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Abstract

This work takes a three-dimensional approach to examining the problem of an exter-

nal shockwave interacting with a twin-hulled, submerged, fluid-filled structure. The

problem will be examined parametrically by using multiple variables including in-

ner and outer shell thickness, internal fluid composition, external shell composition,

and distance between shells. The effect that each variable had on the peak stresses

and normal displacements seen within the model were examined independently to

provide an overview of the problem for potential design considerations, as well as

to highlight the power of the three-dimensional model used. Additionally, to justify

the additional computational expense of using a three-dimensional model vs a two-

dimensional model, comparisons were done with two-dimensional simulations using

the same variables to examine to what degree the two methods diverge.
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Chapter 1

Introduction

The analysis of interactions between shockwaves and submerged structures is a wide

and diverse field that has seen extensive study since the end of World War II. Orig-

inating within the field of naval architecture, the work has progressed from simple

modal analysis of structures to detailed three-dimensional simulations that can take

into account a wide range of different variables. It is, however, still a field with many

potential areas of research to be done. The interactions involved are quite complex

and as a result there are unresolved issues in just about every branch of research.

The scope of the research has been greatly assisted by new technologies. The

earliest studies provided analytic approximations of the systems to allow for easier

evaluations, but with advanced computing techniques the research has evolved to be

able to analyze a variety of situations; no longer confined to simple structural analysis,

the field has evolved to consider everything from acoustics to cavitation to complex

hydrodynamic interactions.

The adequacy of the models has similarly improved. The original two-dimensional

shells subjected to a plane shock have been expounded upon. The shockwave models

have been improved to more accurately simulate real conditions. The interaction mod-

els have been improved from simple approximations to much more detailed models

that take into account elements such as the diffraction and radiation of the shock-

waves. Additionally, the geometries of the systems have become much more complex,

evolving from two to three dimensions and adding multiple shells or surface features

to more accurately model particular scenarios of interest.

One of the current challenges, and the primary focus of this work, is modeling the

full shockwave interactions of a complex shell system in three dimensions. The system

in question involves a twin-hulled geometry, where two shells separated by a fluid-

filled space are subjected to external shockwaves, which is of particular interest for its

application in the design and operation of multi hulled submarines. Understanding

1
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how such a craft responds to shockwaves and how it differs from similar vessels is an

important step to ensuring long-term operational viability.

This problem has seen some research in the past, but is still far from being fully

understood. The added complexity of the two-shell configuration has meant that it

has seen significantly less research than its classical, single shell counterpart, which has

been the primary focus in the research to date. Additionally, a full three-dimensional

analysis has not yet been performed on such a system, with previous work primarily

using a two-dimensional approximation.

1.1 Scope of the Work and Goals

The work herein is a natural progression of that done by Iakovlev[[29]-[38]]. The

purpose here is to study the effects of shockwaves on twin-hulled submarines through

the use of a three-dimensional mathematical model. The model uses two cylindrical

shells in order to represent the submarine. The model was originally utilized to

analyze single shell structures[29], but has evolved to take into account more complex

geometries [30], up to the point where it has previously been used for two-dimensional

analysis of these twin-hulled systems[38]. This work outlines the next step, expanding

this previous work into a full three-dimensional study of the twin-hulled system. Two-

dimensional approximations have been present within shell-shockwave work since the

very beginning. By focusing on a cross section rather than the whole structure, the

problem can be greatly reduced in complexity and computational requirements. By

removing this simplification, an already complex system, the twin-hulled geometry,

becomes even more so. Because of this, it has become important to refer back to

what has been learned already in order to direct our investigation and to understand

the differences between the current work and the two-dimensional model.

To allow for a detailed comparison between the two and three-dimensional models,

this work uses many of the same variables and restrictions used within a previous two-

dimensional analysis of the same problem [38]. The study took into account a wide

range of variables to demonstrate the capabilities of the model and to analyze how

the variables affected the exremeties of the stress-strain state and hydrodynamic field.

The first step of the current analysis will be to perform a similar parametric study for

the three-dimensional model. The variables used for the three-dimensional parametric
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analysis are much the same as those used within the two-dimensional study, with few

alterations.

One of the primary variables for the study is the inter-hull clearance, the space

between the inner and outer hulls. Previously, a range of values from 10% to 50%

of the outer hull radius had been considered. However, from the two-dimensional

analysis, it is clear that it is not necessary to model this full range, so instead only

the extremes will be analyzed here. Similarly, the previous study also analyzed a

wide range of values of shell thicknesses, both of the inner and outer shell. Inner shell

thickness varied relative to the radius of the outer shell, and the outer shell thickness

varied relative to the thickness of the inner shell. For the three-dimensional study,

similar values are used. The inner shell thickness varies between 0.25% and 1% of

the radius of the outer shell, and the outer shell thickness varies between 20% and

100% of the inner shell thickness. Finally the study will consider outer shell shell

material and the type of fluid in the inter-hull space. Analyses were done using steel

and composite materials for the shells, and water and diesel fuel for the internal fluid.

This results in three distinct cases for analysis: a steel-water-steel system to act as

the baseline, a steel-diesel-steel system to examine the effects of the internal fluid,

and a steel-water-composite system to examine the effects of the material used for

the outer shell.

In addition to the parametric study, a comparison study will also be included to

examine the differences between the two-dimensional and three-dimensional models.

Three-dimensional datasets will be matched with the data from their two-dimensional

counterparts and direct comparisons made to highlight the variations between the

two. The primary focus of this study will be to examine how the stresses and strains

vary between the models, and to understand how well the two-dimensional mode

approximates the three-dimensional one.

Overall, the three major goals of this work are fairly straightforward. First, the

three-dimensional model must be able to execute all of the cases listed above without

issue. The results must converge and erroneous values must be kept to a minimum.

Second, any notable trends with respect to the different variables should be identi-

fied. Not every variable is going to have a major effect on the results, but obvious

trends and unexpected results should be made note of. Third, the three-dimensional
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results should be compared against the two-dimensional results and how well the two

models agree should be noted. Additionally, whether the different variables cause any

particular trends in this agreement should be commented on.

1.2 Literature Review

Since the 1950s, the field of shell-shockwave interactions has been continuously evolv-

ing. Up until the 1980s, most of the work focused on the structural aspects of the

problem and primarily used analytical methods. The shells used were most often

evacuated cylinders and a variety of assumptions were used in order to simplify the

evaluation process.

In the 1980s, with computational technology evolving, numerical methods became

much more practical and analytical methods became less widely used. Complex

imaging became possible as well, so experiments were set up to observe the shockwave

interactions. Simulating these interactions became much more achievable, and with

experiments to compare the results to, such simulations had a reliable means of

verification.

Since the 1990s, as numerical methods became even more powerful, the types of

problems that were considered became more and more specific. Rather than focus on

a general problem, specific applications of shell-shockwave interactions became the

norm. These include specific shell configurations, types of hydrodynamic interactions,

and, in general, systems that were much more complex than what had been seen

previously

1.2.1 Early Period (1950s-1970s)

Early references mention a paper from 1951 written by G. L. Carrier [4] as the first

publication to model the shell-shockwave problem in its current form. This report

outlined the governing equations of the shell’s motion within certain modes. This

report, however, did not provide any numerical results, only the governing equations.

Following this, in 1953, another report was written on the subject [42], which also

included some limited numerical results. However, due to the classified nature of the

work it was not mentioned until years later [11].
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The first major publication of the problem in its current form was by Mindlin and

Bleich in 1953 [46]. The problem outlined involved a shell that was elastic, circular

in cross section, homogeneous in material, and infinitely long. The modes of motion

allowed were also constrained. The shell was submerged in an acoustic media and the

wave was considered to be flat and parallel to the central axis of the shell.

The purpose of the paper was to provide an approximate mathematical solution.

The setup allowed the whole problem to be essentially two-dimensional, and the use

of a plane wave, which was presented in the form of a step function, further simplified

the setup. The equations are developed with major simplifications regarding how the

shockwave propagates through the shell over time. Because of this, as stated within

the work, the model was only really accurate at the early stages of the interaction,

and the closeness of the results to what would be expected fall off greatly over time.

This work was soon revisited by Haywood in 1958 [19]. This new work used much

the same setup as Mindlin and Bleich [46] but aimed to address some of the error due

to simplifications and allow for a greater range of valid solutions. Haywood’s work

was focused on providing a practical numerical approximation of the shell deflections,

as Carrier’s exact solution was deemed far too computationally expensive for practical

use. Hence, a number of simplifications were used and compared to a finished result

for validation.

As was seen in Mindlin and Bleich’s work, the wave was considered to be indefi-

nitely long and parallel to the shell’s axis, turning the problem into a two-dimensional

one and greatly reducing the complexity of the system [46]. One of Haywood’s devel-

opments was the use of a wave that was cylindrical in nature. The approximations

within the method mostly involved how the shockwave interacts with the shell.

While not exact, the improved model provided valid approximations over a much

longer timeframe, with deviations more limited along the full duration of the shell-

shockwave interactions. This was unlike Mindlin and Bleich’s previous approxima-

tions that quickly dropped off in accuracy after the early stages [46]. While not a

breakthrough, this new method did provide a means for practical analysis and evalu-

ation. Very much in the spirit of work being done even today, this early work sought

to overcome the technological limitations of the time to provide a stepping stone for

what would follow.
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Work that followed in the early 1960s focused on a variety of different aspects of the

shell-shockwave interaction. Bryson and Gross published a study in 1961 in which

they photographed shockwave interactions with various shapes, among them solid

cylinders [3]. Here the fluid was air and the objects were subjected to shockwaves with

mach numbers near 3. While, strictly speaking, not a shell-shockwave interaction,

these photos would serve as a helpful tool for researchers in the years to come to make

comparisons and validate models.

Peralta and Raynor published a paper in 1963 that focused on the early stage

interactions only [52]. The setup was two-dimensional and the shockwave considered

to be a plane wave. The inner and outer fluids, however, were one of the areas where

changes were made. Multiple cases involving different fluids inside and outside of the

shells were considered here. Particular cases included one where both the inner and

outer fluids were water, and also one where the inner fluid was gasoline. Different

shell response characteristics were also considered. While more limited in scope, this

work would mark a departure from a focus wholly on the structural elements of the

problem to one where the hydrodynamic response is an important characteristic.

The first of a series of fully analytical solutions was published by Geers in 1969 [11].

The solution used a new approach which was based on the Laplace-Fourier transform

technique. The final result of this analysis was an analytical solution in the form of a

Fourier Series. The goal of this research was to provide a complete analytic solution

for motion in all dimensions. In addition, the work sought to compare this solution

to some of the approximate models seen previously. Both Mindlin and Bleichs model

[46] and Haywoods model[19] were used for comparison, with Geers findings closely

matching those of the original authors within limited timeframes.

Following Geers’ publication was one by Huang in 1970, which also used the

Laplace-Fourier transform technique to solve the problem [23]. Huang’s work took a

slightly different approach to the problem, focusing more on presenting the results over

longer time periods, rather than focusing on short term interactions. His publication

included numerous graphs of the shell-shockwave interactions done over these longer

time periods. This highlighted the asymptotic and oscillatory nature of the motion.

The results of the work were compared to those of Payton [51] who modeled the

early-time response, and refers to the works of Murray [47] and Forrestal [10] who
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modeled the exact solutions of the second and first modes of motion, respectively.

At this point, however, both Geers’ and Huang’s works are still focusing on the

two-dimensional model. The major developments were that the new method of solv-

ing the problem meant that the approximations were no longer needed to provide

solutions. It is also around this time that the more complex three-dimensional load-

ing would begin to be addressed. The beginnings of this came in 1970 when Huang

and Wang [24] developed a method similar to the previous, two-dimensional work

to solve for a model involving a cylindrical shell subjected to a spherical shockwave,

rather than a plane or cylindrical wave. Rather than being completely analytical, it

included a numerical procedure to calculate the inverse transforms.

In Huang and Wang’s work, the spherical shockwaves were treated as a series of

cylindrical waves with infinitely steep wave fronts. However, due to this treatment

Gibbs’ phenomena was present during the initial interactions, which caused some

minor instability at the early stages. In order to correct this issue, the pair would

follow this up with another paper in 1971 [25]. Here, only the early time interactions

are considered, and the concept of a fictitious Reimann surface was used to overcome

the issues caused by the Gibbs phenomena. With this addition, simple expressions for

the early time responses were found. These expressions detailed how the curvature

of the incoming shockwave affects the bending moments of the shell. Basically, if the

source of the shockwave is extremely close to the shell, much higher peak values are

seen. This effect decreases as the source is moved farther from the shell.

Up until this point, most of the work had been dedicated to single shelled struc-

tures. With the models becoming more complex and considering additional parame-

ters, the issue of more complicated geometry was first considered. Huang’s publication

in 1979 became the first incidence where multiple shells were considered [27]. As was

the case with previous studies, the focus here was primarily on the structural dy-

namics of the system, and how the addition of an outer shell affected the loading

experienced by the inner shell.

In this work, two co-axial shells made of steel were considered, with the outer

shell considered to be relatively thin. The motions observed by the inner shell were

plotted against a single shell only[23]. In each case the results indicated a slight

reduction of the inner shell values. There were similar findings when spherical shells
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were examined rather than cylindrical shells[28].

The overall developments of this period focused first on advancing the understand-

ing of the structural elements of the problem and unifying much of the work done thus

far. Beyond this, there were also some advances in understanding the hydrodynamics

of the system. Up to this point the computational technologies available had been

somewhat limited and many simplifications have been used to allow the problems to

be solved.

1.2.2 Later Period (1980s-Present)

In the 1980s analysis of shell-shockwave interactions shifted from using primarily

analytical methods to using numerical methods.

In 1985 Yang et al. examined the diffraction of strong plane shocks by various

curved surfaces, such as cylinders [62], and in 1987 Yang and Liu presented a numerical

model to compute the shock wave diffraction on solid cylinders [63]. The model

was two-dimensional and used numerical methods to model the Euler’s equations

of gas dynamics. Using the experimental values, a corresponding simulation was

performed and compared to the Bryson and Gross experiment for validation [3]. The

agreement between the experiment and the simulation was very good, and captured

the important features of the interaction with remarkable accuracy. On a similar note

was the work of Glass et al. in 1989 which considered the diffraction of shock waves on

a semi-circular cylinder and presented experimental comparisons [18], and the work

of Eidelman et al. in 1993, which examined shock wave diffraction of cylinders within

dusty flows [9].

With advancing experimental techniques a number of high quality visualizations of

shell-shockwave interactions were published. In 1987 a series of such studies appeared,

including the work of Takayama, which considered shock wave propagation over a

cylinder in a dusty gas flow [59]; Heilig, who addressed aspects of shock wave reflection

from a cylinder [21]; and Hermann et al., who studied vortex shedding by a cylinder

within a shock flow [22]. In 1989 Sugiyama et al. examined a shock-induced flow past

a circular cylinder in a dusty flow, and included numerical results [56], and in 1993

Takayama addressed a shock flow inside and outside a cylinder with a slotted surface

[60].
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In 1994 an investigation by Geers and Zhang was published that aimed to sim-

plify the modeling of fluid-filled shells [15][16]. In order to do this, equations that

approximate how an internal fluid responds to an excited outer fluid were developed.

These equations were developed using a technique referred to a doubly asymptotic

approximations (DAA), a technique in use since the 1970s to solve similar sorts of

problems [12][13][14]. The results were then compared to exact transient response

time histories for a fluid-filled submerged spherical shell. The approximations com-

pared favorably, and the simplification deemed well suited for use within numerical

investigations to cut down on computation time.

An experimental investigation by Stultz in 1994 examined some different aspects

of the twin-hulled geometry [55]. In this experiment, a system consisting of a two-

shell arrangement with additional weight rings was used. The model intended to

provide a more realistic representation of certain types of industrial systems, and

the results were compared with the outcomes of respective numerical simulations.

The time-histories of the structural strains and velocities were recorded along with

those for the pressure in the inter-shell domain. The work provided insights into the

fundamental physics of the shock response of a double-shell configuration. Of specific

note was the influence of the outer shell on the structural dynamics of the inner shell.

There also are a considerable number of shock-response studies that, while not

directly addressing the double-shell case, are still valuable sources of information

about various aspects of the interaction between a shock load and a structurally

complex systems. In 1999 Oakley et al. considered the interaction between a shock

wave and cylinder placed inside a larger cylindrical confinement [48], and addressed

the shock wave reflection patterns occurring in such a system. This was extended

by Oakley et al. in 2001 to a system of three cylinders, a more representative model

of the reactor system in question [49]. In 1997 Jialing and Hongli considered the

reflection on a system of two cylinders of a shock wave propagating in a channel [40],

and addressed the shock wave reflection patterns induced during the shock response.

The shock interaction with a two-cylinder arrangement was addressed by Heilig in

1999 [20]. Takano et al. examined stresses in elastic cylinders subjected to external

shock waves in 1997, and also considered surface-radiated acoustic waves [58]. In

1998 Sun studied shock wave diffraction on bodies of various shapes numerically,
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comparing simulations to experimental results [57]. In 1997, Ofengeim and Drikakis

[50] and Drikakis et al. [8] numerically examined diffraction of a plane shock wave

on a rigid cylinder, considering inviscid and viscous models. Additionally, a system

of multiple cylindrical structures placed inside a larger cylindrical confinement filled

with fluid was addressed by Sigrist et al. in 2007, with innovations introduced aimed

at efficient numerical simulation of such a system [54].

In 2000, Wardlaw and Luton published a study where they consider an explosion

inside a double-wall cylinder [61]. This is essentially the ‘internal’ version of the

double-shell problem where the inter-shell clearance is small. They considered both

the fluid and structural dynamics of the interaction and particular attention was

paid to the effect of shock-induced cavitation, a challenging to model phenomenon.

Time-histories of the hydrodynamic pressure and shell surface velocity were presented

for the inner and outer shells, highlighting the importance of the shock wave reflec-

tion phenomena in both the structural and fluid dynamics of the system. In 1999,

Sandusky et al. conducted experiments on fluid-filled aluminum shells subjected to

internal explosions, examining plastic deformations, wall velocities, and strain [53].

In 2001 this was expanded as Chamber et al. experimentally examined pressure on

the inner surface of a similar shell, presenting comparisons to numerical studies [5].

There have also been a number of studies on the reflection effects in the presence

of additional surfaces, structural or otherwise, which have also provided valuable

insights into the potential reflection mechanisms: for example, in 2006 Jappinen and

Vehvilainen considered an explosion under ice [39], and in 2000 Gitterman and Shapira

addressed an explosion in the presence of a free surface [17]. Furthermore, studies

where the radiation by elastic structures was addressed are also relevant as they

provide the information on the wave structure of the radiated hydrodynamic fields.

To that end, in 1998 Ahyi et al. considered the radiation by a single submerged

cylindrical shell[1], in 2000 Derbesse et al. [7] and in 2005 Ahyi et al. [2] considered

the radiation for more complex shell systems, notably cylindrical shells with spherical

endcaps.

In 2002, the first version of our current model for analyzing the shockwave in-

teraction of submerged, fluid-filled shells was published by Iakovlev [29]. It uses a
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combined analytical-numerical approach and because of the hybrid nature the re-

spective simulations are relatively computationally inexpensive, and are suitable for

carrying out repeated simulations within reasonable timeframes.

Following this there were several additional studies published devoted to the anal-

ysis of various aspects of more complex systems. These studies include, in 2004 and

2010, an examination of the shock response of a fluid-filled shell filled containing a

rigid co-axial core [30][36], an analysis of the interaction effects of an external shock-

wave and a fluid-filled shell in 2006 and 2007 [31][32]. Additional works published in

2008 focus on the acoustic fields induced during the interaction, including compar-

isons to experimental data [33][34], and another study published in 2009 examines the

effects on the fluid-filled shell where the internal and external fluids are not necessarily

identical [35]. These studies have served to establish the mathematical framework and

to provide information about the shock-structure interaction that will be critical in

the context of the double-hull geometry being explored here, this includes the most

recent work from 2014 which examines the same problem from a two-dimensional

point of view [38].



Chapter 2

Mathematical Formulation

2.1 Initial Setup

The problem, as it is considered here, consists of a circular cylindrical shell of radius

r0 and thickness h2, with an inner, co-axial shell of radius a and thickness h1, as

shown in Figure 2.1. We assume that the thickness to radius ratios h2/r0 � 1 and

h1/a � 1; and that the deflections of the shell surfaces are small compared to their

thicknesses. Additionally, we assume that the Love-Kirchhoff hypothesis holds true.

The density, Poisson’s ratio, and Young’s modulus are ρ2, ν2, and E2 for the outer

shell and ρ1, ν1, and E1 for the inner shell. Additionally, the sound speed in the

external and internal shells are c2 and c1, respectively. For motion, the longitudinal,

transverse, and normal displacements of the middle surface of the shells are u2, v2,

and w2 for the external shell and u1, v1, and w1 for the internal shell. The shell is

submerged into fluid with the density ρe and sound speed ce which is assumed to be

irrotational, inviscid, and linearly compressible. The same assumptions are made for

the inter shell fluid, which has density ρi and sound speed ci. The system is subjected

to a shock wave with the source located at a distance R from the shell axis. Due to

the high frequency nature of these shell shock interactions, it is more convenient to

deal with dimensionless variables. As such, all variables are normalized according to

r0, ce, and ρe. The notable exception to normalization is pressure, which is expressed

in Pascals. Due to the cylindrical nature of the structure, a polar co-ordinate system

(�, θ) is employed.

12
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Figure 2.1: Diagram of the double-shell problem

The fluids are governed by the wave equations,

∇2φe =
∂2φe

∂t2
, (2.1)

and

∇2φi =
c2e
c2i

∂2φi

∂t2
, (2.2)

where φe and φi are the fluid velocity potentials of the external and internal fluids,

and t is time.

The hydrodynamic pressures of the external and internal fluids, pe and pi are

pe = −∂φe

∂t
, and pi = −ρi

ρe

∂φi

∂t
. (2.3)

The strain energy per unit area of the external shell Ep
2 and the internal shell Ep

1

are given by Love in 1927 [43]

Ep
2 =

E2h2
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{
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2 + (ε22)
2 + 2ν2ε

2
1ε

2
2 +

1

2
(1− ν2)(Ω2)

2+
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}

(2.4)

Ep
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E1h1
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(2.5)
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where

ε12 =
∂u2

∂x
, ε22 =

1

r0

(
∂v2
∂θ

− w2

)
, Ω2 =

∂v2
∂x

+
1

r0

∂u2

∂θ
,

κ1
2 =

∂2w2

∂x2
, κ2

2 =
1

(r0)2

(
∂2w2

∂θ2
+

∂v2
∂θ

)
, τ2 =

1

r0

(
∂2w2

∂θ∂x
+

∂v2
∂x

)
, (2.6)

and (k2)
2 = (h2)

2/12 for the outer shell and

ε11 =
∂u1

∂x
, ε21 =

1

a

(
∂v1
∂θ

− w1

)
, Ω1 =

∂v1
∂x

+
1

a

∂u1

∂θ
,

κ1
1 =

∂2w1

∂x2
, κ2

1 =
1

a2

(
∂2w1

∂θ2
+

∂v1
∂θ

)
, τ1 =

1

a

(
∂2w1

∂θ∂x
+

∂v1
∂x

)
, (2.7)

and (k1)
2 = (h1)

2/12 for inner shell. As an additional note, here we consider an

inward normal for the ’elastic’ part of the problem, so some of the signs differ from

those within Love’s work.

Equations (2.4) and (2.5), with the expressions for the kinetic energy per unit

area of the shell Ek
2 and Ek

1 ,

Ek
2 =

1

2
ρ2h2

⎧⎨
⎩
(
∂u2

∂t

)2

+

(
∂v2
∂t

)2

+

(
∂w2

∂t

)2
⎫⎬
⎭ , (2.8)

Ek
1 =

1

2
ρ1h1

⎧⎨
⎩
(
∂u1

∂t

)2

+

(
∂v1
∂t

)2

+

(
∂w1

∂t

)2
⎫⎬
⎭ (2.9)

are used to derive the equations of shell dynamics using Hamilton’s principle.

The pressure loads on each of the shells, p2 and p1, can be expressed as a sum of

the incident pressure, p0, diffraction pressure, pd, external radiation pressure, per and

internal radiation pressures from each shell, pi,1r and pi,2r ,

p1 = pi,2r − pi,1r , (2.10)

p2 = p0 + pd + per + pi,2r − pi,1r . (2.11)

The total fluid potential is expressed similarly

φe = φ0 + φd + φe
r + φi

r, (2.12)

φi = φi
r, (2.13)
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where φ0 is the incident shock wave potential, φd is the diffracted wave potential,

φe
r is the external radiated potential and φi

r is the internal radiated potentials. The

individual surface pressure components are therefore

p0 = −∂φ0

∂t

∣∣∣∣∣
r=r0

, pd = −∂φd

∂t

∣∣∣∣∣
r=r0

, per = −∂φe
r

∂t

∣∣∣∣∣
r=r0

, (2.14)

and

pi,2r = −ρi
ρe

∂φi
r

∂t

∣∣∣∣∣
r=r0

, (2.15)

for the external shell and

pi,1r = −ρi
ρe

∂φi
r

∂t

∣∣∣∣∣
r=a/r0

, (2.16)

for the internal shell.

The fluid velocity potential of the spherical, step-exponential shock wave acting

on the external shell is expressed as [31]

φ0 = −λpαSR

ρeR∗
{
e−(t−(R

∗−SR)c−1
e )λ−1 − 1

}
H

(
t− (R∗ − SR)c

−1
e

)
(2.17)

where λ is the decay constant, pα is the pressure in the front of the shock wave

when it first makes contact with the shell, SR = R0 − r2, the stand-off distance

between the shockwave origin and the outer shell, R∗ =
√
R2

0 + x2 + r2 − 2R0rcosθ,

the distance between the source and the point (x, r, θ) in the cylindrical coordinates,

τ is dimensionless time, and finally H(z) is the Heaviside unit step function

H(z) =

⎧⎨
⎩ 1, z ≥ 0,

0, z < 0.
(2.18)

Here it is assumed that τ = (t − (R∗ − SR)c
−1
e ) = 0 is the moment the wave front

makes contact with the outer shell. The parameters λ and pα vary depending on R0

and a few other factors as described by Cole in 1948 [6].

Finally, the boundary and initial conditions are stated, which completes the setup

of the problem. The shell dynamics is coupled to the fluid dynamics through the

boundary conditions on the shell surfaces

∂φe
r

∂r

∣∣∣∣∣
r=r0

= −∂w2

∂t
and

∂φi
r

∂r

∣∣∣∣∣
r=r0

= −∂w2

∂t
, (2.19)

and
∂φi

r

∂r

∣∣∣∣∣
r=a/r0

= −∂w1

∂t
. (2.20)
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For the diffraction pressure

∂φd

∂r

∣∣∣∣∣
r=r0

=
∂φ0

∂r

∣∣∣∣∣
r=r0

, (2.21)

and also

(φd + φe
r) −→ 0 when r → ∞ (2.22)

In order to formulate the boundary conditions with respect to x, we make use of the

fact that hydrodynamic waves in the fluids and elastic waves in the shell have a finite

velocity of propagation. Therefore we introduce a large parameter L and state the

boundary conditions at x = ±L for the displacements as

∂u2

∂x

∣∣∣∣∣
x=±L

= 0, v2|x=±L = 0, w2|x=±L = 0,
∂2w2

∂x2

∣∣∣∣∣
x=±L

= 0, (2.23)

and
∂u1

∂x

∣∣∣∣∣
x=±L

= 0, v1|x=±L = 0, w1|x=±L = 0,
∂2w1

∂x2

∣∣∣∣∣
x=±L

= 0, (2.24)

as well as zero boundary conditions for all potential components. We assume that

the displacements and potentials are periodic with respect to θ, and we also assume

zero initial conditions.
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2.2 Fluid dynamics

In order to obtain the hydrodynamic components, we first apply the Laplace transform

with respect to the time to the wave equations (2.1) and (2.2) to arrive at

∂2Φe

∂r2
+

1

r

∂Φe

∂r
+

∂2Φe

∂x2
+

1

r2
∂2Φe

∂θ2
− s2Φe = 0, (2.25)

and
∂2Φi

∂r2
+

1

r

∂Φi

∂r
+

∂2Φi

∂x2
+

1

r2
∂2Φi

∂θ2
− s2c2e

c2i
Φi = 0, (2.26)

where Φe and Φi are the Laplace transforms of φe and φi where s is the transform

variable.

Then, we separate the spatial variables in order to obtain the general solutions of

(2.25) and (2.26) satisfying the zero condition for r at infinity as

Φe
mn = DmnKn(rβm(s)) cos(m̃x) cos(nθ) (2.27)

and

Φi
mn =

{
FmnIn(rβm(scec

−1
i )) +GmnKn(rβm(scec

−1
i ))

}
cos(m̃x) cos(nθ). (2.28)

Within these series m = 0, 1, . . ., n = 0, 1, . . ., m̃ = (2m + 1)π(2L)−1, βm(s) =√
m̃2 + s2, In and Kn are the modified Bessel functions of the first and second kind

of order n, and Dmn, Fmn, and Gmn are arbitrary functions of s.

We must determine the coefficients Dmn, Fmn, and Gmn. This is done through a

process of expanding our terms into double series. First we expand our w2, w1, p0,

and ∂φ0

∂r

∣∣∣
r=r0

terms into series form

w2 =
∞∑

m=0

∞∑
n=0

wmn,2(t) cos(m̃x) cos(nθ), (2.29)

w1 =
∞∑

m=0

∞∑
n=0

wmn,1(t) cos(m̃x) cos(nθ), (2.30)

p0 =
∞∑

m=0

∞∑
n=0

p0mn(t) cos(m̃x) cos(nθ), (2.31)

∂φ0

∂r

∣∣∣∣∣
r=r0

=
∞∑

m=0

∞∑
n=0

bmn(t) cos(m̃x) cos(nθ), (2.32)
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respectively. By imposing the boundary conditions, we obtain the Laplace transforms

of the harmonics of the unknown potential components as

Φd
mn = Bmn(s)Ξ

e
mn(s) cos(m̃x) cos(nθ), (2.33)

Φr,e
mn = sW 2

mn(s)Ξ
e
mn(s) cos(m̃x) cos(nθ), (2.34)

Φr,i,2
mn = −sW 2

mn(s)Ξ
i,2
mn(scec

−1
i ) cos(m̃x) cos(nθ) (2.35)

and

Φr,i,1
mn = −sW 1

mn(s)Ξ
i,1
mn(scec

−1
i ) cos(m̃x) cos(nθ) (2.36)

where Bmn, W
2
mn, and W 1

mn are the Laplace transforms of bmn, wmn,2, and wmn,1;

and Ξe
mn, Ξ

i,2
mn, and Ξi,1

mn are the Laplace transforms of the response functions of the

problem, the response functions defined as

ξemn = ξen(t)− m̃
∫ t

0
ξen(

√
t2 − τ 2)J1(m̃τ)∂τ (2.37)

ξi,2mn = ξi,2n (t)− m̃
∫ t

0
ξi,2n (

√
t2 − τ 2)J1(m̃τ)∂τ (2.38)

ξi,1mn = ξi,1n (t)− m̃
∫ t

0
ξi,1n (

√
t2 − τ 2)J1(m̃τ)∂τ (2.39)

where ξen, ξ
i,2
n , and ξi,1n are the corresponding two-dimensional functions [38].

These response functions represent the response of the fluid to the motion of

the shell surface and/or the scattering by the shell [31][34]. They are useful from a

computational standpoint because after being computed to the necessary accuracy

once, the calculations can be re-used for any shell of the same geometry. As these

response functions represent a large portion of the computations within this problem,

pre-computing them allows for a wide variety of parameters to be analyzed without

adding undue computation time[34].

With the response functions and applying certain theorems related to the Laplace

transforms, we can fully develop the components of the pressure on the shells. These

components are

pd =
∞∑

m=0

∞∑
n=0

pdmn(t) cos(m̃x) cos(nθ), (2.40)

per =
∞∑

m=0

∞∑
n=0

pemn(t) cos(m̃x) cos(nθ), (2.41)
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pi,2r =
∞∑

m=0

∞∑
n=0

pi,2mn(t) cos(m̃x) cos(nθ), (2.42)

and

pi,1r =
∞∑

m=0

∞∑
n=0

pi,1mn(t) cos(m̃x) cos(nθ), (2.43)

where

pdmn(t) = −bmn(t)−
∫ t

0
bmn(τ)ξ̇

e
mn(t− τ)∂τ, (2.44)

pemn(t) = −
∫ t

0
ẅ2

mn(t)ξ
e
mn(t− τ)∂τ, (2.45)

pi,2mn(t) =
ρici
ρece

∫ t

0
ẅ2

mn(τ)ξ
i,2
mn(cic

−1
e (t− τ))∂τ. (2.46)

and

pi,1mn(t) =
ρici
ρece

∫ t

0
ẅ1

mn(τ)ξ
i,1
mn(cic

−1
e (t− τ))∂τ. (2.47)

The total pressure on the surface of the shells is therefore given in series form by

p1 =
∞∑

m=0

∞∑
n=0

pmn,1(t) cos(m̃x) cos(nθ), (2.48)

p2 =
∞∑

m=0

∞∑
n=0

pmn,2(t) cos(m̃x) cos(nθ), (2.49)

where, for the inner and outer shells

pmn,1 = (pi,2mn − pi,1mn)
∣∣∣
r=a/r0

, (2.50)

and

pmn,2 = (p0mn + pdmn + pemn + pi,2mn − pi,1mn)
∣∣∣
r=r0

. (2.51)
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2.3 Structural dynamics

With the loading on the shells known, the process for computing the stress strain

states on both the inner and outer shells is very similar. The components u, v, and

w are expanded into series form for each shell

u1 =
∞∑

m=0

∞∑
n=0

umn,1(t) cos(m̃x) cos(nθ), (2.52)

v1 =
∞∑

m=0

∞∑
n=0

vmn,1(t) cos(m̃x) cos(nθ), (2.53)

w1 =
∞∑

m=0

∞∑
n=0

wmn,1(t) cos(m̃x) cos(nθ), (2.54)

and

u2 =
∞∑

m=0

∞∑
n=0

umn,2(t) cos(m̃x) cos(nθ), (2.55)

v2 =
∞∑

m=0

∞∑
n=0

vmn,2(t) cos(m̃x) cos(nθ), (2.56)

w2 =
∞∑

m=0

∞∑
n=0

wmn,2(t) cos(m̃x) cos(nθ), (2.57)

We can now express the strain and kinetic energy in terms of these harmonics of

the displacements. Integrating them over the shell surface and applying Hamilton’s

principle result in the following system of integro-differential equations for each com-

bination of m and n. The mn subscripts have been removed from each c, u, v, w,

and p term for ease of presentation:

(γ1)
2∂

2u1

∂t2
+ c111 u1 + c121 v1 + c131 w1 = 0,

(γ1)
2∂

2v1
∂t2

+ c211 u1 + c221 v1 + c231 w1 = 0,

(γ1)
2∂

2w1

∂t2
+ c311 u1 + c321 v1 + c331 w1 = χ1p1, (2.58)

and

(γ2)
2∂

2u2

∂t2
+ c112 u2 + c122 v2 + c132 w2 = 0,

(γ2)
2∂

2v2
∂t2

+ c212 u2 + c222 v2 + c232 w2 = 0,

(γ2)
2∂

2w2

∂t2
+ c312 u2 + c322 v2 + c332 w2 = χ2p2, (2.59)
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where

c111 =
1− ν1

2
n2 + m̃2,

c121 = c211 =
1 + ν1

2
m̃n,

c131 = c312 = −ν1m̃,

c221 =
1− ν1

2
m̃2 + n2 + (k1)

2(n2 + (1− ν1)m̃
2),

c231 = c321 = −n− (k1)
2(n3 + nm̃2),

c331 = 1 + (k1)
2(m̃2 + n2)2, (2.60)

and

c112 =
1− ν2

2
n2 + m̃2,

c122 = c212 =
1 + ν2

2
m̃n,

c132 = c312 = −ν2m̃,

c222 =
1− ν2

2
m̃2 + n2 + (k2)

2(n2 + (1− ν2)m̃
2),

c232 = c322 = −n− (k2)
2(n3 + nm̃2),

c332 = 1 + (k2)
2(m̃2 + n2)2, (2.61)

and additionally γ1 = (cs,1)
−1, γ2 = (cs,2)

−1, χ1 = (ρs,1(cs,1)
2h1)

−1, χ2 = (ρs,2(cs,2)
2h2)

−1

and all initial conditions are zero.

The system (2.59) is then solved numerically using finite differences. The deriva-

tives are approximated using the central difference theorem, and the integrals using

the trapezoidal rule. Removing the mn subscripts from each term allows for the

external shell finite difference scheme for the inner shell to be expressed as

ui+1
1 = 2ui

1 − ui−1
1 − h2

(γ1)2
{c111 ui

1 + c121 vi1 + c131 wi
1},

vi+1
1 = 2vi1 − vi−11 − h2

(γ1)2
{c211 ui

1 + c221 vi1 + c231 wi
1},

wi+1
1 = 2wi

1 − wi−1
1 − h2

(γ1)2 + χ1γ0h
{(c311 ui

1 + c321 vi1 + c331 wi
1 + χ1γ0(J

i
1a − J i

2a)},
(2.62)

where h is the time step.
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With the same conventions the outer shell can is expressed as

ui+1
2 = 2ui

2 − ui−1
2 − h2

(γ2)2
{c112 ui

2 + c122 vi2 + c132 wi
2},

vi+1
2 = 2vi2 − vi−12 − h2

(γ2)2
{c212 ui

2 + c222 vi2 + c232 wi
2},

wi+1
2 = 2wi

2 − wi−1
2 − Ωh{(c312 ui

2 + c322 vi2 + c332 wi
2 + χ2(−pi0 + J i

e − γ0(J
i
11 − J i

21))},
(2.63)

where Ωh = 2h2

2(γ2)2+hχ2
. The J terms are summations, defined as

J i
1a =

i−1∑
j=1

{wj+1
1 − 2wj

1 + wj−1
1 }h−1 ξi−j1a , (2.64)

J i
2a =

i−1∑
j=1

{wj+1
2 − 2wj

2 + wj−1
2 }h−1 ξi−j2a , (2.65)

J i
11 =

i−1∑
j=1

{wj+1
1 − 2wj

1 + wj−1
1 }h−1 ξi−j11 , (2.66)

J i
21 =

i−1∑
j=1

{wj+1
2 − 2wj

2 + wj−1
2 }h−1 ξi−j21 , (2.67)

J i
e =

i−1∑
j=1

{wj+1
2 − 2wj

2 + wj−1
2 }h−1 ξi−je , (2.68)

where ui
1, v

i
1, w

i
1, u

i
2, v

i
2, w

i
2, ξ

i
1a, ξ

i
2a, ξ

i
11, ξ

i
21, and ξie, are the nodal values of umn,1(t),

vmn,1(t), wmn,1(t), umn,2(t), vmn,2(t), wmn,2(t), ξ
i,1
n (cic

−1
e t)|r=r0 , ξ

i,2
n (cic

−1
e t)|r=r0 , ξ

i,1
n (cic

−1
e t)|r=a/r0 ,

ξi,2n (cic
−1
e t)|r=a/r0 , and ξen(t)|r=r0 .

The convergence of the scheme was analyzed and it was established that the step

size of h = 0.001 is sufficient to ensure convergence in all cases of interest.
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Results and Shell Thickness Analysis

3.1 Overview

To analyze the effects of the different variables of the system, a parametric approach

was used. This approach involved two major geometries of the problem, a model with

a relatively small inter-hull space, and a model with a much larger inter-hull space. For

each model, three different material configurations were considered. These different

cases included a baseline steel inner and outer shell setup with water as the inter-hull

fluid, one with the water replaced by diesel fuel, and one where a composite material

was used for the outer shell. The simulations are named according to this shell and

fluid configuration: steel-water-steel, steel-diesel-steel, and steel-water-composite.

For each of these configurations, multiple simulations are carried out to test the

effect of the inner and outer shell thicknesses. There are six thickness values used

for the inner shell and a further six values used for the outer shell for a total of 36

thickness combinations. The values of interest are then extracted from each dataset,

most notably the location, timing, and value of the stress and strain experienced

during the simulations. From these, three-dimensional plots are generated that show

the extreme values for each thicknesses of the inner and outer shells.

The mathematical model used requires the input of material properties of the

shell and shockwave. For the purposes of this analysis the shockwave is defined as

follows. Its origin is fixed at 4 radii from the shell, with variables corresponding to

a 50kg charge of TNT. The properties of the external fluid will remain constant and

correspond to water.

For the purposes of this parametric study two different geometries will be used, a

large and small inner shell radius. This is handled with the variable, a, which expresses

radius of the inner shell normalized to the radius of the outer shell, which itself is

expressed dimensionlessly within the model as r0 = 1. With these response functions

calculated, the parametric analysis branches off into multiple cases that explore the

23
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effects of different material and fluid configurations of the shell structure. The two

geometries present within this study are the large inter-hull geometry, (a = 0.5), and

the small inter-hull geometry, (a = 0.09).

With the geometries fixed, the different cases that make up the next level of the

parametric analysis are all material-related. For each shell, the density ρ, speed of

sound c, and Poissons ratio ν are defined. The internal fluid is similarly defined by

density ρ, and speed of sound c. By modifying these variable sets we create our three

major cases for study. The steel-water-steel configuration will serve as the first case

and will act as the baseline for comparison. Modifying the fluid used gives us our

steel-diesel-steel case to analyze the effect of the internal fluid. Finally, by modifying

the values of the external shell material, we create a steel-water-composite case.

Finally, for each of these cases our shell thicknesses, h1 and h2 will be varied. Six

values of the inner shell thickness will be used, equally spaced between h1 = 0.0025

and h1 = 0.01, or 0.25% to 1% of the inner radius. Similarly, six values of the outer

shell radius will be used for each of these, varying between 20% and 100% of the

inner shell thickness. The combination of the two gives a total of 36 datasets per

case. These datasets include values of stress for both shells, from which maximum

values can be extracted, including the time and location of those maxima.

Each dataset is an individual execution of the three-dimensional model, which

takes approximately 8 hours to complete. To make computation easier the model was

broken up into multiple steps with the datasets saved in text form after each step.

Up to six datasets were run concurrently, increasing the time spent on individual

simulations, but allowing for easier scheduling and greatly speeding up the overall

process. The majority of the data was computed over the course of a month in June

of 2014, with additional computations done later as needed. The two-dimensional

model, by comparison, took under two hours to complete a simulation. Overall,

due to efficient scheduling, running more instances of the model concurrently, and

reducing the number of variables analyzed, the three-dimensional parametric analysis

took a comparable amount of time to the two-dimensional analysis.
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3.2 Individual Case Results

Each case is considered plotted separately on a three-dimensional graph against the

thickness of the inner and outer shell to examine what trends are present with respect

to shell thickness.

3.2.1 Steel-Water-Steel Case (a=0.5)

The steel-water-steel case was the simplest case and served as the basis for comparison

for the others. For this geometry the dimensionless external radius was r0 = 1 and

internal radius was a = 0.5. Both shells of this structure were comprised of steel with

densities ρ1 and ρ2 of 7800kg/m3, sound speeds c1 and c2 of 5000m/s, and Poisson’s

ratios ν1 and ν2 of 0.3. The thickness of the inner shell, h1, varied between 0.25%

and 1% of r0. The thickness of the outer shell, h2 similarly varied between 20% and

100% of h1. All fluids used were water, with densities ρe and ρi of 1000kg/m
3, and

sound speeds ce and ci of 1400m/s. Results from this case can be found in Figures

3.1 to 3.8.

The steel-water-steel case illustrates the general trend seen within all of the stress

and strain results. The maximum stress was found to decrease as the thickness of

the inner shell was increased. Additionally, there was also some decrease in the

maximum as the outer shell thickness as increased, but at a much lower rate. For

the inner shell the maximum stress peaked at 2273.8MPa and the maximum normal

displacement was 0.0256, both at the minimum thickness of inner and outer shells. For

the outer shell, the maximum stress peaked at 1057.8MPa with normal displacement

0.0207. Again, these maxima occurred at the point where the thicknesses were at

their minimum.

For the inner shell, the maximum stress occurred at different points along the

surface of the shell depending on the thicknesses of the shell. For higher thicknesses

of the inner shell the maxima were located at the point nearest the origin of the

shockwave. For lower thicknesses, however, the maxima occurred at intermediate

points along the surface of the shell, neither at the point closest nor furthest from the

shockwave origin. For the outer shell, the maximum stresses only appeared at two

distinct points. For small thicknesses, the maxima were located at the point nearest
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to the origin of the shockwave, but as the thicknesses were increased, the maximum

values moved to the point farthest from the shockwave origin. It is also worth noting

that for the outer shell, the maxima that occur nearest to the origin were actually

occuring at a later time within the simulation, as can be seen in Figures 3.6 and 3.8;

they are stress wave superpositions, rather than part of the initial impact.
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3.2.2 Steel-Diesel-Steel Case (a=0.5)

The steel-diesel-steel case examined the effect of the inner fluid. Most of the variables

were identical to the steel-water-steel case; the dimensionless external radius was

r0 = 1 and the internal radius was a = 0.5. Again, both shells of this structure

were comprised of steel with densities ρ1 and ρ2 of 7800kg/m3, sound speeds c1 and

c2 of 5000m/s, and Poisson’s ratios ν1 and ν2 of 0.3. The thickness of the inner

shell, h1, varied between 0.25% and 1% of r0. The thickness of the outer shell, h2

similarly varied between 20% and 100% of h1. The difference only appeared within

the fluid variables. While the external fluid variables remained the same, with a ρe

of 1000kg/m3 and ce of 1400m/s, the internal fluid density and sound speed were

reduced to a ρi of 880kg/m
3 and a ci of 1250m/s. Results of this case can be found

in Figures 3.9 to 3.16.

The results of the steel-diesel-steel case were very similar to those of the steel-

water-steel case. The trends were essentially the same, with the maximum stress

very clearly decreasing as the inner shell increased in thickness, and also slightly

decreasing as the outer shell increased in thickness. For the inner shell the maximum

stress peaked at 2262.3MPa and the normal displacement at 0.0266, both at the

minimum thicknesses of inner and outer shells. For the outer shell, the maximum

stress peaked at 1188.7MPa and the normal displacement at 0.0220. Once again

these values all occurred at the point where the thicknesses are at their minimum.

Compared to the steel-water-steel case, all of these peakss were slightly higher, with

the exception of the internal stress, which was slightly lower.

Compared to the steel-water-steel case, the timings and locations of the maxima

were very similar, but some additional dependance on the outer shell thickness ap-

peared within the results. Once again, for the inner shell, the maximum stress occured

at multiple points. For higher thicknesses of the inner shell the maxima was always

at the point nearest the origin of the shockwave. However, for lower thicknesses of

the inner shell two possibilities occurred. First, when both the inner and outer shells

were thin, the maxima appeared at intermediate points along the side of the shell,

neither at the point closest to the shockwave origin, nor at the point furthest from

the shockwave origin. However, at some points where the outer shell was thicker, the

maxima occured once again at the point nearest the shockwave origin.
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For the outer shell, a similar dependance appeared. For large thicknesses of the

inner shell the maxima all occurred at the point farthest to the origin of the shockwave.

For small thicknesses of the inner shell there was some variation depending on the

thickness of the outer shell. When both inner and outer shell were thin, the maxima

was located at the point nearest the shockwave origin, but as the outer shell thickness

was increased the maxima shifted to the point point farthest from the shockwave

origin. Like in the steel-water-steel case the maxima that were located nearest to the

origin were actually happening at a later time within the simulations; a superposition

of the different shockwave components, rather than part of the initial impact.
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Figure 3.12: Steel-Diesel-Steel (a=0.5), Maximum Outer Shell Normal Displacement



35

0.004

0.006

0.008

0.01

h1
r0

0.2

0.4

0.6

0.8

1

h2
h1

1
1.2
1.4

1.6
Time

0.004

0.006

0.008h1
r0

Figure 3.13: Steel-Diesel-Steel (a=0.5), Timing of Maximum Inner Shell Stress (Di-
mentionless)

0.004

0.006

0.008

0.01

h1
r0

0.2

0.4

0.6

0.8

1

h2
h1

1.5
1.6
1.7
1.8
1.9

Time

0.004

0.006

0.008h1
r0

Figure 3.14: Steel-Diesel-Steel (a=0.5), Timing of Maximum Outer Shell Stress (Di-
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Figure 3.16: Steel-Diesel-Steel (a=0.5), Location of Maximum Outer Shell Stress
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3.2.3 Steel-Water-Composite Case (a=0.5)

The steel-water-composite case examined the effect of modifying the material com-

position of the outer shell. Like the previous cases, the dimensionless external radius

was r0 = 1 and the internal radius was a = 0.5. The difference in this case that rather

than both shells of this structure being comprised of steel, only the internal shell was,

with density ρ1 of 7800kg/m3, sound speed c1 of 5000m/s, and Poisson’s ratio ν1 of

0.3. The external shell was comprised of a composite material, with density ρ2 of

1800kg/m3, sound speed c2 of 3430m/s, and Poisson’s ratio ν2 of 0.15. Besides these

changes, the simulation was identical to the steel-water-steel case, with the thickness

of the inner shell, h1, varied between 0.25% and 1% of r0 and the thickness of the

outer shell, h2, varied between 20% and 100% of h1. The fluid variables used were

those of water, density ρe and ρi of 1000kg/m
3, and sound speed ce and ci of 1400m/s.

Results of this case can be found in Figures 3.17 to 3.24.

The results of the steel-water-composite case varied greatly from the steel-water-

steel case, mostly when it came to the results of the external shell. For the inner

shell, the results were similar as the maximum stress decreased as the inner shell

thickness increased. However, unlike previous cases, the stress did not seem affected

by the thickness of the outer shell. For the outer shell, the numbers are an order of

magnitude lower than what was seen previously. The outer shell stress decreased as

the inner shell thickness was increased, but minimally so, only seeing a drop of around

10% after the initial increase, and remaining mostly constant after that. For the inner

shell the peak stress experienced was 2309.1MPa and the normal displacement was

0.0266. For the outer shell, the absolute maximum stress was 134.8MPa and the

normal displacement was 0.0208. As seen in the previous cases, all of these values

occur when the thicknesses of the shells were at their lowest. With the exception of

the outer shell stress, all of these peaks are slightly higher than the values seen in

the steel-water-steel case. The outer shell stress, however is a full order of magnitude

lower than what was seen in the steel-water-steel case.

As for the timings and locations, the results of the steel-water-composite case

were very similar to the steel-water-steel case for the inner shell, but not for the

outer outer shell. The inner shell maximum stress occured at multiple locations as

before, depending on the particular shell thicknesses. For higher thicknesses of the
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inner shell the maxima was at the point nearest the origin of the shockwave and for

lower thicknesses the maxima ocurred at intermediate points along the side of the

shell. For the outer shell, the maximum stress occurred at the point furthest from

the shockwave at all points except for when the inner shell was at it’s thinnest. In

those cases, the maximum values happened slightly later, and were located along the

side of the shell, at points neither furthest nor nearest the shockwave origin.
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(Dimentionless)
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3.2.4 Steel-Water-Steel Case (a=0.9)

This second iteration of the steel-water-steel case was the basis for comparison for

the other small inter-hull clearance models, as well as providing the first point of

comparison for the previous a = 0.5 cases. The only changes in this model were those

of the shell geometry. While the dimensionless external radius remained r0 = 1,

the internal radius was increased to a = 0.9. Otherwise, both shells were steel with

densities ρ1 and ρ2 of 7800kg/m3, sound speeds c1 and c2 of 5000m/s, and Poisson’s

ratios ν1 and ν2 of 0.3. As before, inner shell thickness, h1, varied between 0.25%

and 1% of r0 and outer shell thickness, h2 varied between 20% and 100% of h1. All

fluids were water with densities ρe and ρi of 1000kg/m
3, and sound speeds ce and ci

of 1400m/s. Results of this case can be found in Figures 3.25 to 3.32.

One of the differences seen in the stress and normal displacement, Figures 3.25

to 3.28 is the larger effect of the outer shell thickness compared to the results from

the previous geometry, seen in Figures 3.1 to 3.4. Other than this the general trends

within the stress and displacement were similar. The peak of the inner shell maximum

stress was 2382.2MPa with a normal displacement of 0.0376. For the outer shell, the

peak of the maximum stress was 1720.7MPa with a normal displacement of 0.0303.

As before, these peaks occur at the point where the thicknesses were at their minimum.

The timing and location results for these maximum values, Figures 3.29 to 3.29,

show very different patterns than those seen in the previous geometry, Figures 3.5

to 3.8. This case had three distinct times and locations where the maximum stress

occurred on the inner shell. The first was when the inner and outer shells were near

their thinnest, and the maximum stress was at the point closest to the shockwave

origin. As the inner and outer shells were increased in thicknesses the second location

was seen, where the maximum value appared at the point furthest from the shockwave

origin. Finally, when both thicknesses approached their highest a third location was

witnessed where the maximum value returned to a point close to the shockwave origin.

The timing data for these three locations indicated that they occurred separately, as

the shockwave reflects within the structure. For the outer shell, two distict times

were seen. Similar to the inner shell, as the thicknesses were brought to their highest

the maximum stresses occurred at a point near the shockwave origin at the front of

the shell. At low thicknesses, the maximum stress was far from the shockwave origin.
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Figure 3.26: Steel-Water-Steel (a=0.9), Maximum Outer Shell Stress (MPa)
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Figure 3.28: Steel-Water-Steel (a=0.9), Maximum Outer Shell Normal Displacement
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3.2.5 Steel-Diesel-Steel Case (a=0.9)

The second steel-diesel-steel case continued to examine the effects of the internal

fluid, as well as to provide more data on the effect of the small inter-hull geometry.

As such, only this geometry was changed compared to the steel-diesel-steel large inter-

hull model. The dimensionless external radius was r0 = 1 and the internal radius was

increased to a = 0.9. Once again,the shells of this structure were steel with densities

ρ1 and ρ2 of 7800kg/m3, sound speeds c1 and c2 of 5000m/s, and Poisson’s ratios ν1

and ν2 of 0.3. Inner shell thickness, h1, varied between 0.25% and 1% of r0 and outer

shell thickness, h2varied between 20% and 100% of h1. The external fluid density ρe

was 1000kg/m3 and sound speed ce was 1400m/s, the internal fluid density ρi was

880kg/m3 and sound speed ci was 1250m/s. Results of this case can be found in

Figures 3.33 to 3.40.

The results of this steel-diesel-steel analysis was very simular to those from the

steel-water-steel analysis. For the stress and displacement results, seen in Figures

3.33 to 3.36, only a small amount of variation can be seen compared to the previous

steel-water-steel results from Figures 3.25 to 3.28. The highest inner shell stress was

2133.18MPa and the highest normal displacement was 0.0366. The highest outer

shell stress was 1743.09MPa and the highest normal displacement was 0.0320. All

of these values continue to occur at the points where the shells are at their thinnest.

Compared to the steel-water-steel case, all of the inner shell values are slightly lower,

while the outer shell values are slightly higher.

The timing and location results for this case, Figures 3.37 to 3.40, are once again

similar to the steel-water-steel case seen in Figures 3.29 to 3.32. The three distinct

times and locations for the inner shell stress were again present, though slightly

shifted. The first when the inner shell was at it’s minimum the maximum stress was

at the point closest to the shockwave origin. Increasing the thickness shifted the max-

imum to the second location where the maximum value appared at the point furthest

from the shockwave origin. Finally, when the thicknesses approached their highest

the maximum stress returned to a point close to the shockwave origin. The timing

data continued to indicate that these three locations were separate occurances, as the

shockwave reflected within the structure. For the outer shell, two distict times were

again seen. When the thicknesses were brought to their highest the maximum stresses
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occurred at a point near the shockwave origin at the front of the shell, otherwise the

maximum stress was located at a point far from the shockwave origin.
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Figure 3.34: Steel-Diesel-Steel (a=0.9), Maximum Outer Shell Stress (MPa)
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Figure 3.36: Steel-Diesel-Steel (a=0.9), Maximum Outer Shell Normal Displacement
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Figure 3.40: Steel-Diesel-Steel (a=0.9), Location of Maximum Outer Shell Stress
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3.2.6 Steel-Water-Composite Case (a=0.9)

The second steel-water-compsite case continued to test effects of the outer shell ma-

terial, as well as provide further data for the study of the small inter-hull geometry.

As such, again the only change from the steel-water-composite large inter-hull model

was that of the geometry, with the dimensionless external radius kept as r0 = 1 and

increasing the internal radius to a = 0.9. The internal shell was steel with density ρ1

of 7800kg/m3, sound speed c1 of 5000m/s, and Poisson’s ratio ν1 of 0.3 and the exter-

nal shell was composite with density ρ2 of 1800lg/m
3, sound speed c2 of 3430m/s and

Poisson’s ratio ν2 of 0.15. Inner shell thickness, h1, varied between 0.25% and 1% of

r0 and outer shell thickness, h2, varied between 20% and 100% of h1. All fluids were

water with densities ρe and ρi of 1000kg/m
3, and sound speeds ce and ci of 1400m/s.

Results of this case can be found in Figures 3.41 to 3.48.

The results of the steel-water-composite case, Figures 3.41 to 3.44, are notably

different than those of the steel-water-steel case seen previously in Figures 3.25 to

3.28. While the inner shell stress results follow a similar trend to the steel-water-steel

case, they do not show any apparent dependance on the outer shell thickness. Unlike

the steel-water-composite a = 0.5 case from Figure 3.18, the outer shell here does

show decreasing stress with increased inner shell thickness, much like the other cases.

Peak inner shell stress was 2510.2MPa and normal displacement was 0.0385. Peak

outer shell stress was 257.43MPa and normal displacement was 0.0306. All of the

values were taken at the points where both shells were at their thinnest. Compared to

the steel-water-steel case, the internal shel stress and displacement peaks are slightly

higher. The outer shell peak stress is much lowe, and the normal displacement was

slightly higher.

The timing and location results for these values, seen in Figures 3.45 to 3.48, are

very different than those of other a = 0.9 cases. The inner shell maximum values

were located at two distinct points. When the inner shell thickness was lower, the

maximum values occurred at the point nearest the shockwave origin. As the inner

shell thickness was increased the maximum values shifted to the point furthest from

the shockwave origin. For the outer shell, the maximum value did not undergo any

sort of transition, and remained at the point furthest from the shockwave origin

regardless of the thickness of the inner and outer shells, unlike previous results.



55

0.004

0.006

0.008

0.01

h1
r0

0.2

0.4

0.6

0.8

1

h2
h1

1500

2000

2500

Stress

0.004

0.006

0.008h1
r0

Figure 3.41: Steel-Water-Composite (a=0.9), Maximum Inner Shell Stress (MPa)
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Figure 3.46: Steel-Water-Composite (a=0.9), Timing of Maximum Outer Shell Stress
(Dimentionless)
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Figure 3.47: Steel-Water-Composite (a=0.9), Location of Maximum Inner Shell Stress
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Chapter 4

Individual Variable Analysis

4.1 Overview

To understand the effects of each variable, direct comparisons were made between the

cases to highlight the differences within the results. For the steel-water-composite

and steel-diesel-steel cases, the sets were compared with the baseline steel-water-steel

case. For the differences caused by the geometry, the small inter-hull space models

were compared against their large inter-hull space counterparts. For all of the cases,

these comparisons were done by taking the maximum stress and maximum normal

displacement results and dividing them by their baseline counterparts to create a ratio

of change. These ratios allowed for visualization of the changes, indicating when

the variables had a large impact and when their effects were small. The resulting

graphics give a sense of the overall difference between the cases, while also containing

information of smaller, localized fluctuations.

59



60

4.2 Internal Fluid Analyis

To study the effect of the internal fluid on the model, diesel and water were both used

as the liquid medium between the inner and outer shells. The models were identical

except for the changes to the internal fluid variables. The baseline model had density

ρi = 1000kg/m3 and sound speed ci = 1400m/s to simulate water, whereas the

alternative model had density ρi = 880kg/m3 and sound speed ci = 1250m/s to

simulate diesel. The comparison was done by taking the maximum stress and normal

displacement values of the diesel results and dividing them by those of the steel results

to create a ratio between the two. These comparisons can be seen in Figures 4.1 to

4.8.
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4.2.1 Inner Shell Stress Comparison: Diesel

The first two graphics, Figure 4.1 and Figure 4.2, show the steel-diesel-steel to steel-

water-steel stress ratios for the inner shell of the a = 0.5 and a = 0.9 cases. These two

images show how the stress on the inner shell changes after the shockwave has passed

through the new fluid medium. In both cases, the ratio starts out low when the shells

are thinnest, and increases as the shell thickness increases, but the particulars of that

increase, as well as the scale, sets the two apart. When the inter-hull space is large,

the internal fluid appeared to have had a lesser effect on the inner shell stress. The

difference between the two models was limited to a range of approximately −2% when

the shells are thin, to +5% as the shells initially become thicker, leveling out to about

+3%. Here there is not a definite trend in the ratio with respect to the thickness of

the shells; the ratio starts near unity, sees a sharp increase, then declines slightly as

the thickness is increased. Overall the inner shell appeared to experience slightly more

stress as a result of the internal fluid changing to diesel, but the effect is fairly minor.

When the inter-hull space is small, however, the internal fluid appeared to have a

larger effect on the inner shell stress. The relative difference between these models

show a range of about −10% when the shells are thinnest, to +11% when the shells

are thickest. A possible explanation for this behavior relates back to the location and

timing of where the peaks happen. The decrease corresponds to a situation where the

maximum stress was a superposition of internal waves between the shells, so the diesel

isn’t able to propogate the waves as well as water, while the increase occurs when

the maximum is a result of the oncoming impact, where the diesel doesn’t absorb as

much of the impact.
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4.2.2 Outer Shell Stress Comparison: Diesel

Figure 4.3 and Figure 4.4 show the steel-diesel-steel to steel-water-steel stress ratios

for the outer shells of the a = 0.5 and a = 0.9 cases respectively. The ratios here

show a similar trend as their inner shell counterparts, but the values themselves are

quite different. When the inter-hull space is large, the internal fluid seemed to have a

larger effect on the outer shell stress. The difference between the diesel and the water

models ranges from about +10% to approximately +18%. This varied a bit, tending

toward the lower end when the inner shell was thinner, but overall the change in the

internal fluid caused an increase in the outer shell stress for this model. This is likely

a result of the internal fluid acting as a backing medium for the outer shell when the

shockwave makes contact with it, and in this regard is not a suprising result. When

the inter-hull space is small, the internal fluid did not have as much of an effect on

the outer shell stress. Here the difference between the models ranges from 0% to

+4%. There does appear to be some correllation with the shell thickness here, but

it is not as promenant as seen with the inner shell. Like the large inter-hull space

model, the general increase in stress may be a result of the internal fluid’s role as a

backing medium when the outer shell interacts with the external shockwave, and the

lesser effect may be a result of less fluid present when the inter-hull space is small.
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4.2.3 Inner Shell Normal Displacement Comparison: Diesel

Figure 4.5 and Figure 4.6 show the steel-diesel-steel to steel-water-steel normal dis-

placement ratios for the inner shells of the a = 0.5 and a = 0.9 cases. The behaviour

of the two shells here is quite different, with one case showing a trend with respect to

shell thickness, and the other showing a largely constant result. When the inter-hull

space is large the effect of the changing internal fluid seems to have had a mostly con-

stant effect. The difference between the steel-diesel-steel and steel-water-steel cases

here is limited to a small range of about +3.5% to +4.5%. While there is some vari-

ation in the figure, the results do not suggest an overall trend. The normal displace-

ment results for when the space is small look very different, with a trend correllating

with inner shell thickness. The diesel model had a lower normal displacement when

the inner shell is thin, but as the thickness increased the results become essentially

the same. The overall scale of the difference is, however, quite small, ranging from

−3% when the inner shell is at it’s thinnest to 0% when the shell is at it’s thickest,

suggesting a relatively minor effect overall.
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4.2.4 Outer Shell Normal Displacement Comparison: Diesel

Figure 4.7 and Figure 4.8 show the steel-diesel-steel to steel-water-steel normal dis-

placement ratios for the outer shells of the a = 0.5 and a = 0.9 cases. The two figures

are very similar, both indicating that the displacement in the outer shell increases for

all shell thicknesses when the internal fluid is changed to diesel. When the inter-hull

space is large the displacement of the steel-diesel-steel model sees an increase ranging

from +7% to +5.5% relative to the steel-water-steel case, a tight range of differences

much like the inner shell experienced. However, when the inter-hull space is small the

effect of the internal fluid does appear to vary with thickness. Here the difference be-

tween the two models ranges from +5.5% when the shells are thinnest, to +1% when

the shells are thickest. There is an overall trend that with increasing thickness the

results of the two models become more similar, though the steel-diesel-steel results

are at all points higher than the steel-water-steel results. A possible explanation for

this is that as the shells get thicker and thus more rigid, the effect of the backing fluid

has less of an impact on strain.
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4.3 Composite External Shell Analysis

To study the effect of the external shell in greater detail, two different materials were

used to model the external shells. The baseline model used an external shell made

of steel to match the internal shell, while the alternative model used a composite

material for the external shell. The models were identical except for the change

of shell material. The baseline model had density ρ2 = 7800kg/m3, sound speed

c2 = 5000m/s, and Poisson’s ratio ν2 = 0.3 to simulate steel, whereas the alternative

model had density ρ2 = 1800kg/m3, sound speed c2 = 3430m/s, and Poisson’s ratio

ν2 = 0.15 to simulate the composite material. The comparison was done by taking

the maximum stress and normal displacement values of the composite results and

dividing them by those of the steel results to create a ratio between the two. These

comparisons can be seen in Figures 4.9 to 4.16.
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4.3.1 Inner Shell Stress Comparison: Composite

Figure 4.9 and 4.10 show the steel-water-composite to steel-water-steel stress ratios

for the inner shell of the a = 0.5 and a = 0.9 cases. These graphics show how the

stress on the inner shell changes as a result of the shockwaves passing through a much

lighter external shell. The results of both cases are very similar, and both make sense

given the changes that were made to the model. When the inter-hull space is large

the relative difference between the composite model and the steel model increases

gradually as the external shell thickness is increased. This difference ranges from

+1% when the external shell is thinnest, to around +10% when the external shell is

thickest; the internal shell stress for the composite case being higher at all points.

Presumably the steel external shell is providing a greater barrier to the shockwave

than the composite shell, which is why the difference between cases increases with

thickness. The trend is the same for both small and large amounts of inter-hull space,

however, the magnitude of the difference increases when the inter-hull space is small,

ranging from around +3% when the external shell is thinnest to a maximum of +30%

when the external shell is thickest. Once again at all points the internal shell of the

composite case is under more stress than the steel case, but the difference between

cases is about three times larger. This also makes sense; as before, a steel external

shell absorbs more than a composite one, but here, without a large fluid medium

between the two shells, this external shell effect is a larger part of the interaction.
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4.3.2 Outer Shell Stress Comparison: Composite

Figure 4.11 and 4.12 show the steel-water-composite to steel-water-steel stress ratios

for the outer shell of the a = 0.5 and a = 0.9 cases. These graphics show the

differences in stress carried by the two outer shell materials. The cases here differ

by almost an order of magnitude, clearly setting these results apart from the others.

The results are not suprising considering how different the two materials actually are.

For the case where the inter-hull space is large the difference ranges from −87% to

−82%. When the inter-hull space is small the difference ranges from −85% to −82%.
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Water-Steel (a=0.9)
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4.3.3 Inner Shell Normal Displacement Comparison: Composite

Figures 4.13 and 4.14 show the steel-water-composite to steel-water-steel normal dis-

placements for the inner shells of the a = 0.5 and a = 0.9 geometries. The two figures

show a similar trend as the shell thicknesses change, which suggests a straightforward

relationship. In the first figure when the inter-hull space is large the difference be-

tween the cases ranges from +0% when the shells are at their thinnest, to +14% when

the shells are thickest. Basically, the internal shell of the steel-water-composite case

is displaced more relative to the steel-water-steel case the thicker the external shell is.

This fits with what would be expected from using a lighter material for the external

shell, as it absorbs less energy than a heavier shell would. In the second figure, when

the inter-hull space is small, the difference between the paired cases is larger, ranging

from +1% when the shells are thinnest to +21% when the shells are thickest. The

difference is larger likely because when the shells are closer, and there isn’t as much

internal fluid present, the external shell plays a greater role in absorbing energy from

the incoming shockwave.
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4.3.4 Outer Shell Normal Displacement Comparison: Composite

Figure 4.15 and 4.16 show the steel-water-composite to steel-water-steel normal dis-

placements for the outer shells of the a = 0.5 and a = 0.9 geometries. The two figures

are similar and show a trend much like the inner shells. When the shells are thinnest,

the difference between the steel-water-composite and steel-water-steel cases is small,

when the shells are thickest the difference is large.The difference between the cases

ranges from +0% to +15% for the large inter-hull space and from +0% to +17% for

the small inter-hull space. The reason the two results are so similar is likely because

the displacements here are largely the result of the incoming wave and are affected

minimally by the proximity of the two shells.
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4.4 Geometry Analysis

To study the effect of the the shell geometry, every case was done using two distinct

shell configurations. Only two configurations were used because each requires its own

response function to be pre-calculated, and simulations to be run separately for each

geometry. The first model used was one where the distance separating the two shells

was large. Here the inner shell radius was set at a = 0.5, 50% of the dimentionless

outer shell radius of r0 = 1. The second model was one where the distance between

the shells was small, the inner shell radius was set at a = 0.9, 90% of the outer shell

radius. Each of the different material and fluid configurations were first run using

the a = 0.5 geometry, then repeated for a = 0.9. Here, those results will be paired

and compared to each other to better understand how the change in geometry effects

the model in the presense of other variables. The results of these comparisons can be

seen in Figures 4.17 to 4.28. Results were obtained by normalizing the a = 0.9 results

to the a = 0.5 results to obtain a ratio of change between the two. These ratios were

then plotted with respect to shell thicknesses on three-dimensional figures.
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4.4.1 Inner Shell Stress Comparison: Geometry

Figures 4.17, 4.18, and 4.19 show the differences between the inner shell stress of the

a = 0.9 and a = 0.5 models for the steel-water-steel, steel-diesel-steel, and steel-water-

composite cases. Figure 4.17, representing the steel-water-steel cases, does not show

any obvious trend with shell thickness. The relative differences range from −10% to

+8%, fluctuating up and down as the thicknesses change. Figure 4.18, representing

the steel-diesel-steel cases, is similar. The relative differences here range from −∗∗%
to +5%, and follow a similar pattern as the steel-water-steel cases. Once again there

is no obvious trend correllating with shell thickness. Figure 4.19, representing the

steel-water-composite cases, breaks the previous pattern. Rather than the results

ranging from positive to negative, the relative difference ranges from +2% to +13%.

This means that for all thicknesses the a = 0.9 case experienced a greater stress than

the a = 0.5 case. The composite results do however mimic the steel and diesel results

in that the peak is at a similar location. All three cases experience peaks when the

outer shell is at it’s thinnest and h1

r0
= 0.004. Other than this similarity there does not

appear to be any clear correllation between shell thickness and the effect of changing

the distance between shells.
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4.4.2 Outer Shell Stress Comparison: Geometry

Figures 4.20, 4.21, and 4.22 show the differences between the outer shell stress of

the a = 0.9 and a = 0.5 models for the steel-water-steel, steel-diesel-steel, and steel-

water-composite cases. All three figures for this shell show a similar pattern, with

the ratio starting high and decreasing as the inner shell thickness increases. Figure

4.20, representing the steel-water-steel cases, shows a very clear relation between the

inner shell thickness and the effect of the change in geometry on the outer shell.

The relative difference here ranges from +60% when the inner shell is thinnest and

decreases steadily as the shell becomes thicker to around +10% when the shell is

thickest. A similar result can be seen in Figure 4.21, representing the steel-diesel-

steel cases. Here the trend is the same though the values are slightly reduced, having

a relative difference ranging from +42% to +0%. The third case shown in Figure 4.22

also has the same trend, though the values are higher, with the relative difference

ranging from +90% to +9%. All three cases indicate that changing the geometry

increases the stress on the outer shell. This effect is greatest when the inner shell is

thin, and decreases as the inner shell is made thicker. The effect is reduced slightly

when diesel is used as the internal fluid, but increases when the steel outer shell is

replaced with a composite material. Additionally, the outer shell thickness seems

to have only a minor effect on the relative stress in the steel-water-steel and steel-

diesel-steel cases. For these models, increasing the outer shell thickness decreases the

relative stress when the inner shell is thin, and increases the relative stress when the

inner shell is thick. This effect does not appear in the steel-water-composite case,

where the effect of the outer shell thickness is minimal at all thicknesses.
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Steel (a=0.5)



84

0.004

0.006

0.008

0.01

h1
r0

0.2

0.4

0.6

0.8

1

h2
h1

1
1.2
1.4
1.6
1.8

2

Ratio

0.004

0.006

0.008h1
r0

Figure 4.22: Outer Shell Stress Ratio of Steel-Water-Composite (a=0.9), to Steel-
Water-Composite (a=0.5)



85

4.4.3 Inner Shell Normal Displacement Comparison: Geometry

Figures 4.23, 4.24, and 4.25 show the differences between the inner shell normal

displacement of the a = 0.9 and a = 0.5 models for the steel-water-steel, steel-diesel-

steel, and steel-water-composite cases. For the two different geometries, all three sets

of cases show a similar pattern of increasing displacement as the inner shell thickness

is increased. Figure 4.23 shows the steel-water-steel case, with displacement increases

ranging from +46% when the inner shell is thinnest to +65% when it’s thickest. Also

present is a slight trend of decreasing displacement as the outer shell is made thicker.

These trends also appear in the steel-diesel-steel case, seen in Figure 4.24. The diesel

case does have a slightly lower range, however, with the displacement varying from

+37% to +60%. The trend continued in the steel-water-composite case, seen in Figure

4.25. Here the displacements are slightly larger, ranging from +50% when the inner

shell is thin to +65% when the shell is thick. No trend with respect to outer shell

thickness is present in this case.
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4.4.4 Outer Shell Normal Displacement Comparison: Geometry

Figures 4.26, 4.27, and 4.28 show the differences between the outer shell normal

displacement of the a = 0.9 and a = 0.5 models for the steel-water-steel, steel-

diesel-steel, and steel-water-composite cases. The results here are almost identical

for all three cases, with only minor differences between each. Figure 4.26 shows the

steel-water-steel case results, and indicates the general pattern. Here, reducing the

distance between shells is resulting in an increase to the outer shell displacement.

The difference is greatest when the inner shell is thin, at +46%, and smallest when

the inner shell is thick, at +35%. In the diesel case, seen in Figure 4.27, the range

is just slightly reduced, starting at +44% with a thin shell and decreasing to +30%

with a thick shell. In the composite case, seen in Figure 4.28, the range is slightly

increased, starting at +46% and decreasing to +35% with increasing shell thickness.

In the steel-water-steel and steel-diesel-steel cases, the displacement decreases slightly

as the outer shell is increased in thickness. In the composite case the displacement

increased slightly as the outer shell increased in thickness.
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Figure 4.26: Outer Shell Normal Displacement Ratio of Steel-Water-Steel (a=0.9), to
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Chapter 5

Three-Dimensional vs. Two-Dimensional Models

In this section the stress differences between the three-dimensional results and previ-

ous, two-dimensional results are presented. This is done much the same way as the

previous comparisons, with the three-dimensional results presented as a fraction of

the corresponding two-dimensional results, which provides a measure of how well the

two simulations match. As before, these comparisons were done for each variable set:

steel-water-steel, steel-diesel-steel, and steel-water-composite, and also done for both

large (a = 0.5) and small (a = 0.9) inter-hull spaces.

The visualization of the results gives an overall sense of where the simplifications

cause the two models to diverge, which helps to justify the extra effort of doing

a three-dimensional analysis. In all cases the two-dimensional values were higher

than the three-dimensional values. If only rough approximations are needed, a two-

dimensional study will get the results one needs. However, the differences between the

these results and those of a three-dimensional simulations are quite varied, and often

unpredictable. For some variable combinations the differences were small, within

10%, but for others they were notably larger, as much as 30%.
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5.1 Steel Results

The first graph, Figure 5.1, shows the steel-water-steel results for the inner shell with

a = 0.5, compared to the equivalent two-dimensional simulation. Here the three-

dimensional results range between just under 74% and 83% of the two-dimensional

results, averaging around 80%. The match is closest when the inner shell thickness

is low and also when the inner shell thickness is high, the match worsens slightly

when the inner shell thickness is at a moderate value. The differences between the

two and three-dimensional simulations do not appear to be affected by the outer shell

thickness in this case. As for the inner shell thickness, because of the up and down

variation within the results it makes it difficult to say whether this affects the how

close the two simulations match positively or negatively.
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Figure 5.1: 3-D vs 2-D, Inner Shell, Steel-Water-Steel (a=0.5)
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The second graph, Figure 5.2, shows the steel-water-steel results for the outer

shell with a = 0.5, compared to the equivalent two-dimensional simulation. The

three-dimensional values range between a low of 70% and a high of 77% relative to the

two-dimensional results, averaging around 75%. The variations here show a somewhat

different pattern for the inner shell during the same simulations. Like in the previous

figure, as the inner shell thickness is increased the match between the simulations

is initially high, worsens slightly, and then improves as the thickness approaches its

maximum value. Again it is difficult to say whether the inner shell thickness directly

affects the match between the two simulations. Unlike in the previous figure, however,

the match does appear to be affected by the outer shell thickness, as it can be seen to

both increase and decrease with it, depending on the particular inner shell thickness.
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Figure 5.2: 3-D vs 2-D, Outer Shell, Steel-Water-Steel (a=0.5)
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The third graph, Figure 5.3, shows the steel-water-steel results for the inner shell

with a = 0.9, compared to the equivalent two-dimensional simulation. In this figure

the match between the two simulations varies between 68% and 92%, with an average

of about 80% and a clear downward trend as the shell thicknesses are increasing.

The match seems primarily affected by the inner shell thickness, where there is a

straightforward decline as the shell thickness is increased. Additionally, there is a

slight decrease in the match as the outer shell thickness is increased, but the effect is

not as notable for higher inner shell thicknesses.
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Figure 5.3: 3-D vs 2-D, Inner Shell, Steel-Water-Steel (a=0.9)
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The fourth graph, Figure 5.4, shows the steel-water-steel results for the outer shell

with a = 0.9, compared to the equivalent two-dimensional simulation. In this figure

the values of the three-dimensional simulation relative to the two-dimensional can

be seen to vary between a low of 72% and a high of 85%, with an average of about

80%. Where the inner shell shown in the previous figure had a clear pattern with

respect to the shell thickness, for this one it is much less notable. As the inner shell

is increased in thickness the results do not appear to thrend trend one way or the

other, increasing at some points and decreasing at others. Additionally as the outer

shell thickness is increased the match improves at most points, especially when the

inner shell thickness is highest, but when the inner shell thicknesses is at a moderate

value increasing the outer shell thickness has the opposite effect.
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Figure 5.4: 3-D vs 2-D, Outer Shell, Steel-Water-Steel (a=0.9)
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5.2 Diesel Results

The first graph, Figure 5.5, shows the steel-diesel-steel results for the inner shell with

a = 0.5, compared to the equivalent two-dimensional simulation. Here the match

between the two simulations ranges from a low of 75% to a high of 92%, with an

average of about 82%. The trend is similar to the corresponding steel-water-steel

case, seen in Figure 5.1, but here the match is slightly higher with a more definite

upward trend. Like the steel case, as the inner shell thickness is increased there is an

initial drop in the match, before it steadily begins to rise. However, because the drop

is much smaller here and the upward trend more notable, it is possible to say that

wit as the thickness of the inner shell is increased, the difference between the two-

dimensional and three-dimensional results tends to decrease. Like the steel results,

however, the outer shell thickness does not appear to play any significant role in how

well the simulation values match.
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Figure 5.5: 3-D vs 2-D, Inner Shell, Steel-Diesel-Steel (a=0.5)
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The second graph, Figure 5.6, shows the steel-diesel-steel results for the outer shell

with a = 0.5, compared to the equivalent two-dimensional simulation. The match

between the simulations here ranges from just under 70% to 80%, averaging around

75%. Like the previous figure, this one also bears strong similarities to the equivalent

steel-water-steel case seen in Figure 5.2. At low inner shell thicknesses the match is

low and even drops slightly as the thickness increases. As the inner shell thickness

continues to increase, however, the match between simulations begins to improve,

until it plateaus as both the inner and outer shell thicknesses approach their maximum

values. Like the inner shell for this diesel case, aside from the initial fluctuations at

low thicknesses, the match generally improves as the inner shell becomes thicker.

Additionally, there are some variations with respect to the outer shell: at moderate

inner shell thickness values, the match improves with outer shell thickness, but at

the thickest values of the inner shell the match actually decreases as the outer shell

thickness increases.
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Figure 5.6: 3-D vs 2-D, Outer Shell, Steel-Diesel-Steel (a=0.5)
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The third graph, Figure 5.7, shows the steel-diesel-steel results for the inner shell

with a = 0.9, compared to the equivalent two-dimensional simulation. The three-

dimensional values relative to the two-dimensional values range from 68% to 82%,

with an average of about 75%. These values are at their highest point when both

shells are thinnest, then reach a secondary peak when the shells are at their thickest,

making it hard to isolate the effect of increasing the individual thicknesses. Increasing

the thickness of the outer shell results in opposite effects depending on inner shell

thickness, worsening the match when the inner shell is thin and improving it when

it is thick. Like the other figures from the steel-diesel-steel case, this figure shows

similarities to its steel-water-steel counterpart, shown in Figure 5.3. The steel-water-

steel figure does not show significant improvement in the match at higher thicknesses,

but it does follow much the same trend otherwise, so it is possible that the overall

trend would be similar if the simulations were ran with higher thickness values.
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The fourth graph, Figure 5.8, shows the steel-diesel-steel results for the outer shell

with a = 0.9, compared to the equivalent two-dimensional simulation. In this case

the match between simulations ranges from a low of 77% to a high of 86%, averaging

roughly 81%. Like its steel-water-steel counterpart seen in Figure 5.4, the graph

shows the simulation match fluctuating without a definite pattern across the different

thickness values. As with that case, increasing inner shell thickness does not appear

to affect the match definitively. Increasing the other shell thickness, however, does

tend to improve the match, most notably at higher inner shell thickness values, but

the effect is less pronounced and even negative at lower thickness values.
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Figure 5.8: 3-D vs 2-D, Outer Shell, Steel-Diesel-Steel (a=0.9)
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5.3 Composite Results

The first graph, Figure 5.9, shows the steel-water-composite results for the inner shell

with a = 0.5, compared to the equivalent two-dimensional simulation. The graph

here shows that the match between the two simulations ranges from a low of 74% to

a high of 84%, with an average of about 79%. As with the corresponding steel-water-

steel and steel-diesel-steel cases from Figures 5.1 and 5.5 respectively, the match here

trends almost wholly with the inner shell thickness. As in those cases, the simulation

match is high when the inner shell is thin and initially worsens as the shell increases

in thickness. Like the other cases, the match eventually reaches a low point and the

trend reverses itself, the match improving as the inner shell thickness approaches its

maximum value.

0.004

0.006

0.008

0.01

h1
r0

0.2

0.4

0.6

0.8

1

h2
h1

0.75

0.8

0.85

Ratio

0.004

0.006

0.008h1
r0

Figure 5.9: 3-D vs 2-D, Inner Shell, Steel-Water-Composite (a=0.5)
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The second graph, Figure 5.10, shows the steel-water-composite results for the

outer shell with a = 0.5, compared to the equivalent two-dimensional simulation.

Here the three-dimensional results relative to the two-dimensional results have a low

of 73% and a high of 81%. The results for this shell were essentially constant regardless

of the shell thicknesses for both two-dimensional and three-dimensional simulations.

The only notably different value was at the lowest inner shell thickness, which is

shown here as the high match point. For all other thickness values of the inner

shell, the match does not appear to appreciably change as the thicknesses increases.

Additionally, increasing the outer shell thickness also appears to have a minimal effect

on the match between the two simulations.
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Figure 5.10: 3-D vs 2-D, Outer Shell, Steel-Water-Composite (a=0.5)
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The third graph, Figure 5.11, shows the steel-water-composite results for the inner

shell with a = 0.9, compared to the equivalent two-dimensional simulation. The three-

dimensional values relative to the two-dimensional values range from a low of 75% to

a high of 94%, the highest value between the two simulations, with an average match

of about 85%. The trend here is clear, the match is best when the inner shell is thin

and worsens as the inner shell thickness increases. If the overall trend is similar to

what was seen in the steel-water-steel or steel-diesel-steel cases, Figure 5.3 and 5.7

respectively, there is probably lower limit to the match, as the slope at the highest

inner shell thickness is starting to flatten out like the previous cases did.
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Figure 5.11: 3-D vs 2-D, Inner Shell, Steel-Water-Composite (a=0.9)
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The fourth graph, Figure 5.12, shows the steel-water-composite results for the

outer shell with a = 0.9, compared to the equivalent two-dimensional simulation. In

this case the three-dimensional values relative to the two-dimensional values range

from 77% to 83%, with an average of about 80%. Unlike the equivalent shell from

the steel-water-steel and steel-diesel-steel cases, Figures 5.4 and 5.8 respectively, the

results show a clear trend with respect to the inner shell thickness. The match between

the two simulations is initially high when the inner shell is thinnest but worsens as

the inner shell is increased in thickness, though the effect is not particularly large, the

range of values on this graph being quite small. Additionally, the match between the

three-dimensional and two-dimensional results does not appear to be notably affected

by changes to the outer shell in this case; the graph indicating minimal changes in

the match as the outer shell is increased in thickness.
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Figure 5.12: 3-D vs 2-D, Outer Shell, Steel-Water-Composite (a=0.9)



Chapter 6

Conclusions

The three-dimensional model of the twin-hulled, submerged, fluid-filled structure was

able to simulate a variety of different conditions. While more computationally ex-

pensive than an equivalent two-dimensional simulation, the three-dimensional model

had no problem with any of the variables considered. The results across all variable

cases were consistent; the model behaved as expected given changing shell thicknesses,

internal fluids, shell composition, and inter-hull space. The comparisons performed

between the modified cases and the baseline models helped to isolate the individual

effects that these variables had, and give some understanding to how they interact

with each other.

Additionally, for all cases, the three-dimensional results match up well with those

from equivalent two-dimensional simulations. All stress values were directly compared

between the two models, with the differences between the two limited to a maximum

of just over 30%. This value actually appeared to be a limit of sorts in many of

the shell comparisons, as the match between three-dimensional and two-dimensional

results approached this value multiple times before starting to improve as different

variables were used.

The most notable contribution of this particular work to the established literature

is the addition of a full three-dimensional workup, including results, of the twin-

hulled version of the shell-shockwave problem. Additionally, as most of the previous

literature focuses on a two-dimensional version of the problem, the addition of a direct

comparison between these results, and equivalent two-dimensional results, is another

important addition.

102



103

6.1 Parametric Analysis

For the parametric analysis, each case was first plotted against the shell thickness to

create the first comparisons. The results here are consistent across all cases. Maxi-

mum stress and normal displacement greatly decrease for both internal and external

shells when the internal shell thickness is increased. Additionally, for steel-water-steel

and steel-diesel-steel cases, the stresses and normal displacements slightly decrease

as the external shell thicknesses are increased. This isnt true for the steel-water-

composite cases, however, which see very small changes as the external shell thickness

is increased.

The first variable that was examined on its own was the internal fluid, the change

in this case was the replacement of water as the inner shell fluid with diesel, a lighter,

less dense fluid that is more limiting to sound. Slight increases in the stress and

normal displacements across both the inner and outer shells for the majority of the

variable combinations were observed, consistent with the use of a lighter fluid that

absorbs less energy. The displacement changes were fairly minor, most limited to

within 5% or so. Much more notable were two very big differences in the stress

responses. When the spacing between the inner and outer shell was large, the change

in internal fluid resulted in an increase of the external shell stress of between 10%

to 18%. This fits with the lighter diesel fuel absorbing less of the incoming energy,

but in this case also providing less support to the external shell. The other notable

stress response was the internal shell when the inter-hull space was greatly reduced.

In this case the inner shell response varied both positively and negatively with shell

thickness, from -10% when the shells were thin to +11% when the shells were thick.

Here the role of the diesel alternated, possibly damping the stress due to it occurring

as a result of wave superposition in some cases, while failing to absorb as much of the

impact in others.

The second variable analysed was the material composition of the outer shell, the

change in this case replacing the steel outer shell with a much lighter shell made

from a carbon composite material. The differences between the two models were

quite predictable and consistent across geometries and thicknesses, with the outer

shell essentially offering less protection and absorbing less of the incoming energy.

The inner shell stresses and normal displacements increased in all cases, with the
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stress and displacement increases peaking at around 10% and 15% when the inter-

hull space was large to around 30% and 22% when the inter-hull space was small.

These increases were, predictably, largest when the external shell in each model was

thickest. The fact that the results for the small inter-hull model were larger makes

sense, considering the external shell is likely playing a bigger role in the interaction

when the distance between the two is so small. External shell behavior was quite

different than what had been seen previously, but make sense given the change in

material. The stress observed in the outer shell of the composite model was essentially

an order of magnitude lower than that observed in the steel, with decreases in the

range of -90% to -80% in both the large and small inter-hull space geometries. The

normal displacements of the composite shells were also largely the same across both

geometries, with only a slight increase when the shells are closer together. In both

cases, the difference in displacements gets larger as the external shell is considered to

be thicker.

The third variable analysed was the effect of the change to the inter-hull geometry,

which was done by comparing each small inter-hull model to its corresponding large

inter-hull model which act as the baselines. The results from these comparisons

indicated that each stress and normal displacement configuration has its own pattern

with respect to shell thickness, with few similarities across shells. What was common,

however, was that each case, steel-water-steel, steel-diesel-steel, and steel-composite-

steel affected each trend in generally the same way. For all stresses and normal

displacements, shrinking the space between shells resulted in an increase in both

stresses and normal displacements. The steel-water-steel case acted as the moderate

case and indicated the initial trend. Each steel-diesel-steel graph had slightly reduced

relative values across all thicknesses compared to the steel-water-steel case, and the

steel-water-composite cases would give slightly higher values, with few exceptions.
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6.2 Three-Dimensional vs Two-Dimensional Comparisons

The three-dimensional and two-dimensional models were compared by taking the

maximum stress results for each shell in the three-dimensional results and dividing

it by the corresponding result from a two-dimensional model that used the same

variables. The two-dimensional model used the same setup, but with mathemati-

cal simplifications to consider the problem as only a cross section, rather than as

a cylinder. All of the values for the three-dimensional study were lower than those

of the two-dimensional values, but within about 30% for all values. How well the

results matched between the two models varied somewhat unpredictably with shell

thickness, but were consistent across shells for each of the variable cases. Different

patterns emerged for each shell, some having trends with shell thickness and across

different cases, with others being harder to decipher.

The inner shell stresses for the large inter-hull cases all followed a similar pattern

with respect to the inner shell thickness. How well the two models match would

initially decrease as shell thickness was increased, before reaching a low point and

the trend reversing. Thus, in general, with the exception of low values for inner shell

thickness, the two model values match better the thicker the inner shell is. The low

point, however, shifts within each variable case, with the steel-diesel-steel low point

being closer to the thinnest values than the other two cases, and thus better matching

the two-dimensional model at moderate to high inner shell thicknesses. The overall

ranges for this shell have high points between 85% to 90% and lows of about 72%,

with averages around 80%, indicating that the three-dimensional results, on average,

have a decent match to the two-dimensional results, but with a higher variance.

The outer shell stresses for the large inter-hull cases show similar patterns in

the steel-water-steel and steel-diesel-steel cases, and a slightly different pattern for

the steel-water-composite case. All three show a comparatively low match between

the three-dimensional results and the two-dimensional results at all thickness values,

ranging between 70% and 80% in each case, with average values of about 75%. The

steel-water-steel and steel-diesel-steel cases vary more with respect to thickness and

do not follow any definite trend with respect to shell thicknesses. The steel-water-

composite case, however, shows a pattern similar to what was seen in the stress for

that shell, with a maximum at the lowest shell thickness, and minimal change at other
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thickness values. Overall, the three-dimensional values for the outer shell stresses

when the inter-hull space is large just do not match as well to the two-dimensional

values as some of the other shells do, but show less overall variance.

The inner shell stresses for the small inter-hull cases show very similar patterns

in each case. In these cases, the three-dimensional and two-dimensional results are

more similar at low thickness values, but the match worsens as the shells are increased

in thickness. The steel-water-steel and steel-water-composite cases show the highest

variance, with the match between the two models varying from over 90% when the

inner shells are thin to between 70% and 75% when the shells are thick, with averages

between 80% and 85%. The steel-diesel-steel case does not vary as much, and shows

some improvement in the match as the shells approach their thickest values. The

match in this case varies between a high of just over 80% to a low of 70%, averaging

about 75%. Overall, the three-dimensional values for this shell tend to be further

from the corresponding two-dimensional values the higher the shell thicknesses that

are considered, and tend to have more overall variance.

The outer shell stresses for the small inter-hull cases show similar patterns in the

steel-water-steel and steel-diesel steel cases. with a very different pattern for the

steel-water-composite case. The overall match between the three-dimensional results

and the corresponding two-dimensional results averages to be around 80% in each of

these cases, ranging between 85% and 75%, depending on the shell thicknesses. The

first two cases, steel-water-steel and steel-diesel-steel do not show any particular trend

with respect to shell thickness, while the third case, steel-water-composite, shows a

decline in the match between the three and two-dimensional model as the inner shell

thickness increases. These results suggest that the overall variance in the difference

between the three and two-dimensional results for this shell is smaller, and the average

match is decent, so while it may be difficult to predict, it doesn’t vary as much as

some of the others do with respect to shell thicknesses.
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6.3 Summary of Results

A brief summary of the results is as follows:

• Parametric Analysis

– Shell Thickness

∗ Increased inner shell thickness reduced stress and normal displace-

ments on both shells

∗ Increased outer shell thickness slightly reduced stress and normal dis-

placements on both shells in steel and diesel cases

∗ Composite case did not see this stress reduction as a result of increased

outer shell thickness

– Diesel Internal Fluid

∗ Inner shell sees both increases and decreases in stress, dependant on

shell thickness when the internal fluid is changed

∗ Inner shell normal displacement is changed minimally

∗ Outer shell stress and normal displacement increase, more when the

inter-hull space is large

– Composite External Shell

∗ Internal stress and normal displacements increase

∗ Increased external shell thickness no longer causes decrease in stress

and normal displacements

∗ External shell stress is an order of magnitude lower than steel cases

∗ External shell normal displacement is greater than steel case, espe-

cially at thicker shell values
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– Decreased Inter-hull Space

∗ Inner shell stress in steel and diesel cases see both increases and de-

creases at different shell thicknesses

∗ Inner shell stress in composite case increases

∗ Inner shell normal displacements increase

∗ Outer shell stresses greatly increase at lower shell thicknesses, and

slightly increase at high shell thicknesses

∗ Outer shell normal displacements increase, more at lower shell thick-

nesses

• Two-Dimensional Comparisons

– Shells had similar patterns of how well the two-dimensional and three-

dimensional results agreed

– Three-dimensional results always lower than two-dimensional results, with

a lower limit of about 70%

– Inner shell stress saw wider ranges of difference between the two shells,

dependant on shell thicknesses

– Outer shell stress had smaller ranges of difference than inner shells; differ-

ence, on average, greater than inner shell

– Outer shell stress did not trend in any particular way with increased shell

thicknesses
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6.4 Future Work

Having completed the parametric analysis, there is still work to do with the three-

dimensional model. This analysis successfully provided a wide range of three-dimensional

results for multiple variables, but, for the most part, avoided going into greater detail

with any variable besides shell thickness.

If further analyses are performed, a narrower focus on individual variables would

be one way to proceed. From a design standpoint, the material composition of the

shells seems a likely variable to explore in greater detail. Given the model is meant

to simulate a submarine, it would be appropriate to consider a cross section of differ-

ent materials used in marine construction as potential shell materials. Alternatively,

using real materials as a guideline, fictitious materials could be used to better high-

light the overall trends in behaviour as different qualities, such as density, are varied

incrementally.

Another variable that could easily be examined in greater detail is the shell spac-

ing. Here, two different shell geometries were considered as part of the parametric

analysis, but it would be entirely possible to examine the shell spacing in much more

gradual increments to see if any particular patterns of behavior emerge. The need to

compute response functions for each geometry mean that extremely fine variations in

spacing wouldnt be a desirable approach, but an analysis using a modest number of

different geometries is possible.

A final consideration for future work would involve the way that the different cases

are examined. For this study, in order to easily compare the many different cases,

the different variables were analyzed according to their effect on the maximum stress

and normal displacement of each shell. However, the effect each variable had on the

timings and locations of these maxima could be an important consideration from a

design standpoint. This would most easily be done when the focus is on individual

variable effects, rather than as part of a study involving a wide variety of variables.
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