equation 3-3) 

using the OMI-derived ground-level NO2 concentration. Seasons are defined as 

December–January–February (DJF), March–April–May (MAM), June–July–August 

(JJA), and September–October–November (SON). 

 

3.5 CONCLUSIONS 

We developed a simple technique to estimate the spatial and seasonal variation of the global 

OM/OC ratio. OMI NO2 observations were used to represent air mass age and scaled to 

AMS observations. The resultant dataset appears to generally represent the OM to OC ratio 

in most of the continental boundary layer. Underestimates are expected in biomass burning, 

http://www.sciencedirect.com/science/article/pii/S1352231013009151#fd3
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marine and free-tropospheric environments. Nonetheless the dataset should serve as an 

improvement over the commonly used global values for OM/OC. This work would benefit 

from more AMS measurements of the OM/OC ratio across multiple seasons and regions. 

Ongoing efforts to explicitly simulate oxidative aging of OA should ultimately yield a more 

complete representation of OM/OC. 
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3.7 APPENDIX 

The GEOS-Chem (version 9-01-03; http://geos-chem.org) is a global three-dimensional 

chemical transport model driven with assimilated meteorological data from the Goddard 

Earth Observing System (GEOS-5) at the NASA Global Modeling Assimilation Office 

(GMAO). We conduct our simulations at a spatial resolution of 2° × 2.5° for the years 

2005–2008. The lowest layer of the model is approximately 130 m with a total of 47 levels 

from the Earth's surface to the top of the atmosphere. We use full mixing of species below 

the mixed layer depth, with a correction to the GEOS-5 predicted mixed layer depth (Heald 

et al., 2012; Walker et al., 2012). We use a timestep of 15 min for dynamical processes 

(transport and convection), and a timestep of 60 min for chemical processes and emissions. 

GEOS-Chem contains a detailed simulation of HOx–NOx–VOC–ozone–aerosol chemistry 

(Bey et al., 2001; Park et al., 2004). Mao et al. (2010) describe the GEOS-Chem chemical 

http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib16
http://www.sciencedirect.com/science/article/pii/S1352231013009151#bib16
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mechanism in detail. The simulation of secondary inorganic ions is directly coupled with 

gas phase chemistry (Park et al., 2004). Aerosol–gas interactions are simulated through 

heterogeneous chemistry (Jacob, 2000) with updated aerosol uptake of N2O5 (Evans and 

Jacob, 2005) and HO2 (Thornton et al., 2008), aerosol extinction effects on photolysis rates 

(Martin et al., 2003b), the partitioning of aerosols from gas using the ISORROPIA II 

thermodynamic scheme (Fountoukis and Nenes, 2007) as implemented by Pye et al. 

(2009), and gas–aerosol partitioning of semivolatile products of VOC oxidation (Henze 

and Seinfeld, 2006; Henze et al., 2008; Liao et al., 2007). 

Anthropogenic NOx emission inventories are from the EDGAR v32-FT2000 global 

inventory for 2000 (Olivier et al., 2005), with regional overwrites over the U.S. 

(Environmental protection Agency-National Emissions Inventory 2005), Canada 

(CAC; http://www.ec.gc.ca/pdb/cac/), Mexico (BRAVO; Kuhns et al., 2005), Europe 

(EMEP; http://www.emep.int/), and East Asia (Zhang et al., 2009). Emissions are scaled 

to subsequent years on the basis of energy statistics (van Donkelaar et al., 2008) and after 

2006 with OMI NO2 data (Lamsal et al., 2011). Other major non-anthropogenic land NOx 

emissions include biomass burning emissions (GFED-3; Mu et al., 2011) and soil 

emissions (Yienger and Levy, 1995; Wang et al., 1998). 
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CHAPTER 4: SENSITIVITY OF CHEMICAL TRANSPORT MODEL 

SIMULATIONS TO THE DURATION OF CHEMICAL AND TRANSPORT 

OPERATORS  

 

4.1 ABSTRACT 

Chemical transport models involve considerable computational expense. Fine temporal 

resolution offers accuracy at the expense of computation time. Assessment is needed of the 

sensitivity of simulation accuracy to the duration of chemical and transport operators. We 

conduct a series of simulations with the GEOS-Chem chemical transport model at different 

temporal and spatial resolutions to examine the sensitivity of simulated atmospheric 

composition to temporal resolution. Subsequently, we compare the tracers simulated with 

operator durations from 10 min to 60 min as typically used by global chemical transport 

models, and identify the timesteps that optimize both computational expense and 

simulation accuracy. We found that longer transport timesteps increase concentrations of 

emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous 

distribution reduces loss though chemical reactions and dry deposition. The increased 

concentrations of ozone precursors increase ozone production at longer transport timesteps. 

Longer chemical timesteps decrease sulfate and ammonium but increase nitrate due to 

feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The 

simulation duration decreases by an order of magnitude from fine (5 min) to coarse (60 

min) temporal resolution. We assess the change in simulation accuracy with resolution by 

comparing the root mean square difference in ground-level concentrations of nitrogen 

oxides, ozone, carbon monoxide and secondary inorganic aerosols with a finer temporal or 

spatial resolution taken as truth. Simulation error for these species increases four times 
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from the shortest (5 min) to longest (60 min) temporal resolution. Chemical timesteps twice 

that of the transport timestep offer more simulation accuracy per unit computation. 

However, simulation error from coarser spatial resolution generally exceeds that from 

longer timesteps, e.g. degrading from 2o x 2.5o to 4o x 5o increases error by an order of 

magnitude. We recommend prioritizing fine spatial resolution before considering different 

temporal resolutions. We encourage the chemical transport model users to specify the 

durations of operators in publications due to its effect on simulation accuracy. 

4.2 INTRODUCTION  

Global and regional chemical transport models (CTMs) have a wide range of applications 

in studies of climate, air quality, and biogeochemical cycling. The last few decades have 

witnessed rapid development of modeling sophistication to tackle these issues, but that 

development is associated with increasing computational expense. Eulerian models divide 

the atmosphere into numerous (104-108) grid boxes and solve a mass continuity equation 

to simulate atmospheric composition. The concentrations of the simulated species are 

sensitive to the temporal resolution of the CTM. Attention is needed to understand how 

temporal resolution affects model performance.  

Numerous studies have examined the sensitivity of simulations to grid resolution for ozone 

(Jang et al., 1995a; 1995b; Esler et al., 2004; Wild and Prather, 2006), ozone production 

efficiency (Liang and Jacobson 2000), and ozone sensitivity to precursor emissions (Cohan 

et al., 2006). Biases can be reduced by simulating sub grid scale processes such as emission 

plumes from point sources (Sillman et al., 1990; Gillani and Pleim, 1996), aircraft exhaust 

(Meijer et al., 1997; Kraabol et al., 2002), ship exhaust (Vinken et al., 2011), and lightning 
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(Cooper et al., 2014). Simulation error increases proportional to grid resolution (Wild and 

Prather, 2006; Prather et al., 2008). The spatiotemporal variation of tropospheric carbon 

monoxide is better represented with finer grid resolution (Wang et al., 2004; Chen et al., 

2009; Yan et al., 2014). Moreover, fine horizontal resolution is important for air quality 

exposure assessment and health impact studies (Punger and West, 2013; Fountoukis et al., 

2013; Thompson et al., 2014; Li et al., 2015). Fine vertical resolution can better represent 

convection (Rind et al., 2007; Arteta et al., 2009). Simulations are sensitive to temporal 

resolution (Mallet et al., 2007; Mallet and Sportisse, 2006), however, few studies have 

examined this sensitivity.  

CTMs solve the continuity equation of around a hundred chemical species, each with 

number density n, for individual grid boxes defined in the Eulerian model.      

                                                                                (4.1) 

∂n/∂t represents the local temporal evolution of n. nU represents the transport flux 

divergence term, where U is the wind velocity vector. P and L are the local production and 

loss terms respectively. Typically, the above equation is discretized in space, and the 

continuity equation is simulated as a system of coupled non-linear partial differential 

equations with chemical and transport operators. These operators are usually simulated  

sequentially through operator splitting (McRae et al., 1982) which is found to increase 

computational efficiency (Kim and Cho, 1997). The transport operator involves solving the 

3-D advection equation using efficient numerical schemes (Prather, 1986; Rood 1987). The 

Courant number Cr which relates the product of the wind speed u and the transport timestep 

T to the length of the grid box x,  

LPnU
t

n





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                                          (4.2) 

is kept less than unity for stability in advection schemes based on the Courant-Freidrich-

Lewy criterion (Courant et al., 1967). Semi-Lagrangian numerical schemes (Lin and Rood, 

1996) have been developed to accommodate higher Cr, and thereby allow coarser transport 

timesteps for faster computation. The chemical operator representing the temporal 

evolution of local sources and sinks involves numerically solving a system of coupled 

ordinary differential equations using efficient solvers (Hertel et al., 1993, Jacobson and 

Turco, 1994; Damian et al., 2002). For computational convenience, production and loss 

terms are also simulated as individual operators. The order in which operators are applied 

can affect performance (Sportisse, 2000; Santillana et al., 2016). The operator splitting 

method requires the coupling between individual operators to be negligible over each 

timestep. However, reducing timesteps increases computational expense. Attention is 

needed to accommodate  this tradeoff.  

We examine the sensitivity of a CTM to temporal resolution by conducting a series of 

simulations at different temporal and horizontal resolutions. We then identify the optimal 

temporal resolution for the range of timesteps, from 10 min to 60 min, usually used with 

global CTMs (e.g., Horowitz et al., 2003; Huijnen et al. 2010). Section 4.3 describes the 

sensitivity simulations, as well as the method to quantify the simulation error and to 

identify the optimal simulation timesteps. Comparison of the sensitivity simulations, 

description of resolution-dependent errors, and the identification of appropriate chemical 

and transport timesteps is examined in section 4.4.  

4.3 MATERIALS AND METHODS 

x

Tu
Cr



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4.3.1 GEOS-CHEM SIMULATIONS 

We conduct a series of sensitivity simulations with the GEOS-Chem CTM (version 10-01; 

www.geos-chem.org) at different temporal and horizontal resolutions to examine the 

individual sensitivities to chemical and transport timestep durations. The GEOS-Chem 

model (Bey et al., 2001) is used by about 100 research groups worldwide to simulate the 

oxidant-aerosol system. GEOS-Chem has the capability to be driven with several 

generations of assimilated meteorological data from the Goddard Earth Observing System 

(GEOS) at the NASA Global Modeling Assimilation Office (GMAO). For computational 

expedience, GEOS-Chem global simulations are often conducted using horizontal 

resolutions of either 4o x 5o or 2o x 2.5o degraded from the native resolution of GEOS 

meteorology. GEOS-Chem also has the capability to run nested regional simulations where 

the global model provides boundary condition to the regional grids (Wang et al., 2004; 

Chen et al., 2009; Zhang et al., 2011a; van Donkelaar et al., 2012). We use the GEOS-5 (or 

GEOS-5.2.0) meteorology available at a native horizontal resolution of 0.5o x 0.667o 

(Rienecker et al., 2008). It includes three-hour averaged 2-D fields like mixed layer depth, 

and six-hour averaged 3-D fields such as zonal and meridional wind and convective mass 

flux. The atmosphere is divided into 47 vertical levels with the lowest level being 

approximately 130 meters above sea level. GEOS-Chem performs tracer advection (A), 

vertical mixing (V), cloud convection (Z) and wet deposition (W) for every transport 

timestep (T), as well as dry deposition (D), emissions (E), and chemistry (G) for every 

chemical timestep (C) in the following order,  

                                   A(T) ∙ D(C) ∙ E(C) ∙ V(T) ∙ Z(T) ∙ G(C) ∙ W(T)                                       (4.3) 

http://www.geos-chem.org/
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Figure 4-1: CPU time for GEOS-Chem simulations with various timesteps at three 

horizontal resolutions. Global simulations are at 4o x 5o (top) and 2o x 2.5o (middle) 

resolutions. The bottom panel contains results for the average of two nested regions North 

America and East Asia at 0.5o x 0.667o resolution. Colored lines represent the CPU time 

for simulating transport (red) and chemical (blue) operators, and the sum of the two (green). 

Error bars represent standard error of five simulations. Simulations are represented in the 

abscissa as CccTtt with chemical timestep, C = cc minutes, and transport timestep, T = tt 

minutes. 
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The traditional transport timesteps are 30 minutes for the 4o x 5o resolution, 15 minutes for 

the 2o x 2.5o resolution, 10 min for 0.5o x 0.667o resolution, and 5 min for 0.25o x 0.312o 

simulations. The traditional chemical timesteps have varied from either 60 min or twice the 

transport timestep based on the Strang operator splitting scheme (Strang, 1968) which 

follows T ∙ C ∙ T ∙ T ∙ C ∙ T order repetitively with C = 2 × T. We also test an alternate 

splitting scheme which follows T ∙ C ∙ T ∙ C order repetitively with C = T.  

Advection is based on the multi-dimensional flux-form semi-Lagrangian advection scheme 

(Lin and Rood, 1996; Lin et al., 1994), with an additional pressure-fixer algorithm 

implemented for the conservation of tracer mass (Rotman et al., 2004). Transport by 

convection is coupled (Balkanski et al., 1993; Wu et al., 2007) with gas-aerosol wet 

deposition (Liu et al., 2001; Wang et al., 2011; Amos et al., 2012). GEOS-Chem uses an 

internal timestep of 5 min for convective mixing. We use a non-local boundary layer 

mixing scheme for vertical transport (Holtslag and Boville, 1993, Lin et al., 2010).  

Emissions are processed through the HEMCO module (Keller et al., 2014). A resistance-

in-series method is used for dry deposition of species (Wesely 1989; Wang et al., 1998; 

Zhang et al., 2001; Fisher et al., 2011).  

GEOS-Chem uses a Sparse Matrix Vectorized GEAR II chemistry solver (Jacobson and 

Turco, 1994; Jacobson, 1995; 1998). The oxidant-aerosol chemistry simulation includes 

organic and black carbon (Park et al., 2003), mineral dust (Fairlie et al., 2007), sea salt 

(Alexander et al., 2005; Jaegle et al., 2011), and the sulfate-nitrate-ammonium system 

(Park et al., 2004). The photolysis frequency is calculated (Mao et al., 2010) at the middle 

of the chemical timestep using the Fast-JX algorithm (Bian and Prather, 2002). Simulation 
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of gas-aerosol interactions are performed by aerosol extinction effects on photolysis rates 

(Martin et al., 2003b), and heterogeneous chemistry (Jacob, 2000) with aerosol uptake of 

N2O5 (Evans and Jacob, 2005) and HO2 (Mao et al., 2013). The ISORROPIA II 

thermodynamic module (Fontoukis and Nenes, 2007) performs aerosol-gas partitioning 

(Pye et al., 2009).  

We conduct simulations for 2010 July at two horizontal resolutions of 4o x 5o and 2o x 2.5o 

globally, and 0.5o x 0.667o over North America (140oW–40oW, 10oN–70oN) and East Asia 

(70oW–150oW, 11oS–55oN) nested regions. We use the 4o x 5o global simulation to archive 

dynamic boundary conditions every three hours for the nested models. We use one month 

spin up with each GEOS-Chem simulation to reduce the influence of initial conditions.  

4.3.2 COMPUTING PLATFORM 

We conduct all simulations on the same computing platform to compare their 

computational performance. We use the Glooscap cluster of the Atlantic Computational 

Excellence Network (ACENET) Consortium of Canadian Universities (http://www.ace-

net.ca/wiki/Glooscap). The operating system is Linux 4.8. We use Intel Fortran compiler 

version 12. Each GEOS-Chem simulation is submitted as a 16-thread parallelized job on a 

single node.  

We calculate the CPU time for the month of July for each operator separately using the 

Fortran-intrinsic routine, CPU_TIME. We found this value identical to the one calculated 

using the Linux command ‘qacct –j’. We noticed that CPU time can be affected by other 

jobs on the shared cluster. Therefore, we repeat simulations five times, while excluding 
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data output operations to minimize sensitivity to system input/output, and use the median 

to represent CPU time for each simulation. 

4.3.3 ASSESSING SIMULATION ERROR 

Assessing simulation error versus timestep through comparison with observations is 

impaired by imperfect model processes, by the sparseness of measurements, and by model-

observation representativeness biases. Therefore, we treat the simulation with the finest 

temporal resolution as the most accurate. We take as ‘Truth’ the concentrations simulated 

with a chemical timestep (C) of 10 minutes and a transport time step (T) of 5 minutes 

(represented as C10T05). Finer resolutions are computationally prohibitive. We define the 

simulation error 
s

simE  for species s as the root mean squared error of the species 

concentrations simulated with the finest resolution (Truth) and the simulation under 

consideration (Sim), normalized by the concentrations in simulation ‘Truth’, 

            

                       (4.4) 

where, i represents a particular grid box, with a total number of N grid boxes of interest. 

The root mean squared error in the numerator is chosen instead of absolute difference to 

more heavily penalize extrema. Normalization with the total mass concentration value of 

the true simulation is intended to cross-compare 
s

simE  of different species. 
s

simE  captures 

the variation of a species s from the true simulation. 

Here, we focus on four key species relevant to atmospheric chemistry, namely nitrogen 

oxides (NOx = NO + NO2), ozone (O3), carbon monoxide (CO), and secondary inorganic 
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aerosols (SIA: sum of sulfate, nitrate and ammonium). These species represent a range of 

lifetimes from a day (NOx) to weeks (CO). The focus on SIA is designed to devote more 

attention to chemically active species than to mineral dust and sea salt. We sample the 

instantaneous values of simulated ground-level concentrations of these atmospheric species 

every 60 min to span the diurnal variation of chemical environments. We focus on 

concentrations in July near the Earth’s surface when and where chemical and transport 

timescales tend to be short.  

4.3.4 IDENTIFYING THE OPTIMAL TEMPORAL RESOLUTION 

A practical way to select optimal chemical and transport timesteps is to identify the 

simulation with the lowest error (
s

simE ) per unit of computation time. To quantify the 

simulation accuracy per unit CPU time, we propose a simple metric, the normalized error 

(NE) which which is a quantitative indicator of the tradeoff between the simulation 

accuracy, and the associated computation expense. This dual mandate of the NE is 

accomplished by normalizing the simulation error 
s

simE  for species s by the ratio of CPU 

time for the simulation under consideration ( tsim ) to the CPU time of the reference 

simulation ( tref ), and taking the mean of four species.                  

                

                    (4.5) 

The time normalization rewards or penalizes CPU times that are less than or greater than 

the reference CPU time. We normalize 
s

simE by the reference 
s

refE  so that the normalized 

error for each species is of similar magnitude. The variation of NE across timesteps is 
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unaffected by the choice of reference simulation; C10T10 is used here. The simulation with 

the lowest NE can be employed as an indicator of optimal chemical and transport 

resolution.  

4.4 RESULTS AND DISCUSSION 

Figure 4-1 shows the computational performance for the series of GEOS-Chem simulations 

conducted here. The CPU time decreases four times from fine to coarse temporal 

resolution. The CPU time increases by about a factor of 4 from 4o x 5o to 2o x 2.5o and 

another factor of 2 to a single nested simulation at 0.5o x 0.667o. Comparison of individual 

CPU times for chemical and transport operators shows that performing all the chemical 

operations takes ~4 times that of performing all the transport operations, at the global scale. 

This factor is reduced for nested simulations due to the additional CPU time for simulating 

boundary conditions.  

Figure 4-2 illustrates the sensitivity of the simulations to chemical and transport operators 

at 2o x 2.5o horizontal resolution. The left columns show the tracer concentrations for the 

‘true’ simulation (C10T05). The middle column shows the difference in tracer 

concentrations from doubling the transport timestep duration. Increasing the transport 

timestep tends to increase concentrations of emitted species like CO and NOx over source 

regions since tracers are more uniformly mixed by long timesteps before loss processes 

such as deposition and chemistry occur. More homogeneous fields have lower dry 

deposition and chemical loss rates. The increase in CO decreases OH over source regions. 

Increasing concentrations of ozone precursors increases ozone production (P [O3]). Wild 

and Prather (2006) similarly found that ozone production increases at coarser horizontal 
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resolution. Increasing the transport timestep duration increases SIA components, especially 

over the source regions of East Asia, North India, and North America (Figure 4-3).  

 

Figure 4-2: Sensitivity of simulated tracers to the duration of chemical and transport 

operators. The left column contains monthly mean ground-level concentrations simulated 

with the finest timesteps considered (C10T05) at 2o x 2.5o horizontal resolution. Other 

columns contain the absolute differences from doubling the transport timestep to C10T10 

(middle), and doubling the chemical timestep to C20T05 (right). Each row from top to 

bottom represents carbon monoxide (CO), nitrogen oxides (NOx), hydroxyl radical (OH), 

and the production of ozone (P[O3]). Simulations are represented as CccTtt with chemical 

timestep, C = cc minutes, and transport timestep, T = tt minutes. 
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Figure 4-3: As described in Figure 4-2, but each row from top to bottom represents ozone 

(O3), sulfur dioxide (SO2), sulfate (SO4
2-), and nitrate (NO3

-) respectively. 

 

The right columns in Figure 4-2 and 4-3 show the change in tracer concentrations from 

increasing the chemical timestep. Hydroxyl radical concentrations increase, NOx 

concentrations largely decrease, and P [O3] decreases with increasing chemical timesteps 

over source regions. Berntsen and Isaken (1997) found that the error introduced by coarser 

chemical timesteps is higher in polluted regions than the clean background. This is due to 
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the increased time lag and invariant production and loss across rapid chemical cycles. 

 

Figure 4-4: Simulation error of different species (
s

simE , equation 4-4) for GEOS-Chem with 

various timesteps at 2o x 2.5o horizontal resolution. Colored lines and dots represent the 

simulation error for nitrogen oxides (NOx; red), secondary inorganic aerosols (SIA; blue), 

ozone (O3; green), and carbon monoxide (CO; magenta). Simulations are represented in 

the abscissa as CccTtt with chemical timestep, C = cc minutes, and transport timestep, T = 

tt minutes. 

 

A longer chemical timestep decreases sulfate and ammonium but increases nitrate over 

source regions. Inspection of SO2 and H2O2 fields indicates that sulfate formation through 
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H2O2 in clouds decreases at longer chemical timesteps. In turn, SO2 and NH3 concentrations 

increase at longer chemical timesteps due to the corresponding decreases in ammonium 

sulfate or ammonium bisulfate. The additional free ammonia at longer chemical timesteps 

tends to promote regional ammonium nitrate formation (Figure 4-3) depending on local 

thermodynamics. An increase of total SIA mass with the increasing chemical timestep is 

driven by nitrate and ammonium, and partially compensated by a reduction in sulfate, 

especially downwind of source regions. We found similar spatial patterns for other timestep 

combinations, and other horizontal resolutions.  

Figures 4-4 shows the simulation error for nitrogen oxides, ozone, carbon monoxide and 

secondary inorganic aerosols with varying temporal resolution at 2o x 2.5o horizontal 

resolution. Simulation errors for all these major species increase by more than a factor of 

5 from the shortest to longest temporal resolution. Errors increase fairly smoothly until the 

transport timestep exceeds 30 min. The large corresponding Courant numbers are 

associated with errors that increase errors by an order of magnitude for long lived species 

such as O3 and CO. Simulation errors for other horizontal resolutions follows a similar 

pattern.  

Figure 4-5 shows the difference in simulated tracers at 2o x 2.5o horizontal resolution for 

the GEOS-Chem traditional (C30T15) minus the finest timesteps considered (C10T05). 

The spatial variation for the monthly mean ground-level concentrations is generally within 

5-15% for short lived species like NOx and SIA, and within 1% for longer lived species 

like O3 and CO. Santillana et al. (2016) similarly found an upper limit of 10% for operator 

splitting errors. However, the maximum hourly spatial variation can exceed 50% for short 
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lived species and 5% for the longer lived species. The spatial pattern of extrema resembles 

that of the monthly mean, albeit with more heterogeneity from synoptic variation.  

 

Figure 4-5: Effect on simulated tracers of changing from the GEOS-Chem traditional 

timesteps (C30T15) to the finest timesteps considered (C10T05). The top row contains 

ground-level concentrations simulated with the C30T15 timesteps at 2o x 2.5o horizontal 

resolution. The next two rows contain the monthly mean differences (C30T15 minus 

C10T05) for absolute (second row) and relative (third row) differences. The two lowest 

rows contain the maximum differences (C30T15 minus C10T05) for absolute (fourth row) 

and relative (bottom row) differences. Each column from left to right represents nitrogen 

oxides (NOx), secondary inorganic aerosols (SIA), ozone (O3), and carbon monoxide (CO).  
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Figure 4-6: Normalized error (NE, equation 4-5) for GEOS-Chem simulations with various 

spatial and temporal resolutions. Colored lines and dots represent the NE for the global 

simulations at 4o x 5o (red) and 2o x 2.5o (blue), and the nested simulations at 0.5o x 0.667o 

(green) horizontal resolutions. Error bars represent standard error in CPU time. Simulations 

are represented in the abscissa as CccTtt with chemical timestep, C = cc minutes, and 

transport timestep, T = tt minutes. 

 

We also examined the diurnal variation and vertical profile of extrema.  Extrema arise at 

all times of the day with a slight tendency for larger values for NOx at night, for ozone near 

sunrise and sunset, and for SIA and CO near noon. Zonal mean vertical profiles exhibit the 

largest differences in the lower troposphere for NOx and SIA, with more homogeneous 
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differences throughout the troposphere for O3 and CO. Near the subtropical jets of the 

upper troposphere O3 and CO have maximum extrema of up to 3%.  

Table 4-1: Mean Error* versus grid resolution with truth at 2o x 2.5o horizontal resolution 

 

 

* Mean taken for timesteps ≤ 30 min. 

Figures 4-6 shows the normalized error for the GEOS-Chem simulations at various spatial 

and temporal resolutions. The NE is noticeably higher with C = T than C = 2 x T. We 

confirmed this tendency with different choices of truth (such as C05T05, C10T10, instead 

of C10T05) or reference (C10T05, instead of C10T10) simulations. This finding supports 

the traditional approach of using C = 2 x T in prior GEOS-Chem simulations. Applying the 

chemical operator as frequently as the transport operator (with C = T) appears to increase 

computation cost with little benefit in accuracy. The NE for all three horizontal resolutions 

has a minima with a chemical timestep of 20 min and a transport timestep of 10 min 

(C20T10). A unit of computation time has a similar efficiency for a small range of 

timesteps from 10 min to 20 min. We found similar patterns in the variation of NE with 

timesteps with NE calculated for selected domains, such as over Northern Hemisphere, 

nested model regions, land grid boxes, and over the entire troposphere. We conducted 

Species                                       Simulation Error (1 x 10
-4

)

4
o 

x 5
o
 resolution 2

o 
x 2.5

o
 resolution

Nitrogen Oxides 38.04 1.64

Secondary Inorganic Aerosols 3.06 0.07

Ozone 6.45 0.09

Carbon monoxide 18.47 2.44
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additional simulations at 4o x 5o horizontal resolution for January 2011 with a spin up of 7 

months, and found similar patterns in NE.  

The simulation error decreases by 40-50% (Figure 4-4) by changing the resolution from 

the traditional (C30T15) to the optimal (C20T10) at 2o x 2.5o horizontal resolution. The 

relative spatial variations are <10% for NOx and SIA, and <1% for O3 and CO. However, 

the CPU time increases by 20% as the result of the increase in temporal resolution. 

Table 4-1 shows the simulation error for the 4o x 5o horizontal resolution with truth at 2o x 

2.5o resolution (C10T05) to further investigate the tradeoff between temporal and 

horizontal resolution. The simulation error for all species at 4o x 5o resolution increases by 

an order of magnitude compared to 2o x 2.5o resolution for any choice of timestep tested 

here. The error in this configuration is dominated by representativeness differences 

between 4o x 5o and is insensitive to timestep. Numerical errors due to advection processes 

generally exceed those from operator splitting (e.g., Prather et al., 2008; Santillana et al., 

2016). Thus CTM users could consider the finest spatial resolution available, and 

subsequently the optimal temporal resolution. We therefore recommend prioritizing 

horizontal resolution over temporal resolution. The optimal temporal resolution is 

insensitive to horizontal resolution. We encourage the CTM users to specify the durations 

of operators in publications due to its effect on simulation accuracy.  

4.5 CONCLUSIONS 

The computational expense of chemical transport models warrants investigation into their 

efficiency and accuracy. Solving the continuity equation in CTMs through the operator 

splitting method offers numerical efficiency, however, few studies have examined the 
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implications of operator duration on simulation accuracy. We conducted simulations with 

the GEOS-Chem model for multiple choices of timestep duration from 10 min to 60 min 

as typically used by global CTMs. We found that longer transport timesteps increase ozone 

precursors and ozone production over source regions since a more homogeneous 

distribution reduces loss though chemical reactions and dry deposition. Longer chemical 

timesteps decrease NOx and ozone production over source regions. Longer chemical 

timesteps reduce sulfate and ammonium concentrations while increasing nitrate 

concentrations due to feedbacks with in-cloud SO2 oxidation and local aerosol 

thermodynamics.  

We investigated the computational efficiency with the GEOS-Chem model, and found that 

the simulation duration decreases by an order of magnitude from fine (C10T05) to coarse 

(C60T60) temporal resolution. The chemical operator consumes about four times the CPU 

time of the transport operator. We subsequently compared the root mean square differences 

in the ground-level concentrations of nitrogen oxides, ozone, carbon monoxide and 

secondary inorganic aerosols with a finer temporal or spatial resolution taken as truth, and 

estimated the simulation error. Simulation error for these species increases by more than a 

factor of 5 from the shortest to longest temporal resolution. 

In order to account for the tradeoff between simulation accuracy and computational cost, 

we proposed a metric, normalized error, which quantifies performance in terms of the 

coupling of temporal resolution and simulation error. In general, we recommend the 

approach of using C = 2 x T for all horizontal resolutions. The normalized error exhibits a 

minimum for a chemical timestep of 20 min and transport timestep of 10 min. Nonetheless, 
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the simulation error from changing spatial resolution exceeds that from changing temporal 

resolution. We recommend choosing the finest possible spatial resolution before 

considering different temporal resolutions. We encourage the CTM users to specify the 

durations of operators in publications due to its effect on simulation accuracy. 
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CHAPTER 5: CONCLUSION  

 

We developed a first estimate of the long-term population exposure to all major PM2.5 

(particulate matter with aerodynamic diameter less than 2.5 m) chemical components and 

emission sectors throughout the world. We inferred global long-term (2004-2008) mean 

ambient outdoor satellite-model chemical components and sources of PM2.5 at a spatial 

resolution of 0.1o x 0.1o from satellite-derived aerosol optical depth observations and 

chemical transport model simulations. We evaluated the PM2.5 chemical component dataset 

with in situ measurements across North America, and where available in the rest of the 

world, and found significant agreement.  

We found that major contributors to global population-weighted PM2.5 concentrations were 

particulate organic mass (11.9 ± 7.3 g/m3), secondary inorganic aerosol (11.1 ± 5.0 

g/m3), and mineral dust (11.1 ± 7.9 g/m3). Secondary inorganic aerosols were high in 

East Asia (28 μg/m3) and South Asia (11 μg/m3), as was particulate organic mass in both 

South Asia and East Asia (22 μg/m3), and mineral dust concentrations in West Africa, 

North Africa, Middle East, and Central Asia (>20 μg/m3).  

We found that fossil fuel combustion (17 μg/m3), biofuel combustion (11 μg/m3) and 

biomass burning (1.3 μg/m3) were the major emission sectors to the population-weighted 

PM2.5. On a regional scale, fossil fuel combustion over East Asia (46 μg/m3), biofuel 

combustion over South Asia (24 μg/m3) and East Asia (20 μg/m3), and biomass burning 

over Central Africa (14 μg/m3) were noteworthy. Population-weighted PM2.5 from biofuel 

combustion was comparable to that from fossil fuel combustion in South Asia.  
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These estimates of chemical components and sources of PM2.5 offer information about 

global population exposure and health impacts of PM2.5. Crouse et al. (submitted) 

associated these composition estimates with a Canadian mortality cohort, and found that 

including PM2.5 composition into the model could improve mortality predictions.  

We developed a first estimate of the spatially and seasonally resolved global, lower 

tropospheric, ratio between organic mass (OM) and organic carbon (OC). We first 

developed a parameterization for the OM/OC ratio using the primary organic aerosol 

(POA) fraction of total OM estimated globally from Aerosol Mass Spectrometer (AMS) 

measurements, and evaluated it with high quality AMS data. We explored the ability of 

ground-level NO2 concentrations derived from the satellite-borne Ozone Monitoring 

Instrument to serve as a proxy for fresh emissions that have a high POA fraction, and 

applied NO2 data to derive ambient POA fraction. We developed an estimate of OM/OC 

from the combination of these two methods.  

The global OM/OC ratio ranged from 1.3 to 2.1 g/gC, with distinct spatial variation 

between urban and rural regions. The seasonal OM/OC ratio had a summer maximum and 

a winter minimum over regions dominated by combustion emissions. This dataset serves 

as an improvement over the commonly used global values for OM/OC, and it represents 

the OM/OC in most of the continental boundary layer, except for biomass burning, marine 

and free tropospheric environments.  

This global OMI-derived OM/OC dataset can be used to interpret in situ organic carbon 

measurements (e.g., Attwood et al., 2014). The parameterization developed in this paper 
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(Philip et al. 2014a) can be included into models for estimating OM/OC online, using 

simulated NOx concentrations (e.g., Xu et al., 2015).    

In the final section of this thesis, we examined the sensitivity of chemical transport model 

simulations to temporal resolution. We found that increasing the transport operator 

timestep increases the concentrations of emitted species such as NOx and CO since a more 

homogeneous spatial distribution reduces loss though chemical reactions and dry 

deposition. The increased concentration of these ozone precursors increases ozone 

production at longer transport timesteps. Increasing the chemical operator timestep 

decreases sulfate and ammonium but increases nitrate due to feedbacks with in-cloud SO2 

oxidation and aerosol thermodynamics.  

We found that simulation time decreased four times from fine (5 min) to coarse (60 min) 

temporal resolution, while simulation error increased by more than a factor of 5. The 

simulation error from reducing spatial resolution exceeded that from reducing temporal 

resolution. For accurate simulations with respect to computational expense, we 

recommended a chemical timestep twice that of transport timestep. A chemical timestep of 

20 min and transport timestep of 10 min offered the highest accuracy per computational 

cost for the 4o x 5o, 2o x 2.5o, and 0.5o x 0.667o horizontal resolutions.  

There are multiple future directions possible to improve the estimates of global ground-

level air quality. Future developments in satellite remote sensing, and in the modeling of 

aerosol composition such as organic mass are needed to improve the estimates of PM2.5 

components. Assimilation of satellite observations of trace gases into a chemical transport 

models could provide constraints on PM2.5 composition. Explicitly simulating the oxidative 
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aging of organic aerosols should ultimately yield a more complete representation of the 

ratio of organic mass to organic carbon. Satellite and chemical transport model simulations 

at finer spatial resolutions would better resolve intraurban gradients in PM2.5. The 

computational burden for the chemical operator can be reduced with the development of 

numerical methods, from the use of efficient algorithms and solvers to adjusting the 

chemical scheme locally (e.g., Rastigejev et al., 2007; Santillana et al., 2010). 
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