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ABSTRACT 

The wild blueberry industry is currently facing increased harvesting losses due to 

changes in crop conditions caused by improved management practices. The objectives of 

this study were to sense the variations in fruit yield, plant height and topographic features 

to quantify overall fruit losses, evaluate the blueberry harvester for picking efficiency in 

relation to spatial variability, and to develop a mathematical model for prediction of fruit 

losses. An integrated automated sensing and control system was developed and 

incorporated onto a commercial blueberry harvester to sense plant height, fruit yield, slope 

and elevation in real-time. Four wild blueberry fields were selected and performance of the 

commercial blueberry harvester with developed integrated system was evaluated. Yield 

plots were randomly selected and the harvester was operated at different combinations of 

ground speed and head revolutions to mechanically harvest these plots. Total fruit yield, 

berry losses, plant height, fruit zone and slope were recorded manually from each plot.  

Results reported that the developed system performed rapidly and reliably to 

estimate pre-harvest fruit losses, plant height, fruit yield, slope and elevation in real-time. 

Significant relationship between fruit yield and total fruit losses suggested that losses 

during harvesting were proportional to fruit yield. Results of means comparison showed 

that a combination of 1.2 km h-1 and 26 rpm resulted in significantly lower losses in high 

yielding fields. Spatial variability in fruit losses corresponding with the variations in crop 

characteristics, fruit yield and slope suggested that these parameters had a significant effect 

on fruit losses during mechanical harvesting. Results of modeling suggested that the 

predictive capabilities of the artificial neural network model to estimate fruit losses were 

significantly better than the multiple regression model for training and validation datasets. 

Overall, the results suggested a suitable combination of ground speed and header 

revolutions based on proper characterization and quantification of spatial variability in fruit 

yield, plant characteristics, and topographic features can minimize fruit losses during 

harvesting. This study can help to identify the factors responsible for fruit losses and to 

suggest optimal harvesting scenarios to improve berry picking efficiency and recovery to 

increase harvestable yield, which will improve farm profitability with no additional cost. 

 



xv 

 

LIST OF ABBREVIATIONS AND SYMBOLS USED 

ABBREVIATIONS 

ANOVA – Analysis of Variance 

ANN – Artificial Neural Network 

BOG – Berries on the Ground 

BP-ANN – Back-propagated Artificial Neural Network 

C.V. –   Coefficient of Variation 

CVs – Coefficient of Variations 

CE – Coefficient of Efficiency 

CSV – Comma Separated Value 

DGPS – Differential Global Positioning System 

DBE – Doug Bragg Enterprises 

F – Function Layer 

GIS – Geographical Information System 

GLM – General Linear Model 

ha – Hectare 

IDW – Inverse Distance Weighting  

LS – Least Squares  

LTB – Losses through the Blower  

Max – Maximum 

Min – Minimum 

n – Number of Samples 

MR – Multiple Regression 



xvi 

 

NS – Non-significant 

n/a – Not Applicable 

PHL – Pre-harvest Fruit Losses 

r – Coefficient of Correlation 

R2 – Coefficient of Determination 

RMSE – Root Mean Square Error 

RTK-GPS – Real-time Kinematics Global Positioning System 

S.D – Standard Deviation 

TFY – Total Fruit Yield 

TFL – Total Fruit Losses 

UHBP – Un-harvested Berries on the Plants 

 W – Weight Layer 

YC – Yield Collected by the Harvester from the Harvested Plot.  

%E – Percent Variation  

GREEK LETTERS 

𝛽0 – Intercept 

 𝛽i – Regression Coefficients 

ε – Error Term 

f – Non-linear Function 

iu – Normalized Value of Input  

𝛾 – Semivariance 

 



xvii 

 

MATHEMATICAL VARIABLES 

H – Output of Artificial Neural Network Model 

h – Lag Distance 

i – Number of Inputs 

I – Inputs Parameters for Artificial Neural Network Model 

𝑀𝑖𝑛𝑖 – Minimum Value of Input  

iMax  – Maximum Value of Input 

N (h) – Number of Sample Pairs 

iR  – Actual Value of Input 

x – Input Variables 

xi – Spatial Location 

Y – Output 

Z (xi) – Regionalized Variable at Spatial Location 

 

 

 

 

 

 

 

 

 



xviii 

 

ACKNOWLEDGEMENTS 

Many people deserve special recognition for their help and support throughout my 

graduate studies at Dalhousie University. First, I want to dedicate a special gratitude to Dr. 

Qamar Zaman and Dr. Dominic Groulx, my co-supervisors for their intellectual guidance, 

consistent support and endless efforts to accomplish this project. I gratefully thank them 

both for their encouragement and inspiration that never failed to lift my spirits. I gratefully 

acknowledge my committee members Dr. A. W. Schumann and Dr. Tri Nguyen-Quang for 

their assistance, consideration, friendly support and useful advices, which built my 

confidence during the entire PhD program. All my committee members have provided an 

unquantifiable amount of advice and inspiration over the past four years and contributed 

greatly to my professional career. I have been fortunate indeed to have such superb 

researchers in my supervisory committee. I also express my sincere gratitude to Dr. Qamar 

Zaman, Mrs. Afshan Qamar and their family for providing extreme care, help and mental 

support during my stay at Dalhousie University, which never let me feel home sick. 

I want to thank Carl Bragg (president, DBE Ltd) and Peter Swinkles (general 

manager, DBE Ltd) for providing the harvester equipment and technical support during the 

experiment. I am thankful to Gary Brown and Doug Wyllie (farm managers), Dr. Young 

Ki. Chang (Post-Doctoral Fellow), Travis Esau, Asif Abbas, Shoaib Saleem, Fahad Khan, 

Hassan Chattha (graduate students), Dr. Mumtaz Cheema (visiting scientist), Mathew 

Morrison and Asena Yildiz (summer students) for their help/assistance during data 

collection. I am also thankful to Dr. Kenny Corscadden, Dr. Peter Havard and Dr. Ilhami 

Yildiz for their trust to provide me an opportunity to teach undergraduate courses at the 



xix 

 

Engineering Department during the past four years. Teaching experience not only 

enhanced my professional skills but also helped me financially.  

Sincere thanks to Selina Cajolais (Graduate secretary) and Mandi Wilson 

(Administrative assistant) for their help during my PhD program. I am very grateful to 

Doug Bragg Enterprises Limited, the Natural Science and Engineering Research Council 

(NSERC) of Canada, Agri-Futures Nova Scotia (Canadian Agriculture Adoption 

Program), Wild Blueberry Producers Association of Nova Scotia, Nova Scotia Department 

of Agriculture, Agriculture and Agri. Food Canada (Canadian Horticulture Council), New 

Brunswick Department of Agriculture, Aquaculture and Fisheries (NB-DAFF) and Bleuets 

NB Blueberries for their financial support to accomplish this project. I would also like to 

thank my instructors Dr. Q. Zaman, Dr. Tessema Astatkie and Dr. Tri Nguyen-Quang for 

their excellent teaching skills.  

I express my greatest appreciation to my loving parents (Ch. Manzoor Hussain and 

Fatima Bibi), uncles (Ch. Muhammad Hafeez, Ch. Taj Mehmood, Ch. Muhammad 

Saddiq), wife (Asma Sabir), brother (Sohail Farooq), sisters (Sobia Manzoor and Saima 

Manzoor), cousins and all other family members for their support and extreme care during 

this journey. A special feeling of gratitude to my uncle’s family (Mumtaz Begum, Yasir 

Masud, Sajid Ur Rehman, Qurat Ul Ain Sabir, Asma Sabir and Waqar Ahmad) for their 

help and support during high school and college years. Thanks to Ch. Muhammad Saddiq’s 

family for their partial contribution during high school education. Special thanks to my 

friends for their support and encouragement over the years. 



xx 

 

I could not end my acknowledgements without recognizing that ultimately it has 

been by the grace of Almighty God and I most gratefully submit my thanks and praise to 

Him for any good that comes into my life.



1 

 

CHAPTER 1   INTRODUCTION 

Northeastern North America is the world’s leading producer of wild blueberry 

(Vaccinium angustifolium Ait.) with over 86,000 ha under management and producing 112 

million kg of fruit, valued at $470 million annually (Yarborough, 2013). The wild 

blueberry industry is rapidly growing with over 7,700 ha of new area of production over 

the past 20 years in Canada (Yarborough, 2009). Blueberry fields are developed by clearing 

woodlands and removing competing vegetation (Eaton, 1988). Newly established 

blueberry fields contain 30 to 50% bare spots/weed patches (Zaman et al., 2008). Blueberry 

fields are predominately managed on two-year production cycle, with the perennial shoots 

pruned in alternative years to maximize floral bud initiation, fruit set, yield and ease of 

mechanical harvest. Selective herbicides, fungicides and fertilizers are applied for 

optimizing plant growth to encourage improved berry production (Esau et al., 2014). 

Harvesting of wild blueberries does not take place until approximately 90% of the berries 

are blue (Dale et al., 1994; Mehra et al., 2012). 

  Wild blueberries have been hand raked for the past 100 years. The substantial 

increase in fruit yields with improved management practices over last few decades, 

shortage and quality of labor, and increase of wages have consequently demanded for 

mechanical harvesting (Yarbrough, 2001). Research on the development of a mechanical 

harvester started in early 1950s, but a viable harvester was not commercialized until 1980s 

due to technical difficulties including rough terrain, poor harvesting efficiency and fruit 

damage (Hall et al., 1983; Richard, 1982). Currently, the mechanically harvested blueberry 

area is more than 80% of the total area in Canada (PMRA, 2005). The wild blueberry 

industry is facing increased harvesting losses with the existing commercial harvester due 
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to changes in crop conditions caused by the improved management practices (Farooque et 

al., 2014; Yarborough, 2009). This situation emphasizes the need to evaluate the 

performance of harvester using precision agriculture (PA) technologies and mathematical 

modeling to suggest optimal scenarios for effective berry recovery and quality. 

Innovative PA technologies comprised of sensors, controllers, hardware, software, 

differential global positioning system (DGPS) and geographical information system (GIS) 

can provide the tools that allow us to identify the factors affecting harvesting efficiency in 

spatially variable fields (Bausch and Delgado 2003). Coupled with a DGPS, sensors are 

capable of acquiring high spatial resolution data which can aid in decision making (Holland 

et al., 2006). An ultrasonic sensor, a digital color camera, a slope sensor and a real-time 

kinematics global positioning system (RTK-GPS), coupled with custom developed 

hardware and software, have been used to estimate plant height, fruit yield and topographic 

features for wild blueberry cropping system (Swain et al., 2009; Zaman et al., 2010b; 

Zaman et al., 2011; Chang et al., 2012a; Saleem, 2012). However, integration of these 

sensors, newly developed custom software and a ruggedized computer on a commercial 

blueberry harvester to sense plant height, fruit yield, slope and elevation on-the-go has 

never been tested and evaluated. Real-time mapping of fruit yield, plant characteristics and 

topographic features can be used to assess overall fruit losses and to develop relationships, 

which can be helpful to adjust the harvester operational settings to enhance berry picking 

efficiency. 

Non-destructive yield mapping to quantify overall fruit losses during harvesting 

emphasizes the need for physical evaluation of the commercial blueberry harvester 

(Farooque et al., 2013) to suggest optimal operational parameters for effective berry 
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recovery. Many researchers have attempted to evaluate the wild blueberry harvesters for 

fruit losses up to the early 1990s (Rhodes, 1961; Abdalla, 1963; Hayden and Soule, 1969; 

Hall et al., 1983; Sibley, 1992; Yarborough, 1992), but no work has been done in last 20 

years to study the performance of harvester corresponding to the changes in crop conditions. 

Detailed evaluations of the harvester in relation to spatial variations in fruit yield, plant 

characteristics and topographic features will suggest optimal operational settings for the 

grower’s community to increase harvestable yield.  

With the installation of sensors and control systems on mechanical harvesters, it 

has been evident that the fruit yield, plant parameters and topographic features exhibits 

significant spatial variability (Bramley and Hamilton, 2004; Zaman et al., 2010 a; Farooque 

et al., 2012a) which can have an impact on fruit losses during mechanical harvesting. 

Spatial variations in fruit yield are mainly caused by heterogeneity in crop characteristics, 

soil physical and chemical properties, and weather conditions (Wong and Asseng, 2006; 

Rogerio et al., 2006; Kaleita et al., 2007; Cemek et al., 2007, Mann et al., 2010). 

Heterogeneity may occur at small scale or large scale, even in the same variable of interest 

or in the same community (Du Feng et al., 2008). Knowledge of spatial variability is critical 

for planning and implementing the operational recommendations for mechanical 

harvesting of wild blueberries. Harvesting of spatially variable fields at standard 

operational settings without characterizing the spatial variability can result in increased 

fruit losses during harvesting. Variability in fruit losses corresponding with the spatial 

variations in crop characteristics, fruit yield and slope of the ground can be helpful in 

identifying the factors responsible for fruit losses.  

Fruit losses during harvesting are consequence of complex interactions between 
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mechanical parameters, crop characteristics, weather conditions, soil structure, operator 

skills and field topography (Adams et al., 1998; Bryant et al., 2000; Farooque et al., 2013; 

Salter et al., 1980). Owing to the dynamicity of these relationships, determination of ideal 

settings to optimize yield and quality has always remained a challenge (Fritz and 

Weichmann, 1979). Inherently, the nature of the harvesting processes that govern the 

picking efficiency are complicated and non-linear (Chen et al., 2001). Modeling network 

of relationships requires an approach that is robust, scalable and flexible with a choice of 

various learning algorithms. In the case where inputs and outputs are intrinsically variable, 

a system that is intended to be predictive is more appropriate (McCarthy et al., 2001; 

Reidsma et al., 2009). Therefore, a model which can ‘learn’ from successive field trials is 

ideal because it will certainly become more reliable through time and will be able to adapt 

to unforeseen changes in the data (Huang and Foo, 2002).  The data-driven modeling 

approach of connecting one set of data (output) with another corresponding set (input) is 

more appropriate to find relationships. Understanding and predicting the relationships 

between the machine operating parameters, fruit losses, topographic features and crop 

characteristics can aid in better berry recovery during mechanical harvesting. 

Wild blueberry growers are facing increased harvesting losses with their existing 

harvesters due to changes in crop conditions (healthy and tall plants, high plant density, 

tall weeds and significant increase in fruit yield) caused by improved management 

practices (herbicides, fertilizers, pesticides, pollination, etc.) emphasizing the need to 

evaluate the harvester using PA technologies and mathematical modeling approaches. This 

study can help to identify the factors responsible for fruit losses and to suggest best 

operating conditions to improve berry picking efficiency and recovery. Improved berry 
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picking efficiency based on proper characterization and quantification of spatial variability 

has the potential to increase profit margins for the farmer’s community to justify the ever 

increasing cost of production. 

Objective and Goals 

Therefore the objectives of this study were to: 

(i) Perform evaluation of multiple ground based sensors mounted on a commercial 

wild blueberry harvester to sense plant height, fruit yield and topographic 

features on-the-go during harvesting, 

(ii) Effect of ground speed and header revolutions on the picking efficiency of 

commercial wild blueberry harvester, 

(iii) Response of wild blueberry fruit losses to spatial variability in fruit yield, crop 

characteristics and ground slope, and 

(iv) Develop a predictive model for wild blueberry fruit losses during harvesting 

using an artificial neural network (ANN). 
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CHAPTER 2    PERFORM EVALUATION OF MULTIPLE GROUND BASED 

SENSORS MOUNTED ON A COMMERCIAL WILD BLUEBERRY 

HARVESTER TO SENSE PLANT HEIGHT, FRUIT YIELD AND 

TOPOGRAPHIC FEATURES ON-THE-GO DURING HARVESTING 

Non-destructive mapping of fruit yield, plant height and topographic features can 

aid in developing strategies for effective berry recovery during mechanical harvesting. An 

integrated automated system comprising of an ultrasonic sensor, a digital color camera, a 

slope sensor, a RTK-GPS, custom software and ruggedized computer was developed. The 

system was incorporated onto a commercial wild blueberry harvester to measure plant 

height, fruit yield, slope and elevation simultaneously while harvesting. Four wild 

blueberry fields were selected to evaluate the performance of the developed system. Field 

boundaries, bare spots, weeds and grass patches were mapped with a RTK-GPS prior to 

start the experiment.  

Linear regression was used to calibrate the actual fruit yield with the percentage of 

blue pixels (R2 = 0.79 to 0.92; P < 0.001; n = 40) using a 0.91 × 0.70 m quadrat at selected 

points from all fields. The output voltage of an ultrasonic sensor was significantly 

correlated with manually measured plant height (R2 = 0.94; P < 0.001; n = 13). 

Comprehensive surveys were conducted in selected fields to sense plant height, fruit yield, 

slope and elevation rapidly in real-time during harvesting. Maps developed in ArcGIS 10 

showed substantial variability in measured parameters across the fields, suggesting higher 

fruit yield and lower plant height in low lying areas (mild slope) and vice versa. Results of 

zonal statistics also supported the results identified by the maps. Overall, the results of 

calibration, validation and mapping indicated that the developed system was an accurate, 
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reliable and efficient to map plant height, fruit yield, slope and elevation in real-time. 

Results also revealed that the hardware and software of the developed system performed 

rapidly and reliably to estimate pre-harvest wild blueberry fruit yield, which can be used 

to quantify overall fruit loss during mechanical harvesting. This information can also be 

used to develop site-specific fertilization strategies to optimize crop productivity while 

minimizing environmental risks. 

The work presented in this chapter has been published in Computers and 

Electronics in Agriculture Journal 91:135-144, entitled “Performance evaluation of multiple 

ground based sensors mounted on a commercial wild blueberry harvester to sense plant height, 

fruit yield, and topographic features in real-time”. 

2.1 INTRODUCTION 

The wild blueberry industry may significantly benefit from PA technologies that 

allow measurement and mapping of soil, crop and fruit parameters in real-time. Fruit yield 

and quality of blueberries is influenced by the spatial variation in soil properties, plant 

characteristics and topographic features (Farooque et al., 2012a). Wild blueberry growers 

are facing increased harvesting losses due to changes in crop conditions caused by 

improved management (selective herbicides, fungicides, pollination, fertilizer, etc.)  (Esau 

et al., 2014). This situation emphasizes the need for the development of an integrated 

sensing system comprising of low-cost sensors and controllers for accurate estimation of 

pre-harvest fruit losses, plant height and topographic features in real-time during 

mechanical harvesting. Mapping these parameters can aid in increased berry picking 

efficiency of the blueberry harvester (Farooque et al., 2014; Boydell and McBratney, 

2002).  
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Multiple sensors are widely adopted in PA systems to measure and map soil and 

plant characteristics in real-time to make management decisions. The PA systems involves 

a wide spectrum of sensors, hardware and software for data acquisition, automated 

recording, analogue and digital processing of data, up to symbolic analysis all within 

framework to assess spatial variations within the field.  Mobile ground or proximal sensors 

are an emerging technology designed to overcome many of the limitations associated with 

the current instrumentation of satellite or aircraft-based sensing systems (Bausch and 

Delgado, 2003). Satellite or airborne platforms deliver spectral information; however, they 

may not be available in time for critical management decisions to be implemented. Also, 

remote sensing data is constrained by weather conditions, obtaining up‐to‐date aerial 

photography is very expensive, the quality is variable and data processing is also intensive 

and complicated (Malay, 2000). Ground sensing technologies are able to get around the 

problem of weather conditions and their close proximity to the canopy reduces or 

eliminates soil reflectance interference. Coupled with a DGPS, these ground sensors are 

able to deliver data of high spatial resolution that can be integrated with material delivery 

systems to facilitate real-time applications of agrochemicals (Holland et al., 2006).  

Many researchers have studied the spatial variation in soil properties, plant 

characteristics and fruit yield for different cropping systems using ground based sensing 

and control systems. Lan et al. (2009) developed a ground-based, multi-source information 

collecting system and tested the feasibility of the system on cotton; it consisted of 

normalized difference vegetation index (NDVI) sensor, crop canopy analyzer for leaf area 

index (LAI), hyperspectral radiometer, multi-spectral camera and crop height sensors. 

Rosell et al. (2009) used a low-cost tractor mounted scanning light detection and ranging 

http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR1
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR8
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR16
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR22
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(LIDAR) system capable of making non-destructive recording of tree-row structure in 

orchards and vineyard. Moshou et al. (2006) investigated proximal optical sensing to 

diagnose disease infestations on wheat and to discriminate between pathological and 

nutritional stresses. Zaman and Schumann (2003) developed a ground-based ultrasonic 

sensor system for tree volume measurement in citrus groves to implement variable rate 

nitrogen application (Zaman et al., 2005), and estimate citrus fruit yield (Zaman et al., 

2006). Gil et al. (2007) developed a multi-nozzle air-blast sprayer fitted with ultrasonic 

sensors and electro-valves in order to modify flow rate from the nozzles in real-time, in 

relation to the variability of vine canopy width. Johnson et al. (2003) have shown a 

significant correlation (R2 = 0.74) between NDVI and LAI values in vines suggesting that 

NDVI map can be used to interpret spatial patterns in infestation and disease, water status, 

fruit characteristics and wine quality. Mazzetto et al. (2010) integrated optical and analogue 

sensors for monitoring canopy health and vigor for vineyard. Malay (2000) developed an 

optical sensor based yield monitoring system to estimate wild blueberry fruit yield. The 

accuracy of the CERES II yield monitoring system (R.D.S Technology, Gloucester, U.K.) 

was influenced by the debris common to blueberry harvest (grass, rocks and sticks), which 

caused an overestimation of the yield. The inclined elevator and uneven topography were 

also responsible for these overestimations.  

 An accurate yield mapping system may be possible with the addition of a digital 

color camera on the blueberry harvesters to estimate yield prior to harvesting. Many 

researchers worked on fruit yield estimation in a non‐destructive fashion (Annamalai et al., 

2004; Chinchuluun and Lee, 2006; Mac-Arthur et al., 2006; Schumann et al., 2007; Zaman 

et al., 2010b) for various cropping system. Schumann et al. (2007) developed a ground 

http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR21
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR31
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR32
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR6
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR12
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based digital photography and ultrasonic ranging system for mapping tree characteristics 

and fruit yield in real-time for citrus orchards. Zaman et al. (2008) evaluated the 

performance of a cost-effective 10 mega pixel digital color camera for wild blueberry fruit 

yield estimation. Results of their study suggested that the digital photography technique 

can be implemented for estimation of fruit yield by calculating the blue pixel ratio using 

image processing algorithms. Zaman et al. (2010b) developed an automated yield 

monitoring system (AYMS) consisting of a digital color camera, ruggedized laptop 

computer, custom software and a RTK-GPS. They successfully estimated and mapped fruit 

yield in wild blueberry fields. However, ordinary digital color cameras are not viable for 

commercial yield monitoring system to incorporate into the harvesters for yield mapping. 

Chang et al. (2012a) developed an automated yield monitoring system II (AYMS II) 

consisting of two μEye color cameras, a RTK-GPS, a custom software and a ruggedized 

laptop computer, mounted on a Specialized Farm Motorized Vehicle for real-time fruit 

yield mapping.   

Ultrasonic sensors are widely used for non-destructive estimation of plant heights 

(Sui et al., 1989; Schumann and Zaman, 2003). Vansichen and De Baerdemaeker (1992) 

measured the distance between crop divider of the harvester and the un-harvested crop by 

using an ultrasonic sensor. Wild et al. (1998) tested and evaluated three methods, i.e. 

mechanical, image processing and ultrasonic sensing to measure the width of cut in a 

combine harvester. Results of their study indicated that the ultrasonic sensor estimates were 

very accurate when compared with image processing and mechanical device. Kataoka et 

al. (2002) suggested that the ultrasonic sensor had an advantage over the laser beam sensor 

for plant height estimation of soybean and corn crops. Shrestha et al. (2002) mounted an 
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ultrasonic sensor above and perpendicular to plant canopy to sense corn plant height in a 

lab environment. Swain et al. (2009) developed and tested low-cost ultrasonic system for 

tall weed and bare spot mapping in wild blueberry fields. They reported that the ultrasonic 

sensor was capable of detecting the tall weed and bare spots within the blueberry fields. 

Dionisio et al. (2012) developed an ultrasonic system for weed detection in cereal crops. 

Results of their study indicated that the ultrasonic sensors were capable of differentiating 

the weed and non-weed infested areas with up to 93% success. 

 Zaman et al. (2011) developed and evaluated a prototype variable rate sprayer for 

tall weed detection and spraying in real-time using ultrasonic sensors.  Zaman et al. (2010a) 

developed a cost-effective system using reliable and inexpensive sensors for real-time 

measurement and mapping of slope in wild blueberry fields. Saleem et al. (2014) used 

RTK-GPS and GIS to derive topographic features and relate them with hydrologic 

attributes in wild blueberry fields. Fruit yield, plant height, slope, and elevation were 

mapped using individual sensors by different researchers (Zaman et al., 2008, Zaman et 

al., 2010a; Zaman et al., 2011; Chang et al., 2012a) for wild blueberry cropping system. 

However, the integration of a digital color camera, an ultrasonic sensor, a slope sensor, a 

RTK-GPS, newly developed custom software and a ruggedized computer was performed 

in this study. The integrated system was mounted on a commercial harvester to map fruit 

yield, plant height, slope and elevation real-time in one go. 

Many researchers have attempted to characterize and quantify spatial variation in 

soil properties, plant characteristics and fruit yield for different cropping systems using 

multiple sensor and control systems (Moshou et al., 2006; Lan et al., 2009; Rosell Polo et 

al., 2009;  Mazzetto et al., 2010; Zaman et al., 2010b; Zaman et al., 2011; Chang et al., 

http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR21
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR16
http://www.springerlink.com/content/dhq0t712qt044xt4/fulltext.html#CR22
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2012a; Chang et al., 2012b). However, to date little attention has been paid to wild 

blueberry production system. In the present study, a ground based multiple sensors system 

(software and hardware) comprised of an ultrasonic sensor, a digital color camera, a slope 

sensor, and a RTK-GPS was developed and incorporated into a blueberry harvester to 

propose practical ground sensing solutions and match crop monitoring needs by means of 

tools that could be directly used at farm level. The performance of developed system was 

tested and evaluated with regard to estimate plant height, fruit yield, slope, and elevation 

in real-time for selected wild blueberry fields. The potential and capability of the developed 

system to estimate pre-harvest fruit losses during mechanical harvesting was also 

examined. 

2.2 MATERIALS AND METHODS 

2.2.1 Development of Multiple Sensors System  

2.2.1.1 Hardware Components 

The developed system consisted of an ultrasonic sensor (Q45U; Banner 

Engineering Corp., Minneapolis, MN, USA), a μEye 1220SE/C digital color camera (IDS 

Imaging Development System Inc., Woburn MA, USA), a tilt sensor (Memsic 2125; 

Parallax Inc., Rocklin, CA, USA) sensing the tilt of a vehicle in any orientation on a slope, 

a HiPer® lite+ RTK-GPS (Topcon positioning systems Inc., Livermore, CA, USA) for 

geo-referencing and a ruggedized computer Latitude E6400 XFR (Dell Inc., Round Rock, 

TX, USA). The developed system was incorporated into a commercial wild blueberry 

harvester for mapping plant height, fruit yield, slope and elevation (Fig. 2-1).  

The camera and RTK-GPS were mounted at the front of the harvester at a height of 

0.95 m with a clear view of ground. An ultrasonic sensor was mounted 0.8 m above the 
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ground surface on the steel pivot arm (Fig. 2-1). A bicycle wheel was used at the end of 

the steel pivot arm to keep the height of the sensor constant during operation of the system. 

The National Marine Electronics Association (NMEA-0183) standard code sentences of 

RTK-GPS was used for calculation of coordinates of the ultrasonic sensor, the center of 

camera images, and the slope sensor simultaneously. The camera comprised of a 1/3 inch 

CMOS sensor, a C-mount for lens (LM4NCL, Kowa Optimed Inc., Torrance, CA, USA) 

and a global shutter to reduce blurring of images. The camera lense had 3.5 mm focal length 

and was set up with fixed aperture (f/4.0) and infinity focus for clear image acquisition. 

The images from the camera were acquired according to the speed of harvester and 

processed data were stored with calculated coordinates in a ruggedized computer. The 

calculated coordinates and elevation data were continuously stored in a ruggedized 

computer through the serial port at 5 Hz. Slope sensor was mounted inside the cabin of 

tractor to measure the slope of the tractor in any orientation. In this study, a pre-calibrated 

slope sensor was used. Details about the configuration of the slope sensor can be adopted 

from Zaman et al. (2010a). 

2.2.1.2 Software Development 

Custom image processing software was developed in C++ using Visual Studio 2010 

(Microsoft, Redmond, WA, USA) for a 32-bit Windows operating system to estimate the 

percentage of blue pixels representing ripe fruit in the field of view of images taken by the 

camera. The software interface was capable of capturing a 24-bit RGB 720 × 480 image 

(total covered field area of 0.91 m × 0.70 m) and processing the percentage of blue pixels, 

an ultrasonic sensor recording for plant height estimation, elevation reading from RTK-

GPS along with geo-referenced coordinates and pre-calibrated tilt sensor recordings for 
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measurement of slope simultaneously in a ruggedized computer through a serial 

communication cable in real-time. Exposure time and digital gain for camera were 

automatically controlled to adjust for variable outdoor light conditions (> 500 lux). The 

acquired images were saved in BMP file format. Coordinates from previous and current 

RTK-GPS output were converted to decimal degrees and used to automatically estimate 

the timing for the next image and ultrasonic sensor data acquisition. Detailed working 

principle of the custom developed software is explained in Figure 2-2. 

 

Figure 2-1: Configuration of multiple sensors mounted on a commercial wild blueberry 

harvester. 

 

The custom software was used to enhance and count the blue pixels in the quadrat 

region of each image, using red-green-blue (RGB) pixel ratio and expressing the result as 

a percentage of total quadrat pixels. The ratio used was (B*255)/(R+G+B), and a manually 
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μEye Camera 
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obtained threshold (> 80) adequately discriminated the apparent blueberry fruit pixels from 

the remaining pixels in an image. Overestimated tendency due to the reflection and dark 

shadow was corrected by removing over and under intensity pixels ((R+G+B) > 500 or < 

40). Small noisy clusters of pixels in the image which were incorrectly identified as fruit 

were removed by applying one pass of 2 × 2 erosion filter. Result of percentage blue pixels 

in the quadrat region of each image was calculated automatically by running the software 

in real-time. The geo-referenced final results of plant height, blue pixels, slope and 

elevation were saved as comma separated value (CSV) files (Fig. 2-2). The data collected 

by multiple sensors were imported into ArcGIS 10 (ESRI, Redlands, CA, USA) for further 

processing. 

2.2.2 Calibration of Multiple Sensors 

2.2.2.1 The Experimental Sites 

Four wild blueberry fields were selected in the Nova Scotia and New Brunswick 

provinces of Canada to evaluate the performance of multiple sensors mounted on a 

commercial wild blueberry harvester. The selected fields were the Cooper site 

(45.480573°N, 63.573471°W; 3.2 ha), Small Scott site (45.600641°N, 63.086512°W; 1.9 

ha), Tracadie site (47.2824117°N, 65.1440212°W; 2.9 ha) and Frankweb site 

(45.241900°N, 63.401143°W; 4.6 ha) (Fig. 2-3). The Cooper and Small Scott fields were 

in their vegetative sprout year of the biennial crop production cycle in 2010 and crop year 

in 2011, while the Tracadie and Frankweb fields were in sprout year in 2011 and crop year 

in 2012. The selected fields had been under commercial management over the past decade 

and received biennial pruning by mowing for the past several years along with conventional 

fertilizer, pollination, weed and disease management practices. The soils at the 
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experimental fields were classified as sandy loam (Orthic Humo-Ferric Podzols), which is 

a well-drained acidic soil (Webb and Langille, 1996).  

 

Figure 2-2: Flow chart showing the working principle of custom developed computer 

program for multiple sensors mounted on a commercial blueberry harvester.  
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(a)   
 

 

 

 

(c) 

 

 

(b) 

 

(d) 

Figure 2-3: Layouts of selected wild blueberry fields, (a) Cooper site, (b) Small Scott site, 

(c) Tracadie site and (d) Frankweb site.
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2.2.2.2 Digital Color Image Acquisition 

A 0.91 × 0.70 m wooden quadrat was constructed and placed at randomly selected 

points in all fields to define the area of interest and to acquire images. The images were 

taken from the selected points using a μEye digital color camera. The quadrat portion of 

the images was masked out and the percentage of blue pixels was estimated using the 

custom software developed in C++ programing language. Calibration a μEye digital color 

camera was carried out at 80 randomly selected data points (20 points in each field) within 

the selected fields. 

2.2.2.3 Manual Fruit Yield Measurement 

Manual harvesting was performed using a hand rake (Fig. 2-4) from the same 80 

randomly selected data points (20 points in each field), where the images were collected. 

Wild blueberries were separated from debris including leaves, grass and weeds for each 

sample and weighed at the time of harvest.  

 

Figure 2-4: A hand rake for manual harvesting of wild blueberries. 
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2.2.2.4 Ultrasonic Sensor Calibration for Plant Height Estimation 

An ultrasonic sensor was calibrated prior to estimate the plant height in real-time. 

The corresponding sensor voltages were recorded using a U3-HV (LabJack Corp., 

Lakewood, CO, USA) I/O unit for calibration purposes. In order to accomplish the 

calibration of ultrasonic sensor, points were randomly selected within the selected fields 

and manual plant height readings were recorded using a ruler. The ultrasonic sensor output 

voltage were also recorded from same selected points. Measured plant height (from ground 

to canopy) and sensor’s voltage were compared by linear regression to examine the 

performance accuracy of the ultrasonic height measurements. Calibration was carried out 

at 13 randomly selected data points.  

2.2.3 Statistical Analysis 

Linear regression was used to calibrate the actual fruit yield and plant height with 

the percentage of blue pixels and sensor’s output voltage, respectively in each field. The 

calibration equation of the Cooper site was used to predict fruit yield in the Small Scott site 

and the Small Scott site’s was used to predict fruit yield in the Cooper site for validation. 

Similar validations were performed for the Tracadie and Frankweb sites. Calibration and 

validation of regression equations/models, coefficient of determination (R2) and root mean 

square (RMSE) were calculated with SAS 9.1 (SAS Institute, Cary, NC, USA) statistical 

software. Geostatistical analysis was performed using GS+ Geostatistics for the 

Environmental Sciences Version 9 software (Gamma Design Software, LLC, Woodhams 

St, Plainwell, MI, USA) to characterize spatial variability in measured parameters. The 

semivariograms were produced and sill, nugget, range and sill to nugget ratio were 

calculated, as a result of corresponding semivariogram analysis. Geostatistical parameters 
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(Partial sill and range of influence) combined with ordinary kriging were applied to 

generate detailed maps in ArcGIS 10 software to analyze spatial variability in fruit yield, 

plant height, slope and elevation visually. Maps were produced at the same scale and equal 

number of classes in order to allow for an easy comparison. For the Tracadie and Frankweb 

sites during 2012, the slope data were not recorded in real-time, but retrieved from the 

rasterized elevation data using the Spatial Analyst extension of the ArcGIS 10 software. 

Total yield predicted from μEye digital color camera was compared with the actual yield 

to quantify overall fruit losses during mechanical harvesting for selected fields. 

2.2.4 Real-time Field Performance of the Developed System 

The performance of the software and hardware of the developed system was 

assessed by surveying the four fields (Fig. 2-3) with the sensing density of 0.91 × 0.70 m. 

The ranges of target ground speed, monitored on the main software screen during the 

surveys (Fig. 2-5), were 1.5 ~ 1.7 km h-1. Real-time yield, plant height and topographic 

feature mapping was carried out by acquiring images, ultrasonic sensor voltages, slope 

sensor signals and elevation readings from multiple sensors mounted onto a blueberry 

harvester, which was operated by a 62.5 kW John Deere tractor. The software was able to 

process the images to estimate the percentage of blue pixels, ultrasonic sensor voltage to 

predict plant height, slope sensor signals to calculate slope and RTK-GPS for elevation in 

real-time during mechanical harvesting. In order to assess the accuracy of the multiple 

sensors, the percentage of blue pixels of each image were correlated with manually 

harvested fruit yield. Ultrasonic sensor output voltages were also calibrated with plant 

heights. For slope sensor, the calibration equation developed by Zaman et al. (2010a) to 

estimate the slope in real-time was used. The camera was set to 10 ms for maximum 
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exposure and 30 for maximum gain during the surveying to reduce image blurring and 

noise, respectively. Variations in the natural sky illumination (sunny or cloudy) did not 

affect the quality of the image processing result and consequently the correlation of blue 

pixels with fruit yield (Zaman et al., 2008). The ordinary kriging technique in combination 

with geo-statistical parameters was used to interpolate and map the estimated fruit yield, 

plant height, slope and elevation data in each field using ArcGIS10 software. The bare 

spots/weeds in the selected fields were manually mapped with a RTK-GPS (Fig. 2-3). Maps 

were placed side-side by for comparison. The interface of a custom developed software for 

data acquisition from multiple sensors and storage into a laptop computer is presented in 

Figure 2-5.  

 

Figure 2-5: Custom software interface for multiple sensors system mounted onto a  

commercial wild blueberry harvester. 
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2.3 RESULTS AND DISCUSSION 

The percentage of blue pixels representing the fruit yield in the harvested quadrat 

region of the image was calculated with custom software. The percentage blue pixels varied 

from 0% (bare spots) to 5.81% in Cooper site, from 0% to 3.98% in Small Scott site, from 

0% to 12.33% in Tracadie site and from 0% to 19.25% in Frankweb site (Fig. 2-6). Results 

of regression analysis suggested that the percentage of blue pixels was significantly 

correlated with manually harvested fruit yield in Cooper site (R2 = 0.91; P < 0.001), Small 

Scott site (R2 = 0.92; P < 0.001), Tracadie site (R2 = 0.79; P < 0.001) and Frankweb site 

(R2 = 0.85; P < 0.001) (Fig. 2-6). Significant correlations between actual fruit yield and 

percentage of blue pixels revealed that a μEye digital color camera can be used to estimate 

the pre-harvest fruit yield non-destructively within the wild blueberry fields. 
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(d) 

Figure 2-6: Relationship between percentage of blue pixels (%) and actual fruit yield  

(Mg ha-1) for (a) Cooper site, (b) Small Scott site, (c) Tracadie site and (d) Frankweb site.  

 

The correlations between actual and predicted fruit yield (using validation equation 

from Small Scott site) in Cooper site (R2 = 0.91; P < 0.001; RMSE = 0.88 Mg ha-1) and 

Small Scott site (using validation equation from Cooper site) (R2 = 0.92; P < 0.001; RMSE 

= 0.61 Mg ha-1) were highly significant (Fig. 2-7 a and b). Results of scatter plots revealed 

that the actual and predicted fruit yield were significantly correlated for Tracadie site (using 

validation equation from Frankweb site) (R2 = 0.87; P < 0.001; RMSE = 1.48 Mg ha-1) and 

Frankweb site (using validation equation from Tracadie site) (R2 = 0.85; P < 0.001; RMSE 

= 1.20 Mg ha-1) (Fig. 2-7 c and d). The slight bias can be seen in the scatter plots where 

fruit yield was over or under-estimated within the selected fields (Fig. 2-7 a-d). The over-

estimation of fruit yield with digital color camera might be due to less vegetation and more 
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exposure of berries to the camera. The dense canopy (vegetation) might be the reason for 

under-estimation of fruit yield, because the berries were hidden under the leaves.  

The zero percentages of blue pixels were due to the presence of bare spots or weeds 

(no blueberry fruit) within the selected wild blueberry fields. The presence of bare spots in 

wild blueberry fields is due to natural colonization of plants developed from native stands 

on deforested farmland by removing competing vegetation (Eaton, 1988). The RMSE 

values for Tracadie and Frankweb sites were observed to be higher when compared with 

Cooper and Small Scott sites. Higher RMSE for Tracadie and Frankweb sites might be due 

to the high yielding nature of these fields causing over and under estimations. Overall, the 

results of calibration and validation reported that a digital color camera mounted on the 

blueberry harvester was capable of estimating pre-harvest fruit yield in real-time during 

mechanical harvesting. Pre-harvest fruit yield estimates can be compared with the actual 

yield to quantify overall fruit loss during harvesting. 
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Figure 2-7: Scatter plots of measured and predicted fruit yield in (a) Cooper site, (b) Small 

Scott site, (c) Tracadie site and (d) Frankweb site. 

 

Ultrasonic sensor was calibrated prior to estimate wild blueberry plant height in 

real-time. Linear calibration model showed that the plant height was significantly 

correlated with the sensor output voltage (R2 = 0.94; P < 0.001) (Fig. 2-8). Result of 

calibration showed that the ultrasonically estimated plant height was very close to the 

actual values, suggesting that an ultrasonic sensor can be used to sense plant height in real-

time within the wild blueberry fields. The calibration equation developed by Zaman et al. 

(2010a) for slope sensor was used to estimate slope of the ground on the go within the 

selected fields. Significant correlations between ultrasonic sensor output voltage and actual 

plant height, the percentage of blue pixels and actual fruit yield, and pre-calibrated slope 

sensor suggested that an ultrasonic sensor, a μEye digital color camera, a slope sensor and 

RTK-GPS can be incorporated on the blueberry harvester to estimate plant height, fruit 
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yield and topographic features in real-time. Custom software retrieved elevation along with 

the geo-referenced data from the RTK-GPS mounted on the blueberry harvester. The 

calibration equations for multiple sensors were incorporated into the software to permit 

estimation of plant height, fruit yield, slope and elevation in real-time. Newly developed 

custom software converted the ultrasonic voltage into plant height, which is depicted in 

Figure 2-9. Slope data were not mapped in real-time for Tracadie and Frankweb sites, but 

derived from elevation data for effective utilization of the technology and to explore ideas 

for digital conversion. Elevation data were interpolated using ordinary kriging 

interpolation to develop raster maps. Rasterized maps were utilized to generate the slope 

raster maps using Slope Protocol of Spatial Analyst extension in ArcGIS 10 software. The 

conversion of elevation raster into slope is illustrated in Figure 2-10 (for Tracadie site) and 

Figure A-1; Appendix A (for Frankweb site). 

 

Figure 2-8: Relationship between ultrasonic sensor’s output voltage and measured height 

of actual target plants. 
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Figure 2-9: (Left) Dot map of ultrasonic sensor output voltage, (Middle) Sensor out 

voltage converted into plant height and (Right) Kriged map of plant height. 

 

 

  

 

Figure 2-10: Derived slope from elevation data using Slope Protocol of Spatial Analyst 

extension of ArcGIS 10 software for Tracadie site. 

 

 After successful calibrations and validations of the multiple sensors, 

comprehensive surveys were conducted within the selected fields to sense fruit yield, plant 

height, slope and elevation in real-time (Figs. 2-11 and 2-12; Figs. A-2 and A-3 Appendix 
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A). The percentage of blue pixels were converted to fruit yield, ultrasonic sensor’s voltage 

to plant height and slope angle to slope of the ground. Converted data were exported into 

ArcGIS 10 software to verify the performance of multiple sensors. Fruit yield varied from 

0 (bare spots) to 34.99 Mg ha-1 in Cooper site (Fig. 2-11), from 0 to 10.51 Mg ha-1 in Small 

Scott site (Fig. 2-12), from 0 to 30.54 Mg ha-1 in Tracadie site (Fig. A-2; Appendix A) and 

from 0 to 39.33 Mg ha-1 in Frankweb site (Fig. A-3; Appendix A). Variation in 

ultrasonically sensed plant height ranged from 0 to 38 cm in Cooper site (Fig. 2-11), from 

0 to 34 cm in Small Scott site (Fig. 2-12), from 0 to 39 cm in Tracadie site (Fig. A-2; 

Appendix A) and from 0 to 37 cm in Frankweb site (Fig. A-3; Appendix A). Dot maps 

showed that the fruit yield and plant height were highly variable within the selected fields 

(Figs. 2-11 and 2-12; Figs. A-2 and A-3; Appendix A). 

Elevation data retrieved from RTK-GPS varied from 144 to 162 m in Cooper site 

(Fig. 2-11), from 297 to 303 m in Small Scott site (Fig. 2-12), from 73 to 81 m in Tracadie 

site (Fig. A-2; Appendix A) and from 19 to 39 m in Frankweb site (Fig. A-3; Appendix A). 

Variation in slope of the ground estimated from slope sensor ranged from 0 to 19.95 

degrees and 0 to 20.10 degrees for Cooper and Small Scott sites, respectively (Figs. 2-11 

and 2-12). Variation in slope for Tracadie and Frankweb sites were not estimated by means 

of a slope sensor, but derived from elevation data. These variations in slope were discussed 

later in this chapter. Overall, results of survey using multiple sensors indicated large 

variability in mapped parameter within the selected fields (Figs. 2-11 and 2-12; Figs. A-2 

and A-3; Appendix A), which can have an impact on fruit losses during mechanical 

harvesting. 
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Figure 2-11: Survey dot maps of fruit yield, plant height, elevation and slope for Cooper 

site using multiple sensors. 
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Figure 2-12: Survey dot maps of fruit yield, plant height, elevation and slope for Small 

Scott site using multiple sensors. 

 

In order to quantify spatial variation of the survey data within the selected fields, 

geostatistical analysis was performed using GS+ software. Geostatistical analysis 

suggested large spatial variability in fruit yield, plant height and slope of the ground (range 

of influence < 33 m) within the selected blueberry fields (Table 2-1 and Table A-1; 

Appendix A). Fruit yield and plant height were found to be strongly spatial dependent (< 
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25%) indicating that the variability in these parameters is controlled by management 

practices (weed and disease control, fertilizer, pollination etc.) for all sites (Table 2-1 and 

Table A-1; Appendix A). Variations in fruit yield and plant height provided strong 

evidence that it can have an impact on the picking performance of harvester, since the 

harvesting operational recommendations are implemented uniformly by ignoring these 

spatial variations. Harvester adjustments in accordance with the spatial variations can result 

in greater berry recovery during mechanical harvesting.  

The range of influence from semivariogram indicated that the elevation was less 

variable (29 to 100.34 m) as compare to fruit yield, plant height and slope within the 

selected wild blueberry fields (Table 2-1 and Table A-1; Appendix A). Results of survey 

dot maps (Figs. 2-11 and 2-12; Figs. A-2 and A-3; Appendix A) were in agreement with 

the results of geo-statistical analysis, indicating moderate variation of elevation within the 

selected fields. Overall, the results of geostatistical analysis narrated that the sensed 

parameters were moderate to highly variable within the selected fields. Substantial 

variation in mapped parameters and presence of bare spots/weeds within the blueberry 

fields emphasize the need to automate the blueberry harvester for compensation of these 

spatial variations, which can enhance the berry picking efficiency of commercial blueberry 

harvester. Increased harvesting efficiency can contribute millions of dollars to provincial 

and federal economies. Moreover, the data acquired from multiple sensors during 

mechanical harvesting can be helpful in implementing site-specific management strategies 

to increase fruit yield, farm profitability and mitigate environmental risks. Chang et al. 

(2012a) also suggested that the intensive digital photographic mapping of wild blueberry 

fruit yield can be used to develop management zones for site-specific fertilization. 
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Table 2-1. Semivarigram parameters of fruit yield, plant height, slope and elevation for 

Cooper and Small Scott sites. 

Cooper Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield (Mg ha-1) 0.29 15.16 12.70 1.91 0.56 Exponential 

Plant Height (cm) 3.70 72.33 10.20 5.11 0.59 Exponential 

Slope (Degrees)  4.51 16.81 21.85 26.82 0.97 Exponential 

Elevation (m) 0.10 41.20 100.34 0.24 0.96 Gaussian 

Small Scott Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield (Mg ha-1) 2.37 21.92 32.45 10.81 0.61 Exponential 

Plant Height (cm) 9.81 77.66 15.43 12.63 0.79 Gaussian 

Slope (Degrees)  11.63 46.57 31.85 24.97 0.91 Spherical 

Elevation (m) 4.53 52.33 36.42 8.65 0.87 Exponential 

 

Results of kriging interpolation (Figs. 2-13 and 2-14; Figs. A-4 and A-5; Appendix 

A) and geostatistical analysis (Table 2-1 and Table A-1; Appendix A) confirmed the 

substantial variation in fruit yield, plant height, slope, and elevation within the selected 

fields. Detailed maps were generated in ArcGIS 10 software to visualize spatial variations 

in mapped parameters (Figs. 2-13 and 2-14; Figs. A-4 and A-5; Appendix A). Partial sill 

and ranges of influence from semivariogram were incorporated in kriging interpolation to 

produce maps of fruit yield, plant height, slope and elevation (Figs. 2-13 and 2-14; Figs. 

A-4 and A-5; Appendix A). Kriged maps showed gradual and non-random spatial 

variability in fruit yield, plant height and slope with significantly different values across 

selected fields (Figs. 2-13 and 2-14; Figs. A-4 and A-5; Appendix A). 
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Figure 2-13: Kriged maps of fruit yield, plant height, elevation and slope for Cooper site.  
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Figure 2-14: Kriged maps of fruit yield, plant height, elevation and slope for Small  

Scott site. 

 

The range of influence from semivariograms also supported the results identified 

by the maps (Table 2-1 and Table A-1; Appendix A). In general, map comparison of plant 

height with fruit yield suggested that the fruit yield was lower in the areas where the plant 

height was higher (Figs. 2-13 and 2-14; Figs. A-4 and A-5; Appendix A) and vice versa. 

Map comparison suggested a negative relationship between fruit yield and plant height. 

Visual inspections also revealed the lower yield in the areas with more plant height 
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suggesting more vegetative growth, emphasizing the need to apply fertilizer on as needed 

basis to avoid wastage and ensure environmental sustainability. Map comparison suggested 

that there was less influence of elevation on plant height and fruit yield as these parameters 

were present in all regions of elevation within the selected sites. Interpolated maps of fruit 

yield and slope suggested that fruit yield was higher in low lying areas (mild slope) and 

vice versa (Figs. 2-13 and 2-14; Figs. A-4 and A-5; Appendix A), which might be due to 

lower availability of nutrients at steep slope areas. 

The accuracy of interpolated maps in ArcGIS 10 software was verified by 

comparing actual values with the kriged values at randomly selected points throughout the 

selected maps. Results of error assessment suggested that the kriged values were very close 

to actual fruit yield (RMSE = 0.21 Mg ha-1, n = 26), plant height (RMSE = 1.33 cm, n = 

26), slope (RMSE = 0.42 degrees, n = 26) and elevation (RMSE = 0.67 m, n = 26) within 

the selected fields (Fig. 2-15). Results of map error assessment revealed that the kriged 

estimates were very close to the actual values for selected wild blueberry fields (Fig. 2-15). 

 

Figure 2-15: Map error assessment of interpolated values in comparison with actual data 

of plant height, fruit yield, slope and elevation. 
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Overall, the kriged maps and geo-statistical parameters showed large spatial 

variability in fruit yield, plant height, slope, and elevation for selected fields. Low yield in 

some parts of the field might be partially due to weeds and bare spots in those areas (Fig. 

2-3; Figs. 2-13 and 2-14; Figs. A-4 and A-5; Appendix A). Another reason for spatial 

variation in fruit yield might be due to variability in soil properties and plant available 

nutrients within the field. Adjustments of ground speed and header revolutions of the 

commercial blueberry harvester in accordance with spatial variation in fruit yield might be 

helpful in increasing berry picking efficiency. Additionally, spatial patterns of variation in 

bare spots, weeds and fruit yield within the selected fields could be useful to develop 

prescription maps for variable rate applications to reduce fertilizer usage. Zaman et al. 

(2008) mapped bare spots/weed areas in different wild blueberry fields with a mobile 

mapper GPS. Bare spots/weeds varied from 30 to 50% of the newly developed field and 

were scattered throughout the fields. Farooque et al. (2012b) suggested defining bare spots 

as a separate class and allocate zero rate of fertilizer, while delineating management zones 

for variable rate fertilization. Unnecessary or over-fertilization in bare spots areas may 

deteriorate water quality, promote weed growth and increase production cost. Under-

fertilization restricts yield and can reduce berry quality (Percival and Sanderson, 2004; 

Zaman et al., 2009).  Hence, variable rate fertilization based on considerable variation in 

fruit yield, bare spots/weeds, plant height and slope could improve farm profitability and 

reduce environmental impacts.  

Zonal statistics was performed to assess variations in fruit yield (estimated from 

μEye camera) and plant height (estimated from ultrasonic sensor) in different slope zones 

across the selected fields (Figs. 2-16 and 2-17; Figs. A-6 and A-7; Appendix A). Results 
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of zonal statistics indicated the higher fruit yield and lower plant height in low lying areas 

(mild slope) and vice versa for Cooper, Small Scott and Frankweb sites (Figs. 2-16 and 2-

17; Figs. A-6 and A-7; Appendix A). Plant height was observed to be higher in mild slope 

areas for Tracadie site (Fig. A-7; Appendix A), which might be due to relatively flat nature 

(average slope = 2.40 degrees) of this site. Fruit yield was found to be higher in tall plant 

areas of Tracadie site. Visual inspection revealed that the plants at Tracadie site contained 

less number of branches, which could be the reason for this variation.  

In general, fruit yield was highest in mild slope (Zone 2) for selected sites (Figs. 2-

16 and 2-17; Figs. A-6 and A-7; Appendix A). Low fruit yield on the steep slope areas 

might be due to erosion of nutrients, restricting yield potential. Fruit losses during 

harvesting can be reduced by lowering the ground speed and header revolutions in high 

yield areas. Visual observation also confirmed that the fruit losses were higher in high fruit 

yielding areas and vice versa. Variation in fruit yield and plant height corresponding with 

the variability in slope suggested that the automation of the blueberry harvester in relation 

to these variations can result in increased harvesting efficiency during harvesting. The 

automation of the harvester has the potential to reduce the stress level of the operator, who 

is continuously involved in changing the machine parameters manually. Zonal statistics 

also supported the negative relation between fruit yield and plant height. These results were 

in agreement with the findings of Farooque (2010). Yang et al. (1998) showed that 

topographic variables such as elevation, slope and aspect can explain 15 to 35% of wheat 

yield variability at field scale.  

 

http://agron.scijournals.org/cgi/content/full/96/1/252#BIB24


40 

 

  

 

 

Figure 2-16: Bar graphs showing the variation of fruit yield and plant height within  

different slope zones for Cooper site. 

Zone 1 (0.0 - 5.28°) 

Zone 2 (5.29 - 8.95°) 

Zone 3 (8.96 - 12.62°) 

Zone 4 (12.63 - 16.28°) 

Zone 5 (16.28 - 19.95°) 
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Figure 2-17: Bar graphs showing the variation of fruit yield and plant height within  

different slope zones for Small Scott site. 
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The performance of μEye digital color camera to estimate pre-harvest fruit yield 

and quantify overall fruit losses non-destructively, the actual fruit yield collected at the 

shed was compared with the estimated fruit yield (Table 2-2). The μEye camera mounted 

on a commercial wild blueberry harvester took 50,640 images prior to harvest with an 

estimated fruit yield of 10,232 kg, while the actual yield collected in the harvester bin 

weighed at 9,100 kg for Cooper site, suggesting 11.07% loss of berries while harvesting. 

Total number of images taken at Small Scott site were 30,683 with an estimated fruit yield 

of 3,408 kg. The actual fruit yield collected by the harvester was 3,110 kg indicating 8.74% 

loss of berries for Small Scott site (Table 2-2). The μEye camera took 87,481 images prior 

to harvest with an estimated fruit yield of 42,622 kg, while the actual yield collected in the 

harvester bin weighed at 35,232 kg for Frankweb site, suggesting a 17.33% loss of berries 

during mechanical harvesting (Table 2-2). The total number of images were 63,224 with 

an estimated fruit yield of 18,588 kg for Tracadie site. The actual fruit yield collected at 

the shed was 16,172 kg indicating 14.65% loss of berries for Tracadie site (Table 2-3).  

Table 2-2. Comparison of actual yield (from the shed) versus predicted yield using μEye 

digital color camera to quantify overall fruit losses during mechanical harvesting. 

Site  Number of 

Data Points 

 

Actual Yield  

(kg) 

Predicted 

Yield 

(kg) 

Fruit 

Loss  

(%) 

Acreage 

(ha) 

Cooper Site 50,640 10,232 9,100 11.07 3.2 

Small Scott Site 30,638 3,408 3,110 8.74 1.9 

Frankweb Site 87,481 35,232 42,622 17.33 4.6 

Tracadie Site 63,224 16,172 18,588 14.65 2.9 

 

Overall fruit losses were lower in Cooper and Small Scott sites when compared 

with Frankweb and Tracadie sites (Table 2-2). Possible reason for lower fruit losses at 
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Copper and Small Scott sites might be the low yielding nature of these fields. These results 

depicted that the fruit losses during harvesting are greatly influenced by the variation in 

fruit yield within the field. Non-destructive yield mapping confirmed that there were fruit 

losses during mechanical harvesting, which require physical quantification. Results 

emphasized the need to evaluate the blueberry harvester for picking efficiency in different 

fruit yielding (low, medium and high) fields to quantify various types of berry losses (un-

harvested berries, berries on the ground and through blower) during mechanical harvesting. 

Performance evaluation of the commercial harvester will suggest optimal operating 

conditions in relation to variability in fruit yield to enhance berry recovery. This would 

help the wild blueberry industry to generate more revenue and increase profitability for the 

farmers. 

2.4 CONCLUSIONS 

The goal of this work was to develop and evaluate the multiple sensors system that 

comprises of μEye camera, ultrasonic sensor, slope sensor, and RTK-GPS for the wild 

blueberry fruit yield, plant height, slope, and elevation estimations, respectively. There was 

significant correlation between the percentage of blue pixels and actual fruit yield for 

selected sites. The correlations between actual and predicted fruit yield (validation) were 

also highly significant within the selected fields. Ultrasonic sensor output voltage was 

significantly correlated with actual plant height. Results suggested that the developed 

system (hardware and custom software) proved very efficient at measuring and mapping 

fruit yield, plant height, and topographic features in real-time within the wild blueberry 

fields.  
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Results of this work have shown that the mapping of wild blueberry fruit yield, 

plant height, and topographic features were valuable for understanding the relationships in 

the monitoring fields. Based on the results, it can be concluded that there is potential to 

estimate and map fruit yield, plant height and topographic features in real-time within the 

wild blueberry fields using multiple sensors. This would help the industry to generate more 

revenue and increase profitability with no additional expenditures. Additionally, this 

information could be used to implement site-specific management practices within the 

blueberry fields to optimize productivity while minimizing environmental impact of 

farming operations. 

Chapter 2 highlights the integration of multiple sensors onto a commercial wild 

blueberry harvester to sense fruit yield, plant height and topographic features in real-time 

during mechanical harvesting. Non-destructive yield mapping prior to harvesting, 

quantified overall fruit losses, emphasizing the need for physical evaluation of the 

commercial harvester at different ground speeds and header revolutions to improve berry 

picking efficiency. Detailed evaluations of the blueberry harvester will suggest optimal 

machine operating parameters to reduce fruit losses. Chapter 3 of this dissertation 

concentrated on physical evaluations of the blueberry harvester in selected wild blueberry 

fields to optimize berry recovery during mechanical harvesting. 

 

 

 

 

 



45 

 

CHAPTER 3   EFFECT OF GROUND SPEED AND HEADER REVOLUTIONS 

ON THE PICKING EFFICIENCY OF A COMMERCIAL WILD BLUEBERRY 

HARVESTER 

The wild blueberry industry is facing increased harvesting losses with the existing 

commercial harvester. These machines are no longer able to efficiently harvest the higher 

yields that result from improvements in plant growth and productivity. This study was 

designed to evaluate the performance efficiency of a commercial wild blueberry harvester 

for fruit losses during harvesting. Four wild blueberry fields were selected in the Nova 

Scotia and New Brunswick provinces of Canada. A 3 × 3 factorial experiment was 

constructed to examine the joint effect of ground speed and header revolution per minute 

(rpm) on picking efficiency of the harvester. Eighty one yield plots (0.91 × 3 m) were 

selected randomly in each field. The field boundaries, bare spots, weeds and yield plots 

were mapped with a RTK-GPS. The harvester was operated at specific levels of ground 

speed at 1.2, 1.6 and 2.0 km h-1 and header rpm of 26, 28 and 30.  Total fruit yield, un-

harvested berries on the plants, berries on the ground and losses through the blower were 

collected from each plot within the selected fields. Pre-harvest fruit losses were collected 

from each plot prior to harvest. The treatment combinations were assigned randomly within 

the selected fields. Slope, plant height and fruit zone were also recorded manually from 

each plot.  

 Results indicated that the pre-harvest fruit losses were lower in early season 

compared to those harvested later. Un-harvested berries on the plants and losses through 

the blower were significantly lower than losses on the ground. Significant relationship 

between fruit yield and total losses (r = 0.54 to 0.82) suggested that losses during harvesting 
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were proportional to fruit yield. Factorial analysis of variance showed that the ground 

speed, header rpm and their interaction were found to have significant (p = 0.05) effects on 

picking efficiency of the harvester. Results of means comparison showed that a 

combination of 1.2 km h-1 and 26 rpm resulted in significantly lower losses when compared 

with other treatment combinations. Results also revealed that a suitable combination of 

ground speed and header rpm can minimize fruit losses during harvesting, which can 

increase harvestable yield and farm profitability. 

The work presented in this chapter has been published in Applied Engineering in 

Agriculture Journal 30(4):535-546, entitled “Effect of ground speed and head revolutions on 

the picking efficiency of wild blueberry harvester”. 

3.1 INTRODUCTION 

Wild blueberries are an important horticultural commodity native to Northeastern 

North America. Blueberry plants spread predominately via underground rhizomes with few 

blueberry seeds germinating in established fields (Glass and Percival, 2000). The stem 

height of the wild blueberry crop typically ranges from 5 to 30 centimeters (cm) and the 

fruit size ranges from less than 0.48 cm to greater than 1.27 cm. Most of the berries are 

medium sized, soft, blue/black fruit with favorable flavor; they are also resistant to cracking 

(Hayden and Soule, 1969). Wild blueberry fruit has the characteristic of remaining on the 

plant fully ripe until the greener berries reach maturity. Harvesting does not take place until 

approximately 90% of the berries are blue. Harvesting of the wild blueberry crop in Canada 

begins in early August and usually lasts for a month. Mechanical harvesting can cause 

damage to fruit, particularly bruising which lowers fruit quality by producing softer, leaky 
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berries that are at increased risk of decay during postharvest storage (Dale et al., 1994; 

Mehra et al., 2012). Berries must be harvested before frost occurs (Kinsman, 1993). 

Over the past 100 years the wild blueberry crop has been harvested with a hand 

rake that has a design similar to a cranberry scoop. Harvesting losses using hand raking 

varied from crew to crew, but the range had been estimated at 15 to 40% with an overall 

average of 20% (Kinsman, 1993). One of the biggest problems encountered by blueberry 

rakers is interference from weeds, which can result in reduced raking speed with many 

berries missed or spilled. The underlying factors for the development of mechanical 

harvester were the high labor costs, shortage and quality of labor, short harvesting seasons 

(Yarbrough, 1992 and 2001), and recent increase in fruit yield (Yarbrough, 2013). 

Challenges in development of a mechanical harvester were: uneven field topography, low 

plant height, presence of weeds and debris, and bare soil. Harvesting of blueberries 

constitutes the greatest expense in producing the crop. There was an interest in reducing 

this cost by mechanical harvesting (Yarborough, 2001). Mechanical harvesting has been 

considered as one of the most reliable methods for reducing labor costs (Porrás et al., 1994). 

Research on the development of a mechanical harvester started in early 1950s but 

a viable harvester was not produced until the 1980s (Hall et al., 1983). Many mechanical 

harvesting systems were developed (Rhodes, 1961; Abdalla, 1963; Hayden and Soule, 

1969; Grant and Lamson, 1972, Richard, 1982) during this time span but were not 

commercially adopted due to many unsolved technical difficulties such as rough terrain, 

inability to achieve good harvesting efficiencies and mechanical damage to the fruit. Past 

evaluations of the blueberry harvesters indicated that considerable cost savings may be 

realized by using the mechanical harvesters, but destruction of plants and reduced berry 
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quality of the harvested crop may result (Marra et al., 1989). Achieving high harvesting 

efficiency with mechanized harvesting systems has been a challenge for the adoption, due 

to its impact on total cost of crop production. Harvesting efficiency reveals the extent to 

which effort/time is well used for the desired operation (Ravetti, 2012). 

The first wild blueberry harvester was modified in 1956 from a mechanical 

cranberry picker consisting of a series of six raking combs that raked in a direction opposite 

to the travel of the machine. This design suffered from high fruit loss and soil digging 

during harvesting (Dale et al., 1994). Gray (1969) developed the hollow reel raking 

mechanism which has served as the basis of harvesters today. The picking efficiency of 

this machine was 80 to 85% of the berries on the vine (Hayden and Soule, 1969); but, it 

could only pick 30 to 35% of the fields due to limitations in field terrain. Towson (1969) 

evaluated the CRCO-UM blueberry harvester and found that the efficiency of this harvester 

ranged from 75 to 85% depending upon the field conditions. The picking efficiency of a 

harvester was defined as a ratio of the weight of harvested berries to the weight of berries 

on the plants before harvesting (Soule and Gray, 1972). They also reported that the wild 

blueberry harvester picked better on smooth ground with no weeds; it experienced 

performance efficiency problems in rough and weedy fields. Doug Bragg Enterprises 

(DBE) Limited, in Collingwood, Nova Scotia achieved great success by improving the 

harvester design by adding hydraulic control systems for the head and head rotational 

speed, by introducing speed controls for belts and conveyors, and by altering the width of 

the picking head (Malay, 2000).  

Many researchers have evaluated the performance of different mechanical 

harvesters for fruit picking efficiency. Birger (2014) compared mechanical harvesting of 
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olives with manual picking, suggesting that the picking efficiency of harvester was 80 to 

95% with better quality of olives. Chen et al. (2012) reported that the vibratory shaker 

resulted in higher efficiency of fruit removal and less fruit damage compared with impact 

harvester for sweet cherry (Prunusavium L.) crop. Rabcewicz and Danek (2010) evaluated 

the raspberry mechanical harvester for fruit picking efficiency. They suggested that the 

harvester was 60 to 80% efficient with 1 to 5% raspberries on the ground. Van Dalfsen and 

Gaye (1999) evaluated three rotary mechanical harvesters for cultivated blueberries. They 

suggested higher fruit losses with the mechanical harvesters (14 to 30% on an average), 

when compared with hand raking. Peterson et al. (1997) reported that the highbush 

blueberries harvested by rotary mechanical harvester not only decreased berry recovery but 

also had 55% moderate and severe bruise damage to the fruit causing quality issues. They 

also reported that the bruise damage was only 22% for hand raking. Brown et al. (1996) 

and Takeda et al. (2008) suggested that the sway harvester significantly reduced the berry 

picking efficiency and quality for highbush blueberries. They also revealed that the berry 

quality was better with hand harvesting. Mainland (1993) suggested that the ground loss 

associated with the mechanical harvesting can be up to 30% of the harvested crop for 

cultivated blueberries. Strik and Buller (2002) stated that even with well pruned bushes, 

the ground losses could be 20% of the harvested crop. 

Hall et al. (1983) estimated that the DBE blueberry harvester attains 68% (Weedy 

fields) to 75% (Smooth weed free fields) of total berry yields which is similar to manual 

raking. The effective field capacity of the DBE harvester was determined to be 1.16 ha/ 10 

hr day which is consistent with the 2.24 ha/10 hr day for the double head harvester. Hand 

rakers picking efficiency was averaged to be 0.135 ha/ 6 hr day indicating that the DBE 
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harvester can compensate for the work of 8 hand rakers (Marra et al., 1988).  Sibley (1994) 

performed an engineering assessment of the DBE blueberry harvester and found that this 

harvester was 69% efficient. The lower harvesting efficiency was partially due to worn 

rollers and high ground speed of the chosen machine. Sibley (1992) suggested conducting 

a study on performance evaluation of a commercial wild blueberry harvester at various 

ground speeds and header rpm’s, to analyze the sensitivity of machine operating parameters 

on picking efficiency. Farooque et al. (2013) mounted a digital color camera on a wild 

blueberry harvester to estimate pre-harvest yield in order to quantify overall losses. Results 

of their study emphasized the need to physically quantify berry losses during harvesting in 

variable blueberry fields.  

Today, the mechanically harvested wild blueberry area is more than 80% of the 

total wild blueberry area in Canada and only the fields in rough terrain are still hand raked 

(PMRA, 2005). The DBE is the largest manufacturer of the wild blueberry harvesters. Over 

1,500 harvesters, with single, double or triple picking heads are in operation in Atlantic 

Canada, Quebec and the State of Maine, United States of America. Many researchers have 

attempted to evaluate the wild blueberry harvesters for fruit losses up to the early 1990s 

(Rhodes, 1961; Abdalla, 1963; Hayden and Soule, 1969; Hall et al., 1983; Sibley, 1992; 

Yarborough, 1992), but no work has been done in last 25 years. In the last two decades, 

improved management practices using selective herbicides, fertilizers, pesticides, 

pollination and pruning have resulted in healthy and tall plants, higher plant density, tall 

weeds and significant increases in fruit yield. The wild blueberry industry is facing 

increased harvesting losses because of these changes in crop conditions. Therefore, the 

objective of the work presented in this chapter was to evaluate the existing commercial 
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wild blueberry harvester for fruit losses during harvesting to determine an ideal 

combination of ground speed and header rpm for most efficient fruit recovery and to 

identify the relationships between the berry losses and measured parameters. Increased 

berry picking efficiency has the potential to enhance farm profitability of the farmer’s 

community. 

3.2 MATERIALS AND METHODS 

3.2.1 Study Area 

Four wild blueberry fields were selected in Colchester County, Nova Scotia and 

Tracadie, New Brunswick, Canada to evaluate the commercial blueberry harvester and to 

quantify fruit losses. The selected fields were the Cooper (Field A) site (45.480573°N, 

63.573471°W; 3.2 ha), Small Scott (Field B) site (45.600641°N, 63.086512°W; 1.9 ha), 

Tracadie (Field C) site (47.2824117°N, 65.1440212°W; 1.6 ha) and Frankweb (Field D) 

site (45.241900°N, 63.401143°W; 2.57 ha). Fields A and B were in their vegetative sprout 

year of the biennial crop production cycle in 2010 and crop year in 2011, while fields C 

and D were in sprout year in 2011 and crop year in 2012. The selected fields had been 

under commercial management over the past decade and received biennial pruning by 

mowing for the past several years along with conventional fertilizer, weed and disease 

management practices. The soils at the experimental fields were classified as sandy loam 

(Orthic Humo-Ferric Podzols), which is a well-drained acidic soil (Webb and Langille, 

1996). The geographical locations of the monitoring sites are presented in Figure 3-1. 

3.2.2 Harvester Operating Mechanism 

Wild blueberry harvesters manufactured by the DBE are designed to be operated 

mounted on tractors.  These are the only high capacity, reliable harvesters available to the  
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Figure 3-1: Layouts of the selected wild blueberry fields, (a) Cooper site, (b) Small Scott 

site, (c) Tracadie site and (d) Frankweb site. 

 

blueberry industry. The operating concept of the picking reel is illustrated in Figure 3-2. 

The picking head of harvester is driven by a hydraulic motor, which is controlled manually 

by the operator (Fig. 3-2) inside the tractor cabin. The picking reel contains sixteen teeth 

bars with sixty seven equally spaced curved teeth on each bar attached to the periphery of 

the reel or head (Fig. 3-2). The teeth bars mounted on the picking reel are operated in a 

 

 

(a) (b) 

(c) (d) 
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clockwise direction, opposite to the direction of the forward speed of tractor to pick wild 

blueberry crop. The hydraulic motor can vary the rotational speed (rpm) of the harvester 

head as desired by the operator. The speed of upward movement of the teeth through the 

plants can be altered by changing the reel rpm.  By appropriately altering the reel rpm the 

operator can provide the gentle lift necessary to pick berries and reduce losses with minimal 

mechanical damage.  

The cleaning brush installed at the top of the picking reel can be operated in the 

direction opposite to the picking reel (Fig. 3-2). The purpose of the cleaning brush is to 

remove any debris and plant shoots from the toothed bars that would interfere with 

effective berry picking. The picked berries are dropped off onto the inside conveyer and 

transported to the side conveyer for storage in the bin behind the tractor (Fig. 3-2). The 

blower fan installed at the conveyer is used to blow off any debris and soil prior to storage 

in the bin. To achieve most efficient picking the guide wheel in front of the harvester is 

utilized to maintain the height of the harvester from the ground. The operator has to adjust 

the height of the harvester head manually to adjust for changes in the plant height. 

3.2.3 Experiment Design 

The single head wild blueberry harvester was mounted on a 62.5 kW John Deere 

tractor (Fig. 3-3). The experiments were designed as 3 × 3 factorial analysis with levels of 

ground speed (1.2, 1.6 and 2.0 km h-1) and header revolutions (26, 28 and 30 rpm). All 

treatment combinations were assigned randomly with nine replications at each 

experimental field. Factorial designs are widely used in experiments involving several 

factors, where it is required to study the joint effect of the factors on response variables. 

Traditionally, the wild blueberry harvester has been operated at a ground speed of 1.6 km 
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h-1 and 28 rpm. Eighty one plots with the same width as the harvester head, 0.91 m, and 3 

m length were made randomly using a measuring tape in the path of the operating harvester. 

The harvester head was raised with the machine running to expel all the previously 

harvested fruit in the storage bin prior to harvesting the experimental plot. Experimental 

plots were harvested at chosen levels of ground speed and header rpm within the selected 

fields. The field boundaries, bare spots, weeds and yield plots were mapped with a RTK-

GPS in each field (Fig. 3-1). 

3.2.4 Pre-harvest Fruit Losses 

Pre-harvest fruit losses were estimated prior to the harvesting of yield plots in 

selected fields. A wooden quadrat of 0.91 × 3 m was placed on the selected plots (n = 81) 

to collect pre-harvest fruit losses manually at each field. The collected berries were placed 

in labeled Ziploc bags and weighed using a balance (Denver Instruments Inc., NY, USA) 

to quantify the amount of berry losses at the onset of experiment. The percentage of pre-

harvest fruit losses was calculated using the following formula. 

Preharvest fruit losses (%) =
𝑃𝐻𝐿

𝑇𝐹𝑌
  X 100                                                           (3-1) 

𝑇𝐹𝑌 = 𝑃𝐻𝐿 + 𝐹𝑟𝑢𝑖𝑡 𝑦𝑖𝑒𝑙𝑑 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑝𝑙𝑜𝑡                      (3-2) 

where PHL is pre-harvest fruit losses prior to harvest (kg) and TFY is total fruit yield (kg). 

3.2.5 Fruit Losses during Harvesting 

Prior to harvest experimental plots, the harvester head was raised and moved back 

(approximately, 25 m) to attain the selected level of ground speed and header rpm. The 

harvester head was lowered at a chosen combination to harvest the yield plot and raised 

again at the end of each plot. Fruit yield was collected from each plot by attaching a bucket
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Figure 3-2: Schematic diagrams to show the working principle of a commercial wild blueberry harvester.
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Figure 3-3: Single head wild blueberry harvester mounted on a John Deere tractor. 

 

to the harvester conveyer belt (Fig. 3-4 b). Three types of losses were calculated from the 

harvested plot, i.e. un-harvested berries on the plant, berries knocked onto the ground due 

to the impact of the harvester head and losses through the blower (Fig. 3-4). The loss 

through the blower was collected by attaching a bucket under the blower fan to collect any 

berries that would be blown away (Fig. 3-4). Berries on the ground and un-harvested 

berries on the plants were manually picked from each plot (Fig. 3-4 a). The berries were 

separated from leaves and debris to record the actual weight of fruit yield and losses from 

each plot. The cleaned berries were placed in labeled Ziploc bags and weighed using a 

balance. Fruit yield and losses data were recorded in kilograms (kg). The purpose of 

calculating these losses at chosen levels of ground speed and header rpm was to assess the 

picking efficiency of the harvester and to find a suitable combination with minimum yield 

losses during harvesting. 
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Five plant height and fruit zone readings were recorded using a ruler to get an 

average value for plant height and fruit zone within the selected plots (Fig. 3-5). Slope 

angle was also measured manually using a Craftsman SmartTool Plus digital level (Sears 

Holdings Corp., Hoffman Estates, IL, USA). Five slope measurements were made at each 

harvesting plot within a radius of one meter and averaged to obtain the representative slope 

in each plot for selected fields (Fig. 3-5). Pre-harvest fruit losses were not brought into 

consideration while evaluating the performance of blueberry harvester because these were 

not caused by the harvester.  Picking efficiency of the blueberry harvester was examined 

using the following equations. 

 

 

 

 

 

 

(a) (b) 

Figure 3-4: (a) Manual collection of loss on the ground and un-harvested berries on the 

plants; (b) Collection of fruit losses through the blower and total fruit yield from the 

harvested plot.  

 

Un − harvested berry losses (%) =
𝑈𝐻𝐵𝑃

𝑇𝐹𝑌
  X 100                 

Losses on the ground (%) =
𝐵𝑂𝐺

𝑇𝐹𝑌
  X 100       

Losses through the blower (%) =
𝐿𝑇𝐵

𝑇𝐹𝑌
  X 100                          

Total loss (%) =
𝑇𝐹𝐿

𝑇𝐹𝑌
  X 100         

3 m 

0.91 m 

Blower  

Loss   
Total Fruit 

Yield 

(3-3) 

(3-4) 

(3-5) 

(3-6) 
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𝑇𝐹𝑌 = 𝑌𝐶 + 𝑈𝐻𝐵𝑃 + 𝐵𝑂𝐺 + 𝐿𝑇𝐵         

𝑇𝐹𝐿 =  𝑈𝐻𝐵𝑃 + 𝐵𝑂𝐺 + 𝐿𝑇𝐵          

Picking Efficiency of the Harvester = (1 −
𝑇𝐹𝐿

𝑇𝐹𝑌
)  X 100    

where UHBP is un-harvested berries on the plants, YC is yield collected by the harvester 

from the experimental plot,  TFY is total fruit yield collected from the harvested plot, BOG 

is berries on the ground, LTB is losses through the blower and TFL is total fruit losses. 

All variables were recorded in kg.  

  

Figure 3-5: Manual measurement of plant height and fruit zone (left) and slope of the 

ground (right). 

 

3.2.6 Statistical Analysis 

The statistical analysis was performed using Minitab 16 (Minitab Inc. NY, USA) 

and SAS 9.3 (SAS Institute Inc., NC, USA) statistical software. The total variability in fruit 

losses can be due to main effects, interaction effects and the uncontrollable factors. Normal 

probability plot of residuals was used to check the normality of error terms using Anderson-

Darling (A-D) test at a significance level of 5%. Residual versus fitted values plot was 

(3-7) 

(3-8) 

(3-9) 
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utilized to check the constant variance of error terms. Treatments were applied in random 

order to achieve independence of error terms. Classical statistics were utilized to calculate 

minimum, maximum, mean, standard deviation, coefficient of variation and skewness of 

collected data. A factorial analysis of variance (ANOVA) using general linear model 

(GLM) procedure was performed to study the joint effect of ground speed and head rpm 

on fruit losses during mechanical harvesting. Multiple mean comparisons were performed 

using least squares (LS) means to determine which specific means significantly differ from 

each other in the treatment combinations. Regression analyses were performed to develop 

correlations among the fruit yield, fruit losses, slope and crop parameters. 

3.3 RESULTS AND DISCUSSION 

The validity of the model assumptions (normal distribution, constant variance and 

independence of the error terms) was tested by examining the residuals at 5% level of 

significance. The non-normal data were normalized using logarithmic transformations for 

analysis and were back transformed to the original scale for reporting results. The 

coefficient of variation (CV) is a first approximation of field heterogeneity and according 

to Wilding (1985), the selected parameters are least variable if the CV < 15%, moderate 

with CV ranging from 15 to 35% and most with CV > 35%. Descriptive statistics revealed 

that the fruit yield and pre-harvest fruit losses were highly variable (CV > 34%) within the 

selected fields (Table 3-1). Field D was found to have the highest fruit yield when 

compared with A, B and C fields (Table 3-1). Higher yield at field D could have been due 

to low coverage of weed/bare spots (8.2%), when compared with A (18%), B (15%) and C 

(9.2%) fields. Other contributing factors could be better nutrient plans, favorable weather 

conditions and effective pollination for field D.  
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Pre-harvest fruit losses were 4.68%, 7.33%, 7.31% and 5.42% for fields A, B, C 

and D, respectively (Table 3-1). The later harvest dates from August 28 to September 10 

contributed to higher pre-harvest losses in fields B and C. Visual inspection also revealed 

that more berries were present on the ground during late season harvesting when compared 

with early season (August 5 to August 25), which might be due to the occurrence of 

senescence causing increased fruit drop as it ripens. Results suggested that early season 

harvesting would increase harvestable berry yield by reducing pre-harvest fruit losses. 

Table 3-1. Summary statistics of fruit yield and pre-harvest fruit losses for selected fields. 

 Pre-harvest Fruit Losses (kg ha-1) 

Field Min Max Mean Mean (%) S.D C.V (%) Skewness 

A 80 360 182 4.68 83.3 46.29 0.76 

B 40 400 207 7.33 99.6 47.27 0.09 

C 80 460 439 7.31 40.74 40.74 0.83 

D 110 515 467 5.42 117.8 36.27 0.64 

 Fruit Yield (kg ha-1) 

Field Min Max Mean  S.D C.V (%) Skewness 

A 305 9914 3887  2014 54.35 0.82 

B 254 7635 2825  1570 59.98 0.89 

C 1690 10445 5995  1942 34.96 0.11 

D 2218 17968 8603  2915 35.81 0.83 

 

Summary statistics suggested that fruit yield, un-harvested berries on the plants, 

berries on the ground, loss through the blower, total loss and slope were highly variable 

with the CV > 35% (Table 3-2). Plant height and fruit zone were moderately variable for 

fields A, B and D (Table 3-2). The selected parameters were observed to be moderate to 

highly variable with CV ranging from 14% to 54% for field C (Table 3-2). The variability 

in fruit yield, plant height, fruit zone and berry losses could be due to the intrinsic sources 

(natural soil variations and yielding nature of different clones) and extrinsic sources 
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(harvester operation, operator skills, field topography and crop management practices) 

(Hepler and Yarborough, 1991).  

Since pre-harvest losses were not caused by the harvester, they were excluded from 

the evaluation of picking efficiencies of the blueberry harvester (Table 3-2). The un-

harvested berries were found to be significantly higher (244.30 kg ha-1) for field D when 

compared with other fields (< 100 kg ha-1) indicating that the most of the berries on the 

plants were either picked by the harvester or dropped on the ground from the impact force 

of harvester head (Table 3-2). The un-harvested berries on the plants were 2.26%, 1.52% 

1.66% and 3% of the total losses for fields A, B, C and D, respectively. Higher percentage 

of un-harvested berries for fields A and D might be because the berries were not ripe 

enough to fall off the plants as these fields were harvested during early season.  

Results reported that the berries on the ground after harvesting the experimental 

plots were 7.85%, 6.32%, 11.29% and 13.49% for fields A, B, C and D, respectively (Table 

3-2). Significantly higher percentage of losses on the ground suggested that the berries 

were picked by the harvester but not effectively moved to the conveyer for transportation 

to the storage bin. The visual inspections also revealed that the picked berries were dropped 

off over the harvested strip which might be due to the impact (force) of the harvester head, 

and the centrifugal force developed by the higher header rpm, pushing the berries away 

from the center and contributing to ground losses (Fig. 3-2). Results showed that the losses 

through the blower were 1.17%, 0.8%, 1.14% and 1.74% for fields A, B, C and D, 

respectively (Table 3-2).  The total losses were observed higher for field D (18.24%) when 

compared with fields A (11.28%), B (8.68%) and C (14.10%). These results suggested that 

the fruit losses were proportional to fruit yield within the selected fields (Fig. 3-6).  
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Table 3-2. Summary statistics of fruit yield, berry losses, slope, plant height and fruit zone 

for selected fields. 

 Field A 

Parameters Min Max Mean Mean (%) S.D C.V (%) Skewness 

Fruit Yield  305 9914 3705 - 2014 54.35 0.82 

Un-harvested Berries  4.90 342.70 83.58 2.26 77.41 92.61 1.50 

Berries on the Ground  19.6 891 291 7.85 186 63.94 1.15 

Loss through Blower  4.92 225.21 43.47 1.17 39.05 89.83 1.99 

Total Losses  58.7 1096.7 418 - 225.6 53.96 0.79 

Total Losses (%) 3.73 25.5 11.28 11.28 5.86 46.38 0.62 

 Plant Height (cm) 10.60 32.80 23.64 - 4.06 17.18 -0.38 

Fruit Zone (cm) 7.80 25.30 19.35 - 3.56 18.42 -0.45 

Slope (degrees) 0.5 19.53 7.47 - 4.40 58.88 0.89 

  Field B 

Parameters Min Max Mean Mean (%) S.D C.V (%) Skewness 

Fruit Yield  253 7635 2618 - 1570 59.98 0.89 

Un-harvested Berries 0 299.37 39.68 1.52 62.47 157.95 3.12 

Berries on the Ground  3.38 708.4 165.4 6.32 127.3 76.99 1.44 

Loss through Blower  0 220.23 22.16 0.80 33.01 148.94 3.50 

Total Losses  5.1 833.7 227.2 - 167.3 73.60 1.51 

Total Loss (%) 0.99 26.85 8.68 8.68 5.07 56.02 1.45 

 Plant Height (cm) 13 34 22.99 - 3.63 15.80 0.06 

Fruit Zone (cm) 7.40 30.5 19.07 - 3.62 18.99 -0.05 

Slope (degrees) 0.20 23.66 7.04 - 4.47 63.58 1.35 

 Field C 

Parameters Min Max Mean Mean (%) S.D C.V 

(%) 

Skewness 

Fruit Yield  1690 10445 5556 - 1942 34.96 0.11 

Un-harvested Berries  23.77 319.54 92.23 1.66 38.34 41.57 2.77 

Berries on the Ground  147.9 1056.3 627.5 11.29 234.12 39.17 0.10 

Loss through Blower  21.13 110.92 63.67 1.14 18.62 29.25 0.22 

Total Losses  192.8 1228 783.5 - 256.7 34.07 -0.01 

Total Loss (%) 7.99 22.34 14.10 14.10 3.09 22.20 -0.02 

 Plant Height (cm) 19 39 26.95 - 3.96 14.70 0.44 

Fruit Zone (cm) 11.23 34.60 23.09 - 3.92 17.01 -0.24 

Slope (degrees) 0 6.56 2.58  1.40 54.45 1.04 
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 Field D 

Parameters Min Max Mean Mean (%) S.D C.V 

(%) 

Skewne

ss 

Fruit Yield  2218 17968 8136 - 2915 35.81 0.83 

Un-harvested Berries  42.9 574.71 244.30 3.0 115.7 47.37 0.67 

Berries on the Ground  131.5 1847 1098.12 13.49 385.3 35.97 -0.34 

Loss through Blower  31.6 528.9 142.21 1.74 90.6 63.78 2.16 

Total Losses  240.2 2616.10 1484.6 - 545.9 37.42 0.0 

Total Losses (%) 4.70 29.47 18.24 18.24 4.68 25.69 -0.25 

 Plant Height (cm) 13.10 31.80 22.37 - 3.65 16.35 0.48 

Fruit Zone (cm) 11 24.75 17.55 - 3.43 19.55 0.06 

Slope (degrees) 0.73 21.69 7.86 - 5.16 65.69 0.89 

Note: Fruit yield, un-harvested berries, berries on the ground, loss through the blower and total losses were 

recorded in kg ha-1 unless otherwise specified. 

 

Figure 3-6: Overall variation in fruit losses with respect to fruit yield within the selected 

fields. 

 

Significant relationship between fruit yield and total losses (r = 0.54 to 0.82) for 

selected fields (Table 3-3) also support the concept that the losses during harvesting 

increased with an increase in fruit yield and vice versa. Overall, the picking efficiency of 

the blueberry harvester was 88.72%, 91.32%, 85.90% and 81.76% for fields A, B, C and 
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D, respectively. These results also confirmed the accuracy of non-destructive estimates of 

pre-harvest fruit losses from digital color camera mounted on the commercial wild 

blueberry harvester (Table 2-2) as the actual fruit losses were very close to the estimated 

losses during mechanical harvesting. Plant height, fruit zone and slope were similar for the 

selected fields except field C (Table 3-2), where the plants were taller with a higher fruit 

zone (Table 3-2). A fruit zone higher above the ground can result in better picking 

efficiency of the blueberry harvester. Un-harvested berries on the plants were significantly 

correlated with plant height (r = -0.22 to -0.40) suggesting that the un-harvested berries 

were lower in the tall plants and vice versa (Table 3-3). Negative correlations of the un-

harvested berries on the plants, on the ground and for total losses with the plant height and 

fruit zone indicated that the tall plants with higher fruit zone provided better opportunity 

for the harvester to pick more effectively (Table 3-3). Visual inspections revealed that the 

lodging of crop at the edges of bare spots lowered the fruit zone resulting in an increased 

losses. Soule and Gray (1972) indicated that a blueberry harvester can perform better in 

flat fields when compared with rough terrain. Higher losses (14.10%) for field C, although 

the field was relatively flat (Table 2), might be due to the late season harvesting (August 

28 – September 10). Visual observations suggested that the plants were less dense at field 

C when compared with the fields A, B and C.  

Significant correlations of fruit yield with berry losses during harvesting (r ~ 0.23 

to 0.78) suggested a linear trend indicating that the fruit losses were greatly influenced by 

the variations in fruit yield (Table 3-3). Berries on the ground were found to have a 

significant relationship with total losses (r = 0.91 to 0.98) suggesting that losses on the 

ground increased with an increase in total losses. Significant positive correlation of total 
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losses with the slope for fields A (r = 0.23) and B (r = 0.38) indicated that the total losses 

increased with the steepness of the slope (Table 3-3), revealing that the topography of the 

ground seems to have an impact on the picking efficiency of the harvester. Topography 

was addressed as one of the challenges during development process of the wild blueberry 

harvester (Yarbrough, 2001; Hall et al., 1983). Total fruit losses were non-significantly 

correlated with slope, indicating that there was no effect on fruit losses during harvesting 

for fields C and D (Table 3-3). This could be due to the flat nature of field C and 

significantly higher yields at field D (Table 3-2). 

Table 3-3. Correlation matrix among fruit yield, berry losses, crop parameters and slope 

for selected fields. 

Field A 

 Fruit 

Yield  

 

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.25*       

Berries on the Ground  0.47*** 0.24*      

Loss through Blower  0.40*** -0.03 NS 0.15 NS     

Total Losses  0.54*** 0.51*** 0.93*** 0.28**    

 Plant Height (cm) -0.34** -0.40 *** -0.21 NS 0.19 NS -0.28 *   

Fruit Zone (cm) -0.35** -0.50*** -0.22* 0.23 * -0.32** 0.94***  

Slope (degrees) -0.29** 0.43** 0.16 NS -0.03 NS 0.23* 0.02 NS -0.03 NS 

Field B 

 Fruit 

Yield  

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.42***       

Berries on the Ground  0.59*** 0.33**      

Loss through Blower  0.47*** 0.09 NS 0.14 NS     

Total Losses  0.70*** 0.64*** 0.91*** 0.34**    

 Plant Height (cm) -0.20 NS -0.27 * -0.22 * 0.06 NS -0.25 *   

Fruit Zone (cm) -0.12 NS -0.17 NS -0.17 NS 0.02 NS -0.18 NS 0.80***  

Slope (degrees) 0.03 NS 0.26* 0.37 ** -0.02 NS 0.38** -0.42 ** -0.25 * 
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Field C 

 Fruit 

Yield  

 

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.23*       

Berries on the Ground  0.77*** 0.23*      

Loss through Blower  0.09 NS 0.19 NS 0.09 NS     

Total Losses  0.78*** 0.38** 0.98*** 0.13 NS    

 Plant Height (cm) -0.36 ** -0.22 * -0.26 * -0.05 NS -0.29 *   

Fruit Zone (cm) -0.02 NS -0.06 NS -0.10* 0.04 NS -0.10 NS 0.47***  

Slope (degrees) -0.12 NS -0.07 NS 0.12 NS -0.20 NS 0.09 NS 0.15 NS 0.02 NS 

Field D 

 Fruit 

Yield  

 

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.70***       

Berries on the Ground  0.78*** 0.79***      

Loss through Blower  0.69 *** 0.63*** 0.62***     

Total Losses (kg ha-1) 0.82*** 0.87*** 0.97*** 0.51 

*** 

   

 Plant Height (cm) -0.34 ** -0.30* * -0.28 * -0.31** -0.32* *   

Fruit Zone (cm) 0.09 NS -0.13 NS -0.07 NS -0.24* -0.11 NS 0.45***  

Slope (degrees) -0.17 NS 0.03 NS 0.04 NS -0.01 NS 0.04 NS 0.12 NS -0.14 NS 

Significance of correlations indicated by *, ** and ***, are equivalent to p = 0.05, p = 0.01 and p = 

0.001.Where NS, non-significant at p = 0.05. Note: Fruit yield, un-harvested berries, berries on the ground, 

loss through the blower and total losses were recorded in kg ha-1 unless otherwise specified. 

 

Results of ANOVA suggested that the main effects of ground speed and header rpm 

were found to be non-significant for un-harvested berries on the plants and berries on the 

ground, while the interaction effects (Speed × revolution) were significant for fields A and 

B (Table 3-4). The un-harvested berries on the plants and berries on the ground were found 

to have a significant interaction for field C, while the main effects were significant in field 

D (Table 3-4). The ground speed was found to produce a significant loss through the blower 

for field C, while for field D, both ground speed and interaction effects were significant 

(Table 3-4).  
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Table 3-4. Analysis of variance using two factor factorial design for selected fields. 

Field A 

Source Un-

harvested 

Berries 

Berries on 

the Ground 

Loss 

through 

Blower 

Total 

Loss 

Total Loss 

 (%) 

Fruit 

Yield 

Speed NS NS NS NS NS NS 

Revolution NS NS * NS NS NS 

Speed*Revolutions * * NS * * * 

Field B 

Source Un-

harvested 

Berries 

Berries on 

the Ground 

Loss 

through 

Blower 

Total 

Loss 

Total Loss 

 (%) 

Fruit 

Yield 

Speed NS NS NS NS NS NS 

Revolution NS NS NS NS NS NS 

Speed*Revolutions * * * * * * 

Field C 

Source Un-

harvested 

Berries 

Berries on 

the Ground 

Loss 

through 

Blower 

Total 

Loss 

Total Loss 

 (%) 

Fruit 

Yield 

Speed * NS * NS NS NS 

Revolution NS NS NS NS NS NS 

Speed*Revolutions * * NS * * * 

Field D 

Source Un-

harvested 

Berries 

Berries on 

the Ground 

Loss 

through 

Blower 

Total 

Loss 

Total Loss  

(%) 

Fruit 

Yield 

Speed * * * * * NS 

Revolution * * NS * NS NS 

Speed*Revolutions NS NS * * * * 

Significance indicated by * and NS = non-significant at p = 0.05. 

 

In factorial experiments if the higher order interaction is significant, their main 

effects can be ignored. Main effect of revolution was found to have a significant impact on 

the losses through the blower for field A, while two way interaction effects were significant 

for field B (Table 3-4). Interaction effects were significant for total losses (% and kg ha-1) 

and fruit yield for selected fields (Table 3-4). In summary, results reported that fruit losses 

during harvesting were influenced by the ground speed and header rpm either alone or in 
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combination suggesting that a suitable combination could result in better picking efficiency 

of the blueberry harvester. 

Results of means comparison indicated that the un-harvested berries on the plants 

and losses through the blower were significantly lower than the losses on the ground for 

selected fields (Table 3-5). The best combinations with minimum un-harvested berries on 

the plants were treatments 1, 4 and 8 for selected fields (Table 3-5). Treatment 8 was non-

significantly different when compared with treatment 1 for field C (Table 3-5). In general, 

the un-harvested berries on the plants were lower at treatment 1 for selected fields, 

suggesting that operating the harvester at lower speed and rpm can minimize the un-

harvested berries on the plants. Results of LS means reported that the berries on the ground 

were generally higher at 30 rpm for the selected fields (Table 3-5), which might be due to 

an impact of the harvester head and faster rpm of the picking reel. The best treatments with 

minimum loss of berries on the ground were 1, 2 and 7 for selected fields (Table 3-5). 

Results revealed that the 26 rpm provided more time for header to pick the berries more 

effectively with minimum losses on the ground.  

The best treatments with minimum loss of berries through the blower (< 70 kg ha-

1) were 1, 2 and 7 for selected fields (Table 3-5). The mixed trend of losses through the 

blower for selected fields might be due to high fruit yield variability, suggesting that the 

blower losses during harvesting were not affected by treatment combinations. The best 

treatments for total losses were 2 for field A and 7 for field B (Table 3-5).  Treatment 1 

(1.2 km h-1 and 26 rpm) resulted in significantly lower total losses for the fields C and D 

(Table 3-5). In general, treatment 9 produced significantly higher losses, which could be 

due to higher radial and tangential forces applied by the harvester during fruit picking for 
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fields C and D (Table 3-5). There was a mixed trend of total losses (kg ha-1) at different 

treatment combinations for field B (Table 3-5), which could be due to low yield nature of 

this field. There were non-significant differences in total losses at 26 and 28 rpm for the 

ground speed of 1.2 km h-1 for field A (Table 3-5).  

Table 3-5. Results of multiple means comparison using least-squares method to identify 

the two way interaction effects on fruit losses during harvesting. 

Field A 

Treatment Un-harvested 

Berries 

Berries on the 

Ground 

Loss 

through 

Blower 

Total 

Loss 

Fruit Yield 

 

1 80.5   AB 245.9    C 81.6    A 408       B 5116    A 

2 90.3   AB 165.4    D 25.0    B 280.7    D 1899    D 

3 105    AB 340.6  AB 32.2    B 477.8    A 3783    B 

4 54.2     B 268.7  BC 41.3    B 364.2  BC  3437  BC 

5 114.2   A 330.7 AB  41.9    B 486.8     A 4398  AB 

6 59.8     B 403.6   A 43.5    B 506.9     A 4368  AB 

7 81.6  AB 270.9  BC 59.8  AB 412.3     B 3490 BC  

8 103.3 AB 281.8  BC 28.3     B 413.4     B 3877    B 

9 63.1     B 311.3    B 37.5     B 411.9     B 3368 BC 

Field B 

Treatment Un-harvested 

Berries 

Berries on the 

Ground 

Loss 

through 

Blower 

Total 

Loss 

Fruit Yield 

 

1 20.1   B 144.6    B  29.8  BC 194.5   BC 2029  BCD 

2 64.1   A 263.3  AB   65.9    A 393.3     A 3458       A 

3 25.3   B  143.6     B 38.5    B 207.4   BC 2809     AB  

4 64.4   A 183.9  AB 19.1  BC 267.4  ABC 3091       A 

5 38.2 AB  90.1      C 10.3  BC 138.6     CD 1556       D 

6 52.2   A 264.9   A 9.5      C 326.6    AB 3332       A 

7 22.3   B 76.7     C 5.5      C 104.5       D 1752       D 

8 27.5   B 137.7    B  12.5  BC 177.7    CD 2450 BCD 

9 43.1 AB  183.8  AB 8.4      C 235.3    BC 3086       A 
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Field C 

Treatment Un-harvested 

Berries 

Berries on the 

Ground 

Loss 

through 

Blower 

Total 

Loss 

Fruit Yield 

 

1 74.2   CD 527   BC 60.4   B 661.7   C 6044  A 

2 76.7   BCD 637.9   A 63.4   AB 778    AB 5726 A 

3 88   BCD 603.9   ABC 62.5  AB 754.4   BC 5500AB 

4 94.7   BCD 582.5   ABC 58.7   B 735.9   BC 5350AB 

5 107.1   ABC 653.8    A 78.9   A 839.8   A 6300 A 

6 79.5   BCD 635.9   A 65.7   AB 781.2   A 5435AB 

7 130.3   A 505.6   C 56.6   B 692.5 CD 4510 B 

8 71.9   D 652   A 62.2   AB 786.1   A 5604AB 

9 108  AB 579   ABC 64.6   AB 751.5  AB 4575 B 

Field D 

Treatment Un-harvested 

Berries 

Berries on the 

Ground 

Loss 

through 

Blower 

Total 

Loss 

Fruit Yield 

 

1 121.0   C 550.2   E 65.1  C 736.4  D 6347   C 

2 196.7   BC 921.9   D  125.2   BC 1243.7 BC 7923   AB 

3 202.7   BC 1155.4   AB 126.1   BC 1484.2  BC 8467 AB 

4 191.3   BC 800.9  CD 121   BC 1113.2 C 6301   C 

5 278   AB 1198.3   AB 189.3   AB 1665.6 AB 9190  A 

6 209.7   B 1184   AB 115.9   BC 1509.62 B 8687  AB 

7 322.5  A 1225.9  A 227.1   A 1775.5  A 9520   A 

8 352.6   A 1250.1  A 181.1   AB 1783.81   A 9130   A 

9 324.7   A 1362.5   A 128.0   BC 1815.20   A 7660  B 

Means with no letter shared are significantly different at p = 0.05. 

Note: The fruit yield and losses were recorded in kg ha-1. 

Where, Treatment 1: 1.2 km h
-1

 and 26 rpm, Treatment 2: 1.2 km h
-1

 and 28 rpm, Treatment 3: 1.2 km h
-1

 and 30 

rpm, Treatment 4: 1.6 km h
-1

 and 26 rpm, Treatment 5: 1.6 km h
-1

 and 28 rpm, Treatment 6: 1.6 km h
-1

 and 30 rpm, 

Treatment 7: 2.0 km h
-1

 and 26 rpm, Treatment 8: 2.0 km h
-1

 and 28 rpm and Treatment 9: 2.0 km h
-1

 and 30 rpm. 

 

Total losses (%) were dependent upon the fruit yield collected from each treatment. 

The 1.2 km h-1 and 26 rpm (Treatment 1) was found to be the best combination with less 

than 8% berry losses during harvesting (Fig. 3-7a) for field A. Treatments 1, 4 and 8 were 

non-significantly different at fields A (Fig. 3-7 a). Treatment 1 was found to have < 12% 

fruit losses, which was significantly lower, when compared with other treatments for fields 
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C and D (Fig. 3.8). The mixed trend of fruit losses for field B (Fig. 3-7 b), suggested that 

the 2.0 km h-1 and 26 rpm was the best treatment combination with minimum losses. Non-

significant differences among the treatment combinations (Fig. 3-7 b) were found for field 

B.  

These results suggested that in low yielding fields, the chosen levels of ground and 

head rpm are not as important, however, in high yielding fields a careful selection of the 

operating parameters can enhance the picking performance of wild blueberry harvester. 

Treatment 9 was the worst combination with significantly higher losses for fields C and D 

(Fig. 3-8), emphasizing the need to reduce ground speed and header rpm in high yielding 

fields for better picking efficiency and berry recovery. Operating the harvester at lower 

ground speed and header rpm will provide a gentle upward movement of reel teeth bars 

through the plants to enhance harvesting efficiency by reducing the losses. Longer teeth 

with a slight tilt at the end of the teeth could provide better retention of berries for effective 

transportation to conveyer and finally to the storage bin. 

Based on these results, it can be concluded that in wild blueberry fields with yield 

over 3500 kg ha-1 a combination of 1.2 km h-1 and 26 rpm can result in significantly lower 

losses. In low yielding fields (< 3000 kg ha-1) a combination of 2.0 km h-1 and 26 rpm can 

do a better job to increase berry picking efficiency of the blueberry harvester. Overall, the 

results of LS mean reported that the efficiency of the harvester was found to be 92% for 

field A and over 88% for fields C and D at 1.2 km h-1 and 26 rpm. The picking efficiency 

of the harvester was 94% (6% losses) at 2.0 km h-1 and 26 rpm for fields B. 
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Means with no letter shared are significantly different at p = 0.05. 

Where, Treatment 1: 1.2 km h
-1

 and 26 rpm, Treatment 2: 1.2 km h
-1

 and 28 rpm, Treatment 3: 1.2 km h
-1

 and 30 rpm, 

Treatment 4: 1.6 km h
-1

 and 26 rpm, Treatment 5: 1.6 km h
-1

 and 28 rpm, Treatment 6: 1.6 km h
-1

 and 30 rpm, Treatment 

7: 2.0 km h
-1

 and 26 rpm, Treatment 8: 2.0 km h
-1

 and 28 rpm and Treatment 9: 2.0 km h
-1

 and 30 rpm. 

 

Figure 3-7: Least squares mean comparison of total fruit losses at different treatments, (a) 

Field A and (b) Field B. 
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Means with no letter shared are significantly different at p = 0.05. 

Where, Treatment 1: 1.2 km h
-1

 and 26 rpm, Treatment 2: 1.2 km h
-1

 and 28 rpm, Treatment 3: 1.2 km h
-1

 and 30 rpm, 

Treatment 4: 1.6 km h
-1

 and 26 rpm, Treatment 5: 1.6 km h
-1

 and 28 rpm, Treatment 6: 1.6 km h
-1

 and 30 rpm, Treatment 

7: 2.0 km h
-1

 and 26 rpm, Treatment 8: 2.0 km h
-1

 and 28 rpm and Treatment 9: 2.0 km h
-1

 and 30 rpm. 

 

Figure 3-8. Least squares means comparison of total fruit losses at different treatments, (a) 

Field C and (b) Field D. 

 

Fruit loss during harvesting are not only due to the machine itself but are a function 

of several parameters which can affect the picking efficiency. These parameters include 
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operator skills, field conditions, crop maturity, crop characteristics, time of harvesting, 

weather conditions, bare spots, weed coverage and improper maintenance of the harvester. 

A newly manufactured harvester was used in this study; therefore no contribution from low 

maintenance was expected. Results of this study revealed that by choosing a good 

combination of ground speed and header rpm based on fruit yield variation can minimize 

the fruit losses during harvesting. The reduced berry losses during harvesting will generate 

more revenue for the farmers to justify their input cost related to wild blueberry production. 

3.4 CONCLUSIONS 

Results of this study suggested that the pre-harvest fruit losses were found to be 

higher during the late season suggesting that early season harvesting could be helpful in 

reducing pre-harvest fruit losses. Results indicated that fruit losses during harvesting were 

highly variable within the selected fields. The major portion of the fruit losses during 

harvesting was on the ground when compared with un-harvested berries on the plants and 

losses through the blower. Fruit loss during harvesting is a linear function of the fruit yield, 

as fruit yield increases the fruit losses increases and vice versa. Results of the harvester 

evaluation confirmed the accuracy of the camera technology in mapping the pre-harvest 

fruit yield and losses during mechanical harvesting. Actual fruit losses (manually collected) 

were very close to the estimated fruit losses (from digital color camera).  

Based on the results of ANOVA, it can be concluded that ground speed, header rpm 

and their interaction can cause significant differences in picking efficiency of the wild 

blueberry harvester. Results of means comparison showed that a treatment combination of 

1.2 km h-1 and 26 rpm can result in significantly lower losses as compare to higher ground 

speed and header rpm in wild blueberry fields with yield over 3500 kg ha-1. In low yielding 
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fields (< 3000 kg ha-1) a combination of 2.0 km h-1 and 26 rpm can do a better job to 

increase berry picking efficiency of the blueberry harvester. Proper selection of ground 

speed and header rpm in relation to spatial variability can minimize fruit losses to increase 

farm profitability. 

Chapter 3 evaluated the role of ground speed and header rpm on picking 

performance of a commercial wild blueberry harvester in selected fields. Results of the 

harvester’s physical evaluation confirmed the accuracy of camera technology in estimating 

pre-harvest fruit losses during mechanical harvesting. Fruit losses were highly variable 

within the selected fields, with the majority of losses being on the ground. Fruit losses were 

greatly influenced by the ground speed and header rpm and their interaction. Significant 

variability in fruit losses at different machine operating parameters, crop characteristics, 

fruit yield and slope of the ground, emphasized the need to study the response of spatial 

variations in fluctuating fruit losses during mechanical harvesting. Chapter 4 highlighted 

the variability in fruit losses in accordance with spatial variations in crop characteristics, 

fruit yield and ground slope. 
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CHAPTER 4   RESPONSE OF WILD BLUEBERRY FRUIT LOSSES TO 

SPATIAL VARIABILITY IN CROP CHARACTERISTICS AND GROUND 

SLOPE  

Knowledge of spatial variability in fruit yield, crop characteristics, fruit losses and 

slope of the ground is critical for planning and implementing the operational 

recommendation for mechanical harvesting. Wild blueberry growers are facing increased 

harvesting losses because of changes in crop conditions caused by improved management 

practices. The goal of this work was to characterize and quantify spatial pattern of 

variability in crop characteristics, fruit yield and slope in relation to fruit losses during 

harvesting. Factorial experiments were designed and yield plots (0.91 × 3 m) were 

constructed randomly in selected fields. Total fruit yield, un-harvested berries on the plants, 

berries on the ground, and loss through the blower were collected from each plot within 

the selected fields. Pre-harvest fruit losses were collected from each plot prior to harvest. 

Slope, plant height and fruit zone were also recorded manually from each plot to examine 

their impact on fruit losses.  

The coefficient of variations (CVs) for fruit yield, berry losses, slope, plant height 

and fruit zone suggested moderate to high variability (CV > 15%) within the selected fields. 

Results of correlation analysis showed higher fruit losses in high yielding areas and vice 

versa. Results reported that the fruit yield, berry losses, slope, plant height and fruit zone 

had a large spatial variation (range of influence ~ 20 to 50 m) within the selected fields. 

Kriged maps also showed substantial variation in mapped parameters within the selected 

fields. Regression analysis in conjunction with zonal statistics showed that the fruit losses 

increased with an increase in fruit yield and steepness of slope. Variability in fruit losses 
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corresponding with the spatial variations in crop characteristics, fruit yield and slope 

suggested that these parameters had significant effect on fruit losses during harvesting. 

Results emphasized the need to model these spatial relationships mathematically to propose 

optimal harvester operational settings to increase harvestable yield. Improved berry 

picking efficiency by considering these spatial variations has the potential to increase profit 

margins for wild blueberry industry. 

The work presented in this chapter has been submitted in Applied Engineering in 

Agriculture Journal, entitled “Response of wild blueberry fruit losses to spatial variability in 

crop characteristics and slope of the ground”. 

4.1 INTRODUCTION 

Soil properties, crop characteristics and fruit yield vary spatially, and temporally 

within the fields on most farms. Many factors including site characteristics, crop 

parameters, environmental conditions and management practices have an influence on fruit 

yield and quality (Farooque et al., 2012a; Patzold et al., 2008; Wong and Asseng, 2006; 

Ping et al., 2005). Characterization and quantification of spatial variability is essential to 

achieve a better understanding of the complex interactions (Wong and Asseng, 2006) in 

order to determine appropriate management practices including harvesting 

recommendations. Different techniques including color infrared images (CIR), remote 

sensing, soil survey maps, non-destructive mapping via EMI sensors and arial photographs 

have been used to address the spatial variability for various cropping systems. However, 

these methods are expensive, the quality of data may be inadequate, and data processing 

(arrangement and analysis of data) is normally intensive and complicated (Zaman et al., 

2008). Therefore, within field variability can be described using sampling methods that 
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allow a field to be divided into different management zones. With the introduction of 

geostatistical tools, a sampling strategy can be established based on range of influence, 

which not only reduces the number of samples but also the cost of analysis (McBratney 

and Pringle, 1999; Brouder et al., 2005).  

Spatial variations in fruit yield are mainly caused by heterogeneity in crop 

characteristics, soil physical and chemical properties and weather conditions (Wong and 

Asseng, 2006; Rogerio et al., 2006). Heterogeneity may occur at small scale or large scale, 

even in the same variable of interest (Du Feng et al., 2008). The CV is mostly used to 

describe the overall variation within the field, which hypothesize that the variability is 

randomly distributed; however, it does not quantify the spatial pattern of variability. 

Samples close to each other have similar properties when compared with those far from 

each other. Geostatistics is a powerful tool for characterization and quantification of spatial 

variability (Sauer et al., 2006). Geostatistical procedures use statistical and mathematical 

functions for interpolation of data. Geostatistics combined with GIS provides interpolation 

of data from sampled points to un-sampled locations based on autocorrelation and spatial 

relationships for estimation of range of influence accurately (James and Charles, 1988).  

Research benefits of geographical information system (GIS) technique were 

described in many scientific studies (Bradshaw and Muller 1998, Wang et al. 2006). The 

GIS can be utilized to spatially analyze the variable of interest in a monitoring study. 

Interpolated maps can be generated in GIS for visualization of spatial variability. 

Geostatistical analysis was recognized as the most confident, strongest, and widest method 

for interpolation which considers spatial variance, location and distribution of collected 

data (Kersic, 1997). Semivariograms calculated from geostatistical analysis provide spatial 
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dependency of the variables both anisotropically and isotropically (Burgess and Webster, 

1980). Spatial variability on a small scale plays a significant role in crop performance and 

productivity (Haefele and Wopereis, 2005). Site characteristics (humidity, soil properties, 

texture and rainfall) influence soil moisture and strength (McBratney and Pringle, 1999), 

which can cause higher fruit losses during harvesting by reducing the traction of tractor 

tires and slippage of berries from the periphery of the harvester head.  

With the installation of sensors and yield monitors on mechanical harvesters, it has 

been evident that the yields for various crops exhibits significant spatial variability 

(Bramley and Hamilton, 2004). Many growers are aware of this variability which not only 

affects crop production, but also fruit quality (Bramley, 2005), and fruit losses during 

harvesting. Consequently, it is difficult to estimate fruit yield (Martınez- Casasnovas and 

Bordes, 2005), quality and losses that are actually encountered because of these spatial 

variations. Poor knowledge of spatial variability also limits the possibility of differentiating 

fruit losses caused by different factors within the field. Hence, there is an emerging need 

for increased harvesting efficiency, which can be achieved by implementing the optimal 

operational settings of the mechanical harvester in relation to spatial variability to achieve 

better berry recovery. 

Spatial variability in crop characteristics, topographic features, soil properties and 

yield has been well documented (Cambardella et al., 1994; Gaston et al., 2001; Wong and 

Asseng, 2006; Cemek et al., 2007, Mann et al., 2010; Farooque et al., 2012a). Cambardella 

(1994) studied the field scale spatial variation in different soil properties in Central Iowa 

soils. Cemek et al. (2007) examined the spatial patterns of variability in hydraulic 

conductivity, soil EC, soil pH and soil ESP suggesting that hydraulic conductivity was the 
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most variable, while the pH was least variable. Mann et al. (2010) described the spatial 

variability in soil properties at four sampling depths for Florida citrus production and 

delineated management zones for site-specific fertilization. Farooque et al. (2012a) 

characterized and quantified spatial variability in soil properties and fruit yield for wild 

blueberry cropping system. The authors also differentiated productive and un-productive 

areas based on spatial variability in soil properties and fruit yield. Schumann and Zaman 

(2003) mapped water table depth in flatwood soils of Florida and found that 81% of the 

variation in the water table depth could be explained with vertical dipole of the EMI 

instrument. Bramley and Lamb (2003) revealed that the spatial variation of grape quality 

coincided with the spatial distribution of the yield. Cheng et al. (2007) suggested that the 

spatial variability in biomass for shrub lands was greater than the grasslands. Spatial 

relationships between plant and soil were very clear for grassland (Zhao et al., 2007) and 

found to have an impact on crop productivity. Accurate estimation of spatial variability is 

important for environmental predictions, precise agriculture recommendations, ecological 

modeling and management of natural resources (Hangsheng et al., 2005; Wang, 2009). 

Spatial variations in fruit yield, crop characteristics and topographic features can have an 

impact on fruit losses during harvesting. 

Heterogeneous growing scenarios in cultivated land require spatial and temporal 

attention when estimating crop growth and fruit yields to reduce fruit losses. Crop yield 

estimations are often performed using dynamic growth models that assume homogeneous 

field conditions, ignoring spatial differences and their effects on growth and yield (Hu and 

Mo, 2011; Irmak et al., 2001). Analyzing and quantifying relationships between 

heterogeneous soil conditions, crop growth and yield is often constrained by a lack of data 



81 

 

due to high costs and time demands associated with data collection (Heil and Schmidhalter, 

2012). Crop growth is greatly influenced by landscape attributes and differences in site 

characteristics, which reflect soil heterogeneity patterns (Hakojärvi et al., 2013). Variation 

in topography of the agricultural fields influences the redistribution of soil particles, 

organic matter, texture and nutrients due to erosion, causing large spatial variability 

(Ovalles and Collins, 1988). Differences in elevation within the field also affect water 

availability to crops and hence crop yield (Kaleita et al., 2007). Due to their role in 

influencing soil and yield variability, topographic attributes are generally used to map areas 

of high and low productivity within a field. Wild blueberry producers typically harvest 

their fields uniformly on a block basis, with block size varying from one or two to several 

hectares, hence ignoring within field variability in fruit yield, crop characteristics and 

topographic features. Variation in soil texture and slope of the ground can create imbalance 

of the harvester head during mechanical harvesting, which can affect picking performance 

of the harvester.   

Many researchers have attempted to characterize and quantify the spatial variation 

in soil properties, crop parameters, topographic features and fruit yield for different 

cropping systems (Hakojärvi et al., 2013; Farooque et al., 2012a; Hu and Mo, 2011; Mann 

et al. 2010; Zhao et al., 2007; Wong and Asseng, 2006; Irmak et al., 2001; McBratney and 

Pringle, 1999). However, to date little attention has been paid to wild blueberry production 

system. Wild blueberry fruit yield is greatly influenced by spatial variation in soil 

properties (Farooque et al., 2012a). Farooque et al. (2012a and b) also reported that the soil 

spatial variability produces variable patches fruit yield (high, medium and low yielding) 

across the field. Currently, mechanical harvesting operating recommendations are 
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implemented uniformly with inadequate attention being given to substantial variations 

within the wild blueberry fields. Harvesting of spatially variable fields at standard ground 

speed and header revolutions without characterizing spatial variability in crop parameters, 

fruit yield and slope can result in an increased fruit losses during harvesting. Therefore, the 

objectives of the work presented in this chapter were to characterize and quantify 

variability in plant characteristics, fruit yield and slope in relation to fruit losses during 

mechanical harvesting for wild blueberry cropping system. The ultimate goal is to study 

the variation in fruit losses and establish operational recommendations for increased berry 

recovery using the commercial blueberry harvester. 

4.2 MATERIAL AND METHODS 

4.2.1 Study Area 

Four wild blueberry fields were selected in Atlantic Provinces of Canada to 

evaluate the impact of spatial variability in fruit yield, plant characteristics and slope on 

fruit losses during mechanical harvesting. The selected fields were the Cooper site 

(45.480573°N, 63.573471°W; 3.2 ha), Small Scott site (45.600641°N, 63.086512°W; 1.9 

ha), Tracadie site (47.2824117°N, 65.1440212°W; 1.6 ha), and Frankweb site 

(45.241900°N, 63.401143°W; 2.57 ha) (Fig. 4-1). The Cooper and Small Scott sites were 

in their vegetative sprout year of the biennial crop production cycle in 2010 and crop year 

in 2011. The Tracadie and Frankweb sites were in crop year during 2012. Selected fields 

were managed commercially over the past decade with conventional fertilizer application, 

weed and disease controls and other management practices (mowing, pollination, etc.).  
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Figure 4-1: Layouts of the selected wild blueberry fields, (a) Cooper site, (b) Small Scott 

site, (c) Tracadie site, and (d) Frankweb site. 
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4.2.2 Data Collection 

Completely randomized factorial experiments were designed within the selected 

fields to study the response of spatial variations on fruit losses during mechanical 

harvesting. The single head commercial blueberry harvester was mounted on a 62.5 kW 

John Deere tractor. Eighty one yield plots with the same width as the harvester head, 0.91 

m and 3 m length were made randomly in each field using a measuring tape. Two marker 

flags were punched into ground, to indicate the end points of plots for the ease of operator’s 

tracking. Experimental plots were constructed in the path of the operating harvester. Field 

boundaries, bare spots, weeds and yield plots were mapped with a RTK-GPS in each field. 

Pre-harvest fruit losses were estimated prior to harvesting the yield plots in selected fields. 

A wooden quadrat of 0.91 × 3 m was placed on randomly selected plots (n = 81) to collect 

pre-harvest fruit losses manually at each field. The collected berries were placed in labeled 

Ziploc bags and weighed using a balance to quantify the amount of berry losses at the onset 

of experiment. Pre-harvest fruit losses were recorded in kg. Details procedure for 

calculation of percentage pre-harvest fruit losses are provided in Chapter 3, Section 3.2.5. 

Five plant height and fruit zone readings were measured prior to harvest from each 

experimental yield plots using a ruler to get an average value. Slope angle was recorded 

manually using a Craftsman SmartTool Plus digital level. Five slope measurements were 

randomly made at each harvesting plot within a radius of one meter for selected fields and 

averaged to obtain representative slope in each plot. After measuring the pre-harvest fruit 

losses, plant height, fruit zone and slope, the experimental plots were harvested using a 

commercial blueberry harvester. The harvester head was raised with the machine running 
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to expel all the previously harvested fruit in the storage bin before harvesting the 

experimental plots.  

Prior to harvesting the experimental plots, the harvester was moved back (approx. 

25 m) to attain the ground speed and header rpm. Harvester head was lowered to harvest 

the yield plot and raised again at the end of each plot. Fruit yield was collected from each 

plot by attaching a bucket to the harvester conveyer belt (Fig. 4-2b). Three types of losses 

were calculated from the harvested plot, i.e. un-harvested berries on the plant, berries on 

the ground and losses through the blower (Fig. 4-2). Loss through the blower was collected 

by attaching a bucket under the blower fan to collect any berries that would be blown away 

(Fig. 4-2). Berries on the ground and un-harvested berries on the plants were manually 

picked from each plot (Fig. 4-2a). 

 

 

 

 

 

(a) (b) 

Figure 4-2: (a) Manual collection of loss on the ground and un-harvested berries on the 

plants; (b) Collection of fruit losses through the blower and total fruit yield from the 

harvested plot. 

 

Berries were separated from leaves and debris to record the actual weight of yield 

and losses from each plot. Cleaned berries were placed in labeled Ziploc bag and weighed 

using a balance. Fruit yield and losses data was recorded in kg. The purpose of calculating 

3 m 

0.91 m 

Blower 

Loss   Total Fruit 

Yield 



86 

 

these losses was to assess the picking performance of the harvester in relation to spatial 

variations in fruit yield, plant height, fruit zone and slope. Pre-harvest fruit losses were not 

brought into consideration while evaluating the performance of the blueberry harvester 

because these were not caused by the harvester. Details showing the procedure for 

calculation of fruit losses are given in Chapter 3; Section 3.2.5. 

4.2.3 Statistical Analysis  

The statistical analysis was performed using Minitab 16 (Minitab Inc. NY, USA) 

and SAS 9.3 (SAS Institute Inc., NC, USA) statistical software. Normality of the error 

terms was examined through Anderson Darling test and non-normal data were normalized 

using logarithmic transformations. Logarithmic conversion of the data are considered as 

the best method (Webster and Oliver, 2001) to assure normal distribution. Residual versus 

fitted values plot was utilized to check the constant variance of error terms. Yield plots 

were made randomly to assure independence of error terms. Classical statistics were 

utilized to calculate minimum, maximum, mean, standard deviation, CV and skewness. 

Classical statistics provides overall variability in the collected data, however, it does not 

provide the spatial trend. Therefore, geostatistical analysis was performed using GS+ 

Geostatistics for the Environmental Sciences Version 9 software (Gamma Design 

Software, LLC, Woodhams St, Plainwell, MI, USA) to characterize spatial variability in 

fruit yield, berry losses, plant parameters and slope. Semivariograms were produced for 

each variable to ascertain the degree of spatial variability between neighboring 

observations. The sill, nugget, range and sill to nugget ratio were calculated form 

semivariogram analysis for detailed description of spatial variability. Geostatistical 

analysis is based on spatial correlation between observations which can be expressed as a 
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mathematical model. Variogram expresses the spatial pattern of variability in the data 

(Hassanipak, 2007) and can be described by the following formula: 

𝛾(ℎ) =  
1

2𝑁(ℎ)
{∑ [𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]2𝑁(ℎ)

𝑖=1 }       (4.1) 

where 𝛾 is the semivariance for interval class (h), N(h) is the number of sample pairs that 

are separated by distance (h) from each other, Z(xi) are the values of regionalized variable 

at spatial location xi, Z(xi + h) are the values of regionalized variable at spatial location xi + 

h. 

Several authorized semivariogram models can be fitted to the data and the one with 

minimum nugget is selected (Oliver, 1987). There was no anisotropy evident in directional 

semivariograms, therefore, isotropic models were fitted using GS+ software. Correlation 

matrices were developed to study the relationships between fruit yield, fruit losses, plant 

characteristics and slope. Geostatistics combined with GIS was applied to generate detailed 

maps in Arc GIS 10 (ESRI, Redlands, CA), to analyze spatial variability visually. All 

parameters were interpolated using kriging interpolation technique. Kriging interpolation 

is a statistical estimator that assigns weight to each sampling location for an unbiased and 

reduced estimation of variance (Kumke et al., 2005). Kriging interpolation is considered to 

be more accurate and reliable than other methods such as inverse distance weighting (IDW) 

or trend surface models (Mulla et al., 1992; Farooque et al., 2013). Maps of fruit yield, un-

harvested berries on the plants, berries on the ground, loss through the blower, plant height, 

fruit zones and slope were generated at same scale and equal number of classes for fair 

comparison. Zonal statistics function of ArcGIS 10 was utilized to assess the variation in 

fruit losses with respect to fruit yield, plant height and slope. 
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4.3 RESULT AND DISCUSSIONS 

4.3.1 Descriptive Statistics of the Collected Data 

The validity of the model assumptions (constant variance and normal distribution 

of the error terms) was verified by examining the residuals at 5% level of significance. 

Independence of error terms was assumed to be valid through the randomization. Anderson 

Darling test of normality reported that the fruit yield, berry losses and slope followed a 

non-normal distribution, while the plant height and fruit zone were normally distributed 

for Cooper, Small Scott and Frankweb sites. Fruit yield, loss through the blower, plant 

height, fruit zone and slope were normally distributed at the Tracadie site. Non-normal (p 

< 0.05) data were normalized using logarithmic transformations for analysis and were back 

transformed to original scale for reporting results. The underlying reason for non-normal 

and normal distributions of fruit yield, berry losses and slope at monitoring sites are 

unknown, but management practices, operator skills, weather conditions and timing of 

harvest seem to be likely causes.  

Table 4-1. Summary statistics of fruit yield and pre-harvest losses for selected fields.  

 Pre-harvest Fruit Losses (kg ha-1) 

Field Min Max Mean Mean (%) S.D C.V (%) Skewness 

Cooper 80 360 182 4.68 83.3 46.29 0.76 

Small Scott 40 400 207 7.33 99.6 47.27 0.09 

Tracadie 80 460 439 7.31 40.74 40.74 0.83 

Frankweb 110 515 467 5.42 117.8 36.27 0.64 

 Fruit Yield (kg ha-1) 

Field Min Max Mean  S.D C.V (%) Skewness 

Cooper 305 9914 3887  2014 54.35 0.82 

Small Scott 254 7635 2825  1570 59.98 0.89 

Tracadie 1690 10445 5995  1942 34.96 0.11 

Frankweb 2218 17968 8603  2915 35.81 0.83 
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The CV is a first indication of the field variability. Wilding (1985) reported that 

collected data are least variable if the CV is less than 15%, moderately variable with CVs 

ranging from 15 to 35%, and most variable with CV greater than 35%. Summary statistics 

revealed that the fruit yield and pre-harvest fruit losses were highly variable (CVs > 34%) 

within the selected sites (Table 4-1). Large variation in fruit yield and pre-harvest fruit 

losses was also evident from the minimum, maximum and skewness values of the 

descriptive statistics (Table 4-1). Skewed distribution of fruit yield and pre-harvest fruit 

losses might be due variation in management practices and harvesting of blueberries at 

different times during the season. These results were in agreement with the findings of 

Farooque et al. (2012b). They reported large variation in fruit yield for wild blueberry 

cropping system.  

Summary statistics suggested that fruit yield, un-harvested berries on the plants, 

berries on the ground, loss through the blower, total loss and slope were highly variable 

with the CV > 35% for selected sites (Table 4-2). Plant height and fruit zone exhibited 

moderate variability for Cooper, Small Scott and Frankweb sites (Table 4-2). Selected 

parameters were observed to be moderate to highly variable with CV ranging from 14 to 

54% for Tracadie site (Table 4-2). The variability in fruit yield, plant height, fruit zone, 

and berry losses could be due to the intrinsic sources (natural soil variations and yielding 

nature of different clones) and extrinsic sources (harvester operation, operator skills, field 

topography and crop management practices) (Hepler and Yarborough, 1991; Cemeck et 

al., 2007; Rao and Wagenet, 1985). Since pre-harvest losses were not caused by the 

harvester, they were excluded from the evaluation of picking efficiencies of blueberry 

harvester (Table 4-2). 
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Table 4-2. Summary statistics for fruit yield, berry losses, slope, plant height and fruit zone 

for selected blueberry fields. 

 Cooper Site 

Parameters Min Max Mean Mean 

(%) 

S.D C.V (%) Skewne

ss 

Fruit Yield  305 9914 3705 - 2014 54.35 0.82 

Un-harvested Berries  4.90 342.70 83.58 2.26 77.41 92.61 1.50 

Berries on the Ground  19.6 891 291 7.85 186 63.94 1.15 

Loss through Blower  4.92 225.21 43.47 1.17 39.05 89.83 1.99 

Total Losses  58.7 1096.7 418 - 225.6 53.96 0.79 

Total Losses (%) 3.73 25.5 11.28 11.28 5.86 46.38 0.62 

 Plant Height (cm) 10.60 32.80 23.64 - 4.06 17.18 -0.38 

Fruit Zone (cm) 7.80 25.30 19.35 - 3.56 18.42 -0.45 

Slope (degrees) 0.5 19.53 7.47 - 4.40 58.88 0.89 

  Small Scott Site 

Parameters Min Max Mean Mean 

(%) 

S.D C.V (%) Skewne

ss 

Fruit Yield  253 7635 2618 - 1570 59.98 0.89 

Un-harvested Berries 0 299.37 39.68 1.52 62.47 157.95 3.12 

Berries on the Ground  3.38 708.4 165.4 6.32 127.3 76.99 1.44 

Loss through Blower  0 220.23 22.16 0.80 33.01 148.94 3.50 

Total Losses  5.1 833.7 227.2 - 167.3 73.60 1.51 

Total Loss (%) 0.99 26.85 8.68 8.68 5.07 56.02 1.45 

 Plant Height (cm) 13 34 22.99 - 3.63 15.80 0.06 

Fruit Zone (cm) 7.40 30.5 19.07 - 3.62 18.99 -0.05 

Slope (degrees) 0.20 23.66 7.04 - 4.47 63.58 1.35 

 Tracadie Site 

Parameters Min Max Mean Mean 

(%) 

S.D C.V (%) Skewne

ss 

Fruit Yield  1690 10445 5556 - 1942 34.96 0.11 

Un-harvested Berries  23.77 319.54 92.23 1.66 38.34 41.57 2.77 

Berries on the Ground  147.9 1056.3 627.5 11.29 234.12 39.17 0.10 

Loss through Blower  21.13 110.92 63.67 1.14 18.62 29.25 0.22 

Total Losses  192.8 1228 783.5 - 256.7 34.07 -0.01 

Total Loss (%) 7.99 22.34 14.10 14.10 3.09 22.20 -0.02 

 Plant Height (cm) 19 39 26.95 - 3.96 14.70 0.44 

Fruit Zone (cm) 11.23 34.60 23.09 - 3.92 17.01 -0.24 

Slope (degrees) 0 6.56 2.58  1.40 54.45 1.04 
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 Frankweb Site 

Parameters Min Max Mean Mean 

(%) 

S.D C.V (%) Skewne

ss 

Fruit Yield  2218 17968 8136 - 2915 35.81 0.83 

Un-harvested Berries  42.9 574.71 244.30 3.0 115.7 47.37 0.67 

Berries on the Ground  131.5 1847 1098.12 13.49 385.3 35.97 -0.34 

Loss through Blower  31.6 528.9 142.21 1.74 90.6 63.78 2.16 

Total Losses  240.2 2616.10 1484.6 - 545.9 37.42 0.0 

Total Losses (%) 4.70 29.47 18.24 18.24 4.68 25.69 -0.25 

 Plant Height (cm) 13.10 31.80 22.37 - 3.65 16.35 0.48 

Fruit Zone (cm) 11 24.75 17.55 - 3.43 19.55 0.06 

Slope (degrees) 0.73 21.69 7.86 - 5.16 65.69 0.89 

Note: Fruit yield, un-harvested berries, berries on the ground, loss through the blower and total losses were 

recorded in kg ha-1 unless otherwise specified. 

 

The CVs reported large variability in fruit yield and fruit losses for selected sites, 

which was also supported by the minimum and maximum values (Table 4-2). Mean fruit 

yield was the lowest for Small Scott site (2618 kg ha-1) and highest for Frankweb site (8136 

kg ha-1). Large CVs for fruit yield and slope corresponding with the high CVs for un-

harvested berries on the plants, berries on the ground and loss through the blower showed 

that the fruit losses during harvesting were influenced by these variations (Table 4-2). 

Lower fruit yield at Cooper and Small Scott sites as compared to Tracadie and Frankweb 

sites might be due to more bare spots and grasses (Fig. 4-1), rocky nature of soil, lower 

pollination, winter kill and availability of nutrients for plant growth and development. Fruit 

losses were generally higher for high yielding fields and vice versa (Table 4-2). Selected 

fields were not expected to behave identically, although they were representative of the 

geomorphology and agricultural practices of the local area.  The variations in results also 

probably reflect the influence of temporal dynamics on the measured parameters due to 

sampling at different times during the study. This experiment was not designed to evaluate 
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the temporal effects but spatial aspect of variation in fruit yield, crop parameters, fruit 

losses and topographic features. In the future, more explorations may be required to 

quantify the variability caused by the temporal variations.  

4.3.2 Spatial Variation of the Collected Data 

Nugget, sill and range of influence are the three major components of 

semivariogram (Brouder et al., 2005). Semivariance ideally increases with the lag distance 

between sample locations which is known as spatial dependence. Sampling locations 

separated by short distances (lower than the range of influence) are spatially correlated than 

those separated by the large distances. Nugget semivariance is the variance at zero distance 

(h = 0). Sill is a semivariance at which the sampling locations are not influenced by 

neighboring points. Range of influence is the distance at which the values of one variable 

become spatially independent from close by points (Oliver, 1987). Best fitted 

semivariogram models for pre-harvest fruit losses were exponential and spherical for 

selected sites (Table 4-3). Fruit yield, berry losses, plant height, fruit zone and slope were 

modeled using exponential, spherical, gaussian and linear models of semivariograms for 

the monitoring sites (Tables 4-4 and Table 4-5). The criterion for the best fitted models 

was the coefficient of determination (R2) and residual sum of squares. 

Pre-harvest fruit losses showed large spatial variation with the lower range of 

influence (< 19 m) within the selected fields (Table 4-3). Nugget to sill ratio is also an 

indicator of spatial dependence of a variable; low nugget to sill ratio represents high spatial 

dependence. A parameter is strongly spatial dependent if the nugget to sill ratio is < 25%. 

If the ratio is between 25 to 75%, the variable is assumed to have moderate spatial 

dependency. Weak spatial dependency is reported when the ratio > 75% (Chien et al., 1997; 
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Cambardella et al., 1994). Nugget to sill (C0/C0+C) ratio generally reflects the spatial 

autocorrelation (Li and Reynolds, 1995). Semivariogram of pre-harvest fruit losses 

indicated strong spatial dependence within the selected fields (Table 4-3). Strong spatial 

dependency of the pre-harvest fruit losses might be controlled by the weather conditions 

and time of the harvest, since these losses were not caused by the mechanical harvester. 

Table 4-3. Semivarigram parameters of pre-harvest fruit losses for selected fields. 

Pre-harvest Fruit Losses (kg ha-1) 

Sites Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Cooper 2.63 14.56 21.58 17.86 0.73 Spherical 

Small Scott 35.60 233.42 18.86 15.25 0.67 Exponential 

Tracadie 4.23 33.42 17.30 12.66 0.68 Spherical 

Frankweb 66.98 361.13 26.33 18.55 0.61 Exponential 

 

Geostatistical analysis showed large spatial variability in fruit yield, un-harvested 

berries on the plants, berries on the ground and loss through the blower as indicated by 

their range of influence (< 38 m) for Tracadie and Frankweb sites (Table 4-4). 

Semivariograms reported that the Cooper and Small Scott sites also exhibited large spatial 

variability in fruit yield and berry losses during harvesting (Table 4-5). Plant height and 

fruit zone were also highly variable with the range of influence 16 to 22 m within the 

Tracadie and Frankweb sites (Table 4-4). Similar pattern of variation for plant height and 

fruit zones was observed at Cooper and Small Scott sites (Table 4-5). The Frankweb, 

Cooper and Small Scott sites were found to have large spatial variability in slope with the 

range of influence < 23 m (Tables 4-4 and 4-5). Slope exhibited moderate variability (range 

of influence = 50.58 m) for Tracadie site. Visual inspections also revealed that the Tracadie 

site was relatively flat when compared with the other experimental sites. Large spatial 
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variations in collected data suggested that the standard harvesting operation by ignoring 

this variability can increase fruit losses during mechanical harvesting. Adjustments in the 

harvester ground speed and header revolution in accordance with spatial variability in fruit 

yield, plant parameters and slope can reduce berry losses during harvesting.   

Table 4-4. Semivarigram parameters of fruit yield, plant height, fruit zone, slope and 

fruit losses for Tracadie and Frankweb sites. 

Tracadie Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield  53.06 467.41 16.90 11.34 0.60 Spherical 

Un-harvested Berries  3.12 10.15 14.10 30.74 0.52 Exponential 

Berries on the Ground  147.04 462.10 12.60 31.81 0.66 Exponential 

Loss through Blower  77.04 214.03 24.56 35.98 0.35 Exponential 

Total Losses  58.01 155.35 19.25 37.34 0.49 Exponential 

 Plant Height (cm) 2.47 13.95 15.87 17.71 0.42 Exponential 

Fruit Zone (cm) 3.15 15.36 20.27 20.51 0.43 Exponential 

Slope (degrees) 1.82 18.28 50.58 9.96 0.63 Linear 

Frankweb Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield  77.03 882.0 15.10 8.73 0.54 Spherical 

Un-harvested Berries  28.31 59.6 16.70 47.48 0.53 Gaussian 

Berries on the Ground  55.37 152.3 14.20 36.30 0.44 Spherical 

Loss through Blower  290.03 795.0 38.20 36.48 0.47 Gaussian 

Total Losses  19.70 54.80 15.80 35.94 0.62 Spherical 

 Plant Height (cm) 2.95 13.83 20.90 21.33 0.40 Gaussian 

Fruit Zone (cm) 2.22 12.41 17.90 17.89 0.73 Exponential 

Slope (degrees) 27.91 279.14 23.56 10.0 0.70 Linear 

Note: Fruit yield, un-harvested berries, berries on the ground, loss through the blower and total losses were 

recorded in kg ha-1 unless otherwise specified. 

 

Fruit yield, plant height, fruit zone and slope were found to be strongly spatial 

dependent (< 25%) for selected sites (Tables 4-4 and 4-5). Strong spatially dependent 

variables may be controlled by intrinsic factor (soil texture, structure, mineralogy and 
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microorganism) (Cambardella et al., 1994). Fruit yield and plant growth may also be 

influenced by the nutrient availability and uptake by plants, which is primary controlled by 

the intrinsic factors. Strong auto-correlation for fruit yield, plant height and fruit zone also 

supported the large spatial variability in these parameters within the selected sites (Tables 

4-4 and 4-5).   

Another class of variables such as un-harvested berries on the plants, berries on the 

ground, loss through the blower and total loss showed moderate to low spatial dependence 

with the nugget to sill ratio > 25% for selected fields (Tables 4-4 and 4-5). Moderate to 

low spatial dependence is controlled by the extrinsic factors (Cambardella et al., 1994; 

Chien et al., 1997). Extrinsic variations such as weather conditions, machine operational 

settings and operator skills may control the spatial variability in fruit losses during 

mechanical harvesting. Large spatial dependency and lower range of influence were found 

to have great influence on crop yield and quality for various cropping systems (Li et al., 

2008; Rogerio et al., 2006; Zhao et al., 2007; Zaman and Schumann, 2006). Spatial 

variation in intrinsic and extrinsic factors may strongly reflect variations in fruit yield 

(Mulla and Bhatti, 1997; Schepers et al., 2004), which can have an impact on fruit losses 

during mechanical harvesting of wild blueberries. Hence, understanding the spatial 

variability in fruit yield, plant parameters, fruit losses and slope is the key factor for 

implementing the optimal machine settings to enhance berry picking efficiency of the 

blueberry harvester.  

Scale of spatial correlation for fruit yield, plant height, fruit zone and slope varied 

in distance from 12 to 50.58 m for selected sites (Tables 4-4 and 4-5). Most of the variables 

in this study were found to have the range of influence ranging from 15 to 40 m. Variability 



96 

 

in collected data is assumed to be non-random at distances shorter than the range of 

influence (Oliver, 1987). Results showed that the selected parameters were highly variable 

and there were correlations between fruit yield, berry losses, plant characteristics and slope 

(Table 4-4; Table 4-5 Appendix B). Kerry and Oliver (2003) suggested that the sample 

spacing should be from one third or less than half the range of influence from 

semivariogram. The accuracy of spatial correlations described by geostatistical analysis 

can be improved by increasing the sample size (McBratney and Webster, 1983).  

Table 4-5. Semivarigram parameters of fruit yield, plant height, fruit zone, slope and fruit 

losses for Cooper and Small Scott sites. 

Cooper Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield  10.03 371.80 20.40 2.69 0.59 Spherical 

Un-harvested Berries  16.01 36.10 27.42 34.32 0.47 Spherical 

Berries on the Ground  43.06 97.03 24.40 44.36 0.49 Spherical 

Loss through Blower  349.10 762.07 27.50 45.80 0.39 Gaussian 

Total Losses  3.07 8.30 26.30 36.14 0.63 Spherical 

 Plant Height (cm) 0.86 16.62 17.60 16.87 0.69 Spherical 

Fruit Zone (cm) 1.64 12.83 16.83 20.58 0.38 Exponential 

Slope (degrees) 5.89 18.89 18.10 13.71 0.68 Spherical 

Small Scott Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield  12.54 25.09 14.30 10.12 0.58 Exponential 

Un-harvested Berries  161.04 382.38 15.90 44.42 0.48 Exponential 

Berries on the Ground  10.08 27.40 16.50 36.49 0.75 Gaussian 

Loss through Blower  6.53 11.03 26.50 57.52 0.56 Exponential 

Total Losses  27.71 89.52 12.60 30.94 0.76 Gaussian 

 Plant Height (cm) 22.97 129.78 30.46 17.70 0.60 Linear 

Fruit Zone (cm) 26.31 129.51 32.63 20.32 0.45 Spherical 

Slope (degrees) 1.83 20.64 17.20 8.87 0.47 Spherical 

Note: Fruit yield, un-harvested berries, berries on the ground, loss through the blower and total losses were 

recorded in kg ha-1 unless otherwise specified. 
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Overall, the higher CVs, lower range of influence and large to moderate spatial 

dependency suggested large spatial variability in fruit yield, berry losses, plant 

characteristics and slope for selected fields. Variations in fruit losses corresponding with 

the variability in fruit yield, plant height, fruit zone and slope provided strong evidence that 

the fruit losses during harvesting were caused by the variations in these parameters. 

Harvesting operational recommendation based on proper characterization and 

quantification of spatial variability can increase berry picking efficiency of the commercial 

wild blueberry harvester to improve profit margins for growers.  

4.3.3 Relationships Among the Collected Data 

Correlation matrix revealed significant relationships between fruit yield, berry 

losses, crop parameters and slope for selected sites (Tables 4-6 and 4-7). Fruit yield was 

significantly correlated with un-harvested berries on the plants, berries on the ground, loss 

through the blower and total losses for selected sites (Tables 4-6 and 4-7), except Tracadie 

site where loss through the blower was non-significantly correlated. Significant 

correlations of fruit yield with berry losses during harvesting (r~0.23 to 0.78) showed a 

linear trend indicating that the fruit losses were proportional to the fluctuations in fruit 

yield. Geostatistical results also reported that the fruit losses were greatly influenced by the 

variation in fruit yield (Tables 4-4 and 4-5). Negative significant relationship of fruit yield 

with plant height suggested that the fruit yield was lower in the areas where plants were 

taller for selected sites (Tables 4-6 and 4-7), except for Small Scott site. A possible reason 

for lower fruit yield in tall plants might be due to more vegetative growth causing reduction 

in fruit yield. 
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Table 4-6. Correlation matrix among fruit yield, berry losses, crop parameters and slope 

for Tracadie and Frankweb sites. 

Tracadie Site 

 Fruit 

Yield  

 

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.23*       

Berries on the Ground  0.77*** 0.23*      

Loss through Blower  0.09 NS 0.19 NS 0.09 NS     

Total Losses  0.78*** 0.38** 0.98*** 0.13 NS    

 Plant Height (cm) -0.36 ** -0.22 * -0.26 * -0.05 NS -0.29 *   

Fruit Zone (cm) -0.02 NS -0.06 NS -0.10* 0.04 NS -0.10 NS 0.47***  

Slope (degrees) -0.12 NS -0.07 NS 0.12 NS -0.20 NS 0.09 NS 0.15 NS 0.02 NS 

Frankweb Site 

 Fruit 

Yield  

 

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.70***       

Berries on the Ground  0.78*** 0.79***      

Loss through Blower  0.69 *** 0.63*** 0.62***     

Total Losses (kg ha-1) 0.82*** 0.87*** 0.97*** 0.51 ***    

 Plant Height (cm) -0.34 ** -0.30* * -0.28 * -0.31** -0.32* 

* 

  

Fruit Zone (cm) 0.09 NS -0.13 NS -0.07 NS -0.24* -0.11 NS 0.45***  

Slope (degrees) -0.17 NS 0.03 NS 0.04 NS -0.01 NS 0.04 NS 0.12 NS -0.14 NS 

Significance of correlations indicated by *, ** and ***, are equivalent to p = 0.05, p = 0.01 and p = 0.001. 

Where NS, non-significant at p = 0.05. Note: Fruit yield, un-harvested berries, berries on the ground, loss 

through the blower and total losses were recorded in kg ha-1 unless otherwise specified. 

 

Un-harvested berries on the plants were significantly correlated with plant height 

(r = -0.22 to -0.40) suggesting that the un-harvested berries were lower in tall plants and 

vice versa for selected sites (Tables 4-6 and 4-7). Berries on the ground were found to have 

a significant relationship with total losses for selected sites (r = 0.91 to 0.98). Berries on 

the ground were directly proportional to total losses as indicated by the significant 

correlation. Results indicated that the major portion of fruit losses during harvesting was 

on the ground (Table 4-2). Negative correlations of un-harvested berries on the plants, on 
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the ground, and total losses with plant height and fruit zone indicated that the tall plants 

with higher fruit zone provided better opportunity for the harvester to pick berries more 

effectively, and reduced magnitude of fruit losses during mechanical harvesting            

(Tables 4-6 and 4-7). Significant positive relationships of plant height with fruit zone 

revealed that the fruit zone was higher in the areas contained with tall plants and vice versa 

(Tables 4-6 and 4-7). Visual inspections narrated lodging of crop at the edges of bare spots 

resulting in lower fruit zone and increased losses during harvesting. 

Table 4-7. Correlation matrix among fruit yield, berry losses, crop parameters and slope 

for Cooper and Small Scott sites. 

Cooper Site 

 Fruit 

Yield  

 

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.25*       

Berries on the Ground  0.47*** 0.24*      

Loss through Blower  0.40*** -0.03 NS 0.15 NS     

Total Losses  0.54*** 0.51*** 0.93*** 0.28**    

 Plant Height (cm) -0.34** -0.40 *** -0.21 NS 0.19 NS -0.28 *   

Fruit Zone (cm) -0.35** -0.50*** -0.22* 0.23 * -0.32** 0.94***  

Slope (degrees) -0.29** 0.43** 0.16 NS -0.03 NS 0.23* 0.02 NS -0.03 NS 

Small Scott Site 

 Fruit 

Yield  

Un-

harvested 

Berries  

Berries 

on the 

Ground  

Berries 

through 

Blower 

Total 

Losses 

 

Plant 

Height  

Fruit 

Zone  

Un-harvested Berries  0.42***       

Berries on the Ground  0.59*** 0.33**      

Loss through Blower  0.47*** 0.09 NS 0.14 NS     

Total Losses  0.70*** 0.64*** 0.91*** 0.34**    

 Plant Height (cm) -0.20 NS -0.27 * -0.22 * 0.06 NS -0.25 *   

Fruit Zone (cm) -0.12 NS -0.17 NS -0.17 NS 0.02 NS -0.18 NS 0.80***  

Slope (degrees) 0.03 NS 0.26* 0.37 ** -0.02 NS 0.38** -0.42 ** -0.25 * 

Significance of correlations indicated by *, ** and ***, are equivalent to p = 0.05, p = 0.01 and p = 

0.001.Where NS, non-significant at p = 0.05. Note: Fruit yield, un-harvested berries, berries on the ground, 

loss through the blower and total losses were recorded in kg ha-1 unless otherwise specified. 
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Significant positive correlation of total losses with slope for Copper (r = 0.23) and 

Small Scott (r = 0.38) sites suggested that the total losses increased with the steepness of 

slope (Table 4-7), revealing that the topography of ground seems to have a negative effect 

on picking efficiency of the blueberry harvester. Topography of the field was addressed as 

one of the challenges during development process of the commercial wild blueberry 

harvester (Yarbrough, 2001; Hall et al., 1983). Total losses were non-significantly 

correlated with slope, indicating no effect on fruit losses during harvesting for Frankweb 

and Tracadie sites (Table 4-6). This could be due to relatively flat nature of Tracadie site 

and significantly higher yields at Frankweb site (Table 4-2).  

There are a variety of factors other than the machine contributing to fruit loss 

variability which have not been addressed. Operator skill and proper maintenance of the 

blueberry harvester are obvious examples. Seasonal variations, harvesting at different time 

schedules, soil properties and rocky nature of the fields can also have negative effect on 

picking efficiency of the harvester. A newly manufactured harvester was used in this study; 

therefore no contribution from maintenance is expected. Overall, the results of correlation 

matrix revealed that the berry losses during harvesting were influenced by the variations in 

fruit yield, plant height, fruit zone and slope within the selected fields. Results of the 

correlation matrix in conjunction with geostatistical analysis can be used to develop zones 

(low, medium and high yields), and the harvester operational settings (ground speed and 

head rpm) can be adjusted based on these variations to improve berry recovery and quality. 

Farooque et al. (2014) reported that the ground speed, header rpm and their interaction can 

cause significant losses during mechanical harvesting. Furthermore, the variability in 

collected data can be analyzed visually by generating detailed maps in ArcGIS 10 software. 
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4.3.4 Interpolation and Mapping of Collected Data 

The interpolated maps of fruit yield, un-harvested berries on the plants, berries on 

the ground, loss through the blower, total loss, plant height, fruit zone and slope showed 

gradual and non-random spatial variability with significantly different values across the 

selected sites (Figs. 4-3 and 4-4; Figs. B-1 and B-2; Appendix B). Spatial patterns of 

variation in fruit yield, un-harvested berries on the plants, berries on the ground and total 

loss were almost similar for Tracadie and Frankweb sites (Figs. 4-3 a-e and 4-4 a-e). Higher 

values of fruit yield and berry losses were observed in mid north, south east and mid-south 

west of the Tracadie site (Fig. 4-3 a-e). Lower values were found in mid-south, west and 

mid-northeast of the Tracadie site.  Maps revealed that the fruit losses were generally 

higher in high yielding regions and vice versa (Figs. 4-3 a-e). The slight variation in the 

trend for un-harvested berries on the plants might be due to late harvesting of the Tracadie 

site, resulting in lowering the grip of the berries with the plants. Pre-harvest fruit losses 

were also higher at Tracadie site (Table 4-1) indicating poor grip of berries with plants 

because of late harvesting. 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e)  

 

(f) 

 

(g) 
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(h) 

Figure 4-3: Interpolated maps, (a) Fruit yield, (b) Un-harvested berries, (c) Berries on the 

ground, (d) Loss through the blower, (e) Total loss, (f) Plant height, (g) Fruit zone and (h) 

Slope for Tracadie site. 

 

Kriged maps of fruit yield, un-harvested berries on the plants, berries on the ground, 

loss through the blower, total loss, plant height, fruit zone and slope suggested substantial 

variability within field for the Frankweb site (Fig. 4-4). Higher fruit yield and berry losses 

areas were contained in mid-east, mid-west and northeast of the Frankweb site (Figs. 4-4 

a-e). Fruit yield and berry losses were found to be lower in south and north-west of the 

Frankweb site. Map comparison suggested that the fruit losses were significantly correlated 

with fruit yield, indicating higher losses in high yield areas. Fruit losses during harvesting 

were observed to be lower in low yield regions (Figs. 4-4 a-e). Higher fruit losses in high 

yielding regions can be minimized by providing a gentle lift for berry pickup which can be 

achieved by lowering the ground speed and header rpm of the harvester. Farooque et al. 

(2014) reported that a combination of 1.2 km hr-1 and 26 rpm can enhance picking 

efficiency of the harvester in high yielding fields.    
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(a) 

 
(b) 

 
(c) 

 
(d) 



106 

 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 4-4: Interpolated maps, (a) Fruit Yield, (b) Un-harvested berries, (c) Berries on the 

ground, (d) Loss through the blower, (e) Total Loss, (f) Plant height, (g) Fruit zone and (h) 

Slope for Frankweb site. 
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Variation in loss through the blower did not match with spatial variability in fruit 

yield for Tracadie and Frankweb sites (Figs. 4-3 d and 4-4 d), suggesting that the blower 

loss were not controlled by the variation in fruit yield. Relationships identified by the maps 

were in agreement with the results of correlation analysis (Tables 4-6 and 4-7) for selected 

sites. Geostatistical analysis also revealed substantial variation in fruit yield and berry 

losses during harvesting. Spatial patterns of variation in fruit yield and berry losses were 

very similar for Cooper and Small Scott sites (Figs. B-1 a-e and B-2 a-e; Appendix B). 

 The interpolated maps of total losses, plant height and fruit zone revealed negative 

relationships (Figs. 4-3 e-g and 4-4 e-g). Higher values of total loss were observed in mid 

north, south east and north-west of the Tracadie site (Figs. 4-3 e-g). Map comparison 

reported that the plants were shorter with lower fruit zone in these areas, suggesting a 

negative relationship. Similar trend of variation for total loss, plant height and fruit zone 

were observed for Frankweb site (Figs. 4-4 e-g). Higher fruit losses in low plant height 

areas were due to lower fruit zone causing more losses during mechanical harvesting. 

Higher fruit zone areas provided the mechanical harvester a better opportunity to reduce 

berry losses and increased berry picking efficiency for selected sites. Significant positive 

correlations of plant height and fruit zone also supported these results (Tables 4-6 and 4-

7). Results revealed that the picking performance of harvester was greatly influenced by 

the variations in plant height and fruit zone. Significant negative correlations of total loss 

with plant height and fruit zone also supported the relationships identified by the kriged 

maps (Tables 4-6 and 4-7). Spatial trend of variation for berry losses, plant height and fruit 

zone for Cooper and Small Scott sites were very similar to Tracadie and Frankweb sites 

(Figs. B-1 and B-2; Appendix B). Overall, the maps of berry losses, plant height and fruit 
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zone showed substantial variability within the selected fields which was well supported by 

the geostatistical analysis. 

  Kriged slope maps suggested substantial variability within the selected fields (Figs. 

4-3 h and 4-4 h; Figs. B-1 h and B-2 h; Appendix B). Geostatistical range of influence from 

semivariograms, and CVs also indicated large variability in slope for selected sites. Results 

of map comparison for fruit losses and slope showed inconsistent trend of variation (Figs. 

4-3 h and 4-4 h) for Tracadie and Frankweb sites. These inconsistencies in variation of fruit 

losses with respect to slope were supported by the correlation analysis (Tables 4-6 and 

Table 4-7), which showed non-significant relationships. A possible reason for the 

inconsistent trend of variation at Tracadie and Frankweb site might be due to exceptionally 

high yielding nature of these sites (Table 4-2). High yielding nature of these sites might be 

dominating the slope effect resulting in inconsistent variations within the fields. Another 

reason for Tracadie site could be the flat nature of this field. Results of map comparison 

suggested that the fruit losses were higher in steep slope areas when compared with flat to 

mild slope areas for Cooper and Small Scott sites (Figs. B-1 h and B-2 h; Appendix B). 

Relationships identified by the map were supported by the correlation analysis for Cooper 

and Small Scott sites (Table 4-7). Results reported that the slope can have an impact on 

picking performance of the harvester. Operational adjustments corresponding with these 

variations can enhance berry picking efficiency of the harvester. Overall, maps of fruit 

yield, berry losses, plant characteristics and slope (Figs. 4-3 and 4-4; Figs. B-1 and B-2; 

Appendix B) showed substantial variation across the selected fields, which was supported 

by lower range of influence and high CVs.  
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4.3.5 Zonal Analysis of Fruit Losses 

The variation in fruit losses with respect to fruit yield, plant height and slope were 

analyzed through zonal analysis using ArcGIS 10 software. Raster categories of data were 

extracted and analyzed statistically to compare the means of fruit losses in different fruit 

yield, plant height and slope zones. Results of zonal analysis suggested that the un-

harvested berries on the plants, berries on the ground and total losses were significantly 

higher in high yielding Zones (Zone 5; Yield > 4000 kg ha-1) for selected sites (Table 4-8; 

Fig. 4-5; Table B-1 and Fig. B-3; Appendix B). Fruit losses followed an increasing trend 

with an increase in fruit yield and observed to be lowest in low yielding areas (Zone 1) of 

selected sites. Results reported that the mean losses through the blower were similar for all 

fruit yield zones, indicating non-significant differences (Table 4-8; Fig. 4-5; Table B-1 and 

Fig. B-3; Appendix B). Variation of loss through the blower suggested that the blower 

losses were not controlled by the fluctuations in fruit yield. Loss through the blower might 

be controlled by the position and specifications of the blower fan installed on the harvester 

conveyer. Also, the clogging of debris in teeth bars and interference with weed patches 

during harvesting might be the other factors controlling the loss through the blower. 

Significant relationships between fruit yield and berry losses within the selected fields 

(Tables 4-6 and 4-7) also supported the results identified by the zonal analysis. 

Variation in fruit losses with respect to plant height was examined using zonal 

analysis for selected sites (Table 4-8; Fig. 4-6; Table B-1 and Fig. B-4; Appendix B). 

Results revealed that the un-harvested berries on the plants, berries on the ground, and total 

losses were observed to be higher for Zone 1 (short plants) and Zone 5 (tall plants) for 

selected sites (Table 4-8; Fig. 4-6; Table B-1 and Fig. B-4; Appendix B). These results 
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suggested inadequate picking performance of the blueberry harvester in short plants and 

very tall plants. Higher fruit losses in short plants within the selected sites might be due to 

the lower fruit zones, resulting in decreased picking efficiency of the commercial harvester. 

Higher fruit losses in short plants were also supported by the significant correlation 

between plant height and fruit zone for selected sites (Tables 4-6 and 4-7).  

  

 
 

 
Fruit Yield (kg/ha) Zones 

 

Zone 1 (2500 - 5000) 

Zone 2 (5001 - 7500 

Zone 3 (7501 - 10000) 

Zone  4 (10001 – 14000) 

Zone 5 (> 14000) 

 

Figure 4-5: Multiple means comparison of fruit losses in relation to different zones of 

fruit yield for Frankweb site. 
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Table 4-8. Multiple means comparison of fruit losses in relation to different zones of 

fruit yield, plant height and slope for Tracadie site. 

 Fruit Yield (Kg ha-1) Zones  

 

Parameters 

Zone 1 

1600 to 4000 

 

Zone  2 

4001 to 

6000 

Zone  3 

6001 to 

8000 

Zone 4 

8001 to 

10000 

Zone  5 

> 10000 

Un-harvested Berries  39.5 a 70.6 b 95.3 c 119.4 d 159 e 

Berries on the Ground  213.1 a 365.6 b 488.6 c 595.3 d 666.2 e 

Loss through Blower  35.6 a 45.8 a 31.4 a 42.8 a 39.4 a 

Total Losses  301.5 a 460.5 b 610.9 c 781.4 d 849.2 e 

 Plant Height (cm) Zones 

 

Parameters 

Zone 1 

19 to 24 

 

Zone  2 

25 to 28 

Zone  3 

29 to 32 

Zone 4 

33 to 36 

Zone  5 

> 36 

Un-harvested Berries  55.6 a 48.6 a 84.6 b 109.3 c 129.42 c 

Berries on the Ground  361.3 b 233.4 a 476.3 c 586.1 d 641.7 e 

Loss through Blower  33.5 a 38.9 a 31.3 a 43.6 a 37.6 a 

Total Losses  430.4 b 310.6 a 490.5 c 645.8 d 790.5 e 

                              Slope (Degrees) Zones 

 

Parameters 

Zone 1 

0 to 0.50° 

 

Zone 2 

0.51 to 1.50° 

Zone 3 

1.51 to 

3.10° 

Zone 4 

3.11 to 4.25° 

Zone 5 

> 4.25° 

Un-harvested Berries  73.6 a 69.3 a 80.4 ab 75.6 a 95.5 b 

Berries on the Ground  493.5 a  506.6 a 545.6 b 601.7 c 615.3 c 

Loss through Blower  35.1 a 32.3 a 39.6 a 41.8 a 33.5 a 

Total Losses  602.3 a 613.4 a 670.9 b 725.6 c 786.3 d 
Means followed by different letters are significantly different at p = 0.05. Fruit losses were recorded in kg ha-1. 

 

Possible reason for higher losses in tall plants could be due to blockage of the 

harvester teeth bars with the excessive vegetation (leaves, shoots, branches), which might 

reduce berry carrying capacity of the harvester. Results suggested that the picking 

performance of the harvester was very good in Zone 3 of plant height, with significantly 

lower fruit losses during mechanical harvesting for selected sites (Table 4-8; Fig. 4-6; 

Table B-1 and Fig. B-4; Appendix B). Lower fruit losses in Zone 3 might be due to the 

optimum fruit zone interference during harvesting, providing the harvester an opportunity 

for effective berry picking and recovery. 



112 

 

 

 
 

 

 
 

 

Plant Height (cm) Zones 

 

Zone 1 (13- 17) 

Zone 2 (18 - 21) 

Zone 3 (22 - 26) 

Zone 4 (27 – 30) 

Zone 5 (> 30) 

 

Figure 4-6: Multiple means comparison of fruit losses in relation to different zones of 

plant height for Frankweb site. 

 

In general, results suggested that the fruit losses during harvesting were influenced 

by the variations in plant height. Loss through the blower were not affected by the variation 

in plant height for selected sites (Table 4-8; Fig. 4-6; Table B-1 and Fig. B-4; Appendix 

B). Correlation analysis between plant height and berry losses (Tables 4-6 and 4-7) also 
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supported these results. Results of zonal analysis in five slope zones suggested that the un-

harvested berries on the plants were non-significantly different for Tracadie and Frankweb 

sites (Table 4-8; Fig. 4-7). However, the un-harvested berries were observed to be higher 

in steep slope (Zone 5) areas and vice versa for the Tracadie and Frankweb sites. Un-

harvested berries on the plants were significantly lower in mild slope areas for Cooper and 

Small Scott sites (Table B-1; Fig. B-5; Appendix B). Lower un-harvested berries were 

observed in steep slope of Cooper site (Fig. B-5; Appendix B), which might be due the low 

coverage of the steep slope areas within this field. Non-significant differences in un-

harvested berries on the plants for Tracadie and Frankweb sites might be due to high 

yielding nature of these sites.  

Exceptionally higher yield might be dominating the slope effect during mechanical 

harvesting. Berries on the ground followed an increasing trend with the steepness of the 

slope and were found to be highest in Zone 5 of the Copper and Small Scott sites (Table 

B-1; Fig. B-5; Appendix B). Significant positive correlations between fruit losses and slope 

sites (Table 4-7) also supported the results identified by the zonal statistics. The pattern of 

variation for berries on the ground were similar for Tracadie and Frankweb sites, except 

non-significant differences for Zones 1 and 2; and Zones 4 and 5 for Tracadie site, and 

Zones 1 and 2 for Frankweb site (Table 4-8; Fig. 4-7). Non-significant difference in various 

slope zones might be due to flat nature of Tracadie site, when compared with other 

monitoring sites. In general, berries on the ground were higher in steep slope areas for 

selected sites (Table 4-8 and Fig. 4-7; Table B-1 and Fig. B-5; Appendix B).   
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Slope (Degrees) Zones 

 

Zone 1 (0 - 3.50) 

Zone 2 (3.51 – 6.10) 

Zone 3 (6.11 – 7.50) 

Zone 4 (7.51 – 12.50) 

Zone 5 (> 12.50) 

 

Figure 4-7: Multiple means comparison of fruit losses in relation to different zones of 

slope for Frankweb site. 

 

Loss through the blower were not seem to have any influence of  slope and were 

found to be non-significantly different in various slope zones within the selected fields 

(Table 4-8 and Fig. 4-7; Table B-1 and Fig. B-5; Appendix B).  Variation for total loss was 

very similar to berries on the ground for Cooper and Small Scott sites (Table B-1; Fig. B-
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5; Appendix B). Total loss were non-significantly different for Zones 1 and 2 for Tracadie 

sites and observed to be highest in Zone 5 (Table 4-8). Total loss were non-significantly 

different for Zones 1 and 2; and Zones 3 and 4 for Frankweb site ( Fig. 4-7) and observed 

to be lowest in Zone 1. Conclusively, the fruit losses during harvesting were influenced by 

the variation in slope during mechanical harvesting. Collectively, the results of classical 

statistics, geostatistical range of influence, correlation matrix, kriged maps and zonal 

analysis revealed that the crop characteristics, fruit yield, slope and fruit losses were 

spatially variable with selected sites. Adjustments in the machine operating parameters by 

keeping in view these spatial variations can enhance picking performance of the blueberry 

harvester, and increase profit margins for wild blueberry industry with no additional cost. 

4.4 CONCLUSIONS 

Results of CVs, semivariogram parameters, interpolated maps, correlation matrix 

and zonal analysis confirmed the existence of large spatial variability in fruit yield, plant 

parameters and topographic features. Results revealed the dependence of fruit losses on 

fruit yield, plant height, fruit zone and slope within the selected sites. In general, fruit losses 

increased with an increase in fruit yield and slope during mechanical harvesting. Zonal 

analysis suggested that the picking performance of the blueberry harvester was inadequate 

in short and very tall plants. Operational adjustments in the blueberry harvester in 

accordance with spatial variations can enhance berry picking efficiency. Farooque et al. 

(2014) reported that a combination of ground speed (1.20 km hr-1) and header revolutions 

(26rpm) can improve berry recovery in high yielding fields (> 3,500 kg ha-1). Variability 

in fruit losses corresponding with spatial variations in crop characteristics, fruit yield and 

slope suggested that these parameters had a significant effect on fruit losses during 
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harvesting. Additionally, these results can be used to implement site-specific management 

practices in blueberry fields.  

Chapter 4 confirmed the existence of large spatial variability in fruit yield, plant 

parameters and topographic features within the selected wild blueberry fields. Results of 

geo-statistical analysis, mapping in GIS and zonal analysis suggested that the fruit losses 

during harvesting were significantly influenced by the spatial variations in fruit yield, crop 

characteristics and slope of the ground. Mechanical harvesting of blueberry fields by 

ignoring these spatial variations can increase fruit losses during harvesting. Influence of 

spatial variations on picking performance of the harvester emphasized the need to model 

these spatial relationships mathematically to propose optimal operational settings (ground 

speed, head rpm, head height, etc.) to improve berry picking efficiency. Chapter 5 

concentrated on development of mathematical models to study these spatial relationships 

using ANN and MR techniques. 
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CHAPTER 5   DEVELOP A PREDICTIVE MODEL FOR WILD 

BLUEBERRY FRUIT LOSSES DURING HARVESTING USING ARTIFICIAL 

NEURAL NETWORK 

The wild blueberries are one of the most important fruit crops of Canada, producing 

more than 50% of the world’s production. Understanding and predicting the relationships 

between the machine operating parameters, fruit losses, topographic features and crop 

characteristics can aid in better berry recovery during mechanical harvesting. This research 

suggested a modeling approach for prediction of fruit losses during harvesting using 

artificial neural network (ANN) and multiple regression (MR) techniques. Four wild 

blueberry sites were selected and completely randomized factorial (3 x 3) experiments were 

conducted at each site. One hundred sixty two plots (0.91 x 3 m) were made at each site, 

in the path of operating harvester. Total fruit yield and losses were collected from each plot 

within the selected sites. The harvester was operated at specific levels of ground speed 

(1.20, 1.60 and 2.00 km h-1) and head rotational speed (26, 28 and 30 rpm). The slope, plant 

height and fruit zone were also recorded from each plot.  

The collected data were normalized and 70% of the data were utilized for training, 

and 30% for validation of developed models using ANN and MR techniques. Results of 

root mean square error (RMSE) suggested that the tanh-sigmoid transfer function between 

the hidden layer and output layer was the best fit for this study. The developed models were 

validated internally and externally and the best performing configuration was identified 

based on RMSE, coefficient of efficiency, percent variation and coefficient of 

determination. Results of scatter plot among the RMSE and epoch suggested that an epoch 

size (iterative steps) of 15000 was appropriate to predict fruit losses using ANN approach. 
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Results revealed that the prediction accuracy of MR model was lower (R2 = 0.46; RMSE = 

0.14) than the ANN model (R2 = 0.84; RMSE = 0.075) for training dataset. Results reported 

that the ANN model predicted fruit losses with higher (R2 = 0.63; RMSE = 0.11) accuracy 

when compared with MR model (R2 = 0.37; RMSE = 0.15) for external validation dataset. 

Overall, the results of this study suggested that the ANN model was able to predict fruit 

losses during harvesting accurately and reliably. These results can help to identify the 

factors responsible for fruit losses and to suggest optimal harvesting scenarios to improve 

harvesting efficiency. 

The work presented in this chapter has been submitted in Applied Engineering in 

Agriculture Journal, entitled “Development of a predictive model for wild blueberry 

harvester fruit losses during harvesting using artificial neural network”. 

5.1 INTRODUCTION 

Fruit losses during harvesting are consequence of complex interactions between 

mechanical parameters, crop characteristics, weather conditions, soil structure, operator 

skills and field topography (Adams et al., 1998; Bryant et al., 2000; Farooque et al., 2013; 

Salter et al., 1980). Owing to the dynamicity of these relationships, determination of ideal 

harvesting conditions to optimize yield and quality has always remained a challenge (Fritz 

and Weichmann, 1979). Inherently, the nature of the harvesting processes that govern the 

picking efficiency are complicated and non-linear, therefore, traditional single factor 

modeling techniques often lack the ability to model such complex systems (Chen et al., 

2001). Modeling network of relationships requires an approach that is robust, scalable and 

flexible with a choice of various learning algorithms. In the case where inputs and outputs 

are intrinsically variable, a system that is intended to be predictive is more appropriate 
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(McCarthy et al., 2001; Reidsma et al., 2009). Therefore, a system which can ‘learn’ from 

successive field trials is ideal because it will certainly become more reliable through time 

and will be able to adapt to unforeseen changes in the data (Huang and Foo, 2002). The 

data-driven modeling which is very different from physically based approach, despite its 

similar purpose of connecting one set of data (output) with another corresponding set 

(input) to find relationships after proper training and validations.  

Artificial neural networks (ANN) can effectively be used in scenarios where 

functional relationships are non-linear or unknown (Park et al., 2005). The ANN has been 

recognized as a powerful tool capable of performing better than statistical models, 

particularly for the case of non-linear and multiple processing systems (Alvarez, 2009; 

Huang and Foo, 2002). The architecture of ANN is designed based on the structure of 

human brain which learns the relationship between input and output variables and develops 

a hidden layer “black-box” understanding in terms of a complex series of associated 

weights (Setiono et al., 2000). Topology and structure of ANN model can be extremely 

complex or simple depending upon problem under study. The ANN model consists of a 

large number of simple processing elements called nodes. Each node is connected to the 

other nodes by means of direct communication links and an associated weight function. 

The nodes are arranged into: input layers (observations), hidden layer(s) (intermediate 

nodes) and output layers (conclusions).  

The back-propagation (BP) multi-layer ANN is the most common and convenient 

(McCulloch and Pitts, 1943) for model development, training and predictions. The transfer 

and association of data between the layers are determined by transfer function and learning 

algorithms. The common transfer function used between the hidden layer and output layer 
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is the sigmoid function, whereas linear function is applied to transfer data from the input 

layer to the hidden layer (Kaul et al., 2005). Based on the differences between actual and 

predicted values, the weight values between the variables are adjusted during each epoch 

based on the delta rule to compensate the errors. Error minimization process is achieved 

by using the gradient descent method (Bishop, 1994; Hornik et al., 1989). The ANN is not 

new technique, but research applications have increased significantly in past twenty years 

due to its generic nature, precise prediction capabilities and adaptability. 

 Application of ANN modelling requires an understanding of best procedures for 

training the network. Types of networks available and training algorithms are constantly 

evolving for better predictions (Haykin, 1999). Neural network modeling of a system 

requires selection of an appropriate network type, a training algorithm, a suitable training 

period, a best network structure and effective pre- and post-processing of data (Bishop, 

1995). The ANN may be described as a network of interconnected nodes. The optimum 

number of nodes in the hidden layer can be determined by pruning out extraneous hidden 

nodes from a complex network during the training process. Shamseldin (1997) suggested 

that the best way to determine number of nodes in a hidden layer is trial and error. Training 

of ANN model is accomplished by presenting the network with a training data. Depending 

on the complexity of the problem, it may be necessary to train the network repeatedly until 

the underlying function is ‘learned’. The over familiarization of ANN model with training 

data can lose its ability to generalize the problems, which it is going to encounter. Over 

training of network can be avoided by including regularization theory, which tries to 

smooth network predictions (Bishop, 1995) and cross validation via an independent dataset 

(Braddock et al., 1998). 
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 The ANN model deals with both linear and non- linear concepts in a model architecture 

and can be used in dynamic input/output system (Tokar and Markus, 2000). The ANN has 

major advantages over traditional models, i.e. it does not require a prior knowledge of the 

system, it has more tolerance to incomplete data and noise levels, and it can minimize the 

effect of outlier. The ANN has been extensively used for exploring diverse areas such as 

bio-medical, engineering, image processing, water resources and others (Rumelhart et al., 

1994; Shamseldin et al., 1997). It can be applied to solve many problems faster and with 

better accuracy than conventional techniques, even without human intervention. The ANN 

models complex tasks easily and simply, and requires very little theoretical knowledge of 

ANN users. The ANN can perform approximation, optimization, classification, prediction, 

generalization, relation, abstraction and adaptions of the complex systems under study 

(Hopfield and Tank, 1985; Kung et al., 1991). 

The ANN have several applications such as, yield predictions (Alvarez, 2009), 

disease estimation (Batchelor et al., 1997), forecasting growth stages (Clapham and 

Fedders, 2004), agrochemicals assessment (Yang et al., 1997), flood forecasting (Wright 

and Dastorani, 2001), rainfall-runoff predictions (Sobri et al., 2002), stream flow 

estimations (Wright et al., 2002) and water level prediction (Patrick et al., 2002; Huang et 

al., 2003). Amini et al. (2005) predicted the cation exchange capacity of soil using ANN 

approach in comparison with multiple regression (MR) techniques. Chen et al. (2001) used 

the ANN model for prediction of quality changes during osmo-convective drying of the 

highbush blueberries for process optimization. Maftoonazad et al. (2008) predicted quality 

changes in coated and non-coated avocados during storage at different temperature using 

ANN models and hyper-spectral images.  
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Alvarez (2009) predicted wheat yields using ANN model suggesting that the ANN 

estimates were significantly closer to the actual values when compared with MR model. 

Huang and Foo (2002) assessed salinity variation responding to the multiple forcing 

functions of freshwater input, tide and wind using the ANN approach. Guo and Xue (2014) 

used ANN and suggested that it can produce highly satisfactory forecasting of wheat yield, 

when compared with other statistical tools. Shearer et al. (1999) incorporated fertility, 

elevation, electrical conductivity and satellite image features to develop BP-ANN for 

prediction of spatial variability in corn yield. The authors reported that the BP-ANN model 

showed promise in predicting spatial yield variability. Braga (2000) accurately predicted 

spatial patterns of corn yield in relation to agronomic variables, topographic features and 

seasonal variability using a BP-ANN model. Liu et al. (2001) suggested that the corn yield 

can be predicted using a BP-ANN with 80% accuracy. Sarangi and Bhattacharya (2005) 

reported the superiority of ANN over MR models in predicting sediment erosion.  

Warner and Misra (1996) suggested learning algorithms for effective predictions 

and compared ANN and MR models in terms of accuracy and applications. Kaastra and 

Boyd (1996) used ANN for modeling financial and economic time series. Dewolf and 

Francl (1997) demonstrated the applicability of ANN for crop diseases predictions. Zhang 

et al. (1998) compared the relative performance of ANN with MR methods, suggesting that 

the ANN estimates were very close to the actual values. These authors indicated that the 

ANN had advantage over the MR models, owing its ability to handle multiple predictors 

exhibiting non-linear relationships. No work has been reported regarding the application 

of ANN for fruit losses prediction in wild blueberry cropping system. 
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Wild blueberry growers are facing increased harvesting losses with their existing 

harvesters due to changes in crop conditions (healthy and tall plants, high plant density, 

tall weeds and significant increase in fruit yield) caused by improved management 

practices (herbicides, fertilizers, pesticides, pollination, etc.) emphasizing the need to study 

the harvesting dynamics and to identify the sources responsible for losses. Therefore, there 

is an urgent need to develop a predictive model by employing ANN and MR techniques 

for quantification of fruit losses as a function of machine parameters, crop characteristics 

and slope of the field, and to evaluate the potential and efficiency of ANN and MR models 

against independent dataset. This practice will enable the industry to predict optimal 

harvesting scenarios to increase berry recovery and quality.  

5.2 MATERIALS AND METHODS 

5.2.1 Study Area 

Four wild blueberry fields were selected in Atlantic Canada to model the fruit losses 

as a function of several input variables. The selected fields were the Cooper site 

(45.480573°N, 63.573471°W; 3.2 ha), Small Scott site (45.600641°N, 63.086512°W; 1.9 

ha), Tracadie site (47.2824117°N, 65.1440212°W; 1.6 ha) and Frankweb site 

(45.404733°N, 63.669376°W; 2.57 ha). The Cooper and Small Scott sites were in sprout 

year of the biennial crop production cycle in 2010 and crop year in 2011, while the Tracadie 

and Frankweb sites were in vegetative year in 2011 and crop year in 2012. The selected 

sites were harvested using the commercial blueberry harvester at variable time span (early 

August to early September) each year to simulate early and late season harvesting. The 

selected fields had been under commercial management over the past decade and received 

biennial pruning by mowing for the past several years along with conventional 
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management practices. The geographic location of the selected fields is presented in Figure 

4-1; Chapter 4. 

5.2.2 Experiment Design and Data Collection 

A single head blueberry harvester was mounted on a 62.5 kW John Deere tractor. 

One hundred and sixty two plots (0.91 × 3 meters, same width as harvester head) were 

made randomly using a measuring tape in the path of the operating harvester at each site. 

A buffer of 0.30 m was constructed around each plot to avoid errors during data collection. 

Traditionally, the wild blueberry harvester has been operated at a ground speed of 1.6 km 

h-1 and 28 rpm. The experiments were designed as 3 × 3 factorial design with the selected 

levels of ground speed (1.20, 1.6 and 2.0 km h-1) and head revolutions per minute (26, 28 

and 30 rpm) to harvest the plots within the selected sites. All treatment combinations were 

assigned randomly with eighteen replications at each experimental site. Factorial designs 

are used to study the joint effect of the factors on response variables.  

The harvester head was raised to expel all the previously harvested fruit in the 

storage bin and moved back (approximately, 25 m) to attain the selected level of ground 

speed and header rpm, prior to harvest of the experimental plots. Two flags were punched 

into the ground to indicate the starting and ending point of each plot. The harvester head 

was lowered at the chosen treatment combination to harvest the plot and raised at the end 

of each plot. Fruit yield was collected from each plot by attaching a bucket to the harvester 

conveyer belt (Fig. 5-1 a). Three types of losses were collected from the harvested plot, i.e. 

un-harvested berries on the plant, berries on the ground and losses through the blower. 

Fruit loss via blower was collected by attaching a bucket under the blower fan (Fig. 5-1 a). 
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Berries on the ground and un-harvested berries on the plants were manually picked from 

each plot (Fig. 5-1 b).  

The collected berries were separated from leaves and debris, and placed in labeled 

Ziploc bags to record the actual weight of fruit yield and losses in kilograms (kg). Total 

losses (berries on the ground + un-harvested berries on the plants + loss through the blower) 

were calculated in percentage (%) based on the fruit yield collected from each plot. Five 

plant height and fruit zone readings were recorded using a ruler to get an average within 

the selected plots. Fruit zone represent the starting and ending points of the fruit clusters 

on the wild blueberry plants. Fruit zone helps an operator to adjust the head height from 

the ground surface for effective berry picking during mechanical harvesting. The slope 

angle was measured manually using a Craftsman SmartTool Plus digital level. Five slope 

measurements were made within a radius of one meter and averaged to obtain the 

representative slope in each plot for selected sites. 

 
                     (a)                                                                               (b) 

Figure 5-1: (a) Manual collection of fruit losses through the blower and total fruit yield 

and (b) Collection of fruit losses on the ground and un-harvested berries on the plants from 

the harvested plot. 

The purpose of collecting fruit yield, crop characteristic, machine parameters and 

slope of the ground in each plot was to model the relationships using ANN and MR 
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techniques. Development of any mathematical model requires a minimum of two datasets; 

first one for development (training and internal validation) and the latter for external 

validation. Data collected from selected sites were pooled and mixed thoroughly prior to 

construct ANN and MR models. The 70% of data were utilized for training (n = 489), and 

30% (n = 189) for validation (Mutangaa et al. 2015; Lee, 2014). A subset of training dataset 

(15%; n = 81) were utilized for internal validation of developed models. The data points 

that were outside the range of input variables were removed from validation data to avoid 

the extrapolation error. Nevertheless, the validation data comprised of all variability in fruit 

yields, plant height, fruit zone, fruit losses and slope. This practice allowed the evaluation 

of the generic ability of the models to predict fruit losses during harvesting. 

5.2.3 Input and Output Variables 

The variability in the training and validation datasets was examined through the 

summary statistics (minimum, maximum, mean, standard deviation and coefficient of 

variation). Correlation analysis was performed among the fruit yield, fruit losses, slope and 

crop parameters using Minitab 16 (Minitab Inc. NY, USA) software to identify the 

potential factors affecting the fruit losses during harvesting. Selection of ground speed and 

header rpm as input variables was examined via factorial analysis of variance (ANOVA) 

using fruit losses as response variable in SAS 9.3 (SAS Institute Inc., NC, USA) statistical 

software. Fruit losses (%) were considered as output variable for model development. The 

ground speed, header rpm, plant height, fruit zone and slope were the input variables for 

model development, training and validations. In order to enhance the performance of ANN 

models, the input data were normalized, and hence outputs obtained were also normalized 

quantities. The following relationship (Eq. 5-1) was used for the normalization of data. 
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where iu is the normalized value of input, iR  is the actual value of input, Mini is the 

minimum value of input and iMax  is the maximum value of input. 

5.2.4 Multiple Regression Model 

Multiple regressions predict a dependent variable (fruit losses) based on multiple 

input variables (crop characteristics, slope and machine operating parameters). A typical 

MR model can be presented in equation 5-2. Regression coefficients of the predictors were 

determined using the least-square method. 

𝑦 =  𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2 … … … … … … 𝛽𝑛𝑥𝑛 + ε                             (5-2) 

where 𝛽0 is intercept, 𝛽i is regression coefficients, xi are the input variables and ε is the 

error term. i = 1, 2, 3, 4………..n 

The validity of model assumptions (normal distribution and constant variance of 

the error terms) was tested by examining the residuals at 5% level of significance. 

Independence of error terms was assumed to be valid through the randomization of 

treatment combinations. Non-normal data were normalized using logarithmic 

transformations and were back transformed to original scale for reporting results. Minitab 

16 statistical software was employed to construct the MR model. The best MR model was 

selected on the basis of highest coefficient of determination (R2), percent variation (%E), 

coefficient of efficiency (CE) and RMSE. The MR is one of the most commonly used 

empirical methods to develop model for different cropping systems (Shibayama and 

Akiyama, 1991). However, in some cases, the model tends to over-fit data thus reducing  

(5-1) 
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its applicability to unseen changes in data.  

5.2.5 Artificial Neural Network Model 

Commercial software, Peltarion Synapse (Peltarion Systems®, Netherlands) was 

utilized to develop ANN model for prediction of fruit losses during harvesting. This 

software allows the user to define the architecture of the network, offers a variety of 

training algorithms, transfer functions and ability to articulate the critical network 

parameters such as, learning rate, momentum rule and epoch size (iterative steps). The 

same array of input variables selected by the correlation analysis and factorial ANOVA 

were used for model development. Moreover, the use of same set of input variables 

between MR and ANN approaches allowed us a fair comparison.  

A back-propagated artificial neural network (BP-ANN), multiple layers supervised 

learning system with a mathematical function and Levenberg-Marquard learning algorithm 

was used for model development. Difference between BP-ANN and other ANN algorithms 

is the way in which weights are adjusted for accurate predictions (Eq. 5-3). This equation 

explains how the input nodes are converted into output (H) using a transfer function. This 

mechanism is repeated for all preceding nodes in a network till the final layer is achieved. 

Training of architecture involves a mechanism of providing the network with the desired 

output with efficient network performance. Network will estimate the output value from 

the inputs, compares the model predicted output to the target value, and then adjusts the 

weights in order to reduce errors between the network output and the target values. The 

network training is achieved if the error is below a given value. Error minimisation process 

is achieved by using the gradient descent method (Bishop, 1994; Hornik et al., 1989). 

𝐻 =  𝐼1𝑊1+ 𝐼2𝑊2+ 𝐼3𝑊3+……………………..𝐼𝑛𝑊𝑛                        (5-3) 
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where I are the inputs, W is weight function and H is the output. 

n = 1, 2, 3……………….n 

The size of the input layer neurons corresponded to the number of input parameters 

with one hidden layer is considered enough to model the majority of continuous non-linear 

function. More hidden layers may cause over and under fitting of the network (Torrecilla 

et al., 2004). In summary, the neural network performs a non-linear transformation on the 

input variables (X) to achieve an output (Y). This phenomenon is explained in equation      

5-4.  

  {Y} = f ({X})                       (5-4) 

where Y is output, f is non-linear function and X are input variables. 

Seven architectures were developed (Fig.5-2) and tested to find a suitable 

mathematical function to process the data for prediction of fruit losses during harvesting. 

The software allowed the definition of the mathematical function, learning rate and 

momentum rule to articulate the performance of developed networks. Five mathematical 

functions (tanh sigmoid, linear, exponential, morlet and logistic sigmoid) were tested. 

Many simulations of the developed networks were performed to optimize the performance 

of developed networks. All networks were run at an epoch of 10000. The best mathematical 

function was selected based on the minimum RMSE by comparing the actual and predicted 

values.  

After determination of a mathematical function, all the developed architectures 

were tested and evaluated to configure the optimal settings of network (weight layers, 

function layers, nodes per hidden layer, epoch, etc.) for prediction of fruit losses. All 

networks were operated at an epoch of 25,000, Levenberg-Marquard learning algorithm, 
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learning rate of 0.1 and momentum rule of 0.7 in order to have a fair comparison of the 

prediction accuracy of developed networks. In order to determine the optimal epoch size, 

the best selected ANN model was operated at different epoch values at an interval of 1000 

and the values of RMSE were recorded at each interval. The epoch values were plotted 

against RMSE to find the optimum epoch for network to perform efficiently. Epoch size 

has been demonstrated to have a major influence on the error terms (Madadlou et al., 2009).  

The general concept of ANN model is shown in Figure 5-3.  

 
                         (a) 

 
                         (b) 

 
                                      (c) 

 

 
                               (d) 
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                               (e) 

                                                   
 

                            (f) 

 
(g) 

 

Figure 5-2: Developed networks using tanh sigmoid function at an epoch size of 25,000, 

(a) 1 W (6/6) and 1 F (6/6) layers, (b) 1 W (6/6) and 1 F (6/3) layers, (c) 2 W (6/6) and 2 F 

(6/6) layers, (d) 2 W (6/6 and 6/3) and 2 F (6/6 and 3/3) layers, (e) 2 W (6/12 and 12/6) and 

2 F (6/6 and 12/12) layers, (f) 2 W (6/12 and 12/3) and 2 F (12/6 and 3/3) layers and (g) 2 

W (6/8 and 8/6) and 2 F (8/8 and 6/6). 

 

Once the network had been structured and trained, the performance of developed 

model was tested by employing internal and external validations. The internal validation 

was performed by selecting a subset of training dataset, while the external validations were 

performed using an independent dataset. In order to perform validations, the trained model 
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was extracted using the deployment postprocessor of the Peltarion Synapse software to 

make a separate and stand-alone WorkArea0.dll (.NET dynamic linking library). A DOS 

prompt based C# (Microsoft, Redmond, Wash.) program was developed to predict and 

validate external data by using WorkArea0.dll and save processed result as a comma 

separated value (CSV) file. The performance of developed model for internal and external 

validations was tested and evaluated in terms of R2, RMSE, %E and CE. The ANN 

predictions were plotted against MR estimates to examine the prediction accuracy of both 

techniques. The operational protocol of developed BP-ANN model is presented in Figure 

5-4. 

 

  

 

Figure 5-3: The architecture of a multilayer artificial neural network model. 
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Figure 5-4: Flowchart showing the training protocol of a back propagated artificial neural 

network model. 
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5.3.1 Variability in the Collected Data 

The validity of the model assumptions (normal distribution and constant variance 

of the error terms) was tested by examining the residuals at 5% level of significance. 

Independence of error terms was assumed to be valid through randomization of treatment 

combinations. The coefficient of variation (CV) is a first indication of field variability and 

according to Wilding (1985), the selected parameters are least variable if the CV < 15%, 

moderate with CV ranging from 15 to 35% and most with CV > 35%. Results of summary 

statistics suggested that fruit yield, total losses and slope were highly variable with the CV 

> 35%, while the plant height and fruit zone were moderately variable for both training and 

validation datasets (Table 5-1).  

Table 5-1. Summary statistics of training and validation datasets. 

Training Dataset 

Parameters Min Max Mean S.D C.V (%) Skewness 

Speed (km hr-1) 1.2 2.0 1.6 0.20 20.43 -0.0 

Revolution (rpm) 26.0 30.0 28.0 1.64 5.84 0.0 

Fruit Yield (kg ha-1) 253 17968.0 4993.0 2950 59.08 0.93 

Total Losses (kg ha-1) 5.1 2616.0 709.30 569.6 80.30 0.16 

Total Losses (%) 0.99 31.0 14.20 5.80 43.42 0.30 

 Plant Height (cm) 10.6 39.2 23.99 4.25 17.75 0.19 

Fruit Zone (cm) 7.40 34.83 19.80 4.20 21.21 0.09 

Slope (degrees) 0 23.66 6.30 4.60 72.95 1.28 

Validation Dataset 

Parameters Min Max Mean S.D C.V (%) Skewness 

Speed (Km hr-1) 1.2 2.0 1.60 0.20 20.43 -0.0 

Revolution (rpm) 26.0 30.0 28.0 1.64 5.84 0.0 

Fruit Yield (kg ha-1) 505 15383.0 5341.0 2701.0 50.57 0.59 

Total Losses (kg ha-1) 80.7 2587.5 813.9 590.0 72.49 0.88 

Total Losses (%) 2.94 31.04 15.23 5.89 41.16 0.37 

 Plant Height (cm) 12.7 32.99 23.57 3.71 15.73 -0.01 

Fruit Zone (cm) 10.6 29.03 19.66 3.83 19.50 -0.09 

Slope (degrees) 0.77 17.44 5.85 4.22 72.07 1.21 
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The variability in the crop characteristics, fruit yield and total losses could be due 

to the intrinsic and extrinsic factors. Intrinsic variability is due to natural variations in soil 

and extrinsic variability can be caused by the harvester operation, operator skills, field 

topography, time of harvest, environmental aspects (rain, humidity, degree days, 

temperature, etc.) and crop management practices. These results also probably reflect the 

influence of temporal dynamics on the measured parameters due to harvesting at different 

times during the study period. The validation dataset experienced all kind of variability 

exhibited in the training dataset suggesting the fitness of the data for external validation. 

5.3.2 Selection of Inputs 

Correlation matrix was developed for both training and validation datasets in order 

to identify the significant parameters affecting picking efficiency of the harvester. 

Correlation matrix revealed significant relationships among the total losses, fruit yield, 

slope, plant height and fruit zone for both datasets (Table 5-2). Results indicated that the 

plant height, fruit zone, slope and fruit yield were responsible for the fluctuating fruit losses 

during harvesting. Significant positive correlation of total losses with the slope (r = 0.21) 

for training (r = 0.22) and validation dataset suggested that the total losses increased with 

the steepness of the slope (Table 5-2), revealing that the topography of the ground seems 

to have an impact on the fruit losses during harvesting. Topography of the field was 

addressed as one of the challenges during development process of the commercial wild 

blueberry harvester (Yarborough, 1992; Hall et al., 1983). Significant positive correlation 

of total losses with fruit yield for training (r = 0.86) and validation (r = 0.85) datasets 

suggested a linear trend indicating an increase in fruit losses with an increase in fruit yield. 
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Relationships indicated that the fruit yield, plant height, slope and fruit zone will serve as 

inputs for the model development and predictions. 

Table 5-2. Correlation matrix between fruit yield, berry losses, plant height, fruit zone 

and slope for training and validation datasets. 

Training Data  

 Fruit 

Yield 

(kg ha-1)  

Total 

Losses 

(kg ha-1) 

Plant 

Height 

(cm) 

Fruit Zone 

(cm) 

Slope 

(degrees) 

Total Losses  0.86***     

 Plant Height  -0.29* -0.28**    

Fruit Zone  -0.12 NS -0.23** 0.62***   

Slope  -0.10 NS 0.21* -0.23** -0.31**  

Validation Data 

 Fruit 

Yield 

(kg ha-1)   

Total 

Losses 

(kg ha-1) 

Plant 

Height 

(cm) 

Fruit Zone 

(cm) 

Slope 

(degrees) 

Total Losses  0.85***     

 Plant Height  -0.21** -0.26**    

Fruit Zone  -0.29 ** -0.28** 0.80***   

Slope  -0.09 NS 0.22* -0.15 NS -0.20 *  

Significance of correlations indicated by *, ** and ***, are equivalent to p = 0.05, p = 0.01 and p = 

0.001.Where NS, non-significant at p = 0.05. 

 

The fitness of ground speed and head revolutions as input for model development 

was examined through factorial ANOVA (Table 5-3). Results of ANOVA suggested that 

the main effects of ground speed and header rpm on total losses were non-significant for 

both training and validation datasets (Table 5-3).  Interaction effects were significant for 

total losses (% and kg ha-1) (Table 5-3). In factorial experiments, when higher order 

interactions are significant, their main effects can be ignored. In summary, results reported 

that fruit losses were influenced by the ground speed and header rpm either alone or in 

combination suggesting that a suitable combination could result in reduced fruit losses 

during mechanical harvesting. Farooque et al. (2014) also suggested that the picking 
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efficiency of the harvester is influenced by different levels of ground speed and header 

revolutions. Collectively, the results of correlation matrix  and factorial ANOVA suggested 

that fruit yield, plant height, fruit zone, slope, selected levels of ground speed and header 

rpm can be used as input variables to model the fruit losses (output) during harvesting. 

Results of correlation analysis using Peltarion Synapse software were in agreement with 

the results of Minitab 16 statistical software. 

Table 5-3. Factorial analysis of variance using factorial design for training and validation 

datasets. 

 

Source 

Training Dataset Validation Dataset 

Total Losses 

(kg ha-1) 

Total Losses 

 (%) 

Total Losses 

(kg ha-1) 

Total Losses 

 (%) 

Speed NS NS NS NS 

Revolution NS NS NS NS 

Speed*Revolutions * * * * 

Significance indicated by * and NS = non-significant at p = 0.05. 

5.3.3 Determination of a Mathematical Function 

The normalized training dataset according to equation (1) was imported into the 

Peltarion Synapse software and the input and output variables were defined using software 

interface. Seven architectures were developed and tested to find a suitable mathematical 

function for data processing (Table 5-4; Fig. 5-2). The software allowed us to define the 

mathematical function in order to examine the prediction performance of developed 

models. All the settings of the developed models were kept constant, the mathematical 

functions were changed and RMSE were recorded (Table 5-4). Results showed that the 

morlet function resulted in a higher RMSE when compared with other functions            

(Table 5-4) to predict fruit losses. The exponential function resulted in an infinity error for 
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two of the model settings suggesting its non-suitability to process the data. Results 

indicated that the tanh sigmoid function was able to process the data with a reasonably low 

RMSE (0.089 to 0.16) when compared with other functions for all networks (Table 5-4). 

Based on the results of RMSE, the tanh sigmoid was chosen as the best function for further 

processing. 

Table 5-4. Tested mathematical functions to process the normalized data at an epoch size 

(iterative steps) of 10,000. 

 

 

Sr. 

No 

 

 

Model Structure 

Mathematical Functions 

Tanh 

Sigmoid 

Exponential Linear Logistic 

Sigmoid 

Morlet 

RMSE RMSE RMSE RMSE RMSE 

1 1 W (6/6) and 1 F (6/6) layers 

6 inputs to 1 output 

0.13  0.14  0.16  0.16 0.19  

2 1 W (6/6) and 1 F (6/6) layers 

3 inputs to 1 output 

0.15  0.14  0.17  0.27 0.19  

3 2 W (6/6) and 2 F (6/6) layers 

6 inputs to 1 output 

0.13  ∞  0.16  0.14 0.18  

4 2 W (6/6 and 6/3) and 2 F (6/6 

and 3/3) 3 inputs to 1 output 

0.12  0.14  0.15  0.15 0.19  

5 2 W (6/12 and 12/6) and 2 F 

(6/6 and 12/12) layers 

6 inputs to 1 output 

0.089  0.17  0.16  0.16 0.20  

6 2 W (6/12 and 12/6) and 2 F 

(12/6 and 3/3)  

3 inputs to 1 output 

0.15  0.18  0.16  0.16 0.20  

7 2 W (6/8 and 8/6) and 2 F (8/8 

and 6/6) 6 inputs to 1 output 

0.16  ∞  0.17  0.16 0.21  

Where W = Weight layer; F = Function layer and ∞ = Infinity 

5.3.4 Developing the Optimal Artificial Neural Network Configurations 

After determination of a mathematical function, all models were tested and 

evaluated to configure the optimal settings of network for prediction of fruit losses. The 

developed networks are shown in Table 5-5 and Figure 5-2. All networks were operated at 

an epoch of 25,000 with tanh sigmoid mathematical function in order to compare the 
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prediction accuracy. Results suggested that the architecture 5 (2 W and 2 F layers) was able 

to predict better than the other networks with significantly higher R2 (0.835), lower %E 

(2.064) and RMSE (0.075), and higher CE (0.801) suggesting the suitability of network in 

predicting fruit losses (Table 5-5). Results indicated that the model structure 1, 2 and 4 

resulted in lower R2, higher % E and RMSE, and lower CE suggesting poor performance 

of these networks in predicting fruit losses (Table 5-5). The variability in performance 

might be due to the differences in the architecture settings of the developed networks. 

Results revealed that the actual losses were very close to the predicted losses in all cases, 

but the %E, RMSE and CE were not promising except model structure 5 (Table 5-5). 

Results emphasized the need to verify the accuracy of selected model using internal and 

external validations prior to make any recommendations about prediction accuracy. 

Table 5-5. Developed networks using tanh sigmoid function at an epoch size of 25,000.  

Sr.  

No 

Model Structure Actual 

Losses 

Predicted 

Losses 

R2 %E RMSE CE 

1 1 W (6/6) and 1 F (6/6) layers 0.401 0.399 0.452 8.281 0.140 -0.209 

2 1 W (6/6) and 1 F (6/6) layers 0.401 0.398 0.374 11.293 0.151 -0.683 

3 2 W (6/6) and 2 F (6/6) layers 0.401 0.400 0.654 5.806 0.111 0.470 

4 2 W (6/6 and 6/3) and 2 F 

(6/6 and 3/3)  

0.401 0.399 0.551 6.740 0.127 0.188 

5 2 W (6/12 and 12/6) and 2 F 

(6/6 and 12/12) layers 

0.401 0.393 0.835 2.064 0.075 0.801 

6 2 W (6/12 and 12/3) and 2 F 

(12/6 and 3/3)  

0.401 0.408 0.684 4.607 0.107 0.524 

7 2 W (6/8 and 8/6) and 2 F 

(8/8 and 6/6)  

0.401 0.405 0.696 4.569 0.105 0.552 

Where W = Weight layer; F = Function layer; %E = Percentage variation; RMSE = Root mean square error; 

and CE = Coefficient of efficiency. 
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The RMSE were plotted against epoch to find the optimum number of epochs 

(iterative steps) for the best network to perform efficiently (Fig. 5-5). Results reported that 

an epoch of 15,000 was enough for the network to perform predictions efficiently, as there 

was no improvement in error even if the network was trained at 25,000 epochs. Therefore, 

a value of 15,000 epoch was used for further processing. The proposed settings of the 

developed BP-ANN network are given in Table 5-6. The architecture of the proposed 

model is shown in Figure 5-6. 

 

Figure 5-5: Relationship between root mean square errors versus epoch. 

Table 5-6. Proposed settings of a back propagated artificial neural network model. 

Parameters Settings 

Training pattern 70% 

Optimum Epoch 15000 

Verification pattern 15% 

Number of hidden layers 2 

Nodes per hidden layer 18 

Learning rate 0.10 

Momentum 0.70 

Mathematical Function Tanh Sigmoid 

External validation Independent data set 

(30%) 
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Figure 5-6: Optimal configurations of proposed back propagated artificial neural network 

model. 

 

5.3.5 Multiple Regression and Artificial Neural Network Models 

The prediction performance of MR model was examined using the same criterion 

as ANN model during development and validation processes (Table 5-7). The MR model 

with fruit losses (%) as response variable and the ground speed, head revolutions, fruit 

yield, slope and crop parameters as predictor variables was developed (Eq. 5-5). 

Total Losses (%) = 0.137 + 0.0325 Ground Speed + 0.0435 Revolutions + 0.304 Fruit 

Yield + 0.201 Plant Height - 0.146 Fruit Zone + 0.424 Slope                       (5-5) 

 

The MR model exhibited higher R2 for training (P < 0.001; R2 = 0.461) and internal 

validation (P < 0.001; R2 = 0.594) when compared with the external validation (P < 0.001; 

R2 = 0.372) datasets. The MR model suggested that the predictor variables contributed 

about 46 to 59% variability in fruit losses for training and internal validation datasets 

(Table 5-7). There are a variety of factors other than the selected input variables 
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contributing to fruit losses variability, which have not been addressed. Operator skills, 

weather fluctuations, winter kill, disease and insect damage, weed coverage, time of 

harvesting, lodging of crop, pollination, maintenance of the harvester and many 

uncontrollable factors can also affect fruit losses during harvesting. The MR model 

experienced poor performance under validation dataset (Table 5-7) indicating its inability 

to handle non-linear relationship (Park et al., 2005). 

The ANN models showed consistently high R2 values ranging from 0.627 to 0.858 

for all datasets. The values of CE for training and verification dataset (> 0.80) were 

approaching to 1 suggesting the accurate predictions using ANN model. Results suggested 

that the predictor variables explained about 62.7% variability in fruit losses for validation 

dataset (Table 5-7). In particular, the ANN model showed significant improvement in R2 

(~25%) and substantial decrease in RMSE for external validation when compared with MR 

model. The %E was observed to higher for MR model when compared with ANN model 

for all datasets (Table 5-7). Overall, the R2 values dropped with both models for external 

validation dataset when compared with the training and internal validation datasets     

(Table 5-7).  

Although R2 is a most common measure of explained variance, however, it lacks 

the ability to discern the shift in predicted values when compared with the actual values, 

therefore, might be misleading (Comrie, 1997). Therefore, % E, RMSE and CE which uses 

the actual error value were added to the ranking system to evaluate the performance of 

developed models. 
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Table 5-7. Prediction performance comparison of a back propagated artificial neural 

network and multiple regression models. 

ANN Model 

Dataset Model Structure R2 %E RMSE CE 

Training 

Dataset 

 

 

2 W (6/12 and 12/6) and 2 F 

(6/6 and 12/12) layers 

 

0.835 2.064 0.075 0.801 

Internal 

Validation 

Dataset 

0.858 7.691 0.075 0.811 

External 

Validation 

Dataset 

0.627 15.733 0.114 0.556 

MR Model 

Dataset Model Structure R2 %E RMSE CE 

Training 

Dataset 

 

Total Loss (%) = 0.137 + 

0.0325 Ground Speed + 

0.0435 Revolutions + 

0.304 Fruit Yield + 0.201 

Plant Height - 0.146 Fruit 

Zone + 0.424 Slope 

0.461 40.051 0.138 -0.56 

Internal 

Validation 

Dataset 

0.594 29.594 0.126 0.322 

External 

Validation 

Dataset 

0.372 34.916 0.147 -0.130 

Where R2 = Coefficient of determination; %E = Percentage variation; RMSE = Root mean square error; and 

CE = Coefficient of efficiency. 

 

5.3.6 Comparisons of Artificial Neural Network and Multiple Regression Models 

Figure 5-7a-c shows the modeling performance of ANN model which was almost 

perfect as opposed to the MR model. Results suggested that the MR and ANN models over-

and under predicted fruit losses (ANN: 17%; MR: 55%), with the ANN model slopes 

relatively closer to 1 for training dataset (Fig. 5-7a). Higher R2 and lower RMSE values 

provide statistical evidence for this observation (Table 5-7). The ANN estimates were very 

close to the actual values (P < 0.001; R2 = 0.86) when compared with MR model (P < 

0.001; R2 = 0.59), suggesting better predictions using ANN model (Fig. 5-7b) for internal 

validation dataset. The ANN model predicted minimum and the maximum fruit losses with 
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high precision; however mid-range predictions suffered slight divergence (Fig. 5-7). On 

the contrary, scatter plots of MR model showed a high divergence of plots along the ideal 

regression (Fig. 5-7). 

 In certain modeling attempts, the MR models can perform equally or even better 

than ANN models (Clapham and Fedders, 2004), however, in this study the ANN 

predictions were better than the MR predictions. The MR model exhibited significantly 

lower R2 for external validation (P < 0.001; R2 = 0.372) when compared with ANN model 

(P < 0.001; R2 = 0.627). Both, the ANN and MR models over predicted up to the desired 

values of 0.40, and under predicted for the desired values ranging from 0.50 to 1.00 for all 

datasets. In general, the ANN predictions were very close to the 1:1 line (Fig. 5-7). The 

possible reason for higher R2 during training phase could be the large sample size. The 

external validation presumably resulted in over-and-under fitting of the data and 

contributed to relatively poor performance when compared with the training dataset. The 

over-and-under fitting during modeling of an independent dataset had been reported by 

many authors (Langman et al., 2010; Sha, 2007). The ANN model yielded better 

predictions for fruit losses with slope values ranging from 0.62 to 0.85                                

(Table 5-7; Fig. 5-7). The ANN model had lower RMSE and %E when compared with MR 

predictions for all datasets. The ANN model was found be better in predicting fruit losses 

with significantly higher R2 in comparison with MR model for all datasets. The under 

predictions through ANN approach yielded relatively consistent and better estimates when 

compared with MR technique (Fig. 5-7). The ANN has been reported to be a promising 

tool when modeling processes are complicated and non-linear or unknown                            

(Liu et al., 2009), owing to their capability to model variable relationships. 
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Figure 5-7. Scatter plots of transformed (0 to 1) actual versus predicted losses using ANN 

and MR approaches, (a) Training dataset, (b) Internal validation dataset and (c) External 

validation dataset. 

Data collected from field conditions are subject to un-controlled factors, often 

exhibit non-normal distribution, offering flexibility of ANN to avoid any transformations 

(Coppola et al., 2003) which are required for MR models. The ANN approach offered 

flexibility with handling of noisy data and ability to model the complex relationships 

exhibited by sensitive variables having an impact on picking efficiency of the harvester.  

Tamari et al. (1996) reported that the ANN model leads to less RMSE, however, the ANN 

has not better efficiency than MR models in occasion of highly stable data. The high 

accuracy of data leads to more efficiency of ANN based on the proper selection of training 

and verification datasets. More input variables can improve the prediction capabilities of 

ANN model (Minasny and McBratney, 2002). Overall, the ANN model had the higher R2 
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and CE values with lower %E and RMSE when compared with corresponding MR 

counterpart suggesting that the ANN model predicted fruit losses efficiently and reliably. 

5.4 CONCLUSIONS 

In this study, MR and ANN models were employed for predicting fruit losses as 

function of the harvester ground speed, head revolutions, slope, fruit yield, plant height and 

fruit zone. The optimal ANN network consisted of two hidden layers, a tanh-sigmoid 

function, a linear activation function in output layer, an epoch size of 15, 000, learning rate 

of 0.10 and momentum rule of 0.70. The performance of MR and ANN models was 

evaluated using training, internal and external validation datasets. The ANN model was 

more suitable for capturing non-linearity of the relationships between variables. Results 

suggested that ANN can model non-linear relationships and performed better than MR 

models. With regard to the evaluation criteria, the ANN model had the superiority over the 

MR model with consistent and better predictions.  

The optimal conditions compared favorably with those obtained from experimental 

observations using ANN model. Results suggested that the ANN model could thus 

effectively be used for predictive modeling and optimization of fruit losses during 

mechanical harvesting of wild blueberries. Based on the results of this study, it is suggested 

to include environmental factors, time of harvest, soil properties, plant densities, fruit 

diameters and stem thickness to input variables in future studies while modeling the 

harvesting dynamics of wild blueberry cropping system. In future, inclusion of intensive 

mechanical, climatic and biological data in the model for multiple years will enable us to 

develop a robust interface using C# programming language, which will help the farmer’s 
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community to make appropriate harvesting recommendations based on spatial variability 

to reduce fruit losses during harvesting. 
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CHAPTER 6   CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The overall goal of this study was to evaluate the performance of a commercial 

wild blueberry harvester using PA technologies and mathematical modeling procedures, to 

suggest optimal scenarios for effective berry recovery and quality. An integrated automated 

system comprising of an ultrasonic sensor, a digital color camera, a slope sensor, a RTK-

GPS, custom software and a ruggedized computer was developed. The developed system 

(hardware and software) was incorporated onto a blueberry harvester for non-destructive 

mapping of fruit yield, plant height and topographic feature simultaneously while 

harvesting. Performance of developed system was tested and evaluated in selected 

blueberry fields. Results of calibrations, validations and mapping in GIS revealed that the 

developed system was an accurate, reliable and efficient to map plant height, fruit yield, 

slope and elevation in real-time. Results suggested that the hardware and software of the 

developed system performed rapidly and reliably to estimate pre-harvest fruit yield. Map 

comparison and zonal analysis showed substantial variability in measured parameters 

across the fields. 

Results of mapping blueberry fruit yield, plant height and topographic features were 

valuable for understanding relationships in the monitoring fields. Comparison of actual 

yield with the estimated yield from a digital color camera suggested that the digital color 

photography techniques can be used to assess overall fruit losses during harvesting. Non-

destructive yield mapping to quantify overall losses during harvesting emphasized the need 

to evaluate the commercial harvester at different machine operating parameters (ground 

speed and head rpm). Detailed evaluations of the harvester can suggest optimal operating 
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parameters for the grower’s community to increase berry picking efficiency of the 

harvester. Additionally, the information mapped via developed system could be used to 

implement site-specific management practices within the blueberry fields to optimize 

productivity while minimizing environmental impact of farming operations. 

In order to validate the overall fruit losses estimated from camera technology, the 

picking performance of a commercial blueberry harvester was tested and evaluated in 

selected blueberry fields. Factorial experiments were constructed at each site to examine 

the joint effect of ground speed and header rpm on picking efficiency of the harvester. The 

harvester was operated at specific levels of ground speed, i.e. 1.2, 1.6 and 2.0 km h-1 and 

header rpm of 26, 28 and 30. Yield plots were constructed randomly within the selected 

fields. Total fruit yield, un-harvested berries on the plants, berries on the ground, pre-

harvest fruit losses and loss through the blower were collected from each plot within the 

selected fields. The slope, plant height and fruit zone were also recorded manually from 

each plot. Results suggested that the pre-harvest fruit losses were found to be higher during 

the late season suggesting that the early season harvesting could be helpful in reducing 

these losses. Major portion of the fruit losses during harvesting was on the ground when 

compared with the un-harvested berries on the plants and losses through the blower.  

Fruit losses during harvesting were a linear function of the fruit yield, as fruit yield 

increased the fruit losses increased and vice versa. Results of the harvester evaluation 

confirmed the accuracy of the camera technology to estimate overall fruit loss during 

mechanical harvesting. Results of ANOVA reported that the picking efficiency of the 

blueberry harvester was significantly influenced by the ground speed, header rpm and their 

interaction. Results of LS means comparison showed that a treatment combination of 1.2 
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km h-1 and 26 rpm can result in significantly lower fruit losses as compare to higher ground 

speed and header rpm in wild blueberry fields with yield over 3500 kg ha-1. In low yielding 

fields (< 3000 kg ha-1) a combination of 2.0 km h-1 and 26 rpm can do a better job to 

increase berry picking efficiency of the blueberry harvester. Choosing an ideal combination 

of ground speed and header rpm based on spatial variations in fruit yield, crop parameters 

and topographic features can minimize fruit losses to increase farm profitability. 

Knowledge of spatial variability in fruit yield, crop characteristics, fruit losses and 

topographic features is critical for planning and implementing the operational 

recommendation for mechanical harvesting. Results of CVs, semivariogram parameters, 

interpolated maps, correlation matrix and zonal analysis confirmed the existence of large 

spatial variability in fruit yield, plant parameters and topographic features. Results revealed 

the fruit losses during harvesting were spatially dependent on fruit yield, plant height, fruit 

zone and slope within the selected sites. In general, fruit losses during harvesting increased 

with an increase in fruit yield and slope. Zonal analysis suggested that the picking 

performance of the harvester was inadequate in short and very tall plants. Operational 

adjustments in machine parameters (ground speed, head rpm, head height, etc.) based on 

spatial variations can enhance picking performance of the blueberry harvester. Variability 

in fruit losses corresponding with the spatial variations in crop characteristics, fruit yield 

and slope suggested that these parameters had a significant impact on fruit losses during 

mechanical harvesting. Results emphasized the need to model these spatial relationships 

mathematically to propose optimal harvester operating settings to improve berry picking 

efficiency.  
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Understanding and predicting the relationships between machine operating 

parameters, fruit losses, topographic features and crop characteristics can aid in better berry 

recovery during harvesting. The MR and ANN models were employed for predicting fruit 

losses as function of the harvester ground speed, head revolutions, slope, fruit yield, plant 

height and fruit zone. Optimal ANN network consisted of two hidden layers, a tanh-

sigmoid function, a linear activation function in output layer, an epoch size of 15, 000, 

learning rate of 0.10, and momentum rule of 0.70. The ANN model was more suitable for 

capturing non-linearity of the relationship between variables. Results suggested that the 

ANN model performed better than MR models in terms of R2, %E, RMSE, CE and scatter 

plots of actual and predicted values. With regard to the evaluation criteria, the ANN model 

had the superiority over MR model with consistent and better predictions. Overall, the 

results of modelling suggested that the ANN model was able to predict fruit losses during 

harvesting accurately and reliably. The ANN model could thus effectively be used for 

predictive modeling and optimization of fruit losses during mechanical harvesting.  

6.2 Recommendations 

Results of this study emphasize the need to characterize and quantify the effect of 

plant density, stem thickness and fruit diameters on the picking performance of the 

blueberry harvester in future studies. It is also proposed to examine the harvester’s 

performance in different categories of plant characteristics (low and high density, short and 

tall plants, thick and thin stem, etc.). Additionally, time of harvesting (early, mid and late) 

and its influence on fruit losses and berry quality need to be evaluated in detail.  Harvesting 

of the wild blueberry crop at proper ripening can enhance berry recovery and quality. Based 

on the existence of large spatial variability in fruit yield, berry losses, crop characteristics 
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and topographic features within the selected fields, it is proposed to investigate the 

potential of using sensing and control systems for automation of the blueberry harvester. 

Automation of the blueberry harvester can aid in real-time decision making to minimize 

fruit loss during harvesting. Real-time adjustments in the harvester (ground speed, head 

rpm, bin handling, head height, etc.) based on spatial variations can also lower the 

operator’s stress during harvesting. 

Based on the results of this study, it is suggested to include environmental factors, 

time of harvest, soil properties, plant densities, fruit diameters and stem thickness to input 

variables in future studies while modeling the harvesting dynamics of wild blueberry 

cropping system. In future, inclusion of intensive mechanical, climatic and biological data 

in the model for multiple years will enable us to develop a robust interface using C# 

programming language, which will help the farmer community to make appropriate 

harvesting recommendations to reduce fruit losses during harvesting. Improved berry 

picking efficiency can enhance farm profitability with no additional cost and contribute 

millions of dollars to Canada’s economy every year. 
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CONTRIBUTIONS TO KNOWLEDGE 

This PhD thesis presents detailed evaluation of a commercial wild blueberry 

harvester using innovative precision agriculture technologies and mathematical modeling. 

An integrated sensing and control system equipped with custom software was developed 

and incorporated into a commercial wild blueberry harvester to sense multiple attributes. 

Individual sensors have been installed onto various machines to sense targets for different 

cropping systems. However, the integration of multiple sensors and control systems onto 

one platform to sense plant height, fruit yield, slope and elevation on-the-go during 

mechanical harvesting is an original, worthwhile, and substantial contribution to 

knowledge. Non-destructive estimation of fruit yield prior to harvesting was utilized to 

quantify overall fruit losses during mechanical harvesting. The intensive data collected by 

multiple sensors provided an opportunity to study the relationships among the mapped 

parameters, which can be used to identify the factors responsible for fluctuating trends 

during harvesting. Additionally, the mapped information can be used to implement site-

specific management practices to improve crop productivity, reduce cost of production and 

mitigate environmental risks. 

Non-destructive estimation of fruit losses served as a basis for the physical 

evaluation of a commercial blueberry harvester to quantify actual losses during harvesting. 

The wild blueberry harvester was designed in early 1980’s. Improved management 

practices (fertilizers, selective herbicides, fungicides, insecticides, pollination and pruning) 

in last two decades have resulted in healthy crop conditions and significantly higher yield 

in blueberry fields. These situations also demanded for evaluation of the harvester to 

suggest optimal machine operating parameters to enhance berry picking efficiency. Fruit 
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losses on the ground were significantly higher when compared with un-harvested berries 

on the plants and loss through the blower. Fruit losses during harvesting were linear 

function of yield and were greatly influenced by the ground speed and header rpm either 

alone or in combination. This research presented a scientific approach and developed 

procedures for data collection to evaluate the blueberry harvester, which is a unique 

contribution towards academic community as well as the blueberry industry. Findings of 

this research suggested an ideal combination of ground speed and header rpm based on 

variations in fruit yield, crop parameters and topographic features to improve berry picking 

efficiency. 

Knowledge of spatial variability is very valuable to plan operational 

recommendations for the mechanical harvester. This dissertation investigated the response 

of fruit losses in relation to spatial variation in crop characteristics, slope and yield. Fruit 

yield, losses, plant parameters and ground slope were highly variable within the selected 

fields. Spatial variability in fruit losses corresponding with the variability in yield, plant 

height, fruit zone and slope provided a strong evidence that the picking performance of a 

blueberry harvester was significantly influenced by the spatial variations. Investigation of 

spatial picking response of the blueberry harvester using classical and geo-statistical tools, 

correlation analysis, mapping in GIS and zonal analysis is a significant contribution to the 

scientific community. Findings of spatial trends emphasized the need to model these 

relationships mathematically. 

Application of mathematical modeling (ANN and MR) to explore and understand 

the non-linear relationships between fruit yield, plant characteristics, machine operating 

parameters, fruit losses and ground slope is a valuable contribution to the wild blueberry 



156 

 

industry. Modeling of harvesting dynamics revealed that the predictive capabilities of the 

ANN to estimate fruit losses were significantly better than the MR models. Modeling of 

spatial relationships confirmed that the fruit losses during harvesting were significantly 

influenced by the variations in fruit yield, crop characteristics, machine operating 

parameters and ground slope. Selection of an ideal combination of ground speed and header 

rpm by considering these spatial variations can reduce fruit losses during mechanical 

harvesting, which can generate more revenue for growers at no additional cost.  

The wild blueberry industry is facing increased harvesting losses with their existing 

harvesters due to changes in crop conditions caused by improved management practices.  

This PhD project is unique, as it addresses the current industrial problem. This research 

recommended an operational combination of 1.2 km h-1 and 26 rpm, by considering spatial 

variations to improve berry picking efficiency by 3 to 5% in high yielding fields. Increased 

harvesting efficiency (3 to 5%) can contribute 4 to 7 million dollars annually to Nova 

Scotia’s provincial economy and 20 to 30 million dollars to Canada’s economy every year. 

Furthermore, this dissertation provided future research directions to address the problems 

associated with the mechanical harvesting of wild blueberries. 
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APPENDIX A: EXPERIMENTAL RESULTS OF MULTIPLE SENSORS TO MAP 

FRUIT YIELD, PLANT HEIGHT AND TOPOGRAPHIC FEATURES 

 

 
 

Figure A-1: Derived slope from elevation data using Slope Protocol of Spatial Analyst 

extension of ArcGIS 10 software for Frankweb site. 
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Figure A-2: Survey dot maps of fruit yield, plant height and elevation for Frankweb site 

using multiple sensors. 
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Figure A-3: Survey dot maps of fruit yield, plant height and elevation for Tracadie site 

using multiple sensors. 
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Figure A-4: Kriged maps of fruit yield, plant height, elevation and slope for Frankweb 

site. 
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Figure A-5: Kriged maps of fruit yield, plant height, elevation and slope for Tracadie 

site. 
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Figure A-6: Bar graphs showing the variation of fruit yield and plant height within 

different slope zones for Frankweb site. 

 

Zone 1 (0.73 – 4.21°) 
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Figure A-7: Bar graphs showing the variation of fruit yield and plant height within  

different slope zones for Tracadie site. 
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Table A-1. Semivarigram parameters of fruit yield, plant height, slope and elevation for 

Frankweb and Tracadie sites. 

Frankweb Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield (Mg ha-1) 3.22 23.21 15.90 13.87 0.79 Exponential 

Plant Height (cm) 6.11 42.67 11.56 14.31 0.71 Spherical 

Slope (Degrees)  10.89 33.20 25.66 32.80 0.87 Exponential 

Elevation (m) 15.33 41.20 30.34 37.20 0.82 Exponential 

Tracadie Site 

Parameters Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

(%) 

R2 Model 

Fruit Yield (Mg ha-1) 5.23 29.61 23.10 17.66 0.67 Spherical 

Plant Height (cm) 10.20 49.81 11.66 20.47 0.83 Gaussian 

Slope (Degrees)  0.30 15.88 20.13 1.88 0.88 Gaussian 

Elevation (m) 6.99 48.75 29.88 14.33 0.73 Exponential 
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APPENDIX B: EXPERIMENTAL RESULTS OF RESPONSE OF FRUIT 

LOSSES TO SPATIAL VARIABILITY 
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(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure B-1: Interpolated maps, (a) Fruit Yield, (b) Un-harvested berries, (c) Berries on the 

ground, (d) Loss through blower, (e) Total Loss, (f) Plant height, (g) Fruit zone and (h) 

Slope for Cooper site. 
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(e) 

 

 

(f) 

 

 

(g) 

 

 

(h) 

Figure B-2: Interpolated maps, (a) Fruit Yield, (b) Un-harvested berries, (c) Berries on the 

ground, (d) Loss through blower, (e) Total Loss, (f) Plant height, (g) Fruit zone and (h) 

Slope for Small Scott site. 
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Fruit Yield (kg/ha) Zones 

 

Zone 1 (0 – 1000) 

Zone 2 (1001 – 2500) 

Zone 3 (2501 – 4000) 

Zone  4 (4001 – 55000) 

Zone 5 (> 5500) 

 

Figure B-3: Multiple means comparison of fruit losses in relation to different zones of fruit 

yield for Cooper site. 
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Plant Height (cm) Zones 

 

Zone 1 (0 – 15) 

Zone 2 (16 – 22)  

Zone 3 (23 - 27) 

Zone 4 (28 – 30) 

Zone 5 (> 30) 

 

Figure B-4: Multiple means comparison of fruit losses in relation to different zones of 

plant height for Cooper site. 
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Slope (Degrees) Zones 

 

Zone 1 (0 – 5.28) 

Zone 2 (5.29 – 8.95) 

Zone 3 (8.96 – 12.62) 

Zone 4 (12.63 – 16.28) 

Zone 5 (> 16.28) 

 

Figure B-5: Multiple means comparison of fruit losses in relation to different zones of 

slope for Cooper site. 
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Table B-1. Multiple means comparison of fruit losses in relation to different zones of 

fruit yield, plant height and slope for Small Scott site. 

 Fruit Yield (Kg ha-1) Zones  

 

Parameters 

Zone 1 

0 to 750 

 

Zone  2 

751 to 1500 

Zone  3 

1501 to 

2500 

Zone 4 

2501 to 3500 

Zone  5 

3500 to 

5500 

Un-harvested Berries  20.3 a 36.7 ab 67.9 b 93.4 bc 110.1 c 

Berries on the Ground  41.2 a 93.2 b 135.6 c 190 d 240 e 

Loss through Blower  13.1 a 21.5 a 9.8 a 10.3 a 26.8 a 

Total Losses  75.3 a 148.7 b 210.4 c 270.8 d 336.1 e 

 Plant Height (cm) Zones 

 

Parameters 

Zone 1 

0 to 14 

Zone  2 

15 to 22 

Zone  3 

23 to 28 

Zone 4 

29 to 31 

Zone  5 

> 31 

Un-harvested Berries  48.9 bc 38.7 ab 21.6 a 46.3 bc 57.6 c 

Berries on the Ground  170.6 c 136.4 b 83.5 a 113.6 b 185.6 c 

Loss through Blower  20.1 a 15.3 a 17.4 a 23.6 a 19.8 a 

Total Losses  220.4 c 173.8 b 130.5 a 183.7 b 250.6 d 

                              Slope (Degrees) Zones 

 

Parameters 

Zone 1 

0 to 

3.60° 

Zone 2 

3.61 to 

6.50° 

Zone 3 

6.51 to 10.10° 

Zone 4 

10.11 to 

15.60° 

Zone 5 

> 15.60° 

Un-harvested Berries  17.3 a 25.6 ab 38.9 bc 49.6 c 59.3 c 

Berries on the Ground  45.8 a 98.6 b 143.5 c 190.3 d 237.6 e 

Loss through Blower  14.6 a 23.8 a 21.5 a 16.8 a 20.1 a 

Total Losses  77.4 a 143.6 b 198.5 c 256.8 d 265.6 d 
Means followed by different letters are significantly different at p = 0.05. 

Fruit losses were recorded in kg ha-1. 
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APPENDIX C: COPY RIGHT RELEASE PERMISSION FROM 

JOURNALS 
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