

PIP: A (Privacy) Injection Pattern for Inserting Privacy Patterns and

Services in Software

by

Naureen Ali

Submitted in partial fulfilment of the

requirements for the degree of

Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

November 2015

© Copyright by Naureen Ali, 2015

 ii

Table of Contents

List of Tables ... v

List of Figures ... vi

Abstract ... ix

List of Abbreviations Used ... x

Acknowledgement .. xi

Chapter 1 : Introduction .. 1

1.1 Research Problem .. 2

1.2 Research Objectives ... 3

1.3 Outline .. 3

Chapter 2 : Background and Related Work .. 4

2.1 Privacy Overview ... 4

2.1.1 Privacy .. 4

2.1.2 Privacy Policy .. 6

2.1.3 Privacy Standards and Laws .. 7

2.2 Privacy Research .. 8

2.2.1 Privacy Engineering: .. 8
2.2.2 Patterns on Privacy ... 13

2.2.3 De-identification through Data Transformation Techniques 14
2.2.3.1 Character Masking Method .. 14
2.2.3.2 The Randomization Method ... 15
2.2.3.3 The k-anonymity Model ... 15
2.2.3.4 The l-diversity Model ... 17

2.2.3.5 The t-closeness Model .. 19

2.2.4 Aspect Oriented Programming ... 21

2.2.4.1 Core Concerns and Cross-Cutting Concerns .. 21
2.2.4.2 Aspect Oriented Programming Key Terminologies 23
2.2.4.3 AOP and Privacy .. 24
2.2.5 Dependency Injection ... 31
2.2.6 Mocking ... 38

2.3 Discussion .. 40

Chapter 3 : Privacy Services Injection Pattern .. 42

 iii

3.1 Design Criteria ... 42

3.2 The Privacy Injection Pattern (PIP) ... 42

3.3 Architecture of the Privacy Injection Pattern (PIP) ... 44

3.4 Software Engineer’s Learning Curve Perspective ... 47

3.4.1 Dependency Injection (DI) ... 47
3.4.2 Mocking ... 49
3.4.3 Aspect oriented programming .. 52

Chapter 4 : Prototype for Proof of Concept ... 56

4.1 Banking System Use Case ... 56

4.2 Hospital System Use Case ... 64

Chapter 5 : Results and Evaluation .. 74

5.1 Evaluation Methodology .. 74

5.1.1 Survey Objectives .. 76

5.1.2 Survey Questions.. 76
5.1.3 Survey Approach .. 76

5.1.3.1 Survey protocol .. 77

5.1.3.2 Survey instrument .. 77

5.1.3.3 Survey Design .. 77
5.1.3.4 Intended Data Analysis .. 79
5.1.3.5 Recruitment .. 80

5.1.3.6 Participants ... 80

5.2 Participants ... 80

5.3 Perceived Usefulness and Perceived Ease of Use .. 81

5.3.1 Qualitative Analysis ... 83

5.3.1.1 Reliability ... 83
5.3.1.2 Validity ... 85

5.4 Results for Perceived Usefulness and Ease of Use .. 88

5.5 Improvements in PIP Pattern ... 92

5.6 Overall Motivation to Use the Pattern ... 93

5.7 Limitations ... 94

Chapter 6 : Conclusions and Future Work .. 95

 iv

Bibliography .. 97

Appendix A – Letter of Approval .. 107

Appendix B – Recruitment Script ... 108

Appendix C – Informed Consent ... 109

Appendix D – Signature Page .. 112

Appendix E – Survey Questions .. 113

 v

List of Tables

Table 2.1 Seven Types of Privacy [adopted from (Finn et al., 2013)] 5

Table 2.2. Approaches of Aspect Weaving [adopted from (Sommerville, 2011)] 24

Table 5.1. Demographics of the participants .. 81

Table 5.2. Mean, Standard Deviation and Cronbach's Alpha for Variables 84

Table 5.3. Cronbach’s Alpha of Perceived Usefulness and Perceived Ease of Use 84

Table 5.4. Correlation Matrix for Perceived Usefulness .. 86

Table 5.5. Correlation Matrix for Perceived Ease of Use ... 86

Table 5.6. Factor loadings after Varimax rotation .. 87

Table 5.7. Average of Scale of Perceived Usefulness and Perceived Ease of Use........... 89

file:///C:/Users/administrator/Downloads/Outlook.com%20(1)/Ali-Naureen-MCSc-CSCI-November-2015.docx%23_Toc436085546
file:///C:/Users/administrator/Downloads/Outlook.com%20(1)/Ali-Naureen-MCSc-CSCI-November-2015.docx%23_Toc436085547

 vi

List of Figures

Figure 2.1. Health related data [adopted from Zhong et al. (2005)] 15

Figure 2.2. 2-Anonymous health data [adopted from Zhong et al. (2005)] 17

Figure 2.3. Sensitive and non-sensitive information in health data 17

Figure 2.4. 4-anonymous health data [adopted from (Machanavajjhala et al., 2007)] 18

Figure 2.5. 3-diverse table [adopted from (Machanavajjhala et al., 2007)] 19

Figure 2.6. Salary/disease data [adopted from Li et al. (2007)] 20

Figure 2.7. 3-diverse salary/disease data [adopted from Li et al. (2007)] 20

Figure 2.8 Core concerns and cross-cutting concerns in Internet Banking System 22

Figure 2.9. Tangling and Scattering for Internet Banking System (adopted from [

(Sommerville, 2011)])... 23

Figure 2.10. Privacy Control Access Control [adopted from (Chen & Wang, 2007)] 26

Figure 2.11. Life cycle and flow of personal data [adopted from (Berghe & Schunter,

2006)] .. 28

Figure 2.12 Architecture of theme-park location service [adopted from (Scheffler et al.,

2012)] .. 29

Figure 2.13 Access permissions to the object on the basis of identity of the calling service

[adopted from Scheffler et al. (2012)] .. 30

Figure 2.14. An AOP based reference monitor [adopted from Scheffler et al. (2012)] ... 31

Figure 2.15. Relationship between DIP, IoC and DI [adopted from (Haque, 2013)] 32

Figure 2.16 Tightly coupled classes and code .. 33

Figure 2.17 ClassA has reference of interface of ClassB ... 34

Figure 2.18 Dependency injected by Container class ... 37

Figure 3.1. Architecture of a 3 tier desktop application ... 43

Figure 3.2. Architecture for injecting privacy in legacy application 45

 vii

Figure 3.3. Register concrete type to Unity container .. 48

Figure 3.4. Instantiation of CustomerManager object .. 49

Figure 3.5. CustomerManager class and GetCustomer function 51

Figure 3.6. ICustomerManager interface .. 51

Figure 3.7. customerManagerMock implementation .. 52

Figure 3.8. LongStringDeidentification class ... 54

Figure 3.9. Application of LongStringDeidentification aspect class 55

Figure 4.1. Sequence Diagram of User Account before Applying PIP 57

Figure 4.2. Load de-identification service DLL for desktop applications 58

Figure 4.3. Inject mocking object and implementation of the GetCustomer() method 59

Figure 4.4. Resolve mocking object at runtime to get customer information 60

Figure 4.5. Apply LongStringAnonymization aspect on AccountNumber 60

Figure 4.6. De-identification implementation in LongStringAnonymization class 61

Figure 4.7. Sample Bank Application – User log in with Operator role 62

Figure 4.8. Sample Bank Application – User log in with Administrator role 63

Figure 4.9. Main User Account Sequence Diagram after Applying PIP 64

Figure 4.10. Sequence Diagram of Patient Search before Applying PIP 66

Figure 4.11. Load de-identification service DLL for desktop applications 67

Figure 4.12. Inject mocking object and invoke IOC ... 69

Figure 4.13. Resolve mocking object at runtime to get patient information 70

Figure 4.14. Apply Deidentification aspect on PatientRecords 71

Figure 4.15. De-identification implementation in DeidentificationAspect class 71

Figure 4.16. Patient Search Screen of Hospital Application .. 72

 viii

Figure 4.17. Patient Search Sequence Diagram after Applying PIP................................. 73

Figure 5.1. Theory of Reasoned Action (Fishbein & Ajzen, 1975) 75

Figure 5.2. Survey Design .. 79

Figure 5.3. Participants understanding of the PIP pattern .. 82

Figure 5.4. Correlation between Factors and Variables after Varimax 88

Figure 5.5. Participants Groups' Perceived Usefulness .. 89

Figure 5.6. Participants Groups' Perceived Ease of Use ... 90

Figure 5.7. Overall Stacked Bar Chart of the Perceived Usefulness 91

Figure 5.8. Overall Stacked Bar Chart of the Perceived Ease of Use 92

Figure 5.9. Participants' Intention to Use the PIP Pattern ... 93

 ix

Abstract

Sensitive data may be leaked in many ways, and misuse of personal data from

information systems is very common. It is challenging to implement privacy services in

existing applications without affecting other modules. We propose the concept of a

master privacy injection pattern (PIP) for software engineers to use to automate

dynamically “injecting” existing privacy patterns in existing or new software without

modifying its code, or in some cases modifying the code to a very small extent. We

illustrate our new PIP and the simplicity of its implementation with the use cases that

inject well-known de-identification patterns in a banking application and a hospital

management system. Early evaluation results for PIP from a small survey of practising

software engineering professionals are encouraging. The majority of respondents believe

that the PIP is beneficial, easy to implement, and 85% of the participants stated their

intention to use the pattern.

 x

List of Abbreviations Used

SDLC Software Development Life Cycle

PMRM Privacy Management Reference Model and Methodology

PAWS Privacy Architecture for Web Services

OASIS
Organization for the Advancement of Structured

Information Standards

UML Unified Modeling Language

FIPP Fair Information Practice Principles

PIPEDA
the Personal Information Protection and Electronic

Documents Act

FTC Federal Trade Commission

DAL Data Access Layer

BAL Business Access Layer

DI Dependency Injection

AOP Aspect-Oriented Programming

OOP Object-Oriented Programming

TDD Test Driven Development

IoC Inversion of Control

DLL Dynamic Link Library

IDE Integrated Development Environment

REST REpresentational State Transfer

PII Personally Identifiable Information

 xi

Acknowledgement

With a deep sense of gratitude, I wish to express my sincere heartfelt

acknowledgements to my supervisor, Dr. Dawn Jutla, whose encouragement, guidance

and support from the initial to the final level enabled me to develop an understanding of

the problem. Her profound insight into privacy, excellent research experience, perpetual

energy and enthusiasm in research had motivated me a lot. In addition, she was always

accessible and willing to help her students with their research. As a result, research life

became smooth and rewarding for me.

Moreover, I would like to thank Dr. Peter Bodorik to timely help me with all sorts of

documentation and writing. I am also thankful to the entire faculty and staff members of

Department of Computer Science of their direct and indirect unconditional help and

cooperation that made my stay at Dalhousie University memorable.

Moreover, I would also like to thank my parents and my husband for their prayers and

support and to all my friends for always encouraging me and believing in me.

 1

Chapter 1 : Introduction

According to Alexander, Ishikawa, & Silverstein (1977), a “pattern describes a

problem that occurs over and over again in our environment, and then describes the core

of the solution to that problem, in such a way that you can use this solution a million

times over, without ever doing it the same way twice”. Privacy patterns in software

engineering represent sets of privacy requirements, and their relationships with system

architecture and implementation, into repeatable design groupings that may be applied

across software applications (Romanosky, Acquisti, Hong, Cranor, & Friedman, 2006;

Kalloniatis, Kavakli, & Gritzalis, 2007; Porekar, Jerman-Blazic, & Klobucar, 2008; Bier

& Krempel, 2012; Jeroen van Rest, Daniel Boonstra, Maarten Everts, Martin van Rijn, &

Ron van Paassen, 2014). Theoretically and in practice software engineers’ productivity

improves with the recognition and use of repeatable patterns.

Numerous privacy patterns exist. For example, Kalloniatis et al., (2007) identify

authorization, authentication, data protection, anonymization and pseudonymization,

unobservability, and unlinkability privacy process patterns. Porekar et al., 2008 classify

organizational privacy patterns as: “Obtaining explicit consent”, “Access control to

sensitive data based on purpose”, “Time limited personal data keeping”, “Maintaining

privacy audit trails”, “Creating privacy policy” , “Maintaining (versions of) privacy

policies”, and “Privacy negotiation”. Doty and Gupta (2013) discuss a privacy policy as a

pattern and reference Hoepman’s work (Hoepman, 2014) on privacy strategies and

categorization of privacy patterns. Others too (e.g. (Hafiz, 2006), (Romanosky et al.,

2006)) discuss collections of privacy patterns. Romanosky et al., 2006 specify three

privacy patterns (informed consent for web-based transactions, masked online traffic, and

minimal information asymmetry) for software to support individuals when performing

some activity online. Software patterns are also embedded in updated 2015 standard-track

specifications and standards such as OASIS’ Security Assertion Markup Language

(SAML), the XML Access Control Markup Language (XACML), the Enterprise Privacy

Authorization Language (EPAL), Privacy by Design Documentation for Software

 2

Engineers (PbD-SE), and the Privacy Management Reference Model and Methodology

(PMRM) specification of its atomic privacy services (Ali, Jutla, & Bodorik, 2015).

Once a privacy pattern is identified as per the above approaches, the pattern or its

service’s implementation still has to be “injected” into existing or new software.

Incorporating privacy requirements during a system’s design and implementation can

protect sensitive data in information systems. While it is comparatively simpler to

incorporate privacy in new applications, software engineers face challenges to implement

even existing privacy patterns and their services’ mappings in existing applications

without affecting other software modules. In some cases, software engineers would prefer

to avoid the recompilation and re-deployment of complex programs, such as found in

financial and healthcare systems.

1.1 Research Problem

As businesses are increasingly adopting computer based solutions, challenges such

as handling of private data, adoption and implementation of privacy industry standards,

and how to allow privacy auditors and officers to verify the promised privacy

implementation into business solutions arise.

Currently, software solution providers are implementing privacy on an adhoc basis and

do not provide the clear insight into the organization’s compliance to the promised

privacy policies. The way software has been written does not focus more on securing the

customers’ private data, but, rather privacy services are adopted on an as-needed basis.

This model makes it complicated and less transparent for software developers to maintain

the software over years and to keep it up-to-date with the new enhancements in the

privacy standards. This also becomes nightmare for the privacy officers to audit the

system.

Software engineers do not have a software engineering pattern that allows them to easily

integrate other privacy patterns in legacy and/or new software systems. This thesis’

 3

research problem and key technical challenge is how to inject a privacy pattern and its

accompanying service(s) automatically in new and existing systems.

1.2 Research Objectives

The objectives of this thesis are:

1. Creation of a master pattern to automatically inject other privacy patterns in

existing applications without modifying existing applications or modifying it

to a small extent, if required.

2. Demonstrate the applicability and use of the injection pattern via its

application in simple and complex use cases within the context of de-

identification.

3. Study the usefulness and ease of use of the proposed pattern by conducting a

survey with software engineers using the Technology Acceptance Model

(TAM) instrument.

1.3 Outline

Chapter 2 provides a literature review. In this chapter, we will discuss related

work on privacy policies and engineering, aspect oriented programming, mocking,

dependency injection, privacy using data mining, and connections between privacy

engineering and data mining. Chapter 3 explains the proposed privacy injection pattern,

discusses its components and describes its architecture. Chapter 4 then describes an

implementation of our proposed pattern in a banking use case and a health care use case

using Microsoft .NET platform while Chapter 5 describes the survey instrument and

methodology that is used to evaluate the pattern and discusses the result of the survey

conducted by the software engineers. Conclusions and future work are covered in

Chapter 6.

 4

Chapter 2 : Background and Related Work

Rapid growth in Internet technologies is encouraging business organizations to

focus more on customers and thus helping them to attract and target more customers

(Rodríguez, Piattini, & Fernández-Medina, 2006). The customers are sharing their

personal information with organizations to acquire organization’s services. Protection of

personal data is becoming essential for business to improve their customers’ acceptance

and satisfaction (Berghe & Schunter, 2006). This makes the protection of customers’

personal data a leading concern for organizations that need to comply with customer

needs, and privacy practices and regulations (Ghazinour & Barker, 2009). Organizations

are publishing privacy policies and statements that promise sound ways of handling

customers’ personal data. However, having privacy policy does not guarantee that these

organizations have privacy technology to enforce the promises within organization

(Karjoth & Schunter, 2002). Researchers have provided various tools, technologies,

frameworks and methodologies to incorporate privacy in the system for the purpose of

protecting customers’ personal data. In section 2.1, we discuss about the overview of the

privacy. Section 2.2 briefs about the existing privacy patterns and services. We also

discuss about the research carried out on the individual components that we are using in

our proposed privacy injection pattern.

2.1 Privacy Overview

2.1.1 Privacy

Privacy in technology is not something new. In 1980, Louis Brandeis and Samuel

Warren formulated privacy in their paper as the right “to be let alone” (Warren &

Brandeis, 1890). But, the concept of privacy develops with the evolution in technologies.

Finn, Wright, and Friedewald (2013) categorized privacy into seven types which are

listed in Table 2.1.

 5

Table 2.1 Seven Types of Privacy [adopted from (Finn et al., 2013)]

Privacy Type Description

Privacy of the person

Privacy of the person is also referred as “bodily privacy”.

It is the privacy of the body functions and body

characteristics, genetic codes and biometric information

etc.

Privacy of behavior and

action

The ability to control and monitor oneself’s action

performed either in public or in private space is the

privacy of behavior and action. This include privacy of

personal matters such as religious practices, political

preferences, and other activities etc.

Privacy of personal

communication

Privacy of personal communication is to restrict the

interception of communications. Communications mode

can be a telephone calls, face-to-face conversations,

exchange of emails, or text messages etc. Examples of

intercepting communication includes recording

conversation through hidden camera or microphones,

eavesdropping, use of computer viruses and bugs and so

on.

Privacy of data and image

This type of privacy is commonly referred to as

“information privacy”. Information privacy deals with the

concept of collecting and sharing of individual’s

information such as social security number, credit card

number, bank account numbers, email address etc.

Individual’s information also includes images and

pictures. We can further break down information privacy

into many other privacy groups such as financial privacy,

internet privacy, etc. Failure to protect the privacy of

individual’s data and image can make the user’s identity

 6

vulnerable or even put the user at risk.

Privacy of thoughts and

feelings

People have a right to share their thoughts and feelings,

and they should have the right to share whatever they feel

as it can help societies in many ways. Protection of such

thoughts and feelings is important because it creates

balance of power between the state and the individual

(Goold, 2009).

Privacy of location and

space

Privacy of location and space is to avoid the disclosure of

individual’s current or past locations to third parties. It

also deals with the issue of the automatic access to user’s

location by services such as navigation systems (Beresford

& Stajano, 2003). For services that require the user’s

location as an input parameter, such as finding out all

restaurants that are close to the user’s location, privacy of

the location and space should be carefully defined to

satisfy user’s desire of keeping their location secret while

providing the service (Beresford & Stajano, 2003).

Privacy of association

It is the right of the people to be a part of any association

they want, without any monitoring and controlling. This

association can be political, religious, societal, etc.

Privacy of association is important as it encourages groups

to become vocal which otherwise cannot be achieved

because of political and economic pressures.

2.1.2 Privacy Policy

A privacy policy can be defined as a statement or a legal document that discloses

the ways an organization collects, stores, manages and uses the user’s private information

(Karjoth & Schunter, 2002). It also describes what information will be kept secret by an

 7

organization and what data will be shared with business partners or third parties.

Sometimes privacy policies are so abstract that it is difficult to determine who is

authorized to access what data and under what conditions. This raises the need of a

formal semantic language to express the privacy policies in an unambiguous way that can

easily be understood by all the stakeholders. Many countries have well defined privacy

laws and standards to protect the privacy of an individual, private sector, government

operations, or enterprises. Individual organizations and enterprises also have regulations

and policies to protect the privacy of their customers and users.

2.1.3 Privacy Standards and Laws

According to Pew Research Center report of 2013 (Rainie, Kiesler, Kang, &

Madden, 2013), 68% of the internet users believe that current laws are not providing

reasonable protection of their privacy over the Internet and around 50% of the Internet

users are worried about their personal information which is available online.

Federal Trade Commission (FTC) is an agency of the United States government since

1914. When the commission was first created, its purpose was to “prevent the unfair

methods of competition in commerce” (Federal Trade Commission, n.d.). More functions

were attached to the agency over the years. One of the goals of the FTC is to protect their

customer from fraud, deception and unfair business practices (Federal Trade

Commission, n.d.). FTC releases their reports regularly to guide organizations about Fair

Information Practice Principles (FIPPs), and to motivate organization to implement FIPPs

core principles.

In Canada, concerns about privacy protection started in late 60s (Holmes, 2008). In 1977,

Canada’s first federal privacy protection act, Canadian Human Rights Act, came into

force. But, later it was realized that this act is not the best fit for privacy, so in 1983,

Privacy Act was enacted with the Access to Information Act. The Act is also called an

“information handler’s code of ethics”. The Privacy Act is applicable to federal

government agencies and it specifies that personal information will be collected from the

individual directly and only if it is related to the operational activity of the institution.

 8

Furthermore, an individual should be informed about the purpose of information

collection.

Another privacy law in Canada, The Personal Information Protection and Electronic

Documents Act (PIPEDA), was introduced in late 1990s. PIPEDA is applicable to

organizations in private sector for commercial activities and to the employees of federally

regulated organizations. The Act guides organizations in maintaining customers’ online

privacy.

2.2 Privacy Research

Many researchers have carried out research on privacy issues. This section will

shed light on some of the related research done in the field of privacy technologies.

2.2.1 Privacy Engineering:

The growth in collection, use and disclosure of personally identifiable information

(PII) in the last decade has motivated increased need for protection of private information

in public and private organizations. In response, Fair Information Practices Principles

(FIPPs) and other international privacy standards emerged. The US Federal Trade

Commission (FTC) proposed Fair Information Practices Principles (FIPPs) – guidelines

that focus on minimizing personal data collection, communicate to the user about

collection of data, and effectively maintaining the collected data (Spiekermann & Cranor,

2009; Pitofsky, Anthony, Thompson, Swindle, & Leary, 2000). These principles focus on

fair information practices in all information systems: electronic, manual, and hybrid.

Organizations draft their privacy regulations based on FIPPs.

Unfortunately, it has always been difficult to bridge the gap between legal language and

computer language. Most of the time privacy breaches are not due to malicious intents,

but due to unintended misuse of technologies or use of technologies that do not have

proper security and privacy controls. These breaches may not only have direct financial

 9

impact, but also have negative impact on customer trust and loyalty. In order to address

these issues to incorporate privacy in the processes, tools, and technologies, privacy

engineering has become an emerging discipline. Kenny & Borking (2002) defined

privacy engineering “as a systematic effort to embed privacy relevant legal primitives

into technical and governance design”.

We now discuss briefly the Privacy Management Reference Model and Methodology

(PMRM), which is one the models and methodologies proposed by researchers to

incorporate privacy in software. We base this discussion on (Sabo, Willett, Brown, &

Jutla, 2012, 2013). PMRM is based on FIPPs and it helps organizations to navigate

complexities in managing customer information in today’s networked environment. It

also helps organizations to improve privacy management and compliance in day-to-day

business where customer information is protected by laws and regulations, and where the

privacy enhancing technologies are not sufficient. The PMRM is used to analyze and

understand complex and composite use-cases, to derive and implement appropriate

privacy functionality, and to attain system-wide privacy compliance. This model also

helps in the selection of appropriate privacy controls in order to ensure that processes are

in line with organizations privacy policies. This model’s service functionality is

unaffected by the barriers such as multiple jurisdictions, regulations, business laws and

practices, and often conflicting laws etc. The PMRM provides a standards-based model

and is neither a static model nor a fixed set of defined rules as software engineers;

architects and developers have flexibility in implementing privacy and security policies

defined in PMRM. It serves as an analytical tool and helps to assess the completeness of

proposed privacy in the actual business processes and it also helps in the analysis and

design of the system functionality that are required to implement a set of privacy

requirements. This model also provides stakeholders, such as software architects,

developers, and policy makers, a tool to embed privacy management and compliance in

software systems.

Different models are being used by organizations to implement privacy components in

software systems and they were categorized into: Privacy by Architecture, Privacy by

 10

Policy, and Privacy by design (Cavoukian, Shapiro, & Cronk, 2014). In Privacy by

Architecture, customers become powerful or in control because data processing occurs at

customers’ machines instead of organization’s infrastructure. Thus, it eliminates the need

to transfer and store the data in an organization’s database. This significantly reduces the

secondary usage of customers’ data. In the extreme case, if an organization decides to

refrain from collecting personal information or bases its business on unidentifiable users,

it is not mandatory to provide a customer with notifications and choices. There are

systems based on this approach, such as the collaborative filtering system proposed in

(Cavoukian, 2013), in which individuals’ private data is stored on their own systems and

an ‘aggregate’ is computed on their data, which can later be shared with an organization

and third parties. Privacy by Policy approach is completely opposite of privacy-by-

architecture. FIPPs come into play when an organization decides to implement FIPPs

principles by making customers feel comfortable about their private information,

providing adequate security mechanism, and giving customers enough degrees of control

over their information. This approach is widely practiced in software industry by those

who collect individual’s personal information, which is most for profit organization.

Privacy by Design (PbD) (Cavoukian, 2013) states that the software development team

should incorporate privacy in the early software development phase as an integral part of

the software solution. PbD promotes enhanced accountability and user trust (Cavoukian

et al., 2014). Privacy by Design Foundational Principle builds upon universal FIPPs in a

way that updates and adapts them to modern information management needs and

requirements (Gutwirth, Leenes, & de Hert, 2015).

Different research has been conducted for feature and role-based privacy implementation.

Kaindl (2000) proposed a scenario-based design model that combines scenarios with

functions and goals. In this model, purpose of data collection acts as an intermediary

between goals and functions. System functions have purposes that are matched with the

goals of the users, while the functions are performed by users with goals. This model

lacks the concept of permission that links the purpose with the user which provides data

protection. This issue is addressed in (He & Antόn, 2003) wherein, authors present a

model for privacy engineering involving roles and permissions as well. But this paper has

 11

not considered organization structure and different obligations that need to be performed

by the users, who are collecting the data, in privacy context. Another framework was

proposed by Tumer, Dogac, and Toroslu (2003) for the specification of the privacy policy

and data subject preferences. According to the framework, an organization will specify

mandatory and optional information required from the data subjects and data subjects can

specify the type of access (free, limited, not given) they want to assign to each

information. At the time of performing some functionality, system will verify enterprise

policies with the data subjects’ preferences and act accordingly.

Research has also been performed on the representation of privacy policies. A privacy

policy refers to the promise made by the organization to the data subjects about how their

personal information will be used and to whom it will be disclosed. Platform for Privacy

Preferences (P3P) (Cranor, Langheinrich, Marchiori, & Reagle, 2002; Cranor L. F., 2002)

is a W3C standard that allows different websites to state their privacy practices in a well-

defined format that can be easily interpreted by automated user agents. P3P enable

browsers can fetch the policy automatically and can compare it with the user’s set of

privacy preferences (Karjoth & Schunter, 2002). This model has developed standards for

the user agents in order to automatically examine the privacy policy of e-business. But,

P3P does not provide the procedure to check an access request against the stated privacy

policy (Karjoth & Schunter, 2002). Besides, P3P does not prevent the specification of

deceptive and unfair practices (Guarda & Zannone, 2009). The other XML-based

languages used for privacy policies of organizations include EPAL and DPAL. Enterprise

Privacy Authorization Language (EPAL), developed by IBM, is a formal language to

write enterprise privacy policies (Ashley, Hada, Karjoth, Powers, & Schunter, 2003).

Privacy policies expressed in EPAL are used to enforce the organization privacy policies

through the enforcement engine (Md. Moniruzzaman, Ferdous, & Hossain, 2010).

EPAL’s main focus is on the core privacy authorization while keeping data models and

user authentication on the abstract level away from deployment details (Ashley et al.,

2003). EPAL policy is similar to access control rules or permissions. EPAL follows

sequential semantics that is the sequence of the statements determines the order in which

query will be answered. Each EPAL statement contains a condition that applies only to

 12

queries satisfying this condition. The authorization system examines the policy

statements in order. The system stops when it reaches an applicable statement containing

an “allow” or “deny” ruling. Hence it terminates evaluation mid-policy. The combination

of two compatible EPAL policies cannot be expressed in EPAL. DPAL is Declarative

Privacy Authorization Language that does not terminate evaluation mid-policy. The

authorization system collects requirements from all applicable statements and enforces all

their statements. In DPAL, concatenating two policies produces a policy that enforces

each statement from each policy (Barth, Mitchell, & Rosenstein, 2004). But P3P and

other languages does not deal with privacy policy compliance, i.e., it does not deal with

checking whether an organization’s business processes comply with the organization

stated privacy policies (Bodorik & Jutla, 2008; Barthet al., 2004).

The correctness of privacy-aware systems requires the compliance among privacy

artifacts that includes organizational goal, privacy policy, customer preference, and data

protection policy. Several researchers have proposed different ways to represent privacy

policies using UML for requirement engineering. Jürjens (2005) proposed Role-Based

Access Control (RBAC) for the secure system and he used stereotype {rbac} in UML to

specify RBAC in the systems. Basin, Doser, and Lodderstedt (2006) used UML based

modeling language to model access control policies. Jutla, Bodorik, and Ali (2013)

proposed a way to represents privacy requirements using UML use case diagram. The

paper is based on Privacy by Design principle and implemented privacy services using

Microsoft Visio ribbon.

Privacy is still a growing field and much needs to be done. With the increase in the

awareness and need of privacy, organizations are focusing on implementing privacy

services and patterns in their existing or new systems. There are various privacy patterns

identified by the researchers to implement in the systems to protect customers’ personal

information. In the following section, we discuss about some of the privacy patterns

identified by the researchers. We then discuss about the technologies that compose our

master privacy injection pattern and help in injecting privacy patterns into the existing

applications. We briefly explain the related work which reveals fragmentation in using

 13

the software engineering abstractions, that individual abstractions are used but not in

combination, to address privacy, and an absence of software injection patterns for

privacy.

2.2.2 Patterns on Privacy

Privacy patterns in software engineering categorize sets of privacy requirements,

and their relationships with system architecture and implementation, into repeatable

design groupings that may be applied across software applications (Romanosky et al.,

2006; Kalloniatis et al., 2007; Porekar et al., 2008; Bier & Krempel, 2012; Jeroen van

Rest et al., 2014). Theoretically, and in practice software engineers’ productivity improve

with the recognition and use of repeatable patterns.

There are various privacy patterns identified by the researchers to implement in the

systems to protect the personal information of the customer. For example, Kalloniatis et

al., (2007) identify authorization, authentication, data protection, anonymization and

pseudonymization, unobservability, and unlinkability privacy process patterns. Porekar et

al., (2008) classify organizational privacy patterns as: “Obtaining Explicit Consent” and

“Access control to sensitive data based on purpose”, “Time limited personal data

keeping”, “Maintaining privacy audit trails”, “Creating Privacy Policy”, “Maintaining

(versions of) Privacy Policies”, and “Privacy negotiation”. The OASIS Privacy

Management Reference Model and Methodology (PMRM) (Brown, Janssen, Jutla, Sabo,

& Willett, 2013) emerging privacy standard proposes eight privacy service patterns:

Agreement, Validation, Certification, Security, Access, Enforcement, Interaction, and

Usage. For the thesis, we propose a master privacy injection pattern (PIP) for software

engineers to use to automate dynamically “injecting” existing privacy patterns in existing

or new code without modifying the legacy code, or in some cases modifying the code to a

very small extent. We use the de-identification pattern and its service mapping as

example privacy pattern/service to inject in the existing application. In the next section,

we discuss different techniques of de-identification.

 14

2.2.3 De-identification through Data Transformation Techniques

With the advancement in hardware technology, capacity to store the personal data

also increases. This has led to concerns that the personal data can be misused for a variety

of purposes. In response, numbers of de-identification techniques for privacy preserving

have been discussed in number of papers. Data de-identification is a privacy-preserving

technique. It is the process of de-identifying sensitive data by removing or transforming

information in such a way that we cannot associate a piece of information with an

identifiable individual (Cavoukian & Khaled El Emam, 2014; Shapiro, 2011; Narayanan

& Shmatikov, 2008).

Character Masking, Randomization (Agrawal & Srikant, 2000), k-anonymity (Samarati &

Sweeney, 1998; Agrawal & Srikant, 2000), l-diversity (Machanavajjhala, Gehrke, Kifer,

& Venkitasubramaniam, 2007), t-closeness (Li, Li, & Venkatasubramanian, 2007), and

many other data transformation techniques associated with the privacy are discussed by

the researchers. These data transformation techniques reduce the granularity of

representation in order to reduce the privacy which in turn results in the information loss.

This is the natural trade-off between information loss and privacy. For the thesis, we use

character masking and k-anonymity techniques to de-identify the personal data. We

discuss these and other techniques in the next section.

2.2.3.1 Character Masking Method

De-identification of the sensitive information can be achieved by Character

masking. Character masking is a technique of replacing all or partial characters in the

data with the special characters such as *, X, & etc. The length of the masked data

remains the same after masking. For example to mask credit card number 6565 1111

5050 7896 can be partially masked with the character X to give the value XXXX XXXX

XXXX 7896 (Raghunathan, 2013).

 15

2.2.3.2 The Randomization Method

The randomization technique is a data transformation technique in which noise is

added to the data to mask the attribute values so that it become difficult to recover

individual record (Agrawal & Srikant, 2000). If the variance of the added noise is large

enough, then it becomes difficult to guess original data from transformed data.

Randomization method is simple to implement as it does not require knowledge of other

records in the data in comparison with k-anonymity where it requires the knowledge of

other records in the data. Randomization has some weaknesses also. It does not consider

local density of a record that make outlier susceptible to adversarial attacks as compare to

records in denser region (Aggarwal & Yu, 2008).

2.2.3.3 The k-anonymity Model

The k-anonymity is a de-identification method and it helps to preserve the

sensitive information. The motivating factor for the k-anonymity is how to avoid from

uniquely identifying record when used in conjunction with public records. Many

applications remove key identifiers (name, social security number, medical record

number etc.) from the data to avoid identifying the records. But we can identify a record

using some attributes in the data such as birthdate and zip-code in Figure 2.1 can be used

to indirectly infer the identity of the individual. These attributes are called quasi-

identifiers (Zhong, Yang, & Wright, 2005).

Figure 2.1. Health related data [adopted from Zhong et al. (2005)]

 16

The idea behind k-anonymity is to reduce the granularity of the representation of the data

in such a way that a given record cannot be distinguished from at least (k-1) other records

(Aggarwal & Yu, 2008). This granularity is reduced using techniques such as

generalization and suppression. In generalization, we replace the attribute value with a

generalized value. For example, birthdate can be generalized to birthyear in order to

avoid identifying an individual from the data. Attributes can be generalized by replacing

their values with that of their (common) parent. For example to generalized ZIP codes

84117, 84118, 84120, we can replace it with the generic ZIP 841**. This technique

“blurs” the data to prevent identification of individual record but also continue to provide

statistical utility (Aggarwal & Yu, 2008).

Suppression is the technique where attribute value is removed completely. For example,

suppose we have a dataset consisting mostly of one zipcode except for few records that

have 84120 zipcode. To prevent outlier tuples inferring any individual record, we can

suppress outlier tuples. Using suppression method risk of identifying an individual record

is minimized but its utility is also reduced.

In a k-anonymous table, each value of the quasi-identifiers should appear at least k times

so that each entity or individual’s record will be hidden inside the data with at least k

peers. Figure 2.2 show 2-anonymous of the health data shown in Figure 2.1. As shown in

the figure, we have performed generalization on ZipCode and suppression on Date of

Birth to make it 2-anonymous. After 2-anonymization, each values of quasi-identifiers

(Date of Birth, ZipCode) is appearing at least 2 times for example {*, 07030} is

appearing 3 times and {08-02-57, 0702*} is appearing 2 times.

 17

Figure 2.2. 2-Anonymous health data [adopted from Zhong et al. (2005)]

2.2.3.4 The l-diversity Model

The k-anonymity is susceptible to attacks when individual’s background

knowledge is available to the attacker. The two such kinds of attacks are: homogeneity

attack and background knowledge attack. Suppose we have health related data as

mentioned in Figure 2.3. As mentioned in the figure, medical condition is the sensitive

information while zipcode, age and nationality are the non-sensitive information. We

called medical condition as sensitive information because it values for any individual in

the dataset should not be discover by any adversary. In the figure, zipcode, age, and

nationality are quasi-identifiers and so its 4-anonymous table is shown in Figure 2.4.

Figure 2.3. Sensitive and non-sensitive information in health data

[adopted from (Machanavajjhala et al., 2007)]

 18

Figure 2.4. 4-anonymous health data [adopted from (Machanavajjhala et al., 2007)]

Suppose attacker found 4-anonymous health data as mentioned in Figure 2.4. Attacker

also has some background information about his target for example; he knows that his

attacker lives in the zipcode 13068 and his age will be in thirties i.e. 9
th

, 10
th

, 11
th

 or 12
th

record. From the 4-anonymous data, attacker can easily identify that his target is

suffering from cancer. This type of attack is called homogeneity attack where sensitive

information within a group of k records is the same. Now suppose, attacker knows that

his target is Japanese, his age is less than 30 and he lives in zipcode 13068 i.e. 1
st
, 2

nd
, 3

rd

or 4
th

 record. But it is also known that Japanese has low rate of heart disease so attacker

can easily predict that his target has viral infection. This type of attack is called

background knowledge attack.

Machanavajjhala et al. (2007) proposed l-diversity which not only maintain k-anonymity

but also maintain the diversity of the sensitive information within the group of size k.

According to the author, suppose q*-block is a set of tuples whose non-sensitive values

are generalize to q*. Each q*-block should have l >=2 different sensitive values such that

 19

l most frequent values (in the q* block) have roughly the same frequency i.e. each q*-

block is well represented by l sensitive values.

Figure 2.5 shows 3 diverse data of the previous health data mentioned in Figure 2.3. Here

each q*-block ({1,4,9,10}{5,6,7,8}{2,3,11,12}) have 3 different sensitive values and

their frequencies in each q* block is (50%, 25%, 25%) i.e. each block is well represented

by 3 sensitive values.

Figure 2.5. 3-diverse table [adopted from (Machanavajjhala et al., 2007)]

2.2.3.5 The t-closeness Model

The l-diversity also has some limitations. It does not consider the distribution of

the values of an attribute in the overall data which is not the case in real data; attribute

values can be skewed (Aggarwal & Yu, 2008). This skewed data will make it difficult to

correctly represent data in l-diverse form. Suppose we have a dataset consisting of 10000

records out of which 99% of them are negative while 1% is positive. If we have a q*-

block (an equivalence class) with 1 negative record and 49 positive records. Even after l-

diversity, each record in the equivalence class will be considered as 98% positive rather

than overall 1% positive.

 20

When equivalence class has distinct sensitive values but semantically similar sensitive

values, in that case also attack can be possible. Consider salary and disease related data

mentioned in Figure 2.7, whose original data is shown in Figure 2.6Figure 2.7. Suppose

attacker knows that his target lives in 47677 and whose age is in twenties, he can easily

predict that his target’s salary is between 3,000 and 5,000 and he has some stomach

related issue as gastric ulcer, gastritis, and stomach cancer are stomach related disease.

Figure 2.6. Salary/disease data [adopted from Li et al. (2007)]

Figure 2.7. 3-diverse salary/disease data [adopted from Li et al. (2007)]

Li et al. (2007) propose t-closeness model. According to the model, distance between the

distributions of the sensitive attributes within each equivalence class and the overall

 21

distribution of the data should not be more than a threshold t. The Earth Mover distance

metric (Rubner, Tomasi, & Guibas, 2000) can be to calculate the distance between the

two distributions. Furthermore, the t-closeness approach tends to be more effective than

many other privacy-preserving data mining methods for the case of numeric attributes.

Once a privacy pattern is identified, the pattern or its service implementation still has to

be “injected” into existing or new software systems. It is comparatively easy to

incorporate privacy in the new application, but for existing application, it requires

significant changes in the existing application to incorporate the privacy services. For this

thesis, we propose the concept of a master privacy injection pattern (PIP) for software

engineers to use to automate dynamically “injecting” existing privacy patterns in existing

or new code without modifying the legacy code, or in some cases only modifying the

code to a very small extent. PIP is composed of a novel tri-abstraction combination of

aspect-oriented programming, dependency injection, and mocking. In the next section,

we discuss these abstractions in detail.

2.2.4 Aspect Oriented Programming

The first abstraction in our proposed privacy injection pattern is Aspect Oriented

Programming aka AOP. Before we discuss the privacy related work using Aspect

Oriented Programming, we will understand aspect oriented programming in the next

section.

2.2.4.1 Core Concerns and Cross-Cutting Concerns

One of the principles of software engineering is that each element of the program

(class, method, procedure etc.) should focus on one task and one task only, which is also

called separation of concerns. According to (Sommerville, 2011), concerns can be

defined as “something that is of interest or significance to a stakeholder or a group of

stakeholders”. Core concerns are system’s primary functionalities and purposes while

cross-cutting concerns are those functionalities whose implementation is spread in

different modules of the program. Figure 2.8 shows core concerns and cross-cutting

 22

concerns of Internet Banking System. As mentioned in the Figure 2.8, requirements

related to new customer, account and customer management are core concerns while

security and failure recovery requirements are cross-cutting requirements as they may

influence the implementation of all of the other system requirements.

Figure 2.8 Core concerns and cross-cutting concerns in Internet Banking System

[adopted from (Sommerville, 2011)]

Object Oriented Programming (OOP) is most commonly used to implement systems’

core functionality. However, OOP is not sufficient for repeating cross-cutting solutions

because it typically creates a strong coupling between core and cross-cutting concerns,

such as logging and transaction management (Laddad., 2003). Using OOP, the software

engineer needs to modify the core modules and repeat the same code in many modules to

incorporate cross-cutting concerns. Cross-cutting concerns are not suitable using OOP

because of program modification it result in many issues due to tangling and scattering.

Tangling occurs when a module implements multiple requirements for example, in the

case of Internet Banking System shown in Figure 2.8, new customer component is

implementing two more secondary concerns, security and recovery requirements, other

than its core concern of maintaining new customer information. Scattering occurs when

more than one module implement a requirement for example, in the same Figure 2.9, all

 23

three components, new customer, account and customer management, are implementing

recovery requirements (Sommerville, 2011). This is the reason many programming

problems cannot properly be implemented using object-oriented programming or

procedural programming and which require aspect-oriented programming to clearly

implement the design decisions in the program.

Figure 2.9. Tangling and Scattering for Internet Banking System (adopted from [(Sommerville,

2011)])

2.2.4.2 Aspect Oriented Programming Key Terminologies

Aspect-oriented programming (AOP) is a programming technique to separate

crosscutting concerns in a new unit of modularization called aspects, instead of fusing

them with core modules. Aspect Oriented Programming aka AOP is not a new concept,

but it has been around for a number of years. AOP has recently started gaining more

attention from the development community (Deiters, 2005). AOP was developed by

Gregor Kiczales and colleagues at Xerox Company in 1997, now known as PARC (Palo

Alto Research Center). The idea of Aspect Oriented Programming was proposed mainly

to resolve the issue of cross-cutting concerns (Groves, 2013). Aspect consists of

crosscutting code that needs to be executed called advice. The events for which

 24

crosscutting code will be included in the program is called pointcut. The events specified

by pointcut are called join points. Crosscutting code is combined with the program using

weaving process. Aspects are the abstractions (such as subroutines, methods and objects)

that can be used at several places in the program for example; transaction logging can

represent an aspect that can be used wherever logging is required for any type of

transaction. They can be included before a method, after a method or when an attribute is

accessed (Sommerville, 2011). Executable aspect-oriented program is created by

combining a project implementation with aspects that handles cross-cutting concerns

related to the project using aspect weaver. There are three different approaches to aspect

weaving.

Table 2.2. Approaches of Aspect Weaving [adopted from (Sommerville, 2011)]

Approach Description

Source code pre-

processing

Weaver takes source code and combines it with aspects code

to generate final source code which is then compile using

language compiler.

Link time weaving Aspect weaver included with language compiler that

generates Java bytecode which is then be executed by Java

interpreter.

Dynamic weaving When joint points occur, corresponding advice will be

called.

The goal of AOP is to keep concerns localized rather than scattered. If we want to alter an

aspect in the program, we simply need to modify the aspect without modifying the core

functionalities. This helps to avoid making any mistakes or introducing any errors in the

program.

2.2.4.3 AOP and Privacy

AOP has been used to implement security by many researchers. Sharma, Batra,

and Mukherjee (2014) proposed using AOP for the secure transfer of data over the

internet. According to the authors, privacy of the information can be protected by

 25

encrypting/decrypting the data using hashing. This hashing will be performed by security

agent implemented as an aspect. Secret key is generated at both ends using hash function.

Integrity, confidentiality, authenticity, privacy and transmission can be achieved using

the approach. Win, Joosen, and Piessens (2002) also used AOP for a cross cutting

concern i.e. security. In this paper, two applications (a Personal Information Management

(PIM) system and a server for file transfer) are discussed where AOP is applied for

security. (Mourad, Laverdière, & Debbabi, 2008) and (Zhu & Zulkernine, 2009) also

proposed using aspect-oriented programming for secure application.

Chen and Wang (2007) in their paper used aspect-oriented programming as a mechanism

to implement privacy-aware access control. In this work, application-level access control

implemented using AOP, is extended to enforce privacy policies on personal data with

little impact on the structure of the application. Inter-type declarations or commonly

called member introduction is a mechanism that allowed the programmer to modify class

members/fields and relationship between classes. Inter-type declaration (ITD) is used to

link privacy preferences of a user with his/her PII which is then provided to the access

control aspect. Privacy policies are implemented by comparing the purpose of request

and data subject’s consent which he/she agreed on. As mentioned in Figure 2.10, action

purpose manager is used to fetch purpose of request while for data subject’s consent or

preferences, preference aspect invoke preference factory to fetch privacy preferences and

link it with the requested data. Lastly, access control aspect ensures that requestor is

authorized user, have authority to perform requested action and finally filter user’s PII

according to privacy preference attached with the PII.

 26

Figure 2.10. Privacy Control Access Control [adopted from (Chen & Wang, 2007)]

This concept can be used with different policy languages such as EPAL, but the

discussed sample implementation contains hard coded logic blocks instead of a policy

language. With the application of ITD, virtual multiple inheritance can be achieved. This

is powerful, but also very fragile and bug prune because it somehow breaks the

fundamental Java encapsulation rules. This mechanism used in this paper helps to enforce

privacy mechanism but is applicable to the application or similar structure applications.

The master privacy injection pattern is applicable to any applications as it is a pattern

which helps to resolve similar type of problem.

The work of Berghe and Schunter (2006) proposes to use aspect technology for privacy

enforcement in existing application. The paper introduced Privacy Injector that consists

of two parts, a privacy metadata tracking and a privacy policy enforcement part. “Sticky

policy paradigm” (Karjoth, Schunter, & Waidner, 2002) is implemented to protect the

personal data. This paradigm suggests that privacy promise made to a data subject will

remain with the data to enforce consented privacy policy later when the data is used.

Privacy metadata tracking part of Privacy Injector is the practical implementation of the

sticky policy paradigm and consists of three sub-components, privacy metadata

 27

assignment, metadata-preserving data operation and metadata persistence. Privacy

metadata assignment component assigns privacy metadata to personal data that enters the

system through web requests, emails etc. Metadata-preserving data operation preserves

and updates privacy metadata when certain operations are performed on the data. In this

paper, personal data stored as string is only covered for proof-of-concept but can be

applied to any data type. Privacy metadata is assigned for string fragment instead of

whole string and data operations are intercepted at the primitive data type level of the

execution platform. Metadata persistence component preserves, restores, modifies and

deletes privacy metadata when data is made persistent, retrieved, altered and deleted,

respectively. For the implementation of this component, persistence service is separated

from the application so that application will not directly perform any SQL query but

rather depends on persistent service for all persistent data related operations. These

components are application and enterprise-independent and can be used for any

application. Privacy policy enforcement part enforces the sticky policies by verifying the

usage of the data according to privacy policy.

Aspect technology is used to create connection between Privacy Injector and target

application. Privacy Injector is based on the idea of context-sensitive string evaluation

(CSSE) (Pietraszek & Berghe, 2005), a method that help detect and prevent injection

attacks and is mainly focused on prevention of unwarranted disclosure and over-retention

of personal data. Figure 2.11 depicts the life cycle of personal data provided by data

subject DS to enterprise A. The data is stored in storage A and shared with enterprise B.

Arrows represents the flow of the data with action and parameters required for that

action. Changes in the parameter is represented using quotes for example, consent is

initial consent given by data subject, consent’ is the consent sent to enterprise B and

consent’’ is consent requested from data subject by enterprise B. Privacy Injector is

available in the boxed area.

 28

Figure 2.11. Life cycle and flow of personal data [adopted from (Berghe & Schunter, 2006)]

Berghe and Schunter (2006) approach associate privacy metadata with each data. All data

manipulation operation should work according to the attached privacy metadata. This

approach will impact the overall performance of the system as checking each action

against metadata will be inefficient.

Scheffler, Schindler, & Schnor (2012) proposed the use of aspect-oriented programming

and sticky policy approach to enforce privacy in location based services. In this paper,

authors implemented data-owner defined privacy policies, where different data subject

can have different privacy preferences that are enforced by the service. For the use case,

theme-park location service is used. Usually theme park areas are widely dispersed.

People visit theme parks usually in groups and due to dispersed area, can lose contacts

with other group members. Theme-park location service will help to locate the group

members in the park area and it can also help operator for advertisements of certain

attractions to the visiting members. Both these features require user consent to use his/her

location information. For the implementation of this service, either an electronic device

can be provided to people before entering the park or an application can be installed in

their mobile phone. With the help of the mobile phone or electronic devices, location

 29

signals are sent to server along with attached individual policy which will then be stored

and used by the group members or operator. Additional information like nearby

restaurant or events information can also be sent using this service. Model-view-

controller paradigm is used for the theme park application. New groups, visited location

can be analyzed using web interface. Business logic is implemented on service layer

which uses Data Access Object (DAO) to access the data source. Overall architecture of

the theme-park application is mentioned in Figure 2.12.

Figure 2.12 Architecture of theme-park location service [adopted from (Scheffler et al., 2012)]

Scheffler, Geiß, & Schnor (2008) presented the idea of enforcing privacy using reference

monitor, based on Java Security Framework (Gong, Mueller, Prafullchandra, &

Schemers, 2007). If the architecture is implemented using this reference monitor then two

issues can occur. First, DAO classes need to be reloaded every time new customer enters

the park and register for the location service as the application won’t be able to update the

policy dynamically. Second issue is that, there is no possible way to consider calling

service when evaluating a policy. As depicted in Figure 2.13, two services, service 1 and

service 2, tries to access location information of a visitor (object O3) to which policy P3

is attached using DAO2. P3 allows service 1 to access the object O3 but does not allow

 30

service 2 to access O3. We cannot implement the policy P3 without using AOP as both

the services are using DAO2 to access O3.

Figure 2.13 Access permissions to the object on the basis of identity of the calling service

[adopted from Scheffler et al. (2012)]

Scheffler et al. (2012) extend this idea using AOP to build an AOP-based reference

monitor. Figure 2.14 shows the updated reference model using AOP. It indicates that

when an object tries to access a resource R that is attached to a sticky-policy P. Reference

model first evaluates the sticky-policy P using task-specific advices (I) and then grant the

access. Context object can be used by the reference monitor to get additional information

for the evaluation of the policy.

 31

Figure 2.14. An AOP based reference monitor [adopted from Scheffler et al. (2012)]

2.2.5 Dependency Injection

Increase in open source APIs is motivating developers to use readily available

APIs and wire them together with different components of a solution to form a cohesive

architecture. But as the size of the application increases, so is the complexity and

dependencies between different components, which ultimately make wiring of different

components difficult. To mitigate this problem, we can use a design pattern called

Dependency Injection (DI) which allows developers to inject dependency objects into a

class, rather than relying on the class to create the dependent object itself.

Dependency Inversion Principle (DIP) was first proposed by Robert Martin in 1992

(Champatiray, 2014). According to him, “high-level modules should not depend on low-

level modules. Both should depend on abstractions. Abstractions should not depend upon

details. Details should depend upon abstractions.” According to this principle, a class

should not depend on another class, it should depend on the abstraction i.e. interface,

abstract etc. This principle can be implemented using Inversion of Control (IoC) design

 32

pattern. The IoC is a technique that assigns the responsibility of flow of control of an

application to a container or a class (Johnson & Foote, 1988). The concept of dependency

injection is based on the inversion of control (IoC) design pattern. Figure 2.15 depicts the

relationship between DIP, IoC and DI. As shown in the diagram, there are other methods

to implement IoC for example, factory, service locator etc. In this paper, we will focus on

Dependency Injection to implement IoC.

Figure 2.15. Relationship between DIP, IoC and DI [adopted from (Haque, 2013)]

Instead of the traditional pull model where a class depends on another class that is

responsible for the creation or locating the object it wants to consume, dependency

injection takes a push approach. In this approach the responsibilities of initialization,

assembly, and wiring of objects are not implemented by the system developers, but

instead provided by the framework, thus inverting the flow of control.

Dependency injection is a design pattern that is useful to reduce the complexity of the

system (Ježek, Holý, & Brada, 2012). Tightly coupled architecture is the one that has

classes which are linked with a binary association. For example, when a class ClassA has

an object of another class ClassB; it signifies that ClassA is dependent on ClassB as

shown in Figure 2.16.

 33

Figure 2.16 Tightly coupled classes and code

ClassA ClassB1 1

/// <summary>
/// Implementation of ClassA
/// </summary>
class ClassA
{
 /// <summary>
 /// private instance of ClassB
 /// </summary>
 private ClassB classB = new ClassB();

 /// <summary>
 /// Constructor to initialize the intance
 /// </summary>
 public ClassA() { }
}

/// <summary>
/// Implementation of ClassB
/// </summary>
class ClassB
{
 /// <summary>
 /// Constructor to initialize the instance
 /// </summary>
 public ClassB() { }
}

 34

Figure 2.17 ClassA has reference of interface of ClassB

ClassA IClassB1 1

ClassB

1

1

/// <summary>
/// Defines contract for implementation
/// </summary>
public interface IClassB
{
}

/// <summary>
/// Implementation of ClassA
/// </summary>
class ClassA
{
 /// <summary>
 /// Private reference of type IClassB
 /// </summary>
 private IClassB classB;

 /// <summary>
 /// Constructor to initialize the members of this class
 /// </summary>
 public ClassA()
 {
 classB = new ClassB();
 }
}

/// <summary>
/// Provides implementation of interface type IClassB
/// </summary>
class ClassB : IClassB
{
 /// <summary>
 /// Constructor to initialize the instance
 /// </summary>
 public ClassB() { }
}

 35

To remove the binary relation between classes shown in Figure 2.16, we replace a

reference of the dependent class with its interface in the ClassA. As shown in Figure

2.17, ClassA is not directly dependent on ClassB, but ClassA is dependent on an interface

of the ClassB.

But still it is not completely loosely coupled as ClassA is still referring to ClassB inside

its constructor to initialize an instance of ClassB. This issue can be resolve by injecting

ClassB object by Dependency Injection Container (DIC). DIC is a framework that

provides a way to configure dependencies and helps to resolve these dependencies. DIC

works in three-step (Seemann M. , 2012). First, mapping rules defining the abstract type

and concrete type are registered within the container. Then, using these rules concrete

types are resolved and injected into the application. Lastly, container disposed concrete

objects when they are no longer in use.

The dependency injection will allow us to inject the ClassB object at runtime and we can

also inject other concrete implementation of IClassB as program evolves. As mentioned

in Figure 2.18, ClassA only has reference of interface IClassB. Container class creates an

object of ClassB, and then it injects the dependent object (ClassB) to ClassA.

 36

ClassA IClassB1 1

ClassB

Container

Creates

Inject dependency

/// <summary>
/// Defines contract for implementation
/// </summary>
public interface IClassB { }

/// <summary>
/// Implementation of ClassA
/// </summary>
class ClassA
{
 /// Private reference of type IClassB
 private IClassB classB;

 /// <summary>
 /// Constructor to initialize the members of this class
 /// </summary>
 /// <param name="classBInstance">Instance of type IClassB</param>
 public ClassA(IClassB classBInstance)
 {
 classB = classBInstance;
 }
}

/// <summary>
/// Provides implementation of interface type IClassB
/// </summary>
class ClassB : IClassB
{
 /// <summary>
 /// Constructor to initialize the instance
 /// </summary>
 public ClassB() { }
}

 37

Figure 2.18 Dependency injected by Container class

Dependency injection is mostly used for loosely coupled design. It is commonly used for

unit testing and validation/exception management (Culp, 2015). For proper unit test, a

class should not depend upon any external class. If any such dependencies exist, we can

replace it with the mock implementation of that external class. Validation/Exception

management can be done by injecting validation/exception code into the class. DI makes

the program more extensible, modifiable, reusable and maintainable by reducing the

dependencies between classes (Fowler, 2004; Seemann M. , 2012). Dependency injection

is best explained with coding examples in the next chapter.

Many researchers have used dependency injection for privacy and security in their work.

Benenson, Fort, Freiling, Kesdogan, & Penso (2006) proposed a smart card based

framework for Secure Multiparty Computation (SMC). This model consists of multiple

processes having their security module which securely interact with security modules of

other processes. In this paper, authors have used DI to configure the component that

selects the actual algorithm at runtime without recompiling the code. Livne, Schultz and

Narus (2011) presented an architecture where data from multiple heterogeneous health

informatics data sources can be queried using a federated query engine. In this work,

/// <summary>
/// Class that creates and injects dependency into ClassA
/// </summary>
class Container
{
 /// Holds the reference of type IClassB
 private IClassB objB;

 /// Instance of ClassA
 private ClassA objA;

 /// <summary>
 /// Contstructor responsible for initializing the member objects
 /// </summary>
 public Container()
 {
 this.objB = new ClassB();
 this.objA = new ClassA(this.objB);
 }
}

 38

dependency injection, AOP, XML configurations and other such best practices were used

to make the architecture as flexible, reusable, loosely coupled and service-oriented. These

technologies also ease the deployment of the application by using simple user-friendly

web console. Similarly, Jeˇzek et al. (2012) has also used DI in their work. In their

research, they proposed a framework that can be used to improve the selection of the

injection candidates from multiple candidates based on some extra-functional

characteristics such as high performance, low memory consumption etc. Almorsy,

Grundy and Ibrahim (2012) proposed a novel service called VAM-aaS (Vulnerability

Analysis and Mitigation as-a-service) to mitigate the security vulnerabilities in the cloud

environment. It analyzes the online services and in case of vulnerabilities generates a

script to block the services or application that can be vulnerable. A list of mitigation

actions is maintained by the system. In case of a particular vulnerability, vulnerability

mitigation component inject calls to security handler classes at runtime based on the

mitigation actions of that vulnerability. Related work suggests there is no work done

related to dependency Injection in the field of privacy. This paper will contribute in this

dimension.

2.2.6 Mocking

For unit testing, we want to test a class without interacting with other class. For

real world application, it is challenging as a class or component interacts with many other

classes. Mocking plays an important role in unit testing as it separate the external

dependencies from the unit that needs to be tested. Instead of providing actual

dependencies, programmer provides mock objects for dependencies to the unit under test.

In this way, unit in question can be tested in isolation.

Bender and McWherter (2011) used the term mock to refer to a family of similar

implementations to replace real external resources during unit testing. Other related term

used with mock is stub (Fowler, 2007). But there is a difference between mock and stub.

Fowler (2007) called stub useful for state verification as it acts as stand-in resource and

only provide necessary data for the unit test. While mock also includes behavior

verification. Mock has the ability to verify which method, how frequent and in which

 39

order the method is called and it reacts according to this information (Bender &

McWherter, 2011).

A mock object or isolation framework is a reusable library which provides a way to

create and configure fake objects at runtime. These fake objects are referred as dynamic

stubs and dynamic mocks. Stub objects replace existing objects so that we can test other

objects in our code without any problem. We classify fake objects as mocks when we

want to verify whether a test failed or passed. The easiest way to distinguish between the

mock and stub objects is that the stub can never fail a test. Isolation frameworks are

widely used in test driven development (TDD). The use of dynamic fake object

eliminates the need to write classes or provide the implementation of the interfaces,

because this framework facilitates the developer to generate the code at runtime.

Dependency Injection can increase the testability of the software by mocking or faking

dependent objects or external resources such as database and web service thus allowing

testing the component in isolation from other components. Mocking is mostly used for

unit testing. It makes the testing fast due to decoupling with external resources. It also

helps tester to replicate the error easily. Suppose many developers are working on a

product and are using the same database to change the state of the data. Unit testing using

real object may result in the failure of a developer’s test because another developer might

have altered the data. Mocking ensure that unit test is localized by replacing dependent

external resources with fake object or data required for the unit test which provide

controllability, observability and predictability. By using mocking, developers can

provide varied input and can ensure their result accordingly (Bender & McWherter, 2011;

Mackinnon, Freeman, & Craig, 2001).

In literature, mocking is often used for testing and for privacy of the personal

information. Beresford, Rice, Skehin, & Sohan (2011) propose modified version of

Android operating system called MockDroid to mock resource accessed by an

application. For example, application that requests IP connectivity, location data, read-

write access to calendar data, user may provide mock data instead of actual data to the

 40

application. This fake data might impair the application functionality for example; not

providing location information to Google Maps application will not show the correct

results on the map. By using this operating system, users are allowed to revoke access to

particular resource, enabling them to choose between the application functionality and the

disclosure of the personal information while using the application. MockDroid is helpful

to control additional features of the applications, control sharing of personal data, control

costs by avoiding expensive operations performed by an application and for testing.

Hornyack, Han, Jung, Schechter, & Wetherall (2011) also propose to provide fake or

empty data to application that required access to it. Data can also be marked as local-only

that is, it cannot be transferred over a network.

In another paper, Zhou, Zhang, Jiang, & Freeh (2011) also proposed the use of fake data

for application that request users’ personal data. User can view all the permissions that

application was requesting at the time of installation of the application and then select

one of the four modes (trusted, anonymous, bogus, or empty) for each of the permissions.

Trusted mode provides complete real data, while bogus mode provides some of the valid

information. Anonymous mode returns useful but unidentifiable data in comparison to

empty mode that does not return any of the data. Much of the related works are

performed in the field of security. There is not much work done related to mocking in the

field of privacy. This paper will contribute in this dimension.

2.3 Discussion

 In this section, we have summarized the different researches carried out by

industry leading researchers, but mostly all researchers described the methodology

specific to a type of application. None of the research focused on how to implement any

privacy pattern in any application. And also it is unclear how one can effectively ensure

correct data handling without completely redesigning the applications. It also does not

demonstrated how to embed the privacy services in the existing applications. Some

researchers have used AOP for the protection of the individual’s data but none of the

researchers have conducted a user study to analyze the ease of use and benefit of using

 41

AOP for the privacy protection. Related work reveals fragmentation in using the software

engineering abstractions separately to address privacy, and an absence of software

injection patterns for privacy. In this research we will provide a master privacy injection

pattern to allow software engineers to incorporate privacy into both legacy and new

systems.

 42

Chapter 3 : Privacy Services Injection Pattern

We discussed a number of research methods in Chapter 2, but none of the

research describes a framework or pattern on how to integrate other privacy patterns in

legacy and/or new software systems. Although it is always recommended to embed

privacy services in the early phase of software development (at the time of requirement

gathering and modeling), sometimes situations arise when we want to incorporate privacy

patterns and their services in existing applications. It is currently problematic for software

engineers and testers to incorporate privacy services in later stages of the software

development or after go-live. To address that issue, in this thesis, a novel pattern to inject

other privacy patterns in the existing system with little or no modification of the existing

application is designed. In this section, we explain the architecture of our proposed

pattern. For the thesis, we inject de-identification in the existing application using our

proposed privacy pattern.

3.1 Design Criteria

The following specify design constraints for a privacy injection pattern.

DR1: As privacy is a cross-cutting concern, privacy integration should be done in a

highly modular fashion.

DR2: Integration of privacy patterns into existing code should cause minimal

modification to it.

DR3: The pattern should be usable in modern design methodologies e.g. agile design and

development and hybrids

DR4: Privacy integration should be automated as completely as possible.

DR5: The learning curve for the software engineer to use the pattern should not be steep

3.2 The Privacy Injection Pattern (PIP)

In recent decades, privacy has become an interesting research topic due to the

increase in the sharing of the data between organizations. We identify a key technical

 43

challenge as how to inject a privacy pattern and its accompanying service(s)

automatically in an existing system. It is always preferable that a legacy system should

not be altered, or if it is required, modification should be very minimal and should not

affect other existing modules or logic so that a developer inadvertently does not introduce

any error in the system. Figure 3.1 shows the architecture of a three tier desktop

application. In Figure 3.1, data is transfer from a relational database to the data access

layer (DAL) and from the DAL to the business access layer (BAL). From the BAL, data

is passed to a presentation layer or a user interface layer. The configuration required for

the system is stored in external file such as XML file. Privacy is not implemented in the

system.

Users

1. Read/Write

Request

5. Request

Response

2

3

4

Figure 3.1. Architecture of a 3 tier desktop application

Suppose we need to implement privacy in this system. A key technical challenge is to

automatically inject a privacy pattern with its component implementation services in

existing software without breaking its functionality and undermining its performance.

To inject privacy in architectures without modifying the existing code, we propose to

combine three software engineering abstractions: a mocking framework, dependency

injection (DI) pattern, and aspects as defined in aspect-oriented programming into a

holistic Privacy Injection Pattern (PIP). These three concepts exist independently, but

have not been composed into one super-pattern before now for use by software engineers

to nimbly embed other privacy patterns and their services in applications. In the PIP,

aspects implement known privacy patterns. In the next sections, we will briefly discuss

these three concepts, which will help to explain the proposed injection pattern or PIP

 44

more clearly. All the examples and sample codes are covered in Microsoft C# language

using Microsoft .NET Framework.

3.3 Architecture of the Privacy Injection Pattern (PIP)

Combining the three abstractions (AOP, mocking, and DI), we develop a new

privacy injection pattern to insert known privacy patterns or services in new and existing

legacy applications. Figure 3.2 shows our proposed Privacy Injection Pattern to insert

privacy services in a software application using mocking, DI and AOP. It describes our

injection pattern’s program flow (numbered as 1 to 9) through one pattern instance. The

concepts intrinsic to PIP (combination of AOP, mocking and dependency injection) are

extensible to multiple system architectures. However, tightly coupled architectures that

lack modularity will require more of a privacy engineer’s attention than the more

extensible, interoperable, and robust SOA and n-tier architectures.

Our Privacy Injection Pattern (PIP) implements other privacy-pattern classes in an aspect

or privacy service component using AOP. As privacy is a cross-cutting concern across all

software collecting or using personal data, software engineers may implement third-party

privacy patterns or their components (e.g. de-identification, consent, notice) using AOP

so that aspects can be used across software implementation classes.

PIP is initialized at the very early stages of the software system. At startup, the software

developer loads a privacy service DLL (Dynamic Link Library), which consists of

privacy pattern services implemented using AOP. An example of such a privacy pattern

is obtaining explicit user consent. Dependency injection allows the engineer to load a

privacy service DLL without recompiling existing services. A developer simply places

the privacy DLL along with other existing system’ DLLs and the privacy program will

initialize automatically. When the program loads, a mocked Business Application Logic

(BAL) object of the same type as the original BAL object is created and injected by

initializing it. In this way, when a software engineer calls any function of the BAL object

(as triggered by (1) in Figure 1), it basically calls the mock BAL object function (3). This

 45

mock object fetches data from the business layer as normal. This mock object is similar

to the original BAL object layer. It first collects the original information in the similar

manner and then applies the privacy pattern over it. The mock object is used to redirect

the program flow to the privacy pattern (4). We use the mock object to apply third-party

privacy aspects from privacy data patterns (7) and to transfer the modified data to the

presentation layer (11). The software engineer can apply privacy patterns implemented as

privacy services using aspects that cater for fine-grain privacy attributes such as role,

locations, or any other environmental variables. Thus, PIP enables the software engineer

to build rich privacy contexts.

Figure 3.2. Architecture for injecting privacy in legacy application

We can understand the PIP pattern more clearly by using example use cases that are

described in next chapter. For the example use cases, we use a de-identification privacy

pattern to incorporate in the existing application but indeed a software engineer can use

any privacy pattern appropriate to her/his use context.

A mock object or isolation framework is a reusable library, which provides a way to

create and configure fake objects at runtime to mimic the behavior of the actual object.

 46

This is a reason, mock objects are extensively used in unit testing and are a widely used

approach to replace parts of a program that are not directly relevant to a test case. This

thesis proposes to use mock objects in the PIP pattern to replace any code that interacts

with data stores, users, or sensors providing data. The use of mocking supports design

requirements DR1, DR2, DR3, and DR5.

Dependency injection is proposed for combination in the pattern as it assists the software

engineer to automate the injection of privacy patterns in terms of resolving dependencies

at runtime. It strongly supports design requirement DR4.

AOP is included in the pattern for its expressive power for cross-cutting concerns, and

hence support for DR1 and DR3. It addresses the highly modular design requirement.

One of the prominent advantages of AOP is that developers only have to worry about an

aspect in one place. The key idea is writing the aspect once and applying it in the solution

wherever it is needed. This abstraction helps developers to keep code clean by keeping

lots of code out of sight. The downside of AOP is that, a bug in the aspect can take

several hours to track and fix (Sonnino, 2014).

Our privacy injection pattern can be used in distributed Service Oriented Architecture

(SOA), cloud environment, mobile, as well as in non-web services environments, such as

desktop, and many existing client-server and legacy applications. The reason is that this

pattern will always reside with business access layer. This makes the pattern to be

deployed in any environment setting. For example in cloud environment, organizations

hosts their core services which exchanges data with service consumers and our pattern

resides on top of business layer which is a part of hosted service. In this way, software

engineers do not have to worry about hosting PIP pattern separately.

 47

3.4 Software Engineer’s Learning Curve Perspective

Software engineers use different software pattern to resolve the recurring issues in

the software design. Our master privacy injection pattern can be applied to the software

applications to incorporate privacy patterns in the existing applications. The software

engineer’s understanding of the three main components of the PIP pattern, i.e.

dependency injection, mocking, and aspect oriented programming, is necessary for the

implementation of our PIP pattern. We will first write an assembly to implement the

functionalities required for the privacy pattern to be incorporated in the application

example de-identification. Once the assembly is created, we dynamically load the

assembly at runtime to avoid modifications in the application. We then create an object of

the type mentioned in the assembly and call its function to inject the mock object in the

IoC container. We discuss details on the dependency injection in the next section.

3.4.1 Dependency Injection (DI)

Dependency Injection can be implemented to inject object dependencies at

runtime. To better understand the Dependency Injection, let us take an example of a

banking application where a system will get customer information from the XML file. On

the basis of the application user’s role, he/she can view a customer’s complete

information or de-identified information. Inversion of Control motivates developers to

make higher-level modules dependent on abstraction rather than the concrete

implementation of the lower level modules.

We use a banking example to illustrate what the software engineer would need to learn

about Dependency Injection. For the implementation of the banking example with DI, the

engineer will need to create an interface called ICustomerManager with method

GetCustomer. The dependency injection container is responsible for initialization of the

concrete classes and injection of the dependencies to the dependent classes. At runtime,

the application decides which concrete implementation of the ICustomerManager should

be initiated and injected into the application. This task is called registration. Once

 48

concrete implementation of the ICustomerManager is decided, the application creates

that concrete object. This is the resolution task. Once the ICustomerManager is available

for garbage collection, the application disposes off the ICustomerManager instance. This

is the disposition task.

There are many dependency injection containers available in implementation platforms

such as Microsoft.Net. For further illustration of what a software engineer may need to

learn to use PIP, we use the Unity Application Block (Unity) that performs registration,

resolution and disposition cycle for dependency injection to work. Let us take the

banking example to illustrate how this cycle would work using Unity.

Register

The first task for dependency injection is to register a concrete type in the

application. Figure 3.3 shows how we can create a new Unity container and register a

type to it. The figure depicts that we are registering a CustomerManager object as a

concrete implementation of the ICustomerManager interface so that when the banking

application requires the ICustomerManager instance, the application will inject the

CustomerManager object.

if (!Common.Ioc.IocContainer.Instance.IsRegistered(typeof(ICustomerManager)))
{
 Common.Ioc.IocContainer.Instance.Register<ICustomerManager>(
 new CustomerManager()
);
}

Figure 3.3. Register concrete type to Unity container

 49

Resolve

Resolution is the process of instantiation of the concrete object. In our example,

the CustomerManager is instantiated using the Resolution method as mentioned in Figure

3.4. In the example, the Unity container instantiates the CustomerManager object and its

dependent object, if any.

this.customerInfo = Common.Ioc.IocContainer.Instance.Resolve<ICustomerManager>()
 .GetCustomer();

Figure 3.4. Instantiation of CustomerManager object

Disposition

As shown in the previous example, the Unity container initializes the

CustomerManager object that is assigned to the customerInfo variable. When the

CustomerManager object is eligible for garbage collection, the application disposes off

the CustomerManager instance. This registration, resolution, and disposition task can be

performed manually without dependency injection container but the dependency injection

container is the preferred option as it is efficient when dependencies increase and for

maintaining a system where requirements change.

3.4.2 Mocking

In the real world, developers write unit tests for a project to test the expected

functionality of a class or of a module. Writing unit test cases is a fundamental activity in

Extreme programming and Test-Driven Development. Each unit test tests the

functionality of a single feature or a method in isolation. If a unit test case fails, it

identifies a bug or broken feature in a module (Tillmann & Schulte, 2006). In practice

developers dismiss the idea of unit testing the code or a module in isolation because the

functionality they want to test is either too complex or too many dependencies are

involved. Often configuring and setting up the external dependencies or a system

becomes impractical or requires time and effort, which can jeopardize the project’s

timeline or budget (Seemann, 2004). Configuring such a complex setup for

 50

internal/external dependencies is fragile and can break a test, even if written code or the

test works perfectly.

In order to avoid such complications, developers rely on mock objects. A mock object or

isolation framework is a reusable library, which provides a way to create and configure

fake objects at runtime to mimic the behavior of the actual object. This is a reason, mock

objects are extensively used in unit testing and form a widely used approach to replace

parts of a program that are not directly relevant to a test case. A mock object is a kind of

fake object in the system, which decides whether a unit test has passed or failed. It is

done by asserting the state of the object being tested to verify if it interacts as expected

with the fake object. The mock object saves the communication history, which is used

later for verification.

In almost all software systems, objects interact with other objects to complete a task or a

part of a task. When writing unit tests we come across similar situations, where an object

being tested uses another dependent object over which we do not have control. Examples

of such objects are web services, databases, threads, file systems, memory, and time and

so on. The key idea is that when a test cannot control what will be the return result from

that dependable object and how it will behave during the execution of the test. Let us take

an example to understand what the software engineer does to create a mock object in

banking example where we want to get customer information from any repository. We

have a CustomerManager class (Figure 3.5) that is use to get customer information from

the XML file and this functionality is provided by a function GetCustomer. The

function’s signature looks like this:

 51

public class CustomerManager : SampleBankLibrary.ICustomerManager
{
 /// <summary>
 /// Load customer info from the storage. In this sample application, customer
 /// info is stored in XML file. This method will load customer info from the XML
 /// file and return
 /// </summary>
 /// <returns>
 /// Returns customer information object containing account, transactions etc
 /// </returns>
 public ICustomerInfo GetCustomer()
 {
 var customerInfo = new CustomerInfo();

 var result = LoadFromXmlFile() ;

 return result;
 }

}

Figure 3.5. CustomerManager class and GetCustomer function

The GetCustomer function will read the XML file stored on the file system to get the

information of the customer. The above example is very close to the real world scenario.

For testing the above example using a mocking or isolation framework, we have to add a

layer that wraps up the calls so that we can mimic the functionality in our tests.

Therefore, we have to modify the above example by introducing an interface,

ICustomerManager, as shown below in Figure 3.6:

public interface ICustomerManager
{
 /// <summary>
 /// Return customer information
 /// </summary>
 /// <returns></returns>
 ICustomerInfo GetCustomer();
}

Figure 3.6. ICustomerManager interface

The reason for introducing the interface is that we can replace the underlying

implementation with any class/object over which we have control. This class/object is an

implementation of the interface, ICustomerManager that is replaced by a mock object

 52

that we can control. The mock object is customerManagerMock. Mock implementation is

provided in Figure 3.7:

var customerManagerMock = new Mock<ICustomerManager>();

customerManagerMock.Setup(x => x.GetCustomer()).Returns(() => {

 var customerMgr = new CustomerManager();
 var result = customerMgr.GetCustomer();

 return new CustomerInfoDeidentifiedImpl(result);
});

Figure 3.7. customerManagerMock implementation

To implement the pattern, we will not instantiate the CustomerManager object, but rather

we will hold the instance level reference to the type ICustomerManager because now we

can hold a reference to any implementation of the ICustomerManager. When we want to

show complete information of the customer to the application user, we will instantiate

CustomerManager object and when we want to de-identify the information, we will

instantiate customerManagerMock object. As shown in the Figure 3.7, we will first create

customerManagerMock object using Moq library of the Microsoft .Net Framework. We

then setup the implementation of the customerManagerMock object in which we first

fetch customer information in the similar way as fetch by the original customerManager

object. The information is then passed to the privacy aspect to de-identify the information

whose detail is mentioned in the following section. Once we setup a mock object, we will

register the object in the IoC so that whenever any function of the ICustomerManager

instance is called, it will call the function of the mock object instead of the GetCustomer

function of the CustomerManager class.

3.4.3 Aspect oriented programming

One of the most prominent advantages of AOP is that developers only have to

worry to about aspect in one place. The key idea is writing the aspect once and applying

it in the solution wherever it is needed. This helps developers to keep code clean by

keeping lots of code out of sight, but it’s still there. The downside of AOP is that, a bug

in the aspect can take several hours to track it and fix it (Sonnino, 2014). In this section,

 53

we will cover an AOP example using our banking application to continue our articulation

of what a software engineer must know/learn in order to successfully use the PIP. In this

example we will be using PostSharp library for Microsoft .NET Framework. In the

Figure 3.8, LongStringDeidentification class contains the cross cutting concerns, and this

concern will modify the string return from the property that is called. In real life

scenarios, these concerns can perform a meaningful task if the called method is

successfully executed.

LongStringDeidentification class is inheriting from LocationInterceptionAspect class,

which is provided by the PostSharp library and it becomes the responsibility of the

LongStringDeidentification class to override the OnGetValue method so that we can de-

identify the customer information when getting the value. The reason for overriding the

methods is so that we can provide the implementation of our choice for cross cutting

concerns. The PostSharp library also makes it mandatory that any class that can be used

as an aspect class should be decorated with a Serializable attribute.

 54

[Serializable]
public class LongStringDeidentification : LocationInterceptionAspect
{
 /// Mask the string from front
 public bool HideFromFront { get; set; }

 /// Character that will be used to mask the string
 public char MaskCharacter { get; set; }

 /// Numbers of characters that will be shown in the original string
 public int VisibleStringLength { get; set; }

 /// Mask the string from the end
 public bool MaskFromBack { get; set; }

 /// Default mask character if no mask character is defined on the attribute
 Private readolny char Default_Mask_Character = '*';

 /// Default number of character that will be visible
 Private readonly int Default_Visible_String_Length = 4;

 /// By Default mask from the end
 Private readonly bool Default_Mask_From_Back = true;

 /// When retrieving the value, it is called to deidentified any long string
 public override void OnGetValue(LocationInterceptionArgs args)
 {
 base.OnGetValue(args);

 if (Common.Ioc.IocContainer.Instance.Resolve<IRoleManager>().UserRole == Role.Manager)
 return;

 string value = (string) args.Value;

 if (String.IsNullOrEmpty(value)) return;

 if (value.Length <= this.VisibleStringLength)

 value = this.MaskCharacter.Repeat(this.VisibleStringLength);

 if (this.HideFromFront)
 {
 value = string.Format("{0}{1}",

this.MaskCharacter.Repeat(value.Length - this.VisibleStringLength),
 value.Substring(value.Length - this.VisibleStringLength));

 }
 else
 {

 value = string.Format("{1}{0}",
this.MaskCharacter.Repeat(this.VisibleStringLength),

 value.Substring(0, value.Length - this.VisibleStringLength));
 }

 args.Value = value;
 }
}

Figure 3.8. LongStringDeidentification class

 55

OnGetValue method of the LongStringDeidentification class first gets the value of the

property on which we apply the aspect. If the value is empty then the method will be

exited. If we want to apply the masking from the beginning of the value return from the

property then we will replace all the characters with mask character except for the last

VisibleStringLength characters. If we want to apply the masking at the end of the value

return from the property then we will show first VisibleStringLength characters of the

string and then replace the remaining characters of the string with mask character.

LongStringDeidentification is used as shown in the Figure 3.9 below. As we can see that

an AccountInfoDeidentifiedImpl class has a property AccountNumber and this property is

decorated with the LongStringDeidentification class. Whenever we get AccountNumber,

the OnGetValue method from the LongStringDeidentification class will be executed.

public class AccountInfoDeidentifiedImpl : SampleBankLibrary.IAccountInfo
{
 /// <summary>
 /// account numbers that customer hold
 /// </summary>
 [LongStringDeidentification(MaskCharacter = '*', VisibleStringLength = 5)]
 public string AccountNumber { get; set; }

}

Figure 3.9. Application of LongStringDeidentification aspect class

 56

Chapter 4 : Prototype for Proof of Concept

In the last chapter, we proposed the PIP pattern and explained the software

engineer’s learning curve around the three main components of the PIP pattern. In this

chapter, we illustrate the ease of use and simplicity of implementation of our composite

Privacy Injection Pattern (PIP) in the context of two use cases. The first example, a

banking use case, injects a well-known character masking de-identification pattern, while

the second example, a hospital use case, injects k-anonymity .

4.1 Banking System Use Case

To illustrate ease of use and simplicity of implementation of our composite

Privacy Injection Pattern (PIP), we employ PIP in a use case scenario from a banking

application that uses de-identification patterns for protecting privacy. Data de-

identification is a privacy-preserving technique. It is the process of de-identifying

sensitive data by removing or transforming information in such a way that we cannot

associate a piece of information with an identifiable individual (Cavoukian & Khaled El

Emam, 2014; Shapiro, 2011; Narayanan & Shmatikov, 2008). Some de-identification

patterns are substitution, shuffling, nulling out, character masking and cryptographic

techniques. We implement the nulling out and character masking privacy patterns for

illustration using aspect-oriented programming (AOP) in our example. We show how to

use mocking and dependency injection techniques to automatically inject an AOP

instance of the de-identification service.

Our technical implementation uses Visual Studio .Net (IDE), PostSharp (AOP), the Unity

Container (Dependency Injection), and the Mock library to implement an example

injection of our de-identification service (Cavoukian & Khaled El Emam, 2014) into a

banking application. We note that the PIP may be implemented with other technologies,

e.g. multi-platform heterogeneous technologies.

 57

The banking application’s use case scenario contains account information that shows

individual and account details. We use two roles, manager and operator, to study the

behavior of the system before and after applying the proposed pattern. Figure 4.1 shows

the sequence diagram of the Maintain Users’ Account Use Case before applying PIP.

Once the user is login into the system, system creates customer manager and role

manager object and retrieves account and transaction details of all the users and displays

it on the screen.

User SampleApp MainForm LoginForm
Customer
Manager

Role
Manager

XML

Login

new MainForm()

MainForm_Load()

ShowDialog()

new RoleManager()

GetCustomer()

showBankUserInfo()

 DisableAllControls()

showAccounts()

new CustomerManager()

LoadFromXMLFile()

opt

[User == Operator]

Return CustomerInfo Object

Figure 4.1. Sequence Diagram of User Account before Applying PIP

In this Use Case, we want to inject the role-based de-identification pattern for access

control such that the operator can view only some information while the manager can

view all information. De-identification is thus not applied for the manager. The de-

identification service DLL is loaded in the main program. Figure 4.2 shows the

implementation of this added function to load the de-identification service DLL and

 58

initialize the de-identification service. This function is required for desktop-based

applications. For web-based application, the software developer simply places the privacy

DLL with other DLLs.

private static void InjectLibraries()
{
 var deidentificationServiceLibName = "BankDeidentificationService.dll";

 var currentPath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);

 var deidentificationServiceLibCompletePath = Path.Combine(currentPath,

 deidentificationServiceLibName);

 if (!File.Exists(deidentificationServiceLibCompletePath))
 {
 return;
 }

 Assembly assembly = Assembly.LoadFrom(deidentificationServiceLibCompletePath);
 var deidentificationServiceType = assembly.GetType(

"BankDeidentificationService.DeidentificationService");

 var serviceInstance = Activator.CreateInstance(deidentificationServiceType);

deidentificationServiceType.InvokeMember(
"Initialize",
BindingFlags.Default | BindingFlags.InvokeMethod,
null,
serviceInstance,
null);

}

Figure 4.2. Load de-identification service DLL for desktop applications

When the de-identification service initializes, it creates a mock object of the same type as

our business layer object. In our case, our business layer object is CustomerManager,

which is an implementation of the ICustomerManager interface. The CustomerManager

has a method called GetCustomer that fetches customer and account detail from the

database. The software engineer creates a mock object of the ICustomerManager type

and then registers it. The engineer also setups the updated implementation of

GetCustomer method to fetch customer and account details in the same way as the

originating object method, and then applies the de-identification aspect on this object.

Figure 4.3 shows the de-identified GetCustomer implementation. Subsequently, when the

 59

developer calls CustomerManager.GetCustomer, the updated GetCustomer method is

invoked. In the Unity Container, for dependency injection the software engineer first

registers the object at the beginning of the program to resolve the object to access its

methods.

public static void Initialize()
{
 SetupCustomerManager();
}

public static void SetupCustomerManager()
{
 if (Common.Ioc.IocContainer.Instance.IsRegistered(typeof(ICustomerManager)))
 {
 return;
 }

 var customerManagerMock = new Mock<ICustomerManager>();

 customerManagerMock.Setup(x => x.GetCustomer()).Returns(() => {

 var customerMgr = new CustomerManager();
 var result = customerMgr.GetCustomer();

 return new CustomerInfoDeidentifiedImpl(result);
 });

Common.Ioc.IocContainer.Instance.Register<ICustomerManager>(customerManagerMock.Object);
}

Figure 4.3. Inject mocking object and implementation of the GetCustomer() method

As the software developer has registered the mock object in IoC container, when we call

Customer Manager object, it will call mock customer manager object. Figure 4.4 shows

how the software developer resolves the ICustomerManager object to fetch customer

information. The developer will call the GetCustomer function to fetch the required

information. This action calls the GetCustomer method of the mock object and applies

de-identification on the object. After applying de-identification, the system displays the

information on the screen.

 60

this.customerInfo =
Common.Ioc.IocContainer.Instance.Resolve<ICustomerManager>().GetCustomer();

this.lblCustomerName.Text = this.customerInfo.BankUser.FirstName + " " +

this.customerInfo.BankUser.MiddleName +" " +
this.customerInfo.BankUser.LastName;

this.personalInformationUserControl.ShowBankUserInfo(this.customerInfo.BankUser);

if (Common.Ioc.IocContainer.Instance.Resolve<IRoleManager>().UserRole == Role.Operator)
{
 this.personalInformationUserControl.DisableAllControls();
}

this.accountsInfoUserControl.ShowAccounts(this.customerInfo.Accounts);

this.customerInfo.Accounts.ForEach(account =>
{
 this.cbAccount.Items.Add(string.Format("{0}-{1}",

 account.AccountType,
 account.AccountNumber));

});

Figure 4.4. Resolve mocking object at runtime to get customer information

We apply the de-identification service by applying a de-identification aspect with

properties or methods. In our case, we apply de-identification on the properties. When we

try to access the property, it applies the de-identification aspect on the field and returns a

value. As shown in Figure 4.5, we apply de-identification on the account number

property, which anonymizes account number by showing only 5 characters from the end

of the string and replacing all other characters from asterisk (*). For example from

4455368489645247 to ***********45247. This de-identification technique is called

character masking. Since we apply anonymization on the property, when we try to access

the property, it applies the de-identification aspect on the field and returns a value.

[LongStringDeidentification(MaskCharacter = '*', VisibleStringLength = 5)]
public string AccountNumber { get; set; }

Figure 4.5. Apply LongStringAnonymization aspect on AccountNumber

 61

We apply LongStringAnonymization to AccountNumber property. In the

LongStringAnonymization class, we provide the de-identification logic that will be

applied on the field on which we bind this aspect. Figure 4.6 shows the implementation

of OnGetValue function of LongStringAnonymization class. This function is called

whenever we try to get a value of some property. In this function, we provide the

masking logic by replacing required number of characters with the given character. In

this way, we implement the aspect class for email, date, number, IDs and other fields and

then apply these aspects to the properties or methods where required.

public override void OnGetValue(LocationInterceptionArgs args)
{
 base.OnGetValue(args);

 var roleManagerInstance = Common.Ioc.IocContainer.Instance.Resolve<IRoleManager>();

 if (roleManagerInstance.UserRole == Role.Manager)
 return;

 string value = (string) args.Value;

 if (String.IsNullOrEmpty(value))
 return;

 if (value.Length <= this.VisibleStringLength)
 value = this.MaskCharacter.Repeat(this.VisibleStringLength);

 if (this.HideFromFront)
 {
 value = string.Format(

"{0}{1}",
this.MaskCharacter.Repeat(value.Length - this.VisibleStringLength),

 value.Substring(value.Length - this.VisibleStringLength));
 }
 else
 {
 value = string.Format(

"{1}{0}",
this.MaskCharacter.Repeat(this.VisibleStringLength),

 value.Substring(0, value.Length - this.VisibleStringLength));
 }

 args.Value = value;
}

Figure 4.6. De-identification implementation in LongStringAnonymization class

 62

Figure 4.7 shows an excerpt of the sample bank application. The user is logged in with an

operator role. The operator role does not have permission to view all the private

information about the customer. The private information in Figure 4.7 is de-identified

using the proposed pattern. Different fields’ data are de-identified using different de-

identification techniques for example for customer id field, we apply character masking;

for date of birth we use date variance, and we null out the street number. In Figure 4.8,

the user is logged in as an administrator and the de-identification service is not applied.

The administrator role has the rights to view all the information and can update them.

Figure 4.7. Sample Bank Application – User log in with Operator role

 63

Figure 4.8. Sample Bank Application – User log in with Administrator role

Figure 4.9 shows the sequence of objects call when PIP is applied on the maintain users

account use case to inject role-based de-identification for access control. The PIP can be

applied to inject other privacy patterns in the system.

 64

Figure 4.9. Main User Account Sequence Diagram after Applying PIP

We suggest that the PIP pattern can be used repeatedly in many places in a banking

application e.g. to also inject a location/time privacy pattern that disallows the operator

from viewing even more of customers’ fields remotely outside of banking hours.

4.2 Hospital System Use Case

Implementing privacy in healthcare applications has become a leading concern of

many researchers in the last few decades. According to William J. Clinton, “As more of

our medical data are stored electronically, the threats to all our privacy increase” (Sharma

et al., 2014). To determine whether it is easy and simple to implement PIP in a more

complex use case, we employ PIP in a use case scenario from a hospital management

 65

application that uses k-anonymity as the de-identification pattern while sharing data with

other organizations. We implement the k-anonymity privacy method using the ARX

(ARX, n.d.) DLL for illustration using aspect-oriented programming (AOP) in our

example. ARX is the Java-based open source graphical tool for anonymizing personal

data. The tool supports different data import and cleansing techniques. We can use many

data transformation techniques such as generalization, suppression, and micro

aggregation and different privacy models such as k-anonymity, ℓ-diversity, and t-

closeness using the ARX tool. ARX also provide visualizations of data utility and re-

identification risks. ARX is also available as a fully featured software library that delivers

data anonymization capabilities to any Java program. We are using Microsoft .Net for the

thesis; we can transform the ARX Java-based library to the .Net library using a Java and

.NET interoperability tool. We are using (IKVM.NET, 2015) which is the Java Virtual

Machine (JVM) for the .NET and Mono (Java) runtimes. It can convert Java jars into

.NET assemblies. We used IKVM to transform the ARX jar file into .Net DLL.

We show that the mocking and the dependency injection techniques automatically inject

the AOP instance of the de-identification service. The k-anonymity is a de-identification

method and it helps to preserve sensitive information. The idea behind k-anonymity is to

reduce the granularity of the representation of the data in such a way that a given record

cannot be distinguished from at least (k-1) other records (Aggarwal & Yu, 2008). This

granularity is reduced using techniques such as generalization and suppression. In

generalization, we replace the attribute value with a generalized value. Suppression is the

technique where one or more attribute values are removed completely.

Our technical implementation uses Visual Studio .Net (IDE), PostSharp (AOP), the Unity

Container (Dependency Injection), and the Mock library to implement an example

injection of our de-identification service into a hospital application. We note that the PIP

may be implemented with other technologies, e.g. multi-platform heterogeneous

technologies.

 66

The hospital use case scenario is a search screen to retrieve information on the basis of

criteria, such as country, city etc. The k-anonymity algorithm is applied to the data before

sharing the data with other organizations. There is an option given to the user to apply k-

anonymity to the data. This option helps us to study the behavior of the system before

and after applying the proposed pattern. Figure 4.10 shows the sequence diagram of the

search patient information use case before applying PIP.

In this case study, we want to inject the option-based de-identification pattern such that

user can apply k-anonymity on the patient information to share the information with other

organizations or can view all information for the organizations’ needs. The de-

identification service DLL is loaded in the main program.

User SampleApp MainForm
Patient

Manager
XML

Login

new MainForm()

GetAllPatients()

new PatientManager()

LoadFromXMLFile()

Return PatientsRecords

 [When Search is Clicked]

BindDataToGrid

Figure 4.10. Sequence Diagram of Patient Search before Applying PIP

Figure 4.11 shows the implementation of this added function to load the de-identification

service DLL and initialize the de-identification service. This function is required for

 67

desktop-based applications. For web-based application, the software developer simply

places the privacy DLL with other DLLs.

private static void InjectLibraries()
{
 var deidentificationServiceLibName = "DeIdentificationService.dll";

 var currentPath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);

 var deidentificationServiceLibCompletePath = Path.Combine(

currentPath,
deidentificationServiceLibName);

 if (!File.Exists(deidentificationServiceLibCompletePath))
 {
 return;
 }

 Assembly assembly = Assembly.LoadFrom(deidentificationServiceLibCompletePath);

 var deidentificationServiceType = assembly.GetType(

"DeIdentificationService.DeIdentificationServiceInitializer");

 var serviceInstance = Activator.CreateInstance(deidentificationServiceType);

 deidentificationServiceType.InvokeMember(

"Initialize",
BindingFlags.Default | BindingFlags.InvokeMethod,
null,
serviceInstance,
null);

}

Figure 4.11. Load de-identification service DLL for desktop applications

When the de-identification service initializes, it creates a mock object of the same type as

our business layer object. In our case, our business layer object is PatientManager, which

is an implementation of the IPatientManager interface. PatientManager has multiple

methods that fetch patients’ information from the XML (or database) on the basis of

certain criteria. The software engineer creates a mock object of the IPatientManager type

and then registers it. The engineer also setups the updated implementation of all the

methods to fetch patients’ details in the same way as the originating object method, and

then applies the de-identification aspect on this object.

 68

Figure 4.12 shows the implementation of methods to de-identify the information.

Subsequently, when the developer calls the original PatientManager method, the updated

method of the mock object is invoked. In the Unity Container, for dependency injection

the software engineer first registers the object at the beginning of the program to resolve

the object to access its methods.

 69

private static void SetupManagerObjects()
{
 if (Common.Ioc.IocContainer.Instance.IsRegistered(typeof(IPatientManager)))
 return;

 var patientManagerMock = new Mock<IPatientManager>();

 patientManagerMock.Setup(x => x.GetAllPatients()).Returns(() =>
 {
 var patientManager = new PatientManager();
 var result = patientManager.GetAllPatients();

 var deIndentifiablePatients = from patient in result
 select new PatientInfoDeIdentified(patient);

 var patientRecordCollection = new PatientInfoRecordCollection();
 patientRecordCollection.PatientRecords = deIndentifiablePatients.ToList();

 return patientRecordCollection.PatientRecords;
 });

 patientManagerMock.Setup(x => x.SearchPatientByCity(It.IsAny<string>()))

.Returns((string cityName) =>
 {
 var patientManager = new PatientManager();
 var result = patientManager.SearchPatientByCity(cityName);

 var deIndentifiablePatients = from patient in result
 select new PatientInfoDeIdentified(patient);

 var patientRecordCollection = new PatientInfoRecordCollection();
 patientRecordCollection.PatientRecords = deIndentifiablePatients.ToList();

 return patientRecordCollection.PatientRecords;
 });

 patientManagerMock.Setup(x => x.SearchPatientByCountry(It.IsAny<string>()))

.Returns((string countryName) =>
 {
 var patientManager = new PatientManager();
 var result = patientManager.SearchPatientByCountry(countryName);

 var deIndentifiablePatients = from patient in result
 select new PatientInfoDeIdentified(patient);

 var patientRecordCollection = new PatientInfoRecordCollection();
 patientRecordCollection.PatientRecords = deIndentifiablePatients.ToList();

 return patientRecordCollection.PatientRecords;
 });

 Common.Ioc.IocContainer.Instance.Register<IPatientManager>(

patientManagerMock.Object);
}

Figure 4.12. Inject mocking object and invoke IOC

 70

Figure 4.13 shows how the software developer resolves the IPatientManager object to

fetch patients’ information. The developer will call the original function, for example

GetAllPatients, to fetch the required information. This action calls the GetAllPatients

method of the mock object and applies de-identification on the object. After applying de-

identification, the system displays the information on the screen.

IEnumerable<IPatientInfo> searchedPatientRecords = new List<IPatientInfo>();

var patientManager = Common.Ioc.IocContainer.Instance.Resolve<IPatientManager>();

switch (this.cmbSearchBy.SelectedItem.ToString())
{
 case "Country":
 searchedPatientRecords = patientManager.SearchPatientByCountry(

this.txtSearchTerm.Text);
 this.BindDataToGrid(searchedPatientRecords);
 break;

 case "City":
 searchedPatientRecords = patientManager.SearchPatientByCity(

this.txtSearchTerm.Text);
 this.BindDataToGrid(searchedPatientRecords);
 break;

 case "All Records":
 searchedPatientRecords = patientManager.GetAllPatients();
 this.BindDataToGrid(searchedPatientRecords);
 break;
}

this.lblRecordsCount.Text = string.Format(

 "{0} {1} found",
 searchedPatientRecords.Count(),
 searchedPatientRecords.Count() > 1 ? "Records":"Record");

Figure 4.13. Resolve mocking object at runtime to get patient information

The software engineer applies the de-identification service by applying a de-identification

aspect with properties or methods. In this example, the developer applies de-

identification on the PatientRecords property. When the software fetches patient records

through this property, it applies the de-identification aspect on the field and returns a

value.

 71

public class PatientInfoRecordCollection
{
 [DeIdentificationAspect(AnonymizationFactor = 3)]
 public List<PatientInfoDeIdentified> PatientRecords { get; set; }
}

Figure 4.14. Apply Deidentification aspect on PatientRecords

The software developer applies the DeidentificationAspect to the PatientRecords property

(Figure 4.14). In the DeidentificationAspect class, s/he provides the de-identification

logic that will be applied on the bind field as in Figure 4.15. DeidentificationAspect then

calls DeidentifyRecords of the DeIdentification class to use the ARX anonymize function

to de-identify the data and return it to the calling method.

[Serializable]
public class DeIdentificationAspect : LocationInterceptionAspect
{
 public int AnonymizationFactor { get; set; }

 public override void OnGetValue(LocationInterceptionArgs args)
 {
 base.OnGetValue(args);

 // DeidentifyRecords uses ARX anonimize function to anonimize the list
 // provided as argument
 var newValue = new DeIdentification<PatientInfoDeIdentified>()

.DeIdentifyRecords(
(List<PatientInfoDeIdentified>) args.Value,
this.AnonymizationFactor);

 args.Value = newValue.ToList();
 }
}

Figure 4.15. De-identification implementation in DeidentificationAspect class

Figure 4.16 shows a patient search screen of the hospital application that results from the

use of the PIP for injection of the k-anonymity method. The patients’ information is

searched by different criteria and the k factor for k-anonymity is also provided by the

user on the screen. For k-anonymization of the records, we provide the attribute type

 72

(identifying, quasi-identifying, insensitive) of each attribute in the input list. For the

quasi-identifying attribute, an attribute hierarchy is required.

Figure 4.16. Patient Search Screen of Hospital Application

Figure 4.17 shows the sequence of objects calls when PIP is applied on the Patient Search

use case to inject privacy by using k-anonymity in the system.

 73

User SampleApp MainForm
Patient

Manager
XML

Login

new MainForm()

LoadFromXMLFile()

 [When Search is Clicked]

PatientManager
Mock

PatientInfo
Deidentified

PatientInfo
RecordCollection

IoC Container
Deidentification
ServiceInitializer

InjectLibraries

Initialize()
SetupManagerObjectMock

Register
(MockObj)

Resolve(PatientManager).
GetAllPatients GetAllPatients

new PatientManager

GetAllPatients()

Return PatientRecords
List<new Patient
InfoDeidentified>

new PatientInfoRecordCollection()

DeidentifcationAspect
(PatientInfoDeidentiedList)

Deidentified PatientRecords

BindDataToGrid()

Figure 4.17. Patient Search Sequence Diagram after Applying PIP

 74

Chapter 5 : Results and Evaluation

In this chapter, we provide findings from the online survey. In section 5.1, an

instrument for evaluating the usefulness and ease of use of PIP is created based on the

TAM (Technology Acceptance Model) model. Section 5.2 discusses the participants,

including their demographics and distribution throughout the survey. In section 5.3 we

focus on the perceived usefulness and perceived ease of use of the participants. In section

5.4 we present the participants’ opinion to improve the PIP pattern. In section 5.6, we

present the motivation of the participants to use the pattern when they encounter a

situation where they need to incorporate privacy in their application without modifying

the underlying application or changing it to some extent. At the end of the chapter, we

will discuss the limitations of the user study.

5.1 Evaluation Methodology

Researchers have used aspect oriented programming (AOP) for privacy as

mentioned in section 2.2.4.3, but to the best of our knowledge, none of the researchers

have conducted a survey to evaluate AOP’s usefulness. Many researchers have suggested

that adoption of technologies is highly dependent on the user acceptance (Davis, Bagozzi,

& Warshaw, 1989; Hartwick & Barki, April 1994). The Technology Acceptance Model

(TAM) by Davis (1989) is one of the most widely used models to measure technology

acceptance (King & He, 2006). According to the TAM model, the reaction of an

individual towards a technology influences one’s intention to use the technology, which

ultimately affects the actual use.

TAM is based on theory of reasoned action (TRA) (Fishbein & Ajzen, 1975). TRA

propose that an individual attitude to perform a behavior and the subjective norm about

that behavior influences one’s intention to perform the specific behavior and the behavior

itself (Figure 5.1). The individual attitude can be determined by the perceived

consequences of performing that behavior multiplied by the evaluation of the

consequences. Subjective norm can be defined as “The person’s perception that most

 75

people who are important to him think he should or should not perform the behavior in

question" (Fishbein & Ajzen, 1975). Thus, subjective norm is the perception of the

surrounding people about the individual’s intention to perform the behavior. According to

the TRA, the individual’s attitude and subjective norm influence his/her behavioral

intention, which is the probability of an individual to perform a behavior. Ultimately,

behavioral intention impacts the actual performance of the behavior. TRA provides

general beliefs that will be important in a context for adoption of information

technologies. TRA does not focus on specific beliefs. Davis (1989) proposed and

validated a comprehensive approach to identify the critical beliefs related to technology

adoption in organizations. Davis (1989) identified two common beliefs that influence IT

adoption: perceived usefulness (PU) and perceived ease of use (PEOU). These two

beliefs are influenced by external variables such as design features of the IT system and

organizational training.

Figure 5.1. Theory of Reasoned Action (Fishbein & Ajzen, 1975)

According to Davis, user perceived usefulness and perceived ease of use influenced

his/her attitude and behavior of using the technology. In this research, we are using the

Technology Acceptance Model (TAM) to evaluate the usefulness and ease of use of the

PIP pattern by conducting a survey with the IT professionals. In this section, we will

discuss our survey objectives (section 5.1.1); survey questions (section 5.1.2); survey

approach (section 5.1.3) including study protocol (section 5.1.3.1), study instrument

(section 5.1.3.2), survey design (section 5.1.3.3), intended data analysis (section 5.1.3.4),

recruitment (section 5.1.3.5), and participants (section 5.1.3.6).

 76

5.1.1 Survey Objectives

The purpose of this survey is to understand how useful and beneficial our

proposed pattern is to inject privacy in the existing and new applications and whether it is

easy to adopt this pattern by the developers. We use Davis’s Technology Acceptance

Model (TAM) model (Davis, 1989). In this survey, we use the TAM model to evaluate

the usefulness and acceptance of the proposed pattern. In our context, the degree to which

PIP pattern is easy to use and is useful, as perceived by IT professionals, will affects their

attitude toward using the pattern. We conducted an online survey from software

developer, software designer, privacy and security engineers. We also analyze the

motivation and intention of engineers in using this pattern and what improvements can be

incorporated in the PIP pattern, if any. From our findings, we can provide guidelines and

recommendations to the developers and designers on how to incorporate privacy in the

application.

5.1.2 Survey Questions

For the survey we conducted, we used questions which are validated by Davis (1989)

for perceived usefulness and perceived ease of use of the PIP pattern. Our high-level

survey questions are as follows:

1) Will the PIP pattern be useful to the engineers in their job if they encounter to

incorporate privacy in their existing application?

2) Will the PIP pattern be easy to use to the engineers to incorporate privacy in the

application?

3) Will engineers intended to use this pattern when required?

4) What improvements do engineers think that could be done in this pattern, if any?

5.1.3 Survey Approach

We conducted an online questionnaire using Opinio software where the

participants may have different levels of expertise with software development and design.

Their expertise ranges from that found in any new junior software developers to senior

 77

software architects and privacy engineers. The questions were designed to analyze the

perceived usefulness and perceived ease of use of the PIP pattern and to examine the

improvements and motivation of using the pattern by the engineers. We chose an online

survey because we wanted to reach a wide variety of participants with different level of

exposure with software development and design. We wanted to have at least 30

participants for the survey.

5.1.3.1 Survey protocol

We submitted an ethics application to Dalhousie research board for approval

before starting our study. After the approval (see Appendix A), the recruitment script (see

Appendix B) was sent to various engineers through personal contacts (explained in

section 5.1.3.5). The recruitment script had a link to the survey. A click on the link (or if

typed in any web browser) directed participants to an informed consent form (see

Appendix C). This was the first page of the online survey. After reading the survey, if

they wish to take part, they clicked on the “agree” button to proceed. The next page (see

Appendix E) asks for their permission to quote their responses. They may click “yes” or

“no” to “I agree that the researchers may quote my responses to free form questions”, if

they wish their responses to be quoted or not.

5.1.3.2 Survey instrument

We explored various available survey tools. Given the restrictions by Dalhousie

University research ethics board regarding the hosting of the survey outside of Canada,

we used Opinio for this research.

5.1.3.3 Survey Design

The key challenge for our survey was to evaluate our proposed privacy injection

pattern from the point of view of usefulness and ease of use and obtain feedback on it.

We customized the questions in (Davis, 1989) where possible for PIP while keeping their

core essence. We have divided our questionnaire in five parts i.e. Part A, B, C, D, and E.

Figure 5.2 shows the overall flow of the survey.

 78

All participants completed section A. It consisted of demographic questions and

questions to access their experience and type of work. Once part A is completed,

participants were directed to Part B. Part B consists of details of the Privacy Injection

Pattern (PIP) with examples. In part B, details of the proposed pattern was shown to the

participants along with a simple and a complex example to understand how the PIP can

be implemented in different use cases. Both the examples’ code were provided as a

downloadable link and in written form so that participants can view whatever format in

which he/she is comfortable. Once, participants read the pattern code materials, they are

asked about the usefulness and ease of use of the PIP on the basis of Davis’s TAM

model. At the end of the part B, the participants are asked whether they have executed the

examples or tried to modify it. If participants selected “yes”, they were routed to Part D

else they were routed to Part C. Part C and Part D consists of 27 survey questions for

usefulness and ease of use of PIP based on the TAM model.

After part C or part D, participants were directed to part E. In part E, participants were

asked if they can improve the proposed pattern. If participants selected “yes”, they were

asked what changes they would make to improve the pattern. This feedback could

provide us with some future directions. Then participants were asked if they were to face

a situation where they need to incorporate privacy service or patterns in existing

applications, would they prefer to use this pattern? If participants selected “no”, then they

were asked what would be their preference in implementing privacy in existing

application considering that we don’t want to modify the existing application or if

required, can modify it to a small extent only.

After completing the survey, participants were asked to provide their E-mail IDs if they

wished to receive a copy of this study findings when the survey period is complete.

 79

PART A

PART B

PART C PART D

PART E

SURVEY

If participants have

executed the examples
If participants have not

executed the examples

Figure 5.2. Survey Design

5.1.3.4 Intended Data Analysis

Our data were both quantitative and qualitative in nature. For multiple choice

questions, the option lists were created from the survey of Davis (1989). There were two

free form questions to elicit the perspective of participants in more detail. For better

explanation of the PIP pattern, we provided participants with the definition of the

technological abstractions used in the PIP pattern that is, aspect oriented programming,

dependency injection, and mocking. Two examples and their descriptions with attached

code were also given to the participants to understand how PIP can be applied to any use

case to implement privacy in the existing application. We designed the survey to compare

the perceived usefulness and perceived ease of use of those participants who downloaded

the examples and tried to execute it with those who read the description and gave the

responses. We would like to compare what people perceived about the pattern whether it

is easy to use or whether it is useful or both. We will use MS Excel and SPSS methods to

analyze our quantitative data. Which analysis method is used depends on the sample size

we obtain.

 80

5.1.3.5 Recruitment

We try to recruit participants with a broad spectrum of demographic

characteristics and experiences in software development and designing. Participants are

recruited through posting recruitment notices (See Appendix B) to using personal

contacts such as management personnel and other employees in organizations that

develop software e.g. Intel and CA technologies.

5.1.3.6 Participants

In total, 26 participants responded to our survey. Out of which, 6 responses were

filtered out as these were people who started the survey but did not finish it due to

unknown reasons. We have discussed about incomplete survey responses too in our next

chapter. We did not collect any demographic information about participants other than

age and gender. There were 15 males and 5 females (Section 5.2) and the majority of

them fall between 21 – 40 years of age.

5.2 Demographics of the Participants

In total 21 participants responded to our survey in meaningful way. Participants

did not all continue to the end of the survey or answered a subset of questions, so

different sections/questions of our survey were answered by different number of

participants. Table 5.1 shows the demographics of all participants who responded to each

of the sections in our survey.

 81

Table 5.1. Demographics of the participants

Attribute Variable Total Frequency

Age 21 – 25 3 14.29%

 26 – 30 8 38.1%

 31 – 40 8 38.1%

 41 - 50 2 9.52%

Gender Male 16 76.19%

 Female 5 23.81%

Industry Experience < a year 1 4.76%

 1 – 2 3 14.29%

 3 – 4 3 14.29%

 5 – 6 4 19.05%

 7 - 8 4 19.05%

 9 -10 4 19.05%

 11 -15 2 9.52%

Occupation Software Engineer/developer 19 90.48%

 Software Engineer/designer 2 9.52%

Most of the participants fall between the age group 26 - 40. The majority of the

population was software engineer/developer (90.48%) except for 2 participants (9.52%)

who were software engineer/designer. The table shows that around 57.15% of the

participants have 5 – 10 years of experience in the industry. There were 2 participants

who had experience of 11-15 years. There were no participants that had experience

greater than 15 years. Table 5.1 indicates that 76.19% of the total participants were males

and 23.81% were female.

5.3 Perceived Usefulness and Perceived Ease of Use

In this section, we will discuss participants’ evaluation of the PIP pattern in terms

of its perceived usefulness and perceived ease of use. To understand the responses better

and for reporting purpose, we divide the results sample into two: participants who

 82

executed the examples given in the survey and participants who did not execute the

example. Another reason for the division is that it will help us to understand whether

there is any change in the opinion about the usefulness of the pattern after executing the

example.

For the survey, we provided explanations, diagrams, and code for two use cases to the

users. The first example is a simple maintain user account use case of the banking

application and the second example consists of a hospital use case: search patient

information. Our first example uses masking for de-identification as a privacy service,

and our second example uses k-anonymity for de-identification. In total 13 participants

executed the examples. Out of these 13 participants, 12 participants claimed that they

“agree” that they understood the pattern while 1 participant said that he/she ‘strongly

agrees’ he/she understands the PIP pattern. While 7 participants did not execute the

examples and most of them ‘Somewhat’ understand the pattern (2 = ‘Strongly

understand’, 1 = ‘Understand’, 3 = ‘Somewhat understand, 1 = ‘Strongly do not

understand’). This result indicates that executing the examples helped participants to

understand the PIP pattern more clearly. Figure 5.3 shows the comparison of the between

the understanding level of the participants who executed the examples and those who did

not.

Figure 5.3. Participants understanding of the PIP pattern

0 2 4 6 8 10 12 14

Strongly Agree

Agree

Somewhat Agree

Neutral

Somewhat Disagree

Disagree

Strongly Disagree

Number of Participants

U
n

d
e

rs
ta

n
d

in
g

Le
ve

l

Participants Understanding of Pattern

Did not execute

Executed

 83

On the basis of their understanding, participants fill out the survey to indicate whether the

PIP pattern is useful and easy to use or if it is difficult and require lot of mental effort.

There were 13 7-point Likert scale questions related to perceived usefulness and 14

questions for perceived ease of use.

5.3.1 Qualitative Analysis

Although the number of survey responses are not sufficient to provide

scientifically significant statistical results, this section describes what would be done if

there is more data, In the next sections, the thesis show how the researcher would analyze

the responses from the perspective of reliability and confirming instrument validity for

our context.

5.3.1.1 Reliability

Reliability is the degree to which measurements yield consistent results and are

free from errors. In other words, it assess the internal consistency of the data that is, to

what extent items are homogeneous to each other (Armentano, Christensen, & Schiaffino,

2015). One way to measure the reliability is Cronbach’s alpha (. Using our 7 response-

survey data, Cronbach’s alpha of perceived usefulness is 0.92, which shows good internal

reliability in the sample data. Perceived ease of use was measured with fourteen items

from Davis (Davis, 1989). Perceived ease of use showed good internal reliability with

Cronbach’s alpha of .85 as shown in the Table 5.2. The Cronbach’s alpha ( ranges

from 0 to 1. The internal consistency of any item is said to be maximum when it is closer

to 1. According to Masrom and Teknologi (2007), the criteria for acceptable internal

consistency is 0.70 and above. According to the criteria, internal consistency of factors

involved in the study has good internal consistency. The Cronbach’s alpha of each group

that is those who executed the examples and those who did not is mentioned in Table 5.3.

The table shows that internal consistency of the data for those who executed the example

applications is better than those who did not.

 84

Table 5.2. Mean, Standard Deviation and Cronbach's Alpha for Variables

Variable Mean

Std.

deviation

Cronbach’s

Alpha

PU1 1.950 0.759 0.92

PU2 2.000 0.918

PU3 1.800 0.894

PU4 2.000 0.562

PU5 2.050 1.276

PU6 2.150 0.988

PU7 2.200 0.768

PU8 2.150 0.587

PU9 2.400 1.142

PU10 1.950 1.317

PU11 2.150 1.348

PU12 2.050 0.945

PU13 2.150 1.387

PEOU1 2.600 1.501 0.85

PEOU2 2.350 1.496

PEOU3 2.900 1.553

PEOU4 3.450 1.638

PEOU5 3.350 2.033

PEOU6 2.950 1.669

PEOU7 2.350 1.137

PEOU8 2.250 1.118

PEOU9 2.650 1.599

PEOU10 3.200 1.852

PEOU11 2.400 1.231

PEOU12 2.200 1.361

PEOU13 2.050 1.050

PEOU14 2.100 1.165

Intention to Use 0.850 0.366 NA

Table 5.3. Cronbach’s Alpha of Perceived Usefulness and Perceived Ease of Use

 All

participants

Participants who

executed the

examples

Participants who

did not execute the

examples

Perceived Usefulness 0.92 0.93 0.90

Perceived Ease of Use 0.85 0.82 0.71

 85

5.3.1.2 Validity

Validity is the degree to which variables within a single factor are correlated. We

can analyze the validity by examining the factor loading. According to Hair, Black,

Babin, and Anderson (2009), the recommended minimum threshold for samples size of

100 is 0.55. Although our sample size is limited but we will analyze the validity of the

data. Before we analyze the correlation between variables and factors, we will perform

the inter correlation between the items within a factor. Principal Component Analysis

(PCA) is a statistical approach to analyze the correlation among the variables in the

dataset. This will help us to group variables that are strongly related to a factor. We can

eliminate the problematic questions in the survey that do not fit well with the variables

they try to describe. We performed Principal Component Analysis with Varimax rotation

to extract the factors from the survey questions that we need to analyze in Microsoft

Excel using XLSTAT. Table 5.4 and Table 5.5 show the correlation matrix for the

individual questions included in the experiments. According to the tables, it shows that

there are some questions are not strongly correlated to other questions asked for the same

factor. For example perceived usefulness survey question 3 (PU3) is not strongly

correlated with perceived usefulness survey question 7 (PU7). This weak correlation can

be because of the number of the responses received from the participants. So in order to

improve our overall qualitative results, we remove a question from weakly correlated

questions; for example, remove PU7 from relation PU3 and PU7. Red marked questions

are removed from the experiment to improve the overall result of the experiment as these

questions might affect our qualitative analysis result.

 86

Table 5.4. Correlation Matrix for Perceived Usefulness Table 5.5. Correlation Matrix for Perceived

Ease of Use

 87

Factor loading represent how much a factor explains a variable or a question. Varimax

(Kaiser, The varimax criterion for analytic rotation in factor analysis, 1958) rotation is a

rotation method to change the coordinates of the individual items in such a way that each

variable associate with at most one factor. They are split into disjoint sets as much as

possible through Varimax rotation. Table 5.6 shows the factor loading of each individual

item after performing Varimax rotation and Figure 5.4 shows it corresponding graph.

According to the data, PU4, PU8, and PEOU4 are not strongly associated with their

corresponding factor. Again the reason can be the limited number of responses involved

in the experiment. To improve the further qualitative analysis result, we remove these

three questions from the qualitative analysis.

Table 5.6. Factor loadings after Varimax rotation

 D1 D2 D3

PU1 0.627 -0.151 0.043

PU2 0.585 0.128 -0.125

PU3 0.719 -0.334 -0.140

PU4 0.482 0.295 0.715

PU5 0.704 0.392 0.133

PU6 0.714 0.314 0.072

PU8 0.410 0.030 0.787

PU9 0.640 0.134 0.559

PU11 0.768 0.036 0.381

PU12 0.816 -0.074 0.287

PU13 0.785 0.251 0.288

PEOU1 0.108 0.746 0.044

PEOU2 0.010 0.732 0.233

PEOU3 0.268 0.750 0.113

PEOU4 -0.262 0.469 0.654

PEOU5 -0.223 0.707 0.483

PEOU9 -0.207 0.767 0.108

PEOU10 0.169 0.820 0.257

Intention to Use -0.216 -0.705 0.183

 88

Figure 5.4. Correlation between Factors and Variables after Varimax

5.4 Results for Perceived Usefulness and Ease of Use

We consider all 27 questions (13 for perceived usefulness and 14 for perceived

ease of use). In this section, we discuss how many responses we received for each factor.

We will also compare the responses of the participants who executed the application and

who did not execute the examples.

Table 5.7 shows the perception of the participants regarding usefulness and ease of use of

the PIP pattern. Overall, the table indicates that participants think the PIP pattern is more

useful than its ease of use. Besides, participants who executed the examples considered it

more easy to use and useful comparatively to the participants who did not execute the

examples.

PU1

PU2

PU3

PU4

PU5
PU6

PU8

PU9

PU11

PU12

PU13

PEOU1 PEOU2 PEOU3

PEOU4

PEOU5
PEOU9

PEOU10

Intention to
Use

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

D
2

 (
2

4
.7

9
 %

)

D1 (27.68 %)

Variables (axes D1 and D2: 52.47 %)
after Varimax rotation

 89

Table 5.7. Average of Scale of Perceived Usefulness and Perceived Ease of Use

 All participants Participants who

executed the

examples

Participants who

did not execute the

examples

Perceived Usefulness 2.077 1.956 2.142

Perceived Ease of Use 2.629 2.429 2.505

Figure 5.5. Participants Groups' Perceived Usefulness

The task would be difficult to perform without this…

Using PIP would give me greater control over this…

Using PIP would improve my performance on this…

The PIP would address my task-related needs.

Using PIP would save my time.

Using PIP in my application would enable me to…

The PIP pattern would support critical aspects of…

Using the PIP pattern would allow me to…

Using PIP would enhance my effectiveness on this…

Using PIP would improve the quality of the work I…

Using PIP on this task would increase my…

Using PIP would make it easier to do this task.

I would find PIP useful in my job.1

3

5

7

9

11

13

1 2 3 4 5 6 7

Perceived Usefulness

Participants who did not execute the examples Participants who executed the examples

 90

Figure 5.6. Participants Groups' Perceived Ease of Use

Figure 5.5 and Figure 5.6 show the comparison of the perceived usefulness and perceived

ease of use of the two groups: those who executed the application and those who did not.

The perceived usefulness of both the groups is somewhat same as indicated by Figure

5.5. Their variations are comparatively less than the variations in the responses of the

group participants for perceived ease of use as shown in Figure 5.6. Overall, participants

believe that the PIP pattern is more useful.

Figure 5.7 and Figure 5.8 shows the overall responses of the participants with considering

w they have executed the applications or not. The figures show that overall more people

(blue and red) consider the PIP pattern as useful and easy to use. Figure 5.7 shows that

I will not become confused when I use the pattern.

I would not make errors frequently when using the…

Interacting with the pattern is not frustrating.

I would not need to consult the user manual often…

Implementing the pattern would not require a lot…

I would find it easy to recover from errors/issues…

I would find PIP to be flexible to interact with.

I would find it easy to get PIP to do what I want it…

The pattern would not behave in unexpected ways.

I do not find it cumbersome to use the pattern.

My interaction with the pattern is easy for me to…

It will be easy for me to remember how to perform…

The pattern provides helpful guidance in…

I would find PIP easy to use.1

3

5

7

9

11

13

1 2 3 4 5 6 7

Perceived Ease of Use

Participants who did not execute the examples Participants who executed the examples

 91

around 83% of the responses (strongly agree and agree) are in favor of usefulness of the

PIP pattern. While 70% of the responses for perceived ease of use fall in strongly agree

and agree category. In Figure 5.8, except for the item “I would not need to consult the

user manual often when using the pattern.” all items show that the PIP pattern is easy to

use. Overall, again the PIP pattern is more useful than the efforts required to use it.

Figure 5.7. Overall Stacked Bar Chart of the Perceived Usefulness

0 0.2 0.4 0.6 0.8 1

The task would be difficult to perform

without this pattern.

Using PIP would give me greater control

over this task.

Using PIP would improve my performance

on this task.

The PIP would address my task-related

needs.

Using PIP would save my time.

Using PIP in my application would enable

me to accomplish embedding privacy…

The PIP pattern would support critical

aspects of my task.

Using the PIP pattern would allow me to

accomplish more work than would…

Using PIP would enhance my effectiveness

on this task.

Using PIP would improve the quality of the

work I do on this task.

Using PIP on this task would increase my

productivity.

Using PIP would make it easier to do this

task.

I would find PIP useful in my job.

Perceived Usefulness

Strongly Agree

Agree

Somewhat Agree

Neutral

Somewhat Disagree

Disagree

Strongly Disagree

 92

Figure 5.8. Overall Stacked Bar Chart of the Perceived Ease of Use

5.5 Improvements in PIP Pattern

In total 21 participants responded to our survey in a meaningful way. Out of 21

participants, 6 (28%) participants believe that there is a margin of improvement in the

PIP pattern. Except for one participant we have not received any description regarding

what improvement can be made in the PIP pattern to improvise it. According to the

participant who responded to the question “how we can improve this pattern?” he

mentioned that “In the mock object, do privacy check before calling business functions. If

the privacy checks fail, the mock object can fail fast that way”. This suggestion is a good

suggestion; we can fail fast by checking the requesting user’s permissions. But, in our

examples privacy services are operating on actual data sets and these permissions cannot

be verified until we fetch data from the data stores.

0 0.2 0.4 0.6 0.8 1

I will not become confused when I use…

I would not make errors frequently…

Interacting with the pattern is not…

I would not need to consult the user…

Implementing the pattern would not…

I would find it easy to recover from…

I would find PIP to be flexible to…

I would find it easy to get PIP to do…

The pattern would not behave in…

I do not find it cumbersome to use the…

My interaction with the pattern is easy…

It will be easy for me to remember how…

The pattern provides helpful guidance in…

I would find PIP easy to use.

Perceived Ease of Use

Strongly Agree

Agree

Somewhat Agree

Neutral

Somewhat Disagree

Disagree

Strongly Disagree

 93

5.6 Overall Motivation to Use the Pattern

Out of 21 participants, 18 (85%) participants responded ‘yes’ to “If you have to

implement privacy in your application, would you use this pattern?”. Out of these 18

participants, 5 participants mentioned that we can improvise the PIP pattern even though

they showed their intention to use the pattern.

 Intention to Use

No 3

2 No Improvement and no intention to Use

1 Improvement and no intention to Use

Yes 17

12 No Improvement and Intends to Use

5 Improvement but Intends to Use

Figure 5.9. Participants' Intention to Use the PIP Pattern

No

Improvement

and not

Intended to

Use
Improvement

and not

Intended to

Use

No

Improvement

and Intended

to Use

Improvement

but Intended

to Use

Not
Intended

Intended to Use

Intention to Use

 94

5.7 Limitations

This study suffered from a number of limitations. The most profound limitation to

this study was the size of the sample. Only 27 software professionals participated in the

survey out of which only 21 surveys were completed. Generally, a small sample size

makes the study less generalizable to the population of interest. Another limitation is that

nearly all of them were software engineers. It would be really helpful if population will

be from diverse IT background. Not only IT background, but geographic locations of the

participants can also be a limitation of the study as most of the participants were from

Canada. As other countries have their own distinctive policies regarding privacy, a more

equal distribution of geographic location of participants may have had an impact on the

findings and results. The effort of participants is another limitation. As there was no

incentive to complete the survey, participants might have not given the online survey

their full efforts and interest. The years of experience of the professionals are also another

limitation of the study as on average participants had 6 – 7 years of experience. It would

be helpful to conduct a survey from professionals who have experience in privacy

engineering and are working in the industry for various amounts of years. Although, the

findings of the small study favor our proposed PIP pattern, further studies are needed

with more population and with different specialties. However, while the study provides

preliminary results, these results provide a foundation for future studies.

 95

Chapter 6 : Conclusions and Future Work

To improve software engineers’ productivity, we describe a novel pattern for

privacy pattern injection. To the best of our knowledge, a privacy super-pattern for

automating injection of privacy patterns and their mapped privacy services in software

did not exist before this work. The pattern may be used in distributed Service Oriented

Architecture (SOA), cloud, mobile, as well as in non-web services environments, such as

desktop and many existing client-server and legacy applications. With the approach

described in this thesis, privacy can be incorporated in an existing system without

modifying its code, or in some cases modifying the code to a very small extent. We

evaluated our privacy injection pattern using de-identification in the thesis. For future

work, we can evaluate our PIP pattern by injecting other privacy patterns.

We demonstrate our privacy injection pattern in a banking use case and a health care use

case. We conducted an online survey and recruited broadly with the only criteria being

that participants should have experience in software development and design and were

interested in using and learning about our proposed master Privacy Injection Pattern

(PIP). We used Davis’s Technology Acceptance Model (TAM) model (Davis, 1989) in

the survey to understand the acceptance of the PIP on the basis of the perceived

usefulness (PU) and perceived ease of use (PEOU) of the software engineers. Our

solution is based on three existing technologies; aspect oriented programming (AOP),

dependency injection (DI), and mocking. This work can substantially reduce the

designing and programming time for all those who will encounter such issue of injecting

privacy in the existing system or even to those who want to use existing privacy services

for new application. Furthermore, this work also allows software developers to quickly

test the implemented privacy services by writing unit tests because the frameworks we

have used for our patterns allows great flexibility for unit testing.

We illustrated the simplicity of the PIP implementation, which we believe will enhance

its chances of adoption by software engineers. We chose to examine the human adoption

of our new PIP pattern for two reasons. “Not only does the state-of-the art in privacy

 96

engineering presently not lend itself readily to automated external verification, engineers’

adoption of privacy tools is significant and essential to closing policy-technology gaps.

The software engineer is an important stakeholder with respect to the privacy of software

applications. Her/his education and the availability of tools in the privacy space remain a

major key to progress for Privacy by Design and Default”. (Ali et al., 2015)

We conducted a user study with software engineers from large to small participating

software organizations. Software engineers, internationally, were provided with guidance

on using PIP and asked to evaluate the PIP using a validated Technology Acceptance

Model (TAM) survey instrument. Our overall finding is that the PIP pattern has perceived

benefits and is worth the efforts required to use it. According to our initial survey, 85% of

the population agreed to use the PIP pattern when they encounter a situation where they

need to incorporate privacy in existing application without modifying the underlying

application. It is noteworthy that practicing, software engineers who took the time to

execute the example application believed the PIP pattern to be more easy and useful

comparatively to those who did not execute the examples.

There are numerous areas in which to conduct future research on incorporation of privacy

patterns in the existing application. As indicated, in the previous chapter, our preliminary

study on the PIP pattern can be taken forward to analyze the result with larger sample

sizes and populations. Researchers can also include other factors (e.g. training by the

organization, IT experience etc.) in analyzing the adoption of the PIP pattern. Proper

quantitative analysis can be done in future research.

Researchers may hire software and privacy engineers from industry and ask them to

implement the PIP pattern in existing applications. Researchers can then record engineers

concerns and their inputs. This will provide a complete and fresh analysis on the

proposed PIP pattern.

 97

Bibliography

Aggarwal, C. C., & Yu, P. S. (2008). Privacy-Preserving Data Mining: Models and

Algorithms. Springer.

Agrawal, R., & Srikant, R. (2000). Privacy-Preserving Data Mining. Proceedings of the

2000 ACM SIGMOD international conference on Management of data (págs.

439-450). ACM.

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: Towns,

Buildings, Constructions. Oxford University Press (Aug. 1 1977).

Ali, N., Jutla, D., & Bodorik, P. (2015). PIP: A (Privacy) Injection Pattern for Inserting

Privacy Patterns and Services in Software. Annual Privacy Forum.

Almorsy, M., Grundy, J., & Ibrahim, A. S. (2012). VAM-aaS: Online Cloud Services

Security Vulnerability Analysis and Mitigation-as-a-Service. WISE'12

Proceedings of the 13th international conference on Web Information Systems

Engineering (págs. 411-425). Paphos, Cyprus: Springer-Verlag Berlin

Heidelberg.

Armentano, M. G., Christensen, I., & Schiaffino, a. S. (2015). Applying the Technology

Acceptance Model to Evaluation of Recommender Systems. Polibits (51), 73 - 79.

ARX. (s.f.). ARX - Powerful Data Anonymization. Obtenido de http://arx.deidentifier.org/

Ashley, P., Hada, S., Karjoth, G., Powers, C., & Schunter, M. (2003). Enterprise Privacy

Authorization Language (EPAL 1.2). IBM Research.

Barth, A., Mitchell, J. C., & Rosenstein, J. (2004). Conflict and Combination in Privacy

Policy Languages. WPES '04 Proceedings of the 2004 Workshop on Privacy in

the Electronic Society (págs. 45-46). ACM Press.

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model Driven Security: from UML

Models to Access Control Infrastructures. ACM Transactions on Software

Engineering and Methodology (TOSEM), Volume 15 Issue 1, 39-91.

Bender, J., & McWherter, J. (2011). Professional test driven development with C#:

developing real world applications with TDD. Wrox Press Ltd.

Benenson, Z., Fort, M., Freiling, F., Kesdogan, D., & Penso, L. D. (2006). TrustedPals:

Secure Multiparty Computation Implemented with Smart Cards. En Computer

Security – ESORICS 2006 (págs. 34-48). Springer Berlin Heidelberg.

Beresford, A. R., Rice, A., Skehin, N., & Sohan, R. (2011). MockDroid: trading privacy

for application functionality on smartphones. HotMobile '11 Proceedings of the

 98

12th Workshop on Mobile Computing Systems and Applications (págs. 49-54).

ACM New York, NY, USA.

Beresford, A., & Stajano, F. (2003). Location Privacy in Pervasive Computing. Pervasive

Computing, IEEE, Volume:2 ,Issue: 1, 46-53.

Berghe, C. V., & Schunter, M. (2006). Privacy Injector — Automated Privacy

Enforcement Through Aspects. PET'06 Proceedings of the 6th international

conference on Privacy Enhancing Technologies (págs. 99-117). Springer-Verlag

Berlin, Heidelberg.

Bier, C., & Krempel, E. (2012). Common privacy patterns in video surveillance and

smart energy. Computing and Convergence Technology (ICCCT), 2012 7th

International Conference (page 610-615).

Bodorik, P., & Jutla, D. (2008). Privacy with Web Serivces: Intelligence Gathering and

Enforcement. IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology, 546-549.

Bodorik, P., Jutla, D. N., & Brynn, A. (2014). Privacy Engineering with PAWS: Injecting

RESTful Privacy Web Services. Submitted to IEEE Software, November 30,

2014.

Bodorik, P., Jutla, D. N., & Dhillon, I. (2009). Privacy compliance with Web Service.

Journal of Information Assurance and Security, 412-421.

Bowen, W. (1986). The Puny Payoff from Office Computers. Fortune, 20-24.

Brown, P. F., Janssen, G., Jutla, D. N., Sabo, J., & Willett, M. (3 de July de 2013).

Privacy Management Reference Model and Methodology (PMRM) Version 1.0.

OASIS Committee Specification 01.

Cavoukian, A. (2013). About PbD. Recuperado el 05 de 01 de 2013, de Privacy by

Design: http://www.privacybydesign.ca/index.php/about-pbd/

Cavoukian, A., & Khaled El Emam. (25 de June de 2014). De-identification Protocols:

Essential for Protecting Privacy. Recuperado el 30 de November de 2014, de

http://www.privacybydesign.ca/content/uploads/2014/09/pbd-de-identifcation-

essential.pdf

Cavoukian, A., Carter, F., Jutla, D., Sabo, J., Dawson, F., Fieten, S., . . . Finneran, T. (25

de June de 2014). Annex Guide to Privacy by Design Documentation for Software

Engineers Version 1.0 Committee Note Draft 01. Recuperado el 30 de November

de 2014, de http://docs.oasis-open.org/pbd-se/pbd-se-annex/v1.0/cnd01/pbd-se-

annex-v1.0-cnd01.pdf

 99

Cavoukian, A., Shapiro, S., & Cronk, R. J. (January de 2014). Privacy Engineering:

Proactively Embedding Privacy, by Design. Obtenido de

https://www.privacybydesign.ca/content/uploads/2014/01/pbd-priv-

engineering.pdf

Ceccato, M., & Tonella, P. (2004). Measuring the Effects of Software Aspectization. 1st

Workshop on Aspect Reverse Engineering.

Champatiray, C. (6 de June de 2014). Dependency Inversion Principle, IoC Container,

and Dependency Injection (Part - 1). Obtenido de CodeProject:

http://www.codeproject.com/Articles/465173/Dependency-Inversion-Principle-

IoC-Container-and-D

Chen, K., & Wang, D.-W. (2007). An Aspect-Oriented Approach to Privacy-Aware

Access Control. Proceedings of the Sixth International Conference on Machine

Learning and Cybernetics, Volume 5 (págs. 3016 - 3021). Hong Kong: IEEE.

Cranor, L. F. (2002). Web Privacy with P3P. O'Reilly Media.

Cranor, L., Langheinrich, M., Marchiori, M., & Reagle, J. (April de 2002). The Platform

for Privacy Preferences 1.0 (P3P1.0) Specification, W3C Recommendation.

Obtenido de http://www.w3.org/TR/P3P/

Culp, A. (4 de May de 2015). The Dependency Injection Design Pattern. Obtenido de

MSDN:https://msdn.microsoft.com/en-

us/library/vstudio/hh323705(v=vs.100).aspx

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance

of Information Technology. MIS Quarterly Vol. 13, No. 3, Management

Information Systems Research Center, University of Minnesota, 319-340.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer

technology: a comparison of two theoretical models. Management Science,

Volume 35 Issue 8, 982 - 1003.

Deiters, M. (September de 2005). Aspect-Oriented Programming. Obtenido de MSDN:

https://msdn.microsoft.com/en-us/library/aa288717%28v=vs.71%29.aspx

Doty, N., & Gupta, M. (2013). Privacy Design Patterns and Anti-Patterns. Patterns

Misapplied and Unintended Consequences. Trustbusters Workshop at the

Symposium on Usable Privacy and Security.

Federal Trade Commission. (s.f.). About the FTC. Obtenido de Federal Trade

Commission: https://www.ftc.gov/about-ftc

 100

Finn, R. L., Wright, D., & Friedewald, M. (2013). Seven Types of Privacy. Obtenido de

SelectedWorks of Michael Friedewald:

http://works.bepress.com/michael_friedewald/60

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An

Introduction to Theory and Research. Addison- Wesley.

Fowler, M. (23 de January de 2004). Inversion of Control Containers and the

Dependency Injection pattern. Obtenido de Martin Fowler:

http://martinfowler.com/articles/injection.html

Fowler, M. (2 de January de 2007). Mocks Aren't Stubs. Obtenido de Martin Fowler:

http://martinfowler.com/articles/mocksArentStubs.html

Ghazinour, K., & Barker, K. (2009). A Lattice-based Privacy Aware Access Control

Model. International Conference on Computational Science and Engineering,

2009. CSE '09, Volume:3 (págs. 154-159). Vancouver, BC: IEEE.

Gong, L., Mueller, M., Prafullchandra, H., & Schemers, R. (2007). Going Beyond the

Sandbox: An Overview of the New Security Architecture in the Java

Development Kit. In Proceedings of the USENIX Symposium on Internet

Technologies and Systems, (págs. 103-112). Monterey, California.

Goold, B. J. (2009). Surveillance and the Polictical Value of Privacy. Amsterdam Law

Forum - VU University Amsterdam, Vol. 1, No. 4.

Groves, M. D. (2013). AOP in .NET Practical Aspect-Oriented Programming. Manning

Publications Co.

Guarda, P., & Zannone, N. (2009). Towards the Development of Privacy-Aware Systems.

Information and Software Technology Volume 51 Issue 2, 337-350.

Gutwirth, S., Leenes, R., & de Hert, P. (2015). Reforming European Data Protection

Law. Springer.

Hafiz, M. (2006). A Collection of Privacy Design Patterns. PLoP '06 Proceedings of the

2006 conference on Pattern languages of programs, Article No. 7. ACM New

York, NY, USA.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data

Analysis. Prentice Hall; 7 edition (Feb. 13 2009).

Haque, H. (12 de March de 2013). A curry of Dependency Inversion Principle (DIP),

Inversion of Control (IoC), Dependency Injection (DI) and IoC Container.

Obtenido de Code Project: http://www.codeproject.com/Articles/538536/A-curry-

of-Dependency-Inversion-Principle-DIP-Inve

 101

Hartwick, J., & Barki, H. (April 1994). Explaining the role of user participation in

information. Management Science, 440-465.

He, Q., & Antόn, A. I. (2003). A Framework for Modeling Privacy Requirements in Role

Engineering. International Workshop on Requirements Engineering for Software

Quality (REFSQ 2003). Klagenfurt / Velden, Austria.

Hoepman, J.-H. (2014). Privacy Design Strategies. Proceedings in IFIP Advances in

Information and Communication Technology. 9th IFIP TC 11 International

Conference, Volume 428, (págs. 446-459). Marrakech, Morocco.

Holmes, N. (25 de September de 2008). Canada's Federal Privacy Laws. Obtenido de

Library of Parliament:

http://www.parl.gc.ca/Content/LOP/researchpublications/prb0744-e.pdf

Hornyack, P., Han, S., Jung, J., Schechter, S., & Wetherall, D. (2011). "These Aren’t the

Droids You’re Looking For": Retrofitting Android to Protect Data from

Imperious Applications. CCS '11 Proceedings of the 18th ACM Conference on

Computer and Communications Security (págs. 639-652). Chicago, IL: ACM,

New York, NY, USA.

IKVM.NET. (August de 2015). Obtenido de http://www.ikvm.net/

Jeroen van Rest, Daniel Boonstra, Maarten Everts, Martin van Rijn, & Ron van Paassen.

(2014). Designing Privacy-by-Design. En Privacy Technologies and Policy,

LNCS 8319 (págs. 55-72). Springer Berlin Heidelberg.

Ježek, K., Holý, L., & Brada, P. (2012). Dependency Injection Refined by Extra-

functional Properties. IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2012 (págs. 255-256). Innsbruck: IEEE.

Johnson, R. E., & Foote, B. (1988). Designing reusable classes. Journal of Object-

Oriented Programming, 22-35.

Jürjens, J. (2005). Secure Systems Development with UML. Springer-Verlag Berlin

Heidelberg.

Jutla, D. N., Bodorik, P., & Ali, S. (2013). Engineering Privacy for Big Data Apps with

the Unified Modeling Language. IEEE International Congress on Big Data, 38-

45.

Kaindl, H. (2000). A Design Process Based on a Model Combining Scenarios with Goals

and Functions. Systems, Man and Cybernetics, Part A: Systems and Humans,

IEEE Transactions on (Volume:30 ,Issue: 5), 537-551.

 102

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.

Psychometrika, vol. 23 issue 3, 187 - 200.

Kalloniatis, C., Kavakli, E., & Gritzalis, S. (2007). Using Privacy Process Patterns for

Incorporating Privacy Requirements into the System Design Process. The Second

International Conference on Availability, Reliability and Security, ARES 2007

(page 1009--1017).

Karjoth, G., & Schunter, M. (2002). A Privacy Policy Model for Enterprises. Computer

Security Foundations Workshop, 2002. Proceedings. 15th IEEE (págs. 271-281).

IEEE.

Karjoth, G., Schunter, M., & Waidner, M. (2002). The platform for enterprise privacy

practices: privacy-enabled management of customer data. PET'02 Proceedings of

the 2nd international conference on Privacy enhancing technologies (págs. 69-

84). Springer-Verlag Berlin, Heidelberg.

Kenny, S., & Borking, J. (2002). The Value of Privacy Engineering. Journal of

Information, Law and Technology.

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model.

Information & Management, Volume 43, Issue 6, 740-755.

Laddad., R. (2003). AspectJ in Action: Practical Aspect-Oriented Programming.

Manning Publications Co.

Li, N., Li, T., & Venkatasubramanian, S. (2007). t-Closeness: Privacy Beyond k-

Anonymity and l-Diversity. IEEE 23rd International Conference on Data

Engineering, ICDE. (págs. 106 - 115). Istanbul: IEEE.

Livne, O. E., Schultz, N. D., & Narus, S. P. (2011). Federated Querying Architecture

with Clinical & Translational Health IT Application. Journal of Medical Systems,

Volume 35, Issue 5, 1211-24.

Ma, Q., & Liu, L. (2004). The Technology Acceptance Model: A Meta-Analysis of

Empirical Findings. Journal of Organizational and End User Computing, 59 - 72.

Machanavajjhala, A., Gehrke, J., Kifer, D., & Venkitasubramaniam, M. (2007). l-

diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge

Discovery from Data (TKDD), Volume 1 Issue 1.

Mackinnon, T., Freeman, S., & Craig, P. (2001). Endo-testing: unit testing with mock

objects. Extreme programming examined, 287-301.

 103

Masrom, M., & Teknologi, U. (2007). Technology Acceptance Model and E-learning.

12th International Conference on Education, Sultan Hassanal Bolkiah Institute of

Education , Universiti Brunei Darussalam, (págs. 1 - 10).

Masuda, G., Sakamoto, N., & Ushijima, K. (1999). Evaluation and Analysis of Applying

Design Patterns. International Workshop on Principles of Software Evolution -

IWPSE.

Md. Moniruzzaman, Ferdous, M., & Hossain, R. (2010). A Study of privacy policy

enforcement in access control models. 13th International Conference on

Computer and Information Technology (ICCIT), 2010 (págs. 352-357). Dhaka:

IEEE.

Mourad, A., Laverdière, M.-A., & Debbabi, M. (2008). An aspect-oriented approach for

the systematic security hardening of code. Computers & Security, Volume 27,

Issues 3–4, 101–114.

Narayanan, A., & Shmatikov, V. (2008). Robust de-anonymization of large sparse

datasets. Proceedings of the 2008 IEEE Symposium on Security and Privacy.

Pietraszek, T., & Berghe, C. V. (2005). Defending against injection attacks through

context-sensitive string evaluation. In Proceedings of the 8th International

Symposium on Recent Advances in Intrusion Detection (RAID2005) (págs. 124–

145). Springer-Verlag Berlin, Heidelberg.

Pitofsky, R., Anthony, S., Thompson, M., Swindle, O., & Leary, T. (2000). Privacy

Online: Fair Information Practices in the Electronic Marketplace, A Report to

Congress. US Federal Trade Commission.

Porekar, J., Jerman-Blazic, A., & Klobucar, T. (2008). Towards Organizational Privacy

Patterns. Digital Society, 2008 Second International Conference (page 15-19).

Prasanna, D. (2009). Dependency Injection. Manning Publications Co.

Raghunathan, B. (2013). Complete Book of Data Anonymization From Planning to

Implementation. CRC Press Taylor & Francis Group.

Rainie, L., Kiesler, S., Kang, R., & Madden, M. (5 de September de 2013). Anonymity,

Privacy, and Security Online. Obtenido de Pew Research Center Internet, Science

& Tech: http://www.pewinternet.org/files/old-

media//Files/Reports/2013/PIP_AnonymityOnline_090513.pdf

Rizvi, S. J., & Haritsa, J. R. (2002). Maintaining Data Privacy in Association Rule

Mining. Proceedings of the 28th international conference on Very Large Data

Bases, VLDB, (págs. 682-693).

 104

Rodríguez, A., Piattini, M., & Fernández-Medina, E. (2006). Security Requirement with a

UML 2.0 Profile. Availability, Reliability and Security, 2006. ARES 2006. The

First International Conference on (pág. 8). IEEE.

Romanosky, S., Acquisti, A., Hong, J., Cranor, L. F., & Friedman, B. (2006). Privacy

patterns for online interactions. Proceedings of the 2006 conference on Pattern

languages of programs (page 1--9). Portland, Oregon.

Roy, O. (2014). The art of unit testing, 2nd edition. Shelter Island, NY: Manning.

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The Earth Mover's Distance as a Metric

for Image Retrieval. International Journal of Computer Vision, Volume 40, Issue

2, 99-121.

Sabo, J., Willett, M., Brown, P., & Jutla, D. (26 de March de 2012). Privacy Management

Reference Model and Methodology, OASIS PMRM TC Standards Track

Committee Draft.

Sabo, J., Willett, M., Brown, P., & Jutla, D. (25 de March de 2013). Privacy Management

Reference Model and Methodology, OASIS PMRM TC Standards Track

Committee Specification.

Samarati, P., & Sweeney, L. (1998). Protecting Privacy when Disclosing Information: k-

Anonymity and Its Enforcement through Generalization and Suppression. IEEE

Symp. on Security and Privacy.

Scheffler, T., Geiß, S., & Schnor, B. (2008). An implementation of a privacy enforcement

scheme based on the Java security framework using XACML policies.

Proceedings of the IFIP TC 11, 23rd International Information Security

Conference, Volume 278 (págs. 157–171). Boston: Springer.

Scheffler, T., Schindler, S., & Schnor, B. (2012). Enforcing Location Privacy Policies

through an AOP-based Reference Monitor. World Congress on Internet Security

(WorldCIS-2012) (págs. 51 - 56). IEEE.

Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model:

Investigating subjective norm and moderation effects. Information and

Management 44 (págs. 90 - 103). Elsevier.

Seemann. (October de 2004). Mock Objects to the Rescue! Test Your .NET Code with

NMock. MSDN Magazine. Obtenido de https://msdn.microsoft.com/en-

us/magazine/cc163904.aspx#S2

Seemann, M. (2012). Dependency injection in. NET. Manning.

 105

Shapiro, S. S. (2011). Separating the Baby from the Bathwater - Toward a Generic and

Practical Framework for Anonymization. IEEE.

Sharma, N., Batra, U., & Mukherjee, S. (2014). Enhancing Security in Service Oriented

Architecture driven EAI using Aspect Oriented Programming in healthcare IT.

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH,

VOLUME 5, ISSUE 3, 50-53.

Sommerville, I. (2011). Software Engineering 9. Boston: Addison-Wesley.

Sonnino, B. (February de 2014). Aspect-Oriented Programming with the RealProxy

Class. Obtenido de MSDN Magazine: https://msdn.microsoft.com/en-

us/magazine/dn574804.aspx

Spiekermann, S., & Cranor, L. F. (2009). Engineering Privacy. IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, 67-82.

Sun, W., France, R., & Ray, I. (2011). Rigorous Analysis of UML Access Control Policy

Models. Policies for Distributed Systems and Networks (POLICY), 9-16.

Sweeney, L. (2002). k-Anonymity: A Model for Protecting Privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557-570.

Tillmann, N., & Schulte, W. (2006). Mock-Object generation with behavior. ASE '06

Proceedings of the 21st IEEE/ACM International Conference on Automated

Software Engineering (págs. 365-368). IEEE Computer Society Washington, DC,

USA.

Tumer, A., Dogac, A., & Toroslu, I. H. (2003). A semantic-based user privacy protection

framework for web services. ITWP'03 Proceedings of the 2003 international

conference on Intelligent Techniques for Web Personalization (págs. 289-305).

Springer-Verlag Berlin, Heidelberg.

Warren, S. D., & Brandeis, L. D. (15 de December de 1890). The Right to Privacy.

Harvard Law Review 4 (5), págs. 193-220.

Wenning, R. (2007). Platform for Privacy Preferences (P3P) Project. Recuperado el 15

de 10 de 2012, de http://www.w3.org/P3P/

Win, B. D., Joosen, W., & Piessens, F. (2002). Developing secure applications through

aspect-oriented programming. En Aspect-Oriented Software Development (págs.

633-650). Addison-Wesley.

Yu, W., & Murthy, S. (2007). PPMLP: A Special Modeling Language Processor for

Privacy Policies. Computers and Communications 12th IEEE Symposium, 851-

858.

 106

Zhong, S., Yang, Z., & Wright, R. N. (2005). Privacy-Enhancing k-Anonymization of

Customer Data. PODS '05 Proceedings of the twenty-fourth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems (págs. 139-147).

ACM New York, NY, USA.

Zhou, Y., Zhang, X., Jiang, X., & Freeh, V. W. (2011). Taming Information-Stealing

Smartphone Applications (on Android). TRUST'11 Proceedings of the 4th

international conference on Trust and trustworthy computing (págs. 93-107).

Pittsburgh, PA: Springer-Verlag Berlin, Heidelberg.

Zhu, Z. J., & Zulkernine, M. (2009). A model-based aspect-oriented framework for

building intrusion-aware software systems. Information and Software Technology,

Volume 51, Issue 5, 865–875.

 107

Appendix A – Letter of Approval

Social Sciences & Humanities Research Ethics Board

Letter of Approval

July 23, 2015

Ms Naureen Ali

Computer Science\Computer Science

Dear Naureen,

REB #: 2015-3610

Project Title: PIP: A (Privacy) Injection Pattern for Inserting Privacy Patterns

and Services in Software

Effective Date: July 23, 2015

Expiry Date: July 23, 2016

The Social Sciences & Humanities Research Ethics Board has reviewed your application

for research involving humans and found the proposed research to be in accordance with

the Tri-Council Policy Statement on Ethical Conduct for Research Involving

Humans. This approval will be in effect for 12 months as indicated above. This approval

is subject to the conditions listed below which constitute your on-going responsibilities

with respect to the ethical conduct of this research.

Sincerely,

Dr. Karen Beazley, Chair

 108

Appendix B – Recruitment Script

We invite you to take part in an on-line survey that will ask you to evaluate a new

software pattern, called PIP or Privacy Injection Pattern. The purpose of the PIP is to

inject privacy services or privacy patterns in existing systems without modifying it or if

required, modify it to small extent. We want to learn your opinions of the benefits and

ease of use of the PIP, and to understand how we may improve this pattern. The survey is

conducted under the supervision of Dr. Dawn Jutla and Dr. Peter Bodorik.

We invite all software professionals who are interested in using and learning about the

privacy injection pattern in systems to take the survey. We particularly want feedback

from those participants who have experience with software development, software

design, or privacy engineering.

Before starting with the survey you will be presented with a consent form. Once you click

on the `Agree` button, you will be directed to the survey questions. The survey should

take about 30-45 minutes.

There is no compensation for taking part in this research. As it is an online survey, a

researcher will always be available through e-mail or phone to answer any questions you

may have or address any problems that you may experience while performing the survey.

If you have any questions, please contact Naureen Ali by email: Naureen@cs.dal.ca.

The survey is located at: (URL: https://surveys.dal.ca/opinio/s?s=29098)

Thank You

Naureen Ali

Student, Faculty of Computer Science, Dalhousie University,

Halifax, NS

mailto:Naureen@cs.dal.ca

 109

Appendix C – Informed Consent

INSTRUCTION: Please read the following consent form carefully before clicking on

the ‘Agree’ button.

PIP: A (PRIVACY) INJECTION PATTERN FOR INSERTING PRIVACY

PATTERNS AND SERVICES IN SOFTWARE

Principal Investigators: Naureen Ali, MCSc Student, Faculty of Computer Science

Other Researchers (Supervisors): Dawn Jutla, Professor, Dept. of Finance, Information

Systems, and Mgmt. Science, Saint Mary’s University

Peter Bodorik, Professor, Faculty of Computer Science, Dalhousie University.

Contact Person: Naureen Ali, MCSc Student, Faculty of Computer Science,

naureen@cs.dal.ca, 902-412-4980

Introduction

We invite you to take part in a survey of a software-based Privacy Injection Pattern

conducted by Naureen Ali who is a graduate MCSc student at Dalhousie University.

Your participation in this survey is voluntary; there is no compensation for participating

in this survey. Neither your academic nor your employment performance evaluation will

be affected by whether or not you participate. The survey is described below. This

description tells you about the risks, inconvenience, or discomfort which you might

experience. Participating in the study might not benefit you directly, but you may learn

things that will benefit you. You may discuss any questions you have about this study

with Naureen Ali at any time through e-mail or phone (before, during or after the study).

Purpose

The purpose of this survey is to understand the perceived benefits of our proposed

privacy injection pattern (PIP). Specifically, is the pattern useful and/or easy to use to

inject privacy in existing and new software applications? The knowledge gained from our

survey will be in the results of the independent evaluation of our proposed pattern by

 110

practitioners in the software engineering field. The results may also provide new insights

for better designing patterns to inject privacy after deployment.

Study Design

Before starting with the survey you will be shown a consent form online. Once you click

on the 'agreed' button, you will be directed to the survey. The survey should take about

30-45 minutes. At the end of the survey, you will be asked to provide your e-mail id

(optional), if you wish to receive the copy of study findings. As it is an online survey, a

researcher will always be available through e-mail or phone to answer any questions you

may have or address any problems that you may experience while performing the survey.

Who can Participate in the Survey?

For the study, the target population will be software engineers in general, as well as any

technical personnel in charge of privacy. The potential participants must have basic

knowledge of software development. It doesn’t matter if recruited participants have

implemented privacy in their applications before or not.

Possible Risks and Discomforts

Some participants may get bored while answering the survey questions especially for

those who have no information about the technologies being used in the proposed pattern

such as aspect-oriented programming, dependency injection and mocking framework. To

maintain participants’ interest we have provided the basic definitions of these

technologies in the survey. The only identifiable information is the optional email

addresses at the end of the survey for receiving a copy of study findings, and those will

not be linked to the survey responses and will be stored separately. Since it is an online

survey, the researchers will not be physically available to monitor participants; however,

participants can contact researchers by email or phone if they have questions or technical

difficulties.

 111

Possible Benefits

There are no direct benefits for participants taking part in this survey, aside from the

opportunity of becoming aware of the technologies used in the proposed pattern and also

its use in example use cases provided with the survey. Indirect benefits include provision

of help in advancing software design patterns to incorporate privacy in existing

applications, an opportunity to be exposed to new research questions, and to contribute to

research that may benefit others.

Anonymity and Confidentiality

The only personally identifiable information we are collecting are the optional email

addresses for respondents to receive a copy of the study's findings. Email addresses will

not be linked to the survey responses. All research data will be kept confidential and in a

secure location. The data will be retained in encrypted format using best practices under

Dalhousie University’s data management guidelines. After five years the data and

documents will be destroyed.

Use of Quotations

Your responses to free-form questions may be quoted in the final report. There will be no

attribution of the quote beyond descriptive characteristics (e.g., one participant who does

not currently use such systems stated “____”).

Provision of Results

If you would like to receive a copy of study findings when published, please provide your

email address at the end of the questionnaire or email Dr. Dawn Jutla

(dawn.jutla@gmail.com) with your contact information.

In the event that you have any difficulties with, or wish to voice concern about, any

aspect of your participation in this study, you may contact Catherine Connors, Director,

Office of Research Ethics Administration at Dalhousie University’s Office of Human

Research Ethics for assistance: phone: (902) 494-1462, email: catherine.connors@dal.ca.

 112

Appendix D – Signature Page

Signature Page

Project Title: PIP: A (Privacy) Injection Pattern for Inserting Privacy Patterns and

Services in Software

Lead Researcher: Naureen Ali, Faculty of Computer Science, naureen@cs.dal.ca, 902-

412-4980

I have read the explanation about this survey. I hereby consent to take part in the study.

However, I understand that my participation is voluntary and that I am free to withdraw

from the study at any time.

 Agree

 Disagree

I agree that the researchers may quote my responses to free-form questions.

 Agree

 Disagree

 113

Appendix E – Survey Questions

PART –A

Survey: PIP - Privacy Injection Pattern

This is an online-survey which has questions on our proposed Privacy Injection Pattern

(PIP). Our proposed pattern may help in injecting privacy into existing applications

without modifying the existing modules or modifying it to a small extent. The purpose

for conducting this survey is to obtain your evaluation of the proposed software pattern.

1. How old are you?

 below 21

 21 - 25

 26 - 30

 31 - 40

 41 - 50

 51 - 60

 above 60

2. What is your gender?

 Male

 Female

3. How long have you been in software (development and designing) industry?

 less than a year

 1 – 2 years

 3 – 4 years

 5 – 6 years

 7 – 8 years

 9 – 10 years

 11 – 15 years

 114

 16 – 20 years

 more than 20 years

4. What is your current designation?

 Software engineer/developer

 Software designer

 Project manager

 Privacy manager

 Quality assurance

 Software support

 Other (please specify)________________

PART – B

Increasingly, software engineers are looking for repeatable ways to embed privacy in

their code. We propose the concept of a master privacy injection pattern (PIP) for

software engineers to use to automate dynamically “injecting” existing privacy patterns

in existing or new code. PIP is composed of a novel tri-abstraction combination of

aspect-oriented programming (AOP), dependency injection (DI), and mocking.

Software

Engineering

Technique

Terminology and Traditional Uses

Aspect-

Oriented

Programming

(AOP)

Aspect-oriented programming (AOP) is a programming technique to

separate crosscutting concerns, such as privacy, in units of modularization

called aspects, instead of fusing them with core modules as is traditionally

done in object oriented programming.

Mocking

A mock object or isolation framework, is a reusable library which

provides a way to create and configure fake objects at runtime. Isolation

frameworks are widely used in test driven development (TTD). The use of

dynamic fake objects eliminates the need to write classes or provide the

 115

implementation of the interfaces.

Dependency

Injection

(DI)

The concept of dependency injection is based on the inversion of control

(IoC) design pattern. IoC is a technique that assigns the responsibility of

the flow of control of an application to a container or a class (Prasanna,

2009) Dependency injection is mostly used for loosely coupled designs. It

is commonly used for unit testing and validation/exception management

(Culp, 2015).

Combining the three abstractions, we develop a new privacy injection pattern to insert

known privacy patterns or services in new and existing legacy applications. Figure 0.1

shows our proposed Privacy Injection Pattern (PIP) to insert privacy services in a

software application using mocking, DI and AOP. It describes our injection pattern’s

program flow (numbered as 1 to 11) through one pattern instance. The concepts intrinsic

to the PIP (combination of AOP, mocking and dependency injection) are extensible to

multiple system architectures. However, tightly coupled architectures that lack

modularity will require more of a privacy engineer’s attention than the more extensible,

interoperable, and robust SOA and n-tier architectures.

Our Privacy Injection Pattern (PIP) implements other privacy-pattern classes in an aspect

or privacy service component using AOP. As privacy is a cross-cutting concern across all

software collecting or using personal data, software engineers may implement third-party

privacy patterns or their components (e.g. masking, encryption) using AOP so that

aspects can be used across software implementation classes. When using the PIP, at the

beginning of a software program, software developers load a privacy service DLL

(Dynamic Link Library), which consists of privacy pattern services implemented using

AOP. An example of such a privacy pattern is obtaining explicit user consent.

Dependency injection allows the engineer to load a privacy service DLL without

recompiling existing services. A developer simply places the privacy DLL along with

other DLLs and the privacy program will automatically load. When the program loads, a

 116

mock Business Application Logic (BAL) object of the same type as the original BAL

object is created and injected by initializing it. In this way, when a software engineer

calls any function of the BAL object (as triggered by (1) in Figure 0.1), it basically calls

the mock BAL object function (3). This mock object fetches data from the business layer

as normal (4). We use the mock object to apply third-party privacy aspects from privacy

data patterns (7) and to transfer the modified data to the presentation layer (11).

Figure 0.1. Privacy Injection Pattern (PIP) Architecture

References:

Culp, A. (2015, May 4). The Dependency Injection Design Pattern. Retrieved from

MSDN: https://msdn.microsoft.com/en-us/library/vstudio/hh323705(v=vs.100).aspx

Prasanna, D. (2009). Dependency Injection: Design Patterns Using Spring and Guice,

O”Reilly Media, 352 pages.

Users

Privacy
Patterns
(Aspects)

11. Request

Response
Mock Business Logic

Layer

1. Read/Write

Request 5

3

8

Dependency
Injection

 117

We illustrate our new Privacy Injection Pattern and the simplicity of its implementation

with two use cases on the next pages. The first example injects well-known de-

identification patterns in a banking use case, while a more complex example injects k-

anonymity in a hospital use case. You can download the project code from the Dalhousie

University's secure servers here: banking example and hospital example. The use cases

and the code description are followed by survey questions that depend on your

understanding of the PIP pattern and its illustration in the two use cases. Although you

can answer the questions based on the understanding of the use cases, we encourage you

to actually download the code and try it out.

 118

BANKING USE CASE

To illustrate the use and implementation of our composite Privacy Injection Pattern (PIP),

we employ the PIP in a use case scenario from a banking application that uses de-

identification patterns for protecting privacy. Data de-identification is a privacy-

preserving technique. It is the process of de-identifying sensitive data by removing or

transforming information in such a way that we cannot associate a piece of information

with an identifiable individual (Cavoukian & Khaled El Emam, 2014; Shapiro, 2011;

Narayanan & Shmatikov, 2008). Some de-identification patterns are substitution,

shuffling, nulling out, character masking and cryptographic techniques. We implement

the nulling out and character masking privacy patterns for illustration using aspect-

oriented programming (AOP) in our example. We show how to use mocking and

dependency injection techniques to automatically inject an AOP instance of the de-

identification service.

Our technical implementation uses Visual Studio .Net (IDE), PostSharp (AOP), the Unity

Container (Dependency Injection) and the Mock library to implement an example

injection of our de-identification service into a banking application. We note that the PIP

may be implemented with other technologies, e.g. multi-platform heterogeneous

technologies. You can download the project code from here also.

The banking application’s use case scenario contains information about a customer

account which is shown to a user who can be either a manager or an operator; the

operator can view only some information while the manager can view all information.

Figure 0.2 shows the sequence diagram of the maintain users’ account use case as

prepared by the software developer/engineer without including privacy controls (i.e.,

before applying PIP). Once the user is logged into the system, the system creates the

CustomerManager and RoleManager objects, retrieves account and transaction details,

and displays them on the screen.

 119

In this use case, we want to inject the role-based de-identification pattern for access

control such that the operator can view only some information while the manager can

view all information. Thus, first the de-identification service DLL is loaded in the main

program.

Figure 0.2. Sequence Diagram of User Account Before Applying PIP

Figure 0.3 shows the implementation of this added function to load the de-identification

service DLL and initialize the de-identification service. This function is required for

desktop-based applications. For web-based application, the software developer simply

places the privacy DLL with other DLLs.

User SampleApp MainForm LoginForm
Customer
Manager

Role
Manager

XML

Login

new MainForm()

MainForm_Load()

ShowDialog()

new RoleManager()

GetCustomer()

showBankUserInfo()

 DisableAllControls()

showAccounts()

new CustomerManager()

LoadFromXMLFile()

opt

[User == Operator]

Return CustomerInfo Object

 120

Figure 0.3. Load de-identification service DLL for desktop applications

When the de-identification service initializes, it creates a mock object of the same type as

our business layer object. In our case, our business layer object is CustomerManager,

which is an implementation of the ICustomerManager interface. CustomerManager has a

method called GetCustomer that fetches customer and account details from the database.

The software engineer creates a mock object of the ICustomerManager type and then

registers it. The engineer also setups the updated implementation of the GetCustomer

method to fetch customer and account details in the same way as the originating object

method, and then applies the de-identification aspect on this object.

Figure 0.4 shows the de-identified GetCustomer implementation. Subsequently, when the

developer calls CustomerManager.GetCustomer, the updated GetCustomer method is

invoked. In the Unity Container, for dependency injection the software engineer first

registers the object at the beginning of the program to resolve the object to access its

methods.

private static void InjectLibraries()
{
 var deidentificationServiceLibName = "BankDeidentificationService.dll";

 var currentPath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);

 var deidentificationServiceLibCompletePath = Path.Combine(currentPath, deidentifica-
tionServiceLibName);

 if (!File.Exists(deidentificationServiceLibCompletePath))
 {
 return;
 }

 Assembly assembly = Assembly.LoadFrom(deidentificationServiceLibCompletePath);
 var deidentificationServiceType = assem-
bly.GetType("BankDeidentificationService.DeidentificationService");

 var serviceInstance = Activator.CreateInstance(deidentificationServiceType);

 deidentificationServiceType.InvokeMember("Initialize", BindingFlags.Default | Bind-
ingFlags.InvokeMethod, null, serviceInstance, null);
}

 121

Figure 0.4. Inject mocking object and invoke IOC

As the software developer has registered the mock object in the IoC container, when we

call the customer manager object, it will call the mock customer manager object. Figure

0.5 shows how the software developer resolves the ICustomerManager object to fetch

customer information. The developer will call the GetCustomer function to fetch the

required information. This action calls the GetCustomer method of the mock object and

applies the de-identification service on the object. After applying de-identification, the

system displays the information on the screen.

We apply the de-identification service by applying a de-identification aspect with

properties or methods. In our case, we apply de-identification on the properties. When we

try to access the property, it applies the de-identification aspect on the field and returns a

value.

public static void Initialize()
{
 SetupCustomerManager();
}

public static void SetupCustomerManager()
{
 if (Common.Ioc.IocContainer.Instance.IsRegistered(typeof(ICustomerManager)))
 {
 return;
 }

 var customerManagerMock = new Mock<ICustomerManager>();

 customerManagerMock.Setup(x => x.GetCustomer()).Returns(() => {

 var customerMgr = new CustomerManager();
 var result = customerMgr.GetCustomer();

 return new CustomerInfoDeidentifiedImpl(result);
 });

Common.Ioc.IocContainer.Instance.Register<ICustomerManager>(customerManagerMock.Object);
}

 122

Figure 0.5. Resolve mocking object at runtime to get customer information

Figure 0.6. Apply LongStringDeidentification aspect on AccountNumber

We apply LongStringDeidentification to the AccountNumber property (Figure 0.6). In

the LongStringDeidentification class, we provide the de-identification logic that will be

applied on the field on which we bind as in Figure 0.7. We implement the aspect classes

for email, date, number, IDs and other fields and then apply these aspects to the

properties or methods where required.

this.customerInfo =
Common.Ioc.IocContainer.Instance.Resolve<ICustomerManager>().GetCustomer();

this.lblCustomerName.Text = this.customerInfo.BankUser.FirstName + " " +
this.customerInfo.BankUser.MiddleName +" " + this.customerInfo.BankUser.LastName;

this.personalInformationUserControl.ShowBankUserInfo(this.customerInfo.BankUser);

if (Common.Ioc.IocContainer.Instance.Resolve<IRoleManager>().UserRole == Role.Operator)
{
 this.personalInformationUserControl.DisableAllControls();
}

this.accountsInfoUserControl.ShowAccounts(this.customerInfo.Accounts);

this.customerInfo.Accounts.ForEach(account =>
{
 this.cbAccount.Items.Add(string.Format("{0}-{1}", account.AccountType,
account.AccountNumber));
});

[LongStringDeidentification(MaskCharacter = '*', VisibleStringLength = 5)]
public string AccountNumber { get; set; }

 123

Figure 0.7. De-identification implementation in LongStringDeidentification class

Figure 0.8 shows an operator screen of the sample bank application that results from the

use of the PIP for injection of simple de-identification patterns. Recall the operator role

does not have permission to view all the private information about the customer.

Different fields’ data are de-identified using different de-identification techniques. For

example, for the customer id field, we apply character masking; for date of birth we use

date variance. We null out the street number.

public override void OnGetValue(LocationInterceptionArgs args)
{
 base.OnGetValue(args);

 if (Common.Ioc.IocContainer.Instance.Resolve<IRoleManager>().UserRole == Role.Manager)
 return;

 string value = (string) args.Value;

 if (String.IsNullOrEmpty(value))
 return;

 if (this.HideFromFront)
 {
 if (value.Length <= this.VisibleStringLength)
 value = this.MaskCharacter.Repeat(this.VisibleStringLength);

 value = string.Format("{0}{1}", this.MaskCharacter.Repeat(value.Length -
this.VisibleStringLength),
 value.Substring(value.Length - this.VisibleStringLength));
 }
 else
 {
 if (value.Length <= this.VisibleStringLength)
 value = this.MaskCharacter.Repeat(this.VisibleStringLength);

 value = string.Format("{1}{0}",
this.MaskCharacter.Repeat(this.VisibleStringLength),
 value.Substring(0, value.Length - this.VisibleStringLength));
 }

 args.Value = value;
}

 124

Figure 0.8. Operator Screen of Sample Bank Application

Figure 0.9 shows the sequence of object calls when the PIP is applied on the maintain

users account use case to inject role-based de-identification for access control. The PIP

can be applied to inject other privacy patterns in the system.

 125

Figure 0.9. Main User Account Sequence Diagram after Applying PIP

We suggest that the PIP pattern can be used repeatedly in many places in a banking

application e.g. to also inject a location/time privacy pattern that disallows the operator

from viewing even more of customers’ fields remotely outside of banking hours.

Bibliography

Cavoukian, A., & Khaled El Emam. (2014, June 25). De-identification Protocols:

Essential for Protecting Privacy. Retrieved November 30, 2014, from

http://www.privacybydesign.ca/content/uploads/2014/09/pbd-de-identifcation-

essential.pdf

 126

Narayanan, A., & Shmatikov, V. (2008). Robust de-anonymization of large sparse

datasets. Proceedings of the 2008 IEEE Symposium on Security and Privacy.

Shapiro, S. S. (2011). Separating the Baby from the Bathwater - Toward a Generic and

Practical Framework for Anonymization. IEEE.

 127

HOSPITAL USE CASE

Implementing privacy in healthcare applications has become a leading concern of some

researchers in the last few decades. To determine the use and implementation of the

Privacy Injection Pattern (PIP) in a more complex use case, we employ the PIP in a use

case scenario from a hospital management application that uses k-anonymity as the de-

identification pattern while sharing data with other organizations. We implement the k-

anonymity privacy method using ARX (ARX, n.d.) DLL for illustration using aspect-

oriented programming (AOP) in our example. We show that the mocking and the

dependency injection techniques automatically inject the AOP instance of the de-

identification service. The k-anonymity is a de-identification method and it helps to

preserve sensitive information. The idea behind k-anonymity is to reduce the granularity

of the representation of the data in such a way that a given record cannot be distinguished

from at least (k-1) other records (Sweeney, 2002; Aggarwal & Yu, 2008). This

granularity is reduced using techniques such as generalization and suppression. In

generalization, we replace the attribute value with a generalized value. Suppression is the

technique where the attribute’s value is removed completely.

Our technical implementation uses Visual Studio .Net (IDE), PostSharp (AOP), the Unity

Container (Dependency Injection) and the Mock library to implement an example

injection of our de-identification service into a hospital application. We note that the PIP

may be implemented with other technologies, e.g. multi-platform heterogeneous

technologies.

The hospital use case scenario is a search screen to retrieve information on the basis of

criteria, such as country, city etc. The k-anonymity algorithm is applied to the data before

sharing the data with other organizations. There is an option given to the user to apply k-

anonymity to the data. This option helps us to study the behavior of the system before

and after applying the proposed pattern. Figure 0.1 shows the sequence diagram of the

search patient information use case before applying PIP.

 128

In this case study, we want to inject the option-based de-identification pattern such that a

power user can apply k-anonymity on the patient information to share the information

with other organizations. The de-identification service DLL is loaded in the main

program.

Figure 0.1. Sequence Diagram of Patient Search Before Applying PIP

Figure 0.2 shows the implementation of this added function to load the de-identification

service DLL and initialize the de-identification service. This function is required for

desktop-based applications. For web-based applications, the software developer simply

places the privacy DLL with other DLLs.

User SampleApp MainForm
Patient

Manager
XML

Login

new MainForm()

GetAllPatients()

new PatientManager()

LoadFromXMLFile()

Return PatientsRecords

 [When Search is Clicked]

BindDataToGrid

 129

Figure 0.2. Load de-identification service DLL for desktop applications

When the de-identification service initializes, it creates a mock object of the same type as

our business layer object. In our case, our business layer object is PatientManager, which

is an implementation of the IPatientManager interface. PatientManager has multiple

methods that fetch patients’ information from the XML (or database) on the basis of

certain criteria. The software engineer creates a mock object of the IPatientManager type

and then registers it. The engineer also setups the updated implementation of all the

methods to fetch patients’ details in the same way as the originating object method, and

then applies the de-identification aspect on this object.

Figure 0.3 shows the implementation of methods to de-identify the information.

Subsequently, when the developer calls the original PatientManager method, the updated

method of the mock object is invoked. In the Unity Container, for dependency injection

the software engineer first registers the object at the beginning of the program to resolve

the object to access its methods.

private static void InjectLibraries()
{
 var deidentificationServiceLibName = "DeIdentificationService.dll";

 var currentPath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);

 var deidentificationServiceLibCompletePath = Path.Combine(currentPath, deidentifica-
tionServiceLibName);

 if (!File.Exists(deidentificationServiceLibCompletePath))
 {
 return;
 }

 Assembly assembly = Assembly.LoadFrom(deidentificationServiceLibCompletePath);
 var deidentificationServiceType = assem-
bly.GetType("DeIdentificationService.DeIdentificationServiceInitializer");

 var serviceInstance = Activator.CreateInstance(deidentificationServiceType);

 deidentificationServiceType.InvokeMember("Initialize", BindingFlags.Default | Bind-
ingFlags.InvokeMethod, null, serviceInstance, null);
}

 130

Figure 0.3. Inject mocking object and invoke IOC

private static void SetupManagerObjects()
{
 if (Common.Ioc.IocContainer.Instance.IsRegistered(typeof(IPatientManager)))
 {
 return;
 }
 var patientManagerMock = new Mock<IPatientManager>();

 patientManagerMock.Setup(x => x.GetAllPatients()).Returns(() =>
 {
 var patientManager = new PatientManager();
 var result = patientManager.GetAllPatients();

 var deIndentifiablePatients = from patient in result
 select new PatientInfoDeIdentified(patient);

 var patientRecordCollection = new PatientInfoRecordCollection();

 patientRecordCollection.PatientRecords = deIndentifiablePatients.ToList();

 return patientRecordCollection.PatientRecords;
 });

 patientManagerMock.Setup(x =>
x.SearchPatientByCity(It.IsAny<string>())).Returns((string cityName) =>
 {
 var patientManager = new PatientManager();
 var result = patientManager.SearchPatientByCity(cityName);

 var deIndentifiablePatients = from patient in result
 select new PatientInfoDeIdentified(patient);

 var patientRecordCollection = new PatientInfoRecordCollection();

 patientRecordCollection.PatientRecords = deIndentifiablePatients.ToList();

 return patientRecordCollection.PatientRecords;
 });

 patientManagerMock.Setup(x =>
x.SearchPatientByCountry(It.IsAny<string>())).Returns((string countryName) =>
 {
 var patientManager = new PatientManager();
 var result = patientManager.SearchPatientByCountry(countryName);

 var deIndentifiablePatients = from patient in result
 select new PatientInfoDeIdentified(patient);

 var patientRecordCollection = new PatientInfoRecordCollection();

 patientRecordCollection.PatientRecords = deIndentifiablePatients.ToList();

 return patientRecordCollection.PatientRecords;
 });
 Common.Ioc.IocContainer.Instance.Register<IPatientManager>(patientManagerMock.Object);
}

 131

Figure 0.4 shows how the software developer resolves the IPatientManager object to

fetch patients’ information. The developer will call the original function, for example

GetAllPatients, to fetch the required information. This action calls the GetAllPatients

method of the mock object and applies the de-identification service on the object. After

applying de-identification, the system displays the information on the screen.

Figure 0.4. Resolve mocking object at runtime to get patient information

The software engineer applies the de-identification service by applying a de-identification

aspect with properties or methods. In this example, the developer applies de-

identification on the PatientRecords property. When the software fetches patient records

through this property, it applies the de-identification aspect on the field and returns a

value.

IEnumerable<IPatientInfo> searchedPatientRecords = new List<IPatientInfo>();

var patientManager = Common.Ioc.IocContainer.Instance.Resolve<IPatientManager>();

switch (this.cmbSearchBy.SelectedItem.ToString())
{
 case "Country":
 searchedPatientRecords = patientManag-
er.SearchPatientByCountry(this.txtSearchTerm.Text);
 this.BindDataToGrid(searchedPatientRecords);
 break;

 case "City":
 searchedPatientRecords = patientManag-
er.SearchPatientByCity(this.txtSearchTerm.Text);
 this.BindDataToGrid(searchedPatientRecords);
 break;

 case "All Records":
 searchedPatientRecords = patientManager.GetAllPatients();
 this.BindDataToGrid(searchedPatientRecords);
 break;
}

this.lblRecordsCount.Text = string.Format("{0} {1} found",
 searchedPatientRecords.Count(),
 searchedPatientRecords.Count() > 1 ?

"Records" : "Record");

 132

Figure 0.5. Apply Deidentification aspect on PatientRecords

The software developer applies the DeidentificationAspect to the PatientRecords property

(Figure 0.5). In the DeidentificationAspect class, s/he provides the de-identification logic

that will be applied on the bind field as in Figure 0.6. DeidentificationAspect then calls

DeidentifyRecords of the DeIdentification class to use the ARX anonimize function to

de-identify the data and return it to the calling method.

Figure 0.6. De-identification implementation in DeidentificationAspect class

Figure 0.7 shows a patient search screen of the hospital application that results from the

use of the PIP for injection of the k-anonymity method. The patients’ information is

searched by different criteria and the k factor for k-anonymity is also provided by the

user on the screen. For k-anonymization of the records, we provide the attribute type

(identifying, quasi-identifying, insensitive) of each attribute in the input list. For the

quasi-identifying attribute, an attribute hierarchy is required.

public class PatientInfoRecordCollection
{
 [DeIdentificationAspect(AnonymizationFactor = 3)]
 public List<PatientInfoDeIdentified> PatientRecords { get; set; }
}

[Serializable]
public class DeIdentificationAspect : LocationInterceptionAspect
{
 public int AnonymizationFactor { get; set; }

 public override void OnGetValue(LocationInterceptionArgs args)
 {
 base.OnGetValue(args);

 //DeidentifyRecords uses ARX anonimize function to anonimize the list provided as
argument
 var newValue = new DeIdentifica-
tion<PatientInfoDeIdentified>().DeIdentifyRecords((List<PatientInfoDeIdentified>)
args.Value, this.AnonymizationFactor);

 args.Value = newValue.ToList();
 }
}

 133

Figure 0.7. Patient Search Screen of Hospital Application

Figure 0.8 shows the sequence of object calls when PIP is applied on the patient search

use case to inject privacy by using k-anonymity in the system.

 134

Figure 0.8. Patient Search Sequence Diagram after Applying PIP

Bibliography

Aggarwal, C. C., & Yu, P. S. (2008). Privacy-Preserving Data Mining: Models and

Algorithms. Springer.

ARX. (n.d.). ARX - Powerful Data Anonymization. Retrieved from

http://arx.deidentifier.org/

Cavoukian, A., & Khaled El Emam. (2014, June 25). De-identification Protocols:

Essential for Protecting Privacy. Retrieved November 30, 2014, from

http://www.privacybydesign.ca/content/uploads/2014/09/pbd-de-identifcation-

essential.pdf

User SampleApp MainForm
Patient

Manager
XML

Login

new MainForm()

LoadFromXMLFile()

 [When Search is Clicked]

PatientManager
Mock

PatientInfo
Deidentified

PatientInfo
RecordCollection

IoC Container
Deidentification
ServiceInitializer

InjectLibraries

Initialize()
SetupManagerObjectMock

Register
(MockObj)

Resolve(PatientManager).
GetAllPatients GetAllPatients

new PatientManager

GetAllPatients()

Return PatientRecords
List<new Patient
InfoDeidentified>

new PatientInfoRecordCollection()

DeidentifcationAspect
(PatientInfoDeidentiedList)

Deidentified PatientRecords

BindDataToGrid()

 135

Latanya Sweeney, k-Anonymity: A Model for Protecting Privacy. International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570(2002).

The rest of the survey questions will depend on your understanding of the PIP pattern and

the Hospital and Banking use cases. If you have not as yet, please download the code and

try it out.

5. Did you download and try running the example applications or try extending the

examples?

 Yes  No

6. I understood the PIP concepts, examples, and/or code.

 Strongly Agree  Agree  Somewhat Agree  Neutral  Somewhat Disagree

 Disagree  Strongly Disagree

 136

PART – C

7. Suppose you have developed an application and it is in beta testing phase. Suddenly it

has been pointed out to you that your company has promised to embed privacy in all

software applications a few months back. You realize that you have not implemented

privacy in your application and if you implement it, it requires changes in many modules

of the application. Furthermore, assume the appropriate privacy controls, such as de-

identification, that you wish to insert in your code have already been coded and verified.

Your challenge is to easily modify your existing application to use one or more of these

privacy controls. You have read about and studied the privacy injection pattern (PIP) and

its example uses. The following questions target to what extent you think that PIP may

help you to resolve your issue.

Perceived Usefulness

 Strongly

Agree

Agree Somewhat

Agree

Neutral Somewhat

Disagree

Disagree Strongly

Disagree

The task would be

difficult to perform

without this pattern.

Using PIP would

give me greater

control over this

task.

Using PIP would

improve my

performance on this

task.

The PIP would

address my task-

related needs.

 137

Using PIP would

save my time.

Using PIP in my

application would

enable me to

accomplish

embedding privacy

more quickly.

The PIP pattern

would support

critical aspects of my

task.

Using the PIP

pattern would allow

me to accomplish

more work than

would otherwise be

possible.

Using PIP would

enhance my

effectiveness on this

task.

Using PIP would

improve the quality

of the work I do on

this task.

Using PIP on this

task would increase

my productivity.

Using PIP would

make it easier to do

 138

this task.

I would find PIP

useful in my job.

Perceived Ease of Use

 Strongly

Agree

Agree Somewhat

Agree

Neutral Somewhat

Disagree

Disagree Strongly

Disagree

I will become

confused when I use

the pattern.

I would make errors

frequently when

using the pattern.

Interacting with the

pattern is often

frustrating.

I would need to

consult the user

manual often when

using the pattern.

Implementing the

pattern would

require a lot of my

mental effort.

I would find it easy

to recover from

errors/issues

encountered while

using the pattern.

I would find PIP to

 139

be flexible to interact

with.

I would find it easy

to get PIP to do what

I want it to do.

The pattern would

often behave in

unexpected ways.

I find it cumbersome

to use the pattern.

My interaction with

the pattern is easy

for me to

understand.

It will be easy for me

to remember how to

perform tasks using

the pattern.

The pattern provides

helpful guidance in

performing tasks.

I would find PIP

easy to use.

 140

PART – D

7. Suppose you have developed an application and it is in beta testing phase. Suddenly it

has been pointed out to you that your company has promised to embed privacy in all

software applications a few months back. You realize that you have not implemented

privacy in your application and if you implement it, it requires changes in many modules

of the application. Furthermore, assume the appropriate privacy controls, such as de-

identification, that you wish to insert in your code have already been coded and verified.

Your challenge is to easily modify your existing application to use one or more of these

privacy controls. You have read about and studied the privacy injection pattern (PIP) and

its example uses. The following questions target to what extent you think that PIP may

help you to resolve your issue.

Perceived Usefulness

 Strongly

Agree

Agree Somewhat

Agree

Neutral Somewhat

Disagree

Disagree Strongly

Disagree

The task would be

difficult to perform

without this pattern.

Using PIP would

give me greater

control over this

task.

Using PIP would

improve my

performance on this

task.

The PIP would

address my task-

related needs.

 141

Using PIP would

save my time.

Using PIP in my

application would

enable me to

accomplish

embedding privacy

more quickly.

The PIP pattern

would support

critical aspects of my

task.

Using the PIP

pattern would allow

me to accomplish

more work than

would otherwise be

possible.

Using PIP would

enhance my

effectiveness on this

task.

Using PIP would

improve the quality

of the work I do on

this task.

Using PIP on this

task would increase

my productivity.

Using PIP would

make it easier to do

 142

this task.

I would find PIP

useful in my job.

Perceived Ease of Use

 Strongly

Agree

Agree Somewhat

Agree

Neutral Somewhat

Disagree

Disagree Strongly

Disagree

I will become

confused when I use

the pattern.

I would make errors

frequently when

using the pattern.

Interacting with the

pattern is often

frustrating.

I would need to

consult the user

manual often when

using the pattern.

Implementing the

pattern would

require a lot of my

mental effort.

I would find it easy

to recover from

errors/issues

encountered while

using the pattern.

I would find PIP to

 143

be flexible to interact

with.

I would find it easy

to get PIP to do what

I want it to do.

The pattern would

often behave in

unexpected ways.

I find it cumbersome

to use the pattern.

My interaction with

the pattern is easy

for me to

understand.

It will be easy for me

to remember how to

perform tasks using

the pattern.

The pattern provides

helpful guidance in

performing tasks.

I would find PIP

easy to use.

 144

PART – E

7. Do you think we can improve PIP?

 Yes  No

8. If yes, how we can improve this pattern?

__

__

__

__

__

__

__

__

__

9. If you have to implement privacy in your application, would you use this pattern?

 Yes  No

10. If No, then how would you implement privacy in your application without modifying

your existing application or if required, modifying it to a small extent?

__

__

__

__

__

__

__

__

__

 145

Would you like to receive a copy of study findings when published?

  Yes (please specify your email address) --------------------------

  No thanks

------------------------***Thanks for participating in the Survey***-------------------------

**************Have a great day*************

