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ABSTRACT

The complexity of ocean circulation makes it difficult to predict both the origin and

destination of objects transported by ocean currents. Many practical applications (e.g.,

planning marine search and rescue operations, predicting the year class success of important

fisheries, and responding to threats posed by oil spills and mines) require a Lagrangian

approach to the modelling of fluid movement. Similarly, many scientific applications

(e.g., understanding the connections between the spawning and nursery areas of marine

organisms, estimating the residence time of deep ocean basins and the exchange between

them) are sometimes tackled more effectively using a Lagrangian approach. One way

of estimating where objects come from, and where they go, is based on integrating a

stochastic differential equation for particle position. In this thesis, the effectiveness of

two such methods are explored: one based on discretization in time (the conventional

approach) and another based on discretization in space. The ability of the methods to

deal with both Lagrangian chaos (evident in time varying flows without diffusion) and

spatial gradients in diffusivity (leading to false aggregation of particles), is discussed using

simple, idealized examples. The discrete-space method is then applied and evaluated for

the Scotian Shelf-Gulf of Maine system using flow fields predicted by an ocean circulation

model with a horizontal grid spacing of about 2 km. Positively and neutrally buoyant

particles are tracked in both two and three dimensions. Connectivity between deep basins,

and the shelf break, is quantified for the study area and the ability of the discrete space

tracking scheme to predict the observed movement of near surface drifters is assessed.
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Symbol Description Units*

x vector; particle position; Cartesian system with scalar (x,y,z)

t time s

u advective component of particle movement m s−1

ε stochastic (diffusive) component of particle movement m s−1

g “personality” component of particle movement

Wt Wiener process

D Diffusion m2 s−1

p probability distribution

z complex vector; center of Aref’s blinking vortex m

b real coordinates of the center of Aref’s vortex m

a Aref’s vortex radius m

Γ strength of Aref’s vortex m s−1

ζ vector; Aref’s particle position m

ζ̇ Aref’s particle motion m s−1

λ constant; determining the size of particle trajectory (Aref)

ρ radius of arc of particle trajectory (Aref)

ζc vector; center of the arc of particle trajectory (Aref) m

T time; one cycle of the Aref system s

σ standard deviation

N, n normal distribution; or integer

ad, bd linear regression coefficients m s−1

W10 windspeed at 10 m above sea level m s−1

r radius of uncertainty in position m

L length of the side of a grid box m

ε random displacement amount m

I identity matrix

xv



Symbol Description Units*

ψ stream function m2 s−1

α integer; scale factor

τ e-folding time days

*Note that for the theoretical examples described in this work, the units of the following

symbols have been generalized as [length] or [time]. However, for simplicity, they have

been listed in this table as [meters] and [seconds].
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CHAPTER 1

INTRODUCTION

1.1 Background

In fluid mechanics, there are two frames of reference for describing the movement of a

fluid: Eulerian and Lagrangian (Kundu and Cohen, 2008). The Eulerian frame describes

the time-varying field at a given grid location such as a moored current meter would report

(Gill, 1982). The Lagrangian frame describes the fluid flow from a drifting object or

fluid parcels’ point of view (Lumley, 1969). While the Eulerian method is mathematically

simpler, many practical applications, such as planning marine search and rescue operations

and responding to threats posed by oil spills and mines, require the Lagrangian approach

(Batchelor, 1967). Similarly, many theoretical applications such as understanding the

connections between the spawning and nursery areas of marine organisms, estimating

the residence time of deep ocean basins and the exchange between them, are sometimes

tackled more effectively using the Lagrangian approach.

Accurate predictions of the movement of objects and fluid parcels depend on two major

contributors to fluid motion: advection and diffusion (Lynch et al., 2015). Advective flow

fields that are time independent result in trajectories that are straightforward to calculate;

flow patterns that are time dependent can rapidly become more complicated and possibly

lead to chaotic advection (Aref , 1983). Aref demonstrates this fact through his famous

1
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example of a blinking vortex in which a particle’s trajectory is mapped in a flow field

where the origin of a vortex is periodically shifted (Aref , 1983). The second component

that must be accurately described to obtain realistic predictions is diffusion. The concept of

Fickian diffusion can be used to address issues related to environmental dispersion (Fisher

et al., 1979). However, difficulties can arise when trying to achieve realistic predictions

when diffusivity is spatially non-uniform. This has been clearly demonstrated to result

in the false aggregation of particles in regions of low diffusivity when simple numerical

schemes are used (Visser, 1997).

Two main classes of methods are used to model the uncertainty in particle position

(Lynch et al., 2015). The first solves a Fokker-Planck equation for the evolution of the

probability distribution function of particle position (Gardiner, 2009). The second involves

integration of a stochastic differential equation (SDE) for the velocity of a single particle

(Gardiner, 2009). Two types of particle tracking methods already exist. The most common

method is based on discretization in time and involves calculating the distance a particle

will travel under the influence of a flow field over a given time interval (Lynch et al., 2015).

A less common method is based on discretization in space and involves the calculation

of an analytic expression for the trajectory within a given grid box (Blanke and Raynaud,

1997). The simplest analytic expression assumes the velocity varies linearly across each

grid box. Recent examples of the discrete time (DT) and discrete space (DS) methods

will be explored in this thesis. The DT example is the Norwegian Search and Rescue

model LEEWAY. The DS example is Ariane, a software package developed by Blanke and

Raynaud (1997).

While both Ariane and LEEWAY predict where objects will go in the ocean, they can also

be used to answer questions about where particles come from. The “forward” method is

particularly useful for quantifying regional connectivity, i.e., the probability that a particle

will end up in a given area after a specified period of time (Lynch et al., 2015). The
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backward method provides estimates of the source region of a particle. (It is interesting to

note that the Fokker-Planck equation has a “backward” version which covers this scenario

(Gardiner, 2009).) The backward tracking method is not straightforward to implement

unless the flow field is non-divergent and diffusion is constant (Gillespie, 1996). Ariane

makes these assumptions. By way of contrast, Breivik et al. (2012) used successive

forward iterations of LEEWAY to narrow down probable areas of origin. This method is

discussed further in Chapter 3. Table 1.1 summarizes the capabilities and differences of

both methods.

Ariane LEEWAY

Discrete Time X
Discrete Space X

Backwards Integration X X
Random Component ∗ X

Table 1.1: Comparison of particle tracking methods. Xindicates the model has the listed
capability; ∗ indicates the capability is absent from the present form of the model. An
important difference is that Ariane does not allow for a random component of the flow.
The addition of this capability is discussed in Chapter 3.

1.2 Objectives and Structure of the Thesis

The objectives of the research were as follows:

• Evaluate and compare DT and DS particle tracking methods using idealized exam-

ples.

• Combine the strengths of both methods, by extending the DS method, Ariane, to

include a random component.

• Use Ariane to quantify retention within the deep basins of the Scotian Shelf, and the

connectivity between them.
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• Assess Ariane’s ability to predict the observed movement of near surface drifters

in the Scotian Shelf and Gulf of Maine region with focus on search and rescue

applications.

The general theory of modelling uncertainty in particle position is discussed in Chapter 2

including: methods based on the Fokker-Planck equation and methods based on stochastic

differential equations. This chapter will also address the complexity of predicting flows

using two highly idealized examples. The first is designed to illustrate Lagrangian chaos

(evident in some time varying flows without diffusion) and the second demonstrates the

effect of spatial gradients in diffusivity (leading to false aggregation of particles).

The methods used by DT particle tracker “LEEWAY ” and DS particle tracker,“Ariane”

are covered in Chapter 3. Also included in this chapter is a method of adding dispersion to

Ariane. This was completed in an attempt to combine the strengths from the DS and DT

approaches.

An evaluation and comparison of the efficiency and effectiveness of DT and DS methods

are discussed in Chapter 4, using idealized examples including (i) a simple vortex, (ii)

Aref’s blinking vortex, and (iii) Visser’s spatially varying diffusivity.

The Scotian Shelf and Gulf of Maine’s regional oceanography as well as a description of

the flow fields kindly provided by Anna Katavouta (PhD student at Dalhousie University)

will be included in Chapter 5.

Deep basin retention is quantified in Chapter 6. In addition, the connectivity between

deep basins is explored using DS tracker, “Ariane.”

Ariane’s ability to predict the observed movement of near surface drifters is addressed

in Chapter 7.

The final chapter is a summary and discussion.



CHAPTER 2

OVERVIEW OF MODELLING
UNCERTAINTY OF PARTICLE
POSITION

As noted in the Introduction, there are two main classes of methods for predicting where

objects come from, and go to. According to Lynch et al. (2015), the first of these two

methods, particle simulation, was “among the earliest uses of the modern computer”. The

contemporary version is based on the integration of a Langevin equation of the form

dx

dt
+ g(x) = u(x, t) + ε (2.1)

where x denotes (vector) position of the particle, g is the particle’s “personality” attributes,

u is the prescribed environmental condition and ε is the stochastic forcing (Lynch et al.,

2015). The simplest example of particle tracking involves describing the path of a physi-

cally passive, biochemically inert particle through the output of an ocean model (Lynch

et al., 2015). The term “personality” refers to any characteristic a particle might have that

would cause it to deviate from this simplistic definition, e.g., swimming or buoyancy. The

path can be described through integration of the following SDE:

dx

dt
= u(x, t) + ε(x, t) (2.2)

5
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where u is the local fluid velocity (Lynch et al., 2015). The second component, ε, describes

the stochastic movement that leads to diffusion. An alternate form of this equation involves

the integration of the Ito stochastic differential equation:

dx = u(x, t)dt+
√

2D(x, t)dWt (2.3)

where Wt is the Wiener process or Brownian motion often simulated using a random walk

(Jordan et al., 1998). Note Gardiner (2009) states that integration of (2.3) is “mathe-

matically and technically the most satisfactory, but not always the most natural choice

physically.” Gardiner (2009) goes on to state that an alternative equation, the Stratonovich

SDE, is the “natural choice.” In this case it is given by

dx = u(x, t) dt− 1

2

∂

∂x
D(x, t) dt+

√
2D(x, t)dWt (2.4)

The key difference in the derivation of these two equations is (2.3) assumes the random

component is white noise (statistically uncorrelated) while (2.4) assumes more realistic

noise with finite correlation time (Gardiner, 2009). The main difference in equation (2.4)

compared to (2.3) is the inclusion of the spatial gradient of diffusivity term. This term is

intimately related to the false aggregation of particles discussed in Section 2.2.

The second class of methods involves solving an evolving probability distribution func-

tion (pdf). Einstein first derived his version of the pdf, later called the Fokker-Planck equa-

tion, to describe Brownian motion (Lemons and Gythiel, 1997). Interestingly, Langevin

first derived his version of (2.1) in response to Einstein’s pdf. The one dimensional version

of the Fokker-Planck corresponding to the Ito SDE can be written:

∂p

∂t
+

∂

∂x
(up) =

∂2

∂x2
(Dp) (2.5)
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where p = p(x, t) is the probability density of finding the particle at position x at time

t, u(x, t) is the fluid velocity and D = D(x, t) is the diffusion coefficient (Jordan et al.,

1998). This is similar to an advection-diffusion model of the evolution of concentration

of a fluid property based on the concept of Fickian diffusion (Fisher et al., 1979). Two

different situations will be explored in this Chapter. The first considers only advective

motion in which case the shape of the pdf does not change in time, but rather moves along

a trajectory as if it were a particle. The second considers only the diffusive component and

therefore describes the time evolution of the shape of the pdf.

While (2.2) and (2.5) seem different, the solution to a given Fokker-Planck equation

represents the probability density for the position of a particle whose motion is described

by a corresponding stochastic differential equation (Jordan et al., 1998). In other words,

the Fokker-Planck effectively describes the solution to N SDEs as N →∞.

The integration of (2.2) or (2.5) is not as straightforward as might seem. To illustrate,

the following two sections describe two different, highly idealized examples. The first

shows the complexity that can arise using only the advective component and the second

shows the difficulties that can arise when incorporating spatially variable diffusion.

2.1 Lagrangian Chaos: Aref’s Blinking Vortex

Trajectories within a steady, time independent flow field are more predictable than those

within time varying fields. Time dependence complicates trajectory prediction immensely

even in the absence of a diffusive component. Considering only the advective component,

(2.2) can be written:
dx

dt
= u(x, t) (2.6)

Consider the flow pattern described by Aref (1983) in which two vortices “blink” on

and off. If T is the total duration of 1 full cycle (both vortices completing a full blink) then
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vortex 1 blinks off at T/2 increments (Aref , 1983). Figure 2.1 shows the set up, where the

location of the centers of the active vortices, z(t), are shown as crosses and are defined by:

z(t) =

 +b nT 6 t < (n+ 1
2
)T

−b (n+ 1
2
)T 6 t < (n+ 1)T

(2.7)

Note that z is complex (x+ iy), b is the real coordinates of the center of the vortices, and

n = (0,±1,±2, ...) is the number of blinks. The flow field is bounded to a circular disk by

including an image vortex at a2/z(t) where the overbar indicates the complex conjugate

and a is the radius of the bounding edge. The strength of the agitating vortex is given byΓ

while the image has a strength of −Γ . Following Aref (1983), a particles’ motion, ζ̇ is

given by:

ζ̇ =
Γ

2πi

[
(ζ − z)−1 − (ζ − a2

z
)−1
]

(2.8)

Substituting the location of the first stirrer, +b, (2.8) becomes

ζ̇ =
Γ

2πi

b2 − a2

(ζ − b)(ζb− a2)
(2.9)

The particle trajectory follows the arc of a circle with known radius:

ρ =
λ

1− λ2

(
a2

b
− b
)

(2.10)

centered at

ζc =
b− λ2a2/b

1− λ2
(2.11)

where λ is a constant (0 < λ 6 b/a) related to the initial position, ζ0. Given that ζ0

is known, the angle through which the particle is rotated around the vortex is all that is

required to find the final location at time T/2. This requires the solution of the implicit
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equation:

ζ = ζc + ρeiφ (2.12)

due to the presence of the image vortex which causes particles to rotate in circles around a

point that is not at the center of the blinking vortex.

A similar derivation is required for the period when t ≥ T/2. Alternatively, Aref (1983)

observes that the particle position in this second time period can be found using only the

first stirrer located at z = +b. This is accomplished by inverting the particle’s position at

t = T/2 and then evolving the particle through T/2 ≤ t < T as though the stirrer was

still at the original position. Finally, ζ(T ) can be determined by then inverting the final

position. This is shown in panel (a) of Figure 2.1.

The resulting trajectories of particles within Aref’s time varying, highly analytical flow

fields look relatively uncomplicated. Figure 2.1 illustrates typical trajectories calculated

using the above equations. However, if multiple particles are released in this field, and their

positions are only shown at time intervals separated by T , the solutions can become much

more complicated as shown in Figure 2.2. Recall that this in case there is no diffusive

component, and yet after a relatively short period, particle positions are reminiscent of

those resulting from diffusion. Aref termed this effect “Lagrangian Chaos”.
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Figure 2.1: Particle trajectories according to Aref’s blinking vortex. Panel (a) shows a
method of trajectory calculation in which only the first stirrer (at z = +b) is used, and
particle locations are inverted to find actual positions. Panels (b through f ) show examples
of particle trajectories for different starting locations. Crosses indicate the centers of the
vortices and rotation is always in the counterclockwise direction. From Aref (1983).
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Figure 2.2: Lagrangian Chaos: Locations of particles initiated at t0 in a square, at various
stages during the stirring process. T is one; panels shown are a t times (a) t = 0; (b) 1; (c)
2; (d) 3; (e) 4; (f) 5; (g) 6; (h) 9; (i) 12. From Aref (1983).



12

2.2 Surprising Consequences of Spatial Variations in
Diffusivity

The second example illustrates the difficulty of modelling trajectories when only the

diffusive component is considered. In this case (2.2) becomes:

dx

dt
= ε(x, t) (2.13)

There are many different approximation schemes to solve (2.2). Approximations can be

either explicit or implicit. Explicit means the advective component is approximated using

only the current state of the flow fields while implicit uses future states as well (Haidvogel

and Beckmann, 1999). There are many examples of approximation schemes including

Forward and Backward Euler, Trapezoidal, Leapfrog, Adams-Bashforth, and Runge-Kutta

(Haidvogel and Beckmann, 1999; Press et al., 1999). This is by no means an exhaustive

list. Each of these methods can be combined and/or applied to approximate advective

forces through space and/or time. In the simplest of these examples, the Forward Euler

method, particle position is given by:

xn+1 = xn + ∆tFn

where Fn corresponds to the right hand side of (2.2).

Note that the use of the most simple approximation scheme, the Forward-Euler (“naive”

random walk method) can falsely aggregate particles in areas of low diffusivity. This

method describes the change in position from xn to xn+1:

xn+1 = xn + ε
√

2D(xn)σε∆t (2.14)
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over the finite timestep, ∆t and where ε is some normal random process with mean 0 and

standard deviation, 1 (Visser, 1997). To avoid false aggregation (2.14) must be corrected

using a D′ term which relates to the spatial gradient of the diffusivity (Visser, 1997). The

corrected random walk model is described by Visser (1997) as:

xn+1 = xn +D′(xn)∆t+ ε
√

2D(xn)∆t (2.15)

whereD′ represents ∂D/∂x, the gradient of diffusivity and xn is given by xn+1
2
∂D
∂x
|x=xn∆t.

In this case, D′ becomes a non-random, pseudo-velocity term which counteracts false

aggregation in areas of low diffusivity.

The diffusivity profile is shown in Figure 2.3 with a subsurface minimum of diffusivity

(Visser, 1997). The results of the naive model, shown in Figure 2.4, demonstrate how

particles eventually aggregate at depths between 10 and 20 m, corresponding to the low

diffusivity zone. The second panel of Figure 2.4 demonstrates how the addition of the

pseudo-velocity term, D′, eliminates this false aggregation.

These results have been corroborated by North et al. (2006) and Hunter et al. (1992).

The latter found that this false aggregation could also be corrected by remapping the spatial

coordinate to create a transport equation with constant diffusivity. However, this technique

is not covered in more detail in this thesis.
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Figure 2.3: Diffusivity profile defined by Visser (1997). The water column depth is 40
m. This profile is simulating a “surface wind stress corresponding to a wind speed of
about 9 m s−1, a tidal current of amplitude 0.5 m s−1, moderate stratification: a vertical
difference of 0.15 kg m−3 over a 15 m pycnocline separating vertically well-mixed surface
and bottom layers” (Visser, 1997).
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(a) Naive Random Walk

(b) With advective (D′) term added

Figure 2.4: Examples of the false aggregation of particles in a zone of low diffusivity when
particle locations are calculated using a naive Euler method and the results when a false
advection term added. Colorbar to the right indicates numbers of particles. A perfectly
uniform distribution would show 100 particles m−1. From Visser (1997).
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2.3 Practical Considerations

AVAILABILITY OF TRACKING SOFTWARE: As discussed above, particle tracking

uses the output from ocean circulation models to predict the movement of particles

from a Lagrangian perspective. While pdf’s are very useful, they are not covered

in any more detail in this thesis. Particle tracking methodology can be divided into

two types of methods: those that track in discrete time and those that track in dis-

crete space. A comprehensive list of contemporary particle trackers can be found at

http://www.nefsc.noaa.gov/drifter/particles.html (Lynch et al., 2015). Regardless of the

particle tracking method, the general process involves three key components. The direction

and magnitude of the advective element must be approximated at a particular location and

time, xn within a given grid. A stochastic component must be added, and the distance

travelled by a particle must be calculated. The combination of these three components

results in the final location, xn+1 (Lynch et al., 2015).

CHOICE OF TIME STEP: For DT methods, the frequency of approximations is dictated

by the timestep, ∆t. Path calculations are only made at the given ∆t and location is

determined at each subsequent ∆t. It is important that an appropriate ∆t is selected such

that, in the gridded situation, particle paths are not skipping over several grid boxes in one

iteration (Lynch et al., 2015). Other schemes, such as Runge-Kutta, can actively determine

an appropriate ∆t without specification by the modeller.

CHOICE OF GRID: DS methods use grid spacing to determine the frequency of approxi-

mation. This allows analytic specification of the trajectory of a particle within a grid box

given specified boundary flows. This is a great simplification to the DT method. Both of

these methods will be covered in detail in Chapter 3 through the detailed breakdown of

existing particle tracking models corresponding to each type. Note that the grid definition

will modify the discretization of flow fields. Specifically, discrete difference grids (grid
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boxes are quadrilateral), can be handled differently than discrete element grids (grid boxes

are triangular) Lynch et al. (2015). In the case of discrete difference grids, velocities are

approximated in different locations along the edges or centers of the boxes. Arakawa

and Lamb (1977) list the different types for discrete difference grids, however, this thesis

focuses on the Arakawa C grid.

ADDING A RANDOM COMPONENT: There are different methods for adding the stochas-

tic component. Among others, there are four different “random walks”, depending on

levels of autocorrelation, that can be used (Lynch et al., 2015). The simplest version

is memoryless; stochastic additions are not correlated with previous ones. A random

component is added to particle position directly, and chosen from a distribution which can

be described by:

ε ∼
√

2D∆tN(0, 1) (2.16)

where N is a normal distribution (Lynch et al., 2015). More advanced versions allow for

correlation between the current and previous random component addition through the

addition of the random component to the advective component directly.

PARTICLE PERSONALITY: The simplification of a massless, chemically and biologically

inert particle is sufficient for particle tracking in highly idealized scenarios. However,

for practical purposes further criteria and modelling constraints must be specified. For

example, modelling an oil spill requires a variation of (2.2) that is different from one used

to determine residence times in deep basins. Boundary effects (should particles stick or

reflect?) must also be considered.

FORWARD OR BACKWARD TRACKING: As discussed in the Introduction, particle

position can be calculated using a combination of predetermined advective fields with

stochastic non-reversible diffusive components (Isobe et al., 2009). The reverse, finding
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out where things come from (sources), is even more complicated due in part to the non-

reversible nature of the stochastic component. Additionally, finding source regions can

not simply be reduced to reversing the advective components due to the existence of

converging flow fields in the reverse time field (Isobe et al., 2009). However, it is possible

to find sources using forward running models. These methods are usually iterative and can

require a lot of time to run.



CHAPTER 3

PARTICLE TRACKING IN DISCRETE
TIME AND SPACE

Discrete time (DT) tracking methods calculate the distance a particle will travel under

the influence of a flow field over a specified time interval (Lynch et al., 2015). In general,

a decrease in the time interval will lead to more accurate predictions. Discrete space (DS)

trackers use analytic expressions for a trajectory within a given grid box that is part of

a larger-scale spatial discretization. As expected, a decrease in grid box size increases

the accuracy of prediction. This chapter provides a description of two existing models as

examples of the two methods.

3.1 Description of Particle Tracking in Discrete Time

The LEEWAY model is used by the Norwegian Joint Rescue Coordination Centre (JRCC)

to generate search and rescue (SAR) target areas using the DT method. The challenge in

any search and rescue operation is to reduce the number of unknowns so that the generated

SAR zone has a high probability of containing the SAR target, but that is not so large as to

overtax the SAR resources. LEEWAY utilizes a Runge-Kutta time scheme to track a Monte

Carlo based stochastic ensemble of trajectories to approximate a search area (Breivik and

Allen, 2008). To generate a realistic search area, relevant variables (e.g., wind, surface

currents and the characteristics of the object of the search) must be accurately quantified.

19
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An ensemble of numerical integrations are performed where the various parameters are

perturbed in a stochastic fashion thereby generating a cloud of candidate positions for the

drifting object.

The motion of an object drifting on a body of water results from the external forces

acting on the object and factors affecting the center of mass (Hackett et al., 2006). Forces

acting externally on the object include water currents, surface winds, wave motion and

wave induced currents. Factors effecting the center of mass include gravity and buoyancy.

The position of a floating object can be computed by integrating the total drift velocity,

udrift, of an object given by

udrift = ucurr + uL (3.1)

where ucurr is the ocean current velocity relative to the Earth and uL is the object’s

drift velocity relative to the ambient water. The current velocity, ucurr, has two main

components: Stokes drift associated with the surface gravity waves and surface current

(Hackett et al., 2006). The Stokes drift term is the net drift of a fluid parcel or free

floating object in the direction of surface gravity wave propagation (Stokes, 1880). The

second component, the surface current, includes four main components: Ekman drift, mean

barotropic/baroclinic motion, tidal and inertial currents (Hackett et al., 2006). Ekman drift

is a current induced by the balance of the wind generated shear and the Coriolis force

(Ekman, 1905). This force balance results in a surface current induced at an angle to the

prevailing wind direction. Baroclinic motion is the portion of the surface current that

results from horizontal inhomogeneities in the stratification of the ocean (Gill, 1982). The

final two types of surface currents are those induced mainly by tidal forces and the wind;

both are influenced strongly by the rotation of the Earth (Gill, 1982).

The second component of the total drift velocity, uL is the drift resulting from the wind

and wave forces acting directly on the object. It is strongly dependent on the characteristics
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of the object including its shape. The change in position of an object within this frame is

then given by
dx

dt
=

∫ t

0

[uL(t) + ucurr(x, t)] dt (3.2)

(Breivik and Allen, 2008). As noted earlier, the integration of this equation is not trivial as

u depends on x.

For the purposes of this model, the word leeway, distinct from the model name, LEEWAY,

is defined as: “the drift associated with the wind force on the overwater structure of the

object as measured relative to the 10 minute averaged wind measured at 10 m height.”

(Breivik and Allen, 2008). This drift occurs at an angle to the prevailing wind and can

be decomposed into a downwind and crosswind component. Breivik and Allen (2008)

demonstrate that there is an almost linear relationship between the 10 m wind speed and the

two separate components of the leeway. Therefore, results of a linear regression are used

to calculate each component based on the 10 m wind speed. For example, the downwind

leeway velocity is statistically modelled by

udL = adW10 + bd (3.3)

where ad and bd are regression coefficients determined from experimental data for varying

classes of objects (Breivik and Allen, 2008). Leeway coefficients are adjusted by adding

a perturbation, εn, drawn from a normal distribution. This perturbation is included as

higher wind speeds result in higher variance in the regression line. The downwind leeway

component for the nth ensemble member is then expressed as

udLn =

(
ad +

ε
(1)
n

20

)
W10 +

(
bd +

ε
(2)
n

2

)
(3.4)
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Leeway coefficients ad and bd, for many different classes of objects, are provided in Allen

and Plourde’s 1999 report. The offset, bd, is zero in all cases which, in the absence of wind,

allows the object to move with the local surface current, ucurr, only. It is included to allow

the addition of εn, because a SAR object is likely to drift faster or slower than a test object

(Allen and Plourde, 1999). The above equation is tailored for the specific case of a drifting

life raft. The relative weighting of εn depends on the category of drifting object and must

be altered to fit the linear regression provided. Breivik and Allen (2008) also conclude that

the dispersion caused by error variance of the leeway properties is two orders of magnitude

larger than the dispersion caused by the wind and current perturbations. Therefore they

argue that a simple stochastic model, such as the random-walk, is sufficient to account for

these variances.

The final variable key to the success of a SAR operation is the last known position of

the object in question. LEEWAY uses eight parameters to account for unknowns in this

position. Here the subscript “0” denotes the earliest possible time of the accident and “1”

denotes the latest possible time. The eight factors are then the two possible times, t0 and

t1, most likely positions, [x(t0), y(t0)] and [x(t1), y(t1)] (in latitude and longitude), and

the radii of uncertainty of position, r(t0) and r(t1) (Breivik and Allen, 2008). The model

then deploys ensemble members with starting positions drawn from a normal distribution

with a standard deviation of r/2 where r varies linearly from r0 to r1. The result is a cone

shaped initial distribution of release positions scaled to the extremes in time and space of

the accident time frame as shown in Figure 3.1. As uncertainty in the last known position

grows, so does the cone of possible initial release points. An example of the type of output

generated by LEEWAY is shown in Figure 3.2.
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Figure 3.1: Cone of initial distribution of release positions from t0 to t1. These times
coincide with r0, the radius of uncertainty of the earliest possible time of accident and r1,
the radius of uncertainty of the last possible time of the accident which are centered at
[x(t0), y(t0)] and [x(t1), y(t1)] respectively. The distance between r0 and r1 corresponds
to the potential distance traveled between t0 and t1. Taken from (Breivik and Allen, 2008).
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Figure 3.2: Typical trajectory output from the DT particle tracker Leeway off the coast
of Norway. 500 particles were released instantaneously in a 1 km radius centered on the
black x and allowed to drift for 8 days. The SAR region generated would encompass all of
the end points of all of the generated trajectories.
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The LEEWAY code has been used for backtracking drifting objects using an iterative

algorithm based on the forward trajectory model (Breivik et al., 2012). This method, called

“BAKTRAK” is used to determine most probable origin of an object determined by a

known final position. Specifically, the LEEWAY trajectory model is initialized and run in the

forward direction. An initial seeding of “parent particles” is released in a two dimensional

circular normal distribution based on a first guess radius. Time of release is also varied,

based on a uniform distribution, resulting in a range of initial start positions and start

times. Particles are seeded starting from the earliest start time and continue to be seeded in

successively smaller radii around the target. Particles that are released closer to the final

position, called the Target Area (TA), are more likely to be successful at reaching the TA.

Therefore, particles are selected to become a “parent seeder” for successive runs based on a

relative distance to the TA. In the event that at the end of the first iteration too few particles

have reached the TA, the nearest particles (based on relative distance) are used. Once

successful “parent particles” have been selected, “children” particles are seeded according

to a radial Gaussian distribution about their respective parent particle initial position. The

iteration stops when 100 particles have come within a determined time/space radius of the

TA. Breivik et al. report this typically occurred within 5-8 successive BAKTRAK runs

(Breivik et al., 2012).

LEEWAY uses a Runge-Kutta integration scheme. In this study two Matlab based

schemes are used: one based on Runge-Kutta and a simpler ( Forward Euler) scheme that

is used to highlight some of the problems that can arise with the use of “naive” integration

schemes. The Forward Euler is explicit in time and space and therefore only relies on the

current state of the velocity fields Haidvogel and Beckmann (1999). Under this scheme,

(2.2) becomes

∆x = u(xn, tn)∆t+ ε(xn, tn) (3.5)
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This interpolation scheme was used in the Matlab DT method that will be used to compare

the performance of DS and DT methods in Section 3.2.

3.2 Description of Particle Tracking in Discrete Space

Another method of particle tracking involves the analytical specification of trajectories

or streamlines across a fixed velocity grid. One example of this DS type of particle tracking

is Blanke and Raynaud (1997)’s program, “Ariane”. The Ariane program is extremely

fast and efficient as it relies on exact, three-dimensional streamlines within each box of

a three-dimensional grid. To illustrate, consider a two-dimensional, single box within a

larger 2D grid in a steady, unchanging velocity field. Velocity is defined in the center of

each side of the box as in an Arakawa C grid, and is assumed to vary linearly from one face

of the box to the opposite face (Arakawa and Lamb, 1977). At any point within that box,

velocity can be expressed as a proportion of the change in velocity between the two faces.

In 1D, a particle will either accelerate or decelerate directly across the box as dictated

by the flow fields. According to this approximation, at any point within the grid box, the

velocity in the x direction is given by

u(x) = u0 +
u1 − u0
L

(x− x0) (3.6)

where x0 is the left boundary of the cell, u0 is the velocity at the left boundary, u1 is the

velocity at the right boundary, and L is the length of the side of the box. A similar equation

is derived for the y-direction velocity components. A particle initiated at any starting

position within a given grid box will follow a predetermined streamline as illustrated in

Figure 3.3 below. These streamlines determine the exact exit location of a particle. Each

grid box can be imagined to contain an infinite number of predetermined streamlines

depending only on the flow fields defined at the edges and the starting position.
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(a) Streamlines of 11 particles initiated at x = 0 (b) Streamlines of 21 particles initiated at x=0.1

Figure 3.3: Trajectories inside a single box with a steady flow field calculated using the
DS method. Note inside the box the flow field is defined as: 2 6 u 6 0, and −1 6 v 6 1.
Particle initiation point is indicated by the open circles and exit locations by open squares.

The Ariane methodology initially determines the time required to transit the box by

combining only the advective portion of (2.2):

dx

dt
= u(xn) (3.7)

with (3.6) and rearranging and integrating. Blanke and Raynaud (1997) define the crossing

time as the time required for a particle to move directly across one given cell in any

direction, from any starting position within the cell, to the ”exiting” grid box edge. The

crossing time is given by

tc =
1

∆u
log

(
u1
u0

)
(3.8)

where ∆u is the difference in velocity in the x-direction (u0 − u1). A similar expression

can be found in the y direction and this allows the shortest crossing time to be calculated.

The smallest number defines the time a particle will actually spend within the box as well

as the face the particle will exit. For example, assuming a particle crosses in the y-direction

more quickly, then time to exit in the y-direction becomes tc and therefore the exit face will

be on the north or south side of the cell. Knowing the exit face, and again manipulating

(3.6) and (3.7), Blanke and Raynaud (1997) find the final location of the particle in the
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other direction, xf , can be calculated by substituting the shortest crossing time into

xf =
u0
∆u

[exp(∆u tc − 1)] (3.9)

This exit location from one grid box becomes the initial position for the next grid box and

the process repeats. In a time varying flow field, there are two possibilities for particles

within a grid box. The first is the particle crosses the grid box within the duration of a

flow field and continues through to the next. The second, the particle does not exit the box

before the expiration of the current flow field and an interim location within the grid box is

stored. The flow fields then switch and the particle continues its path either crossing the

box or remaining inside.

Blanke and Raynaud’s particle tracking program, Ariane, was recreated using Matlab

for the purposes of fully understanding their method. Through this reproduction it became

apparent that, along with reduction of computational requirements, trajectory consistency

is also a strength of the Ariane algorithm. As an extension of Ariane, the option of adding

dispersion in the Matlab version of Ariane is explained in the next section.

3.2.1 Adding Dispersion to Ariane

Ariane is an excellent tool for long time scale integrations, however, it does not include a

way of accounting for grid-scale turbulence, or small scale variations that are not accounted

for in the flow fields, as in the LEEWAY model. Fisher et al. (1979) describe how the concept

of Fickian diffusion can be used to simulate environmental dispersion. To see how this

applies to a very simple situation, assume small scale dispersion is added to a flow field by

adding a random velocity component that displaces a particle by a random amount denoted

by ε. If the particle is initially released at x0 and subsequently experiences n random

steps then the particle will have a final random location given by xn = ε1 + ε2 + ....+ εn.

This readily generalizes to two dimensions if we treat the particle’s position and random
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displacement as column vectors, e.g.,

εn ≡

 εi

εj


n

(3.10)

In general the expected value of the particle’s displacement at time n is assumed to be zero

and its covariance is

cov(εi, εj) =

 0 if i 6= j;

σ2 if i = j.
(3.11)

It is straightforward to show that the expected value of the particle’s position at the nth

time step is zero and the variance of the position is

var(xn) = nσ2I (3.12)

where I is the 2× 2 identity matrix. In one dimension, the expected value of the x position

at the nth time step is zero and the variance is simply

var(xn) = nσ2 (3.13)

This implies that the standard deviation in particle position is
√
n.

The first step in adding dispersion to the Ariane was to generate a flow field of random

velocities that generated a non divergent flow. This was achieved by first creating a gridded

field of random stream function values (henceforth denoted by ψ). The ψ values are

defined at the corners of the grid boxes and were scaled using a factor of σψ:

σψ = α2L
2

∆t
(3.14)
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where α is a scale factor, L is the size of the (square) grid box and ∆t is the time step

controlling when the random flow field changes. From this set of ψ values, the velocity

fields across the side of each box are created using

u0 =
ψ3 − ψ1

L
(3.15)

and similarly for the y-direction.

The standard deviation of particle position can now be calculated using the standard

deviation of the velocity:

σ = σu∆t (3.16)

The velocity in the middle of each grid cell, considering only the x-direction for simplicity,

can be approximated by

um =

[
ψ4 − ψ2 + ψ3 − ψ1

2L

]
(3.17)

and thus the standard deviation of the velocity in the center of the cell is

σu =
σψ
L

(3.18)

The variance in particle position in one dimension due to the psi values then becomes

var(xn) = n(σu∆t)
2 = n(αL)2 (3.19)

This the variance in position grows linearly with time n∆t with a scale factor D:

var(xin) = D t (3.20)

where

D = α2L
2

∆t
(3.21)
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can be interpreted as a diffusion coefficient.

The above concepts are illustrated in Figure 3.4 which shows the dispersal of an ensemble

of particles from their release point in the absence of any background velocity field. The

variance of particle position in each dimension is very close to what is predicted by (3.21).

The effect of using an inappropriately scaled values of D is illustrated in Appendix A.
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Figure 3.4: Adding dispersion to Ariane. 500 particles were released at point (2,2)
indicated by the black cross. The left panels show particle trajectories calculated using
the DS method in a purely dispersive flow at time (a) t = 100 and (b) t = 10, 000. The
right panels show the variance of the ensemble of particle positions as a function of time
assuming constant D. The blue(red) line shows the variance of x(y) position at time (c)
t = 100 and (d) t = 10, 000. The theoretical predictions by (3.20) are shown by the black
line. α is 1.



CHAPTER 4

EVALUATING DT AND DS TRACKING
USING IDEALIZED EXAMPLES

The efficiency of particle tracking using discrete time and discrete space methods is now

compared and contrasted using the two idealized examples discussed in Chapter 2 as well as

a simple, single vortex. The trajectory around such a vortex is straightforward to calculate,

both numerically and analytically. Aref’s blinking vortex, or a purely dispersive flow given

a spatially varying diffusivity, lead to more complicated results (e.g., Lagrangian chaos and

false aggregation of particles) but they can still be readily calculated and compared against

analytical expectations (Aref , 1983; Visser, 1997). The performance of a method within

these idealized examples indicates how reliable its results might be in more complicated

settings, e.g., with realistic coastlines and bathymetry.

The remainder of this chapter will feature results generated using the Matlab codes

created to mimic Ariane and LEEWAY. It is important to note, as discussed in Chapter 3,

LEEWAY has significant randomness added to both wind and velocity fields which makes it

an effective search and rescue tool. However, the intent in this Chapter is to evaluate the

effectiveness of the DT model against idealized examples. Therefore, the random variables

and the leeway coefficients, ac,d and bc,d, have been set to zero.

31
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4.1 Circular Vortex

Consider a simple, steady vortex defined on a regular square grid. The true trajectory

is circular and is centered on the vortex’s center; (50, 50) in this example. The trajectory

will repeat circular orbits indefinitely. When using numerical tracking schemes, the

accumulation of computational errors typically results in the degradation of the circular

trajectory.

The trajectory calculated using the DT particle tracking model is shown in Figure 4.1. In

this example, one particle was initiated at (25, 55) as indicated by the black circle. Plotting

the x and y position for different times (right hand panels) is an effective way of showing

that the particle has made repeated rotations about the origin and demonstrates the slight

degradation of the trajectory on each revolution. The particle’s trajectory was calculated

for 5000 time units with a dt of 0.1. As expected, the accumulation of errors decreases as

the dt of each calculation decreases. This is demonstrated in Figure 4.2.

The results of the DS integration around the single vortex are shown in Figure 4.3. The

DS trajectory of a particle follows an exact path repeatedly around the center of the vortex.

Even though the grid shown in Figure 4.3 is fairly coarse (dx is 2), there is no degradation

of the track as when calculating the same trajectory with the DT method (Figure 4.1 ).

However, for the DS method, decreasing the grid spacing would improve the accuracy in

more complicated scenarios such as time varying flow fields.
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Figure 4.1: Trajectory calculated using the DT method in a simple vortex (left hand panel).
The vortex is centered at (50, 50) with the initial release point at (25, 55) indicated by
the black circle. The right hand panels show the change in x and y position with time,
revealing the number of revolutions around the vortex origin. In addition, with each
revolution around the vortex there is a slight degradation of the trajectory resulting from an
accumulation of errors. In this example dt is 0.1 and the calculation is for 5000 time units.



34

0 20 40 60 80 100
0

20

40

60

80

100

x

y

(a) dt = 1

0 20 40 60 80 100
0

20

40

60

80

100

x

y
(b) dt = 0.5

0 20 40 60 80 100
0

20

40

60

80

100

x

y

(c) dt = 0.25

0 20 40 60 80 100
0

20

40

60

80

100

x

y

(d) dt = 0.1

Figure 4.2: Effect of time step on accuracy of a trajectory calculated using the DT
method. Particle trajectories around a steady vortex are calculated using the DT model with
increasing values of dt: (a) 1, (b) 0.5, (c) 0.25, (d) 0.1. As dt is increased, accumulation
of errors increases. The particle release point is indicated by the red circle at (75, 75).
The vortex was centered at (50, 50).
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Figure 4.3: Particle trajectory around a single vortex calculated using the DS method. With
each revolution around the vortex there is negligible degradation of the trajectory. Grid
boxes have size: L is 2. Otherwise as in Figure 4.1.
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4.2 Aref’s Blinking Vortex

The previous section deals with a velocity field that is time independent. The addition of

time dependence to flows considerably complicates the predictions. Trajectories calculated

analytically, using Aref’s method described in Section 2.1, are compared with particle

trajectories calculated using the DT model in Figure 4.4. As expected, the model’s

accuracy increases as the dt decreases. However, each decrease in dt results in an increase

in computational time. Therefore, a balance must be struck between the level of accuracy

and the period of time available to run the model. It can be seen in Figure 4.4 that the error

in the DT method arises when the velocity changes in a discontinuous fashion.

Similarly, trajectories calculated analytically using Aref’s method described in Section

2.1 are compared with particle trajectories created using the DS model is shown in Fig-

ure 4.5. For the DS method, the accuracy of the trajectory is increased by decreasing

the grid spacing. It is important to note that the DS method calculates a more accurate

trajectory for smaller decreases in grid spacing than the equivalent decrease in dt in DT

models. However, for the DS method,the amount of memory becomes the issue rather

than computational time. As the size of the grid boxes decrease, the size of the flow fields

must increase in order to encompass the same area. A strength of the DS method is that

the increase in computational time occurs in the calculation of the flow fields and not as

significantly in the calculation of trajectories. Considering there are only 2 flow fields

for the duration of this run the DS method maintains a high level of accuracy for a fast

calculation time.

For comparison, Matlab’s onboard numerical “ODE45” solver was also used to calculate

Aref’s trajectories. This onboard solver is based on a 4th order Runge-Kutta approximation

scheme that independently selects an appropriate dt. Its results are shown in Figure 4.6 with

the ODE45 solver shown as the green line. The accuracy of prediction was comparable with
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the DT method (Figure 4.4(d)) for a much shorter computational time. The accumulation

of errors becomes apparent during the 3rd blink where the ODE45 solver has a much

smaller trajectory around the left hand vortex. While the computational time is comparable

to the DS method, the advantage of the latter is the ability to increase accuracy through

decreasing grid spacing.
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(d) dt = 0.0001

Figure 4.4: Aref’s blinking vortex and particle trajectories calculated using the DT model
for four values of time step, dt. In all panels the black line is the analytically calculated
trajectory and red is the DT model. A single particle is released at identical points within
the grid (0.05, 0.05). Vortices are centered at (±0.5, 0). Models were integrated for 3
“blinks” of the blinking vortex - that is, both vortices were on 3 times each. Each decrease in
dt resulted in an increase of computational time such that the model ran for approximately
(a)30 seconds,(b)10 min, (c)30 min, (d)3 hours. Note that when dt was decreased to
0.00001 (not shown) the model ran for 3 days with only a slight increase in accuracy from
panel (d).
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Figure 4.5: Aref’s blinking vortex and particle trajectories calculated using the DS model
for four values of the size of the grid boxes, L. (Note the dotted grid shown in each panel
does not reflect the different values of L.) Otherwise same format as previous figure.
Computational time was approximately: (a)30 seconds,(b)5 min, (c)10 min, (d)20 min.
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Figure 4.6: Trajectory calculated using Matlab’s onboard Runge-Kutta method (“ODE45”).
This method selects its own dt. The black line is the analytically calculated trajectory
and green is the ODE45 model. A single particle is released at identical points within
the grid at (0.05, 0.05). Same format as previous two figures. Computational time was
approximately 3 min.
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To check on the longterm behaviour of the DS method, trajectories similar to those

shown in Figure 2.2 were calculated for t = T, 2T, 3T . . .. It is encouraging to note the

DS method’s calculations result in the same sort of behaviour including Lagrangian chaos

originally identified by Aref (1983). This is demonstrated in Figure 4.7 where the positions

of 40, 200 particles is shown after four blinks of the vortices (t = 4T ). Particles were

released in a 0.2 x 0.2 square as follows: (−0.1 < x < 0.1) and (0.1 < y < 0.3).

Parameters regarding stirring protocol and location of the vortices are the same as in

Figures 4.4, 4.5, and 4.6. Particles were colour coded by release point, varying in x, with

blues released on the left (x = −0.1) and progressing to red on the right (x = 0.1).
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Figure 4.7: Lagrangian chaos calculated using the DS method after 4 blinks of the vor-
tices (t = 4T ). Approximately 40,000 particles were released in a 0.2x0.2 square from
(−0.1 < x < 0.1) and (0.1 < y < 0.3). Particles were colour coded to release point,
varying in x with blues starting at the left (x=-0.1) and reds on the right (x=0.1). Vortices
are centered at (±0.5, 0).
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4.3 False Aggregation of Particles

As discussed in Section 2.2, Visser demonstrated that the “naive” numerical implemen-

tation of the forward model can result in false aggregation of particles in areas of low

diffusivity (Visser, 1997). This scenario is now examined using a naive DT and compared

to the DS method with the dispersion extension described in the previous chapter. A

2D “bullseye” shaped diffusivity profile was created with the low diffusivity centered at

position (50, 50) and with diffusivity increasing with distance from the center of the

bullseye. Approximately 2500 particles were released in a 10x10 square centered in the

top right corner at (70, 70) and allowed to diffuse for 200 time units. Figures 4.8 and 4.9

show the results of the DT and DS particle tracking at the end of this time.

The DT method shows false aggregation at the center of the low diffusivity with a shift

in the mean of the x and y positions from (70,70), the release point center, to (54,55) close

to the position of minimum diffusivity. In comparison, the DS method shows diffusion

and gradual homogenization from the point of release without aggregation in the vicinity

of the minimum diffusivity. For both cases the boundaries of the model domain were

reflective thereby ensuring that particles did not leave the domain. Figure 4.10 clearly

shows how the mean and median of the x and y positions shift from the release region

to the center of the low diffusivity if particle positions are calculated using the naive DT

method. Figure 4.11 shows the DS model predicts an even diffusion away from the release

region with no tendency to drift toward the position of minimum diffusivity, i.e., the mean

and median are relatively stable around the release position despite the expanding final

positions. Table 4.3 lists the means and medians of the particle ensembles for the two

models with time.

If the DT method is integrated for longer, the time shift of the mean to the area of

low diffusivity remains steady around 200-250. As expected, decreasing the gradient
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Figure 4.8: Final locations of approximately 2500 particles in a diffusive flow field
calculated using a naive DT forward method for a duration of 200 [time units]. The
particles were released in a box of width 10 centered on (70, 70) shown by the red square.
The minimum in diffusivity is at (50, 50) and increases outwards as demonstrated in
Figure 4.9.

of diffusion increases this time considerably. In the DS case, a slow homogenization of

particles results in a drift of the mean towards the center. This is not a result of a false

aggregation, rather it is because the center of low diffusivity was centered at (50,50).

Figures for longer iterations are given in Appendix C.

In conclusion, the DS model outperforms the DT method for the idealized cases con-

sidered: the accuracy of the predictions was higher and, for large numbers of particles,

the DS method is much faster. Decreasing the time step improves the accuracy of the DT

approach but that comes at the cost of increased computation time. On the negative side

the DS method can require a lot more memory for highly detailed flow fields.
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Figure 4.9: Final locations of particles in a diffusive flow field calculated using DS for a
duration of 200 [time units]. The particles were released in a box of width 10 centered on
(70, 70) shown by the red square. The minimum in diffusivity is at (50, 50) and increases
outwards as indicated by the contour lines.
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Figure 4.10: Time variation of the mean and median of x and y for changing particle
positions using the naive DT model. The blue line is the mean and the red line is the
median. The particles were released in a box centered on (70, 70) and the minimum in
diffusivity is at (50, 50).
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Figure 4.11: Time variation of the mean and median of x and y for changing particle
positions using the DS model. The blue line is the mean and the red line is the median.
The particles were released in a box centered on (70, 70) and the minimum in diffusivity is
at (50, 50).

Duration Discrete Time Discrete Space

mean x mean y mean x mean y

[median x] [median y] [median x] [median y]

200 54.55 55.24 71.62 71.51

[56.68] [54.13] [73.14] [72.30]

500 49.96 50.54 66.90 67.10

[50.32] [50.41] [70.52] [70.55]

1000 50.19 50.65 61.22 60.59

[50.10] [50.32] [65.73] [64.29]

3000 49.87 49.49 51.80 51.88

[49.78] [49.49] [51.48] [52.57]

Table 4.1: False aggregation of particles. Long term time dependence of the mean and
median of the x and y positions of an ensemble of particles calculated by the naive DT
and the DS method. The particles were released in a box centered on (70, 70) and the
minimum in diffusivity is at (50, 50).



CHAPTER 5

OBSERVATIONS AND MODELS OF THE
SCOTIAN SHELF AND GULF OF MAINE

The Scotian Shelf is a roughly 700 km stretch of continental shelf off the coast of

Nova Scotia, Canada (e.g., Uchupi, 1968). It is bounded by the Laurentian Channel to the

north-east, and by the Northeast Channel and the Gulf of Maine to the south-west. It is

relatively wide and shallow, varying in width from 120 to 240 km with an average depth

of 90 m (MacLean et al., 2011). The topography is fairly complicated with deep basins

and channels separated by shallow offshore banks. To the southwest, the Gulf of Maine

is a semi-enclosed 90, 700 km2 inland sea with an average depth of 150 m (e.g., Uchupi,

1968). It is bounded by the northeastern American states of Maine, New Hampshire,

Massachusetts and the Canadian provinces of Nova Scotia and New Brunswick. Similar to

the Scotian Shelf, the Gulf of Maine has numerous deep basins and shallow banks. The

largest bank, Georges Bank, is capped on its northeast edge by the Northeast Channel and

to the southwest by the Great South Channel. These two channels are the primary inflow

and outflow channels of the marine waters to the Gulf (e.g., Thompson, 2010).

The Scotian Shelf and Gulf of Maine are of interest for several reasons. The regional

circulation has a major impact on commercial fishing (e.g., Hannah et al., 2001). In

addition, many aquaculture sites are located in the region and there has been an increase in

the number of hydrocarbon exploration sites, as well as other energy producing plants, in

47
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recent years (MacLean et al., 2011; Thompson, 2010). The numerous ports of the region

reflect extensive marine activities related to commercial shipping, coastal tourism and

Maritime Defence applications (MacLean et al., 2011; Thompson, 2010).

5.1 Overview of the Regional Circulation

Three currents strongly influence circulation on the Scotian Shelf: the Labrador Current,

the Nova Scotia Current, and the Gulf Stream (e.g., MacLean et al., 2011). The effects of

these currents vary seasonally. In general the flow is from the northeast to the southwest

paralleling the Nova Scotia coast (e.g., MacLean et al., 2011; Hebert et al., 2013). As

shown in Figure 5.1, the Labrador Current bifurcates at the tail of the Grand Banks of

Newfoundland with a portion flowing to the east, inshore of the North Atlantic Current

(Fratantoni and Pickart, 2007). This “shelfbreak” current continues equatorward along

the edge of the Scotian Shelf and is known as the shelfbreak jet (Fratantoni and Pickart,

2007). The effect of the Labrador Current is felt more strongly in the northern section

of the Scotian Shelf. Relatively cool, fresh water flowing from the Gulf of St. Lawrence

divides at the northern tip of Nova Scotia, with a portion flowing down the Atlantic coast as

the Nova Scotia Current. The remainder follows the Laurentian Channel to the shelf break

where it joins with the cold, fresh southbound Labrador current to flow down the shelf

edge (MacLean et al., 2011). Warm salty water from the Gulf Stream flowing northward

mixes with the cooler fresher water over the shelf and form the Slope Water jet which

periodically leaks onto the shelf via channels at the shelf break (MacLean et al., 2011).

Hannah et al. (2001) review what is known of the regional circulation including the

larger, well known flow features and the partial gyres around Browns Bank and Sable

Island Bank. With regard to ocean circulation models, (Hannah et al., 2001) state

“a large number of field and model studies have contributed to our un-

derstanding of the circulation on the western/central Scotian Shelf ... [the
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studies] fall far short of providing the spatial coverage required for Lagrangian

circulation evaluations.”

Figure 5.1: Large scale view of the regional circulation off the East Coast of Canada to
explain Scotian Shelf circulation, including major influencing currents. The path of the
shelf break jet is designated by blue arrows while the warmer, Gulf Stream origin currents
are drawn in red. From Fratantoni and Pickart (2007)

The circulation of the Gulf of Maine follows a seasonal cycle that is generally opposite

to that of the Scotian Shelf with the strongest currents in summer and weak to almost

non-existent in winter (Thompson, 2010). As demonstrated in Figure 5.2, cold water enters

the gulf via the Nova Scotia current and the Northeast Channel, and then turns north to

enter the Bay of Fundy (Thompson, 2010). The current is then deflected southwestward

and forms the Gulf of Maine Gyre. Tidal fluctuations and shallow water over Georges
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Bank form a secondary, clockwise-spinning gyre Thompson (2010). The water can then

leave the gulf through the Northeast Channel, the Great South Channel or over the eastern

portion of Georges Bank.

Figure 5.2: Currents off the Scotian Shelf and in the Gulf of Maine.
From http://www.gulfofmaine-census.org/about-the-gulf/oceanography/circulation/

5.2 Regional Model of the Scotian Shelf and Gulf of
Maine

The flow fields used in this thesis were generated by Anna Katavouta as part of a

downscaling study from global to regional scales. (Anna Katavouta is a graduate student

in the final stages of her PhD programme at Dalhousie University.) The global fields were

generated by the HYCOM/NCODA system. The 3D, time varying current fields used

in the present study were generated by a regional model that is one-way nested to the

global HYCOM system. The regional model was developed by Anna Katavouta based

on the Nucleus for European Modelling of the Ocean (NEMO version 3.1) framework.

http://www.gulfofmaine-census.org/about-the-gulf/oceanography/circulation/
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The domain of the regional model is shown in Figure 5.3. The model has a horizontal

resolution of 1/36°and 52 vertical levels with a spacing that varies from 0.7 m at the surface

to 233 m for the deepest level.

Figure 5.3: Domain of the regional ocean model and the large scale bathymetric features.
Red indicates shallower water and blue indicates deeper areas. Kindly provided by Anna
Katavouta.

The regional model is forced at the surface by six atmospheric variables: precipitation,

wind, temperature, humidity, and longwave and incoming shortwave radiation. Five tidal

constituents (M2, S2, N2, K1, O1) were used to define the tidal component of the lateral

boundary conditions. The nontidal component of the lateral boundary conditions was

interpolated from the global HYCOM output. A more detailed explanation of the regional

model is provided in the PhD thesis of Anna Katavouta. Based on extensive comparisons

of model output and observations, Katavouta has shown that the model can simulate

many of the observed circulation features discussed in Section 5.1 including tidal heights,

tidal currents, tidal residual circulation, sea level, storm surges, temperature, salinity, and

currents (Katavouta et al., 2015). In general the model performs very well on the Scotian
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Shelf and in the Gulf of Maine region and in particular in areas where the interaction of

strong tidal currents with local bathymetry is important, e.g., Georges Bank, Browns Bank,

Sable Island (Katavouta et al., 2015). It does not perform as well in the adjacent deep

water as it is not able to accurately predict the timing and location of eddies and meanders

(Katavouta et al., 2015). However, this issue is being resolved through downscaling

methodologies.

5.3 Deep Basins of the Scotian Shelf

The hypsometric curve is a useful way of summarizing the mean depth of a region. It

shows the proportion of land area that exists at various elevations. For the Scotian Shelf

it has been used (Figure 5.4) to show the proportion of the shelf at depths above a given

level.

Another way of visually summarizing the bathymetry is to picture the Scotian Shelf

draining away in the same way as a bathtub. At the surface, there is only one large basin.

As the water drains, the shelf floor begins to be revealed, and the shelf divides into separate

basins. This visualization is demonstrated in Figure 5.5. Specifically, in Figure 5.5(b)

100 m of water has been drained. The area that would now be dry is shown in red, and the

area that would be water covered is shown in blue. In this way it can be seen that at a depth

of 170 m there are several distinct basins while at 120-150 m many of these basins are

connected. It is straightforward to summarize the number of distinct (unconnected) basins

by simply counting them for different draining depths. This new type of visualization

complements the hypsometric curve and is demonstrated in Figure 5.6. The right hand

side of Figure 5.6 shows the average size of basins as a function of depth. Figure 5.6 is

used later to help define the deep basins and their interconnections.



53

0 0.2 0.4 0.6 0.8 1
−600

−500

−400

−300

−200

−100

0

Figure 5.4: Hypsometric curve for the Scotian Shelf. Depth is on the y-axis in [m] and the
relative proportion of dry area on the x-axis. As water is “drained” away from the Scotian
Shelf the relative proportion of dry land area to wet land area increases.
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(a) Depth = 0m (b) Depth = 100m

(c) Depth = 120m (d) Depth = 150m

(e) Depth = 170m (f) Depth = 510m

Figure 5.5: Effect of “draining” the Scotian Shelf on the number of distinct deep ocean
basins. Red indicates bottom topography that would be dry if the water level on the Scotian
Shelf dropped by: (a)0 m (b)100 m (c)120 m (d)150 m (e)170 m (f)200 m. Blue shows
regions that would still have water.



55

0 5 10
−350

−300

−250

−200

−150

−100

−50

0

0 5 10
x 104

−350

−300

−250

−200

−150

−100

−50

0

Figure 5.6: The number of basins, and the average size, on the Scotian Shelf by depth.
Left hand panel shows the number of basins by depth. The right hand panel shows the
average size of the basins, measured in terms of the number of grid boxes within each
basin. Each grid box has an area of approximately 6 km2.



CHAPTER 6

RETENTION AND CONNECTIVITY OF
DEEP BASINS ON THE SCOTIAN SHELF

A large amount of information can be contained within a single Eulerian flow field

predicted by an ocean model. Consider the flow fields generated by the regional model

described in Chapter 5; the number of gridded current velocities, for the whole domain

at all depths and time steps, is on the order of 109. In this chapter it will be shown how

Lagrangian based methods can be used to better visualize this vast amount of information

with a particular focus on the deep basins of the Scotian Shelf and their connections with

the adjacent North Atlantic. The Lagrangian approach provides answers to a number of

important questions: How long do particles remain in a given basin? How do particles

travel between basins and the shelf break? Where are the connections? Images such as

Figure 6.1 give an idea of where to start looking for the answers. In this figure, particles

were released along the 200 m isobath of the shelf break on January 1 st, 2010 and allowed

to drift in daily changing flow fields for 90 days. If seasonal variations in this pattern

are of concern, similar displays for different seasons can readily be created (Figure 6.2).

The effect of changing from daily changing flow fields to hourly can help address how

important is it to include tides in trajectory calculations (Figure 6.3)? It is shown below

that new insights, which complement those developed in an Eulerian frame, are revealed

through the use of Lagrangian displays of the flow fields on the Scotian Shelf.

56
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Figure 6.1: Trajectories of particles released along the shelf break in winter. Particles
were released at 200 m and allowed to travel for 90 days in daily changing flow fields.
Particles were released on January 1st, 2010. The color indicates release location (blue to
the southwest, red to the northeast).

Particle tracking can be used to identify source regions for objects although, as discussed

in Chapter 2, simply reversing the flow fields is not justifiable if the flow field is nondi-

vergent and the diffusivity varies in space. It is possible however to find source regions

using a forward integration method but with a backward perspective. This eliminates the

complications of reversing the flow field. This method is typically iterative and lends itself

well to probabilistic descriptions as described in Chapter 3 (Breivik et al., 2012; Isobe

et al., 2009). To illustrate, consider a large-scale particle release with at least one particle

released within every grid box throughout the regional model’s domain. As each particle

drifts for a set period of time, the trajectories can be selected according to a given condition.

For example, one could chose only particles that are within a given basin on the first day

of the release, or select only those trajectories than end up in a given basin at some later

time. This way of selecting trajectories leads to estimates of conditional probabilities of

particle position at a given time, t, given where they were at some other location at time tc.

The question of where will they go corresponds to conditioning on tc < t and the question
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Figure 6.2: Trajectories of particles initiated along the shelf break in summer. Same details
and format as previous figure but for a release date of July 1st, 2010.

of where they come from corresponds to conditioning on tc > t. This method of selective

trajectory comparison can also be used to reveal basin retention times as a function of

depth and season. Particles that use particular channels, or cross certain sills, can also be

selected to reveal critical features of the circulation and exchange.

When looking at figures such as Figures 6.1, 6.2 and 6.3, the connections between basins,

and between basins and the shelf break, became readily apparent. Emerald and Lahave

Basin (Figure 6.4) are now selected for further study. Figure 5.5 shows that Emerald Basin

is the deepest: its maximum depth is about 275 m while Lahave Basin’s is about 245 m.

These two basins are connected in two places at a depth between 160 and 170 m. A sill

connects the basins to the shelf break. This sill connects with Lahave Basin at around

145 m and with Emerald Basin at around 135 m (Figure 6.4).
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(a) Winter

(b) Summer

Figure 6.3: Trajectories of particles released along the shelf break in winter and summer.
Same details and format as Figures 6.1 and 6.2 except that the flow fields were defined
hourly and thus include the effect of tides.
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Figure 6.4: The main features of the Scotian Shelf including the location of Georges Bank,
Emerald and Lahave Basin, and the Laurentian Trench. From http : //www.inter.dfo−
mpo.gc.ca/folios/00252/images/lgimg004.jpg.

$http://www.inter.dfo-mpo.gc.ca/folios/00252/images/lg_img004.jpg$
$http://www.inter.dfo-mpo.gc.ca/folios/00252/images/lg_img004.jpg$


61

6.1 Retention within Deep Basins

Retention can be thought of as the tendency for a water parcel, tracer or biological

organism to remain within a specific region, such as a deep basin, for a set period of time.

Retention can be quantified using many different methods including transition matrices or

transport tables (Thompson et al., 2002). Probability intensity plots are a straightforward

and intuitive way of visualizing retention. A probability intensity plot is created by adding a

colour code to a 2 dimensional histogram superimposed over the regional bathymetry. This

can convey the outcome of many particle trajectories simply, as opposed to a “spaghetti”

trajectory plot which becomes complicated quickly.

A full domain release for all depth levels as described above was performed using daily

changing flow fields from the regional model for the years 2010, 2011, 2012. Particles

were released on the first day of the winter and summer seasons (January and July 1st

respectively) and allowed to drift for 90 days. For simplicity, the release date will be

referred to as day 1 and the respective season end as day 90. In Figures 6.5 and 6.6, the left

panels show the sources (particles’ starting location on day 1) given that the particle ended

up below 100 m in the given basin on day 90. The right hand panels show destinations

of particles (final positions on day 90) for every particle that started below 100 m, in the

given basin on day 1. The “minimum depth” of 100 m was selected for particle exclusion

because above this depth, all basins are connected as shown in Figures 5.5 and 5.6.

The particle density plots shown in Figures 6.5 and 6.6 were generated using daily

snapshots of the regional model’s flow fields. (After these density plots were calculated

and interpreted, it was realized that daily snapshots were less than ideal because in some

locations unrealistically large vertical velocities were generated. To overcome this aliasing

problem, and also to accurately describe the Stokes drift associated with diurnal and semi-

diurnal tidal motions, an additional set of runs using hourly flow fields was performed.
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(a) Sources - Winter (b) Destinations - Winter

(c) Sources - Summer (d) Destinations - Summer

Figure 6.5: Emerald Basin particle density after 90 days for 2010 to 2012. Left hand panels
show sources for Emerald Basin (where the particles come from). Right hand panel shows
the final locations of particles that started in Emerald Basin (where the particles go). The
advecting flow fields were daily snapshots as discussed in Chapter 5. The dispersion was
set to zero. Particles were released at all depth levels over the entire domain and selectively
screened. Particles within the basin polygon above 100 m were discounted from these
results.

This led to an assessment of the effect of different flow field time spacings on the density

plots.) Using higher frequency flow fields such as hourly, can reduce the error in position,

particularly those affected by large vertical tidal velocities that are aliased by the daily

snapshots. Figures 6.7 and 6.8 show intensity plots calculated using hourly flow fields.

As before, particles were initiated in a full domain run. Hourly flow fields were available

for the winter and summer of 2010 only. Again, particles were released on January and

July 1st respectively and allowed to drift for 90 days.
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(a) Sources - Winter (b) Destinations - Winter

(c) Sources - Summer (d) Destinations - Summer

Figure 6.6: Lahave Basin particle density after 90 days for 2010 to 2012. Otherwise same
as Figure 6.5.

The particle densities shown in Figures 6.5 to 6.8 indicate retention patterns by basin

and season. Locations where a higher percentage of particles originate, or end up, are

indicated by purple “hotspots.” The large scale features of the intensity plots calcuated

using hourly and daily flow fields are similar with hotspots typically located within the

source basin. Therefore, if one is interested in the large scale it is not necessary to include

the tides when generating particle density plots such as those shown in Figures 6.5 to 6.8.

However, the detailed features of the intensity plots depend on the tides.



64

(a) Sources - Winter (b) Destinations - Winter

(c) Sources - Summer (d) Destinations - Summer

Figure 6.7: Emerald Basin particle density based on hourly flow fields for 2010. Otherwise
same as Figure 6.5.



65

(a) Sources - Winter (b) Destinations - Winter

(c) Sources - Summer (d) Destinations - Summer

Figure 6.8: Lahave Basin particle density based on hourly flow fields for 2010. Otherwise
same as Figure 6.5.



66

To quantify retention for a specific basin, the number of particles remaining in the

basin, below a given depth, was monitored as a function of time. It was found that, in

general, the proportion declined exponentially with time toward a value that was effectively

constant. This lead to the definition of two indices to quantify retention for a given basin:

an e-folding time that describes the initial loss of particles, (e.g., Emerson and Hedges,

2008), and a constant value indicating the proportion retained on longer time scales.

More specifically, a large ensemble of particles was released in the given basin , once a

day for the first month of the season of interest. Each particle was then tracked for 90 days

using Ariane without dispersion and the daily flow fields for 2010 to 2012. The number of

particles remaining in the basin at time t following release was then modelled as follows:

N(t) = NR +NE e−t/τ (6.1)

where NR is the proportion of particles remaining on day 90, NE is the proportion of

particles that have left the basin by day 90, and τ is the e-folding time in days. Note

NR + NE = 1. Plots of the observed proportion, and the fits of the above model, as a

function of τ are shown in Figure 6.9 for two basins and two seasons. For all four cases

the particles were released below 100 m. Table 6.1 lists the estimated parameter values for

each case and the coefficient of determination, R2, which is a straightforward measure of

model fit. In each case R2 is very close to 1 indicating a very good agreement between the

observed values of N(t) and the fitted curve. It can be seen that 35%− 42% of particles

that originate in Emerald Basin remain after one season. By way of contrast the seasonal

variation for Lahave Basin is much larger; only 30% are retained after one winter, and

almost 50% after a typical summer. It is speculated that adding dispersion would increase

the number of particles leaving a given basin, however no runs were performed to confirm

this as the current version of Ariane does not have this capability.
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Figure 6.9: Retention times per basin by season for Emerald and Lahave Basins in winter
and Summer. Open circles indicate data from particle trajectories while dotted and solid
lines are fitted curves corresponding to those listed in Table 6.1.

Basin Season Fitted equation R2 e-folding

Emerald Winter 35.85 + 63.57e−0.066t 0.9971 15.15 days

Emerald Summer 41.37 + 59.14e−0.045t 0.9994 22.22 days

Lahave Winter 30.07 + 68.80e−0.057t 0.9966 17.54 days

Lahave Summer 49.03 + 48.61e−0.038t 0.9938 26.32 days

Table 6.1: Retention indices for Emerald and Lahave Basin in summer and winter. The
form of the fitted model is given in equation (6.1). The coefficient of determination, R2, is
also given.

The retention indices listed in Table 6.1 are all for particles released at depths below

100 m: henceforth the “minimum release depth.” The majority of basins are connected at

depths of 100 m (Figures 5.5 and 5.6) and so particles released above 100 m are expected

to be lost very quickly. At depths greater than the connections between the basins (i.e.,

depths greater than about 170 m) more particles are expected to be retained. These

expectations are confirmed for Emerald Basin in Table 6.2, where the retention indices are

listed for different minimum release depths, and also in the particle density plots shown in

Figure 6.10.
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Depth [m] Fitted equation R2 e-Folding Time

100 35.85 + 63.57e−0.066t 0.9971 15.15 days

150 50.72 + 49.74e−0.044t 0.9992 22.73 days

170 60.86 + 40.42e−0.035t 0.9993 28.57 days

200 70.96 + 31.08e−0.033t 0.9976 30.30days

Table 6.2: Retention indices for Emerald basin by depth in the winter. Particles were
released within Emerald Basin below the minimum depth at daily intervals for the month
of January. The form of the fitted model is given in equation (6.1). The coefficient of
determination, R2, is also given.

Further figures and tables for Emerald in summer and Lahave in both seasons are given

in Appendix E.
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(a) Depth = 100m

(b) Depth = 150m

(c) Depth = 200m

Figure 6.10: Retention of particles in Emerald Basin for January 2010-2012 by minimum
release depth. Particles were released over the full domain on January 1st and allowed
to drift for 90 days. Colour indicates the locations of particles remaining in the basin as
a percentage of those initiated in the basin (on day 1), below (a) 100 m (b) 150 m and
(c) 200 m respectively. Blues and turquoise indicate low percentages, purples and magenta
indicate high percentages. Note the colourbar ranges from 0 to 10%. Flow fields were
daily snapshots as discussed in Chapter 5.
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6.2 Connectivity Between Deep Basins

Although a significant proportion of particles are retained within a given basin, a

substantial portion can end up in adjacent basins. Selective screening of particle trajectories

reveals interbasin pathways, and connections between the basins and the shelf. Emerald

and Lahave Basin are connected at their northeastern and southwestern tips providing two

possible pathways. Figures 6.11(a) and 6.12(a) show that particles exiting Emerald Basin

below 100 m typically enter Lahave Basin first using either connection before crossing the

shelf break on the southwest side of the channel (Figure 6.12). Particles entering Emerald

Basin from the south do so directly, using the eastern edge of the sill connecting the basins

to the shelf break.

The variation in the strength of the Nova Scotia Current could provide a partial expla-

nation for differences in pathway preference. The Halifax line is a reference line which

extends southwest from Halifax, Nova Scotia, and passes over Emerald Basin. Figure 6.13

shows estimates of alongshore transport across the Halifax Line inferred from observations

made by three ADCP located on the 100 m, 160 m and 180 m isobaths. The grey line shows

daily changing transports and the black line is a 50 day moving average. Negative values

indicate flow to the southwest. This figure indicates interannual and seasonal changes in

transport. In general, the Nova Scotia Current is stronger in winter and weaker in summer

(Hebert et al., 2013). When the Nova Scotia Current is stronger, examination of many

drifter trajectories (not shown) suggests that particles in Emerald Basin are more energetic,

and tend to use either the northern or southern pathway. Interestingly, in summer when the

Nova Scotia Current is (comparatively) very weak, particles released in Emerald Basin tend

to either use only the northern or only the southern passage. It is hypothesized, that in the

absence of the energetic NSC, other processes such as slope water intrusions can dominate

circulation patterns. Much more research is needed to further quantify this hypothesis.
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(a) Trajectories of particles exiting Emerald Basin - Winter

(b) Trajectories of particles entering Emerald Basin - Winter

Figure 6.11: Trajectories of particles entering and leaving Emerald Basin in winter 2010.
Individual particle release position is indicated by the black circle. The trajectories were
calculated using Ariane and hourly flow fields. Particles were released on January 1st, 2010
and allowed to drift for 90 days.
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(a) Trajectories of particles exiting Emerald Basin - Summer

(b) Trajectories of particles entering Emerald Basin - Summer

Figure 6.12: Trajectories of particles entering and leaving Emerald Basin in summer 2010.
Otherwise same as Figure 6.11.
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Figure 6.13: Seasonal variation of the transport across the Halifax Line. Total transport
across the Halifax line in [Sv] for the years 2008 to 2014. The grey line shows the daily
transports and the black line shows a 50 day moving average. Negative values indicate
transport to the southwest. Figure kindly provided by Mathieu Dever (PhD student at
Dalhousie).
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6.3 Interannual Changes in Deep Basin Source Regions

Interannual and seasonal variations in source regions might be explained by the strength

of the Nova Scotia Current (NSC). In winter Emerald Basin is sourced partially from the

northeast, but more heavily from the south and southwest. During periods when the NSC

is strong, the abundance of particles from the northeast increases and particles orginate

further north. Figure 6.14 shows the positions of particles on January 1st that end up

in Emerald Basin 90 days later. There are three plots, one for each winter of the year

indicated. In 2012, the NSC is much weaker than in previous winters. Therefore it is

expected that fewer particles from the northeast would end up in Emerald Basin. This is

clearly demonstrated in Figure 6.14. In summer when the NSC is weaker, the northern

influence is almost non-existent (Figure 6.15) with the exception of the summer of 2011

during which time the NSC was stronger than average.

Interestingly, Lahave Basin is sourced more extensively from the northeast in winter

than Emerald Basin. In summer, it is almost exclusively sourced from the southwest.

Again, the effect of the 2012 weaker winter NSC is evident in Figure 6.16. In 2010 and

2011 particles come from as far north as the Laurentian Trench. In 2012 the sources only

start as far north as the southern edge of Cape Breton.

The above interpretation of particle movement, in terms of the NSC, is based purely on

model predictions. It is therefore not surprising that there is a relationship between the two.

The important suggestion made above is that the NSC can be seen as the main driver for

the large scale changes in particle transport on both seasonal and interannual timescales.

These seasonal changes can be quite large; for Lahave Basin, the seasonal retention indices

varied by a factor of almost two between seasons. It is interesting to note that the seasonal

cycle in Katavouta’s model is too weak in winter. Therefore, it is expected that seasonal

variation in transport and retention is likely greater in reality than shown here.
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(a) 2010

(b) 2011

(c) 2012

Figure 6.14: Sources of particles in Emerald Basin in Winter by year. Particles were
released over the full domain of the regional model on January 1st of the respective year
and allowed to travel for 90 days in daily changing flow fields. All panels show the particle
location (on day 1) for particles that were in the basin below 100 m on day 90. Colour
indicates the depths at which the particles were released. Dark blue means surface particles;
light blue means near bottom release.
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(a) Sources - 2010

(b) Sources - 2011

(c) Sources - 2012

Figure 6.15: Sources of particles in Emerald Basin in summer by year. Otherwise same as
Figure 6.14.
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(a) Sources - 2010

(b) Sources - 2011

(c) Sources - 2012

Figure 6.16: Sources of particles in Lahave Basin in winter by year. Otherwise same as
Figure 6.14.



CHAPTER 7

SHORT TERM PREDICTIONS OF
SEARCH AND RESCUE OBJECTS ON
THE SCOTIAN SHELF

One of the main challenges in a Search and Rescue (SAR) operation is the creation of an

appropriately sized search area. This area must be large enough to enclose a SAR object,

but small enough to be searchable by available resources within the expected survival time

of a missing person. As discussed in Chapter 3, there are several sources of uncertainty to

take into account that include, but are not limited to, uncertainty in the last known position

and time of the SAR object’s disappearance, and also errors in the forecasts of wind and

current (including the contribution of subgrid scale processes).

7.1 Accounting for Uncertainty in Last Known Position
and Time

Ariane does not have many built in mechanisms to account for SAR uncertainty. Section

3.2.1 demonstrates that it is possible to add dispersion to account for grid-scale perturba-

tions not captured by the flow fields themselves. It is straightforward to add a subroutine to

Ariane to incorporate uncertainty in the wind by simply adding random perturbations to the

input fields. One of Ariane’s strengths is flexibility in defining the initial release position

and time. While the cone of drop points created by LEEWAY is somewhat customizable,

78
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Ariane can initiate particles at any specified set of points to account for differing scenarios,

such as a boat swamping at a known time but unknown position (Figure 7.1(a)) or a person

falling overboard at some point during a vessel’s transit (Figure 7.1(b)).

  68oW  30’   67oW 
  44oN 

 30’ 

(a) Vary position of particle release

  68oW  30’   67oW 
  44oN 

 30’ 

(b) Vary time of particle release

Figure 7.1: Taking into account uncertainty in initial conditions in a SAR using Ariane.
The two panels show how to take into account uncertainty in the (a) position and (b) time
of the last known position of the search object. For both panels the blue line indicates the
observed track of a drifter, the black stars indicate release location, and the red tracks show
trajectories predicted by Ariane. These panels are based on real drifter data off the coast of
Maine and will be discussed later.

7.2 Two Worked Examples

In order to evaluate the performance of Ariane in a realistic setting, two observed trajec-

tories are now compared against Ariane’s predictions. The first trajectory is located on

the outer Scotian Shelf and along the shelf break and is subject to meanders of the Gulf

Stream and associated eddies (Figure 7.2). The trajectory was kindly provided by Dr. Tsub-

asa Kodaira who obtained them from the data archive of the Surface Velocity Program.

The drifter was drogued at 15 m and followed from August 22nd to September 21st, 2010.

This trajectory clearly demonstrates the tidal influence within a rotating feature.
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The second trajectory is located in the near shore environment of the Gulf of Maine

Figure 7.2). The drifter data were obtained from the NOAA website. 1 The drifter was

drogued to 1 m and drifted from May 30th to June 29th, 2011. This trajectory is clearly

influenced by the coastline.

Figure 7.2: Observed drifter tracks on the outer Scotian Shelf (right) and near shore of the
Gulf of Maine (left). The drifters were drogued at 15 m and 1 m respectively and were
observed from August 22nd to September 21st, 2010 and May 30th to June 29th, 2011
respectively. Red circle indicates release point.

1 http://www.nefsc.noaa.gov/drifter/index.html

http://www.nefsc.noaa.gov/drifter/index.html
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Ariane’s predictions were made using hourly, near surface flow fields that included

the tides as discussed in Chapter 5. Particle ensembles were released within 5 km of the

observed track at daily intervals for 1 month. The only uncertainty in the calculations

arises from the variation of release point as the current version of Ariane does not include

the ability to add dispersion. Wind fields and leeway effects were not used. Drifters in the

model were surface trapped at a depth of 0.35 m due to restrictions of the available flow

fields.

7.2.1 Predicting trajectories near the shelf break

Ariane’s predictions were poor on the shelf break. The velocities predicted by the

regional model are too strong. This is not surprising given that the model is known to

perform poorly in deep water as discussed in Chapter 5. Another reason for the discrepancy

is the drifter is drogued at 15 m while the predictions are trapped at 0.35 m. This almost

certainly leads to an overestimation of the effect of the wind (through the surface current)

on the predicted drifter trajectory. For this example, the use of the last known position as a

SAR predictor would be a better choice.
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Figure 7.3: Comparing Ariane against surface drifter observations on the Scotian Shelf.
Ariane’s starting positions were initialized in 24 hour increments along in the vicinity of the
observed track (black line) and allowed to drift from August 22nd to September 21st, 2010.
Ariane’s drifter trajectories are colour coded (red to purple) according to release point
along the track in time and space. For example, the red colours are released on day 1 and
drift for 30 days while the purples are released closer to the end of the observed track and
will drift for only 1-2 days.
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7.2.2 Predicting trajectories near the coast

Ariane’s predictions are much improved near the coast. The velocities predicted by the

regional model are generally too weak. As noted above, differences between the depth of

the drifter drogue and the model may contribute to the discrepancy. For this example, the

model does provide useful information on future positions of a SAR object.

Figure 7.4: Comparing Ariane against surface drifter observations in the Gulf of Maine.
Ariane’s starting positions were initialized in 24 hour increments along in the vicinity of
the observed track (black line) and allowed to drift from May 30th to June 29th, 2011.
Ariane’s drifter trajectories are colour coded according to release point.

7.3 Identifying the Predictability of a Flow Field

A useful way to visualize Aref’s flow fields is to calculate a displacement map showing

how a particle moves over one blink of the two vortices. This reveals (not shown) that

there are certain critical locations within the flow field for which very small changes in the

release position lead to very large changes after one blink of the system. This leads to the

Lagrangian Chaos illustrated in Figure 2.2. It is interesting to ask if similar critical points

exist along the observed trajectories shown in Figure 7.5.
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Detection of “critical points”, and also “critical times” is possible using Ariane. By

definition, particles that are released away from critical points but within a short distance

from each other will have similar trajectories. On the other hand, two slightly displaced

particles can have dramatically different trajectories if they pass close by a critical point.

An example using real tidal flow fields for Haro Straight on the West Coast of Canada is

shown in Figure B.3 in Appendix B. Critical times could result from errors in the wind

field that become large at a given time.

One simple way of identifying a critical point is to examine the growth in separation of

trajectories of particles with similar release points. High separation growth rates indicate

regions of low predictability. Figure 7.5 shows the observed tracks in black with the

mean predicted track in red for latitude (top) and longitude (bottom) as a function of time.

The growing error in latitude or longitude (grey swatch) are shown for the near shore

Gulf of Maine trajectory (left) and the outer Scotian Shelf trajectory (right). For both

trajectories the error is small for the first few days. However, in the bottom left panel

of Figure 7.5, corresponding to the near shore trajectory, the error in longitude increases

rapidly around June 4th. Similarly, in the bottom right panel there is a rapid increase in

error around September 12th for the shelf break trajectory. These sudden error growths

identify “critical points” in the velocity fields. It is speculated that the critical point for

the shelf break example is due to errors in the wind driven currents. For the near-shore

example, it is speculated that the critical point is associated with small scale variations in

the tidal flow leading to the type of Lagrangian chaos predicted by Aref’s blinking vortex.
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(a) Nearshore of the Gulf of Maine trajectory error (b) Outer Scotian Shelf trajectory error

Figure 7.5: Surface flow field predictability in the Gulf of Maine and outer Scotian Shelf.
Left two panels show drifter latitude and longitude (black line) by date for the near shore
Gulf of Maine trajectory. Right two panels show drifter latitude and longitude (black line)
by date for the outer Scotian Shelf trajectory. In all panels the mean latitude and longitude
of the predicted tracks is shown in red with the error shown as a grey swatch.
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One way of quantifying the performance of predictions is by plotting the minimum

error between the forecasts for a given time and the observed position. This method

was proposed by Lynch et al. (2001). They found the mean error growth rate between

observed drifter tracks and predictions over Georges Bank was 3.4 km/day. Applying their

method to the two examples above, Ariane’s predictions have a mean error growth of 5.83

km/day for the Gulf of Maine coastal trajectories and 7.06 km/day for the deeper ocean

Scotian Shelf trajectory. The error growth in both of Ariane’s predictive scenarios are of

the same order of magnitude as found by Lynch et al. (2001). While the particle tracking

method of Lynch et al. (2001) was not discussed, their experiment had several distinct

advantages regarding the ocean model: (i) current meter observations from ACDPs and

satellite (ARGOS) trajectories were assimilated, (ii) meteorological data from shipborne

sensors were used to improve atmospheric forcing fields.

It is clear that the performance metric proposed by Lynch et al. (2001) is optimistic

because it uses the best forecast. A more conservative approach is to examine the complete

ensemble of forecasts and compare their error growth rate to that of the last known position

as a predictor of future position. This is illustrated in Figure 7.5.



CHAPTER 8

SUMMARY AND DISCUSSION

Two main classes of methods for predicting where objects come from, and go to, have

been reviewed. The first solves a Fokker-Planck equation for the evolution of the probability

distribution function, p(x, t), of particle position (Gardiner, 2009). It is interesting to

note that this equation is linear in p(x, t) and in that sense it is relatively simple. The

second class of methods involves integration of a stochastic differential equation (SDE)

for the position of a single particle (Gardiner, 2009). The governing equation is usually

highly nonlinear because the velocity is usually a nonlinear function of position and time.

This study focused on the SDE approach and two types of method were described and

evaluated. The most conventional method is based on discretization in time with the

simplest approach being a uniform discretization with a constant dt. The second method is

based on discretization of space. While this second method is less common, it is highly

efficient.

Both the discrete time (DT) and discrete space (DS) methods were evaluated using

three idealized examples which were chosen to represent oceanographically relevant

flow regimes (a vortex, a blinking tidal flow, and a turbulent flow field with spatially

varying diffusivity). Overall the DS method, based on the publicly available Ariane

code, was shown to perform extremely well for all three idealized examples. (Note that

idealized examples relevant to other non-oceanographic flow regimes could be constructed
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to illustrate superior performance of DT methods.) It was also shown how the DS method

could be readily extended to include dispersion associated with grid scale turbulence.

The hypsometric curve was extended to provide a simple way of counting deep basins

as a function of depth. It was shown that the maximum number of isolated deep basins

occurred at a depth of about 160 m. Between depths of 180 m and 220 m the number of

isolated basins was five (e.g., Emerald, Lahave and Roseway Basin). This extension of the

hypsometric curve proved useful in the design of a set of tracking experiments to quantify

retention, interbasin exchange and also exchange between the shelf and deep ocean using

the DS method.

Hourly and daily flow fields generated by Anna Katavouta (PhD student at Dalhousie

University) were used to quantify retention within deep basins of the Scotian Shelf. It

was shown that the number of retained particles initially dropped exponentially, with an

e-folding time of tens of days, toward a value that changed much more slowly with time

(longer than a season). It was also shown that the number of particles retained for more

than a season depended on the time of year. For Lahave Basin for example, almost 50%

of the particles released below 100 m remained over the summer, compared to only 30%

over the winter. Interbasin exchange was visualized using conditional probability density

functions of particle position to indicate where particles come from, and where they go.

Their dependence on season and minimum depth of release was also quantified. This

method of visualizing particle movement is already being used by colleagues at Dalhousie

University working on the spatial distribution of whales in the region.

Seasonal and interannual changes in the strength of the Nova Scotia Current (NSC)

were quantified using transport estimates calculated by Mathieu Dever (PhD student at

Dalhousie University) from ADCP measurements for the period 2008 to 2014. The present

study showed a strong covariation of the NSC transport and the movement of particles from



89

their deep basin origins across the shelf. It is hypothesized that the NSC is an important

driver of the particle density distributions on both seasonal and interannual times scales.

This is of practical interest because the strength of the NSC is the subject of an ongoing

monitoring programme.

The DS method was also used to predict the observed movement of near surface,

drogued drifters. Better results were obtained for the inner shelf region of the Gulf of

Maine compared to the vicinity of the shelf break. This is not unexpected given the

difficulty in correctly predicting the position and intensity of offshore meanders and eddies

using an ocean model that does not assimilate observations. The trajectory predictions

for the inner shelf showed that the regional circulation model with DS tracking does

have useful skill. The importance of correctly modelling critical locations that can limit

predictability (reminiscent of the critical points that control the Lagrangian chaos in Aref’s

blinking vortex) was highlighted.

With regard to future work, there is potential to improve significantly the representation

of dispersion in the DS method. This would make the method a much more useful tool

for SAR applications where it is essential to include uncertainty in wind fields and ocean

currents. It has already been shown here how to add grid scale turbulence through the

use of random stream function values defined at the corners of the grid boxes. In terms

of practical implementation it is important to note that the random stream values can

be calculated within the Ariane program itself and they are only required for grid boxes

containing particles. This will reduce greatly the computational cost of this scheme.

Another potentially useful extension could be to allow the random fluctuations to be

correlated through time. i.e., add persistence to the turbulent velocities (Lynch et al., 2015).

Future work could also focus on the addition of particle “personality” to the tracking

scheme. This would greatly assist in both chemical and biological applications. Colleagues
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are already implementing this technique to predict copepod abundance and distribution

within Emerald, Lahave and Roseway Basin. The changing temperature and salinity

along a particle’s path could also be tracked in order to monitor the marine environment

(e.g., temperature, salinity or density) experienced by the particle. It would then be

straightforward to develop a subroutine to allow particles to select a preferred condition

and thereby respond to the environment.

Ariane is designed to work with finite difference grids. To my knowledge this approach

has not been extended to work with finite element grids. Given the ability of such grids

to provide high resolution in the coastal regions where it is required, such an extension

would appear to be worthwhile.



APPENDIX A

MATLAB VERSION OF ARIANE

As a demonstration of the exact reproduction of the Ariane methodology described in

Section 3.2, streamlines for surface trapped particles were calculated using Ariane and the

Matlab version using steady, time independent flow field and changing, time dependent

flow fields. The results are shown in Figure A.1 with the trajectory calculated by Ariane

displayed as the hashed blue line while the trajectory generated by the Matlab code is

shown by the solid red line. Both examples were generated using a NEMO flow field on

a C-grid for barotropic tidal flow in the vicinity of Haro Strait and the Strait of Juan de

Fuca kindly provided by Dr Vasily Korabel. Particles were initiated off the southern tip of

Vancouver Island in the vicinity of Victoria, BC. Their start position is indicated by the

black star in both images. The trajectory shown in Figure A.1(a) was produced using a

daily averaged flow field with particle positions calculated over the span of twenty-four

hours in an unchanging flow field. Figure A.1(b) shows trajectories produced from an

hourly changing flow field, for the duration of fifty hours.
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(a) Particle trajectories in a steady NEMO flow field over the course of
24 hours.

 33’  27’  123oW 
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 15’   9’  18’ 

  48oN 
 24.00’ 

 30’ 

 36’ 

(b) Particle trajectories in a changing, time dependent NEMO flow field
over the course of 50 hours.

Figure A.1: Comparison of Ariane trajectories against Matlab code. Particles were initiated
off the southern tip of Vancouver Island in the vicinity of Victoria, BC. Their start position
is indicated by the black star in both images. Left hand panel shows daily averaged flow
field with particle positions calculated over the span of twenty-four hours in an unchanging
flow field. Right hand panel shows trajectories produced from an hourly changing flow
field, for the duration of fifty hours. In both panels Ariane’s trajecory is shown as the blue
hashed line and the trajectory calculated using the Matlab reproduction is shown as the red
line.



APPENDIX B

ADDING DISPERSION TO ARIANE

As described in Chapter 3, dispersion was added to the DS method. Typical dispersion

experienced in a null field with increasing time and constant D shown in Figure (B.1).

In comparison, Figure (B.2) demonstrates how the dispersion relationship discussed in

Section 3.2.1 becomes significantly less accurate as the level of dispersion approaches the

size of the grid spacing. Therefore, care must be taken when choosing levels of dispersion

to add to flow fields.
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(e) t = 100s (f) t = 1000s

Figure B.1: Adding dispersion to Ariane. 500 particles were released at point (1,1)
indicated by the black cross. The top panels show particle trajectories calculated using
the DS method in a constant dispersive flow at time (a) 10, (b) 100 and (c) 1000. The
bottom panels show the variance of the ensemble of particle positions as a function of time
assuming constant D. The blue(red) line shows the variance of x(y) position at time (d) 10,
(e) 100 and (f ) 1000. The theoretical predictions by (3.20) are shown by the black line.
(D = 10−7)
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(a) D = 10−7
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(b) D = 10−4
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(c) D = 10−2

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10−5

time

σ
2

 

 

x positions
y positions
Predicted

(d) D = 10−7
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(e) D = 10−4
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(f) D = 10−2

Figure B.2: Adding dispersion to Ariane with changing dispersion values. 500 particles
were released at point (1,1) indicated by the black cross. The top panels show particle
trajectories calculated using the DS method, for 100 time units in a changing dispersive
flow with D values: (a) 10−7, (b) 10−4 and (c) 10−2. The bottom panels show the variance
of the ensemble of particle positions as a function of time assuming constant D. The
blue(red) line shows the variance of x(y) position at time (d) 10−7, (e) 10−4 and (f ) 10−2.
The theoretical predictions by (3.20) are shown by the black line.

Expanding this to the case of the time varying flows off the coast of Victoria, BC,

discussed in Appendix A, varying levels of dispersion were added to the original trajectory

shown in Figure A.1. As demonstrated in Figure B.3, a slight variation in a particle’s

trajectory can have a big impact on the final position. A “critical point” in the flow field

(as discussed in Chapter 7) is apparent in panel (b− d) of Figure B.3. Just to the right of

the drop position (indicated by a black star) the particles either curve back down to the

south or continue north. This results from particles being at that point of flow at a slightly

different time.
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(a) D = 0
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(b) D = 0.0025
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(c) D = 0.0625
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(d) D = 0.25

Figure B.3: Trajectories of 100 particles in hourly varying flow fields in Haro Stait over 50
hours. Calculated using the Matlab reproduction of the Ariane model with varying levels
of dispersion added. The blue hashed line indicates the original trajectory shown in Figure
A.1(b) while the red solid lines indicated individual particle trajectories. Dispersion values
are: (a) 0, (b) 0.0025, (c) 0.0625 and (d) 0.25



APPENDIX C

SUPPLEMENTAL FIGURES FOR
CHAPTER 4

The DT and DS methods were applied for three idealized examples. Figures here are

provided as supplemental figures for Subsections 4.2 and 4.3.

C.1 Aref’s Blinking Vortex

Particle trajectories calculated using the DT and DS methods (red line) against Aref’s

analytically calculated trajectory (black) are shown with a decreasing dt and dx respectively.

In all figures the left hand panels show the calculated trajectories. Right hand panels show

the change in x position and the change in y position with time.
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Figure C.1: Particle trajectory calculated using DT method (red line) against Aref’s
analytically calculated trajectory (black). Left panel shows the trajectory around the center.
Right hand panels show the change in x position and the change in y position with time.
dt is 0.1.
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Figure C.2: Particle trajectory calculated using DT method (red line) against Aref’s
analytically calculated trajectory (black). dt is 0.01; otherwise as Figure C.1.
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Figure C.3: Particle trajectory calculated using DT method (red line) against Aref’s
analytically calculated trajectory (black). dt is 0.001; otherwise as Figure C.1.
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Figure C.4: Particle trajectory calculated using DT method (red line) against Aref’s
analytically calculated trajectory (black). dt is 0.0001; ; otherwise as Figure C.1.
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Figure C.5: Particle trajectory calculated using DS method (red line) against Aref’s
analytically calculated trajectory (black). Left panel shows the calculated trajectories.
Right hand panels show the change in x position and the change in y position with time.
dx is 0.1.
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Figure C.6: Particle trajectory calculated using DS method (red line) against Aref’s
analytically calculated trajectory (black). dx is 0.01; otherwise as Figure C.5.
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Figure C.7: Particle trajectory calculated using DS method (red line) against Aref’s
analytically calculated trajectory (black). dx is 0.001; otherwise as Figure C.5.
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Figure C.8: Particle trajectory calculated using DS method (red line) against Aref’s
analytically calculated trajectory (black). dx is 0.0005; otherwise as Figure C.5.
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Figure C.9: Particle trajectory calculated using Matlab’s onboard Runge-Kutta method:
“ODE45” (green line) against Aref’s analytically calculated trajectory (black). Left panel
shows the trajectory around the center. Right hand panels show the change in x position
and the change in y position with time.

C.2 Visser’s False Aggregation

Final particle positions are calculated using the DT and DS methods (red line) in Visser’s

spatially varying diffusivity fields after various lengths of time. The DT method has false

aggregation in the area of low diffusivity while the DS method does not. Low diffusivity

was created in a bullseye pattern such that the low diffusivity was at the center (50,50) and

increased out to the outside, reflective edges of the box.
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Figure C.10: Discrete Time: Particle positions after 200 in a field of differing spatial
diffusivity. (a) demonstrates how the DT model has false aggregation in the area of low
diffusivity. Low diffusivity was created in a bullseye pattern such that the low diffusivity
was at the center (50,50) and increased out to the outside, reflective edges of the box.
Bottom and right panels of (a) show numbers of particles by x and y position respectively.
Lower panels show the changing mean (blue) and median (red) with time.
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Figure C.11: Discrete time: Visser’s False Aggregation. Top panel shows particle positions
after 500 in a field of differing spatial diffusivity. Otherwise as in Figure C.10.
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Figure C.12: Particle positions after 1000 in a field of differing spatial diffusivity. Other-
wise as in Figure C.10.
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Figure C.13: Particle positions after 3000 in a field of differing spatial diffusivity. Other-
wise as in Figure C.10.



107

(a)

0 20 40 60 80 100 120 140 160 180 200

50

60

70

time

x

0 20 40 60 80 100 120 140 160 180 200

50

60

70

time

y

(b)

Figure C.14: Particle positions after 200 in a field of differing spatial diffusivity demon-
strates how the DS model shifts towards homogenization rather that false aggregation in
the area of low diffusivity. Otherwise as in Figure C.10.
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Figure C.15: Particle positions after 500 in a field of differing spatial diffusivity for the DS
method. Otherwise as in Figure C.10.
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Figure C.16: Particle positions after 1000 in a field of differing spatial diffusivity for the
DS method. Otherwise as in Figure C.10.
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Figure C.17: Particle positions after 3000 in a field of differing spatial diffusivity for the
DS method. Otherwise as in Figure C.10.



APPENDIX D

SOURCE REGIONS AND PARTICLE
DESTINATIONS

Included here are supplemental Figures for Chapter 6. Figures D.1 and D.2 show the

final position of particles released within Emerald and Lahave Basin respectively for the

combined years 2010-2012. Particles were released below 100 meters within each basin

and trajectories were calculated using Ariane and daily changing flow fields. In both

figures, particles were released on the first day of the season and allowed to travel for 90

days. It is important to note that the flow fields are daily snapshots occurring at 00:30 each

day and not daily means.
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(a) Emerald Basin

(b) Sources - Winter (c) Destinations - Winter

(d) Sources - Summer (e) Destinations - Summer

Figure D.1: Sources and destinations of particles in Emerald Basin for both winter and
summer for combined years 2010-2012. Particles were released over the full domain of the
regional model on January 1st and July 1st of each year and allowed to travel for 90 days
in daily changing flow fields. Left hand panels show the particle location (on day 1) for
particles that were in the basin below 100 meters on day 90. Right hand panels show the
final locations (on day 90) of particles that were released below 100 m in Emerald Basin.
Colour indicates the depths at which the particles were released. Dark blue means surface
particles; light blue means near bottom release.
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(a) Lahave Basin

(b) Sources - Winter (c) Destinations - Winter

(d) Sources - Summer (e) Destinations - Summer

Figure D.2: Sources and destinations of particles in Lahave Basin for both winter and
summer for the combined years 2010-2012. Otherwise as in Figure D.1.
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(a) Lahave Basin - Winter (b) Emerald Basin - Winter

(c) Lahave Basin - Summer (d) Emerald Basin - Summer

Figure D.3: Destinations of particles which originate in Lahave (left panels) and Emerald
Basin (right panels) respectively in both Winter and Summer for the years 2010-2012.
All panels show the final locations (on day 90) of particles that started below 100 m
within the respective basin (on day 1). The advecting flow fields were daily snapshots as
discussed in Chapter 5. The dispersion was set to zero. Particles were released at all depth
levels over the entire domain and selectively screened. Particles within the basin polygon
above 100 meters were discounted from these results. In each plot particles were released
within the basin on each day of January and July respectively, and allowed to drift for the
remainder of the 90 period.
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(a) Depth = 100m (b) Depth = 125m

(c) Depth = 150m (d) Depth = 175m

(e) Depth = 200m

Figure D.4: Retention of particles in Emerald Basin for January 2010-2012 by minimum
release depth. Particles were released over the full domain on January 1st and allowed to
drift for 90 days. Colour indicates the locations of particles remaining in the basin as a
percentage of those initiated in the basin (on day 1), below (a) 100 m (b) 125 m (c) 150 m
(d) 170 m (e) 200 m respectively. Blues and turquoise indicate low percentages, purples
and magenta indicate high percentages. Note the colourbar ranges from 0 to 10%. Flow
fields were daily snapshots as discussed in Chapter 5.
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(a) Depth = 100m (b) Depth = 125m

(c) Depth = 150m (d) Depth = 175m

(e) Depth = 200m

Figure D.5: Retention of particles in Emerald Basin for July 2010-2012 by depth. Other-
wise as in Figure D.4.
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(a) Depth = 100m (b) Depth = 125m

(c) Depth = 150m (d) Depth = 175m

(e) Depth = 200m

Figure D.6: Retention of particles in Lahave Basin for January 2010-2012 by depth.
Otherwise as in Figure D.4.
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(a) Depth = 100m (b) Depth = 125m

(c) Depth = 150m (d) Depth = 175m

(e) Depth = 200m

Figure D.7: Retention of particles in Lahave Basin for July 2010-2012 by depth. Otherwise
as in Figure D.4.



APPENDIX E

RETENTION INDICES FOR DIFFERENT
BASINS, SEASONS AND DEPTHS

As discussed in Chapter 6, retention indices were calculated for both Emerald and

Lahave basin in winter and summer at different minimum release depths.

Emerald Basin - Winter
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Figure E.1: Retention times for Emerald Basin in winter by minimum release depth.
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Depth [m] Fitted equation R2 e-Folding Time

100 35.85 + 63.57e−0.066t 0.9971 15.15 days

150 50.72 + 49.74e−0.044t 0.9992 22.73 days

170 60.86 + 40.42e−0.035t 0.9993 28.57 days

200 70.96 + 31.08e−0.033t 0.9976 30.30 days

Table E.1: Retention indices for Emerald Basin by depth in the winter. Particles were
released within Emerald Basin below the minimum depth at daily intervals for the month
of January. The form of the fitted model is given in equation (6.1). The coefficient of
determination, R2, is also given.

Emerald Basin - Summer
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Figure E.2: Retention times for Emerald Basin in summer by minimum release depth.

Depth [m] Fitted equation R2 e-Folding Time

100 41.37 + 59.14e−0.045t 0.9994 22.22 days

150 61.15 + 38.90e−0.024t 0.9982 41.67 days

170 56.24 + 44.13e−0.009t 0.9936 111.11 days

200 101.59− 0.21t 0.9730

Table E.2: Retention indices for Emerald Basin by depth in the summer. Note the fitted
equation for minimum release depth for 200 m is linear. The reason is the decline was so
slow that an exponential could not be fit. Otherwise as in Table 6.2
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Lahave Basin - Winter
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Figure E.3: Retention times for Lahave Basin by depth in winter.

Depth [m] Fitted equation R2 e-Folding Time

100 30.07 + 68.80e−0.057t 0.9966 17.54 days

150 50.54 + 48.20e−0.033t 0.9972 30.30 days

170 57.40 + 42.36e−0.017t 0.9975 58.82 days

200 55.76 + 44.463−0.006t 0.9975 166.67 days

Table E.3: Retention indices for Lahave Basin by minimum release depth in winter.
Otherwise as in Table 6.2.
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Lahave Basin - Summer
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Figure E.4: Retention times for Lahave Basin by depth in summer.

Depth [m] Fitted equation R2 e-Folding Time

100 49.03 + 48.61e−0.038t 0.9938 26.32 days

150 61.36 + 37.96e−0.016t 0.9952 62.50 days

170 64.83 + 35.27e−0.006t 0.9917 166.67 days

200 84.45 + 15.98−0.006t 0.9772 166.67 days

Table E.4: Retention indices for Lahave Basin by minimum release depth in summer.
Otherwise as in Table 6.2.



APPENDIX F

IDENTIFYING INTERBASIN PATHWAYS

Included here are supplemental Figures for Chapter 6. The following 4 images show

particles released over the full domain on the first day of the given season (January or

July 1st). The particle trajectories were calculated using Ariane and daily changing

snapshot flow fields. Particles were selected based on if they originated (on day 1) in a

given basin or terminated (on day 90) in a given basin. Plotting select trajectories allows

the connections between basins to become apparent.
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(a) Emerald Basin - Winter

(b) Sources - 2010 (c) Destinations - 2010

(d) Sources - 2011 (e) Destinations - 2011

(f) Sources - 2012 (g) Destinations - 2012

Figure F.1: Trajectories of particles entering and leaving Emerald Basin in winter for the
years 2010-2012. Individual particle release position is indicated by the black star. The
trajectories were calculated using Ariane and daily flow fields. Particles were released on
January 1st, 2010 and allowed to drift for 90 days.



125

(a) Emerald Basin - Summer

(b) Sources - 2010 (c) Destinations - 2010

(d) Sources - 2011 (e) Destinations - 2011

(f) Sources - 2012 (g) Destinations - 2012

Figure F.2: Trajectories of particles in Emerald Basin in summer for the years 2010-2012.
Otherwise as in Figure F.1.
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(a) Lahave Basin - Winter

(b) Sources - 2010 (c) Destinations - 2010

(d) Sources - 2011 (e) Destinations - 2011

(f) Sources - 2012 (g) Destinations - 2012

Figure F.3: Trajectories of particles in Lahave Basin in winter for the years 2010-2012.
Otherwise as in Figure F.1.



127

(a) Lahave Basin - Summer

(b) Sources - 2010 (c) Destinations - 2010

(d) Sources - 2011 (e) Destinations - 2011

(f) Sources - 2012 (g) Destinations - 2012

Figure F.4: Trajectories of particles in Lahave Basin in summer for the years 2010-2012.
Otherwise as in Figure F.1.
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