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Abstract

The chromatic polynomial of a graph G, denoted π(G, x), is the polynomial whose

evaluations at positive integers x count the number of (proper) x-colourings of G.

This polynomial was introduced by Birkhoff in 1912 in an attempt to prove the

famous Four Colour Theorem which stood as an unsolved problem for over a century.

Since then, the chromatic polynomial has been extensively studied and it has become

an important object in enumerative graph theory.

In this thesis, we study the chromatic polynomial and two other related poly-

nomials, namely, the σ-polynomial and the restrained chromatic polynomial. In

Chapter 2, we begin with the σ-polynomial. We investigate two central problems

on the topic, namely, log-concavity and realness of the σ-roots. In Chapter 3, we

focus on bounding the chromatic polynomial and its roots. Chapter 4 is devoted to

the restrained chromatic polynomial which generalizes the chromatic polynomial via

the restrained colourings. We focus on the problem of determining restraints which

permit the largest or smallest number of x-colourings.
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Chapter 1

Introduction

1.1 Background Material

For graph theory terminology, we follow [65] in general. Throughout this thesis, all

graphs are finite, simple and undirected.

Given two sets A and B, the union of A and B is denoted by A∪B, their disjoint

union is denoted by A ·∪B and their intersection is denoted by A∩B. Let G and H

be two graphs. The union (respectively intersection) of G and H, denoted by G∪H

(respectively G ∩ H), is the graph whose vertex set is V (G) ∪ V (H) (respectively

V (G)∩V (H)) and edge set is E(G)∪E(H) (respectively E(G)∩E(H)). The disjoint

union of G and H, denoted by G ·∪ H, is the graph formed by taking the union of

vertex disjoint copies of G and H. For positive integer l, the graph lG stands for the

disjoint union of l copies of G. Given two distinct vertices u and v of a graph G, the

edge containing these two vertices is denoted by uv.

The join of vertex disjoint graphs G and H, denoted by G∨H, is the graph whose

vertex set is V (G) ∪ V (H) and edge set is E(G) ∪ E(H) ∪ {uv| u ∈ V (G) and v ∈
V (H)}.

A subset of vertices S ⊆ V (G) is called an independent set if uv /∈ E(G) for every

u, v ∈ S. The neighbourhood of a vertex u in G, denoted NG(u), consists of vertices

of G which are adjacent to u. Also, the closed neighborhood of u in G, denoted NG[u],

is equal to NG(u) ∪ {u}.
Given two vertices u and v of a graph G, the contraction of u and v in G, denoted

G · uv, is defined as the graph with vertex set V (G · uv) = (V (G) \ {u, v}) ∪ {w}

1
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where w /∈ V (G) and edge set E(G · uv) = {ab ∈ E(G) | a, b /∈ {u, v}} ∪ {wa | a ∈
(NG(u) ∪ NG(v)) \ {u, v}}. We refer to the vertex w as the vertex obtained by

contracting vertices u and v. Also, the weak contraction of u and v, denoted by

G� e, is defined as the graph obtained from G by first removing both of the vertices

u and v and then introducing a new vertex w and joining this new vertex to only those

vertices which are in NG(u)∩NG(v). In Figure 1.1, contraction and weak contraction

are illustrated.

u v

Figure 1.1: From left to right: G, G · uv, G� uv

For an edge e = uv of a graph G, the graph G − e denotes the subgraph of G

obtained by deleting the edge e, and G−{u, v} denotes the subgraph induced by the

vertex set V (G)−{u, v}. Also, for two non adjacent vertices u and v of G, let G+uv

denote the graph obtained from G by adding a new edge uv.

A graph is called chordal if it does not contain a cycle of order 4 or more as

an induced subgraph. The comparability graph of a partially ordered set (V,�) has
vertex set V and has an edge uv whenever u � v or v � u; a graph is called a

comparability graph if it is the comparability graph of some partial order.

Given two graphs G and H, we say that G is H-free if G does not contain any

induced subgraph which is isomorphic to H.

Let G be a graph with vertex set V (G) and edge set E(G) (the order and size

of the graph are, respectively, |V (G)| and |E(G)). A (proper vertex) k-colouring of
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a graph G is a function f : V (G) → {1, 2, . . . , k} such that for every edge e = uv

of G, f(u) �= f(v). The chromatic number χ(G) is smallest x for which G has an

x-colouring. We say that G is k-chromatic if χ(G) = k. The well known chromatic

polynomial π(G, x) of G counts the number of proper colourings of the vertices with

x colours, for each x ∈ N. The fact that π(G, x) is a polynomial in x follows from

the well-known edge addition (deletion) - contraction formula:

Theorem 1.1.1 (Edge addition (deletion) – contraction formula [24]). Let u and v

be two nonadjacent vertices of G. Then

π(G, x) = π(G+ uv, x) + π(G · uv, x) if uv /∈ E(G);

π(G, x) = π(G− uv, x)− π(G · uv, x) if uv ∈ E(G).

Let (x)↓r = x(x− 1) . . . (x− r + 1) be the rth falling factorial of x.

Theorem 1.1.2 (Complete Cutset Theorem [24]). Let G1 and G2 be two graphs such

that G1 ∩G2
∼= Kr, then

π(G1 ∪G2, x) =
π(G1, x) π(G2, x)

(x)↓r
.

A graph with only one vertex is called trivial. Also, a graph G is k-connected if

the removal of fewer than k-vertices always leaves a nontrivial connected graph.

Corollary 1.1.3. [24] If G is a connected graph consisting of blocks B1, . . . , Bt then

π(G, x) =
1

xt−1

t∏
i=1

π(Bi, x).

If G consists of the blocks B1, . . . , Bt then it is easy to see that

χ(G) = max{χ(B1), . . . , χ(Bt)}.
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Also, for e /∈ E(G), it is easy to see that

χ(G) = min{χ(G+ e) , χ(G · e)}.

Let G be a graph of order n. An i-colour partition of G is a partition of the

vertices of G into i nonempty independent sets. Let ai(G) denote the number of

i-colour partitions of G. The σ-polynomial of G (see [4]) is defined as the polynomial

σ(G, x) =
n∑

i=χ(G)

ai(G) xi.

It is easy to see that

π(G, x) =
n∑

i=χ(G)

ai(G) (x)↓i.

We refer the reader to [24] for a general discussion of graph colourings and chromatic

polynomials.

1.2 An Overview of the Thesis

We investigate the chromatic polynomial and two other related graph polynomials,

namely, the σ-polynomial and the restrained chromatic polynomial.

In Chapter 2, we begin with the σ-polynomial. This polynomial arises naturally

from a certain expansion of the chromatic polynomial and it has strong connections

to several other important polynomials in combinatorics (such as the matching poly-

nomial). The behaviour of the σ-polynomial and its roots is quite different from that

of the chromatic polynomial. The roots of the σ-polynomial seem to have a more

regular behaviour, as they are more often on the real line. In fact, currently, only

finitely many nonreal σ-roots are known. Therefore, one of the main problems in
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the field has been to have a better understanding of the realness of the σ-roots. An-

other important problem in the field has been the log-concavity of the σ-polynomial

(Read and Tutte [48] conjectured that the σ-polynomial of any graph is strongly

log-concave). We investigate these two central problems on the topic, namely, log-

concavity and realness of the σ-roots. In particular, we show that graphs of order

n with chromatic number at least n − 3 have all real σ-roots (Theorem 2.3.7), and

this proves a conjecture of Brenti [4] from 1992. We also obtain some partial results

to these problems in the family of graphs of order n with chromatic number at least

n− 4 (Theorem 2.4.10). Furthermore, we prove the denseness of the real σ-roots in

the left real line (Theorem 2.5.3).

In Chapter 3, we study the chromatic polynomial. In the first section of this

chapter, we consider two old problems of Tomescu [55, 57, 59] regarding bounding

the number of x-colourings of a graph over the family of (connected) graphs of fixed

chromatic number and order. We present an improved bound for the number of x-

colourings of a graph over the family of graphs of fixed chromatic number and order

by using the maximum degree of the graph (Theorem 3.1.5). Then we consider the

problem when the connectedness condition is imposed, and all the rest of the results

in this section are towards the latter problem. In the second section of Chapter 3,

we focus on bounding chromatic roots. We present a new bound on the moduli of

the chromatic roots (Theorem 3.2.2) which improves earlier bounds for dense graphs.

Also, we study two conjectures proposed by Dong et al. [24] on bounding the real parts

of complex chromatic roots. We present counterexamples to one of these conjectures

(Theorem 3.2.9) and prove the other one for some graph families which intuitively

should include most of the likely candidates to be counterexamples (Theorem 3.2.15

and Theorem 3.2.16).

Chapter 4 is devoted to the restrained chromatic polynomial which generalizes

the chromatic polynomial via the restrained colourings, that is colourings where each
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vertex has a list of forbidden colours attached. We focus on the problem of deter-

mining restraints which permit the largest or smallest number of x-colourings. We

completely settle the minimization part of this problem for all graphs (Theorem 4.2.4)

by showing that constant restraints permit the smallest number of colourings. Also,

we give two necessary conditions for a restraint on a general graph to permit the

largest number of x-colourings (Theorem 4.2.8). We show that these necessary con-

ditions become sufficient to determine such extremal restraints for complete graphs

(Theorem 4.2.6) and bipartite graphs (Theorem 4.2.9). Lastly, we give another nec-

essary condition for a restraint on a (C3, C4)-free graph to permit the largest number

of x-colourings (Theorem 4.2.12).

Section 2.3 was published in [10]. Also, majority of Sections 3.1 and 3.2 was

published in [9] and [8].



Chapter 2

σ-Polynomials

Let G be a graph of order n with chromatic number χ(G). Recall that the σ-

polynomial of G is the polynomial

σ(G, x) =
n∑

i=χ(G)

ai(G) xi

where ai(G) is the number of i-colour partitions of G.

The coefficients ai are also known as the graphical Stirling numbers [27, 30]. If

a graph has no edges then ai is simply equal to the Stirling number of the second

kind S(n, i). So, the σ-polynomials of empty graphs correspond to the generating

functions for Stirling numbers and such polynomials were studied by Lieb [40].

These polynomials first arose in the study of chromatic polynomials, since the

chromatic polynomial of G is π(G, x) =
∑

ai(G) (x)↓i, where (x)↓i = x(x−1) · · · (x−
i + 1) is the falling factorial of x (the sequence 〈ai〉 has been called the chromatic

vector of G [32]). The σ-polynomial was first introduced by Korfhage [36] in a slightly

different form (he refers to the polynomial (
∑n

i=χ(G) aix
i)/xχ(G) as the σ-polynomial),

and σ-polynomials have attracted considerable attention in the literature. Brenti [4]

studied the σ-polynomials extensively and investigated both log-concavity and the

nature of the roots. Chvátal [18] gave a necessary condition for a subsequence of the

chromatic vector to be nondecreasing. Brenti, Royle and Wagner [5] proved that a

variety of conditions are sufficient for a σ-polynomial to have only real roots.

7
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The σ-polynomial and its coefficients have strong connections to other graph

polynomials and combinatorial structures as well. The partition polynomial of a

finite set system studied by Wagner [62] reduces to a σ-polynomial when the finite set

system is the independence complex of a graph. The σ-polynomial of the complement

of a triangle free graph is just the well known matching polynomial [34] under a

simple transformation. Moreover, the widely studied adjoint polynomial (see, for

example, [16, 26, 41, 43, 45, 59, 68]) is equal to the σ-polynomial of the complement

of the graph. The authors in [32] investigate the rook and chromatic polynomials,

and prove that every rook vector is a chromatic vector. In [27] the authors explore

relations among the σ-polynomial, chromatic polynomial, and the Tutte polynomial,

and implications of these connections. A result on the ordinary Stirling numbers was

generalized in [30] by considering the σ-polynomials of some graph families. Moreover,

studying σ-polynomials is useful to find chromatically equivalent or chromatically

unique graph families [42, 67]. Recently, in [8], the authors obtained upper bounds

for the real parts of the roots of chromatic polynomials for graphs with large chromatic

number by investigating the σ-polynomials of such graphs.

2.1 Preliminaries

In this section we summarize a number of known results on σ-polynomials that we

will make use of in the sequel.

The matching polynomial m(G, x) of a graph G is defined as

m(G, x) =
∑
i≥0

mi(G)(−1)ixn−2i,
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where mi(G) is the number of matchings of size i in G and m0(G) ≡ 1 by convention

(see, for example, [62]). Observe that if G is a triangle-free graph then

σ(G,−x2) = (−x)nm(G, x).

If F is a finite set system (that is a collection of finite sets, called blocks) then its

partition polynomial ρ(F , x) is defined as

ρ(F , x) =
∑
i≥1

ai(F)xi

where ai(F) is the number of ways to partition the vertex set of F (that is ∪A∈FA)

into i nonempty blocks [62]. The independence complex of a graph G is the simplicial

complex (that is a collection of sets, called faces, closed under containment – see [7],

for example) on the vertex set of G whose faces correspond to independent sets of

the graph. Thus the partition polynomial of the independence complex of a graph is

equal to the σ-polynomial of the graph.

Sometimes we will be interested in the σ-polynomial of the complement of a graph

rather than the graph itself. Therefore it will be convenient for us to consider the

following polynomial. Let bi(G) be the number of partitions of the vertices of G into

i cliques. Then the adjoint polynomial of G, denoted by h(G, x), is defined as

h(G, x) =
∑

bi(G)xi.

Now, it is clear that for every graph G,

σ(G, x) = h(G, x).
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We will make use of some useful properties of σ-polynomials under various graph

operations.

Let u and v be two nonadjacent vertices of a graph G. The number of partitions

of V (G) into i independent sets such that u and v are in different (respectively same)

colour classes is equal to ai(G + uv) (respectively ai(G · uv)). Therefore, it is clear

that

ai(G) = ai(G+ uv) + ai(G · uv).

Now, since ai(G) is the coefficient of xi in σ(G, x), we obtain the following recursive

formula to compute the σ-polynomials which is folklore.

Lemma 2.1.1. [24] Let G be any graph. If e is not an edge of G then

σ(G, x) = σ(G+ e, x) + σ(G · e, x)

or equivalently, if e is an edge of G then

σ(G, x) = σ(G− e, x)− σ(G · e, x).

u v

Figure 2.1: From left to right: G, G+ uv, G · uv

The adjoint polynomials also satisfy a similar recursive formula but in this recur-

sion one uses weak contraction instead of contraction. It is known that [24] if e is an
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edge of G then

h(G, x) = h(G− e, x) + h(G� e, x) (2.1)

or equivalently, if e is not an edge of G then

h(G, x) = h(G+ e, x)− h(G� e, x). (2.2)

A consequence of this recursive formula is the following:

Lemma 2.1.2. Let G be a graph and e = uv be an edge of G such that e is not

contained in any triangle of G. Then,

σ(G, x) = σ(G− e, x) + xσ(G− {u, v}, x).

Another well known useful property of the σ-polynomials is that the σ- polynomial

of the join of two graphs is equal to the product of the σ-polynomials of these two

graphs.

Lemma 2.1.3. [62, Proposition 2.1.] Let G and H be two graphs then

σ(G ∨H, x) = σ(G, x)σ(H, x)

Proof. Every partition of the vertices of G ∨ H into i independent sets is obtained

by partitioning the vertices of G into k independent sets and the vertices of H into

i− k independent sets for some integer k ≥ 1. Hence,

ai(G ∨H) =
∑
k≥1

ak(G)ai−k(H)

and the result follows.
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Lemma 2.1.4. [62, Proposition 4.2.] Let G be any graph, then

σ(G ·∪K1) = x

(
σ(G, x) +

d

dx
σ(G, x)

)
.

Proof. The number of partitions of the vertex set of σ(G ·∪ K1) into i nonempty

independent sets such that the isolated vertex of K1 is in a singleton (respectively

not in a singleton) is equal to ai−1(G) (respectively iai(G)). So, ai(G ·∪ K1) =

ai−1(G) + iai(G) holds. Therefore,

σ(G ·∪K1, x) =
∑

ai(G)xi+1 +
∑

iai(G)xi

= xσ(G, x) + x
d

dx
σ(G, x).

Example 2.1.1. Let u1, . . . , un be the vertices of the path graph Pn such that ui

and ui+1 are adjacent. Now, Pn − u1u2
∼= K1 ·∪ Pn−1 and Pn · u1u2

∼= Pn−1. So, by

applying the edge deletion-contraction formula and then applying Lemma 2.1.4 we

get

σ(Pn, x) = σ(K1 ·∪ Pn−1, x)− σ(Pn−1, x)

= x

(
σ(Pn−1, x) +

d

dx
σ(Pn−1, x)

)
− σ(Pn−1, x)

= (x− 1)σ(Pn−1, x) + x
d

dx
σ(Pn−1, x).

We can indeed generalize Lemma 2.1.4 to the disjoint union of any two graphs.

Before doing so, we need to introduce a linear operation that maps the chromatic

polynomial of a graph to its σ-polynomial.

Let S : R[x]→ R[x] be the linear transformation defined by

S : x(x− 1) . . . (x− j + 1) �→ xj.
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It is clear that for any graph G,

S(π(G, x)) = σ(G, x).

Also, let us define the ∗-product operation as follows:

∗: R[x]× R[x]→ R[x] is given by

p(x) ∗ q(x) =
∑
k≥0

xk

k!

( dk
dx

p(x)
)( dk

dx
q(x)
)
.

For example, if p(x) = x3 + x2 and q(x) = x2 + 2 then

p(x) ∗ q(x) = (x3 + x2)(x2 + 2) + x(3x2 + 2x)(2x) +
x2

2
(6x+ 2)(2).

Now, we have the following useful result.

Proposition 2.1.5. [5, Proposition 4.2.] For any f, g ∈ R[x] we have

S(fg) = (Sf) ∗ (Sg).

The following result was proven in [62] for partition polynomials. Here we present

a self contained proof by using chromatic polynomials.

Theorem 2.1.6. [62, Proposition 4.2.] Let G and H be any two graphs then

σ(G ·∪H, x) = σ(G, x) ∗ σ(H, x).

Proof. The chromatic polynomial satisfies

π(G ·∪H, x) = π(G, x)π(H, x)

so, by applying the S transformation to both sides of the latter equality we obtain

σ(G ·∪H, x) = S(π(G, x)π(H, x)).
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By Proposition 2.1.5, S(π(G, x)π(H, x)) = S(π(G, x)) ∗ S(π(H, x)). Thus, the result

is established as S(π(G, x)) = σ(G, x) and S(π(H, x)) = σ(H, x).

Theorem 2.1.7 (Complete Cutset Theorem for σ-polynomials). [5, Theorem 4.5.]

Let G and H be two graphs such that G∩H is a complete graph, and k = |V (G∩H)|.
Then,

σ(G ∪H, x)

xk
=

σ(G, x)

xk
∗ σ(H, x)

xk
.

The formulas we have presented in this section have consequences in terms of

roots of σ-polynomials that will be presented in the next section.

In the following result we give an inequality which relates two consecutive coeffi-

cients of a σ-polynomial. We will make use of this inequality to give an upper bound

for the moduli of the roots of σ-polynomials.

Lemma 2.1.8. Let G be any graph. Then,

bi(G) ≤ mGbi+1(G)

for all 1 ≤ i ≤ nG−1. Moreover, when the graph has at least one edge the inequalities

hold strictly for all 1 ≤ i ≤ nG − 2.

Proof. We proceed by induction on the size of the graph. If G is an empty graph,

then bi(G) = 0 for all 1 ≤ i ≤ nG−1 and hence the equality holds. For the induction

step, suppose that G has at least one edge. First, observe that equality holds for

i = nG − 1 since bnG
= 1 and bnG−1 = mG. Now, for every 1 ≤ i ≤ nG − 2, we can

write
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bi(G) = bi(G− e) + bi(G� e)

≤ mG−ebi+1(G− e) +mG�ebi+1(G� e)

< mGbi+1(G− e) +mGbi+1(G� e)

= mGbi+1(G)

where the first and last equalities follow from the recursive formula for the adjoint

polynomial, and the other inequalities hold by the induction hypothesis and the facts

that mG−e < mG and mG�e < mG.

Note that in the proof of the previous lemma, one needs to handle the case

i = nG − 1 separately because the argument bi(G � e) ≤ mG�ebi+1(G � e) does not

hold for this case as nG�e = nG − 1 and so bi+1(G� e) = 0.

Since
(
nG

2

) − mG = mG, the following corollary follows immediately from this

lemma.

Corollary 2.1.9. Let G be any graph. Then,

ai(G) ≤
((

nG

2

)
−mG

)
ai+1(G)

for all 1 ≤ i ≤ nG − 1. Moreover, when the graph G is not a complete graph

inequalities hold strictly for all 1 ≤ i ≤ nG − 2.

We will use the following classical result on bounding the moduli of roots of real

polynomials.
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Theorem 2.1.10 (Eneström-Kakeya Theorem). [46, pg. 255] A polynomial f(z) =∑d
i=0 ciz

i with positive coefficients has all its zeros in the annulus

{
z ∈ C : min

{
ci−1

ci

}
1≤i≤d

≤ |z| ≤ max

{
ci−1

ci

}
1≤i≤d

}

Theorem 2.1.11. Let G be a graph of order n and size m. If z ∈ C is a root of

σ(G, x) then

|z| ≤
(
n

2

)
−m.

Proof. The result follows immediately by Corollary 2.1.9 and the Eneström-Kakeya

Theorem.

A vertex v of a graph G is called a simplicial vertex if the neighborhood of v in

G induces a complete graph.

Lemma 2.1.12. Let v be a simplicial vertex of a graph G. Then,

h(G, x) = x
∑

S⊆N(v)

h(G− (S ∪ {v}), x).

Proof. Since v is a simplicial vertex, every vertex in N(v) can be in the same class

with v in a partition of the vertices into cliques. Hence,

bi(G) =
∑

S⊆N(v)

bi−1(G− (S ∪ {v}))

and the proof is complete.

We now turn to formulas for some coefficients of σ-polynomials.

Let G be a graph whose σ-polynomial is

σ(G, x) =
n∑

i=χ(G)

aix
i.
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For two graphs H and G, we denote by ηG(H) the number of subgraphs of G

which are isomorphic to H. For example, if G = K4 then we have ηG(K2) = 6,

ηG(2K2) = 3, ηG(K3) = 4 and ηG(K3 ·∪K2) = 0. Also, for every partition i =
∑k

j=1 mj

of a positive integer i, we associate a disjoint union of complete graphs ·∪k
j=1Kmj+1,

an ith generation forbidden subgraph [39] (they are “forbidden” as the complement

of any graph with chromatic number n − k cannot contain any (k + 1)th generation

forbidden graph as a subgraph since otherwise it can be partitioned into n − k − 1

independent sets).

By the definition of the coefficient an−i, it is clear that an−i counts the number

of subgraphs of the form ·∪n−i
j=1Kmj

in G where n =
∑n−i

j=1 mj and mj ∈ N \ {0}. For

example,

an = ηG(nK1),

an−1 = ηG((n− 2)K1 ·∪K2),

an−2 = ηG((n− 3)K1 ·∪K3) + ηG((n− 4)K1 ·∪ 2K2).

Now, by ignoring the singleton cliques in a partition of the n vertices of G into

n−i nonempty cliques, we see that an−i counts the number of ith generation forbidden

subgraphs. This fact was also observed in [39] and we will use it frequently in the

next section.

Observation 2.1.13. The coefficient an−i counts the number of subgraphs of the

form ·∪k
j=1Kmj+1 in G, where i =

∑k
j=1 mj and mj ∈ N \ {0}.
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Partition of 4 Associated 4th generation forbidden subgraph
4 K5

3 + 1 K4 ·∪K2

2 + 2 2K3

2 + 1 + 1 K3 ·∪ 2K2

1 + 1 + 1 + 1 4K2

Table 2.1: Fourth generation forbidden subgraphs

From this observation, we find that

an = 1,

an−1 = ηG(K2) =

(
n

2

)
− |E(G)|,

an−2 = ηG(K3) + ηG(2K2),

an−3 = ηG(K4) + ηG(K3 ·∪K2) + ηG(3K2),

an−4 = ηG(K5) + ηG(K4 ·∪K2) + ηG(2K3) + ηG(K3 ·∪ 2K2) + ηG(4K2).

Proposition 2.1.14. Let G be a graph of order n and size m. Then

an−2(G) = S(n, n− 2) +

(
m

2

)
−m

(
n− 1

2

)
− ηG(K3).

Proof. We proceed by induction on the number of edges. If G is an empty graph then

an−2(G) = S(n, n− 2) and the formula clearly holds as m = 0 and ηG(K3) = 0. Now

we may assume that G has two vertices u and v such that e = uv ∈ E(G). Since

G · uv has n− 1 vertices and m− 1− |NG(u) ∩NG(v)| edges, we find that

an−2(G · uv) =

(
nG·uv
2

)
−mG·uv

=

(
n− 1

2

)
−m+ 1 + |NG(u) ∩NG(v)|.
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The graph G − uv has n vertices and m − 1 edges. Also, ηG−uv(K3) is equal to

ηG(K3) − |NG(u) ∩ NG(v)|. Therefore, by the induction hypothesis on G − uv, we

obtain that

an−2(G−e) = S(n, n−2)+

(
m− 1

2

)
− (m−1)

(
n− 1

2

)
−ηG(K3)+ |NG(u)∩NG(v)|.

Now the result follows since an−2(G) = an−2(G− uv)− an−2(G · uv).

Remark 2.1.1. Prior to our result, several authors gave false formulas for an−2(G).

Dhurandhar [20, pg. 220] stated and proved incorrectly that

an−2(G) =
(
m
2

)
+m
(
n−1
2

)
+
(
n
3

) (9n−7)
4

− ηG(K3).

Later, Brenti [4] pointed out the error in Dhurandhar’s formula and gave another

incorrect statement and proof for an−2(G) (see Proposition 3.2 on pg. 733), namely

that

an−2(G) =
(
m
2

)−m
(
n−1
2

)
+
(
n
3

)(
3n−5

4

)− ηG(K3).

It is easy to find many examples for which these formulas do not hold. For example,

let G be the leftmost graph in Figure 1.1. Then G has order n = 6, size m = 7 and

exactly one triangle. The σ-polynomial of G is σ(G, x) = x6 + 8 x5 + 15 x4 + 6 x3

and therefore the true value of an−2(G) is 15. However, the first formula yields

an−2(G) =
(
7
2

)− 7
(
5
2

)
+
(
6
3

)(
13
4

)− 1 = 14250 and the second formula yields an−2(G) =(
7
2

)
+ 7
(
5
2

)
+
(
6
3

)
47
4
− 1 = 325.

2.2 Real roots of σ-polynomials

Finding the location of the roots of σ-polynomials (σ-roots) is a difficult problem.

Even for empty graphs, it is difficult to determine the location of the roots. As we



20

already mentioned, the σ-polynomial of an empty graph is equal to

σ(Kn, x) =
∑
i≥1

S(n, i)xi

where S(n, i) is the Stirling number of the second kind [24]. Lieb [40] and Harper [33]

independently proved that this polynomial has only real roots.

Figure 2.2: The roots of σ-polynomials of all connected 7-vertex graphs.

Computer-aided computations show that σ-polynomials of all graphs of order at

most 7 have only real roots. Also, among all 12, 346 many graphs of order 8, there

exist only two graphs whose σ-polynomials have nonreal roots and these graphs are

depicted in Figure 2.3. In [5], the authors present all connected graphs of order 9

whose σ-polynomials have nonreal roots; there are only 42 out of 274, 668 many such

graphs.

In [62] is was shown that the partition polynomial of the independence complex

of a chordal graph or the complement of a comparability graph has only real roots.

Since the partition polynomial of the independence complex of a graph is equal its

σ-polynomial, it follows that σ-polynomials of chordal graphs and of incomparability

graphs have only real roots. Moreover, by using this fact about the σ-polynomials
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Figure 2.3: The graphs of order 8 whose σ-polynomials have nonreal roots.

of incomparability graphs, Brenti [4] observed that all graphs G with χ(G) ≥ n − 2

have only real roots.

The matching polynomial of any graph is well known to have only real roots [34].

By the connection between the σ-polynomials and matching polynomials we noted

earlier, σ(G, x) has only real roots for any triangle-free graph G.

In the following theorem we summarize all these results.

Theorem 2.2.1. [4, 5, 34, 62] If graph G has any of the following properties then

σ(G, x) has only real roots:

(i) G has order at most 7.

(ii) G has order n with χ(G) ≥ n− 2.

(iii) G is chordal.

(iv) G is triangle-free.

(v) G is a comparability graph.

Remark 2.2.1. σ-polynomials of chordal graphs always have only real roots but un-

fortunately the same is not true for the complements of such graphs. For example,



22

the graph G in Figure 2.4 is chordal but the σ-polynomial of its complement is

σ(G, x) = x4(x5 + 9x4 + 25x3 + 26x2 + 9x+ 1)

which has real roots at approximately −4.917, −2.183, −1.387, and non-real roots

−0.255 + 0.042i and −0.255− 0.042i.

Figure 2.4: A chordal graph G such that σ(G, x) has non-real roots.

The following result allows us to build larger graphs with all real σ-roots from

smaller ones.

Theorem 2.2.2. [5] Let G and H be two graphs such that both σ(G, x) and σ(H, x)

have only real roots. Then,

(i) σ(G ∨H, x) has only real roots,

(ii) σ(G ·∪H, x) has also only real roots,

(iii) If G ∩H is a complete graph, then σ(G ∪H, x) has only real roots.

Since a complete bipartite graph is a join of two empty graphs, an immediate

consequence of Theorem 2.2.2 (i) is that the σ-polynomial of a complete bipartite

has only real roots.
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2.3 Graphs G with χ(G) ≥ n− 3

As we already mentioned, Brenti [4] proved that σ-polynomials of all graphs of order

n with chromatic number at least n−2 have all real roots, and proposed the following:

Conjecture 2.3.1. [4, Conjecture 7.2. pg. 752] If G is a graph of order n and

χ(G) ≥ n− 3, then σ(G, x) has only real roots.

In this section we will prove Brenti’s conjecture.

In order to prove the main result of this section, we will use a characterization of

the complements of graphs of order n with chromatic number n− 3, obtained in [39];

specifically, χ(G) = n − 3 if and only if G ∼= H ∨Kn−r where |V (H)| = r ≤ n, and

either H is a proper 3-star graph (whose definition will follow shortly), or H is one

of the graphs of the families described in Figures 2.5, 2.9 and 2.10.

However, first we need a theorem that determines whether a real polynomial (that

is, a polynomial with real coefficients) has all real roots. The Sturm sequence of a

real polynomial f(t) of positive degree is a sequence of polynomials f0, f1, f2 . . . ,

where f0 = f , f1 = f ′, and, for i ≥ 2, fi = −rem(fi−2, fi−1), where rem(h, g) is the

remainder upon dividing h by g. The sequence is terminated at the last nonzero fi.

The Sturm sequence of f has gaps in degree if there exist integers j ≤ k such that

deg fj < deg fj−1 − 1. Sturm’s well known theorem (see, for example, [12]) is the

following:

Theorem 2.3.2 (Sturm’s Theorem). Let f(t) be a real polynomial whose degree and

leading coefficient are positive. Then f(t) has all real roots if and only if its Sturm

sequence has no gaps in degree and no negative leading coefficients.

For the next result, we consider the family of graphs F depicted in Figure 2.5. In

each of the eight subfamilies, the vertex v is joined to each vertex in an independent

set of size m on the right, and to some vertices of a C5 on the left.
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m > 0

F(0,m)

m > 0

F(1,m)

m > 0

F(3,m)

m > 0

F(2,m)

m > 0

F(2,m)
~

m > 0

F(3,m)
~

m > 0

F(5,m)

m > 0

F(4,m)

v v v v

v v

u

v v

Figure 2.5: The F family

Lemma 2.3.3. Let G be a graph whose complement G is in the F family (see Figure

2.5). Then σ(G, x) has only real roots.

Proof. It is clear that if G is equal to F (0,m), F (1,m), F̃ (2,m) or F̃ (3,m) then it

is triangle-free, hence σ(G, x) has only real roots by Theorem 2.2.1 (iv).

IfG = F (2,m) then we find that ηG(K2) = m+7, ηG(K3) = 1, ηG(2K2) = 5m+11,

ηG(K4) = 0, ηG(K3 ·∪ K2) = 2 and ηG(3K2) = 5m + 2. Therefore, by Observation

2.1.13 we obtain that

σ(G, x)/xm+3 = x3 + (m+ 7)x2 + (5m+ 12)x+ (5m+ 4).

Calculations show that the leading coefficients of this polynomial’s Sturm sequence

are

1, 3,
2

9
(m2 −m+ 13) and

9(5m4 − 16m3 + 88m2 − 92m+ 272)

4 (m2 −m+ 13)2
,

all of which are strictly positive and that there are no gaps in degree. Hence, we get

the result by Theorem 2.3.2.
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Also, if G = F (3,m) then we find that ηG(K2) = m+ 8, ηG(K3) = 2, ηG(2K2) =

5m+14, ηG(K4) = 0, ηG(K3 ·∪K2) = 4 and ηG(3K2) = 5m+3. Again by Observation

2.1.13, we get

σ(G, x)/xm+3 = x3 + (m+ 8)x2 + (5m+ 16)x+ (5m+ 7).

The leading coefficients of this polynomial’s Sturm sequence turn out to be

1, 3,
2

9
(m2 +m+ 16) and

9(5m4 + 2m3 + 99m2 + 46m+ 469)

4 (m2 +m+ 16)2
,

all of which are obviously strictly positive for m ≥ 0 and there are no gaps in degree.

Hence, we conclude as above.

Now let G = F (4,m) and v be the vertex of G which is adjacent to m leaves in

G and u be the vertex which is not adjacent to v in G. Let H be the edge induced

by u and v in G. Now, G = (C5 ∨ Km) ∪ H, and the intersection of C5 ∨ Km and

H is equal to {u} in G. Note that σ(C5, x) has only real roots by Theorem 2.2.1

(i). Also, σ(C5 ∨Km, x) = xmσ(C5, x) holds by Theorem 2.2.2 (i), so the polynomial

σ(C5 ∨Km, x) has only real roots. Hence, the result follows from Theorem 2.2.2 (iii).

Lastly, suppose that G = F (5,m), then G = (C5 ∨ Km) ·∪ K1. Now, we obtain

the result from Theorem 2.2.2 (ii), since both σ(C5 ∨Km, x) and σ(K1, x) = x have

only real roots.

The proof of the realness of the roots of the σ-polynomials of the other classes

of graphs will require a more subtle argument than just Sturm sequences, and we

rely on an approach taken by Chudnovsky and Seymour [17] in their proof for the

realness of the roots of independence polynomials of claw-free graphs. Following [17],

we say that polynomials f1, . . . fk in R[x] are compatible if for all c1, . . . , ck ≥ 0, all
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the roots of the linear combination
∑k

i=1 cifi(x) are real, and the polynomials are

called pairwise compatible if for all i, j in {1, . . . , k}, the polynomials fi(x) and fj(x)

are compatible. The following observation will be utilized later.

Observation 2.3.4. Suppose that f(x), g(x) ∈ R[x] are two polynomials with positive

leading coefficients and all roots real. Then, f and g are compatible if and only if for

all c > 0, the polynomial cf(x) + g(x) has all real roots.

We need a few more definitions. Let a1 ≥ · · · ≥ am and b1 ≥ · · · ≥ bn be two

sequences of real numbers. We say that the first interleaves the second if n ≤ m ≤
n+ 1 and

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · .

Let f be a polynomial of degree d with only real roots. Suppose that r1, . . . , rd

are the roots of f such that r1 ≥ · · · ≥ rd. Then the sequence (r1, . . . , rd) is called the

root sequence of f . Let f1, . . . , fk be polynomials with positive leading coefficients

and all roots real. A common interleaver for f1, . . . , fk is a sequence that interleaves

the root sequence of each fi.

The key analytic result we need from [17] is the following:

Theorem 2.3.5. [17] Let f1, . . . fk be polynomials with positive leading coefficients

and all roots real. Then the following statements are equivalent:

(i) f1, . . . , fk are pairwise compatible,

(ii) for all s, t such that 1 ≤ s < t ≤ k, the polynomials fs and ft have a common

interleaver,

(iii) f1, . . . , fk have a common interleaver,

(iv) f1, . . . , fk are compatible.
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We now return to proving the realness of the roots of the σ-polynomials for the

remaining classes of graphs with χ(G) = n − 3. We say that a subset of vertices S

of a graph G is a vertex cover of G if every edge of G contains at least one vertex

of S. The vertex cover number, αo(G), is the cardinality of a minimum vertex cover.

Note that S is a vertex cover of G if and only if V (G) − S induces an independent

set, and that if αo(G) = k then G contains a complete subgraph of order n− k, and

hence χ(G) ≥ n − k. A graph G is called a proper k-star [39] if αo(G) = k and G

contains at least one kth generation forbidden subgraph. In the following proof, nG

and nH denotes the number of vertices of the graph G and subgraph H, respectively.

Theorem 2.3.6. Let G be a graph such that αo(G) ≤ 3. Then σ(G, x) has only real

roots.

Proof. We may assume that αo(G) = 3 and χ(G) = nG − 3, since otherwise χ(G) ≥
nG − 2 and the result holds by Theorem 2.2.1 (ii). Also, we may assume that G has

no isolated vertices by Theorem 2.2.2(i). Let S = {u1, u2, u3} be a vertex cover of

G, so that V (G)− S is an independent set of G. We set V = V (G) = V (G). There

are four cases we need to consider: S induces either an independent set, K3, P3, or

K2 ·∪K1 in G.

Case 1: S induces an independent set in G.

In this case G is a triangle-free graph and we are done by Theorem 2.2.1 (iv).

Case 2: The subgraph of G induced by S is isomorphic to K3.

Here G can be partitioned into a clique and independent set, so one can check

that G is, in fact, chordal and hence the result follows from Theorem 2.2.1(iii).

Case 3: S induces in G a P3.

Without loss of generality, we may assume that u2 is adjacent to both u1 and u3 in

G. Let H1 (respectively H2) be the subgraph induced by V − {u1, u3} (respectively

V − {u2}) in G (see Figure 2.6). Clearly, H1 ∩ H2 is a complete graph in G and
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H1 ∪H2 = G. Also, σ(H1, x) and σ(H2, x) have only real roots by Theorem 2.2.1(ii)

because χ(H1) ≥ nH1 − 2 and χ(H2) ≥ nH2 − 2. Therefore, we obtain the result by

Theorem 2.2.2(iii).

u1                u2          u3

 induces a complete graph

               H2

H1

Figure 2.6: The graph G in Case 3. (S induces in G a P3, hence S induces in G a
K1 ·∪K2.)

Case 4: The subgraph induced by S in G is isomorphic to K2 ·∪K1.

Without loss, let u1 and u2 be adjacent to each other in G; we will partition the

remaining vertices into sets by their neighbourhood in S (see Figure 2.7). Let P be

the set of vertices which are adjacent to all vertices of S in G. By Theorem 2.2.2(iii),

it suffices to prove the result when P = ∅ (because the intersection of the graphs

〈V (G)− S〉G and 〈V (G)− P 〉G is a complete graph and their union gives the graph

G). Let Mi be the set of all leaves which are adjacent to ui in G, and mi = |Mi|.
Also, let R be the set of all common neighbours of u1 and u2 in G. Similarly, let

J (respectively, K) be the set of all common neighbours of u2 and u3 (u1 and u3,

respectively) in G. Recall that V (G) − S is an independent set of G since S is a

vertex cover of G. Let r = |R|, j = |J | and k = |K|. If j = 0 or k = 0, then G
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is a comparability graph (see Figure 2.8 for k = 0) and we obtain the result from

Theorem 2.2.1(v). Hence, we may assume that j, k ≥ 1. Now, let H be the subgraph

of G induced by V − (M3 ∪ {u3}). Let also HJ (respectively HK) be any subgraph

of G induced by V − (M3 ∪ {u3, vJ}) (respectively V − (M3 ∪ {u3, vK})) where vJ

(respectively vK) is a vertex of J (respectively K). None of the edges incident to u3

are contained in a triangle in G. We now apply the recursive formula in Lemma 2.1.2

to all edges incident to u3 successively. We set Gi be an induced subgraph of G which

is obtained from G by deleting i vertices of M3. Beginning with the edges between

M3 and u3, we find from Lemma 2.1.2 (and the fact from Theorem 2.2.2(i) that any

isolated vertex in the complement of a graph adds a factor of x to the σ-polynomial)

that

σ(G, x) = σ(G0, x)

= xσ(G1, x) + x · xm3−1σ(H, x)

= xσ(G1, x) + xm3σ(H, x)

= x
(
xσ(G2, x) + xm3−1σ(H, x)

)
+ xm3σ(H, x)

= x2σ(G2, x) + 2xm3σ(H, x)

= · · ·

= xm3σ(Gm3 , x) +m3x
m3σ(H, x).

We then continue to successively remove the other edges incident to u3 in Gm3 , and

using a similar argument, we find that σ(Gm3 , x) = jxσ(HJ , x) + kxσ(HK , x) +

xσ(H, x), so that

σ(G, x) = xm3
(
xσ(H, x) + jxσ(HJ , x) + kxσ(HK , x) +m3σ(H, x)

)
.
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None of the graphs H, HJ or HK contain a third generation forbidden subgraph.

So, the chromatic number of each of the graphs H,HJ and HK is at least the order

of the graph minus 2 and hence σ-polynomials of these graphs have only real roots

by Theorem 2.2.1(ii).

M2

M1

u 1 u 3
u

P

R J K

2

M3

{ { {

{{ { {
Figure 2.7: The graph G with vertex cover {u1, u2, u3}

u 1 u 3
u 2

M1 M3

{{

R J{ {

M2

{

Figure 2.8: A comparability graph of a subclass of graphs from Figure 2.7.

Now, by Theorem 2.3.5, it suffices to show that the polynomials

σ(H, x), xσ(H, x), xσ(HJ , x), and xσ(HK , x)
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are pairwise compatible. Let α = m2 + j + r and β = m1 + k + r. Now the number

of K2’s, K3’s and 2K2’s in H are, respectively, α + β + 1, r and αβ − r, and hence

σ(H, x) = xnH−2
(
x2 + (α + β + 1)x+ αβ

)
.

Moreover, as HJ and HK are graphs of the same form as H with j replaced by j − 1

and k replaced by k−1 respectively (and hence α and β decreased by 1, respectively),

we see that

xσ(HJ , x) = xnH−2
(
x2 + (α + β)x+ (α− 1)β

)
, and

xσ(HK , x) = xnH−2
(
x2 + (α + β)x+ α(β − 1)

)
.

Let r1, r2, and r3 be the roots of x3 + (α+ β + 1)x2 + αβx, and t1 and t2 be the

roots of x2 + (α + β)x+ (α− 1)β, so r1 = 0,

r2 =
−(α + β + 1) +

√
(α + β + 1)2 − 4αβ

2
,

r3 =
−(α + β + 1)−√(α + β + 1)2 − 4αβ

2
,

t1 =
−(α + β) +

√
(α + β)2 − 4(α− 1)β

2
, and

t2 =
−(α + β)−√(α + β)2 − 4(α− 1)β

2
.

All these roots are real, as we already mentioned that the σ-polynomials of the

graphs H,HJ and HK have only real roots. Now we shall prove that

0 = r1 > t1 > r2 > t2 > r3.
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It is clear that 0 = r1 > t1 because the nonzero real roots of σ-polynomials are

always negative. To prove the inequality r2 < t1 , it suffices to verify the following

list of equivalent inequalities:

−(α + β + 1) +
√

(α + β + 1)2 − 4αβ < −(α + β) +
√

(α + β)2 − 4(α− 1)β,

−1 +√(α + β + 1)2 − 4αβ <
√
(α + β)2 − 4(α− 1)β,

1 + (α + β + 1)2 − 4αβ − 2
√
(α + β + 1)2 − 4αβ < (α + β)2 − 4(α− 1)β,

2 + 2(α + β)− 4β < 2
√
(α + β + 1)2 − 4αβ,

1 + α− β <
√
(α + β + 1)2 − 4αβ,

1 + α− β <
√
(α− β)2 + 2(α + β) + 1.

The last inequality is clear because

√
(α− β)2 + 2(α + β) + 1 >

√
(α− β)2 + 2(α− β) + 1 =

√
(α− β + 1)2.

To see that r2 > t2 holds, it is enough to check that

−
√

(α + β)2 − 4(α− 1)β < 0

< −1 +
√

1 + (α− β)2 + 2(α + β)

= −1 +
√
(α + β + 1)2 − 4αβ.

Lastly, to prove that t2 > r3 holds, it is enough the verify the following sequence

of equivalent inequalities where the last inequality clearly holds:

1 +
√

(α + β + 1)2 − 4αβ >
√
(α + β)2 − 4(α− 1)β

1 + 2
√
(α + β + 1)2 − 4αβ + (α + β + 1)2 − 4αβ > (α + β)2 − 4(α− 1)β√

(α + β + 1)2 − 4αβ > β − α− 1√
(β − α)2 + 2(α + β) + 1 > β − α− 1.
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Now, 0 = r1 > t1 > r2 > t2 > r3 implies that σ(H, x), xσ(H, x), and xσ(HJ , x)

have a common interleaver. Since j and k play symmetric roles, it is also clear that

the same argument works to prove that σ(H, x), xσ(H, x), and xσ(HK , x) also have

a common interleaver.

Finally, we need to show that σ(HJ , x) and σ(HK , x) are compatible. So, we shall

prove that x2+(α+β)x+(α− 1)β and x2+(α+β)x+α(β− 1) are compatible. We

use Remark 2.3.4, and show that c(x2+(α+β)x+(α−1)β)+x2+(α+β)x+α(β−1)

has all real roots for all c > 0.

Let c > 0. Then (c+1)(α−β)2 > −4(cβ+α) which is equivalent to (c+1)(α+β)2 >

4(c+1)αβ−4cβ−4α or (c+1)2(α+β)2 > 4(c+1)(c(α−1)β+α(β−1)). This implies

that the discriminant of the quadratic (c+1)x2+(c+1)(α+β)x+c(α−1)β+α(β−1)

is nonnegative, and hence x2 + (α+ β)x+ (α− 1)β and x2 + (α+ β)x+α(β − 1) are

compatible. This completes the proof.

S(0) S(1) S(2)
~
S(2) S(3)

Figure 2.9: The S family

L(1) L(2)

Figure 2.10: The L family
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We are ready to tie everything all together in a proof of Brenti’s conjecture.

Theorem 2.3.7. Let G be a graph on n vertices. If χ(G) = n− 3, then σ(G, x) has

only real roots.

Proof. In [39], it was shown that for a graph G with n vertices, χ(G) = n− 3 if and

only if G is isomorphic to H ∨Kn−r where |V (H)| = r ≤ n and H is a proper 3-star

graph or H is one of the graphs of the F , S and L families. So, by Theorem 2.2.2(i),

it suffices to show that σ(H, x) has only real roots. As we already noted earlier, the

σ-polynomials of all graphs of order at most 7 have all real roots. Hence, the result

is clear if H is a graph in one of the S or L families (see Figures 2.9 and 2.10). Also,

if H is in the F family, we get the desired result by Lemma 2.3.3. Finally, if H is a

proper 3-star, then the result is established by Theorem 2.3.6.

Finally, a well known result due to Newton (see [19, pp. 270–271]) states that

if a real polynomial
∑d

i=0 aix
i has only real roots then the sequence a0, a1, . . . , ad is

log-concave, that is, a2i ≥ ai−1ai+1 for i = 1, . . . , d− 1 (if a log concave sequence has

no internal zeros, then it is unimodal in absolute value). Brenti [4] posed the question

of whether the coefficients of σ-polynomials of all graphs are log-concave. Indeed,

Read and Tutte mention the following conjecture in [48] :

Conjecture 2.3.8. [48] The σ-polynomial of any graph G is strongly log-concave.

As a corollary of Theorem 2.3.7, we show that Conjecture 2.3.8 holds for graphs

with χ(G) ≥ n− 3.

Corollary 2.3.9. The σ-polynomials of all graphs with χ(G) ≥ n−3 are log-concave.

2.4 Graphs G with χ(G) ≥ n− 4

As the σ-polynomials of graphs of order n with chromatic number at least n − 3

have all real roots, the question remains how far down can the chromatic number go
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before nonreal roots arise? For chromatic number n−5 there are indeed such graphs.

Figure 2.3 shows the two smallest examples (known as Royle graphs [49, pg. 265]),

of order 8. Moreover, by taking the join of such a graph with a complete graph, we

see that there are graphs of all order n ≥ 8 with chromatic number n − 5 whose

σ-polynomials have a nonreal root.

So the question remains – are there any graphs of order n with chromatic number

n− 4 whose σ-polynomials have nonreal roots? In this section, we are going to study

the roots of σ-polynomials of such graphs.

In [5] all graphs of order n ≤ 9 whose σ-polynomials have a nonreal root are listed,

and none of these have chromatic number n− 4. By using Gordon Royle’s database

for graphs, we have verified as well that all of the σ-polynomials of the 113,272 graphs

of order 10 and chromatic number 6 have all real roots, so that if there is a graph

with chromatic number n − 4 whose σ-polynomial has a nonreal root, then it has

order at least 11.

In [39] Li gives a characterization of all graphs of order n such that χ(G) = n− 4

and we will use this characterization to prove our results. This characterization is

too complicated to include here so will not present it. However we will mention a

consequence of this characterization which is as follows:

Theorem 2.4.1. [39] Let G be a graph of order n such that χ(G) = n− 4. Then,

G ∼= H ∨Kn−r

where |V (H)| = r ≤ n and H is either

(i) a graph of order at most 10,

(ii) a proper 4-star, or
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(iii) isomorphic to one of the graphs in the M1 or M2 families which are depicted in

Figures 2.11 and 2.12 respectively.

We begin studying the σ-polynomials of graphs G having χ(G) ≥ n− 4 with two

elementary results, the first result is obtained by simple computations.

Lemma 2.4.2. For any graph G of order at most 8, σ(G, x) is strongly log-concave.

Lemma 2.4.3. Let Cn be a cycle and u be a vertex which is not in Cn. Let G be the

graph obtained from Cn and u by adding i edges between u and any i vertices of Cn.

Then G contains at most i triangles.

m2

m1

i2

i1

t

u2

u1

Figure 2.11: The M1 family

Definition 2.4.1. A graph G is in the M1 family (see Figure 2.11) if and only if G

consists of a cycle C5 and a proper 2-star graph consisting of two stars: K1,m1+i1+t+δ

and K1,m2+i2+t+δ where δ = 0 or 1 (if the universal vertices of these two stars are

adjacent then δ = 1; otherwise δ = 0) such that these two stars have t ≥ 0 vertices in

common, and C5 and K1,mj+ij+t+δ have ij (0 ≤ ij ≤ 5) vertices in common, and when
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the ij common vertices are contained in a minimum vertex cover of C5, mj+t+δ > 0,

and otherwise, mj + t+ δ ≥ 0, where j = 1, 2.

Theorem 2.4.4. Let G be a graph of order N in the M1 family, then σ(G, x) is

strongly log-concave. Moreover, if σ(G, x) =
∑

bix
i, then bN−3 > bN−4.

Proof. Let uk be the stem of the star K1,mk+ik+t+δ for k = {1, 2}. Let H be the

subgraph induced by the cycle C5 and the vertices u1 and u2. Suppose that σ(H, x) =∑
akx

k and σ(G, x) =
∑

bkx
k, and |V (H)| = n and |V (G)| = N . Note that σ(H, x)

is logconcave by Lemma 2.4.2. Define αk = bN−k − an−k for 1 ≤ k ≤ 4 and let xk be

the number of edges of the cycle C5 whose both endpoints are adjacent to uk. Then

we get, by counting the subgraphs,

α1 = m1 +m2 + 2t,

α2 = δt+m2(5 + i1) +m1(5 + i2) + t(10 + i1 + i2) + t(m1 +m2) +m1m2,

α3 = 5δt+ x1(m2 + t) + x2(m1 + t) + 5(m1m2 +m1 +m2) + 5t(m1 +m2)

+3(m2i1 +m1i2) + t(10 + 3i1 + 3i2)

α4 = 5δt+ 2t(x1 + x2) + 2(x2m1 + x1m2) + i1(m2 + t) + i2(m1 + t)

+5(m1m2 + tm2 + tm1).

It is clear that an−1 = δ+5+ i1+ i2 and α2
1+2an−1α1 ≥ α2. Also, a

2
n−1 > an−2 holds

by the strong log-concavity of σ(H, x). Hence, we obtain

b2N−1 = a2n−1 + α2
1 + 2an−1α1 > an−2 + α2 = bN−2bN

since bN = 1. Now, in order to find formulas for the other coefficients, we need to

introduce some other parameters which are in terms of the number of certain kinds

of subgraphs. Let y2 be the number of 2K2’s in H such that one of the edges contains

u1 and a vertex from C5, and the other edge contains u2 and another vertex from C5.

Suppose that u1 and u2 have j common neighbors in C5. So, we have
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an−2 = δj + x1 + x2 + 5(1 + δ) + 3(i1 + i2) + y2.

Let w3 = ηH(K4) and y3 be the number of K3 ·∪ K2’s in H such that both K3

and K2 contain at least one the vertices u1 and u2. Also, let z3 be the number of

matchings of size 3 in H which contain both u1 and u2, and u1 and u2 are nonadjacent

to each other.

Then, we have

an−3 = w3 + 3δj + 2x1 + 2x2 + y3 + 5δ + i1 + i2 + z3.

Now, with the aid of Maple we find that b2N−2 − bN−1bN−3 is equal to

5(5 − w3) + 5δ(5 − j) + 5(2y2 − z3) + m2(20m2 − w3) + m1(20m1 − w3) + (i1 +

i2)(25 − w3) + 16i1i2 − 5y3 + m2i2(3i1 − x1) + m1i1(3i2 − x2) + m1t(2m1i2 − x2) +

m2t(2m2i1 − x1) + (7i2 − x2)(m
2
1 + 2t2 +m1δ) + (7i1 − x1)(m

2
2 + 2t2 +m2δ) + (i1 +

i2)(4x1+4x2−y3)+δ(20δ−w3)+m2(24i2−y3)+m1(24i1−y3)+(10y2−z3)(δ+m2+

m1+2t)+(6y2−z3)(i1+i2)+δ(24i1−y3)+2t(40t−w3−y3)+P (ik,mk, t, j, δ, xk, y3, w3)

where P (ik,mk, t, j, δ, xk, y3, w3) is a polynomial with nonnegative coefficients.

It is clear that j and w3 can be at most 5. By Lemma 2.4.3, ik ≥ xk for k = 1, 2.

Removal of any two vertices of C5 leaves a graph with at most two edges and therefore

2y2 ≥ z3 holds. Now, we shall show that

y3 ≤ min{3x1, x1i2, 3i2}+min{3x2, x2i1, 3i1}. (2.3)

Let y′3 (resp. y
′′
3 ) be the number of K3 ·∪ K2’s in H such that K3 contains the

vertex u1 (resp. u2) and K2 contains the vertex u2 (resp. u1). Since K3 and K2 are

disjoint, we have y3 = y′3 + y
′′
3 . So, to prove the inequality (2.3), it suffices to show



39

that y′3 ≤ min{3x1, x1i2, 3i2} and y
′′
3 ≤ min{3x2, x2i1, 3i1}. First, let us show that

y′3 ≤ min{3x1, x1i2, 3i2}. Observe that y′3 ≤ 3x1 because we have x1 choices to pick

a triangle (such triangle contains u1 and two vertices of C5) and once we choose the

triangle we have at most three choices to pick the edge (such edge contains u2 and

a vertex of C5). Similarly, we obtain y′3 ≤ x1i2. Furthermore, we can consider first

picking an edge (we would have i2 choices) and then picking a triangle (we would

have at most three choices for the triangle). So, we get y′3 ≤ 3i2. Thus, we obtain

y′3 ≤ min{3x1, x1i2, 3i2}. The proof for y
′′
3 ≤ min{3x2, x2i1, 3i1} is similar.

The inequality (2.3) immediately implies that y3 ≤ 3(x1 + x2) ≤ 30. Moreover,

since xk ≤ ik we get y3 ≤ 2i1i2. Lastly, observe that y3 is zero whenever i1 or i2

is zero, hence we also obtain y3 ≤ 18ik for k = 1, 2. Now, all these together yields

b2N−2 > bN−1bN−3.

Let y4 = ηH(K4 ·∪ K2), z4 = ηH(2K3) and w4 be the number of K3 ∪ 2K2 in H

such that K3 contains exactly one vertices of u1 and u2, and one K2 is an edge of the

cycle C5, and the other K2 contains exactly one vertices of u1 and u2 and a vertex of

C5. So, we have

an−4 = y4 + z4 + w4 + j.

Now,

α3 − α4 = (2i1 − x1)(m2 + t) + (2i2 − x2)(m1 + t) + 5(m1 +m2) + 10t.

Hence, α3 ≥ α4 because ik ≥ xk. Moreover, one can check that j ≤ min{i1, i2},
w4 ≤ y3, y4 ≤ z3 and z4 ≤ min{2x1, 2x2}. So, an−3 ≥ an−4 holds. If m1 +m2 + t > 0

then the strict inequality α3 > α4 holds and we get bN−3 > bN−4. Now suppose that

m1 +m2 + t = 0. In this case i1 + i2 > 0 must hold because otherwise G ∼= K2 ·∪ C5

and G ∼= K2 ·∪ C5 do not belong to M1 family. So, i1 + i2 > j and we get the strict

inequality an−3 > an−4. Thus, we obtain again that bN−3 > bN−4.
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Lastly, let us prove that b2N−3 > bN−2bN−4. First of all, a
2
n−3 > an−2an−4 holds by

the strong log-concavity of σ(H, x). Moreover, α3an−3 ≥ α2an−4 because an−3 ≥ an−4

and α3 ≥ α2. Hence, it suffices to prove that α2
3 + α3an−3 ≥ α2α4 + α4an−2. Now,

with the aid of Maple, we find that α2
3 + α3an−3 − α2α4 − α4an−2 is equal to

5m1(5m1i2 − x2i1) + 5m2(5m2i1 − x1i2) + 5m1(5m1 − δx2) + 5m2(5m2 − δx1) +

(3z3−y2)(m2i1+m1i2)+5t(20t−δy2)+2t(8ti1i2−x1y2−x2y2)+2m2(4m2i
2
1−x1y2)+

2m1(4m1i
2
2 − x2y2) + t(50t− y2)(i1 + i2) +m1m2(24m2i1 − 5y2) + tm1(24ti2 − 5y2) +

tm2(24ti1 − 5y2) +Q(δ, t, j,mk, ik, xk, y2, y3, z3, w3)

where Q(δ, t, j,mk, ik, xk, y2, y3, z3, w3) is a polynomial with nonnegative coefficients.

Now, one can easily check that y2 ≤ z3 and y2 ≤ min{4i1, 4i2} ≤ 20. Also, as we

already noted earlier, xk ≤ ik ≤ 5 holds. Therefore, the result is established.

m

i

A

Figure 2.12: M2 family

Definition 2.4.2. A graph G is in the M2 family (see Figure 2.12) if and only if it

consists of a star K1,i+m and a graph A which belongs to the L or S families such that
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K1,i+m and A have i (0 ≤ i ≤ |V (A)|) vertices in common, and when the i common

vertices are contained in a minimum vertex cover of A, m > 0; otherwise, m ≥ 0.

The following two results are obtained by computer aid.

Lemma 2.4.5. Let A be a graph belonging to S or L families which are depicted in

Figure 2.9 and Figure 2.10 respectively. Let H be graph of order 8 which contains a

vertex v such that H − v ∼= A. If σ(H, x) =
∑

ajx
j then a5 > a4.

Lemma 2.4.6. Let A be graph such that either A belongs to the S family or A is

equal to L(1). Then ηA(2K2) > ηA(3K2).

For a vertex u of a graph G, the edge neighbourhood of u, denoted by ENG(u), is

defined as the set of all edges of G which contain the vertex u.

Theorem 2.4.7. Let G be a graph of order N in M2 family, then σ(G, x) has only

real roots. Moreover, if σ(G, x) =
∑

bix
i, then bN−3 > bN−4.

Proof. Let v be the vertex of G which is adjacent to m leaves and i vertices of A.

Let H be the subgraph induced by A and v. First, let us show that σ(G, x) has only

real roots. By applying the recursive formula (Lemma 2.1.1) for σ-polynomials on

the pendant edges of G, we obtain

σ(G, x) = xm(σ(H, x) +mσ(A, x)).

Let u1, . . . , ui be the vertices of A such that vuj is an edge of G for j = 1, . . . , i. Also,

we apply the recursive formula on the edges vuj for j = 1, . . . , i and we find that

σ(H, x) = xσ(A, x) +
i∑

j=1

σ(Aj, x)

where Aj is a subgraph obtained from A by deleting some of the edges in ENG(uj),

that is, Aj = A− Sj for some Sj ⊆ ENG(uj). So,
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σ(G, x) = xm

(
(x+m)σ(A, x) +

i∑
j=1

σ(Aj, x)

)
.

Let us define a family of graphs G as follows:

G := {A− Sj : A ∈ L ∪ S andSj ⊆ ENG(uj) for some vertex uj ofA}.

Given a graph G, let r1(G) ≤ r2(G) ≤ . . . be the root sequence of σ(G, x). Now let

Ri(G) := {ri(G) : G ∈ G}.

With the aid of Maple, we find that R6(G) = R7(G) = {0} and approximately

−10 < minR1(G) ≈ −9.063 and maxR1(G) ≈ −6.274 < −5;

−5 < minR2(G) ≈ −4.475 and maxR2(G) ≈ −3.149 < −2;

−2 < minR3(G) ≈ −1.880 and maxR3(G) ≈ −1.142 < −1;

−1 < minR4(G) ≈ −0.530 and maxR4(G) ≈ −0.195 < −0.15;

−0.15 < minR5(G) ≈ −0.134 and maxR5(G) = 0.

(Note that maxR5(G) is precisely zero because σ-polynomials always have nonpositive

roots and R5 must contain at least one zero, as the graphs in S ∪ L have chromatic

number 4 and hence their σ-polynomials have exactly three non-zero roots. However,

for our purposes, it will not matter whether it is precisely zero).

Thus, the polynomials

(x+m)σ(A, x) and σ(A1, x), . . . , σ(Ai, x)
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are compatible for m ≥ 10 because the sequence

0 = 0 = 0 > −0.15 > −1 > −2 > −5 > −10

interleaves the root sequences of all those polynomials. Therefore, σ(G, x) has only

real roots by Theorem 2.3.5. If m ≤ 9 there are only finitely many cases and those

cases are verified by computer aided computations.

Now we shall show that bN−3 > bN−4. Let σ(H, x) =
∑

ajx
j and n = |V (H)| = 8.

We consider two cases:

Case 1: A = L(2).

The matching polynomial of A is m(A, x) = 1+ 9x+21x2 +10x3. Note that ηG(K4)

is equal to ηH(K4). Since L(2) has exactly one triangle, we have ηG(K3 ·∪ K2) =

ηH(K3 ·∪K2)+m. Also, ηG(3K2) = ηH(3K2)+mηA(K2) = ηH(3K2)+21m. Therefore,

bN−3 = an−3 + 22m.

G does not contain any subgraph which is isomorphic to K5, K4 ·∪ K2 or 2K3 (and

neither does H). Also,

ηG(K3 ·∪ 2K2) = ηH(K3 ·∪ 2K2) +mηA(K3 ·∪K2) = ηH(K3 ·∪ 2K2) + 3m

and

ηG(4K2) = ηH(4K2) +mηA(3K2) = ηH(4K2) + 10m.

Thus,

bN−4 = an−4 + 13m.

By Lemma 2.4.5, we know that an−3 > an−4. Now, since m is a nonnegative integer

we obtain that bN−3 > bN−4.
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Case 2: A = L(1) or A ∈ S.

First note that ηG(K4) = ηH(K4) = 0. Also, ηG(K3 ·∪ K2) = ηH(K3 ·∪ K2) and

ηG(3K2) = ηH(3K2) +mηA(2K2). Therefore,

bN−3 = an−3 +mηA(2K2).

Now, G does not contain any subgraph isomorphic toK5, K4 ·∪K2 or 2K3 (and neither

does H). Also, ηG(K3 ·∪ 2K2) = ηH(K3 ·∪ 2K2) and ηG(4K2) = ηH(4K2)+mηA(3K2).

Hence,

bN−4 = an−4 +mηA(3K2).

By Lemma 2.4.5, we know that an−3 > an−4. Furthermore, by Lemma 2.4.6, ηA(2K2) >

ηA(3K2). Thus, the result follows.

Lemma 2.4.8. Let G be a graph with α0(G) = 4 and a minimum vertex cover S. If

〈S〉G is not isomorphic to one of the graphs

P4, K3 ·∪K1, 2K2, P3 ·∪K1, or K2 ·∪ 2K1

then, σ(G, x) has all real roots.

Proof. We consider three cases.

Case 1: The maximum degree of 〈S〉G is 3.

In this case there is a vertex v of S such that v is not adjacent to any vertex of

S−{v} in G. Let H = 〈V (G)−{S−{v}}〉G and H̃ = 〈V (G)−{v}〉G, then we have

G = H ∪ H̃. Now, by Theorem 2.3.7, both σ(H, x) and σ(H̃, x) have all real roots

because χ(H) ≥ |V (H)| − 1 and χ(H̃) ≥ |V (H̃)| − 3. Moreover, H ∩ H̃ is a complete

graph in G. Thus, σ(G, x) has all real roots by the Complete Cut-set Theorem.

Case 2: The maximum degree of 〈S〉G is at most 2.
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This means that 〈S〉G is a disjoint union of cycles and paths. So 〈S〉G is isomorphic

to P4, K3 ·∪K1, 2K2, P3 ·∪K1, K2 ·∪ 2K1, 4K1 or C4. By the assumption, the first

five of these cases are excluded. So we need to consider the cases 4K1 and C4.

Subcase 1: S induces an independent set in G.

Then G is a triangle-free graph and we are done by Theorem 2.2.1(iv).

Subcase 2: 〈S〉G ∼= C4.

Then 〈S〉G ∼= 2K2. Let S = {u1, u2, v1, v2} and u1u2 and v1v2 be edges of G. Let

H = 〈V (G)−{v1, v2}〉G and H̃ = 〈V (G)−{u1, u2}〉G, then G = H ∪ H̃. Notice that

χ(H) ≥ |V (H)| − 2 and χ(H̃) ≥ |V (H̃)| − 2, so by Theorem 2.3.7, the σ-polynomials

of H and H̃ have all real roots. Thus, the result follows again from the Complete

Cut-set Theorem.

The following result is folklore.

Theorem 2.4.9. A product of log-concave polynomials with nonnegative coefficients

and no internal zero coefficients is again log-concave.

The results proven in this section yield the following.

Theorem 2.4.10. If G ∼= H ∨Kn−r is a graph of order n with χ(G) ≥ n− 4 where

H is not equal to one of the graphs which are excluded in Lemma 2.4.8, then σ(G, x)

is log-concave.

2.5 Density of the real roots of σ-polynomials in (−∞, 0)

We have seen that most of the σ-roots of small graphs are real, and Figure 2.2 suggests

that the real roots may fill up to the negative real axis. In this section, we show that

this is indeed the case, by considering related polynomials as well.

For a sequence {fn(x)} of polynomials, z is called a limit of roots of {fn(x)} if there
is a sequence {zn} such that fn(zn) = 0 and zn converges to z. Let P0(x), P1(x), . . .
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be a sequence of polynomials in C[x] which satisfy the recursion of degree k

Pn+k(x) = −
k∑

j=1

fj(x)Pn+k−j(x) (2.4)

where the fj are polynomials. The characteristic equation of this recursion is

λk +
k∑

j=1

fj(x)λ
k−j = 0. (2.5)

Let λ1(x), . . . , λk(x) be the roots of the characteristic equation. If the λj(x) are

distinct for a particular x, then it is well known that the solution of the recursion in

(2.4) has the form

Pn(x) =
k∑

j=1

αj(x)λj(x)
n. (2.6)

If there are repeated roots values at x, (2.6) is modified in the usual way, (e.g., if the

root λ has multiplicity t then the term α1λ
n+α2λ

n+ · · ·+αtλ
n is replaced by a term

α1λ
n + nα2λ

n + · · · + nt−1αtλ
n). The αj(x) are determined in any event by solving

the k linear equations in the αj(x) obtained by letting n = 0, 1, . . . , k − 1 in (2.6) or

its variant.

We define the nondegeneracy conditions on the recursive family of polynomials in

(2.4) as follows

(i) {Pn} does not satisfy a recursion of order less than k.

(ii) For no pair i �= j is λi(x) ≡ ωλj(x) for some ω ∈ C of unit modulus.

The following result is due to Beraha, Kahane and Weiss [3] (see also [13] for how

it can be applied to functions of the form given in Equation (2.6)).
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Theorem 2.5.1 (Beraha-Kahane-Weiss Theorem, [3]). Suppose that {Pn(x)} is a

sequence of polynomials which satisfies (2.4) and the nondegeneracy requirements.

Then z is a limit of roots of {Pn} if and only if one of the following holds in (2.6):

(i) two or more of the λi(z) are of equal modulus and strictly greater in modulus

than the others (if any).

(ii) for some j, λj(z) has modulus strictly greater than all the other λi(z) have and

αj(z) = 0.

Theorem 2.5.2. Let G be any graph with an identified vertex v. We define a family

of graphs, F(G, v), which consists of G0, G1, G2, . . . where G0 = G, G1 is obtained

from G by attaching a leaf vertex v1 to v, and for i ≥ 1, Gi+1 is obtained from Gi

by attaching a new leaf vertex vi+1 to vi. Then the roots of adjoint polynomials of

graphs in F(G, v) are dense in (−4, 0).

Proof. First note that by the edge deletion-contraction formula we have

h(Gn, x) = h(Gn − vn−1vn, x) + h(Gn � vn−1vn, x)

= h(Gn−1 ·∪K1, x) + h(Gn−2 ·∪K1, x)

= xh(Gn−1, x) + xh(Gn−2, x).

For simplicity, let fn(x) = h(Gn, x). Now we have a sequence of polynomials f1(x), f2(x), . . .

satisfying a recursion of degree 2. So the characteristic equation of this recursion is

λ2 − xλ− x = 0.

The roots of this characteristic equation are

λ1(x) =
x+

√
x2 + 4x

2
and λ2(x) =

x−√x2 + 4x

2
.
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It is easy to check that the nondegeneracy conditions are satisfied. Therefore, by

Beraha-Kahane-Weiss Theorem, every x ∈ C satisfying

∣∣∣∣∣x+
√
x2 + 4x

2

∣∣∣∣∣ =
∣∣∣∣∣x−

√
x2 + 4x

2

∣∣∣∣∣ (2.7)

is a limit of the roots of the sequence {fn(z)}∞n=1. Observe that x ∈ C satisfies (2.7)

if and only if ∣∣∣x+
√
x2 + 4x

∣∣∣ = ∣∣∣x−√x2 + 4x
∣∣∣

or equivalently, ∣∣∣∣∣1 +
√
x2 + 4x

x

∣∣∣∣∣ =
∣∣∣∣∣1−

√
x2 + 4x

x

∣∣∣∣∣ (2.8)

when x �= 0. Now, x ∈ C is a solution of (2.8) if and only if
√
x2+4x
x

is equidistant

from 1 and −1, that is,
√
x2+4x
x

is on the imaginary axis. For a ∈ R,

√
x2 + 4x

x
= ai ⇐⇒ x2 + 4x

x2
= −a2 ⇐⇒ x = − 4

1 + a2
.

Thus, x = − 4
1+a2

is a limit of the roots of {fn(z)}n=1,2,... for every real number a.

Therefore, the roots of {fn(z)}n=1,2,... are dense in (−4, 0).

Given a graph G of order n, the adjacency matrix of G, A(G), is the n×n matrix

with ij-entry equal to 1 if the i-th vertex of G is adjacent to the j-th, and equal to

0 otherwise. The characteristic polynomial φ(G, x) of G is defined by

φ(G, x) = det(xI − A(G)).

It is known that (see, for example, [31, pg. 2]) if G is a forest then φ(G, x) = m(G, x).

A tree T is called a balanced rooted tree with a root w [35] if T has a vertex w

and there exist integers n1, n2, . . . , nk such that V (T ) \{w} can be partitioned into k
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w

Figure 2.13: A balanced rooted tree T (3, 2, 1) with a root w.

subsets A1, A2, . . . , Ak, where w has exactly nk neighbours in Ak and each vertex in Ai

has exactly ni−1 neighbours in Ai−1 for 2 ≤ i ≤ k, see, for example, Figure 2.13. We

will denote T by T (nk, nk−1, . . . , n1). Note that if ni = n for every i with 1 ≤ i ≤ k

then T (nk, nk−1, . . . , n1) is a complete n-ary tree on nk+1−1
n−1

vertices and we denote it

by T k
n . The front divisor of T (nk, nk−1, . . . n1) is a directed graph D(nk, nk−1, . . . n1)

with vertices v0, v1, . . . vk; a vertex vi is joined by nk−i parallel arcs to vi+1 and vi+1

is joined by one arc to vi, for 0 ≤ i ≤ k − 1. In [35] it was shown that for k ≥ 2

φ(D(nk, nk−1 . . . n1), x) = xφ(D(nk−1, nk−2 . . . n1), x)− nk φ(D(nk−2, nk−1 . . . n1), x).

Since the characteristic polynomial of D(nk, nk−1, . . . n1) divides the characteristic

polynomial of T (nk, nk−1, . . . n1) (see [35]), it follows that the roots of the character-

istic polynomial of T (nk, nk−1, . . . n1) include the roots of the following recursively

defined polynomial Pk(x):

Pj(x) = xPj−1(x)− nj Pj−2(x) (2.9)

where j = 2, . . . , k.
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Theorem 2.5.3. The roots of σ-polynomials are dense in (−∞, 0).

Proof. Since every triangle-free graph G satisfies σ(G,−x2) = (−x)n m(G, x), it suf-

fices to show that the roots of matching polynomials of triangle-free graphs are dense

in (0,∞). Obviously, trees are triangle-free graphs. Also, as we already mentioned,

the matching polynomials of trees are equal to their characteristic polynomials [31].

So it suffices to show that the roots of characteristic polynomials of complete n-ary

trees are dense in (0,∞). Let n be a fixed positive integer. By the formula given

in (2.9), the roots of the characteristic polynomial of T k
n include the roots of the

polynomial Pk(x) which is defined recursively as follows:

Pk(x) = xPk−1(x)− nPk−2(x)

for k ≥ 2. Now we have a sequence of polynomials P2(x), P3(x), . . . satisfying a

recursion of degree 2. So the characteristic equation of this recursion is

λ2 − xλ+ n = 0.

The roots of this characteristic equation are

λ1(x) =
x+

√
x2 − 4n

2
and λ2(x) =

x−√x2 − 4n

2
.

It is easy to check that the nondegeneracy conditions are satisfied. Therefore, by

Beraha-Kahane-Weiss Theorem, every x ∈ C satisfying

∣∣∣∣x+
√
x2 − 4n

2

∣∣∣∣ =
∣∣∣∣x−

√
x2 − 4n

2

∣∣∣∣ (2.10)
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is a limit of the roots of the sequence {Pk(z)}∞k=2. Observe that x ∈ C satisfies (2.10)

if and only if ∣∣∣x+
√
x2 − 4n

∣∣∣ = ∣∣∣x−√x2 − 4n
∣∣∣

or equivalently, ∣∣∣∣1 +
√
x2 − 4n

x

∣∣∣∣ =
∣∣∣∣1−

√
x2 − 4n

x

∣∣∣∣ (2.11)

Now, x ∈ C is a solution of (2.11) if and only if
√
x2−4n
x

is equidistant from 1 and −1,
that is,

√
x2−4n
x

is on the imaginary axis. For a ∈ R,

√
x2 − 4n

x
= ai ⇐⇒ x2 − 4n

x2
= −a2 ⇐⇒ x = ±2

√
n

1 + a2
.

Thus, x = ±2√ n
1+a2

is a limit of the roots of {Pk(z)}∞k=2 for every real number a.

Therefore, the roots of {Pk(z)}∞k=2 are dense in (−2√n, 2
√
n). Now, letting n→∞,

we obtain that the roots of the characteristic polynomials of complete k-ary trees are

dense in R.



Chapter 3

Chromatic Polynomials

In this chapter we will present new bounds for chromatic polynomials and their roots.

3.1 New Bounds for the Chromatic Polynomial

Let Gk(n) be the family of all k-chromatic graphs of order n. Given a natural number

x ≥ k, it is natural to inquire about the maximum number of x-colourings among

k-chromatic graphs of order n, that is, among graphs in Gk(n). Tomescu [57] studied

this problem and showed the following:

Theorem 3.1.1. [57, pg. 239] Let G be a graph in Gk(n). Then for every x ∈ N,

π(G, x) ≤ (x)↓k xn−k.

Moreover, when x ≥ k, the equality is achieved if and only if G ∼= Kk ·∪ (n − k)K1

(the graph consisting of a k-clique plus n− k isolated vertices).

The next natural problem is to maximize the number of x-colourings of a graph

over the family of connected k-chromatic graphs of order n (we denote this family

by Ck(n)). Interestingly, the problem becomes much more complicated when the

connectedness condition is imposed. The answer is trivial when x = k = 2, as any

2-chromatic connected graph has precisely two 2-colourings. It is well known that

(see, for example, [24]) if G is a connected graph of order n then π(G, x) ≤ x(x−1)n−1

for every x ∈ N and furthermore, when x ≥ 3 the equality is achieved if and only if

52
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G is a tree. Therefore, for k = 2 and x ≥ 3, the maximum number of x-colourings of

a graph in C2(n) is equal to x(x− 1)n−1 and extremal graphs are trees.

Tomescu settled the problem for x = k = 3 in [56] and later extended it for

x ≥ k = 3 in [59] by showing that if G is a graph in C3(n) then

π(G, x) ≤ (x− 1)n − (x− 1) for odd n

and

π(G, x) ≤ (x− 1)n − (x− 1)2 for even n

for every integer x ≥ 3 and furthermore the extremal graph is the odd cycle Cn when

n is odd and an odd cycle with a vertex of degree 1 attached to the cycle (denoted

C1
n−1) when n is even.

One might subsequently think that maximizing the number of x-colourings of a

graph in Ck(n) should depend on the value of k. Let C∗k(n) be the set of all graphs

in Ck(n) which have size
(
k
2

)
+ n− k and clique number k (that is, C∗k(n) consists of

graphs which are obtained from a k-clique by recursively attaching leaves). In [55]

Tomescu considered the problem for x = k ≥ 4 and conjectured the following (see

also [58, 59]):

Conjecture 3.1.2. [55] Let G be a graph in Ck(n) where k ≥ 4. Then

π(G, k) ≤ k! (k − 1)n−k,

or, equivalently, ak(G) ≤ (k − 1)n−k, with the extremal graphs belong to C∗k(n) .

The authors in [24] mention the following conjecture which broadly extends Con-

jecture 3.1.2 to all nonnegative integers x:
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Conjecture 3.1.3. [24, pg. 315] Let G be a graph in Ck(n) where k ≥ 4. Then for

every x ∈ N,

π(G, x) ≤ (x)↓k(x− 1)n−k.

Moreover, for x ≥ k, the equality holds if and only if G belongs to C∗k(n).

It is not hard to see that Conjecture 3.1.3 implies Theorem 3.1.1 because the

chromatic polynomial of a graph is equal to the product of chromatic polynomials

of its connected components. However, the problem of maximizing the number of

colourings appears more difficult when graphs are connected, since the answer to

this problem depends on the value of k (the structure of extremal graphs seem to be

different for k = 2 and 3). As Tomescu points out [57], the difficulty may lie in the

lack of a good characterization of k-critical graphs (those minimal with respect to

k-chromaticity) when k ≥ 4.

If G ∈ C∗k(n) then π(G, x) = (x)↓k (x − 1)n−k, as one can first colour the clique

of order k and then recursively colour the remaining vertices (which have only one

coloured neighbour). On the other hand, one can see that if π(G, x) = (x)↓k (x−1)n−k

then G ∈ C∗k(n) because the multiplicity of the root 1 of the chromatic polynomial

of a graph G is equal to the number of blocks of G [24, pg. 35]. Therefore, in Con-

jecture 3.1.3, the extremal graphs are automatically determined if one can show that

π(G, x) ≤ (x)↓k (x− 1)n−k.

In this section, we first improve Tomescu’s general upper bound (Theorem 3.1.1),

and show that if G ∈ Gk(n), then

π(G, x) ≤ (x)↓k(x− 1)Δ(G)−k+1xn−1−Δ(G)
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for every x ∈ N (Theorem 3.1.5). Secondly, we discuss Conjecture 3.1.3 and show

that if G ∈ Ck(n) where k ≥ 4 then π(G, x) is at most (x)↓k(x− 1)n−k for every real

x ≥ n− 2 +
((

n
2

)− (k
2

)− n+ k
)2

(Theorem 3.1.8).

3.1.1 An improved upper bound for the number of x-colourings

Our goal is to improve Theorem 3.1.1 by finding an upper bound that is dependent

on the maximum degree in the graph. We start by considering the case where there

is a universal vertex, that is one with degree n− 1.

Lemma 3.1.4. Let G be a graph in Gk(n) having Δ(G) = n − 1. Then for every

x ∈ N,

π(G, x) ≤ (x)↓k (x− 1)n−k.

Moreover for x ≥ k, the equality holds if and only if G ∈ C∗k(n).

Proof. Let u be a vertex of G with maximum degree. Since u is a universal vertex, it

cannot be in the same colour class with any other vertex. Therefore, χ(G−u) = k−1

and π(G, x) = x · π(G− u, x− 1). Now, by Theorem 3.1.1,

π(G− u, x) ≤ (x)↓k−1 x
(n−1)−(k−1)

for every x ∈ N and equality holds for x ≥ k−1 if and only if G−u ∼= Kk−1 ·∪(n−k)K1.

Replacing x with x− 1 in the latter inequality yields

π(G− u, x− 1) ≤ (x− 1)↓k−1 (x− 1)n−k

for every integer x ≥ 1 and equality holds for x ≥ k if and only if G−u ∼= Kk−1 ·∪(n−
k)K1. Hence, the result follows as π(G, x) = x·π(G−u, x−1) and (x)↓k = x (x−1)↓k−1.
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Theorem 3.1.5. Let G be a graph in Gk(n). Then for every natural number x,

π(G, x) ≤ (x)↓k (x− 1)Δ(G)−(k−1) xn−1−Δ(G).

Proof. We proceed by induction on the number of vertices. For the basis step, n = k

and G is a complete graph, so π(G, x) = (x)↓k. Now the result is clear as Δ(Kk) =

k − 1.

Now we may assume that G is a k-chromatic graph of order n ≥ k+1. If Δ(G) =

n− 1 then the result follows by Lemma 3.1.4. So let us assume that Δ(G) < n− 1.

Let u be a vertex of maximum degree. Set t = n− 1−Δ(G) and let {v1, . . . , vt} be

the set of non-neighbours of u in G, (that is, {v1, . . . , vt} = V (G) \ NG[u]). We set

G0 = G and

Gi = Gi−1 + uvi

Hi = Gi · uvi

for i = 1, . . . , t. By repeated use of the edge addition-contraction formula,

π(G, x) = π(Gt, x) +
t∑

i=1

π(Hi, x).

It is clear that k ≤ χ(Gt), χ(Hi) ≤ k+1 for i = 1, 2, . . . , t. Also, observe that Gt is a

graph of order n having Δ(Gt) = n− 1 and each Hi is a graph of order n− 1 having

Δ(Hi) ≥ Δ(G) + i− 1, and hence

Δ(Hi)−Δ(G)− i+ 1 ≥ 0.

Claim 1: π(Gt, x) ≤ (x)↓k (x− 1)n−k for every x ∈ N.
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Proof of Claim 1: Since Δ(Gt) = n− 1, we obtain by Lemma 3.1.4 that

π(Gt, x) ≤ (x)↓χ(Gt) (x− 1)n−χ(Gt).

Also, (x)↓χ(Gt) (x − 1)n−χ(Gt) ≤ (x)↓k (x − 1)n−k as χ(Gt) ≥ k and (x)↓k+1 (x −
1)n−(k+1) ≤ (x)↓k (x− 1)n−k for x ≥ k). Hence Claim 1 follows.

Claim 2: π(Hi, x) ≤ (x)↓k (x− 1)Δ(G)+i−k xn−i−Δ(G)−1 for every x ∈ N.

Proof of Claim 2: By the induction hypothesis on Hi, if χ(Hi) = k then

π(Hi, x) ≤ (x)↓k (x− 1)Δ(Hi)−k+1xn−2−Δ(Hi)

and if χ(Hi) = k + 1 then

π(Hi, x) ≤ (x)↓k+1 (x− 1)Δ(Hi)−(k+1)+1 x(n−1)−1−Δ(Hi)

= (x)↓k+1(x− 1)Δ(Hi)−kxn−2−Δ(Hi)

≤ (x)↓k(x− 1)Δ(Hi)−(k−1)xn−2−Δ(Hi)

for every x ∈ N.

Since Δ(Hi)−Δ(G)− i+ 1 ≥ 0, we find that

(x− 1)Δ(Hi)−Δ(G)−i+1 ≤ xΔ(Hi)−Δ(G)−i+1,

which is equivalent to

(x− 1)Δ(Hi)−k+1xn−2−Δ(Hi) ≤ (x− 1)Δ(G)+i−kxn−i−Δ(G)−1.
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This completes the proof of Claim 2.

The inequality proven in Claim 2 yields

t∑
i=1

π(Hi, x) ≤
t∑

i=1

(x)↓k (x− 1)Δ(G)+i−k xn−i−Δ(G)−1

= (x)↓k(x− 1)Δ(G)−kxn−Δ(G)−1

t∑
i=1

(
x− 1

x

)i

Summing the geometric series, we find

t∑
i=1

(
x− 1

x

)i

=
1− (x−1

x

)t+1

1− (x−1
x

) − 1.

Now, simplifying the expression on the right hand side of the latter equality and then

substituting t = n− 1−Δ(G) we get

t∑
i=1

(
x− 1

x

)i

= (x− 1)− (x− 1)n−Δ(G)

xn−1−Δ(G)
.

Therefore,

t∑
i=1

π(Hi, x) ≤ (x)↓k(x− 1)Δ(G)−kxn−Δ(G)−1

(
(x− 1)− (x− 1)n−Δ(G)

xn−1−Δ(G)

)

= (x)↓k
(
(x− 1)Δ(G)−k+1xn−Δ(G)−1 − (x− 1)n−k

)
.

Furthermore, recall that π(Gt, x) ≤ (x)↓k (x−1)n−k by the inequality proven in Claim

1, so

π(G, x) = π(Gt, x) +
t∑

i=1

π(Hi, x)

≤ (x)↓k (x− 1)n−k + (x)↓k
(
(x− 1)Δ(G)−k+1xn−Δ(G)−1 − (x− 1)n−k

)
= (x)↓k (x− 1)Δ(G)−k+1 xn−Δ(G)−1
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and we are done.

3.1.2 Maximizing the number of colourings for connected graphs of

fixed order and chromatic number

Conjecture 3.1.3 is true for many graph families. For example, Tomescu [59] proved

it for k = 4 under the additional restriction of G being also planar. Also, it is

easy to see that if the clique number of graph G in Ck(n) is equal to k then G

contains a spanning subgraph which is isomorphic to a graph in C∗k(n). Therefore,

Conjecture 3.1.3 holds for every graph G in Ck(n) having ω(G) = k (such graphs

include all perfect graphs [65]).

It is known that (see, for example, [55, 65]) the minimum number of edges of a

graph in Ck(n) is equal to
(
k
2

)
+n−k. Furthermore, when k = 3, the extremal graphs

are unicyclic graphs with an odd cycle, and when k �= 3, extremal graphs belong to

C∗k(n). As the chromatic polynomial of a graph of order n with m edges has the form

π(G, x) = xn −mxn−1 + · · · it is not difficult to see that Conjecture 3.1.3 holds for

all sufficiently large x. However it becomes quite difficult to find the smallest such

value of x.

We begin with a lemma which gives an upper bound for the number of colour

partitions of a graph. We will need this result in the sequel to bound the chromatic

polynomial and its roots.

Lemma 3.1.6. Let G be a graph of order n and size m. Then for 1 ≤ i ≤ n− 1,

ai(G) ≤ 1

(n− i)!

((
n

2

)
−m

)n−i

.

Proof. We proceed by induction on
(
n
2

)−m, the number of non-edges of the graph. For

the basis step, suppose that G is a complete graph. Then, ai(G) = 0 for 1 ≤ i ≤ n−1

and an(G) = 1. Hence the result is clear. Now we may assume that G has at least
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one pair of nonadjacent vertices, say u and v. The graph G+uv has order n and size

m + 1. Also, the graph G · uv has order n− 1 and size m− |NG(u) ∩NG(v)|. Thus
the number of non-edges of G + uv and G · uv are strictly less than the number of

non-edges of G. Note that if i = n−1 then the result is clear since an−1(G) =
(
n
2

)−m,

so we may assume that 1 ≤ i ≤ n − 2. Set β =
(
n
2

) − m. Then by the induction

hypothesis,

ai(G+ uv) ≤ 1

(n− i)!
(β − 1)n−i

and

ai(G · uv) ≤ 1

(n− 1− i)!
(β − 1)n−1−i.

By the edge addition-contraction formula,

ai(G) = ai(G+ uv) + ai(G · uv).

Therefore,

ai(G) ≤ 1

(n− i)!
(β − 1)n−i +

1

(n− 1− i)!
(β − 1)n−1−i

=
1

(n− i)!

(
(β − 1)n−i + (n− i)(β − 1)n−1−i

)

≤ 1

(n− i)!

n−i∑
j=0

(
n− i

j

)
(β − 1)n−i−j

=
1

(n− i)!
βn−i

where the last inequality holds since

n−i∑
j=0

(
n− i

j

)
(β−1)n−i−j = (β−1)n−i+(n−i)(β−1)n−1−i+

(
n− i

2

)
(β−1)n−2−i+· · · .

Thus, the proof is complete.
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Let f(z) =
∑d

i=0 ciz
i be a real polynomial of degree d ≥ 1. Then the Cauchy

bound of f (see, for example, [46, pg. 243]), denoted by ρ(f), is defined as the unique

positive root of the equation

|c0|+ |c1|x+ · · ·+ |cd−1|xd−1 = |cd|xd

when f is not a monomial, and zero otherwise (the fact that f has a unique positive

real root follows from the Intermediate Value Theorem and Descartes’ rule of signs).

It is known that the maximum of the moduli of the roots of f is bounded by ρ(f),

and the Cauchy bound satisfies (see [46, pg. 247])

ρ(f) ≤ 2 max

{∣∣∣∣ cicd
∣∣∣∣
1/(d−i)

}
0≤i≤d−1

. (3.1)

Let ξ1, ξ2, . . . be a sequence of real numbers. Then the polynomials

P0(z) := 1, Pd(z) :=
d∏

j=1

(z − ξj) (d = 1, 2, . . . )

are called the Newton bases with respect to the nodes ξ1, ξ2, . . . ; they form a basis for

the vector space of all real polynomials [46, pg. 256].

Theorem 3.1.7. [46, pg. 266] Let f(z) =
∑d

j=0 cjPj(z) be a polynomial of degree d

where Pj’s are the Newton bases with respect to the nodes ξ1, . . . ξd. Then f has all

its roots in the union of the discs

Dj := {z ∈ C : |z − ξj| ≤ ρ} (j = 1, . . . , d)

where ρ is the Cauchy bound of
∑d

j=0 cjz
j.
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Theorem 3.1.8. Let G be a graph in Ck(n) \ C∗k(n) where k ≥ 4. Then

1

(x)↓k
π(G, x) < (x− 1)n−k

for every real number x where x > n− 2 +
((

n
2

)− (k
2

)− n+ k
)2
.

Proof. Let G∗ be a graph in C∗k(n). Then π(G∗, x) = (x)↓k(x− 1)n−k. Let

f(x) =
1

(x)↓k
(π(G∗, x)− π(G, x))

=
1

(x)↓k

n∑
r=k

(ar(G
∗)− ar(G)) (x)↓r.

Now, an(G) = an(G
∗) = 1. Also, an−1(G

∗) =
(
n
2

) − (k
2

) − (n − k) and an−1(G) =(
n
2

)−m. Since m >
(
k
2

)
+ (n− k) we have an−1(G

∗) > an−1(G). Therefore, f(x) is a

polynomial of degree n− k − 1 with the leading coefficient an−1(G
∗)− an−1(G) > 0.

As the leading coefficient of the polynomial f is positive, it suffices to show that

the largest real root of f is at most n − 2 +
((

n
2

)− (k
2

)− n+ k
)2
. Indeed, we shall

prove a stronger statement, namely that if z ∈ C is a root of f then 
(z) ≤ n− 2 +((
n
2

)− (k
2

)− n+ k
)2
.

Set αr = ar(G
∗) − ar(G). Thus αn−1 = an−1(G

∗) − an−1(G) > 0 and all αr’s are

integers, and

f(x) = αk + αk+1(x− k) + αk+2(x− k)(x− k− 1) + · · ·+ αn−1(x− k) · · · (x− n+ 2)

that is,

f(x) =
n−1−k∑
j=0

αk+j Pj(x)

where Pj(x)’s are Newton bases with respect to nodes k, k + 1, . . . , n− 2.
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By Theorem 3.1.7, f has all its roots in the union of the discs centered at

k, k + 1, . . . , n− 3, n− 2

each of radius ρ where ρ is the Cauchy bound of

g = αn−1z
n−k−1 + αn−2z

n−k−2 + αn−3z
n−k−3 + · · ·+ αk.

By the inequality given in (3.1), the Cauchy bound of g satisfies

ρ ≤ 2max

{∣∣∣∣αn−r

αn−1

∣∣∣∣
1/(r−1)

}
2≤r≤n−k

.

Note that as all of the αr’s are integers with αn−1 > 0,

∣∣∣∣αn−r

αn−1

∣∣∣∣ ≤ |αn−r| ≤ max{an−r(G), an−r(G
∗)}.

Moreover, by Lemma 3.1.6,

an−r(G) ≤
((

n
2

)−m
)r

r!
and an−r(G

∗) ≤
((

n
2

)− (k
2

)− n+ k
)r

r!
.

Now, since m >
(
k
2

)
+ n− k we obtain that

max{an−r(G), an−r(G
∗)} ≤

((
n
2

)− (k
2

)− n+ k
)r

r!
.

So,

∣∣∣∣αn−r

αn−1

∣∣∣∣
1/(r−1)

≤
(((

n
2

)− (k
2

)− n+ k
)r

r!

)1/(r−1)

=

((
n
2

)− (k
2

)− n+ k
)r/(r−1)

(r!)1/(r−1)
.
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As r increases,
((

n
2

)− (k
2

)− n+ k
)r/(r−1)

decreases. Also, we have the following list

of equivalent inequalities

((r + 1)!)1/r ≥ (r!)1/r−1

((r + 1)!)r−1 ≥ (r!)r

((r + 1)!)r−1 ≥ (r!)r−1r!

(r + 1)r−1 ≥ r!

where the last inequality is clear. So, (r!)1/(r−1) increases as r increases. Hence

{((
n
2

)− (k
2

)− n+ k
)r/(r−1)

(r!)1/(r−1)

}
2≤r≤n−k

is a decreasing sequence and therefore,

max

{∣∣∣∣αn−r

αn−1

∣∣∣∣
1/(r−1)

}
2≤r≤n−k

≤
((

n
2

)− (k
2

)− n+ k
)2

2
.

Thus, we obtain that ρ ≤ ((n
2

)− (k
2

)− n+ k
)2

and the result follows.

If G is a connected graph of order n and size m with π(G, x) =
∑n

i=1(−1)n−ihi x
i

then it is easy to see that

(
n− 1

i

)
≤ hn−i ≤

(
m

i

)
(3.2)

from the Broken Cycle Theorem.

The Turán graph Tn,k is the complete k-partite graph of order n whose partite

sets differ in size by at most 1. So, this means that each partite set has size �n/k� or
�n/k�. In the next theorem, we will use the fact that among all k-colourable graphs
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with n vertices, Tn,k is the unique graph with the most edges (see, for example, [65, pg.

207]).

Theorem 3.1.9. Let G be a graph in Ck(n) \ C∗k(n) where k ≥ 4. Then

π(G, x) < (x)↓k(x− 1)n−k

for every real number x where x > 2
(|E(Tn,k)|

2

)
.

Proof. Let G∗ be in C∗k(n), then π(G∗, x) = (x)↓k(x− 1)n−k. Let

f(x) = π(G∗, x)− π(G, x)

=
n−1∑
i=1

(−1)n−i(hn−i(G
∗)− hn−i(G))xi

=
n−1∑
i=1

αi x
i.

So, f is a polynomial of degree n − 1 with a positive leading coefficient αn−1 =

mG − mG∗ > 0. Now it suffices to show that the largest real root of f is at most

2
(|E(Tn,k)|

2

)
. In fact we shall show that if z ∈ C is a root of f then |z| ≤ 2

(|E(Tn,k)|
2

)
.

Let z ∈ C be a root of f and ρ(f) be the Cauchy bound of f , then by (3.1), we know

that

|z| ≤ ρ(f) ≤ 2 max

{∣∣∣∣ αi

αn−1

∣∣∣∣
1/n−1−i

}
1≤i≤n−2

.

Moreover,

∣∣∣∣ αi

αn−1

∣∣∣∣ ≤ |αi| = |hn−i(G
∗)− hn−i(G)| ≤ max{hn−i(G

∗), hn−i(G)}.

By the inequality given in 3.2, we have

hn−i(G
∗) ≤ (mG∗

i

)
and hn−i(G) ≤ (mG

i

)
.
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Let M = |E(Tn,k)|. Since M ≥ mG > mG∗ we obtain that

max{hn−i(G
∗), hn−i(G)} ≤

(
M

i

)
.

Now it is easy to see that (
M

2

)
≥
(

M

i+ 1

)1/i

for every i with 1 ≤ i ≤ n− 2 because

M i(M − 1)i

2i
≥ M(M − 1)(M − 2) · · · (M − i)

(i+ 1)!
.

Thus, ρ(f) ≤ 2
(
M
2

)
and the result follows.

In [24] it was shown that if G is a connected graph of order n, then for every

x ∈ N,

π(G, x) ≤ x(x− 1)n−1

where equality holds for x ≥ 3 if and only if G is a tree. From this we can prove that

to prove Conjecture 3.1.3, it is sufficient to prove it for 2-connected graphs.

Lemma 3.1.10. Let G be a graph in Gk(n) consisting of t blocks B1, . . . , Bt and ni

be the order of Bi. Let also x be a natural number. Suppose that for some block Bi

with χ(Bi) = k, the inequality π(Bi, x) ≤ (x)↓k (x− 1)ni−k holds. Then,

π(G, x) ≤ (x)↓k (x− 1)n−k.

Moreover, for x ≥ k the equality π(G, x) = (x)↓k (x − 1)n−k holds if and only if G

has exactly one k-chromatic block, say Bi, and for this block the equality π(Bi, x) =

(x)↓k (x− 1)ni−k holds, and all the rest of the blocks are K2’s.
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Proof. Clearly n1 + n2 + · · ·nt = n + t − 1. Let B1 be a block of G such that

χ(B1) = k and π(B1, x) ≤ (x)↓k (x−1)n1−k. Since Bi is a connected graph, π(Bi, x) ≤
x(x− 1)ni−k for each i ≥ 2, as noted earlier. Also, by the corollary of the Complete

Cutset Theorem, we obtain that

π(G, x) = π(B1, x)
π(B2, x)

x
. . .

π(Bt, x)

x

≤ (x)↓k (x− 1)n1−k(x− 1)n2−1 · · · (x− 1)nt−1

= (x)↓k (x− 1)n1+n2+···nt−k−(t−1)

= (x)↓k (x− 1)n+t−1−k−(t−1)

= (x)↓k (x− 1)n−k.

Now, π(G, x) = (x)↓k (x − 1)n−k if and only if π(B1, x) = (x)↓k (x − 1)n1−k and

π(Bi, x) = x(x−1)ni−1 for i ≥ 2. The latter equality holds if and only if Bi is a tree.

But since Bi is a block this means that Bi is equal to a K2.

In fact, we can show that to prove Conjecture 3.1.3 it is sufficient to prove it in a

subclass of 2-connected graphs, namely k-critical graphs. A graph G with no isolated

vertices is called k-critical if χ(G) = k and χ(G−e) = k−1 for every edge e ∈ E(G).

Also, it it is not difficult to see that if G is k-critical then δ(G) ≥ k − 1 and G is

2-connected.

Lemma 3.1.11. Suppose that for every k-critical graph of order n with k ≥ 4 and

for every x ∈ N with x ≥ k, the inequality π(G, x) < (x)↓k(x−1)n−k holds. Then, for

every graph G ∈ Ck(n) and for every x ∈ N, the inequality π(G, x) < (x)↓k(x− 1)n−k

holds. Furthermore, in this case, when x ≥ k the equality is achieved if and only if

G ∈ C∗k(n).
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Proof. We proceed by induction on the number of edges of G. If G has the minimum

number of edges among all connected k-chromatic graphs of order n then G ∈ C∗k(n)
and therefore π(G, x) = (x)↓k(x − 1)n−k for every x. By the assumption, we may

assume that G is not a k-critical graph. Also, the result is trivial when x < k, so we

assume that x ≥ k. Now we will consider two cases:

Case 1: G is a 2-connected graph.

Since G is not k-critical, there exist an edge e ∈ E(G) such that χ(G− e) = k. Also,

G− e is a connected graph, as G is 2-connected. So, G− e ∈ Ck(n).
If G − e /∈ C∗k(n) then by the induction hypothesis on G − e we have π(G, x) <

(x)↓k(x− 1)n−k. Thus, we obtain that

π(G, x) = π(G− e, x)− π(G · e, x) < (x)↓k(x− 1)n−k.

Now suppose that G− e ∈ C∗k(n). Then χ(G · e) = k since G is 2-connected, and

therefore π(G · e, x) > 0. Again we obtain that π(G, x) = π(G− e, x)− π(G · e, x) <
(x)↓k(x− 1)n−k as π(G · e, x) > 0.

Case 2: G is not a 2-connected graph.

Let B1, . . . , Bt be the blocks of G and t ≥ 2. Since the chromatic number of G is

equal to the maximum of the chromatic numbers of its blocks, there is a block, say

B1, such that χ(B1) = k. By the induction hypothesis on B1, we have π(B1, x) <

(x)↓k(x− 1)nB1
−k. Thus, the result follows from Lemma 3.1.10.

In Lemma 3.1.10, we showed that to prove Conjecture 3.1.3, it is sufficient to prove

it for 2-connected graphs. Therefore, one might want to determine the maximum

number of x-colourings of a 2-connected k-chromatic graph of order n. In [60], the

maximum number of x-colourings of a 2-connected 3-chromatic graph of order n was

determined. For k ≥ 4, from some computations on small graphs, we have noted that

the following strengthening of Conjecture 3.1.3 might hold.
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Conjecture 3.1.12. Let G be a 2-connected k-chromatic graph of order n > k ≥ 4.

Then for all x ≥ k,

π(G, x) ≤ (x)↓kπ(Cn−k+2, x)

x(x− 1)
,

with equality holding if G arises by attaching an ear to Kk (an ear is a new path or

cycle that overlaps an existing graph only in its two endpoints).

 G                                                                               H
Figure 3.1: Among all 3-connected 3-chromatic graphs of order 8, the graph G has
the largest number of 3-colourings whereas the graph H has the largest number of
4-colourings.

What about for even higher connectivity? We have found that among all 3-

connected 3-chromatic graphs of order 8, the graph G shown at the left of Figure 3.1

is the unique 3-connected 3-chromatic graph of order 8 with the largest number of

3-colourings (66), but the graph H on the right (which happens to be a circulant

graph) has the most 4-colourings, 2140 (compared to G’s 2060 4-colourings). Of

course, for any positive integers l and k, there is always an l-connected k-chromatic

graph of order n with the most x-colourings, provided x is large enough, but our

example shows that for some classes, we cannot start necessarily at x = k.
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3.1.3 Maximizing the number of i-colour partitions

It is straightforward to see that if some graph in a subclass of k-chromatic graphs

has the largest number of i-colour partitions for every i among all such graphs, it

necessarily has the largest number of x-colourings in the subclass. It seems reasonable

that the extremal graphs in C∗k(n) have the largest number of i-colour partitions, and

likewise for the graphs in Conjecture 3.1.12. In [59], this was proposed as a conjecture.

Conjecture 3.1.13. [59] Let k ≥ 4 and k ≤ i ≤ n − 1. If a graph G achieves

the maximum number of i-colour partitions over the family of connected k-chromatic

graphs of order n then G ∈ C∗k(n).

It is not difficult to see that the chromatic polynomials of two graphs are the same

if and only if their σ-polynomials are the same. All graphs in C∗k(n) have the same

chromatic polynomial, namely (x)↓k(x − 1)n−k. Therefore, if G and and H are two

graphs in C∗k(n) then ai(G) = ai(H) for every i.

Let exti(n, k) denote the number of i-colour partitions of a graph in C∗k(n). Also,
let Qn,k

∼= K1 ∨ (Kk−1 ·∪ (n − k)K1). That is, Qn,k is the graph obtained from a

k-clique by attaching n− k leaves to a single vertex of the k-clique.

Figure 3.2: The graph Q7,4

It is known that [57] (see Theorem 3.1.14) Kk ·∪ (n − k)K1 is the unique graph

which maximizes the number of i-colour partitions of a k-chromatic graph of order

n for k ≤ i ≤ n − 1. By using this, we can show that Conjecture 3.1.13 holds for

graphs which have a universal vertex.
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Theorem 3.1.14. [57] Let k ≤ i ≤ n − 1. If a graph G achieves the maximum

number of i-colour partitions over the family of k-chromatic graphs of order n then

G ∼= Kk ·∪ (n− k)K1.

Proposition 3.1.15. Let G ∈ Ck(n) be a graph such that Δ(G) = n − 1. Then for

every i with k ≤ i ≤ n− 1,

ai(G) ≤ exti(n, k)

where the equality is achieved if and only if G ∼= Qn,k.

Proof. Let u be a universal vertex of G. So, ai(G) = ai−1(G − u). Since G − u is a

(k − 1)-chromatic graph of order n− 1, by Theorem 3.1.14 we find that

ai−1(G− u) ≤ ai−1(Kk−1 ·∪ (n− k)K1)

where the equality is achieved for n−1 ≥ i−1 ≥ k−1 if and only ifG−u ∼= Kk−1 ·∪(n−
k)K1. Let v be the universal vertex of Qn,k. Since Qn,k−v ∼= Kk−1 ·∪(n−k)K1 we find

that ai(Qn,k) = ai−1(Qn,k−v) = ai−1(Kk−1 ·∪(n−k)K1). Therefore, ai(G) ≤ exti(n, k)

for k ≤ i ≤ n− 1 where the equality is achieved if and only if G ∼= Qn,k.

Now we shall prove some recursive formulas for exti(n, k) .

Proposition 3.1.16. Let n > i ≥ k. Then

(i) exti(n, k) = exti−1(n− 1, k) + (i− 1) exti(n− 1, k);

(ii) exti(n, k) = exti(n, k + 1) + (k − 1) exti(n− 1, k);

(ii) exti(n, k) = exti−1(n− 1, k − 1) + (i− k + 1) exti(n− 1, k − 1).

Proof. By the definition, exti(n, k) = ai(Qn,k). Let V (Qn,k) = A ·∪B where A induces

a k-clique and B consists of the n− k leaves. Also let u ∈ A be the universal vertex

of Qn,k and A \ {u} = {u1, . . . , uk−1}.
(i) Let v ∈ B. Then by the edge deletion-contraction formula,
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ai(Qn,k) = ai(Qn,k − uv)− ai(Qn,k · uv).

Observe that

Qn,k − uv ∼= K1 ·∪Qn−1,k and Q(n, k) · uv ∼= Qn−1,k.

Also, recall that ai(G ·∪K1) = ai−1(G) + iai(G) for any graph G. Therefore,

ai(Qn,k) = ai(Qn,k − uv)− ai(Qn,k · uv)

= ai(K1 ·∪Qn−1,k)− ai(Qn−1,k)

= ai−1(Qn−1,k) + iai(Qn−1,k)− ai(Qn−1,k)

= ai−1(Qn−1,k) + (i− 1)ai(Qn−1,k)

= exti−1(n− 1, k) + (i− 1) exti(n− 1, k).

(ii) By adding and contracting the edges vu1, vu2, . . . vuk−1 successively, one can verify

that

ai(Qn,k) = ai(Qn,k+1) + (k − 1)ai(Qn−1,k).

(iii) By deleting and contracting the edges u1u, u1u2, . . . , u1uk−1 successively one can

verify that

ai(Qn,k) = ai−1(Qn−1,k−1) + (i− k + 1)ai(Qn−1,k−1).

In the next result we show that to prove Conjecture 3.1.13 it suffices to prove it

for critical graphs.

Theorem 3.1.17. Suppose that for every k-critical graph of order n with k ≥ 4 and

for every i with k ≤ i ≤ n − 1 the strict inequality ai(G) < exti(n, k) holds. Then,

for every graph G ∈ Ck(n) and for every i with k ≤ i ≤ n− 1 the inequality ai(G) ≤
exti(n, k) holds. Furthermore, the equality is achieved if and only if G ∈ C∗k(n).
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Proof. We proceed by induction on the number of edges of G. If G has the minimum

number of edges among all connected k-chromatic graphs of order n then G ∈ C∗k(n)
and therefore ai(G) = exti(n, k) for every i. By the assumption, we may assume that

G is not a k-critical graph. Now we will consider two cases:

Case 1: G is a 2-connected graph.

Since G is not k-critical, there exist an edge e ∈ E(G) such that χ(G − e) = k.

Also, G− e is a connected graph, as G is 2-connected. So, G− e ∈ Ck(n).
If G − e /∈ C∗k(n) then by the induction hypothesis on G − e we obtain that

ai(G − e) < exti(n, k). Thus, we get ai(G) = ai(G − e) − ai(G · e) < exti(n, k) as

ai(G− e) < exti(n, k).

Now suppose that G− e ∈ C∗k(n). Then χ(G · e) = k and therefore ai(G · e) > 0.

Again we obtain that ai(G) = ai(G− e)− ai(G · e) < exti(n, k) as ai(G · e) > 0.

Case 2: G is not a 2-connected graph.

Let B1, . . . , Bt be the blocks of G and t ≥ 2. Since the chromatic number of G is

equal to maximum of the chromatic numbers of its blocks, there is a block, say B1,

such that χ(B1) = k.

Subcase i: There is a block Bi with i ≥ 2 such that Bi is not isomorphic to K2.

We pick an edge e ∈ E(Bi). Now it is clear that G − e ∈ Ck(n). So, by the

induction hypothesis on G− e, we have ai(G− e) ≤ exti(n, k).

If χ(G·e) ≤ k then ai(G·e) > 0. Therefore, ai(G) = ai(G−e)−ai(G·e) < exti(n, k)

as ai(G · e) > 0.

On the other hand, if χ(G · e) = k + 1 then G − e /∈ C∗k(n). Therefore, by the

induction hypothesis on G− e, we have ai(G− e) < exti(n, k). Now again we obtain

that ai(G) = ai(G − e) − ai(G · e) < exti(n, k) since ai(G − e) < exti(n, k) and

ai(G · e) ≥ 0.

Subcase ii: For every i ≥ 2, the block Bi is isomorphic to K2.
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Let u be a leaf of G and v be the neighbour of u in G. By the edge deletion-

contraction formula, we have ai(G) = ai(G− uv)− ai(G · uv). Also, let G′ = G− u.

It is clear that G′ ∈ Ck(n− 1). Now, G− uv ∼= K1 ·∪G′ and G · uv ∼= G′. So,

ai(G− uv) = ai(K1 ·∪G′) = ai−1(G
′) + iai(G

′).

Hence, we obtain that

ai(G) = ai−1(G
′) + (i− 1)ai(G

′).

Note that G′ ∈ C∗k(n − 1) if and only if G ∈ C∗k(n). So, we may assume that G′ /∈
C∗k(n − 1). It is clear that ak−1(G

′) = 0. Furthermore, by the induction hypothesis

on G′,

ai−1(G
′) < exti−1(n− 1, k) for i > k.

Since by Prposition 3.1.16 (i) exti(n, k) = exti−1(n− 1, k) + (i− 1) exti(n− 1, k), it

follows that ai(G) < exti(n, k). Thus, the proof is complete.

As we already mentioned, Conjecture 3.1.14 is true for i = n− 1, as the problem

of maximizing the number of (n− 1)-colour partitions of a graph is equivalent to the

problem of minimizing the number of edges. The next natural direction for us is to

study this conjecture for i = n−2. In the sequel, we will show that Conjecture 3.1.13

holds when i = n − 2 and G is a k-critical graph of order n where k ≥ 5 and n is

sufficiently large compared to k. We begin with giving an explicit formula for the

number of (n− 2)-colour partitions of a graph in C∗k(n).

Lemma 3.1.18. Let G be a graph in C∗k(n) then

an−2(G) = (3k − 2)

(
n− k

3

)
+

(
n− k

2

)
(k − 1) + 3

(
n− k

4

)
.

Proof. We may assume that G is Q(n, k) since all graphs in C∗k(n) have the same

number of (n − 2)-colour partitions. Let V (Q(n, k)) = A ·∪ B where A induces a
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k-clique and B consists of the n − k leaves. Let u ∈ A be the universal vertex of

Q(n, k). Since an−2(G) = ηG(K3) + ηG(2K2), we shall find ηG(K3) and ηG(2K2).

First, let us find the number of independent sets of size 3. One can choose all

three vertices from the set B (there are
(
n−k
3

)
ways to do so) or one can choose two

vertices from the set B and one vertex from the set A \ {u} (there are
(
n−k
2

)
(k − 1)

ways to do so). Therefore,

ηG(K3) =

(
n− k

3

)
+

(
n− k

2

)
(k − 1).

Now, let us find the number of subgraphs which are isomorphic to 2K2, that is, the

number of two unordered independent sets of size 2. One can choose both of the

independent sets from the set B (there are 1
2

(
n−k
2

)(
n−k−2

2

)
ways to do so), or one can

choose one of the independent sets from B and pick one of the vertices of the other

independent set from A \ {u} (there are
(
n−k
2

)
(k − 1)(n − k − 2) ways to do so).

Therefore,

ηG(2K2) =
1

2

(
n− k

2

)(
n− k − 2

2

)
+

(
n− k

2

)
(k − 1)(n− k − 2).

Thus, the result follows as an−2(G) = ηG(K3) + ηG(2K2).

Lemma 3.1.19. Let G be a k-critical graph of order n. Then

an−2(G) ≤ n(n− k)(n− k − 1)

6
+

n(n− k)2(n− 2)

8
.

Proof. First let us show that the number of ordered triples of pairwise nonadjacent

vertices is at most n(n− k)(n− k− 1). Let (u1, u2, u3) be a such triple. There are n

ways to pick the first vertex u1. Since G is k-critical, δ(G) ≥ k− 1. Therefore, there
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are at most n− k choices to choose u2 and at most n− k − 1 choices for u3. Thus,

ηG(K3) ≤ n(n− k)(n− k − 1)

6
.

Similarly, it is not difficult to see that

ηG(2K2) ≤ n(n− k)2(n− 2)

8
.

Hence, the result follows as an−2(G) = ηG(K3) + ηG(2K2).

Theorem 3.1.20. Let k ≥ 5 and n ≥ 8k2 − 24k. If G is a k-critical graph of order

n and G∗ ∈ C∗k(n) then
an−2(G) < an−2(G

∗).

Proof. Let pk(n) be equal to

(3k−2)
(
n− k

3

)
+

(
n− k

2

)
(k−1)+3

(
n− k

4

)
−n(n− k)(n− k − 1)

6
−n(n− k)2(n− 2)

8
.

By Lemma 3.1.18 and Lemma 3.1.19, we know that an−2(G
∗)−an−2(G) ≥ pk(n). Now

we consider pk(n) as a polynomial function of n with coefficients being polynomial

functions of k. More precisely, we rewrite pk(n) as follows:

pk(n) =

(
−1 + 1

4
k

)
n3 +

(
25

12
k +

49

24
− 7

8
k2

)
n2 +

(
k3 − 11

12
− 41

12
k − 7

6
k2

)
n

+
3

8
k4 +

1

12
k3 +

11

12
k +

11

8
k2

= c0(k)n
3 + c1(k)n

2 + c2(k)n+ c3(k).

Note that c0(k) = 1
4
k − 1 ≥ 1

4
> 0 when k ≥ 5. So pk(n) has a positive leading

coefficient when k ≥ 5 and therefore it suffices to show that the largest real root of

pk(n) is less than 2k2 − 6k. Now, by computer, one can verify that
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|ci(k)| < (k2 − 3k)i for i = 1, 2, 3.

Hence, the Cauchy bound of pk(n) is at most

2max

{∣∣∣∣ ci(k)c0(k)

∣∣∣∣
1/i
}

1≤i≤3

< 8(k2 − 3k).

Thus, the result follows as the moduli of the roots of a polynomial is bounded by its

Cauchy bound.

If one can show that the graphs in C∗k(n) maximize the number of (n− 2)-colour

partitions, then in Theorem 3.1.8 the bound on x can be improved from a quartic to

a cubic function of n.

Theorem 3.1.21. Let k ≥ 5 and n ≥ 2k2 − 6k. If G is a k-critical graph of order n

then

1

(x)↓k
π(G, x) < (x− 1)n−k

for every real number x where x ≥ n− 2 + 2√
6

((
n
2

)− (k
2

)− n+ k
)3/2

.

Proof. One can apply a similar argument as in the proof of Theorem 3.1.8. The result

then follows by Theorem 3.1.20 and Theorem 3.2.1.

As we already mentioned, if aj(H) ≤ aj(G) for all j, then π(H, x) ≤ π(G, x)

for all x ≥ χ(H). Thus if some graph in a subclass of k-chromatic graphs has the

largest aj sequence (term-wise) among all such graphs, it necessarily has the largest

number of x-colourings in the subclass. If we try to determine such extremal graphs

in the family of 3-connected graphs of fixed chromatic number and order, then there

are not necessarily graphs which achieve the maximum number of i colour-partitions

for every i. As we mentioned earlier, the graph G shown at the left of Figure 3.1 is

the unique 3-connected 3-chromatic graph of order 8 with the largest number of 3-

colourings among all 3-connected 3-chromatic graphs of order 8, and its aj sequence,
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〈11, 74, 124, 71, 15, 1〉, is thus the only candidate for a largest such sequence, but the

graphH on the right has sequence 〈8, 82, 144, 60, 16, 1〉, so no optimal sequence exists.

3.2 Roots of Chromatic Polynomials

A chromatic root is a root of the chromatic polynomial of a graph. If z ∈ C satisfies

π(G, z) = 0, then z is called a chromatic root of G (the chromatic roots of graphs of

order 7 are shown in Figure 3.3.

Figure 3.3: Chromatic roots of all graphs of order at most 7.

A trivial observation is that all of 0, 1, . . . , χ(G) − 1 are chromatic roots – the

chromatic number is merely the first positive integer that is not a chromatic root.

The Four Colour Theorem is equivalent to the fact that 4 is never a chromatic root of

a planar graph, and interest in chromatic roots began precisely from this connection.

The roots of chromatic polynomials have subsequently received a considerable amount

of attention in the literature. Chromatic polynomials also have strong connections

to the Potts model partition function studied in theoretical physics, and the complex

roots play an important role in statistical mechanics (see, for example, [50]).
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3.2.1 A new bound for the moduli of the chromatic roots of all graphs

A central problem in the study of chromatic roots has been to bound the moduli

of the chromatic roots in terms of graph parameters. There has been considerable

interest in chromatic roots, particularly on bounding the moduli of the roots (see,

for example, [24, Ch. 14]). In this section, we will give a new bound (which is

incomparable to the existing ones) for the moduli of chromatic roots of all graphs.

This bound is sharp and the equality is obtained when the graph is a complete

graph. Furthermore, this bound gives better estimates than earlier bounds for dense

graphs. Let us begin with summarizing some of the earlier results regarding bounding

chromatic roots.

Sokal [50] showed that for every graph G, there exists a function ω : V (G) → C

which assigns complex weights to the vertices of the graph such that the chromatic

polynomial of G can be expressed as

π(G, x) = x|V (G)| ∑
I∈I(G)

∏
v∈I

ω(v)

where I(G) is the family of all independent sets of G. By making use of this ex-

pression, Sokal applied Dobrushin’s Theorem (which is known to be equivalent to

the Lovász Local Lemma) to show that the complex roots of π(G, x) lie in the disc

|z| ≤ 7.963907Δ(G). This bound was later improved in the constant to 6.908 in [29]

by Fernandez and Procacci . We shall note that these bounds are not sharp.

Brown [6] used another approach to bound chromatic roots. If G is a connected

graph of order n then one can express

π(G, x) = (−1)n−1x

n−1∑
i=1

ti(1− x)i
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where ti is the number of spanning trees with “external activity” 0 and “internal

activity” i, and this is known as the tree expansion of the chromatic polynomial. By

using the tree expansion, Brown [6] applied the Enestrom-Kakeya Theorem to show

that the chromatic roots of a graph G of order n and size m lie in |z−1| ≤ m−n+1.

This bound is sharp, with equality obtained when the graph is a tree or a cycle, and

is good for graphs of bounded corank.

Our approach will be to make use of the complete graph expansion of the chro-

matic polynomial. We will use the upper bound given in Lemma 2.1.9 on the number

of colour partitions of a graph. Also, we will need the following theorem that locates

the roots of a polynomial expressed in terms of Newton bases.

Theorem 3.2.1. [46, pg. 267] Let f(z) =
∑d

i=0 ciPi(z) be a polynomial of degree d

where Pi(z)’s are Newton bases with respect to the nodes ξ1, . . . , ξd. Denote by ρ the

Cauchy bound of cdz
d +
∑d−2

i=0 ciz
i. Then f has all its roots in the union U of the

discs centered at ξ1, . . . ξd−1, ξd − cd−1

cd
, each of radius ρ.

We are ready to prove our new bound on chromatic roots.

Theorem 3.2.2. Let G be a k-chromatic graph of order n and size m. Then π(G, z)

has all its roots in {0, 1, . . . , k − 1} ∪ U where U is the union of the discs centered at

k, k + 1, . . . , n− 2, n− 1−
(
n

2

)
+m,

each of radius
√
2
((

n
2

)−m
)
. Thus the modulus of a chromatic root of a graph of

order n with m edges is bounded above by n− 1 +
√
2
((

n
2

)−m
)
.

Proof. First recall that π(G, z) =
n∑

i=k

ai(G) (z)↓i and let π(G, z) = (z)↓k f(z). The

roots of π(G, z) are precisely {0, 1, . . . , k − 1} union the roots of f(z). Hence, it
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suffices to show that the roots of f(z) lie in U . Now,

f(z) = ak
(z)↓k
(z)↓k

+ ak+1
(z)↓k+1

(z)↓k
+ · · ·+ an

(z)↓n
(z)↓k

= ak + ak+1(z − k) + · · ·+ an(z − k) · · · (z − n+ 1).

Hence,

f(z) =
n−k∑
j=0

ak+jPj(z)

where Pj(z)’s are Newton bases with respect to the nodes k, k+1, . . . , n−1. Therefore,
by Theorem 3.2.1, f(z) has all its roots in the union of the discs centered at

k, k + 1, . . . , n− 2, n− 1−
(
n

2

)
+m

each of radius ρ where ρ is the Cauchy bound of the polynomial

g = anz
n−k + an−2z

n−k−2 + · · ·+ ak+1z + ak.

(Note that n−1−(n
2

)
+m may not be the largest of the numbers, but all the numbers

are at most n− 1). Since an = 1, by the inequality given in (3.1) we obtain

ρ(g) ≤ 2max
{
an−r(G)1/r

}
2≤r≤n−k

.

Also, by Lemma 3.1.6, we get

an−r(G)1/r ≤
(((

n
2

)−m
)r

r!

)1/r

=

(
n
2

)−m

(r!)1/r
.

Now, (r!)1/r increases as r increases. Therefore, an−r(G)1/r ≤ 1√
2

((
n
2

)−m
)
for 2 ≤

r ≤ n− k. Thus, ρ(g) ≤ √2
((

n
2

)−m
)
and the results follow.
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Brown Sokal Fernandez-Procacci New bound

Graph G |z| ≤ m− n+ 2 |z| ≤ 7.9Δ(G) |z| ≤ 6.9Δ(G) |z| ≤ n− 1 +
√
2
((

n
2

)−m
)

G is a tree
(
n
2

)− 2n+ 3 7.964(n− 2) 6.908(n− 2) 2.414(n− 1)

G is a cycle
(
n
2

)− 2n+ 2 7.964(n− 3) 6.908(n− 3) 2.414n− 1

G is a theta graph
(
n
2

)− 2n+ 1 7.964(n− 3) 6.908(n− 3) 2.414n+ 0.414

G is 3-regular
(
n
2

)− 5
2
n+ 2 7.964(n− 4) 6.908(n− 4) 3.121n− 1

G is 4-regular
(
n
2

)− 3n+ 2 7.964(n− 5) 6.908(n− 5) 3.828n− 1

Table 3.1: Comparison of bounds for the chromatic roots of a graph G of order n
and size m whose complement G is a cycle, tree, 3-regular graph or theta graph.

The proof of Theorem 3.2.2 shows the following.

Corollary 3.2.3. Let G be a graph of order n and size m. If z is a root of π(G, z)

then

|�(z)| ≤
√
2

((
n

2

)
−m

)
,


(z) ≤ n− 1 +
√
2

((
n

2

)
−m

)
.

Table 3.1 compares our new bound on the moduli to previously known bounds,

for a variety of dense of graphs. Note the significant improvement in the constant in

linear upper bounds. In particular, for any family of r-regular graphs with r ≥ n−8,

our bounds are asymptotically much better than the others.
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3.2.2 Real chromatic roots and the real parts of complex chromatic

roots

While the real chromatic roots have been extensively studied and well understood,

little is known about the real parts of chromatic roots. It is not difficult to see that

the largest real chromatic root of a graph with n vertices is n − 1. The tree-width

of a graph G is the minimum integer k such that G is a subgraph of a k-tree (given

q ∈ N, the class of q-trees is defined recursively as follows: any complete graph Kq is

a q-tree, and any q-tree of order n + 1 is a graph obtained from a q-tree G of order

n, where n ≥ q, by adding a new vertex and joining it to each vertex of a Kq in G).

Indeed, it is known that the largest real chromatic root of a graph is at most the

tree-width of the graph. Analogous to these facts, it was conjectured in [24] that the

real parts of chromatic roots are also bounded above by both n−1 and the tree-width

of the graph.

In this section we show that for all k ≥ 2 there exist infinitely many graphs G

with tree-width k such that G has non-real chromatic roots z with 
(z) > k. We

also discuss the weaker conjecture and prove it for graphs G with χ(G) ≥ n− 3.

Another approach has been to study the real chromatic roots of graphs. It is not

difficult to see that if r is a real chromatic root of G then r ≤ n − 1 with equality

if and only if G is a complete graph, since π(G, x) =
∑

ai(G) (x)↓i. In [21] it was

proven that among all real chromatic roots of graphs with order n ≥ 9, the largest

non-integer real chromatic root is
n− 1−√(n− 3)(n− 7)

2
, and extremal graphs

were determined. Moreover, Dong et al. [22,23] showed that real chromatic roots are

bounded above by 5.664Δ(G) and max{Δ(G), �n/3� − 1}.
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The problem of finding the largest real part of complex chromatic roots seems

more difficult. In [24] the following conjectures on the real part of complex chromatic

roots were proposed.

Conjecture 3.2.4. [24, pg. 299] Let G be a graph with tree-width k. If z is a root

of π(G, x) then 
(z) ≤ k.

Conjecture 3.2.5. [24, pg. 299] Let G be a graph of order n. If z is a root of

π(G, x) then 
(z) ≤ n− 1.

Conjecture 3.2.4 is reasonable given that Thomassen [52] proved that the real

chromatic roots are bounded above by the tree-width of the graph. It is clear that

the Conjecture 3.2.5 is weaker than Conjecture 3.2.4. In this work, first we present

infinitely many counterexamples to Conjecture 3.2.4 for every k ≥ 2 (Theorem 3.2.9).

Then, we consider Conjecture 3.2.5 and prove it for all graphs G with χ(G) ≥ n− 3

(Theorem 3.2.15). (Our numerical computations suggest that graphs which have

large chromatic number are more likely to have chromatic roots whose real parts are

close to n.)

A polynomial f(x) in C[x] is called (Hurwitz) quasi-stable (resp. (Hurwitz) stable)

if every z ∈ C such that f(z) = 0 satisfies 
(z) ≤ 0 (resp. 
(z) < 0), that is, the

roots of f lie in the left half (resp. open left half) plane. Observe that z is a root of

f(x) if and only if z − c is a root of f(x + c), so that every root z of a polynomial

f(x) satisfies 
(z) ≤ c (resp. 
(z) < c) if and only if the polynomial f(x + c) is

quasi-stable (resp. stable). Thus, bounding the real parts of roots of polynomials is

closely related to the Hurwitz stability of polynomials. In the sequel, we will make

use of this observation to prove both of our main results.
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Tree-width and the real part of complex chromatic roots

It is straightforward to check that the tree-width of the complete bipartite graph

Kp,q is equal to min(p, q), and our counterexamples to Conjecture 3.2.4 will be these

graphs. Note that this conjecture clearly holds for k = 1 since the tree-width of a

graph is equal to 1 if and only if the graph is a tree (which only has 0 and 1 as

chromatic roots). Hence, our counterexamples are for p ≥ 2.

We shall make use of a particular expansion of the chromatic polynomial. Let

G be a graph of order n and size m. Suppose that β : E(G) → {1, 2, . . . ,m} is a

bijection and C a cycle in G. Let e be the edge of C such that β(e) > β(e′) for any

e′ in E(C)− {e}. Then the path C − e is called a broken cycle in G with respect to

β. Whitney’s Broken-Cycle Theorem (see, for example, [24]) states that

π(G, x) =
n∑

i=1

(−1)n−ihi(G)xi,

where hi(G) is the number of spanning subgraphs of G that have exactly n− i edges

and that contain no broken cycles with respect to β.

Figure 3.4: The graph H

Recall that for two graphs H and G, we denote by ηG(H) (resp. iG(H)) the

number of subgraphs (respectively induced subgraphs) of G which are isomorphic to
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H. The following result gives formulas for the first few coefficients of the chromatic

polynomial by counting certain (induced) subgraphs of the graph.

Theorem 3.2.6. [24, pg. 31-32] Let G be a graph of order n and size m, and let g

be the girth of the graph. Then

π(G, x) =
n∑

i=1

(−1)n−ihi(G)xi

is a polynomial in x such that

hn−i =

(
m

i

)
for 0 ≤ i ≤ g − 2,

hn−g+1 =

(
m

g − 1

)
− ηG(Cg), (in particular, hn−2 =

(
m

2

)
− ηG(C3))

hn−3 =

(
m

3

)
− (m− 2)ηG(K3)− iG(C4) + 2ηG(K4), and

hn−4 =

(
m

4

)
−
(
m− 2

2

)
ηG(K3) +

(
ηG(K3)

2

)
− (m− 3)iG(C4)

−(2m− 9)ηG(K4)− iG(C5) + iG(K2,3) + 2iG(H) + 3iG(W5)− 6ηG(K5),

where H is the graph shown in Figure 3.4 and W5 is the wheel graph of order 5.

The first two items of Theorem 3.2.6 follow immediately from Whitney’s Broken-

Cycle Theorem and the expressions for hn−3 and hn−4 were obtained by Farrell in [28].

A direct application of the previous result yields explicit formulas for the first few

coefficients of the chromatic polynomials of complete bipartite graphs.
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Lemma 3.2.7. Let p, q ≥ 2, n = p+ q and π(Kp,q, x) =
∑n

i=1(−1)n−ihi(G)xi, then

hn = 1,

hn−1 = pq,

hn−2 =

(
pq

2

)
,

hn−3 =

(
pq

3

)
−
(
q

2

)(
p

2

)
, and

hn−4 =

(
pq

4

)
− (pq − 3)

(
q

2

)(
p

2

)
+

(
q

2

)(
p

3

)
+

(
p

2

)(
q

3

)
.

Proof. We apply Theorem 3.2.6 to find each coefficient. The girth of Kp,q is 4 , so

we get hn−i =
(
pq
i

)
for 0 ≤ i ≤ 2. Also, we get the formula for hn−3 by noting that

the number of C4’s in Kp,q is equal to
(
q
2

)(
p
2

)
. Since bipartite graphs are odd cycle

free, Kp,q does not contain any K3, K4, C5 H, W5 or K5. Moreover, the number of

K2,3’s in Kp,q is equal to
(
q
2

)(
p
3

)
+
(
p
2

)(
q
3

)
. Thus, we obtain the formula for hn−4 and

this completes the proof.

A polynomial is called standard if it is either identically zero or has positive

leading coefficient, and is said to have only non-positive roots if it is either identically

zero or has all of its roots real and non-positive. Suppose that f, g ∈ R[x] both have

only real roots, that those of f are ζ1 ≤ · · · ≤ ζa and that those of g are θ1 ≤ · · · ≤ θb.

We say that f interlaces g if deg g = 1 + deg f and the roots of f and g satisfy

θ1 ≤ ζ1 ≤ θ2 ≤ · · · ≤ ζa ≤ θa+1.

We also say that f alternates left of g if deg f = deg g and the roots of f and g satisfy

ζ1 ≤ θ1 ≤ ζ2 ≤ · · · ≤ ζa ≤ θa.
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The notation f ≺ g stands for either f interlaces g or f alternates left of g. The

following result which is known as Hermite-Biehler Theorem (see [63]) characterizes

Hurwitz quasi-stable polynomials via the interlacing property.

Theorem 3.2.8 (Hermite-Biehler Theorem). Let f(x) ∈ R[x] be standard, and write

f(x) = f e(x2) + xf o(x2). Set t = x2. Then f(x) is Hurwitz quasi-stable if and only

if both f e(t) and f o(t) are standard, have only non-positive roots, and f o(t) ≺ f e(t).

We are now ready to show that many complete bipartite graphs have non-real

chromatic roots with real parts greater than their tree-widths.

Theorem 3.2.9. Suppose that p ≥ 2 is fixed. Then, π(Kp,q) has a non-real root z

with 
(z) > p for all sufficiently large q.

Proof. Set n = p+ q and π(Kp,q, x) =
∑n

i=1(−1)n−ihix
i. We will show that

π(Kp,q, x+ p) =
n∑

i=1

(−1)n−ihi(x+ p)i

is not Hurwitz quasi-stable when q is sufficiently large. Rewriting π(Kp,q, x + p) =∑n
i=1 aix

i, we have

• an = 1;

• an−2 =
(
n
2

)
p2 − (n− 1)phn−1 + hn−2;

• an−4 =
(
n
4

)
p4 − (n−1

3

)
p3hn−1 +

(
n−2
2

)
p2hn−2 − (n− 3)phn−3 + hn−4.

Now we write π(Kp,q, x+p) = f e(x2)+xf o(x2). First, we suppose that n is even and

we look at the first three polynomials in the Sturm sequence (f0, f1, f2, . . .) of f
e(t):

f0 = tn/2 + an−2t
(n−2)/2 + an−4t

(n−4)/2 + . . .

f1 =
n

2
t(n−2)/2 + an−2

n− 2

2
t(n−4)/2 + an−4

n− 4

2
t(n−6)/2 + . . .

f2 = − 2

n2

(
2nan−4 − (n− 2)a2n−2

)
t(n−4)/2 + . . .
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We can write an−4 and an−2 in terms of p and q by using Lemma 3.2.7, and then we

can write 2nan−4− (n−2)a2n−2 as a quartic polynomial in q where the coefficients are

polynomial functions of p. More precisely, calculations show that 2nan−4−(n−2)a2n−2

is equal to

(
1

6
p2 − 1

6
p

)
q4 +

(
1

2
p4 − 5

3
p3 +

11

6
p2 − 2

3
p

)
q3

+

(
−5

6
p5 +

5

3
p4 − 5

6
p3 − 1

3
p2 +

1

3
p

)
q2

+

(
−1

6
p8 +

1

3
p6 +

1

2
p5 − 5

6
p4 − 1

6
p3 +

1

3
p2
)
q +

(
−1

6
p9 +

1

2
p8 − 1

3
p7
)
.

Because 1
6
p(p− 1) > 0 for fixed p ≥ 2, it follows that the leading coefficient of f2

is negative for all sufficiently large q. Therefore, by Theorem 2.3.2, we find that f e

does not have all real roots and hence π(Kp,q, x + p) is not Hurwitz quasi-stable by

Theorem 3.2.8. Thus, we obtain that π(Kp,q, x) has a root z with 
(z) > p for all

sufficiently large q (that root cannot be a real number as we already noted that real

chromatic roots are bounded by the tree-width of the graph). A similar argument

works for n odd but in this case one would work with the Sturm sequence of f o

instead of f e (we leave the details to the reader).

Since the tree-width of Kp,q is equal to min(p, q), the following corollary follows

immediately.

Corollary 3.2.10. For any integer k ≥ 2, there exist infinitely many graphs which

have tree-width k and chromatic roots z with 
(z) > k.
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Bounding the real part of complex chromatic roots by n− 1

We now turn to proving that n − 1 is an upper bound for the real part of chro-

matic roots of graphs with large chromatic number. We will need the following two

elementary but useful results.

Let G(H) be the set of all subgraphs of G which are isomorphic to H.

Lemma 3.2.11. Let H and K be two subgraphs of G, then

ηG(H)ηG(K) ≥ ηG(H ·∪K).

Proof. The map ψ : G(H)×G(K)→ G(H ·∪K), which sends (H,K) toH ·∪K is an onto

map, and therefore, ηG(H)ηG(K) = |G(H)×G(K)| ≥ |G(H ·∪K)| = ηG(H ·∪K).

Lemma 3.2.12. Let H1, H2, . . . , Hk be disjoint subgraphs of G and r =
∑k

i=1 |V (Hi)|.
Then,

ηG( ·∪k
i=1Hi) ≥ ηG(Kr).

Proof. Let H = ·∪k
i=1Hi. Let G(H)′ be the set of all subgraphs of G which are

isomorphic to H and which induce a complete graph. Let ψ : G(H)′ → G(Kr) be

the map which sends a subgraph H ′ in G(H)′ to the complete graph induced by the

vertex set of H ′. Now ψ is an onto map and G(H)′ ⊆ G(H). Hence, the result

follows.

(We remark that a natural question arising from Lemma 3.2.12 is whether the

stronger statement that if H is a subgraph of K then ηG(H) ≥ ηG(K) is true.

Unfortunately, the answer is negative. For example, let G = K4, H = 2K2 and K be

the graph obtained from a triangle by adding a leaf. Clearly H is a subgraph of K

but ηG(H) = 3 which is strictly less than ηG(K) = 12.)

As a consequence of the previous two lemmas, we obtain the following result which

will be needed in the proofs of the next two theorems.
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Lemma 3.2.13. Let G be a graph of order n and σ(G, x) =
∑

aix
i. Then

an−1an−2 + a2n−1 ≥ an−3.

Proof. By Observation 2.1.13, we have

an−1an−2 + a2n−1 = (ηG(K2))
2 + ηG(K2)ηG(K3) + ηG(K2)ηG(2K2)

and

an−3 = ηG(K4) + ηG(K3 ·∪K2) + ηG(3K2).

Now by Lemma 3.2.11, it follows that

ηG(K2)ηG(K3) ≥ ηG(K3 ·∪K2)

and

ηG(K2)ηG(2K2) ≥ ηG(3K2).

Also, by combining Lemma 3.2.11 and Lemma 3.2.12 we get

(ηG(K2))
2 ≥ ηG(2K2) ≥ ηG(K4).

Therefore, the desired inequality is obtained.

For our next results, we shall also need specific conditions for a low degree poly-

nomial to be stable (see, for example, [2, pg.181]).
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Theorem 3.2.14 (Stability tests for polynomials of degree at most 4). The following

conditions are necessary and sufficient for stability of polynomials of degree at most

4:

• A linear or quadratic polynomial is stable if and only if all the coefficients are

of the same sign.

• A cubic monic polynomial f(x) = x3 + bx2 + cx + d is stable if and only if all

its coefficients are positive and bc > d.

• A quartic monic polynomial f(x) = x4+ ax3+ bx2+ cx+ d is stable if and only

if all its coefficients are positive and abc > c2 + a2d.

We are now ready to show that Conjecture 3.2.5 holds for graphs with chromatic

number at least n− 3:

Theorem 3.2.15. Let G be a graph with χ(G) ≥ n−3. If z is a root of π(G, x) then


(z) ≤ n− 1 with equality if and only if χ(G) = n.

Proof. If χ(G) = n then G = Kn, and if χ(G) = n− 1 then G− u ∼= Kn−1 for some

vertex u of G since otherwise G contains an induced 2K2 and χ(G) ≤ n − 2. In

both cases G is chordal and hence it has all integer chromatic roots. Therefore, the

result follows as the largest integer chromatic root is always equal to χ(G)−1. So we

assume that χ(G) ≤ n− 2. We show that π(G, x+ n− 1) is stable. First, we write

π(G, x+ n− 1) = f(G, x)

χ(G)∏
i=1

(x+ n− i).

It suffices to show that f(G, x) is Hurwitz stable. We set π(G, x) =
∑

ai(x)↓i.
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If χ(G) = n− 2, then

f(G, x) = an−2 + an−1(x+ 1) + (x+ 1)x

= x2 + (1 + an−1)x+ an−1 + an−2

Since all the coefficients are positive, the result is clear by Theorem 3.2.14. Now, if

χ(G) = n− 3, then

f(G, x) = an−3 + an−2(x+ 2) + an−1(x+ 2)(x+ 1) + (x+ 2)(x+ 1)x

= x3 + (3 + an−1)x
2 + (2 + 3an−1 + an−2)x+ 2an−1 + 2an−2 + an−3

Because f(G, x) is a cubic polynomial with all coefficients positive, by Theorem

3.2.14, f(G, x) is Hurwitz stable if and only if

(3 + an−1)(2 + 3an−1 + an−2) > 2an−1 + 2an−2 + an−3

which is equivalent to

6 + 9an−1 + an−2 + 3a2n−1 + an−1an−2 > an−3.

Now the latter inequality follows from Lemma 3.2.13.

We now partially extend our results to graphs of chromatic number n − 4; such

graphs’ characterization were given in Theorem 2.4.1. We concentrate on two sub-

families of such graphs.

Theorem 3.2.16. Let G be a graph of order n and chromatic number n − 4 whose

complement belongs to M1 or M2 families depicted in Figure 2.11 and Figure 2.12

respectively. If z is a root of π(G, x) then 
(z) < n− 1.
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Proof. We will show that π(G, x+ n− 1) is Hurwitz-stable. Let

π(G, x+ n− 1) = f(G, x)
n−4∏
i=1

(x+ n− i).

Then,

f(G, x) = x4 + (an−1 + 6)x3 + (an−2 + 6an−1 + 11)x2 + (an−3 + 5an−2 + 11an−1 + 6)x

+ an−4 + 3an−3 + 6an−2 + 6an−1.

is a monic quartic polynomial with positive coefficients. Hence, by Theorem 3.2.14,

the stability condition is that

(an−1 + 6)(an−2 + 6an−1 + 11)(an−3 + 5an−2 + 11an−1 + 6)

is strictly larger than

(an−3 + 5an−2 + 11an−1 + 6)2 + (an−1 + 6)2(an−4 + 3an−3 + 6an−2 + 6an−1).

Expanding the terms, we find that this condition is equivalent to

an−1an−2an−3 + 3a2n−1an−3 + 5an−1a
2
n−2 + 35a2n−1an−2 + 5a2n−2 + 125an−1an−2

+60a3n−1 + 360a2n−1 + 660an−1 + 90an−2 + 360

being strictly larger than

a2n−1an−4 + 12an−1an−4 + 11an−1an−3 + 36an−4 + 54an−3 + 4an−2an−3 + a2n−3.
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By Theorems 2.4.4 and 2.4.7, the sequence 〈1, an−1, an−2, an−3, an−4〉 is logconcave

and hence unimodal. Furthermore, again by Theorems 2.4.4 and 2.4.7 we know that

an−3 > an−4. So, there are three cases we need to consider.

Case 1: 1 = an ≤ an−1 ≥ an−2 ≥ an−3 > an−4.

In this case we have the following three inequalities

an−1an−2an−3 ≥ a2n−3,

125an−1an−2 ≥ 12an−1an−4 + 11an−1an−3 + 36an−4 + 54an−3 + 4an−2an−3,

3a2n−1an−3 ≥ a2n−3

where all the inequalities follow from the assumption. Now, clearly the stability

condition is satisfied.

Case 2: 1 = an ≤ an−1 ≤ an−2 ≥ an−3 > an−4.

In this case we have the following three inequalities

3a2n−1an−3 ≥ a2n−1an−4,

125an−1an−2 ≥ 12an−1an−4 + 11an−1an−3 + 36an−4 + 54an−3,

5a2n−2 ≥ a2n−3

Now it follows that the stability condition is satisfied.

Case 3: 1 = an ≤ an−1 ≤ an−2 ≤ an−3 > an−4.

First note that an−1 ≥ 6 sinceG is inM1 orM2 family. Now, by multiplying both sides

of the inequality given in Lemma 3.2.13 by an−3, we obtain an−1an−2an−3+a2n−1an−3 ≥
a2n−3. Moreover, 2a2n−1an−3 ≥ 12an−1an−4 as an−1 ≥ 6. Hence, we obtain

an−1an−2an−3 + 3a2n−1an−3 ≥ 12an−1an−4 + a2n−3. (3.3)



96

Also, by the log-concavity of σ(G, x), we obtain that a2n−1 ≥ an−2an = an−2 and

a2n−2 ≥ an−1an−3. Therefore,

5an−1a
2
n−2 ≥ 5a2n−1an−3

= a2n−1an−3 + 4a2n−1an−3

≥ a2n−1an−4 + 4an−2an−3

and we get

5an−1a
2
n−2 ≥ a2n−1an−4 + 4an−2an−3. (3.4)

Lastly, again by the log-concavity of σ(G, x), we have a2n−1 ≥ an−2an = an−2. There-

fore,

35a2n−1an−2 ≥ 35a2n−2

≥ 35an−1an−3

= 11an−1an−3 + 24an−1an−3

≥ 11an−1an−3 + 144an−3

≥ 11an−1an−3 + 36an−4 + 54an−3

and we get

35a2n−1an−2 ≥ 11an−1an−3 + 36an−4 + 54an−3. (3.5)

Now, combining the inequalities (3.3), (3.4) and (3.5) we obtain again that the sta-

bility condition is satisfied.

As we already mentioned, among all real chromatic roots of graphs with order

n ≥ 9, the largest non-integer real chromatic root is
n− 1−√(n− 3)(n− 7)

2
[21]. It

seems that the largest real part of a chromatic root is much larger than this value. In

fact, we can show that there exist chromatic roots whose real parts are in (n−3, n−2).
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On the other hand, we do not know of any chromatic root whose real part is in the

interval (n− 2, n− 1)

Proposition 3.2.17. Let 2 ≤ q ≤ 4. Then, π(Kn − qK2) has a non-real root z such

that n− 2 > 
(z) > n− 3.

Proof. The complement of the graph Kn − qK2 is qK2. So, it is easy to see that

an−i(Kn − qK2) =
(
q
i

)
. Now,

π(Kn − qK2, x) =

q∑
i=0

an−i(Kn − qK2)(x)↓n−i =

q∑
i=0

(
q

i

)
(x)↓n−i.

The polynomial π(Kn−qK2, x) has trivial factor of (x)↓n−q. So, π(Kn−qK2, x)/(x)↓n−q

is a quadratic, cubic and quartic polynomial for q = 2, 3, 4 respectively. Now shift-

ing the polynomial by an appropriate amount, we can eliminate n and apply the

Hurwitz-stability criterion to obtain the result.

We pose the following question:

Question 3.2.18. Among all non-real chromatic roots of graphs with order n, what

is the largest real part of a chromatic root of a graph of order n?

This problem seems more difficult and the answer must be at least n−5/2 (which

is much bigger than the largest non-integer real root) as we have seen that the graph

Kn − 2K2 has non-real chromatic roots with real part equal to n − 5/2. Indeed, we

believe that this should be the true value.

Obviously, the bound 
(z) ≤ n − 1 in Conjecture 3.2.5 is sharp with complete

graph being an extremal graph. We believe that the equality holds if and only if G is

a complete graph. Also, we note that there is a stronger conjecture than Conjecture

3.2.5 posed by Sokal which states that if z is a root of π(G, x) then 
(z) ≤ Δ(G).

Equality 
(z) = Δ(G) holds if the graph is either a complete graph or an odd cycle.

Another trivial related question is the following:
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Question 3.2.19. Let G be a graph of order n. Is it true that if z is a chromatic

root of G then |z| ≤ n− 1?



Chapter 4

Restrained Chromatic Polynomials

4.1 Introduction and Preliminaries

There are variants of vertex colourings that have been of interest. In a list colouring,

for each vertex v there is a finite set L(v) of colours available for use, and then one

wishes to properly colour the vertices such that the colour of v is from L(v). If

|L(v)| = k for every vertex v, then a list colouring is called a k-list colouring. There

is a vast literature on list colourings (see, for example, [1], [15], Section 9.2 and [61]).

We are going to consider a complementary problem, namely colouring the vertices

of a graph G where each vertex v has a forbidden finite set of colours, r(v) ⊂ N (we

allow r(v) to be equal to the empty set); we call the function r a restraint on the

graph G.

For a positive integer n, let [n] stand for {1, . . . , n}. Also, for k ≥ 1 let us

define
(
[n]
k

)
:= {A | A ⊆ [n] and |A| = k }. For example,

(
[n]
1

)
= {{1}, . . . , {n}} and(

[3]
2

)
= {{1, 2}, {1, 3}, {2, 3}}. Let G be a graph with n vertices. We say that r is a

k-restraint on G if |r(u)| = k and r(u) ∈ ([kn]
k

)
for every u ∈ V (G). If k = 1 (that

is, we forbid exactly one colour at each vertex) we omit k from the notation and use

the word simple when discussing such restraints. If the vertices of G are ordered as

v1, v2 . . . vn, then we usually write r in the form [r(v1), r(v2) . . . r(vn)].

A k-colouring c of G is permitted by restraint r (or c is a colouring with respect to r)

if for all vertices of v of G, c(v) �∈ r(v). Restrained colourings arise in a natural way as

a graph is sequentially coloured, since the colours already assigned to vertices induce

a set of forbidden colours on their uncoloured neighbours. Restrained colourings

99
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can also arise in scheduling problems where certain time slots are unavailable for

certain nodes (c.f. [38]). Moreover, restraints are of use in the construction of critical

graphs (with respect to colourings) [53]; a k-chromatic graph G = (V,E) is said

to be k-amenable if every non-constant simple restraint r : V → [k]1 permits a k-

colouring [14, 44]. Finally, observe that if each vertex v of a graph G has a list of

available colours L(v), and, without loss,

L =
⋃

v∈V (G)

L(v) ⊆ [N ]

then setting r(v) = [N ] − L(v) we see that G is list colourable with respect to the

lists L(v) if and only if G has an N -colouring permitted by r.

Given a restraint r on graph G, we define the restrained chromatic polynomial of

G with respect to r, denoted by πr(G, x), to be the number of x-colourings permitted

by restraint r [11]. Note that this function extends the definition of chromatic poly-

nomial, as if r(v) = ∅ for every vertex v then πr(G, x) = π(G, x). Now the use of the

terminology begs the question as to whether the function is actually a polynomial

in x, and the answer is ‘yes’, provided x is sufficiently large. In order to prove that

this function is a polynomial function of x for large enough x, we need to prove some

preliminary results.

Note that, unlike the chromatic polynomial, this function is not always a polyno-

mial function of x. For instance, consider the path P4 with V (P4) = {v1, v2, v3, v4}
and E(P4) = {vivi+1 | 1 ≤ i ≤ 3}. Let r = [{1}, {2}, {3}, {4}] be a simple restraint
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on P4. Then,

πr(P4, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 1

1 if x = 2

8 if x = 3

x4 − 7 x3 + 21 x2 − 32 x+ 21 if x ≥ 4

and so πr(P4, x) is a polynomial function of x when x ≥ 4.

Restrained chromatic polynomials satisfy an edge addition-contraction formula

like chromatic polynomials which is as follows:

Lemma 4.1.1. Let r be any restraint on G, and u, v ∈ V (G) be such that uv /∈ E(G).

Suppose that u and v are replaced by w in the contraction G · uv. Then

πr(G, x) = πr(G+ uv, x) + πruv(G · uv, x)

where

ruv(a) =

⎧⎪⎨
⎪⎩

r(a) if a �= w

r(u) ∪ r(v) if a = w

for each a ∈ V (G · uv).

Proof. The x-colourings of G that are permitted by r can be partitioned into two

sets – those that assign the same colour to u and v and those that assign different

colours to u and v. The former are the x-colourings of G · uv permitted by ruv, and

latter are the x-colourings of G+ uv that are permitted by r.

Let A = [x1, . . . , xn] be a sequence of variables. Then recall that the ith elementary

symmetric function on A is equal to

Si(A) =
∑

1≤k1<···<ki≤n

xk1 . . . xki .
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Also, given a restraint function r on a graph G, let MG,r be the maximum value

in
⋃

v∈V (G)

r(v) if the set is nonempty and 0 otherwise.

Example 4.1.1. Let r be a restraint function on the empty graph G = Kn. Then

for all x ≥MG,r,

πr(G, x) =
∏

v∈V (G)

(x− |r(v)|) =
n∑

i=0

(−1)n−iSi(A)x
n−i

where A = [ |r(v)| : v ∈ V (G) ].

Using the edge deletion-contraction formula, we can now show that the restrained

chromatic polynomial πr(G, x) is a polynomial function of x for x sufficiently large,

and like chromatic polynomials, the restrained chromatic polynomial of a graph G of

order n is monic of degree n with integer coefficients that alternate in sign.

Theorem 4.1.2. Let G be a graph of order n and r be a restraint on G. Then for

all x ≥ MG,r, the function πr(G, x) is a monic polynomial of degree n with integer

coefficients that alternate in sign.

Proof. We proceed by induction on the number of edges. If G has no edges then the

result is clear by Example 4.1.1. Suppose that G has at least one edge, say e, then

note that MG,r = MG−e,r = MG·e,re . Now, it follows that the result holds for both

πr(G− e, x) and πre(G · e, x) by induction hypothesis. Thus, the result is established

as πr(G, x) = πr(G− e, x)− πre(G · e, x) by Lemma 4.1.1.

Observe that, unlike chromatic polynomials, the constant term of this polyno-

mial need not be 0. For example, the constant term for any restraint r on Kn is

(−1)n∏v∈V (G) |r(v)|.
Let G be a graph of order n. If r1 and r2 are two restraints on G such that

r1(v) ⊆ r2(v) for each v ∈ V (G) then it is clear that πr2(G, x) ≤ πr1(G, x) for every
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nonnegative integer x. Also, πr(G, x) ≤ (x − k)n for any k-restraint r on G when x

is sufficiently large.

If r is a restraint on G and H is a subgraph of G then r|H , the restriction of r

to H, denotes the restraint function induced by r on the vertex set of H. Observe

that if H is a subgraph of G such that V (H) = V (G) then πr|H (H, x) ≥ πr|G(G, x)

since every x-colouring of G permitted by the restraint r|G is also an x-colouring of

H permitted by the restraint r|H . Also, if G is a graph with V1 ·∪ · · · ·∪ Vt being

a partition of the vertex set V (G), then G′ = GV1
·∪ · · · ·∪ GVt is a subgraph of G

such that V (G) = V (G′). Therefore, πr|G′ (G
′, x) ≥ πr|G(G, x). Since GV1 , · · · , GVt

are connected components of G′, we have πr|G′ (G
′, x) =

∏t
i=1 πr|GVi

(GVi
, x). Hence,

it follows that for any restraint r on G we have
∏t

i=1 πr|GVi
(GVi

, x) ≥ πr(G, x) for all x.

Definition 4.1.1. Let r and r′ be two restraints on G. We say that r and r′ are

equivalent restraints, denoted by r " r′, if there exists a graph automorphism φ of G

and a bijective function f :
⋃

u∈V (G)

r(u) �→
⋃

u∈V (G)

r′(u) such that

f(r(u)) = r′(φ(u))

for every vertex u of G. If r and r′ are not equivalent then we call them nonequivalent

restraints and write r �" r′.

Example 4.1.2. LetG = P3 and v1, v2, v3 ∈ V (G) such that vivi+1 ∈ E(G). Consider

the restraints r1 = [{1}, {2}, {3}], r2 = [{2}, {1}, {4}], r3 = [{1}, {1}, {2}] and r4 =

[{3}, {2}, {2}] (see Figure 4.1). Then r1 " r2, r3 " r4 and r1 �" r3.

If r and r′ are two equivalent restraints, then πr(G, x) = πr′(G, x) for all x suf-

ficiently large. Thus if N =
∑

v∈V (G)

|r(v)| then we can assume (as we shall do for the

rest of this thesis) that each r(v) ⊆ [N ], and so there are only finitely many restrained
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1 2 3 2 1 4 1 1 2 3 2 2

Figure 4.1: Some restraints on P3.

chromatic polynomials on a given graph G. Hence past some point (past the roots of

all of the differences of such polynomials), one polynomial exceeds (or is less) than

all of the rest, no matter what x is.

Remark 4.1.1. There exist graphs for which two nonequivalent restraints permit the

same number of colourings. For example, consider the graph P4 with V (P4) =

{v1, v2, v3, v4} and E(P4) = {vivi+1 | 1 ≤ i ≤ 3}. It is trivial that r = [{1}, {2}, {2}, {1}]
and r′ = [{1}, {2}, {3}, {3}] are two nonequivalent restraints on P4. However,

πr(P4, x) = πr′(P4, x) = x4 − 7 x3 + 20 x2 − 28 x+ 16

for all large enough x.

4.2 Extremal Restraints

Our focus in this section will be on the following interesting question:

Question 4.2.1. Given a graph G and x large enough, among all k-restraints on G

what restraint permits the largest/smallest number of x-colourings?

In this section, we first give a complete answer to the minimization part of this

question, by describing such restraints for all graphs. We then turn our attention to

the more difficult maximization problem in the case of some important graph families

such as complete graphs and bipartite graphs, and describe the k-restraints which

permit the largest number of colourings. Moreover, we prove that extremal restraints
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are unique; in other words, the number of colourings permitted by an extremal re-

straint is strictly larger (or smaller) than the number of colourings permitted by any

other restraint which is not equivalent to that extremal restraint.

Example 4.2.1. Consider the cycle C3. There are essentially three nonequivalent

simple restraints on C3, namely r1 = [{1}, {1}, {1}], r2 = [{1}, {2}, {1}] and r3 =

[{1}, {2}, {3}]. For x ≥ 3, the restrained chromatic polynomials with respect to these

restraints can be calculated as

πr1(C3, x) = (x− 1)(x− 2)(x− 3),

πr2(C3, x) = (x− 2)(x2 − 4x+ 5), and

πr3(C3, x) = 2(x− 2)2 + (x− 2)(x− 3) + (x− 3)3.

where πr1(C3, x) < πr2(C3, x) < πr3(C3, x) holds for x > 3. Hence, r3 permits the

largest number of x-colourings whereas r1 permits the smallest number of x-colourings

for large enough x.

4.2.1 Restraints permitting the smallest number of colourings

A restraint function on a graph G is called constant k-restraint, denoted by rkc , if

rkc (u) = {1, 2, . . . , k} for every vertex u of G. We will show that rkc permits the

smallest number of colourings for every graph G. Observe that

πrkc
(G, x) = π(G, x− k)

for all x ≥ k.

To prove the main results of this section, we will make use of the information about

the second and third coefficients of the restrained chromatic polynomial. Hence, first

we give interpretations for these coefficients.
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Theorem 4.2.2. Let x ≥MG,r and πr(G, x) =
n∑

i=0

(−1)n−iai(G, r)xi. Then,

an−1(G, r) = mG +
∑

u∈V (G)

|r(u)|.

In particular, if r is a k-restraint then an−1(G, r) = mG + nk.

Proof. We proceed by induction on the number of edges. If G has no edges then

an−1(G, r) =
∑

u∈V (G)

|r(u)| and the result clearly holds. Suppose that G has at least

one edge, say e. Then by the induction hypothesis on G− e,

πr(G− e, x) = xn −
⎛
⎝mG − 1 +

∑
u∈V (G)

|r(u)|
⎞
⎠ xn−1 + . . .

holds. Now since πre(G ·e, x) is a monic polynomial of degree n−1, the result follows

from Lemma 4.1.1.

Theorem 4.2.3. Let x ≥ MG,r and πr(G, x) =
n∑

i=0

(−1)n−iai(G, r)xi. Also, let

V (G) = {u1, . . . un}. Then, an−2(G, r) is equal to

(
mG

2

)
− ηG(C3) +

∑
i<j

|r(ui)| |r(uj)| +mG

∑
ui∈V (G)

|r(ui)| −
∑

uiuj∈E(G)

|r(ui) ∩ r(uj)|.

In particular, if r is a k-restraint then

an−2(G, r) =

(
mG

2

)
− ηG(C3) + k2

(
n

2

)
+ nkmG −

∑
uiuj∈E(G)

|r(ui) ∩ r(uj)|.

Proof. We proceed by induction on the number of edges. If G has no edges then

an−2(G, r) =
∑
i<j

|r(ui)| |r(uj)| and the result is clear. Suppose that G has at least

one edge, say e = uv. By the induction hypothesis on G − e, the coefficient of xn−2
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in πr(G− e, x) is equal to

(
mG − 1

2

)
− ηG−e(C3) +

∑
i<j

|r(ui)| |r(uj)| + (mG − 1)
∑

ui∈V (G)

|r(ui)|

−
∑

uiuj∈E(G)\{e}
|r(ui) ∩ r(uj)|.

Also, by Theorem 4.2.2, the coefficient of xn−2 in πr(G · e, x) is equal to

−mG·e −
∑

w∈V (G·e)
|re(w)|.

Observe that mG·e = mG − 1 − |NG(u) ∩ NG(v)| and |NG(u) ∩ NG(v)| is equal to

the number of triangles which contain the edge uv. Also, ηG−e(C3) is the number of

triangles of G which do not contain the edge uv. Therefore,

(
mG − 1

2

)
− ηG−e(C3) +mG·e =

(
mG

2

)
− ηG(C3).

Now,

∑
w∈V (G·e)

|re(w)| =
∑

ui∈V (G)\{u,v}
|r(ui)| + |r(u) ∪ r(v)|

=
∑

ui∈V (G)\{u,v}
|r(ui)| + |r(u)|+ |r(v)| − |r(u) ∩ r(v)|

=
∑

ui∈V (G)

|r(ui)| − |r(u) ∩ r(v)|

Thus,

(mG − 1)
∑

ui∈V (G)

|r(ui)| −
∑

uiuj∈E(G)\{e}
|r(ui) ∩ r(uj)| +

∑
w∈V (G·e)

|re(w)|
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is equal to

mG

∑
ui∈V (G)

|r(ui)| −
∑

uiuj∈E(G)

|r(ui) ∩ r(uj)|.

Hence, the result follows from Lemma 4.1.1.

Now we are ready to answer the question of which k-restraint permits the smallest

number of colourings, for a large enough number of colours.

Theorem 4.2.4. Let G be a connected graph of order n. Let also r be a k-restraint

on G such that r �" rkc . Then,

πrkc
(G, x) < πr(G, x)

provided x is sufficiently large.

Proof. Both πrkc
(G, x) and πr(G, x) are monic polynomials. Also, the coefficient of the

term xn−1 is the same for these polynomials by Theorem 4.2.2. Therefore, πr(G, x)−
πrkc

(G, x) is a polynomial of degree n − 2. Now, by Theorem 4.2.3, the leading

coefficient of πr(G, x)− πrkc
(G, x) is equal to

kmG −
∑

uv∈E(G)

|r(u) ∩ r(v)|

which is clearly strictly positive. Thus, the desired inequality is obtained.

Remark 4.2.1. One can give an alternative proof for the fact that πr(G, x) ≥ πrkc
(G, x)

for large enough x by using some earlier results regarding list colourings. But first

let us summarize some related work. Kostochka and Sidorenko [37] showed that if a

chordal graph G has a list of l available colours at each vertex, then the number of

list colourings is at least π(G, l) for every natural number l. It is known that there

exist graphs G (see, for example, Example 1 in [25]) for which the number of list
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colourings is strictly less than π(G, l) for some natural number l. On the other hand,

Thomassen [51] and Donner [25] independently proved that for any graph G, the

number of list colourings is at least π(G, l) when l is sufficiently large compared to

the number of vertices of the graph. In particular, Thomassen [51] proved the result

for l ≥ n10 where n is the order of the graph.

As we already pointed out, given a k-restraint r on a graph G and a natural

number x ≥ kn, we can consider an x-colouring permitted by r as a list colouring L

where each vertex v has a list L(v) = [x]− r(v) of x− k available colours. Therefore,

we derive that for a k-restraint r on graph G, πr(G, x) ≥ π(G, x− k) for any natural

number x ≥ n10 + kn. But since πrkc
(G, x) is equal to π(G, x − k), it follows that

πr(G, x) ≥ πrkc
(G, x) for x ≥ n10 + kn.

4.2.2 Restraints permitting the largest number of colourings

The k-restraints that permit the smallest number of colourings are easy to describe,

and are, in fact, the same for all graphs. The more difficult question is which k-

restraints permit the largest number of colourings; even for special families of graphs,

it appears difficult, so we will focus on this question. As we shall see, the extremal

k-restraints differ from graph to graph.

Let Rmax(G, k) be the set of extremal k-restraints on G permitting the largest

number of colourings for sufficiently large number of colours. More precisely, Rmax(G, k)

is the set of k-restraints r on G such that for every k-restraint r′ on G, πr′(G, x) ≥
πr(G, x) for all large enough x.

In this section, we are going to present three results (Theorems 4.2.5, 4.2.8 and

4.2.12) which give necessary conditions for a restraint to be in Rmax(G, k). Theo-

rem 4.2.5 and Theorem 4.2.8 apply to all graphs and Theorem 4.2.12 applies to all

(C3, C4)-free graphs. The necessary conditions given in Theorem 4.2.5 and Theo-

rem 4.2.8 become sufficient to determine Rmax(G, k) when G is a complete graph and
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bipartite graph respectively. In order to obtain these results, we will give combina-

torial interpretations to the coefficients of xn−3 and xn−4 of the restrained chromatic

polynomial (Theorem 4.2.7 and Theorem 4.2.11).

The first necessary condition for a restraint to be in Rmax(G, k)

A restraint r on graph a G is called a proper restraint if r(u) ∩ r(v) = ∅ for every

uv ∈ E(G). We begin with showing that restraints in Rmax(G, k) must be proper

restraints.

Theorem 4.2.5. If r ∈ Rmax(G, k) then r is a proper restraint.

Proof. For k-restraints, the coefficients of xn and xn−1 of the restrained chromatic

polynomial do not depend on the restraint function. So, in order to maximize the

restrained chromatic polynomial, one needs to maximize the coefficient of xn−2. By

Theorem 4.2.3, it is clear that this coefficient is maximized when |r(u)∩ r(v)| = 0 for

every edge uv of the graph.

Theorem 4.2.5 allows us to determine the extremal restaint for complete graphs.

We deduce that for complete graphs the extremal restraint is unique and such re-

straint is the one where no two vertices have a common restrained colour.

Theorem 4.2.6. Let r∗ be the k-restraint on Kn such that r∗(u) ∩ r∗(v) = ∅ for

every u, v ∈ V (Kn). Then, for any k-restraint r on G such that r �" r∗, we have

πr(G, x) < πr∗(G, x) for all large enough x.

Proof. If r∗ is a proper k restraint onKn then r∗(u)∩r∗(v) = ∅ for every u, v ∈ V (Kn).

Thus, the result follows by Theorem 4.2.5.

In general Theorem 4.2.5 is not sufficient to determine the extremal restraint.

However it is very useful to narrow the possibilities for extremal restraints down to
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a smaller number of restraints. In the next example, we illustrate this on a cycle of

length 4.

Example 4.2.2. Let G = C4. Then there are exactly seven nonequivalent simple

restraints on G and these restraints are namely

r1 = [{1}, {1}, {1}, {1}],
r2 = [{1}, {1}, {1}, {2}],
r3 = [{1}, {1}, {2}, {2}],
r4 = [{1}, {2}, {1}, {2}],
r5 = [{1}, {1}, {2}, {3}],
r6 = [{1}, {2}, {1}, {3}],
r7 = [{1}, {2}, {3}, {4}].

Now, among these seven restraints, there are only three proper restraints and these are

namely r4, r6 and r7. Therefore, by Theorem 4.2.5, the possibilities for nonequivalent

restraints in Rmax(G, k) reduce to r4, r6 and r7.

The second necessary condition for a restraint to be in Rmax(G, k)

Theorem 4.2.7. Let x ≥ MG,r and πr(G, x) =
n∑

i=0

(−1)n−iai(G, r)xi. Also, let

V (G) = {u1, . . . un}. Then,

an−3(G, r) = A0(G) +
8∑

i=1

Ai(G, r)

where

A0(G) =

(
mG

3

)
− (mG − 2)ηG(C3)− iG(C4) + 2ηG(K4);

A1(G, r) =
∑
i<j<k

|r(ui)| |r(uj)| |r(uk)|;
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A2(G, r) = (mG − 1)
∑
i<j

|r(ui)| |r(uj)|;

A3(G, r) =
∑

uiuj /∈E(G)

|r(ui)| |r(uj)|;

A4(G, r) = −
∑

uiuj∈E(G)

|r(ui) ∩ r(uj)|
∑

k/∈{i,j}
|r(uk)|;

A5(G, r) =

( (
mG

2

)
− ηG(C3)

) ∑
1≤i≤n

|r(ui)|;

A6(G, r) = −(mG − 1)
∑

uiuj∈E(G)

|r(ui) ∩ r(uj)|;

A7(G, r) = A′
7(G, r) + A′′

7(G, r) where

A′
7(G, r) =

∑
uiuj∈E(G)

|NG(ui) ∩NG(uj)| |r(ui) ∩ r(uj)|,

A′′
7(G, r) = −

∑
ui∈V (G)

∑
uj,uk∈NG(ui)

j<k

|r(uj) ∩ r(uk)|;

A8(G, r) = A′
8(G, r) + A′′

8(G, r) where

A′
8(G, r) =

1

2

∑
uiuj∈E(G)

∑
k/∈{i,j}

uk∈NG(ui)∪NG(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|

A′′
8(G, r) =

1

6

∑
uiuj∈E(G)

∑
uk∈NG(ui)∩NG(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|.

Proof. We proceed by induction on the number of edges. First suppose that G is

an empty graph. We know that an−3(G, r) = A1(G, r) by the formula given in

Example 4.1.1. Also, it is easy to see that Ai(G, r) = 0 for i /∈ {1, 2, 3}, A2(G, r) =

−∑i<j |r(ui)| |r(uj)| and A3(G, r) =
∑

i<j |r(ui)| |r(uj)|. So the result holds for

empty graphs. Suppose now that G has at least one edge, say e = u1u2. First, let us

define
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B0(G, e) =

(
mG·e
2

)
− ηG·e(C3);

B1(G, r, e) = 0;

B2(G, r, e) =
∑
i<j

|r(ui)||r(uj)|;

B3(G, r, e) = −|r(u1)||r(u2)|;

B4(G, r, e) = −|r(u1) ∩ r(u2)|
∑

i/∈{1,2}
|r(ui)|;

B5(G, r, e) = (mG − 1− |NG(u1) ∩NG(u2)|)
∑

1≤i≤n

|r(ui)|;

B6(G, r, e) = −(mG − 1)|r(u1) ∩ r(u2)| −
∑

uiuj∈E(G−e)

|r(ui) ∩ r(uj)|;

B7(G, r, e) = |NG(u1) ∩NG(u2)||r(u1) ∩ r(u2)| −
∑

i,j∈{1,2}
i �=j

∑
u∈NG(ui)\NG[uj ]

|r(uj) ∩ r(u)|;

B8(G, r, e) =
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui)|.

First, we shall prove that

an−3(G · e, re) = B0(G, e) +
8∑

i=1

Bi(G, r, e).

Since G·e has n−1 vertices, by Theorem 4.2.3, the coefficient of xn−3 in πre(G·e, x)
is equal to

(
mG·e
2

)
− ηG·e(C3) +

∑
u �=v

u,v∈V (G·e)

|re(u)||re(v)| + mG·e
∑

u∈V (G·e)
|re(u)|

−
∑

uv∈E(G·e)
|re(u) ∩ re(v)|.
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Now,

∑
u �=v

u,v∈V (G·e)

|re(u)||re(v)| =
∑

3≤i<j≤n

|r(ui)||r(uj)|+
∑

i/∈{1,2}
|r(u1) ∪ r(u2)||r(ui)|

=
∑

3≤i<j≤n

|r(ui)||r(uj)|+
∑

k∈{1,2}

∑
i/∈{1,2}

|r(uk)||r(ui)|

−|r(u1) ∩ r(u2)|
∑

i/∈{1,2}
|r(ui)|

= B2(G, r, e) + B3(G, r, e) + B4(G, r, e).

Also, mG·e
∑

u∈V (G·e)
|re(u)| is equal to

(mG − 1− |NG(u1) ∩NG(u2)|)
(( ∑

1≤i≤n

|r(ui)|
)
− |r(u1) ∩ r(u2)|

)

since mG·e = mG − 1− |NG(u1) ∩NG(u2)|.
Lastly, −

∑
uv∈E(G·e)

|re(u) ∩ re(v)| is equal to

−
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)| −
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|(r(u1) ∪ r(u2)) ∩ r(ui)|

which can be rearranged as

−
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)|

−
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

∑
k∈{1,2}

|r(uk) ∩ r(ui)|

+
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui)|
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or equivalently

−
∑

uiuj∈E(G−e)

|r(ui) ∩ r(uj)|

−
∑

k,l∈{1,2}
k �=l

∑
ui∈NG(uk)\NG[ul]

|r(ui) ∩ r(ul)|

+
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui)|.

Thus, by combining all these together we obtain that an−3(G · e, re) is equal to

B0(G, e) +
∑8

i=1 Bi(G, r, e).

Finally, by the edge deletion-contraction formula, it suffices to show that

A0(G) = A0(G− e) + B0(G, e) and

Ai(G, r) = Ai(G− e, r) + Bi(G, r, e) for 1 ≤ i ≤ 8.

Claim 1: A0(G) = A0(G− e) + B0(G, e).

Proof of Claim 1. Recall that A0(G) =
(
mG

3

)− (mG − 2)ηG(C3)− iG(C4) + 2ηG(K4),

A0(G− e) =
(
mG−e

3

)− (mG−e − 2)ηG−e(C3)− iG−e(C4) + 2ηG−e(K4) and

B0(G, e) =
(
mG·e
2

)− ηG·e(C3).

By Theorem 3.2.6, the coefficient of xn−3 in the chromatic polynomial π(G, x) of

G is equal to −A0(G). Since G · e has n − 1 vertices, by Theorem 3.2.6, the coef-

ficient of xn−3 in the chromatic polynomial π(G · e, x) of G · e is equal to B0(G, e).

The chromatic polynomial satisfies the edge deletion-contraction formula, π(G, x) =

π(G− e, x)− π(G · e, x). Therefore −A0(G) = −A0(G− e)−B0(G, e) and the result

follows.

Claim 2: A1(G, r) = A1(G− e, r) + B1(G, r, e).



116

Proof of Claim 2. Recall that A1(G, r) = A1(G − e, r) =
∑
i<j<k

|r(ui)| |r(uj)| |r(uk)|

and B1(G, r, e) = 0. Since G and G− e have the same vertices, A1(G, r) is equal to

A1(G− e, r). Now the result follows since B1(G, r, e) = 0.

Claim 3: A2(G, r) = A2(G− e, r) + B2(G, r, e).

Proof of Claim 3. Recall that A2(G, r) = (mG − 1)
∑
i<j

|r(ui)| |r(uj)|,

A2(G− e, r) = (mG−e − 1)
∑
i<j

|r(ui)| |r(uj)| and B2(G, r, e) =
∑
i<j

|r(ui)||r(uj)|.

Now, A2(G− e, r) is equal to (mG− 2)
∑

i<j |r(ui)| |r(uj)| since G− e has mG− 1

edges.

Claim 4: A3(G, r) = A3(G− e, r) + B3(G, r, e).

Proof of Claim 4. Recall that A3(G, r) =
∑

uiuj /∈E(G)

|r(ui)| |r(uj)|,

A3(G− e, r) =
∑

uiuj /∈E(G−e)

|r(ui)| |r(uj)| and B3(G, r, e) = −|r(u1)||r(u2)|.

The result holds because E(G) = E(G−e)∪{e} and the vertices of e are u1 and u2.

Claim 5: A4(G, r) = A4(G− e, r) + B4(G, r, e).

Proof of Claim 5. Recall that A4(G, r) = −
∑

uiuj∈E(G)

|r(ui) ∩ r(uj)|
∑

k/∈{i,j}
|r(uk)|,

A4(G− e, r) = −
∑

uiuj∈E(G−e)

|r(ui) ∩ r(uj)|
∑

k/∈{i,j}
|r(uk)| and

B4(G, r, e) = −|r(u1) ∩ r(u2)|
∑

i/∈{1,2}
|r(ui)|.

Again, as in the previous case, the result holds because E(G) = E(G − e) ∪ {e}
and the vertices of e are u1 and u2.

Claim 6: A5(G, r) = A5(G− e, r) + B5(G, r, e):

Proof of Claim 6. Recall that A5(G, r) =

( (
mG

2

)
− ηG(C3)

) ∑
1≤i≤n

|r(ui)|,
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A5(G− e, r) =

( (
mG−e

2

)
− ηG−e(C3)

) ∑
1≤i≤n

|r(ui)| and

B5(G, r, e) = (mG − 1− |NG(u1) ∩NG(u2)|)
∑

1≤i≤n

|r(ui)|.

The number of triangles in G is equal to ηG(C3). Observe that ηG−e(C3) is the

number of triangles in G which does not contain the edge e and |NG(u1)∩NG(u2)| is
the number of triangles in G which contains the edge e. Therefore, ηG(C3) is equal

to ηG−e(C3) + |NG(u1) ∩ NG(u2)|. Also, it is easy to check that
(
mG

2

)
is equal to(

mG−e

2

)
+mG − 1 as mG−e is equal to mG − 1. Hence, the equality is obtained.

Claim 7: A6(G, r) = A6(G− e, r) + B6(G, r, e):

Proof of Claim 7. Recall that A6(G, r) = −(mG − 1)
∑

uiuj∈E(G)

|r(ui) ∩ r(uj)|,

A6(G− e, r) = −(mG−e − 1)
∑

uiuj∈E(G−e)

|r(ui) ∩ r(uj)| and

B6(G, r, e) = −(mG − 1)|r(u1) ∩ r(u2)| −
∑

uiuj∈E(G−e)

|r(ui) ∩ r(uj)|

The reason why the equality holds is the same as in the proofs of Claims 4 and 5.

Claim 8: A7(G, r) = A7(G− e, r) + B7(G, r, e):

Proof of Claim 8. Recall that A7(G, r) is equal to∑
uiuj∈E(G)

|NG(ui) ∩NG(uj)| |r(ui) ∩ r(uj)| −
∑

ui∈V (G)

∑
uj,uk∈NG(ui)

j<k

|r(uj) ∩ r(uk)|,

A7(G− e, r) is equal to∑
uiuj∈E(G−e)

|NG−e(ui) ∩ NG−e(uj)| |r(ui) ∩ r(uj)| −
∑

ui∈V (G−e)

∑
uj,uk∈NG−e(ui)

j<k

|r(uj) ∩

r(uk)| and
B7(G, r, e) is equal to

|NG(u1) ∩NG(u2)||r(u1) ∩ r(u2)| −
∑

i,j∈{1,2}
i �=j

∑
u∈NG(ui)\NG[uj ]

|r(uj) ∩ r(u)|.

Observe that NG(ui) = NG−e(ui) for i /∈ {1, 2}. Also, NG(u1) \NG−e(u1) = {u2}
and NG(u2) \NG−e(u2) = {u1}.
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Therefore,
∑

uiuj∈E(G)

|NG(ui) ∩NG(uj)||r(ui) ∩ r(uj)| is equal to

∑
uiuj∈E(G−e)

|NG−e(ui) ∩NG−e(uj)||r(ui) ∩ r(uj)|

+
∑

u∈NG(u1)∩NG(u2)

(|r(u) ∩ r(u1)|+ |r(u) ∩ r(u2)|)

+|NG(u1) ∩NG(u2)| |r(u1) ∩ r(u2)|.

Moreover,
∑

ui∈V (G)

∑
uj,uk∈NG(ui)

j<k

|r(uj) ∩ r(uk)| is equal to
∑

ui∈V (G−e)

∑
uk,uj∈NG−e(ui)

j<k

|r(uk) ∩ r(uj)|+
∑

s,t∈{1,2}
s �=t

∑
u∈NG(us)\{ut}

|r(u) ∩ r(ut)|.

Hence, the result follows since

∑
s,t∈{1,2}

s �=t

∑
u∈NG(us)\{ut}

|r(u) ∩ r(ut)| −
∑

u∈NG(u1)∩NG(u2)

(|r(u) ∩ r(u1)|+ |r(u) ∩ r(u2)|)

is equal to
∑

i,j∈{1,2}
i �=j

∑
u∈NG(ui)\NG[uj ]

|r(uj) ∩ r(u)|.

Claim 9: A8(G, r) = A8(G− e, r) + B8(G, r, e):

Proof of Claim 9. Recall that A8(G, r) is equal to

1

2

∑
uiuj∈E(G)

∑
k/∈{i,j}

uk∈NG(ui)∪NG(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|

+
1

6

∑
uiuj∈E(G)

∑
uk∈NG(ui)∩NG(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|,

A8(G− e, r) is equal to

1

2

∑
uiuj∈E(G−e)

∑
k/∈{i,j}

uk∈NG−e(ui)∪NG−e(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|

+
1

6

∑
uiuj∈E(G−e)

∑
uk∈NG−e(ui)∩NG−e(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|
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and B8(G, r, e) is equal to
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui)|.

We need to observe two equalities. First,

1

2

∑
uiuj∈E(G)

∑
k/∈{i,j}

uk∈NG(ui)∪NG(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|

is equal to

1

2

∑
uiuj∈E(G−e)

∑
k/∈{i,j}

uk∈NG−e(ui)∪NG−e(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|

+
∑

k/∈{1,2}
uk∈(NG(u1)∪NG(u2))\(NG(u1)∩NG(u2))

|r(u1) ∩ r(u2) ∩ r(uk)|

+
1

2

∑
u∈NG(u1)∩NG(u2)

|r(u1) ∩ r(u2) ∩ r(u)|.

Secondly,

1

6

∑
uiuj∈E(G)

∑
uk∈NG(ui)∩NG(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|

is equal to

1

6

∑
uiuj∈E(G−e)

∑
uk∈NG−e(ui)∩NG−e(uj)

|r(ui) ∩ r(uj) ∩ r(uk)|

+
1

2

∑
u∈NG(u1)∩NG(u2)

|r(u1) ∩ r(u2) ∩ r(u)|.

Therefore, the result is established.

Theorem 4.2.8. Let G be any graph. If r∗ ∈ Rmax(G, k) then r∗ satisfies both of the

following.

(i) r∗ is a proper restraint,
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(ii) A′′
7(G, r∗) = min{A′′

7(G, r) : r is a proper k-restraint on G}. In other words,

∑
u∈V (G)

∑
v,w∈NG(u)

v �=w

|r∗(v) ∩ r∗(w)| ≥
∑

u∈V (G)

∑
v,w∈NG(u)

v �=w

|r(v) ∩ r(w)|

for every proper k-restraint r on G.

Proof. By Theorem 4.2.5, we know that r∗ is a proper restraint. So we shall prove

the statement in (ii). Let r be a proper k-restraint on G. Note that an(G, r) =

an(G, r∗) = 1 as the restrained chromatic polynomial is a monic polynomial. By

Theorem 4.2.2, we have an−1(G, r) = an−1(G, r∗) = mG+nk. Also, since r and r∗ are

proper restraints we have
∑

uv∈E(G) |r(u) ∩ r(v)| = 0. So, an−2(G, r) = an−2(G, r∗) =(
mG

2

)− ηG(C3)+ k2
(
n
2

)
+nkmG by Theorem 4.2.3. Since the coefficient of xn−3 of the

restrained chromatic polynomial is negative, we must have an−3(G, r) ≥ an−3(G, r∗).

Recall that an−3(G, r) = A0(G)+
∑

Ai(G, r) where Ai(G, r)’s are as in the statement

of Theorem 4.2.7. First note that A0(G) does not depend on the restraint function.

Furthermore, since r and r∗ are k-restraints, Ai(G, r) = Ai(G, r∗) for i = 1, 2, 3, 5.

Also, since r and r∗ are proper restraints, we have Ai(G, r) = Ai(G, r∗) = 0 for

i = 4, 6, 8 and A′
7(G, r) = A′

7(G, r∗) = 0. Thus, 0 ≤ an−3(G, r) − an−3(G, r∗) =

A′′
7(G, r)− A′′

7(G, r∗) and the result follows.

In the next theorem, we will show that in the case of bipartite graphs, the nec-

essary conditions in Theorem 4.2.8 become sufficient to determine the extremal re-

straints.

Suppose G is a connected bipartite graph with bipartition (A1, A2). Then a k-

restraint is called an alternating restraint, denoted ralt, if ralt is constant on both A1

and A2 individually (that is, ralt(a) = ralt(a
′) for every a, a′ ∈ Ai for i = 1, 2), and

ralt(u) ∩ ralt(v) = ∅ for every u ∈ A1 and v ∈ A2.
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Theorem 4.2.9. Let G be a connected bipartite graph. Then, r ∈ Rmax(G, k) if and

only if r " ralt.

Proof. By Theorem 4.2.8, it suffices to show that for any proper k-restraint r such

that r �" ralt,

∑
u∈V (G)

∑
v,w∈NG(u)

v �=w

|ralt(v) ∩ ralt(w)| >
∑

u∈V (G)

∑
v,w∈NG(u)

v �=w

|r(v) ∩ r(w)|.

Let r be a proper k-restraint such that r �" ralt. Then there exist vertices u, v, w such

that v, w ∈ NG(u), v �= w and |r(v) ∩ r(w)| < k, as G is a connected graph. Thus,

the result follows since |r(v) ∩ r(w)| = k for every u, v, w such that v, w ∈ NG(u),

v �= w.

(C3, C4)-free graphs

We have seen that the conditions given in Theorem 4.2.8 are sufficient to deter-

mine Rmax(G, k) when G is a bipartite graph. However these conditions are not

sufficient in general to determine the extremal restraints. For example, let G be

equal to C7. It is easy to check that if r is a proper simple restraint on G then

|A′′
7(G, r)| ≤ 4. Furthermore, for a simple proper restraint r on G, |A′′

7(G, r)| = 4

if and only if r is equivalent to either r1 = [{1}, {2}, {1}, {2}, {1}, {2}, {3}] or r2 =

[{1}, {2}, {1}, {2}, {3}, {1}, {3}] (see Figure 4.2). Computations show that

πr1(G, x) = x7 − 14 x6 + 91 x5 − 353 x4 + 879 x3 − 1404 x2 + 1333 x− 581

and

πr2(G, x) = x7 − 14 x6 + 91 x5 − 353 x4 + 880 x3 − 1411 x2 + 1352 x− 600.

Therefore, πr2(G, x) > πr1(G, x) for all large enough x and Rmax(G, 1) consists

of restraints which are equivalent to r2. Thus, Theorem 4.2.8 cannot determine

Rmax(G, 1) when G is equal to C7.
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Figure 4.2: Two nonequivalent restraints r1 = [{1}, {2}, {1}, {2}, {1}, {2}, {3}] (left)
and r2 = [{1}, {2}, {1}, {2}, {3}, {1}, {3}] (right) on C7.

In the next theorem, we will make use of the following remark.

Remark 4.2.2. Let G be a (C3, C4)−free graph and e be an edge of G. Then, G− e

is also (C3, C4)−free and G · e is C3−free.

Given two graphs G and H, recall that G(H) denotes the set of all subgraphs of

G which are isomorphic to H.

Lemma 4.2.10. Let G be a (C3, C4)−free graph and x ≥MG,r. Also, let πr(G, x) =
n∑

i=0

(−1)n−iai(G, r)xi and V (G) = {u1, . . . un}. Suppose that e = u1u2 ∈ E(G). Then

an−4(G · e, re) = D0(G, e) +
19∑
i=1

Di(G, r, e)

where D0(G, e) = A0(G · e) and Di(G, r, e) are defined for i = 1, . . . , 19 as follows:

D1(G, r, e) = 0;

D2(G, r, e) =
1

mG

C2(G, r);

D3(G, r, e) = −|r(u1)||r(u2)|
∑

3≤i≤n

|r(ui)|;

D4(G, r, e) = −|r(u1) ∩ r(u2)|
∑

3≤i<j≤n

|r(ui)||r(uj)|;
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D5(G, r, e) = D′
5(G, r, e) +D′′

5(G, r, e) where

D′
5(G, r, e) = (mG − 2)

(( ∑
1≤i<j≤n

|r(ui)| |r(uj)|
)
− |r(u1)||r(u2)|

)
;

D′′
5(G, r, e) =

∑
uv/∈E(G)

|r(u)||r(v)|

D6(G, r, e) = −
∑

s,t∈{1,2}
s �=t

|r(us)|
∑

ui∈NG(ut)\{us}
|r(ui)|;

D7(G, r, e) = D′
7(G, r, e) +D′′

7(G, r, e) with

D′
7(G, r, e) = −(mG − 2)|r(u1) ∩ r(u2)|

∑
3≤i≤n

|r(ui)|

D′′
7(G, r, e) = −

∑
uiuj∈E(G−e)

|r(ui) ∩ r(uj)|
∑

k/∈{i,j}
|r(uk)|;

D8(G, r, e) = D′
10(G, r, e) +D′

10(G, r, e) with

D′
8(G, r, e) = −|r(u1) ∩ r(u2)|

∑
v/∈NG(u1)∪NG(u2)

|r(v)|

D′′
8(G, r, e) =

∑
s,t∈{1,2}

s �=t

|r(us)|
∑

ui∈NG(ut)\{us}
|r(ui) ∩ r(ut)|;

D9(G, r, e) = −
∑

s,t∈{1,2}
s �=t

∑
ui∈NG(ut)\{us}

|r(us) ∩ r(ui)|
∑

j /∈{1,2,i}
|r(uj)|;

D10(G, r, e) = |r(u1) ∩ r(u2)|
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)|;

D11(G, r, e) =
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui)|
∑

j /∈{1,2,i}
|r(uj)|;

D12(G, r, e) =

(
mG − 1

2

) ∑
1≤i≤n

|r(ui)|;

D13(G, r, e) = D′
13(G, r, e) +D′′

13(G, r, e) with

D′
13(G, r, e) = −

(
mG − 1

2

)
|r(u1) ∩ r(u2)| and
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D′′
13(G, r, e) = −(mG − 2)

∑
uiuj∈E(G−e)

|r(ui) ∩ r(uj)|;

D14(G, r, e) = D′
14(G, r, e) +D′′

14(G, r, e) with

D′
14(G, r, e) = −(mG − 2)

∑
s,t∈{1,2}

s �=t

∑
ui∈NG(us)\{ut}

|r(ut) ∩ r(ui)| and

D′′
14(G, r, e) = −

∑
ui∈V (G)

∑
uj,uk∈NG−e(ui)

j<k

|r(uj) ∩ r(uk)|;

D15(G, r, e) = −
∑

s,t∈{1,2}
s �=t

∑
u∈NG(us)\{ut}

∑
v∈NG(u)\{us}

|r(ut) ∩ r(v)|

−
∑

ui∈NG(u1)\{u2}
uj∈NG(u2)\{u1}

|r(ui) ∩ r(uj)|;

D16(G, r, e) = D′
16(G, r, e) +D′′

16(G, r, e)with

D′
16(G, r, e) = (mG − 2)

∑
ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui)|,

D′′
16(G, r, e) =

∑
s,t∈{1,2}

s �=t

∑
v,w∈NG(us)\{ut}

|r(us) ∩ r(v) ∩ r(w)|

+
∑

u∈V (G)
u/∈{u1,u2}

∑
v,w∈NG(u)

v �=w

|r(u) ∩ r(v) ∩ r(w)|

D17(G, r, e) =
∑

s,t∈{1,2}
s �=t

∑
ui,uj∈NG(us)\{ut}

|r(ut) ∩ r(ui) ∩ r(uj)|;

D18(G, r, e) = D′
18(G, r, e) +D′′

18(G, r, e) with

D′
18(G, r, e) =

∑
s,t∈{1,2}

s �=t

∑
u∈NG(us)\{ut}

∑
v∈NG(u)\{us}

|r(u1) ∩ r(u2) ∩ r(v)|,

D′′
18(G, r, e) =

∑
ui∈NG(u1)\{u2}
uj∈NG(u2)\{u1}

∑
k∈{1,2}

|r(uk) ∩ r(ui) ∩ r(uj)|

+
∑

s,t∈{1,2}
s �=t

∑
u∈NG(us)\{ut}

∑
v∈NG(u)\{u1,u2}

|r(u) ∩ r(v) ∩ r(ut)|;
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D19(G, r, e) = −
∑

ui,uj∈NG(u1)∪NG(u2)

i,j /∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui) ∩ r(uj)|

−
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

∑
v∈NG(u)\{u1,u2}

|r(u1) ∩ r(u2) ∩ r(u) ∩ r(v)|

Proof. Recall that an−4(G · e, re) = A0(G)+
∑8

i=1 Ai(G · e, re) by Theorem 4.2.7. So,

it suffices to verify the following eight claims.

Claim 1: A1(G · e, re) = D2(G, r, e) +D3(G, r, e) +D4(G, r, e).

Proof of Claim 1 :

A1(G · e, re) =
∑

3≤i<j≤n

|r(u1) ∪ r(u2)| |r(ui)| |r(uj)|

=
∑

3≤i<j≤n

(|r(u1)|+ |r(u2)| − |r(u1) ∩ r(u2)|) |r(ui)| |r(uj)|

=
∑

3≤i<j≤n

|r(u1)||r(ui)| |r(uj)|+
∑

3≤i<j≤n

|r(u2)| |r(ui)| |r(uj)|

−
∑

3≤i<j≤n

|r(u1) ∩ r(u2)| |r(ui)| |r(uj)|

=
∑

1≤i<j<k≤n

|r(ui)| |r(uj)| |r(uk)| − |r(u1)| |r(u2)|
∑

3≤i≤n

|r(ui)|

−|r(u1) ∩ r(u2)|
∑

3≤i<j≤n

|r(ui)| |r(uj)|

= D2(G, r, e) +D3(G, r, e) +D4(G, r, e).

Claim 2: A2(G · e, re) = D′
5(G, r, e) +D′

7(G, r, e)
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Proof of Claim 2 : Since G is a triangle-free graph, we have mG·e = mG − 1. So,

A2(G · e, re) = (mG − 2)
∑
i≥3

|r(u1) ∪ r(u2)| |r(ui)|

= (mG − 2)
∑
i≥3

(|r(u1)|+ |r(u2)| − |r(u1) ∩ r(u2)|) |r(ui)|

= (mG − 2)

(∑
i≥3

(|r(u1)||r(ui)|+
∑

3≤i≤n

|r(u2)||r(ui)|
)

−(mG − 2)|r(u1) ∩ r(u2)|
∑

3≤i≤n

|r(ui)|

= (mG − 2)
∑

1≤i<j≤n

|r(ui)||r(uj)| − (mG − 2)|r(u1)||r(u2)|

−(mG − 2)|r(u1) ∩ r(u2)|
∑

3≤i≤n

|r(ui)|

= D′
5(G, r, e) +D′

7(G, r, e).

Claim 3: A3(G · e, re) = D′′
5(G, r, e) +D6(G, r, e) +D′

8(G, r, e)

Proof of Claim 3 :

A3(G · e, re) =
∑

uiuj /∈E(G)

3≤i<j≤n

|r(ui)||r(uj)|+
∑

u/∈NG(u1)∪NG(u2)

|r(u1) ∪ r(u2)||r(u)|

=
∑

uiuj /∈E(G)

3≤i<j≤n

|r(ui)||r(uj)|+
∑

u/∈NG(u1)∪NG(u2)

(|r(u1)|+ |r(u2)|)|r(u)|

−|r(u1) ∩ r(u2)|
∑

u/∈NG(u1)∪NG(u2)

|r(u)|

=
∑

uiuj /∈E(G)

1≤i<j≤n

|r(ui)||r(uj)| −
∑

u∈NG(u2)\{u1}
|r(u1)||r(u)|

−
∑

u∈NG(u1)\{u2}
|r(u2)||r(u)| − |r(u1) ∩ r(u2)|

∑
u/∈NG(u1)∪NG(u2)

|r(u)|

= D′′
5(G, r, e) +D6(G, r, e) +D′

8(G, r, e).

Claim 4: A4(G · e, re) = D′′
7(G, r, e) +D′′

8(G, r, e) +
∑

i∈{9,10,11}
Di(G, r, e)
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Proof of Claim 4 : By the definition, A4(G · e, re) is equal to

−
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|(r(u1) ∪ r(u2)) ∩ r(ui)|
∑

j /∈{1,2,i}
|r(uj)| (4.1)

−
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)| |r(u1) ∪ r(u2)| (4.2)

−
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)|
∑

k/∈{1,2,i,j}
|r(uk)| (4.3)

Since |(r(u1)∪r(u2))∩r(ui)| = |r(u1)∩r(ui)|+ |r(u2)∩r(ui)|− |r(u1)∩r(u2)∩r(ui)|,
the expression in (4.1) is equal to

−
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(ui)|
∑

j /∈{1,2,i}
|r(uj)| (4.4)

−
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u2) ∩ r(ui)|
∑

j /∈{1,2,i}
|r(uj)| (4.5)

−
∑

ui∈NG(u1)∪NG(u2)

i/∈{1,2}

|r(u1) ∩ r(u2) ∩ r(ui)|
∑

j /∈{1,2,i}
|r(uj)| (4.6)

Note that the expression in (4.6) is equal to D11(G, r, e). Also, since |r(u1)∪ r(u2)| =
|r(u1)|+ |r(u2)| − |r(u1) ∩ r(u2)|, the expression in (4.2) is equal to

−|r(u1)|
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)| − |r(u2)|
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)|

+|r(u1) ∩ r(u2)|
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)|.

Note that |r(u1)∩ r(u2)|
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui)∩ r(uj)| is equal to D10(G, r, e). Furthermore,

the expression in (4.3) and −|r(u1)|
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)| − |r(u2)|
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩
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r(uj)| add up to −
∑

uiuj∈E(G)

ij,/∈{1,2}

|r(ui) ∩ r(uj)|
∑

k/∈{i,j}
|r(uk)|. Now, the expression in (4.4)

is equal to

−
∑

ui∈NG(u1)\{u2}
|r(u1) ∩ r(ui)|

∑
j /∈{1,i}

|r(uj)|

+|r(u2)|
∑

ui∈NG(u1)\{u2}
|r(u1) ∩ r(ui)|

−
∑

ui∈NG(u2)\{u1}
|r(u1) ∩ r(ui)|

∑
j /∈{1,2,i}

|r(uj)|.

Similarly, the expression in (4.5) is equal to

−
∑

ui∈NG(u2)\{u1}
|r(u2) ∩ r(ui)|

∑
j /∈{2,i}

|r(uj)|

+|r(u1)|
∑

ui∈NG(u2)\{u1}
|r(u2) ∩ r(ui)|

−
∑

ui∈NG(u1)\{u2}
|r(u2) ∩ r(ui)|

∑
j /∈{1,2,i}

|r(uj)|.

Now,

−
∑

uiuj∈E(G)

ij,/∈{1,2}

|r(ui) ∩ r(uj)|
∑

k/∈{i,j}
|r(uk)|

−
∑

ui∈NG(u1)\{u2}
|r(u1) ∩ r(ui)|

∑
j /∈{1,i}

|r(uj)|

−
∑

ui∈NG(u2)\{u1}
|r(u2) ∩ r(ui)|

∑
j /∈{2,i}

|r(uj)|

is equal to D′′
7(G, r, e). Also,⎛

⎝|r(u2)|
∑

ui∈NG(u1)\{u2}
|r(u1) ∩ r(ui)|

⎞
⎠ +

⎛
⎝|r(u1)|

∑
ui∈NG(u2)\{u1}

|r(u2) ∩ r(ui)|
⎞
⎠
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is equal to D′′
8(G, r, e). Lastly,

−
∑

ui∈NG(u2)\{u1}
|r(u1) ∩ r(ui)|

∑
j /∈{1,2,i}

|r(uj)|

−
∑

ui∈NG(u1)\{u2}
|r(u2) ∩ r(ui)|

∑
j /∈{1,2,i}

|r(uj)|

is equal to D9(G, r, e). Thus, the proof of Claim 4 is complete.

Claim 5: A5(G · e, re) = D12(G, r, e) +D′
13(G, r, e)

Proof of Claim 5 : By the definition, A5(G · e, re) is equal to((
mG·e
2

)
− ηG·e(C3))

) ∑
u∈V (G·e)

|re(u)|.

Since the graphs G and G · e are triangle-free, mG·e = mG − 1 and ηG·e(C3)) = 0.

Also,
∑

u∈V (G·e)
|re(u)| =

∑
1≤i≤n

|r(ui)| − |r(u1) ∩ r(u2)|. Therefore,

A5(G · e, re) =

(
mG − 1

2

)( ∑
1≤i≤n

|r(ui)| − |r(u1) ∩ r(u2)|
)

=

(
mG − 1

2

) ∑
1≤i≤n

|r(ui)| −
(
mG − 1

2

)
|r(u1) ∩ r(u2)|

= D12(G, r, e) +D′
13(G, r, e).

Claim 6: A6(G · e, re) = D′′
13(G, r, e) +D′

14(G, r, e) +D′
16(G, r, e)

Proof of Claim 6 : By the definition, A6(G · e, re) is equal to

−(mG − 2)
∑

uv∈E(G·e)
|re(u) ∩ re(v)|.

Note that
∑

uv∈E(G·e)
|re(u) ∩ re(v)| is equal to

∑
u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

|(r(u1) ∪ r(u2)) ∩ r(u)|+
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)|.

Now, we rewrite
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

|(r(u1) ∪ r(u2)) ∩ r(u)| as
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u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

(|r(u1) ∩ r(u)|+ |r(u2) ∩ r(u)| − |r(u1) ∩ r(u2) ∩ r(u)|)

which is equal to

∑
u∈NG(u1)\{u2}

|r(u1) ∩ r(u)| +
∑

u∈NG(u2)\{u1}
|r(u1) ∩ r(u)|

+
∑

u∈NG(u1)\{u2}
|r(u2) ∩ r(u)| +

∑
u∈NG(u2)\{u1}

|r(u2) ∩ r(u)|

−
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

|r(u1) ∩ r(u2) ∩ r(u)|.

Observe that
∑

uiuj∈E(G)

i,j /∈{1,2}

|r(ui) ∩ r(uj)| and

∑
u∈NG(u1)\{u2}

|r(u1) ∩ r(u)|+
∑

u∈NG(u2)\{u1}
|r(u2) ∩ r(u)|

add up to
∑

uiuj∈E(G−e)

|r(ui) ∩ r(uj)|. Therefore, we obtain that

A6(G · e, re) = −(mG − 2)
∑

uiuj∈E(G−e)

|r(ui) ∩ r(uj)|

+(mG − 2)
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

|r(u1) ∩ r(u2) ∩ r(u)|

−(mG − 2)

⎛
⎝ ∑

u∈NG(u2)\{u1}
|r(u1) ∩ r(u)|

⎞
⎠

−(mG − 2)

⎛
⎝ ∑

u∈NG(u1)\{u2}
|r(u2) ∩ r(u)|

⎞
⎠

= D′′
13(G, r, e) +D′

16(G, r, e) +D′
14(G, r, e).

Claim 7: A7(G · e, re) = D′′
14(G, r, e) +D15(G, r, e) +D′

18(G, r, e)

Proof of Claim 7 : Recall that A7(G · e, re) = A′
7(G · e, re) + A′′

7(G · e, re). By the

definition, A′
7(G · e, re) is equal to
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uv∈E(G·e)

|NG·e(u) ∩NG·e(v)| |re(u) ∩ re(v)|.

But since G · e is a triangle-free graph, NG·e(u)∩NG·e(v) = ∅ for every uv ∈ E(G · e).
Therefore, it follows that A′

7(G · e, re) = 0. So, it suffices to show that A′′
7(G, r, e) =

D′′
14(G, r, e) +D15(G, r, e) +D′

18(G, r, e). By the definition, A′′
7(G, r, e) is equal to

−
∑

u∈V (G·e)

∑
v,w∈NG·e(u)

v �=w

|re(v) ∩ re(w)|

which is equal to

−
∑

u,v∈NG(u1)∪NG(u2)

u,v/∈{u1,u2}

|r(u) ∩ r(v)| (4.7)

−
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

∑
v∈NG(u)

v/∈{u1,u2}

|(r(u1) ∪ r(u2)) ∩ r(v)| (4.8)

−
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

∑
v,w∈NG(u)

v,w/∈{u1,u2}

|r(v) ∩ r(w)| (4.9)

−
∑

u/∈NG(u1)∪NG(u2)

∑
v,w∈NG(u)

|r(v) ∩ r(w)|. (4.10)

The expression in (4.7) can be rewritten as

−
∑

u,v∈NG(u1)\{u2}
|r(u) ∩ r(v)| −

∑
u,v∈NG(u2)\{u1}

|r(u) ∩ r(v)| (4.11)

−
∑

u∈NG(u1)\{u2}
v∈NG(u2)\{u1}

|r(u) ∩ r(v)| (4.12)
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Also, the expression in (4.8) can be rewritten as

−
∑

s,t∈{1,2}
s �=t

∑
u∈NG(us)\{ut}

∑
v∈NG(u)\{1,2}

|r(us) ∩ r(v)| (4.13)

−
∑

s,t∈{1,2}
s �=t

∑
u∈NG(us)\{ut}

∑
v∈NG(u)\{1,2}

|r(ut) ∩ r(v)| (4.14)

+
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

∑
v∈NG(u)

v/∈{u1,u2}

|r(u1) ∩ r(u2) ∩ r(v)|. (4.15)

Now, the expressions in (4.11), (4.13), (4.9) and (4.10) add up to D′′
14(G, r, e). Fur-

thermore, the expressions in (4.12) and (4.14) add up to D15(G, r, e). Lastly, the

expression in (4.15) is equal to D′
18(G, r, e). Thus, the proof of Claim 7 is complete.

Claim 8: A8(G · e, re) = D′′
16(G, r, e) +D17(G, r, e) +D′′

18(G, r, e) +D19(G, r, e)

Proof of Claim 8 : Recall that A8(G · e, re) = A′
8(G · e, re) +A′′

8(G · e, re). Since G · e
is a triangle free graph, NG·e(u) ∩NG·e(v) = ∅ for every uv ∈ E(G · e). Therefore,

A′′
8(G · e, re) =

1

6

∑
uv∈E(G·e)

∑
w∈NG·e(u)∩NG·e(v)

|r(u) ∩ r(v) ∩ r(w)| = 0.

So, it suffices to show that A′
8(G · e, re) = D′′

16(G, r, e) +D17(G, r, e) +D′′
18(G, r, e) +

D19(G, r, e). First, note that for every triangle free graph G we have

A′
8(G, r) =

1

2

∑
uv∈E(G)

∑
w∈NG(u)∪NG(v)

w/∈{u,v}

|r(u) ∩ r(v) ∩ r(w)|

=
∑

u∈V (G)

∑
v,w∈NG(u)

|r(u) ∩ r(v) ∩ r(w)|.

Thus, A′
8(G · e, re) is ∑

u∈V (G·e)

∑
v,w∈NG·e(u)

|re(u) ∩ re(v) ∩ re(w)|
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which is equal to

∑
u,v∈NG(u1)∪NG(u2)

u,v/∈{u1,u2}

|(r(u1) ∪ r(u2)) ∩ r(u) ∩ r(v)| (4.16)

+
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

∑
v∈NG(u)

v/∈{u1,u2}

|(r(u1) ∪ r(u2)) ∩ r(u) ∩ r(v)| (4.17)

+
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

∑
v,w∈NG(u)

v,w/∈{u1,u2}

|r(u) ∩ r(v) ∩ r(w)| (4.18)

+
∑

u/∈NG(u1)∪NG(u2)

∑
v,w∈NG(u)

|r(u) ∩ r(v) ∩ r(w)|. (4.19)

Now since |(r(u1) ∪ r(u2)) ∩ r(u) ∩ r(v)| is equal to

|r(u1) ∩ r(u) ∩ r(v)|+ |r(u2) ∩ r(u) ∩ r(v)| − |r(u1) ∩ r(u2) ∩ r(u) ∩ r(v)|

it is easy to check that the result holds. Thus, the proof of Claim 8 is complete.

Theorem 4.2.11. Let G be a (C3, C4)−free graph and x ≥MG,r. Also, let πr(G, x) =
n∑

i=0

(−1)n−iai(G, r)xi and V (G) = {u1, . . . un}. Then,

an−4(G, r) = C0(G) +
19∑
i=1

Ci(G, r)

where

C0(G) =

(
mG

4

)
− iG(C5);

C1(G, r) =
∑

1≤i<j<k<l≤n

|r(ui)||r(uj)||r(uk)||r(ul)|;

C2(G, r) = mG

∑
1≤i<j<k≤n

|r(ui)||r(uj)||r(uk)|;

C3(G, r) = −
∑

uv∈E(G)

|r(u)||r(v)|
∑

w/∈{u,v}
|r(w)|;
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C4(G, r) = −
∑

uiuj∈E(G)

|r(ui) ∩ r(uj)|
∑

k,l/∈{i,j}
k �=l

|r(uk)||r(ul)|;

C5(G, r) =

⎛
⎝(mG

2

) ∑
uv/∈E(G)

|r(u)||r(v)|
⎞
⎠ +

⎛
⎝(mG − 1

2

) ∑
uv∈E(G)

|r(u)||r(v)|
⎞
⎠ ;

C6(G, r) = −
∑

u∈V (G)

∑
v,w∈NG(u)

v �=w

|r(v)||r(w)|;

C7(G, r) = −(mG − 2)
∑

uv∈E(G)

|r(u) ∩ r(v)|
∑

w/∈{u,v}
|r(w)|;

C8(G, r) = −
∑

uv∈E(G)

|r(u) ∩ r(v)|
∑

w/∈NG(u)∪NG(v)

|r(w)|;

C9(G, r) = −
∑

ui∈V (G)

∑
uj,uk∈NG(ui)

j �=k

|r(uj) ∩ r(uk)|
∑

l /∈{i,j,k}
|r(ul)|;

C10(G, r) =
1

2

∑
uiuj∈E(G)

|r(ui) ∩ r(uj)|
∑

ukul∈E(G)

k,l/∈{i,j}

|r(uk) ∩ r(ul)|;

C11(G, r) =
∑

ui∈V (G)

∑
uj,uk∈NG(ui)

j �=k

|r(ui) ∩ r(uj) ∩ r(uk)|
∑

l /∈{i,j,k}
|r(ul)|;

C12(G, r) =

(
mG

3

) ∑
1≤i≤n

|r(ui)|;

C13(G, r) = −
(
mG − 1

2

) ∑
uv∈E(G)

|r(u) ∩ r(v)|;

C14(G, r) = −(mG − 2)
∑

u∈V (G)

∑
v,w∈NG(u)

v �=w

|r(v) ∩ r(w)|;

C15(G, r) = −
∑

uv∈E(G)

∑
u′∈NG(u)\{v}
v′∈NG(v)\{u}

|r(u′) ∩ r(v′)|

C16(G, r) = +(mG − 2)
∑

u∈V (G)

∑
v,w∈NG(u)

v �=w

|r(u) ∩ r(v) ∩ r(w)|;
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C17(G, r) =
∑

ui∈V (G)

∑
uj,uk,ul∈NG(ui)

j,k,l distinct

|r(uj) ∩ r(uk) ∩ r(ul)|;

C18(G, r) =
∑

uv∈E(G)

∑
u′∈NG(u)\{v}
v′∈NG(v)\{u}

|r(u) ∩ r(u′) ∩ r(v′)|+ |r(v) ∩ r(u′) ∩ r(v′)|;

C19(G, r) = −
∑

H∈G(P4)∪G(K1,3)

|
⋂

u∈V (H)

r(u)|.

Proof. We proceed by induction on the number of edges. For the basis step, suppose

that G is an empty graph. It is easy to check that C0(G) = Ci(G, r) = 0 for i �= 1.

So, it follows that an−4(G, r) is equal to C1(G, r). Hence, the result is clear by the

formula given in Example 4.1.1 for the restrained chromatic polynomials of empty

graphs.

Now suppose that G has at least one edge, say e = u1u2. Let us define D0(G, e)

and Di(G, r, e) for i = 1, . . . , 19 as in Lemma 4.2.10. By the edge deletion-contraction

formula, an−4(G, r) is equal to an−4(G − e, r) + an−4(G · e, re). Hence, it suffices to

prove the following two claims:

Claim 1: an−4(G · e, re) = D0(G, e) +
∑21

i=1 Di(G, r, e).

Claim 2: C0(G) = C0(G− e) +D0(G) and Ci(G, r) = Ci(G− e, r) +Di(G, r, e) for

i = 1, . . . , 19.

The proof of Claim 1 immediately follows from Lemma 4.2.10. So let us prove

Claim 2.

Proof of Claim 2. Since G is a (C3, C4)-free graph, By Theorem 3.2.6, it is clear

that C0(G) = C0(G− e) +D0(G). So, we shall show that Ci(G, r) = Ci(G− e, r) +

Di(G, r, e) for i = 1, . . . , 19.

Subclaim 1: C1(G, r) = C1(G− e, r) +D1(G, r, e).
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Proof of Subclaim 1. The result is trivial as V (G) = V (G− e).

Subclaim 2: C2(G, r) = C2(G− e, r) +D2(G, r, e).

Proof of Subclaim 2. The result is trivial as mG = mG−e + 1.

Subclaim 3: C3(G, r) = C3(G− e, r) +D3(G, r, e).

Proof of Subclaim 3. The result is trivial as E(G) = E(G− e) ·∪ {u1u2}.

Subclaim 4: C4(G, r) = C4(G− e, r) +D4(G, r, e).

Proof of Subclaim 4. The result is trivial again as E(G) = E(G− e) ·∪ {u1u2}.

Subclaim 5: C5(G, r) = C5(G− e, r) +D5(G, r, e).

Proof of Subclaim 5. By the induction hypothesis, C5(G− e, r) is equal to

⎛
⎝(mG − 1

2

) ∑
uv/∈E(G−e)

|r(u)||r(v)|
⎞
⎠ +

⎛
⎝(mG − 2

2

) ∑
uv∈E(G−e)

|r(u)||r(v)|
⎞
⎠ .

If mG = 1 then C5(G, r) = C5(G− e, r) = 0 and

D′
5(G, r, e) = −

(( ∑
1≤i<j≤n

|r(ui)| |r(uj)|
)
− |r(u1)||r(u2)|

)
,

D′′
5(G, r, e) =

∑
uv/∈E(G)

|r(u)||r(v)| = −D′
5(G, r, e).

Hence, D5(G, r, e) = 0 and the result is clear. So, we may assume that mG ≥ 2.

We rewrite C5(G− e, r) as

(
mG − 1

2

)⎛⎝
⎛
⎝ ∑

uv/∈E(G)

|r(u)||r(v)|
⎞
⎠+ |r(u1)||r(u2)|

⎞
⎠

+

(
mG − 2

2

)⎛⎝
⎛
⎝ ∑

uv∈E(G)

|r(u)||r(v)|
⎞
⎠− |r(u1)||r(u2)|

⎞
⎠ .
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Note that D′
5(G, r, e) is equal to

(mG − 2)

⎛
⎝
⎛
⎝ ∑

uv∈E(G)

|r(u)||r(v)|
⎞
⎠+

⎛
⎝ ∑

uv/∈E(G)

|r(u)||r(v)|
⎞
⎠− |r(u1)||r(u2)|

⎞
⎠ .

Now the result follows since
(
mG

2

)
=
(
mG−1

2

)
+mG− 1 and

(
mG−1

2

)
=
(
mG−2

2

)
+mG− 2

for mG ≥ 2.

Subclaim 6: C6(G, r) = C6(G− e, r) +D6(G, r, e).

Proof of Subclaim 6: The result is trivial as V (G) = V (G − e) and E(G) = E(G −
e) ·∪ {u1u2}.

Subclaim 7: C7(G, r) = C7(G− e, r) +D7(G, r, e).

Proof of Subclaim 7: By the induction hypothesis, C7(G− e, r) is equal to

−(mG − 3)
∑

uv∈E(G−e)

|r(u) ∩ r(v)|
∑

w/∈{u,v}
|r(w)|.

So, the sum of C7(G− e, r) and D′′
7(G, r, e) is equal to

−(mG − 2)
∑

uv∈E(G−e)

|r(u) ∩ r(v)|
∑

w/∈{u,v}
|r(w)|.

Now, adding D′
7(G, r, e) to the latter expression yields C7(G, r) and we are done.

Subclaim 8: C8(G, r) = C8(G− e, r) +D8(G, r, e).

Proof of Subclaim 8: We consider the terms which contribute to C8(G, r) but C8(G−
e, r), and vice versa. So we need to consider the edges which are incident with u1 or
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u2. Obviously, the edge u1u2 contributes nothing to C8(G− e, r) and it contributes

−|r(u1) ∩ r(u2)|
∑

w/∈NG(u1)∪NG(u2)

|r(w)|

to C8(G, r). Now we consider the edges which are incident with exactly one of u1 or

u2. From such edges, C8(G− e, r) gains the extra term

−
⎛
⎝|r(u2)|

∑
u∈NG(u1)\{u2}

|r(u1) ∩ r(u)|
⎞
⎠−
⎛
⎝|r(u1)|

∑
u∈NG(u2)\{u1}

|r(u2) ∩ r(u)|
⎞
⎠

which is not in C8(G, r). Thus the result follows.

Subclaim 9: C9(G, r) = C9(G− e, r) +D9(G, r, e).

Proof of Subclaim 9: By the induction hypothesis, C9(G− e, r) is equal to

−
∑

u∈V (G)

∑
v,w∈NG−e(u)

v �=w

|r(v) ∩ r(w)|
∑

z /∈{u,v,w}
|r(z)|.

Since NG(u) = NG−e(u) for every vertex u /∈ {u1, u2}, we rewrite C9(G− e, r) as

−
∑

u∈V (G)
u/∈{u1,u2}

∑
v,w∈NG(u)

v �=w

|r(v) ∩ r(w)|
∑

z /∈{u,v,w}
|r(z)| (4.20)

−
∑

u∈{u1,u2}

∑
v,w∈NG−e(u)

v �=w

|r(v) ∩ r(w)|
∑

z /∈{u,v,w}
|r(z)|. (4.21)

Now it is easy to check that the expression in (4.21) and D9(G, r, e) add up to

−
∑

u∈{u1,u2}

∑
v,w∈NG(u)

v �=w

|r(v) ∩ r(w)|
∑

z /∈{u,v,w}
|r(z)|.

Thus the proof of Subclaim 9 is complete.
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Subclaim 10: C10(G, r) = C10(G− e, r) +D10(G, r, e).

Proof of Subclaim 10: We rewrite C10(G, r) as

1

2

∑
uiuj∈E(G−e)

|r(ui) ∩ r(uj)|
∑

ukul∈E(G)

k,l/∈{i,j}

|r(uk) ∩ r(ul)|

+
1

2
|r(u1) ∩ r(u2)|

∑
ukul∈E(G)

k,l/∈{1,2}

|r(uk) ∩ r(ul)|

Now it is clear that the difference between C10(G, r) and C10(G − e, r) is equal to

D10(G, r, e).

Subclaim 11: C11(G, r) = C11(G− e, r) +D11(G, r, e).

Proof of Subclaim 11: By the induction hypothesis, C11(G− e, r) is equal to

∑
u∈V (G)

∑
v,w∈NG−e(u)

v �=w

|r(u) ∩ r(v) ∩ r(w)|
∑

z /∈{u,v,w}
|r(z)|.

Since NG(u) = NG−e(u) for every u /∈ {u1, u2}, C11(G− e, r) is equal to

∑
u∈V (G)\{u1,u2}

∑
v,w∈NG(u)

v �=w

|r(u) ∩ r(v) ∩ r(w)|
∑

z /∈{u,v,w}
|r(z)| (4.22)

+
∑

s,t∈{1,2}
s �=t

∑
v,w∈NG(us)\{ut}

|r(us) ∩ r(v) ∩ r(w)|
∑

z /∈{us,v,w}
|r(z)|. (4.23)

Now it is easy to check that the expression (4.23) in plus D11(G, r, e) is equal to

∑
u∈{u1,u2}

∑
v,w∈NG(u)

v �=w

|r(u) ∩ r(v) ∩ r(w)|
∑

z /∈{u,v,w}
|r(z)|.

Thus the result follows.



140

Subclaim 12: C12(G, r) = C12(G− e, r) +D12(G, r, e).

Proof of Subclaim 12: The result holds since mG−e = mG − 1 and
(
mG

3

)
=
(
mG−1

3

)
+(

mG−1
3

)
for mG ≥ 1.

Subclaim 13: C13(G, r) = C13(G− e, r) +D13(G, r, e).

Proof of Subclaim 13: If mG = 1 then it is clear that C13(G, r) = C13(G − e, r) =

D′
13(G, r, e) = 0 and D′′

13(G, r, e) = 0 as E(G − e) = ∅. So we may assume that

mG ≥ 2. By the induction hypothesis, C13(G− e, r) is equal to

−
(
mG − 2

2

) ∑
uv∈E(G−e)

|r(u) ∩ r(v)|.

Since
(
mG−2

2

)
+(mG−2) =

(
mG−1

2

)
for mG ≥ 2, we obtain that the sum of D′′

13(G, r, e)

and C13(G− e, r) is equal to

−
(
mG − 1

2

) ∑
uv∈E(G−e)

|r(u) ∩ r(v)|.

Now adding D′
13(G, r, e) to the latter expression we obtain C13(G, r).

Subclaim 14: C14(G, r) = C14(G− e, r) +D14(G, r, e).

Proof of Subclaim 14: By the induction hypothesis, C14(G− e, r) is equal to

−(mG − 3)
∑

u∈V (G)

∑
v,w∈NG−e(u)

v �=w

|r(v) ∩ r(w)|.

Now, the sum of C14(G− e, r) and D′′
14(G, r, e) is equal to

−(mG − 2)
∑

u∈V (G)

∑
v,w∈NG−e(u)

v �=w

|r(v) ∩ r(w)|. (4.24)
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Note that NG(u) = NG−e(u) for every u �= u1, u2. Also, the set of all pairs v, w such

that v, w ∈ NG−e(u1) is equal to the set of all pairs v, w having v, w ∈ NG(u1) \ {u2}.
Similarly, the same is true when u1 and u2 are switched. Therefore, the sum of the

expression in (4.24) andD′
14(G, r, e) is equal to C14(G, r) and the proof of Subclaim 14

is complete.

Subclaim 15: C15(G, r) = C15(G− e, r) +D15(G, r, e).

Proof of Subclaim 15: Note that in C15(G, r), we sum the size of the intersection of

the restraints on the end-vertices of all paths of order four in the graph. Obviously,

every path in G−e is also in G. So we consider the extra terms which are in C15(G, r)

but not in C15(G − e, r). By considering the paths of order four whose midedge is

u1u2, we find the extra term

−
∑

u∈NG(u1)\{u2}
v∈NG(u2)\{u1}

|r(u) ∩ r(v)|.

Also, by considering the paths of order four whose pendant edge is u1u2, we find the

extra term

−
⎛
⎝ ∑

u∈NG(u1)\{u2}

∑
v∈NG(u)\{u1}

|r(u2) ∩ r(v)|
⎞
⎠−
⎛
⎝ ∑

u∈NG(u2)\{u1}

∑
v∈NG(u)\{u2}

|r(u1) ∩ r(v)|
⎞
⎠ .

Now it is clear that these extra terms add up to D15(G, r, e) and the result follows.

Subclaim 16: C16(G, r) = C16(G− e, r) +D16(G, r, e).

Proof of Subclaim 16: By the induction hypothesis, C16(G− e, r) is equal to

(mG − 3)
∑

u∈V (G)

∑
v,w∈NG−e(u)

v �=w

|r(u) ∩ r(v) ∩ r(w)|.
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Since NG(u) = NG−e(u) for every vertex u /∈ {u1, u2}, we can rewrite C16(G − e, r)

as

(mG − 3)
∑

u∈V (G)
u/∈{u1,u2}

∑
v,w∈NG(u)

v �=w

|r(u) ∩ r(v) ∩ r(w)|

+(mG − 3)
∑

s,t∈{1,2}
s �=t

∑
v,w∈NG(us)\{ut}

v �=w

|r(us) ∩ r(v) ∩ r(w)|.

Now it is clear that the sum of C16(G− e, r) and D16(G, r, e) is equal to C16(G, r).

Subclaim 17: C17(G, r) = C17(G− e, r) +D17(G, r, e).

Proof of Subclaim 17: It is clear that NG(u) = NG−e(u) for every vertex u /∈ {u1, u2}.
Also, NG−e(u1) = NG(u1) \ {u2} and NG−e(u2) = NG(u2) \ {u1}. So, every term

contributing to C17(G − e, r) also contributes to C17(G, r). Furthermore, the extra

term which contributes to C17(G, r) but C17(G− e, r) is equal to

⎛
⎜⎝ ∑

u,v∈NG(u1)\{u2}
u �=v

|r(u) ∩ r(v) ∩ r(u2)|

⎞
⎟⎠+

⎛
⎜⎝ ∑

u,v∈NG(u2)\{u1}
u �=v

|r(u) ∩ r(v) ∩ r(u1)|

⎞
⎟⎠ .

Thus the proof of Subclaim 17 is complete.

Subclaim 18: C18(G, r) = C18(G− e, r) +D18(G, r, e).

Proof of Subclaim 18: It is clear that every term which contributes to C18(G − e, r)

also contributes to C18(G, r). So we need to find the terms which are in C18(G, r) but

C18(G− e, r). Such terms can arise only when we sum over an edge which is incident

with u1 or u2. By considering the edge u1u2, we find an extra term

∑
u′∈NG(u1)\{u2}
v′∈NG(u2)\{u1}

|r(u1) ∩ r(u′) ∩ r(v′)|+ |r(u2) ∩ r(u′) ∩ r(v′)|.
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Also, by the considering the edges which are incident with exactly one of u1 or u2,

we find two extra terms which are∑
u∈NG(u1)\{u2}

∑
u′∈NG(u)\{u1}

|r(u) ∩ r(u′) ∩ r(u2)|+ |r(u1) ∩ r(u2) ∩ r(u′)| and

∑
u∈NG(u2)\{u1}

∑
u′∈NG(u)\{u2}

|r(u) ∩ r(u′) ∩ r(u1)|+ |r(u1) ∩ r(u2) ∩ r(u′)|.

Now all these extra terms add up to D18(G, r, e) and the result follows.

Subclaim 19: C19(G, r) = C19(G− e, r) +D19(G, r, e).

Proof of Subclaim 19: As in the previous cases, every term which contributes to

C19(G − e, r) also contributes to C19(G, r). So we need to find the terms which are

in C19(G, r) but C19(G − e, r). First let us considers the terms which come from

summing over the subgraphs that are isomorphic to P4. By considering the P4’s

whose mid-edge is equal to u1u2, we obtain the extra term

−
∑

u∈NG(u1)\{u2}
v∈NG(u2)\{u1}

|r(u1) ∩ r(u2) ∩ r(u) ∩ r(v)|.

Furthermore, by considering the P4’s whose pendant edge is equal to u1u2, we obtain

the extra term

−
∑

u∈NG(u1)∪NG(u2)

u/∈{u1,u2}

∑
v∈NG(u)\{u1,u2}

|r(u1) ∩ r(u2) ∩ r(u) ∩ r(v)|.

Finally, the extra terms which arises from summing over the subgraphs which are

isomorphic to K1,3 is equal to

−
∑

s,t∈{1,2}
s �=t

∑
u,v∈NG(us)\{ut}

u �=v

|r(u1) ∩ r(u2) ∩ r(u) ∩ r(v)|.
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Thus the sum of all these extra terms add up to D19(G, r, e) and the proof is complete.

Now, by Theorem 4.2.11, we derive a necessary condition for a restraint r on a

(C3, C4)-free graph to be in Rmax(G, k).

Theorem 4.2.12. Let G be a (C3, C4)-free graph and G � K2. If r∗ ∈ Rmax(G, k)

then r∗ satisfies all of the following.

(i) r∗ is a proper restraint,

(ii) A′′
7(G, r∗) = min{A′′

7(G, r) : r is a proper k-restraint on G}. In other words,

∑
u∈V (G)

∑
v,w∈NG(u)

v �=w

|r∗(v) ∩ r∗(w)| ≥
∑

u∈V (G)

∑
v,w∈NG(u)

v �=w

|r(v) ∩ r(w)|

for every proper k-restraint on G.

(iii) If there exists a proper k-restraint r′ on G with r′ �" r∗ such that A′′
7(G, r∗) =

A′′
7(G, r′) then for every proper k-restraint r on G such that A′′

7(G, r∗) = A′′
7(G, r)

we have

C15(G, r∗) + C17(G, r∗) ≥ C15(G, r) + C17(G, r),

that is,

∑
u∈V (G)

∑
v,w,t∈NG(u)
v,w,t distinct

|r∗(v) ∩ r∗(w) ∩ r∗(t)| −
∑

uv∈E(G)

∑
u′∈NG(u)\{v}
v′∈NG(v)\{u}

|r∗(u′) ∩ r∗(v′)|

is larger than or equal to

∑
u∈V (G)

∑
v,w,t∈NG(u)
v,w,t distinct

|r(v) ∩ r(w) ∩ r(t)| −
∑

uv∈E(G)

∑
u′∈NG(u)\{v}
v′∈NG(v)\{u}

|r(u′) ∩ r(v′)|.
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Proof. We follow a similar argument as in the proofs of Theorems 4.2.5 and 4.2.8. It

suffices to show that an−4(G, r∗) ≥ an−4(G, r) holds for every proper k-restraint r on

G such that A′′
7(G, r∗) = A′′

7(G, r). Let r be a such restraint. Recall that an−4(G, r) =

C0(G)+
∑

Ci(G, r). Note that C0(G) does not depend on the restraint function. Now,

since r and r∗ are k-restraints we find that Ci(G, r) = Ci(G, r∗) for i = 1, 2, 3, 5, 6, 12.

Furthermore, Ci(G, r) = Ci(G, r∗) = 0 for i = 4, 7, 8, 10, 11, 13, 16, 18, 19 as r and r∗

are proper restraints. Lastly, Ci(G, r) = Ci(G, r∗) for i = 9, 14 since A′′
7(G, r∗) =

A′′
7(G, r) by the assumption.

 u                             v   

v’u’

u

v w t

Figure 4.3: A P4 (left) and a claw (right)

Example 4.2.3. Let G = C7. We apply Theorem 4.2.12 to determine Rmax(G, 1). As

we already mentioned, by Theorem 4.2.8, if r ∈ Rmax(G, 1) then r must be equivalent

to r1 = [{1}, {2}, {1}, {2}, {1}, {2}, {3}] or r2 = [{1}, {2}, {1}, {2}, {3}, {1}, {3}].
First note that C17(G, r) = 0 for every restraint r on G because cycles are claw-

free graphs. Now we find that C15(G, r1) = 2 and C15(G, r2) = 1. Therefore, by

Theorem 4.2.12, Rmax(G, 1) consists of restraints which are equivalent to r2.

Bounding the number of colours x

All of the previous results find the extremal restraints, but only for sufficiently large

x. How large does x need to be? This is a seemingly difficult problem, but for

complete graphs and trees we will show that the results hold for x ≥ nk.
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Given a restraint function r on G and a vertex v of G, we define πr(G, x, v → j)

as the number of x-colourings of G permitted by r such that the vertex v is assigned

the colour j.

Theorem 4.2.13. Let T be a tree on n ≥ 2 vertices and r be a k-restraint on T .

Then, for x ≥ nk

πr(T, x) ≤ πralt(T, x).

Furthermore, the strict inequality holds if r �" ralt.

Proof. We proceed by induction on n. Let u be a leaf of T and v be the neighbour

of u. For the basis step n = 2, the only tree with two vertices is K2. Let r be any

k-restraint on T . If v gets a colour from r(u) \ r(v) (respectively [x] \ (r(u) ∪ r(v)))

then u has x− k (respectively x− k − 1) choices. Hence,

πr(K2, x) = (x− k)|r(u) \ r(v)|+ (x− k − 1)|[x] \ (r(u) ∪ r(v))|

= (x− k − 1)(|r(u) \ r(v)|+ |[x] \ (r(u) ∪ r(v))|) + |r(u) \ r(v)|

= (x− k − 1)(x− k) + |r(u) \ r(v)|.

Now, |r(u)\r(v)| = k if and only if r " ralt. Therefore, πr(G, x) achieves its maximum

value if and only if r " ralt.

Now suppose that n ≥ 3 and let v1, . . . , vl be the vertices of the set N(v) \ {u}.
Also, let T ′ = T−u, T ′′ = T−{u, v} and T i be the connected component of T ′′ which

contains the vertex vi. Given a k-restraint r on T , we consider again two cases: either

v gets a colour from r(u) \ r(v) or [x] \ (r(u) ∪ r(v)). If v is assigned a colour from

r(u) \ r(v) (respectively [x] \ (r(u) ∪ r(v))), once all the vertices of T ′ are coloured

with respect to r|T ′ the vertex u has x−k (respectively x−k−1) choices. Therefore,

πr(T, x) = (x−k)
∑

j∈r(u)\r(v)
πr|T ′ (T

′, x, v → j) + (x−k−1)
∑

j∈r(u)\r(v)
πr|T ′ (T

′, x, v → j).
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Rewriting the equation above, we have

πr(T, x) = (x− k − 1)
∑

j∈[x]\r(v)
πr|T ′ (T

′, x, v → j) +
∑

j∈r(u)\r(v)
πr|T ′ (T

′, x, v → j).

Thus,

πr(T, x) = (x− k − 1)πr|T ′ (T
′, x) +

∑
j∈r(u)\r(v)

πr|T ′ (T
′, x, v → j). (4.25)

Also, given j ∈ r(u)\r(v), let us define a restraint function rji : V (T i)→ [n]k∪ [n]k+1

on each component T i for i = 1, . . . , l as follows:

rji (w) :=

⎧⎪⎨
⎪⎩

r(vi) ∪ {j} if w = vi

r(w) if w ∈ V (T i) \ {vi}

Now, it is not difficult to see that

πr|T ′ (T
′, x, v → j) =

l∏
i=1

πrji
(T i, x).

Since x ≥ nk, there exists a restraint function r∗ : V (T ′) → [n − 1]k (which is

obtained by permuting the colours of r|T ′) such that the number of x-colourings of

T ′ with respect to r|T ′ is equal to the number of x-colourings of T ′ with respect to

r∗. Therefore, by the induction hypothesis on T ′, πr|T ′ (T
′, x) attains its maximum

value if and only if r induces an alternating restraint on T ′.

Moreover, since r(V (T i)) ⊆ rji (V (T i)) and by the induction hypothesis on T i,

πrji
(T i, x) is maximized when j ∈ r(vi) and r induces an alternating restraint on T i

for every i = 1, . . . , l and j ∈ r(u) \ r(v). So,
∑

j∈r(u)\r(v) πr|T ′ (T
′, x, v → j) attains

its maximum value if and only if all of the following conditions are satisfied:

(i) r(u) ∩ r(v) = ∅,
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(ii) j ∈ r(vi) for each i and j, and

(iii) r induces an alternating restraint on T i for each i.

Thus, Equation 4.25 and all these together imply that πr(T, x) is maximized if

and only if r is an alternating restraint on T .

Note that in Theorem 4.2.13, the number of colours x must be at least nk and

this bound is best possible. For example, let us consider the path graph P3 whose

vertices are v1, v2, v3, and v1 is the stem of the leaves v2, v3. Let r = [{1}, {2}, {3}]
and ralt = [{1}, {2}, {2}] be two simple restraints on P3. Then,

πr(P3, 2) = πralt(P3, 2) = 1.

Moreover, one can find examples where πralt(T, x) is strictly less than πr(T, x) for some

other restraint r when x is less than nk. For example, consider the star K1,4 whose

vertices are v1, . . . , v5 and v1 is its universal vertex. Let r = [{1}, {2}, {3}, {4}, {5}]
and ralt = [{1}, {2}, {2}, {2}, {2}], then

16 = πr(K1,4, 3) > πralt(K1,4, 3) = 9.

Observe that in the proof of Theorem 4.2.6, the extremal restraint on Kn does

not determine how large x should be. In Theorem 4.2.14, we present another proof

and determine that x should be at least nk. On the other hand, Theorem 4.2.6 has

its own advantage that it proves the strict inequality in πr(G, x) < πr∗(G, x) and this

shows the uniqueness of the extremal restraint function.

Theorem 4.2.14. Let r : V (Kn) →
(
[kn]
k

)
be a k-restraint on Kn. Also, let r∗ :

V (Kn)→
(
[kn]
k

)
be the k-restraint which satisfies r∗(w) ∩ r∗(w′) = ∅ for every w and
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w′ in V (Kn). Then, for all x ≥ nk,

πr(Kn, x) ≤ πr∗(Kn, x).

Proof. We show that if two vertices of a complete graph have a common forbidden

colour, then one can modify the restraint function to get another restraint which

permits greater or equal number of colourings, by replacing the common restraint at

one of these vertices with a colour not forbidden elsewhere.

Let r : V (Kn) → [n]k be a k-restraint such that there are two vertices u and v

with r(u) ∩ r(v) �= ∅. Let i be a colour in r(u) ∩ r(v) and x ≥ nk. So, there exist

j ∈ [nk] such that j /∈ r(w) for every vertex w of Kn. Let us define a restraint

function r′ on Kn as follows:

r′(w) :=

⎧⎪⎨
⎪⎩
{j} ∪ (r(v) \ {i}) if w = v

r(w) if w �= v

Let c be an x-colouring of Kn permitted by r. For each such c, we find another

x-colouring c′ of Kn permitted by r′, in a 1-to-1 fashion. We consider three cases:

Case 1: c(v) �= j.

The x-colouring c is also permitted by r′, so we take c′ = c.

Case 2: c(v) = j and the colour i is not used by c.

We define c′ as follows: c′(v) = i and c′(w) = c(w) for w �= v. Since i /∈ r′(v) and

x ≥ i, it is clear that c′ is an x-colouring of Kn permitted by r′.

Case 3: c(v) = j and the colour i is used by c.

Let w be the vertex such that c(w) = i. Now we define c′ as follows: c′(v) = i,

c′(w) = j and c′(a) = c(a) for every vertex a not equal to v or w. Again this gives

an x-colouring of Kn permitted by r′.
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No colouring c′ from one case is a colouring in another case and different colourings

c give rise to different colourings c′ within each case. Thus, πr(Kn, x) ≤ πr′(Kn, x)

for all x ≥ nk. Now, if r′(w) ∩ r′(w′) = ∅ for every w �= w′ in V (Kn), then r∗ = r′.

If not, then we repeat the same argument until we get such a restraint.

Note that Theorem 4.2.14 was proven in [11] for the special case of simple re-

straints.



Chapter 5

Concluding Remarks

5.1 Some Concluding Results on σ-Polynomials

5.1.1 Nonreal roots of σ-polynomials

We have seen that many - almost all! - small graphs have all real σ-roots. The exam-

ples of graphs with nonreal σ-roots are few and far between. Of course, we can build

larger graphs ones from smaller ones via joins, as σ-polynomials are multiplicative

with respect to join but this will not give us new nonreal σ-roots. How to obtain

infinitely many nonreal σ-roots? In this section, we study a family graphs which

are good candidates to find infinitely many nonreal σ-roots and provide a recursive

construction of this family.

Let H t
n,k be the graph Kn with a path of size t hanging off k vertices of the clique

Kn. More precisely, H t
n,k is the graph on n + kt vertices and

(
n
2

)
+ kt edges whose

vertex set is equal to

{ui : 1 ≤ i ≤ n} ·∪ {vji : 1 ≤ i ≤ t, 1 ≤ j ≤ k}

and edge set is equal to

{uiuj : 1 ≤ i < j ≤ n} ·∪ {uiv
i
1 : 1 ≤ i ≤ k} ·∪ {vji vji+1 : 1 ≤ i ≤ t− 1, 1 ≤ j ≤ k}.

For example, see Figure 5.1.
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Figure 5.1: The graph H2
5,3.

Figure 5.2: Nonreal roots of the adjoint polynomial of H2
n,n for n = 1, . . . , 35.
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Figure 5.3: Nonreal roots of the adjoint polynomial of H3
n,n for n = 1, . . . , 30.

Figure 5.4: Nonreal roots of the adjoint polynomial of Hn
n,n for n = 1, . . . , 10.
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Theorem 5.1.1. The adjoint polynomial of H t
n,k satisfies the following recursion

h(H t
n,k, x) = h(Pt, x)h(H

t
n,k−1, x) + xh(Pt−1, x)h(H

t
n−1,k−1, x),

with initial conditions h(H t
1,1, x) = h(Pt+1, x) and h(H t

n,0, x) = h(H0
n,k, x) = h(Kn, x).

Proof. First, note that H t
1,1
∼= Pt+1 and H t

n,0
∼= H0

n,k
∼= Kn, so the initial conditions

are satisfied. By the recursive formula given in Equation (2.1), we get

h(H t
n,k, x) = h(H t

n,k − u1v
1
1, x) + h(H t

n,k � u1v
1
1, x).

Since u1 and v11 have no common neighbors in H t
n,k,

H t
n,k − u1v

1
1
∼= Pt ·∪ H t

n,k−1

and

H t
n,k � u1v

1
1
∼= K1 ·∪ Pt−1 ·∪ H t

n−1,k−1.

Therefore,

h(H t
n,k − u1v

1
1, x) = h(Pt ·∪ H t

n,k−1, x) = h(Pt, x)h(H
t
n,k−1, x)

and

h(H t
n,k � u1v

1
1, x) = h(K1 ·∪ Pt−1 ·∪ H t

n−1,k−1, x) = xh(Pt−1, x)h(H
t
n−1,k−1, x).

Thus, the proof is complete.
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The complement of the graph H t
n,k appears to have nonreal σ-roots with large

moduli (see Figures 5.2, 5.3 and 5.4) although we have not been able to prove it. Ob-

serve that these graphs are not the join of smaller graphs (as H t
n,k are all connected),

and this points to why the nonreal roots are distinct.

5.1.2 Cycles and theta graphs

The generalized theta graph, denoted Θs1,...,sk , consists of a pair of endvertices joined

by k internally disjoint paths of sizes s1, . . . , sk ≥ 2. Such graphs played an important

role in the study of chromatic polynomials as Sokal used such graphs to show that

chromatic roots are dense in the complex plane. In contrast to this fact, computations

suggest that the σ-polynomials of these graphs have only real roots. In this section,

we consider the σ-polynomial of the theta graph Θs1,s2,s3 .

Lemma 5.1.2. The σ-polynomial of the theta graph Θs1,s2,s3 is given by the equality

σ(Θs1,s2,s3 , x) =

(
σ(Cs1+1, x)

x2
∗ 1

x2

(
Cs2+1

x2
∗ Cs3+1

x2

))
+

(
σ(Cs1 , x)

x
∗ 1

x

(
Cs2

x
∗ Cs3

x

))

Proof. Let u and v be the endvertices of the three disjoint paths. By applying the

Cutset Theorem successively we obtain

σ(Θs1,s2,s3 + uv, x) =
σ(Cs1+1, x)

x2
∗ 1

x2

(
Cs2+1

x2
∗ Cs3+1

x2

)

and

σ(Θs1,s2,s3 · uv, x) =
σ(Cs1 , x)

x
∗ 1

x

(
Cs2

x
∗ Cs3

x

)
.

Thus, the desired equality follows from the edge addition-contraction formula.
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Lemma 5.1.3. The σ-polynomial of a cycle Cn satisfies the following

σ(Cn, x) =
n−2∑
i=0

(−1)iσ(Pn−i, x).

Proof. By applying the edge deletion-contraction formula repeatedly, we obtain

σ(Cn, x) = σ(Pn, x)− σ(Cn−1, x)

= σ(Pn, x)− σ(Pn−1, x) + σ(Cn−2, x)

= σ(Pn, x)− σ(Pn−1, x) + σ(Pn−2, x)− σ(Cn−3, x)

...

= σ(Pn, x)− σ(Pn−1, x) + · · ·+ (−1)n−3σ(P3, x) + (−1)n−2σ(P2, x).

Rolle’s Theorem says that every polynomial f and its derivative f ′ interlace.

Therefore, it is not difficult to see the following:

Lemma 5.1.4. [17] If f and g are two compatible polynomials then their derivatives

f ′ and g′ are also compatible.

Conjecture 5.1.5. For every n ≥ 3, the polynomials σ(Cn, x) and σ(Cn+1, x) are

compatible.

It is not possible to strengthen the conjecture above to interlacing property be-

cause σ(Cn, x) and σ(Cn+1, x) do not interlace when n is odd (see Table 5.2).

Lemma 5.1.6. The σ-polynomial of a cycle Cn satisfies the following recursion

σ(Cn, x) = (x− 2)σ(Cn−1, x) + x
d

dx
σ(Cn−1, x) + (x− 1)σ(Cn−2, x) + x

d

dx
σ(Cn−2, x)
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n Nonzero roots of σ(Pn, x)

3 −1.0
4 −2.618,−0.3820
5 −4.491,−1.343,−0.1658
6 −6.510,−2.652,−0.7622,−0.07600
7 −8.626,−4.181,−1.704,−0.4533,−0.03590
8 −10.81,−5.863,−2.890,−1.140,−0.2771,−0.01727
9 −13.05,−7.658,−4.257,−2.072,−0.7824,−0.1726,−0.008403
10 −15.33,−9.541,−5.760,−3.193,−1.519,−0.5458,−0.1089,−0.004121
11 −17.64,−11.49,−7.371,−4.463,−2.444,−1.130,−0.3854,−0.06933,−0.002032
12 −19.98,−13.50,−9.070,−5.854,−3.523,−1.897,−0.8503,−0.2746,−0.04449,

−0.001006
13 −22.35,−15.56,−10.84,−7.344,−4.730,−2.818,−1.487,−0.6453,−0.1970,

−0.02872,−0.0004990
14 −24.73,−17.66,−12.67,−8.918,−6.044,−3.869,−2.275,−1.176,−0.4930,

−0.1422,−0.01862,−0.0002481
15 −27.14,−19.79,−14.56,−10.56,−7.449,−5.031,−3.193,−1.850,−0.9351,

−0.3787,−0.1031,−0.01212,−0.0001236

Table 5.1: Nonzero roots of the σ-polynomial of Pn for n = 3, . . . , 15



158

n Nonzero roots of σ(Cn, x)

4 −1.0,−1.0
5 −3.618,−1.382
6 −5.886,−2.465,−0.5161,−0.1336
7 −8.135,−3.918,−1.511,−0.4360
8 −10.40,−5.594,−2.706,−1.053,−0.2156,−0.02796
9 −12.70,−7.402,−4.072,−1.954,−0.7128,−0.1594
10 −15.02,−9.302,−5.578,−3.063,−1.434,−0.5043,−0.09008,−0.006429
11 −17.37,−11.27,−7.195,−4.329,−2.348,−1.070,−0.3549,−0.06269
12 −19.74,−13.30,−8.901,−5.720,−3.421,−1.825,−0.8066,−0.2542,−0.03795,

−0.001540
13 −22.12,−15.37,−10.68,−7.212,−4.625,−2.739,−1.433,−0.6130,−0.1824,

−0.02569
14 −24.53,−17.48,−12.52,−8.789,−5.938,−3.785,−2.213,−1.134,−0.4688,

−0.1320,−0.01614,−0.0003765
15 −26.94,−19.62,−14.41,−10.44,−7.343,−4.944,−3.125,−1.801,−0.9025,

−0.3604,−0.09572,−0.01079

Table 5.2: Nonzero roots of the σ-polynomial of Cn for n = 4, . . . , 15
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Proof. By applying Lemma 2.1.1 and Lemma 2.1.4, we obtain

σ(Cn, x) = σ(Pn, x)− σ(Cn−1, x)

= σ(Pn−1 ·∪K1, x)− σ(Pn−1, x)− σ(Cn−1, x)

= σ(Cn−1 ·∪K1, x) + σ(Cn−2 ·∪K1, x)

−(σ(Cn−1, x) + σ(Cn−2, x))− σ(Cn−1, x)

= σ(Cn−1 ·∪K1, x) + σ(Cn−2 ·∪K1, x)− 2σ(Cn−1, x)− σ(Cn−2, x)

= (x− 2)σ(Cn−1, x) + x
d

dx
σ(Cn−1, x) + (x− 1)σ(Cn−2, x)

+x
d

dx
σ(Cn−2, x).

Lemma 5.1.7. The σ-polynomial of a cycle Cn is given by the equality

σ(Cn, x) = x3

(
σ(Cn−1, x)

x2
+

(
σ(Cn−1, x)

x2

)′ )
+ x2

(
σ(Cn−2, x)

x
+

(
σ(Cn−2, x)

x

)′)

Proof. Let u and v be two nonadjacent vertices of Cn which have a common neighbor.

By the edge addition-contraction formula, we have

σ(Cn, x) = σ(Cn + uv, x) + σ(Cn · uv, x).

Now by applying the Complete Cutset Theorem we obtain

σ(Cn + uv, x)

x2
=

σ(C3, x)

x2
∗ σ(Cn−1, x)

x2
= x ∗ σ(Cn−1, x)

x2

and

σ(Cn · uv, x)
x

=
σ(K2, x)

x
∗ σ(Cn−2, x)

x
= x ∗ σ(Cn−2, x)

x
.

Since x ∗ f = x(f + f ′) for any polynomial f , the desired equality is obtained.



160

Having a better understanding of the roots of σ-polynomials of cycles might be

useful to obtain results about the theta graphs. From some computations, we believe

the following conjecture might hold.

Conjecture 5.1.8. The σ-polynomials of theta graphs have only real roots.

5.1.3 Average σ-polynomials

Let Gn be the set of all labeled graphs on {1, . . . , n}. We define the nth average

σ-polynomial, denoted by σ̃n(x), as the average of the σ-polynomials over all labeled

graphs of order n. More precisely,

σ̃n(x) =
1

2(
n
2)

∑
G∈Gn

σ(G, x).

Let P(S) denote the power set of S. A partition of S into k nonempty subsets is

a subset A of P(S) \ {∅} such that |A| = k, S = ∪A and X ∩X ′ = ∅ for every two

distinct X,X ′ ∈ A. Now, let Part(S,k) denote the set of all partitions of S into k

nonempty subsets.

For example, Part([4], 2) consists of

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}},

{{1}, {2, 3, 4}}, {{2}, {1, 3, 4}}, {{3}, {1, 2, 4}} and {{4}, {1, 2, 3}}.

Now we find that

σ̃n(x) =
n∑

k=1

∑
A∈Part([n],k)

2−
∑

A∈A (
|A|
2 ) xk



161

n Nonzero roots of d
dx
σ(Cn, x)

4 −1.0,−0.5000
5 −3.0,−1.0
6 −5.056,−1.965,−0.3947,−0.08504
7 −7.181,−3.298,−1.206,−0.3152
8 −9.367,−4.867,−2.258,−0.8286,−0.1607,−0.01824
9 −11.60,−6.589,−3.512,−1.618,−0.5613,−0.1162
10 −13.88,−8.420,−4.927,−2.625,−1.183,−0.3955,−0.06674,−0.004240
11 −16.19,−10.33,−6.470,−3.802,−2.003,−0.8800,−0.2786,−0.04603
12 −18.53,−12.31,−8.113,−5.117,−2.992,−1.552,−0.6620,−0.1995,−0.02812,

−0.001021
13 −20.89,−14.34,−9.839,−6.544,−4.121,−2.387,−1.215,−0.5026,−0.1433,

−0.01896
14 −23.27,−16.42,−11.63,−8.065,−5.369,−3.362,−1.924,−0.9600,−0.3843,

−0.1037,−0.01199,−0.0002502
15 −25.67,−18.53,−13.49,−9.665,−6.717,−4.458,−2.769,−1.563,−0.7634,

−0.2955,−0.07535,−0.007998

Table 5.3: Nonzero roots of the derivative of the σ-polynomial of Cn for n = 4, . . . , 15.
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n σ̃n(x)

1 x

2 1
2
x+ x2

3 1
8
x+ 3

2
x2 + x3

4 1
64
x+ 5

4
x2 + 3 x3 + x4

5 1
1024

x+ 45
64
x2 + 5 x3 + 5 x4 + x5

6 1
32768

x+ 143
512

x2 + 375
64

x3 + 55
4
x4 + 15

2
x5 + x6

7 1
2097152

x+ 2583
32768

x2 + 5341
1024

x3 + 1715
64

x4 + 245
8
x5 + 21

2
x6 + x7

8 1
268435456

x+ 4145
262144

x2 + 29799
8192

x3 + 5187
128

x4 + 2835
32

x5 + 119
2
x6 + 14 x7 + x8

9 1
68719476736

x+ 604425
268435456

x2 + 1054825
524288

x3 + 406245
8192

x4 + 102543
512

x5 + 7623
32

x6 + 105 x7

+18 x8 + x9

10 1
35184372088832

x+ 7818053
34359738368

x2 + 237857325
268435456

x3 + 13151615
262144

x4 + 6081705
16384

x5 + 191163
256

x6

+17745
32

x7 + 345
2
x8 + 45

2
x9 + x10

11 1
36028797018963968

x+ 573667083
35184372088832

x2 + 21374449591
68719476736

x3 + 11388932005
268435456

x4 + 607302245
1048576

x5

+31619511
16384

x6 + 1173711
512

x7 + 37125
32

x8 + 2145
8

x9 + 55
2
x10 + x11

Table 5.4: Average σ-polynomials for n = 1, . . . , 11
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A partition of an integer n into k integers is a nonincreasing sequence of k positive

integers whose sum is equal to n. Let InPart(n, k) denote the set of all partitions of

the integer n into k integers. For example,

InPart(5, 1) = {(5)}

InPart(5, 2) = {(4, 1), (3, 2)}

InPart(5, 3) = {(3, 1, 1), (2, 2, 1)}

InPart(5, 4) = {(2, 1, 1, 1)}

InPart(5, 5) = {(1, 1, 1, 1, 1)}

Given a sequence τ of size k, we write τ = (τ1, . . . , τk). Let i be an integer then

the number of repetitions of i in τ is denoted by rep(τ, i). For example, if τ =

(1, 1, 1, 2, 3, 3) then rep(τ, 1) = 3, rep(τ, 2) = 1, rep(τ, 3) = 2 and rep(τ, 4) = 0. Also,

let (
n

τ1, . . . , τk

)
=

(
n

τ1

)(
n− τ1
τ2

)
· · ·
(
n− τ1 − · · · − τk−1

τk

)
=

n!

τ1! · · · τk!

be the multinomial coefficient. Now we find that

σ̃n(x) =
n∑

k=1

∑
τ∈InPart(n,k)

(
n

τ1, . . . , τk

)
1∏n−k+1

i=1 rep(τ, i)!

1

2
∑k

i=1 (
τi
2 )

xk.

By computer aided computations we have verified that Conjecture 5.1.9 is true

for every n at most 30.

Conjecture 5.1.9. The polynomial σ̃n(x) has only real roots for every n. Moreover,

σ̃n(x) interlaces σ̃n+1(x). That is, if rn1 ≤ rn2 ≤ · · · ≤ rnn are the roots of σ̃n(x) and

rn+1
1 ≤ rn+1

2 ≤ · · · ≤ rn+1
n+1 are the roots of σ̃n+1(x) then

rn+1
1 ≤ rn1 ≤ rn+1

2 ≤ rn2 ≤ · · · ≤ rnn ≤ rn+1
n+1.
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n Roots of σ̃n(x)

1 0.0

2 −0.5000, 0.0
3 −1.411,−0.08856, 0.0
4 −2.503,−0.4840,−0.01290, 0.0
5 −3.700,−1.132,−0.1661,−0.001403, 0.0
6 −4.967,−1.948,−0.5305,−0.05428,−0.0001095, 0.0
7 −6.284,−2.880,−1.073,−0.2463,−0.01648,−0.000006052, 0.0
8 −7.640,−3.898,−1.752,−0.5942,−0.1114,−0.004578,−0.0000002356, 0.0
9 −9.026,−4.982,−2.537,−1.079,−0.3265,−0.04866,−0.001152,

−0.000000006463, 0.0
10 −10.44,−6.118,−3.406,−1.677,−0.6645,−0.1766,−0.02039,−0.0002606,

−0.0000000001249, 0.0
11 −11.87,−7.298,−4.343,−2.369,−1.114,−0.4067,−0.09365,−0.008171,

−0.00005280,−1.702× 10−12, 0.0

Table 5.5: Roots of average σ-polynomials for n = 1, . . . , 11
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5.2 Concluding Remarks on Restrained Colourings

We determined the extremal restraints for bipartite graphs which includes all even

cycles. A natural problem is to investigate the problem on odd cycles. Surpris-

ingly, determining extremal restraints for odd cycles is more difficult than bipartite

graphs. We believe that the necessary conditions for (C3, C4)–free graphs given in

Theorem 4.2.12 are sufficient for odd cycles. Note that odd cycles are claw–free and

therefore an immediate consequence of Theorem 4.2.12 for odd cycles is the following.

Corollary 5.2.1. Let G be equal to an odd cycle. If r∗ ∈ Rmax(G, k) then r∗ satisfies

all of the following.

(i) r∗ is a proper restraint,

(ii) A′′
7(G, r∗) = min{A′′

7(G, r) : r is a proper k-restraint on G}. In other words,

∑
u∈V (G)

∑
v,w∈NG(u)

v �=w

|r∗(v) ∩ r∗(w)| ≥
∑

u∈V (G)

∑
v,w∈NG(u)

v �=w

|r(v) ∩ r(w)|

for every proper k-restraint on G.

(iii) If there exists a proper k-restraint r′ on G with r′ �" r∗ such that A′′
7(G, r∗) =

A′′
7(G, r′) then for every proper k-restraint r on G such that A′′

7(G, r∗) = A′′
7(G, r)

we have

C15(G, r∗) ≥ C15(G, r),

that is,

∑
uv∈E(G)

∑
u′∈NG(u)\{v}
v′∈NG(v)\{u}

|r∗(u′) ∩ r∗(v′)| ≤
∑

uv∈E(G)

∑
u′∈NG(u)\{v}
v′∈NG(v)\{u}

|r(u′) ∩ r(v′)|.

Conjecture 5.2.2. The conditions given in Corollary 5.2.1 are sufficient to determine

Rmax(G, k) when G is an odd cycle.
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v5

v1  

v3 v2 v4

v6

Figure 5.5: A nonchordal graph G whose simple restraint permitting the largest
number of colourings is not a minimal colouring.

It is worth noting that for complete graphs and trees the simple restraints which

maximize the restrained chromatic polynomials are all minimal colourings, that

is, colourings with the smallest number of colours. One might wonder therefore

whether this always holds, but unfortunately this is not always the case. For ex-

ample, the graph G in Figure 5.5 has chromatic number 3, and there are exactly

two different kinds of simple restraints which are minimal colourings of G, namely,

r1 = [{1}, {1}, {3}, {3}, {2}, {2}] and r2 = [{1}, {3}, {3}, {1}, {2}, {2}]. Now, for

r3 = [{1}, {1}, {3}, {4}, {2}, {2}] which is clearly not a minimal colouring of G, we

have

πr3(G, x)− πr1(G, x) = 2 x2 − 14 x+ 26,

πr3(G, x)− πr2(G, x) = 3 x2 − 20 x+ 34

for all large enough x. It follows that the simple restraint which maximizes the

restrained chromatic polynomial of G cannot be a minimal colouring of the graph.

So, one might hope for a generalization of the results for trees and complete

graphs in a restricted family of graphs such as chordal graphs. But this is not

possible either. For consider the chordal graph G in Figure 5.6 which has chro-

matic number 3. It is easy to see that there is essentially only one simple restraint

(r2 = [{1}, {2}, {3}, {1}, {2}, {3}]) which is a proper colouring of the graph with
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three colours. If r1 = [{1}, {2}, {3}, {1}, {2}, {4}], then some direct computations

show that

πr1(G, x)− πr2(G, x) = (x− 3)2 > 0

for all x large enough.

v2

v3 v6

v1 v4 v5

Figure 5.6: A chordal graph whose simple restraint permitting the largest number of
colourings is not a minimal colouring.

Indeed, we know that among all graphs of order at most 6, there are only two

graphs where the simple restraint which maximizes the restrained chromatic poly-

nomial is not a minimal colouring of the graph. Therefore, we suggest the following

interesting problem:

Problem 5.2.3. Is it true that for almost all graphs the simple restraint which

maximizes the restrained chromatic polynomial is a minimal colouring of the graph?

Remark 5.2.1. As we already mentioned, the minimum number of l-list colourings on

graph G is equal to π(G, l) when l is large enough and this allows one to show that

rkc ∈ Rmin(G, k). Similarly one might wonder whether considering list colourings can

be helpful to determine Rmax(G, k). So a natural analogue of the extremal restraint

problem is the following: what is the maximum number of l-list colourings on a

graph G and which list colourings are extremal among all l-list colourings of G?

This problem is trivial as the maximum number of l-list colourings is equal to ln
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and this value is achieved by an l-list colouring L if and only if L(u) ∩ L(v) = ∅ for

every uv ∈ E(G). Obviously, knowing this does not help us to determine Rmax(G, k)

because when we consider the list colouring version of a restrained colouring, we are

not able to produce all possible list colourings. For example, consider the graph

G = P3 with vertices v1, v2, v3 such that v1v2, v2v3 ∈ E(G). Let us consider a 3-

colouring of G. Now there are four nonequivalent simple restraints on G. Such

restraints and the corresponding list colourings are

r1 = [{1}, {2}, {3}] L1 = [{2, 3}, {1, 3}, {1, 2}]

r2 = [{1}, {2}, {1}] L2 = [{2, 3}, {1, 3}, {2, 3}]

r3 = [{1}, {1}, {2}] L3 = [{2, 3}, {2, 3}, {1, 3}]

r4 = [{1}, {1}, {1}] L4 = [{2, 3}, {2, 3}, {2, 3}]

Obviously, 3-colourings permitted by the restraint ri are the same as Li-colourings.

But the list colourings produced by the restraints do not include all possible list

colourings. In particular when x is large enough, none of such list colourings will

achieve the maximum value ln.
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