
SECURITY FRAMEWORK FOR COMBINING
CONFIDENTIALITY AND INTEGRITY

by

Jayagopal Narayanaswamy

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2015

c© Copyright by Jayagopal Narayanaswamy, 2015

I would like to dedicate this thesis to the force that drives me to

succeed in every step I try to reach.

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Overview of Cryptography . 1

1.2 Motivation . 2

1.3 Proposed Approach . 3

1.4 Outline . 4

Chapter 2 Background and Literature Review 5

2.1 Overview of Cryptography . 5

2.2 Scheme 1: S-SCARS . 6

2.3 Scheme 2: HIDE . 7

Chapter 3 Proposed Approach 1: S-SCARS 10

3.1 Overview . 10

3.2 Architecture . 10

3.3 Assumptions . 12

3.4 Notations . 12

3.5 Design . 13
3.5.1 Key Generation . 13
3.5.2 Initial Communication . 13
3.5.3 Encryption . 14
3.5.4 Decryption . 16
3.5.5 Updating Nonce N . 18

3.6 Example . 19

iii

Chapter 4 Proposed Approach 2: HIDE 22

4.1 Overview . 22

4.2 Assumptions . 24

4.3 Notation . 24

4.4 Design . 25
4.4.1 Key Generation . 25
4.4.2 Encryption . 27
4.4.3 Decryption . 27
4.4.4 Integrity Check . 29

4.5 Example . 29
4.5.1 Encryption and Key Generation 29
4.5.2 Message Digest . 33

Chapter 5 Implementation . 34

5.1 S-SCARS . 34
5.1.1 Expansion . 34
5.1.2 Bit Flipping . 35
5.1.3 Compression . 36

5.2 HIDE . 36
5.2.1 Round 1 . 37
5.2.2 Round 2 . 41

5.3 Hardware Implementation . 44

Chapter 6 Evaluation . 47

6.1 S-SCARS . 47
6.1.1 Security Analysis . 47
6.1.2 Cryptanalysis . 48
6.1.3 Security Analysis using Cryptool 49
6.1.4 Performance Evaluation . 49

6.2 HIDE . 51
6.2.1 Security Analysis . 51
6.2.2 Cryptanalysis . 52
6.2.3 Security Analysis using Cryptool 52
6.2.4 Performance Evaluation . 56

6.3 Discussion . 56

iv

Chapter 7 Conclusion and Future Work 58

Bibliography . 59

v

List of Tables

Table 3.1 Notations for S-SCARS . 12

Table 4.1 Notations for HIDE . 24

Table 5.1 Summary of Hardware Implementation 45

Table 6.1 GE Comparison Table . 51

vi

List of Figures

Figure 3.1 The architecture of the proposed approach 11

Figure 3.2 Overview of the encryption process — S-SCARS 14

Figure 3.3 Overview of the decryption process — S-SCARS 17

Figure 3.4 An example of the proposed approach — Data Communication 20

Figure 3.5 An example of the proposed approach — Encryption 21

Figure 4.1 A Block Structure . 23

Figure 4.2 Overview of the encryption process — HIDE 23

Figure 4.3 Key Generation Process Overview 26

Figure 4.4 Encryption Process . 28

Figure 4.5 Overview of the decryption process — HIDE 29

Figure 4.6 An example of the Encryption and Integrity Check Process . . 32

Figure 5.1 Implementation of SCARS . 45

Figure 5.2 Implementation of HIDE . 46

Figure 6.1 Sample 1 — S-SCARS . 50

Figure 6.2 Sample 2 — S-SCARS . 50

Figure 6.3 Sample 3 — S-SCARS . 51

Figure 6.4 Sample 1 — HIDE . 53

Figure 6.5 Sample 2 — HIDE . 54

Figure 6.6 Sample 3 — HIDE . 54

Figure 6.7 Sample 4 — HIDE . 55

Figure 6.8 Sample 5 — HIDE . 55

vii

Abstract

Radio Frequency Identification (RFID) technology represents objects uniquely in or-

der to track their movement in the real world. To avoid an unauthorized entity

tracking the object and to offer security, RFID systems require data encryption al-

gorithms. However, they are severely resource-constrained and consequently, there

has been an interest in the research community for proposing light-weight security

protocols for RFID systems.

This thesis proposes two novel algorithms, namely, Standalone Simple Crypto-

graphic Algorithm for RFID Systems (S-SCARS) that offers data security by com-

bining integrity and authentication as part of the encryption process and Hybrid Sym-

metric Key Algorithm for Integrity Check, Dynamic Key Generation and Encryption

(HIDE), that generates keys dynamically, along with integrity check parameters.

A software implementation of the proposed algorithms, and a hardware implemen-

tation using Xilinx have been completed in order to analyze the resource utilization

of each algorithm. Furthermore, a security analysis of S-SCARS and HIDE has been

evaluated using Cryptool in order to compare the proposed algorithms with standard

algorithms such as AES, DES, RC4 and IDEA.

viii

Acknowledgements

I would like to thank my supervisor, Prof. Srinivas Sampalli, for his support and

encouragement in the successful completion of my research. I would like to remember

and thank my mentors: Mr. Ravichandran D, Mr. Gopinath S, Mr. Vishwanath J

and Prof. Srinivas Sampalli, who guided me in the right direction in choosing my

career. I would also like to thank my parents Mr. Narayanaswamy Jayaraman and

Mrs. Nirmala Narayanswamy for their constant encouragement and support.

ix

List of Abbrieviations Used

AKE Asymmetric Key Encryption

HIDE Hybrid Symmetric Key Algorithm for Integrity Check,

Dynamic Key Generation and Encryption

LFSR Linear Feedback Shift Register

NLFSR Non-Linear Feedback Shift Register

PRNG Pseudo Random Number Generator

RBS Redundant Bit Security

RFID Radio Frequency Identification

S-SCARS Standalone Simplified Cryptographic Algorithm for RFID Systems

SASI Strong Authentication and Strong Integrity

SCARS Simplified Cryptographic Algorithm for RFID Systems

SKE Symmetric Key Encryption

x

Chapter 1

Introduction

1.1 Overview of Cryptography

In network security, there are different goals, such as authenticity, confidentiality,

integrity, non-repudiation and digital signature, most of which can be achieved by

encrypting the message using cryptographic algorithms [8]. Further, it can consist of

different types, of which the most widely used are symmetric key algorithms, asym-

metric key algorithms and hashing algorithms. A message is encrypted initially by a

symmetric or an asymmetric key algorithm to provide confidentiality.

Symmetric key algorithms can be classified into two types: block ciphers and

stream ciphers. Block ciphers split a message into blocks of identical sizes, which are

encrypted with a pre-shared symmetric key block. A key for a block cipher remains

the same or is derived from an initial key using functions such as the Feistel function

[25]. In contrast, stream ciphers encrypt a stream of bits from a message with a

key bit-by-bit using the logical exclusive-OR (XOR) operation. The key stream is

generated by a PRNG through a fixed size input called the seed.

In stream ciphers, the encryption operation is simple but vulnerable to attacks

such as distinguishing and key recovery attacks [16]. An elegant way for a stream

cipher to generate a continuous stream of key bits is to use a Linear Feedback Shift

Register (LFSR), which requires an n-bit seed value. A drawback with a LFSR is

that an n-bit pattern may repeat in the key stream before completing all 2n possible

patterns [42]. To avoid this issue a Non-Linear Feedback Shift Register (NLFSR) has

been proposed, but there are no generic designs for a NLFSR [12] [3]. In addition,

in both block and stream ciphers, the key is derived from an initial key or a seed,

therefore, knowledge of the initial key reveals information about the original message.

After the encryption process, an encrypted message is hashed to offer integrity.

Hashing is a one-way mathematical function, which converts the variably sized mes-

sages into a fixed size output called a Message Digest (MD). The receiver verifies the

1

2

integrity of received message by hashing it and then compares it with the received

MD.

In general, major applications uses asymmetric key encryption to provide authen-

tication, symmetric key encryption to offer confidentiality and hashing for integrity.

Traditionally, a key is used to encrypt a message using a symmetric key encryption

algorithm to provide confidentiality, then the key is encrypted by an asymmetric key

encryption algorithm to offer authentication, and finally, both are hashed to include

integrity.

1.2 Motivation

To ensure major security goals, such as confidentiality, integrity and authentication,

multiple cryptographic algorithms are used. Therefore, every message is subjected

to multiple processes which make conventional cryptosystems computationally less

efficient [26][7][6]. Recent trends in cryptographic algorithms propose combined inte-

grated services, such as confidentiality with integrity or integrity with authentication,

etc. This motivated the proposal of a the symmetric key encryption algorithm that

can offer unified service to the system. On the one hand, a resource-constrained Radio

Frequency Identification (RFID) system requires a simple data encryption algorithm

that can prevent an unauthorized entity from tracking its object. On the other hand,

hybrid cryptographic approaches are gaining popularity in the applications which re-

quire high security over data transmission with efficient computation. This thesis

introduces two different data encryption schemes, the choice of which depends on the

application requirement.

A RFID system, which offers both unique identification as well as automation, is

an advancement over the traditional bar code system. As it is a cost effective technol-

ogy, its usage is gaining popularity over many domains of inventory management [23].

Among other applications, the military domain needs more security which increases

the necessity of implementing the cryptographic algorithms in RFID technology [30].

Since the RFID system is resource-constrained, using multiple algorithms to perform

a data encryption is a challenging process. In addition, less computational power

and a restricted number of gates allocated for security in RFID systems restrict them

from performing heavy computational operations [4]. This has led to researchers

3

proposing lightweight and ultra-lightweight encryption algorithms such as Humming-

bird [13], Redundant Bit Security algorithm (RBS) [20], Strong Authentication and

Strong Integrity (SASI) [9], etc.

Recently, an algorithm called Hummingbird was proposed as a hybrid of the

stream and block cipher approaches [13]. Hummingbird follows the traditional en-

cryption process of block ciphers such as substitution and looping, while a key is

derived through the stream cipher principle. However, this thesis is compared with

Hummingbird as an example to illustrate the importance of the hybrid approach.

1.3 Proposed Approach

The purpose of this thesis is to offer a unified data encryption scheme depending on

the application. A new approach for RFID systems called a Standalone Simplified

Cryptographic Algorithm for RFID Systems (S-SCARS) is introduced for resource-

constrained RFID systems. In addition, another cryptographic algorithm is proposed

as a hybrid encryption scheme called a Hybrid Symmetric Key Algorithm for Integrity

Check, Dynamic Key Generation and Encryption (HIDE) [31].

1. S-SCARS provides confidentiality, authentication and integrity check for resource-

constrained devices such as RFID. It uses a simple exclusive-OR (XOR) operation, an

expansion function, bit flipping and random number generation. Integrity check for

the message is offered through the expansion function and bit flipping without using

hashing. A tag and the server use random number generation to offer authentication,

instead of using traditional asymmetric key encryption. Finally, two rounds of XOR

operations provide confidentiality. Cryptool is used to perform security analysis and

theoretical cryptanalysis is included as well.

2. A hybrid encryption algorithm, HIDE [31], requires a simple (Exclusive-OR)

XOR operation. It uses the stream cipher approach to derive a key, while the block

cipher approach is adopted in the encryption process. In our approach, a key stream

is generated from a previous key block and an intermediate cipher text block, which

is encrypted with a message block-by-block using the XOR operation. In addition

to encryption, a fixed-size final key in each round is used as the MD that provides

the integrity to the message. Since we use only the XOR operation throughout the

4

encryption process and provide the integrity check parameter without using any ex-

ternal hashing algorithm, we expect that our approach will reduce the computational

complexity as well as increase performance. We have implemented the algorithm for

proof of concept and we show that our algorithm can withstand such potential attacks

as, differential, known cipher text, known plain text, distinguishing and key recovery

attacks. We also conducted standard security analysis tests (such as, entropy analy-

sis, periodicity check, frequency test, poker test, run test, serial test, etc.) and have

included the results in the security analysis section.

1.4 Outline

This thesis is organized into the following sections. In Section 2, a literature review

of this thesis is presented. In Section 3, the proposed algorithm for RFID systems

will be discussed. In Section 4, the proposed algorithm for a hybrid approach will be

discussed. In Section 5, the implementation of the proposed approaches are included.

In Section 6, the security analysis of the proposed approaches are discussed. Section

7 concludes the paper.

Chapter 2

Background and Literature Review

2.1 Overview of Cryptography

In cryptography, encryption techniques can be broadly classified into two types: Sym-

metric Key Encryption (SKE) and Asymmetric Key Encryption (AKE). In general,

SKE provides confidentiality and AKE offers authentication, where AKE has more

computational overhead compared to SKE. A symmetric key algorithm can be further

classified as block cipher and stream cipher. In both approaches the same key is used

to encrypt as well as decrypt the message. A stream cipher encrypts the message

bit-by-bit whereas a block cipher encrypts it block-by-block. Each block has a fixed

number of bits (say 4, 8, 16, 32-bit block, etc.) [26][11].

Integrity is an important component of network security that prevents an anony-

mous entity from data manipulation. The integrity of the message can be achieved

through hashing algorithms, such as, MD5, SHA1, SHA2, SHA3, etc. Traditional

hashing is a mathematical one-way function which encrypts the message, but decryp-

tion is not possible. It converts any variable size message to a fixed size output called

the Message Digest (MD). A collision between two MD is possible after hashing 2n

messages. However, as the encryption (or decryption) and hashing are disjointed op-

erations, the use of hashing will lead to computational overhead on the system [26]

[18] [27].

In recent years, a hybrid approach called Authenticated Encryption (AE) has

provided integrity as well as authenticity for short messages [21]. However, it requires

a Message Authentication Code (MAC), which is derived from the hashing technique.

This creates further computational overhead. In addition, AE is suitable for both

symmetric key and asymmetric key encryption mechanisms.

Signcryption was proposed for the asymmetric key algorithm [43][40], which re-

placed a traditional encrypt and sign practice by integrating message signatures (sim-

ilar to MD) as a part of an encryption process. Zheng et al.’s [43] work on the

5

6

signcryption scheme is based on the theory that a combined computational cost of a

signature (using hashing) and encryption will be less than their individual costs. In

signcryption, part of the key is generated using a hashing algorithm to provide the

integrity, and the same key is used to encrypt (using an asymmetric key algorithm)

the message to offer confidentiality, integrity and authentication [43].

2.2 Scheme 1: S-SCARS

The feasibility of Elliptic Curve Cryptography, which is an asymmetric key algorithm

for RFID systems, was investigated by Batina et al. [4]. They determined that

the public key encryption mechanism of Schnorr’s identification protocol was less

expensive than Okamoto’s technique for RFID systems. However, as the RFID is

a resource-constrained system, they also concluded that Symmetric key encryption

algorithms are preferable for RFID systems as they require less computation power.

Syamsuddin et al. [38] surveyed the Hash-Chain methods for RFID systems

against vulnerable attacks (such as man in the middle, desynchronization, spoof-

ing, replay attack, forward secrecy, etc.). Their work proves that existing protocols

fail to provide integrated services such as confidentiality, integrity and authentication

combined.

Jeddi et al. [20] proposed a symmetric key encryption algorithm called RBS

(Redundant Bit Security) to offer confidentiality with integrity for RFID systems.

They used the MAC algorithm to generate redundant bits, which helps offer integrity

to the message. The redundant bits generated are inserted into the original message

while encrypting. The encryption is performed with a smaller number of cycles as

compared to traditional encryption schemes and that leads to less computational

complexity. Later, the same approach was extended to offer authentication to the

message. [21].

Narayanaswamy et al. [32] framed a symmetric key-based encryption algorithm

for RFID systems, called Simplified Cryptographic Algorithm for RFID Systems

(SCARS), which also offers confidentiality along with integrity without using external

hashing algorithms. SCARS works on a framework of two rounds of XOR operations,

an expansion and a bit flipping function. There are two 64-bit keys, namely, Kp and

Kf , in which the key Kf is derived directly from Kp through the bit flipping function.

7

For an initial round of the XOR operation a 64-bit message is XORed with the key

Kp followed by the expansion function which doubles its size. A 128-bit output will

be processed through bit flipping, which is then XORed with the 128-bit key that

was concatenated from the keys Kp and Kf . This approach offers a unified service of

confidentiality and integrity, with reduced logic gates.

Hung-Yu Chien [9] proposed an ultra-lightweight authentication protocol for RFID

systems, called Strong Authentication and Strong Integrity (SASI), using a simple

bit-wise operation. It requires a static ID, two keys (K1 and K2) and pre-shared

IDS between the server and tag. For a request from the reader, the tag responds

with IDS or previous IDS. After successful authentication, the reader will generate a

random value, and using previously shared keys, it will also generate A, B and C. The

reader will share A, B and C, where the tag will extract A, B, C, n1 and n2, using

the pre-shared ID, K1 and K2. The tag will generate D and share it with the reader,

where authentication is achieved eventually. Though there are updated versions and

drawbacks in SCSI, this algorithm is used as an example of a unified approach for

offering authentication and integrity in a single approach, which is also an ultra light

weight algorithm.

In summary, existing algorithms offer a single security goal independently or more

security goals when integrated with other algorithms (e.g. RBS uses MAC [20]). S-

SCARS provides confidentiality, integrity and authentication to the message indepen-

dently, without support from any other algorithms.

2.3 Scheme 2: HIDE

In stream ciphers, an LFSR plays an important role in the generation of a key stream.

One possible implementation of a Pseudo Random Number Generator (PRNG) is

using an LFSR. An LFSR can be constructed by the consecutive assembly of shift

registers. An n-bit LFSR produces a continuous bit stream from an n-bit seed. One

of the drawbacks of an LFSR is that it will form a cycle on or before reaching 2n

patterns for a given n-bit seed (i.e. the same sequence of bits will be generated on or

before reaching 2n patterns) [42].

To overcome this drawback, an NLFSR is used [12] [3]. NLFSRs avoid the linearity

problem and extend the cyclic period. A common way of constructing an NLFSR

8

is to use more than one LFSR connected through logic gates. Logic gates are used

to choose the current LFSR output from a list of connected LFSRs. Thus, linearity

can be broken easily and the cyclic period will be extended. Even though NLFSR

acts as an alternative to LFSR, there is no NLFSR, which guarantees a long cyclic

period. Furthermore, a general technique for constructing NLFSRs has been an open

problem [28] [35] [17] [29].

Hybrid approaches that combine the benefits of both block and stream ciphers

are the focus of recent research. Trivium [10] is the stream cipher that uses the

block cipher principle for the key generation process, which is reviewed to present an

example of a hybrid approach.

Engels et al. [13] proposed an SKE algorithm called Hummingbird that encrypts

the message block-by-block and uses internal registers to update the key stream. It

has a small block size of 64-bits, which is further divided into four smaller blocks of

16-bits each that are equivalent to the number of bits in the internal state register.

Initially, the internal state register is loaded with random bits. Furthermore, the

LFSR and the cipher text are used to regenerate the internal state register bits. It

uses a 256-bit key that is split into four 64-bit keys to encrypt the message. Two

more secret keys, namely, K5 and K6, are introduced and these are derived from the

initial four keys. The Hummingbird algorithm has four rounds of substitution and

permutation and uses four keys on each round to encrypt the message. In the fifth

round, the output is encrypted with key K5 followed by a final substitution and then

encryption with key K6. This approach is more suitable for resource-constrained

devices such as RFID systems. It is resistant to differential as well as linear attacks

[13]. However, this algorithm is also an example of a hybrid approach and HIDE does

not inherit any properties used in Hummingbird.

Kutuboddin and Krupa [22] have extended the research on the Hummingbird al-

gorithm to increase its computational efficiency. They propose an approach, which

replaces the traditional Hummingbird modulo operation by introducing a Field Pro-

grammable Gate Array (FPGA). As the proposed approach uses the XOR operation,

computational efficiency is better compared to the original version.

In conclusion, existing algorithms are weak when it comes to generating a key

or the encryption process leads to computational overhead. To fill a gap between

9

computational overhead and to support a strong dynamic key generation process to

encrypt the message, HIDE uses a simple XOR operation for better computation,

and Intermediate Cipher Text (ICT) to generate the key dynamically.

Chapter 3

Proposed Approach 1: S-SCARS

3.1 Overview

RFID is a resource-constrained technology, which contains three entities, namely,

server, reader and tag. An RFID reader queries the tag to obtain the unique iden-

tification number stored in it. The reader will forward the response from the tag to

the server (where the data is processed). The tag has lack of storage memory, which

restricts the performance of a cryptographic operation on the message (tag’s unique

identification number) that leads to data insecurity. As discussed in the Literature

Review, symmetric key encryption is more suitable for RFID systems and the pro-

posed algorithm uses it in three parts, namely — an encryption part, a key generation

part and a random number generation part (used for authentication purpose). The

encryption part uses a basic XOR operation, an expansion function and a bit flip-

ping function, which combine to offer confidentiality and integrity. A random number

generation operation is included at both the tag and server side to provide authenti-

cation. Finally, a bit flipping function is used as well for the key generation part. Our

approach offers confidentiality, integrity and authentication to the message without

using an external algorithm (such as hashing or asymmetric key encryption mecha-

nism), which reduces the logic gate usage that makes this approach more suitable for

RFID technology.

3.2 Architecture

With the proposed approach, a typical communication proceeds as follows — the

server first queries the tag along with a piece of information that is used for authen-

tication, which is derived from pre-shared nonce bits. A key to encrypt the message

is pre-shared between the server and the tag, which leads to the encryption process

based on key synchronization. The tag verifies the received information to ensure

10

11

Figure 3.1: The architecture of the proposed approach

authentic communication and then generates random bits that are used for the later

authentication process. The message and newly generated random bits are encrypted

by the tag, which is forwarded to the server. The server decrypts it to retrieve the

message and generates random bits that will be used as nonce for the next commu-

nication. Further, the server encrypts the newly generated nonce and the previously

received random bits, which are forwarded to the tag. Finally, the tag compares the

received random bits with the existing ones and then updates the nonce value, if the

random bits are same. The architecture of this approach is shown in Figure 5.1.

12

3.3 Assumptions

It is assumed that the pre-shared key and nonce are securely transmitted between the

server and tag. Further, it is assumed that the communication procedure between

the server and the reader is well enough known that the present work deals only with

communication between the server and the tag.

3.4 Notations

Table 3.1 contains a list of the notations used in this work.

Table 3.1: Notations for S-SCARS

MSB Most Significant Bit

LSB Least Significant Bit

E Encryption

D Decryption

m Message

r Random bits

n Nonce

n
′

Authentication code

l Message length (or) LSB of message

Exp() Expansion function

Cmp() Compression function

BF () Flipping with respect to encryption or decryption

XOR() Logical XOR Operation

i Represents current message bit position

j Calculates the bit to be flipped

|| Concatenation operation

x Represents current flipping bit

Kp Key for first round of current message

Kf Key for first or second round of next or current message respectively

13

3.5 Design

An encryption mechanism ensures that the message is transmitted secretly between

legitimate users. Symmetric or asymmetric key encryption is used to encrypt the

message, which provides confidentiality and prevents external parties from accessing

the data. To avoid data manipulation by an unauthorized entity, a hashing algorithm

is used to offer integrity to the message. Authentication ensures that only legitimate

users access the data, which can be achieved through an asymmetric key encryp-

tion mechanism. This approach proposes the use of a less computationally intensive

symmetric key encryption algorithm for resource-constrained RFID systems which ac-

complishes the important security goals (confidentiality, integrity and authentication)

without using external algorithms.

3.5.1 Key Generation

The algorithm uses two keys — a present key Kp and a future key Kf . Both keys Kp

and Kf are (64 + 16)-bits long (which includes a 16-bit nonce n). The present key

Kp and nonce n were pre-shared, where Kf is derived directly from the concatenated

Kp and n values through the bit flipping function. After the bit flipping, the first

64-bits are used as future key Kf and the last 16-bits are used as authentication bits

n
′
, which is used to authenticate the server at each communication of an initial query

to the tag from the server. The nonce n is generated by the server for every successful

communication, updating it at both the server and tag ends. Finally, the key Kf will

be used as Kp and vice-versa. The first 64-bits from the key Kp is XORed with the

message for the first round. For the last round of encryption, the first 64-bits from

the keys Kp and Kf are combined to form a 128-bit key, which is XORed with the

128-bit output from the bit flipping function that will be the ciphertext.

3.5.2 Initial Communication

An initial message from the server to the tag has the authentication information

for the current communication, which varies from one communication to another.

The authentication code, n
′
, is generated and stored on both the server and the

tag before the current communication is invoked. The server initiates the process of

14

communicating with the tag by sending a 16-bit authentication code, n
′
, as plain text,

which was generated and pre-shared between them in the previous communication.

The tag verifies the authentication code and proceeds with the encryption process.

3.5.3 Encryption

The proposed approach uses an expansion function that is changed from a traditional

one, as well as a new operation called bit flipping. The expansion function uses a

logical exclusive-OR gate to offer integrity to the message, which doubles the original

message size. Bit flipping ensures that the expansion function offers integrity and

Figure 3.2: Overview of the encryption process — S-SCARS

15

is a supplementary process of the approach. Further explanations of the expansion

and bit flipping functions will appear in later sub-sections. Finally, two rounds of the

XOR operation provides confidentiality to the message.

In this protocol for RFID systems a 48-bit message is concatenated with 16-bits

that is generated randomly (say, random bit r) by the tag, which is XORed with the

first 64-bits of the present key, Kp. This is the first round of the XOR operation,

which will be followed by the expansion and bit flipping operations, which will be

discussed in the next section. Data after the expansion and bit flipping will again be

XORed for the second round with the first 64-bit future key, Kf , which will be the

final cipher text. Figure 5.2 illustrates the encryption process.

Expansion function, Exp(m)

The expansion function introduces additional bits to the original message, m, which

will generate a pattern to offer an integrity parameter to it. A logical XOR operation

is used to perform the expansion of the message that is concatenated with the random

bits. After an expansion operation the 64-bit output from the first round of the XOR

operation will be expanded to 128-bit (i.e. every 4-bits in the message starting from

the MSB is converted to 8-bit output after an expansion function), which converts

a 64-bit input message into a 128-bit output. This function will take the message,

m, as an input, and considers evey four bits (starting with the most significant bit

(MSB), m0, until the least significant bit (LSB), ml−1, where l represents the length

of the message in bits) to compute the integrity parameter. The expansion function,

Exp(m), is defined as follows:

(3.1)Exp(mi,mi+1,mi+2,mi+3) = mi||m′1||mi+3||mi+1||mi+2||m′2||mi+1||mi+3

Where, m′1 = XOR(mi,mi+1);

m′2 = XOR(mi+2,mi+3);

mi is the ith bit of the message m;

XOR(mi,mi+1) represents the exclusive-OR operation on the mi
th,m(i+1)

th bit posi-

tions;

Exp() represents the expansion function for encryption;

|| represents the concatenation operation.

16

The expanded message is proceeded by the bit flipping function, as discussed in

detail in the next section.

Bit flipping function for encryption, BFenc(m)

The bit flipping function (along with the expansion operation) provides an extra

layer of data integrity. The proposed protocol applies the bit flipping function on the

128-bit output of the expansion function, where a bit is flipped based on 2-bit input

(beginning with the MSB, m0, until the least-significant bit, m(2l−1)). For a given

128-bits, 64-bits are flipped, which will be followed by the final XOR operation with

the concatenated keys, Kp and Kf . The expansion function, BFenc(m), is defined as

follows:

mx = ¬mx (3.2)

Where, ¬ represents bit inversion or bit flipping;

x = (i+ j + 2)%128;

∀mi ∈ m, i = [0...127], j = [0...3];

i and i+ 1 were the indication of bit positions;

j indicates the flipping bit with respect to the indication bit i;

mx represents the bit to flip in a message m.

The values i and j are used to find the flipped bit that is represented by mx. A

variable i indicates the bit position in a message and j would be calculated by the bit

combination of i and i+ 1. Any bit that is flipped in a block is reflected only within

that block (i.e. the bit operations performed in a block are cyclic).

Finally, the tag responds to the server with the encrypted message that contains

the authentication information. The server decrypts the received message. The de-

cryption procedure is discussed in detail in the next section.

3.5.4 Decryption

The decryption process in this approach is an inverse of encryption. Initially, the

128-bit ciphertext is XORed with a 128-bit key that is concatenated from the keys

Kp and Kf , which is followed by the bit flipping function and compression operation

that results in restoring the message size to 64-bits from 128-bits. Finally, the 64-bit

17

Figure 3.3: Overview of the decryption process — S-SCARS

output is XORed with the key, Kp, which yields the plain text that contains the

actual message, M, with the random bits, R, (authentication information). The key

generation process for decryption is the same as the encryption process. Figure 3.3

illustrates the decryption process.

Bit flipping function for decryption, BFdec(m)

In this section, the proposed protocol performs the following bit flipping operation in

a manner opposite to the encryption, i.e. beginning with the LSB, m2l−1, until the

MSB, m0. The bit flipping function, BFdec(m) consumes 128-bits and generates the

18

same number of bits as the output from the initial XOR operation, which is similar

to encryption.

mx = ¬mx (3.3)

Where, ¬ represents bit inversion or bit flipping;

x = (i+ j + 2)%128;

∀mi ∈ m, i = [127...0], j = [0...3];

i is the indication of bit positions;

j indicates the flipping bit with respect to the indication bit i;

mx represents the bit to flip in a message m.

Compression function, Cmp(m′)

For each pair of bits of the ciphertext (m′), beginning with the MSB, m′0, until the

LSB, m′2l−1 [2l represents the length of the expanded ciphertext], the compression

function, Cmp(m′), is derived as follows. If XOR(mi,mi+3) is equal to mi+1, mi+3

is equal to mi+7, XOR(mi+4,mi+7) is equal to mi+5, and if mi+6 is equal to mi+3,

then, the received cipher text is assumed not to have been modified (i.e. the message

integrity is verified) and the decrypted message bits will be mi,mi+3,mi+4,mi+7.

Finally, the 64-bits from the compression operation is XORed with the present

key, Kp that will yield the plain text, which is composed of the actual message m and

the random bits r.

3.5.5 Updating Nonce N

The server generate 16-bits randomly, which will act as the nonce, n, for the next

communication. The 16-bit nonce generated by the server will be concatenated with

the random b its, r, which was received from the tag. The first half of the concatenated

message from the server will be composed of the random bits, r, and the second half

will be the nonce, n. On the one hand, the concatenated message will be encrypted by

the server using the same keys that were used for decryption (the encryption process

was already discussed earlier), which will be transmitted to the tag to update the

key. To encrypt the concatenated message, the 32-bit message is XORed with the

first 32-bits of the present key, Kp, followed by the expansion function on the 32-bit

19

output and then the bit flipping operation. Finally, the 64-bit output from the bit

flipping will be XORed with the future key, Kf . On the other hand, the server will

update the key by replacing the n
′

in the key, Kf with the new nonce, n, which will

act as Kp, for the next communication.

The tag will decrypt the received message to obtain the tag-generated random

bits r and the server-generated nonce n. If the tag-generated (and stored) random

bits are the same as the received one then the nonce n will be updated with the key

(similar to the server key update procedure).

3.6 Example

This section explains the proposed approach with an example (Figure 3.4 and Figure3.5).

The message size is 8-bits (the unique identification number of the tag) and the keys

(Kp and Kf) are 8-bits each. In addition, the random bits, r, the nonce, n and the

authentication code, n
′
, each have 2-bits.

A pre-shared present key, 10001011, is concatenated with the nonce, 01, (the

random bits generated by the server as shared with the tag in the previous communi-

cation) to generate a future key, 11011011, and an authentication code, 11, through

the bit flipping function. The server establishes communication with the tag by send-

ing the authentication code (11). After the tag verifies the authentication code (11),

it generates a random bit (10), which is concatenated with the message (001110).

A concatenated value, 00111010, is XORed with the present key (10001011), which

result (10110001) will be expanded to 16-bit (1110100100100101). An expanded value

will undergo bit flipping that is 1011111100001101 will be XORed with the future key,

11011011, that results in the cipher text (0011010011010110). The tag will forward

the encrypted message to the server, which will decrypts the received cipher text to

obtain the actual message and a random bit generated by the tag.

Now, the server will generate a random bit (10) that can be used as a nonce for

the next communication. A nonce (10) generated by the server is concatenated with

the received random bit (10) that will be XORed with the first 4-bits of the present

key (1000), which results in 0010. The output will be expanded and bit flipped then

XORed with the future key (11011011) to obtain a cipher text (10010101). The server

will forward the encrypted message to the tag that will decrypt the received cipher

20

Figure 3.4: An example of the proposed approach — Data Communication

text and compares the random bit (10) with the existing one. If both are same then

the tag will accept the nonce from the server and updates the key correspondingly.

21

Figure 3.5: An example of the proposed approach — Encryption

Chapter 4

Proposed Approach 2: HIDE

4.1 Overview

In block ciphers, common modes of encryption such as Cipher Block Chaining (CBC),

Propagating Cipher Block Chaining (PCBC) and Cipher Feedback (CFB) use the

cipher text as part of the encryption. This may lead to some information about the

original message being revealed to an attacker. To avoid this issue, this approach uses

an Intermediate Cipher Text (ICT) to generate a dynamic key. Since the dynamic key

on each block of the message encryption, the cipher text bits are completely random.

A hybrid encryption algorithm is proposed, which includes both stream cipher

and block cipher features. This approach consist of two parts: a key generation

part (based on stream ciphers) and two rounds of encryption (or decryption) using a

basic XOR operation (employing message blocks as in block ciphers). The message is

encrypted block-by-block with different (block) keys is used on each message block.

The size of one block in the message is 128-bits in sixteen 8-bit chunks.

Figure 4.1 illustrates an overview of the block structure and Figure 4.2 illustrates

the overall encryption process. This approach requires two initial keys that encrypt

the first block in each round. Except for the initial key, every successive key (to

encrypt each block) is derived from the bits in the current key block and an ICT

block. In general, blocks of message are encrypted using the blocks of keys generated

using the stream cipher scheme. Key generation and encryption follows a chained

approach, with the current (block) keys and ICTs used to generate (block) keys for

the encryption of the subsequent message blocks. The encryption and key generation

processes are described later in this section.

22

23

Figure 4.1: A Block Structure

Figure 4.2: Overview of the encryption process — HIDE

24

4.2 Assumptions

It is assume that the initial key used to encrypt the first block of the message in each

round is generated by the sender and securely transmitted to the receiver. The key

used to encrypt the message is randomly chosen from a set of strong keys.

4.3 Notation

Table 4.1 contains a list of notations that are used in the proposed approach.

Table 4.1: Notations for HIDE

Ka Range of keys to encrypt the message in Round One

Kb Range of keys to encrypt the message in Round Two

n Last block

l Current block

ix Prediction bit

M Message to be encrypted

m1,m2...ml Message blocks

XOR Logical bit-by-bit XOR operation

δ() Derivation function

ρ() Prediction function

γ() Inversion function

Mx Message block x

Kax Round One key block x

Kbx Round Two key block x

ICTx Intermediate Cipher Text block x

CTx Cipher Text block x

Cα,β Chunk β of component α (α can be Mx, ICTx, Kax, Kbx, CTx)

KG1 Key generation for Round One

KG2 Key generation for Round Two

25

4.4 Design

4.4.1 Key Generation

Since it is assumed that the key is known only to the sender and the receiver, we

generate successive keys from the previous keys with the help of an intermediate cipher

text (ICT). The term “intermediate cipher text” represents an encrypted message

after Round 1, whereas the actual cipher text is generated after Round 2 (as will

be discussed in detail in the encryption section). The key generation process in this

approach is different for both rounds. Each round uses a different initial key (Ka0 &

Kb0) to encrypt the first block in the message. To encrypt each successive block in

the message, we introduce a combination of prediction and derivation techniques to

generate successive keys (Ka1...n for Round 1 and Kb1...n for Round 2) from a previous

key block and an ICT block.

In prediction, three bits in every chunk per block are used to choose the ithx bit

within the respective chunk. The value of ix is based on the three binary bits chosen

in the chunk. The value of ix is a decimal representation of the 3-bit binary. In a

chunk, 3-bits are selected in a clockwise direction starting from the most significant

bit (MSB) in the chunk to the least significant bit (LSB) to choose one out of eight

possible values for ix, which is repeated 8 times starting from the MSB to the LSB.

The value of i represents the position of the binary bit in the chunk. Each value of ix

predicts a new bit that is used to generate chunks per block in every successive key.

As shown in Figure 4.3, three bits are rotated in a clockwise direction to yield one

out of eight possible values for ix.

In derivation, the successive key is generated by XORing the (ix − 1)th position

of the binary bit with the (ix + 1)th position of the binary bit to form a new bit.

The same process is repeated in every chunk per block to generate a whole key for

encrypting the successive block in the message. The whole process of key generation

offers a randomness in the key stream without forming a cycle.

The process for applying prediction and derivation in combination to generate

a key is as follows. In Round 1, the key is derived from key Ka series based on the

ICT block’s prediction. In contrast, Round 2’s successive keys are derived from the

ICT block based on the key block’s prediction. To generate a key, the prediction and

26

Figure 4.3: Key Generation Process Overview

27

derivation combination is applied alternatively on an ICT block and a key block over

two rounds.

4.4.2 Encryption

Initially, in Round 1, four out of eight bits (say 0, 2, 3, 5) in every chunk in a key Ka0

are inverted. The first chunk in the initial key Ka0 is XORed with the first chunk

in the first block of the message, which produces the first chunk in ICT0 (which

represents the ICT first block). Again, four out of eight bit (say 2, 4, 5, 7) in every

chunk in ICT0 are inverted (this process is common throughout the ICT blocks),

which is followed by successive key generation operations (already discussed in detail

earlier). The output of the key generation operation will be the first chunk in the key

Ka1 to encrypt the first chunk of the next message block. The first chunk of key Ka1

is XORed with the second chunk of key Ka0 that will be used to encrypt the second

chunk in the first block of the message. In conclusion, every first chunk in each block

of the message is directly XORed with the first chunk of the respective key, whereas

the successive chunks in each block in the message are encrypted with the XORed

output of the successive chunk in the present key and the currently derived chunk for

the next key. For example, the 4th chunk in message CM2,4 will be encrypted with the

XORed output of the 4th chunk in the current key CKa2,4 and the 3rd chunk in the

next key CKa3,3.

Round 2 follows the same procedure as Round 1, except that the message and

initial key Ka0 will be replaced by the ICT and key Kb0 respectively. In addition,

the inversion operation is applied on bits 1, 4, 6, 7 and 0, 1, 3, 6 for the key and the

ICT respectively. The output of Round 2 is the final cipher text. Every block in a

message is XORed with the key block to generate a cipher text. Figure 4.4 illustrates

the encryption process.

4.4.3 Decryption

Figure 4.5 illustrates the decryption process, which is symmetric with encryption.

28

Figure 4.4: Encryption Process

29

Figure 4.5: Overview of the decryption process — HIDE

4.4.4 Integrity Check

The final keys (say Ka(n+1) and Kb(n+1)) in each round of encryption will act as

the integrity check parameter. In this approach, the 128-bit key Ka(n+1) will be

concatenated with the 128-bit key Kb(n+1) to form a 256-bit message digest, which is

used for integrity check.

4.5 Example

4.5.1 Encryption and Key Generation

In this section the two rounds of the encryption process will be explained with a

generic example. Each round used different initial key (Ka0 and Kb0). Further, the

message (M) is segmented into different blocks. The first block of the plain text

message is encrypted with a key combination of Ka0 (the present key) and Ka1 (the

currently derived key) at Round 1 that generates the first ICT block.

Let the message blocks be:

M = M0,M1,M2,M3, ...,Mn (4.1)

30

Round− 1 : Encrypting the first block of the message: The message block will be

encrypted chunk by chunk. Before the XOR operation, bit positions 0, 2, 3, 5 will be

inverted in the first chunk of an initial key. Then, the first chunk in the first block

of the message will be XORed with the initial key’s first chunk (which is after the

inversion).

C ′Ka0,0
= γ(CKa0,0) (4.2)

CICT0,0 = EC′Ka0,0
(CM0,0) (4.3)

Once again, bits 2, 4, 5 and 7 in the ICT will be inverted before the key generation

process and the output will be used to generate a key to encrypt the next chunk as

well as the block.

C ′ICT0,0 = γ(CICT0,0) (4.4)

Each bit of the key, CKa1,0, is generated from the previous key, C ′Ka0,0
, whereas,

n bits in C ′ICT0,0 chooses a bit in C ′Ka0,0
to produce the new key, CKa1,0. In general,

a current key, Kal, is generated from the prediction of a previous ICT block, ICTl−1,

and the derivation of the previous key, Ka(l−1), in Round 1. Every first chunk in

the message block is directly XORed with the inversion of the first chunk in the key,

whereas the 2nd to 15th chunk in the message will be encrypted with an inversion of

the XORed value of the next chunk key with next block’s chunk’s key.

Key Generation: for initial chunks only

CKal,0 = ρ(C ′ICTl−1,0
[δ(C ′Ka(l−1),0

)]) (4.5)

For the 2nd to 15th chunks

CKal,1 = [CKal,1]XOR[CKa(l+1)l,0] (4.6)

...

CKal,15 = [CKal,15]XOR[CKa(l+1)l,14] (4.7)

The generic equation for encryption in Round 1 is as follows:

ICT0 = EKa0(M0), ICT1 = EKa1(M1), ..., ICTn = EKan(Mn) (4.8)

Figure 4.6 is an example diagram for the encryption and integrity check processes.

For this example, it is assume that the message contains only two blocks and that

31

each one has only two chunks (the typical block size used in this example is 16-bits,

which is composed of two 8-bit chunks). The initial key, Ka0 (10011010 11011011), is

encrypted with the message (00101101 00110011 10111011 01000011) which produces,

in Round 1, the ICT (00000011 11010010 10000001 01001111). Then, in Round 1,

the ICT block is used to predict a derivation bit in a key block, whereas in Round

2 a key block predicts the derivation bit in the ICT block. Further, in Round 2, the

cipher text (11110011 01000111 00111000 10111101) will be obtained by encrypting

the ICT with the key block Kb0 (10111011 00101100). Finally, the concatenation of

the last derived keys, Ka2 and Kb2, will act as the message digest, 01000111 11100010

10111001 11001111.

Round−2 : In this Round, the encryption process is the same as in Round 1. But

in the key generation process, the prediction and derivation functions are interchanged

between an ICT block and a key. An initial key (Kb0) encrypts the first block of the

ICT block. To encrypt subsequent blocks, a current key (Kbl) is generated from the

prediction of a previous Key block (Kb(l−1)) and the derivation of a previous ICT block

(ICTl−1). In Round 2, the bits chosen to invert are different form Round 1. For a

key bits 1, 4, 6 and 7 are inverted before encryption, whereas 0, 1, 3 and 6 are inverted

for the ICT chunks (after the encryption, but before the key generation process).

Encrypting first block of the message:

C ′Kb0,0
= γ(CKb0,0) (4.9)

CCT0,0 = EC′Kb0,0
(CICT0,0) (4.10)

C ′ICT0,0 = γ(CICT0,0) (4.11)

Key Generation: for initial chunks only

CKbl,0 = ρ(C ′Kb(l−1),0
[δ(C ′ICTl−1,0

)]) (4.12)

For the 2nd to 15th chunks

CKbl,1 = [CKbl,1]XOR[CKb(l+1)l,0] (4.13)

...

CKbl,15 = [CKbl,15]XOR[CKb(l+1)l,14] (4.14)

The generic equation for encryption in Round 2 is as follows:

CT0 = EKb0
(ICT0), CT1 = EKb1

(ICT1), ..., CTn = EKbn
(ICTn) (4.15)

32

Figure 4.6: An example of the Encryption and Integrity Check Process

33

4.5.2 Message Digest

The final keys generated from each round will be concatenated to yield the 256-bit

Message Digest.

MD = Ka(n+1)||Kb(n+1) (4.16)

Chapter 5

Implementation

In this thesis, Java is used as a primary language to implement the proposed al-

gorithms, namely, S-SCARS and HIDE. The source code for the primary functions

(expansion, bit flipping, prediction and derivation) is included in this section.

5.1 S-SCARS

There are three major operations (expansion, bit flipping and compression) accom-

plished in S-SCARS. The bit flipping is common for both encryption and decryption.

The expansion function is called while encrypting the message, whereas the compres-

sion is performed on the message during decryption.

5.1.1 Expansion

An expansion function involves doubling the message size, which inserts an integrity

check as well.

f o r (i n t x = 0 , y = 0 ; y < 2 ∗ message . l ength ; x = x + 4 ,

y = y + 8) {
expand [y + 0] = r1 xor [x + 0] ;

expand [y + 1] = r1 xor [x + 0] ˆ r1 xor [x + 1] ;

expand [y + 2] = r1 xor [x + 3] ;

expand [y + 3] = r1 xor [x + 1] ;

expand [y + 4] = r1 xor [x + 2] ;

expand [y + 5] = r1 xor [x + 3] ˆ r1 xor [x + 2] ;

expand [y + 6] = r1 xor [x + 1] ;

expand [y + 7] = r1 xor [x + 3] ;

}

34

35

5.1.2 Bit Flipping

A bit flipping function provides an additional bond to the expansion function. The

key generation process uses the bit flipping function as well.

f o r (i n t i =0; i<2∗message . l ength ; i= i +2)

{
i f (expand [i +0] == 0 && expand [i +1] == 0){

i f (expand [(i +2)%128] == 0){
expand [(i +2)%128]=1;

}
e l s e {

expand [(i +2)%128]=0;

}
}
i f (expand [i +0] == 0 && expand [i +1] == 1){

i f (expand [(i +3)%128] == 0){
expand [(i +3)%128]=1;

}
e l s e {

expand [(i +3)%128]=0;

}
}
i f (expand [i +0] == 1 && expand [i +1] == 0){

i f (expand [(i +4)%128] == 0){
expand [(i +4)%128]=1;

}
e l s e {

expand [(i +4)%128]=0;

}
}
i f (expand [i +0] == 1 && expand [i +1] == 1){

i f (expand [(i +5)%128] == 0){
expand [(i +5)%128]=1;

36

}
e l s e {

expand [(i +5)%128]=0;

}
}

}

5.1.3 Compression

An expanded message is reduced to its original size while applying the compression

operation, which detects any data modification in the message as well.

f o r (i n t x=0, y=0; y<r 2 xo r . l ength ; x=x+4, y=y+8)

{
i f ((expand [y+1]==(expand [y+0]ˆexpand [y+4])

&& (expand [y+5]==(expand [y+3]ˆ

expand [y +7]))

&& (expand [y+2] == expand [y+7])

&& (expand [y+6] == expand [y+0]))){
r 1 xo r [x+0] = expand [y +0] ;

r 1 xo r [x+1] = expand [y +3] ;

r 1 xo r [x+2] = expand [y +4] ;

r 1 xo r [x+3] = expand [y +7] ;

}
e l s e {

System . out . p r i n t l n (” Error ”) ;

}
}

5.2 HIDE

Prediction and derivation are two major operations in HIDE that are used to gen-

erate keys dynamically. To generate successive keys, the prediction and derivation

37

operations are applied alternatively to the ICT and the previous key for Rounds 1

and 2.

5.2.1 Round 1

In Round 1, successive keys are derived through predicting the ICT block.

f o r (i n t k = 0 ; k < (Message . l ength) ; k = k + 128) {
f o r (i n t z = 0 ; z < key . l ength ; z = z + 1) {

key [z] = succes s iveKey [z] ;

}
f o r (i n t z = 0 ; z < 128 ; z = z + 8) {

i f (key [z] == 0) {
key [z] = 1 ;

} e l s e {
key [z] = 0 ;

}
i f (key [z + 2] == 0) {

key [z + 2] = 1 ;

} e l s e {
key [z + 2] = 0 ;

}
i f (key [z + 3] == 0) {

key [z + 3] = 1 ;

} e l s e {
key [z + 3] = 0 ;

}
i f (key [z + 5] == 0) {

key [z + 5] = 1 ;

} e l s e {
key [z + 5] = 0 ;

}
}
f o r (i n t i = k ; i < (128 + k) ; i = i + 8) {

38

toExpansion [i] = Message [i] ˆ

key [(i + (0 + (k / 16))) % 1 2 8] ;

toExpansion [i + 1] = Message [i + 1]

ˆ key [(i + (1 + (k / 16))) % 1 2 8] ;

toExpansion [i + 2] = Message [i + 2]

ˆ key [(i + (2 + (k / 16))) % 1 2 8] ;

toExpansion [i + 3] = Message [i + 3]

ˆ key [(i + (3 + (k / 16))) % 1 2 8] ;

toExpansion [i + 4] = Message [i + 4]

ˆ key [(i + (4 + (k / 16))) % 1 2 8] ;

toExpansion [i + 5] = Message [i + 5]

ˆ key [(i + (5 + (k / 16))) % 1 2 8] ;

toExpansion [i + 6] = Message [i + 6]

ˆ key [(i + (6 + (k / 16))) % 1 2 8] ;

toExpansion [i + 7] = Message [i + 7]

ˆ key [(i + (7 + (k / 16))) % 1 2 8] ;

f o r (i n t z = i ; z < (i + 8) ; z = z + 1) {
Encrypt IntermediateCipherText [z]

= toExpansion [z] ;

}
i f (toExpansion [i + 2] == 0) {

toExpansion [i + 2] = 1 ;

} e l s e {
toExpansion [i + 2] = 0 ;

}
i f (toExpansion [i + 4] == 0) {

toExpansion [i + 4] = 1 ;

} e l s e {
toExpansion [i + 4] = 0 ;

}
i f (toExpansion [i + 5] == 0) {

39

toExpansion [i + 5] = 1 ;

} e l s e {
toExpansion [i + 5] = 0 ;

}
i f (toExpansion [i + 7] == 0) {

toExpansion [i + 7] = 1 ;

} e l s e {
toExpansion [i + 7] = 0 ;

}
f o r (i n t a = 0 ; a < 8 ; a = a + 1) {
i f (toExpansion [i + (a + 0) % 8] == 0

&& toExpansion [i + (a + 1) % 8] == 0

&& toExpansion [i + (a + 2) % 8] == 0) {
succes s iveKey [i % 128]

= key [(i + 7) % 128] ˆ key [(i + 1) % 1 2 8] ;

} e l s e i f (toExpansion [i + (a + 0) % 8] == 0

&& toExpansion [i + (a + 1) % 8] == 0

&& toExpansion [i + (a + 2) % 8] == 1) {
succes s iveKey [(i + 1) % 128]

= key [(i + 0) % 128] ˆ key [(i + 2) % 1 2 8] ;

} e l s e i f (toExpansion [i + (a + 0) % 8] == 0

&& toExpansion [i + (a + 1) % 8] == 1

&& toExpansion [i + (a + 2) % 8] == 0) {
succes s iveKey [(i + 2) % 128]

= key [(i + 1) % 128] ˆ key [(i + 3) % 1 2 8] ;

} e l s e i f (toExpansion [i + (a + 0) % 8] == 0

&& toExpansion [i + (a + 1) % 8] == 1

&& toExpansion [i + 2] == (a + 1) % 8) {
succes s iveKey [(i + 3) % 128]

= key [(i + 2) % 128] ˆ key [(i + 4) % 1 2 8] ;

} e l s e i f (toExpansion [i + (a + 0) % 8] == 1

&& toExpansion [i + (a + 1) % 8] == 0

40

&& toExpansion [i + (a + 2) % 8] == 0) {
succes s iveKey [(i + 4) % 128]

= key [(i + 3) % 128] ˆ key [(i + 5) % 1 2 8] ;

} e l s e i f (toExpansion [i + (a + 0) % 8] == 1

&& toExpansion [i + (a + 1) % 8] == 0

&& toExpansion [i + (a + 2) % 8] == 1) {
succes s iveKey [(i + 5) % 128]

= key [(i + 4) % 128] ˆ key [(i + 6) % 1 2 8] ;

} e l s e i f (toExpansion [i + (a + 0) % 8] == 1

&& toExpansion [i + (a + 1) % 8] == 1

&& toExpansion [i + (a + 2) % 8] == 0) {
succes s iveKey [(i + 6) % 128]

= key [(i + 5) % 128] ˆ key [(i + 7) % 1 2 8] ;

} e l s e i f (toExpansion [i + (a + 0) % 8] == 1

&& toExpansion [i + (a + 1) % 8] == 1

&& toExpansion [i + (a + 2) % 8] == 1) {
succes s iveKey [(i + 7) % 128]

= key [(i + 6) % 128] ˆ key [(i + 0) % 1 2 8] ;

}
}

key [(i +8)%128] = key [(i +8)%128]ˆ succes s iveKey [(i +0)%128];

key [(i +9)%128] = key [(i +9)%128]ˆ succes s iveKey [(i +1)%128];

key [(i +10)%128] = key [(i +10)%128]ˆ succes s iveKey [(i +2)%128];

key [(i +11)%128] = key [(i +11)%128]ˆ succes s iveKey [(i +3)%128];

key [(i +12)%128] = key [(i +12)%128]ˆ succes s iveKey [(i +4)%128];

key [(i +13)%128] = key [(i +13)%128]ˆ succes s iveKey [(i +5)%128];

key [(i +14)%128] = key [(i +14)%128]ˆ succes s iveKey [(i +6)%128];

key [(i +15)%128] = key [(i +15)%128]ˆ succes s iveKey [(i +7)%128];

}
}

41

5.2.2 Round 2

In Round 2, successive keys are derived through predicting the previous key block.

f o r (i n t k = 0 ; k < (Message . l ength) ; k = k + 128) {
f o r (i n t z = 0 ; z < key2 . l ength ; z = z + 1) {

key2 [z] = success iveKey2 [z] ;

}
f o r (i n t z = 0 ; z < 128 ; z = z + 8) {

i f (key2 [z + 1] == 0) {
key2 [z + 1] = 1 ;

} e l s e {
key2 [z + 1] = 0 ;

}
i f (key2 [z + 4] == 0) {

key2 [z + 4] = 1 ;

} e l s e {
key2 [z + 4] = 0 ;

}
i f (key2 [z + 6] == 0) {

key2 [z + 6] = 1 ;

} e l s e {
key2 [z + 6] = 0 ;

}
i f (key2 [z + 7] == 0) {

key2 [z + 7] = 1 ;

} e l s e {
key2 [z + 7] = 0 ;

}
}
f o r (i n t i = k ; i < (128 + k) ; i = i + 8) {
toExpansion2 [i] = toExpansion [i]

ˆ key2 [(i + (0 + (k / 16))) % 1 2 8] ;

toExpansion2 [i + 1] = toExpansion [i + 1]

42

ˆ key2 [(i + (1 + (k / 16))) % 1 2 8] ;

toExpansion2 [i + 2] = toExpansion [i + 2]

ˆ key2 [(i + (2 + (k / 16))) % 1 2 8] ;

toExpansion2 [i + 3] = toExpansion [i + 3]

ˆ key2 [(i + (3 + (k / 16))) % 1 2 8] ;

toExpansion2 [i + 4] = toExpansion [i + 4]

ˆ key2 [(i + (4 + (k / 16))) % 1 2 8] ;

toExpansion2 [i + 5] = toExpansion [i + 5]

ˆ key2 [(i + (5 + (k / 16))) % 1 2 8] ;

toExpansion2 [i + 6] = toExpansion [i + 6]

ˆ key2 [(i + (6 + (k / 16))) % 1 2 8] ;

toExpansion2 [i + 7] = toExpansion [i + 7]

ˆ key2 [(i + (7 + (k / 16))) % 1 2 8] ;

f o r (i n t z = i ; z < (i + 8) ; z = z + 1) {
CipherText [z] = toExpansion2 [z] ;

}
i f (toExpansion [i + 0] == 0) {

toExpansion [i + 0] = 1 ;

} e l s e {
toExpansion [i + 0] = 0 ;

}
i f (toExpansion [i + 1] == 0) {

toExpansion [i + 1] = 1 ;

} e l s e {
toExpansion [i + 1] = 0 ;

}
i f (toExpansion [i + 3] == 0) {

toExpansion [i + 3] = 1 ;

} e l s e {
toExpansion [i + 3] = 0 ;

}

43

i f (toExpansion [i + 6] == 0) {
toExpansion [i + 6] = 1 ;

} e l s e {
toExpansion [i + 6] = 0 ;

}
f o r (i n t a = 0 ; a < 8 ; a = a + 1) {
i f (key2 [(i + (a + 0) % 8) % 128] == 0

&& key2 [(i + (a + 1) % 8) % 128] == 0

&& key2 [(i + (a + 2) % 8) % 128] == 0) {
success iveKey2 [i % 128]

= toExpansion [i + 7] ˆ toExpansion [i + 1] ;

} e l s e i f (key2 [(i + (a + 0) % 8) % 128] == 0

&& key2 [(i + (a + 1) % 8) % 128] == 0

&& key2 [(i + (a + 2) % 8) % 128] == 1) {
success iveKey2 [(i + 1) % 128]

= toExpansion [i + 0] ˆ toExpansion [i + 2] ;

} e l s e i f (key2 [(i + (a + 0) % 8) % 128] == 0

&& key2 [(i + (a + 1) % 8) % 128] == 1

&& key2 [(i + (a + 2) % 8) % 128] == 0) {
success iveKey2 [(i + 2) % 128]

= toExpansion [i + 1] ˆ toExpansion [i + 3] ;

} e l s e i f (key2 [(i + (a + 0) % 8) % 128] == 0

&& key2 [(i + (a + 1) % 8) % 128] == 1

&& key2 [(i + (a + 2) % 8) % 128] == 1) {
success iveKey2 [(i + 3) % 128]

= toExpansion [i + 2] ˆ toExpansion [i + 4] ;

} e l s e i f (key2 [(i + (a + 0) % 8) % 128] == 1

&& key2 [(i + (a + 1) % 8) % 128] == 0

&& key2 [(i + (a + 2) % 8) % 128] == 0) {
success iveKey2 [(i + 4) % 128]

= toExpansion [i + 3] ˆ toExpansion [i + 5] ;

} e l s e i f (key2 [(i + (a + 0) % 8) % 128] == 1

44

&& key2 [(i + (a + 1) % 8) % 128] == 0

&& key2 [(i + (a + 2) % 8) % 128] == 1) {
success iveKey2 [(i + 5) % 128]

= toExpansion [i + 4] ˆ toExpansion [i + 6] ;

} e l s e i f (key2 [(i + (a + 0) % 8) % 128] == 1

&& key2 [(i + (a + 1) % 8) % 128] == 1

&& key2 [(i + (a + 2) % 8) % 128] == 0) {
success iveKey2 [(i + 6) % 128]

= toExpansion [i + 5] ˆ toExpansion [i + 7] ;

} e l s e i f (key2 [(i + (a + 0) % 8) % 128] == 1

&& key2 [(i + (a + 1) % 8) % 128] == 1

&& key2 [(i + (a + 2) % 8) % 128] == 1) {
success iveKey2 [(i + 7) % 128]

= toExpansion [i + 6] ˆ toExpansion [i + 0] ;

}
}

key2 [(i +8)%128] = key2 [(i +8)%128]ˆ succes s iveKey2 [(i +0)%128];

key2 [(i +9)%128] = key2 [(i +9)%128]ˆ succes s iveKey2 [(i +1)%128];

key2 [(i +10)%128] = key2 [(i +10)%128]ˆ succes s iveKey2 [(i +2)%128];

key2 [(i +11)%128] = key2 [(i +11)%128]ˆ succes s iveKey2 [(i +3)%128];

key2 [(i +12)%128] = key2 [(i +12)%128]ˆ succes s iveKey2 [(i +4)%128];

key2 [(i +13)%128] = key2 [(i +13)%128]ˆ succes s iveKey2 [(i +5)%128];

key2 [(i +14)%128] = key2 [(i +14)%128]ˆ succes s iveKey2 [(i +6)%128];

key2 [(i +15)%128] = key2 [(i +15)%128]ˆ succes s iveKey2 [(i +7)%128];

}
}

5.3 Hardware Implementation

An encryption process of the proposed algorithms are implemented using Xilinx

Spartan-6 FPGA. A summary of resource utilization is presented in the Table 5.1.

Figure 5.1 and 5.2 are hardware implementation of SCARS and HIDE respectively.

45

Table 5.1: Summary of Hardware Implementation

SCARS HIDE [32-bit I/O]

Number of Slices 124 69

Number of LUTs 269 173

Number of bounded IOBs 255 144

Average Fanout of Non-Clock Nets 3.12 3.78

Figure 5.1: Implementation of SCARS

46

Figure 5.2: Implementation of HIDE

Chapter 6

Evaluation

6.1 S-SCARS

A resource-constrained RFID system has a limited number of gates for implementing

advanced cryptographic algorithms, which leaves the system vulnerable to different

attacks. In this section, the qualitative security analysis along with the cryptanalysis

and performance evaluation will be discussed in detail.

6.1.1 Security Analysis

In a de-synchronization attack, an attacker interrupts the communication between

two parties and either modifies or drops the message [2]. As different keys are used

that are synchronized between the tag and server without the key exchange, dropping

or modifying the message will lead to de-synchronization of the key between them. To

avoid such a situation, an acknowledgment code n′ is used (which is derived from the

pre-shared key) from the server to the tag. As the acknowledgment code is in plain

text, the tag simply compares it without any complex operation and accepts it only

if both the received and existing (tag generated) acknowledgment codes are same. If

the message is dropped, the key will be desynchronized automatically, which leads to

the server notifying the administrator to reset the key. Though it leads to overhead

for the administrator (to reset the key), this approach ensures high security. Since

integrity is provided as part of the encryption mechanism, the server can identify a

modified message easily and notify the administrator automatically to reset the key.

In a replay attack, an attacker eavesdrop the current information that can be used

later to pretend to be an authorized entity [39]. To avoid an attack using an eaves-

dropped message for later communication, the key is changed for every transmission,

which results in avoiding the replay attack. A denial of service attack involves the

47

48

attacker blocking the service either temporarily or permanently between the commu-

nication parties [39]. By establishing communication between the server and the tag

with an authentication code and terminating by updating the nonce (also used for an

authentication) at both end makes the server aware of the denial of service attack.

A man in the middle attack allows an attacker to eavesdrop, modify or deny the

service between the communicating parties [19]. As discussed earlier, none of this

can be launched on the proposed approach because of the use of key changes for

each communication. The server can identify an attacker’s intervention easily while

communicating with the tag. A data manipulation attack is identified at the server

end while decrypting the received message [19].

Forward secrecy assures that previous keys are secure even after revealing the

current key, while backward secrecy assures that the next key cannot be generated

from the current key [24]. With the proposed approach, an attacker can neither

retrieve information nor generate a next key from the current one, which prevents the

attacker from being able to generate the next or previous keys.

6.1.2 Cryptanalysis

This section presents the qualitative cryptanalysis (chosen-plain text attack, chosen-

cipher text attack and differential attack) for using this approach on RFID systems

[37]. Each attack is given a short description followed by a detailed analysis. On one

hand, in the chosen-plain text attack, an attacker assumes that a message is in plain

text that is encrypted to obtain a corresponding cipher text, which will be compared

with captured cipher text. On the another hand, an attacker recovering the plain text

from the chosen cipher text to obtain the secret key. The proposed approach changes

the key for every communication, resulting in different cipher texts even though the

given message is the same request from the server. By updating the nonce to offer

authentication, even though the key is the same for the current communication, the

message (including the nonce with its random bits) is different. Thus, it assures that

the proposed approach is resistant to both the chosen-plain text and chosen-cipher

text attacks.

A differential attack compares the difference in an input value with the output

to obtain the actual message, which is a form of chosen-plain text attack [37]. As

49

discussed earlier, a change in key for each communication or changing the message for

a current communication secures this approach from differential attack. Furthermore,

even though the second key is derived from the first one, the expansion and bit flipping

functions modify the bit positions to ensure no relation between the two rounds of

XOR operation.

The proposed approach was tested under different combinations of input messages.

The sample sets chosen to test the bit flipping were 16-bit and 128-bit inputs. A

result in the output cipher text was randomly flipped in the bit flipping function

though the first bit in the message wasn’t changed in the expansion function. In

addition to that, though the message is expanded byte-by-byte, bit flipping assures

connection between the bytes and offers addition support to integrity. In the future

work, extensive cryptanalysis will be performed to evaluate the expansion function

to make necessary changes on changing bit positions.

6.1.3 Security Analysis using Cryptool

In addition to the above-mentioned attacks, the proposal was tested using a crypt-

analysis tool called Cryptool [1]. The security analysis of the proposed approach was

compared with existing algorithms such as, AES, DES, Triple DES, RC4, etc. (im-

plementation available as a built-in option in Cryptool). Figure 6.1, 6.2 and 6.3 are

presented with three different scenarios, which are based on the cryptanalysis tests

(entropy test, periodicity test, frequency test, poker test, run test and the serial test)

[41][5][36].

The results from the analysis show that proposed algorithm passes the above

mentioned tests that were carried out and that the security level is no lower than the

example algorithms, which were used.

6.1.4 Performance Evaluation

In this section, a summary of the estimated Gate Estimate (GE) used is presented

in Table 6.1 and is compared as well with the other algorithms [32]. It can be seen

that the proposed algorithm is more efficient since it requires fewer logic gates, and

hence, fewer operations to be performed.

50

Figure 6.1: Sample 1 — S-SCARS

Figure 6.2: Sample 2 — S-SCARS

51

Figure 6.3: Sample 3 — S-SCARS

Table 6.1: GE Comparison Table

SCARS [32] RBS [20] AES [14] PRESENT [34] Grain [15]

of gates 527 GE 1920 GE 3200 GE 2332 GE 1857 GE

Block size 64-128 bits 132 bits 128 bits 64 bits 1 bit

The proposal uses four 32-bit XOR gates, one NOT gate and one 2-bit compara-

tor that is implemented using two 1-bit comparator circuits. Each 1-bit comparator

is implemented using six 2 input NAND gates, and combined using two additional

NAND gates. Each 2-bit XOR is considered to be implemented using four NAND

gates. Therefore, there are approximately 527 two-input NAND gates in the imple-

mentation. However, this is subject to further comprehensive complexity analysis.

6.2 HIDE

6.2.1 Security Analysis

Most previous approaches derive successive keys from an initial or intermediate key.

This proposal has successive key derivation function, which uses both a key as well as

a message to choose the next key dynamically. Every message block is encrypted with

52

a different key chosen from the 2128 possible combination keys for a given 128-bits in

the key space.

As successive keys are generated based on a message and a key in any one process

of either prediction or derivation, the generated key is completely dynamic. Thus, it

guarantees that there would be no regular cycle in a key bit stream. The algorithm is

a very simple but efficient one, which uses XOR operations to generate keys as well

as encrypt a message. It can withstand a variety of attacks (chosen-plain text attack,

chosen-cipher attack, differential attack, linear attack and distinguishing attack) [16]

[44] [33].

6.2.2 Cryptanalysis

A short description of possible attacks and their analyses are explained in this sec-

tion. Chosen-plain text and chosen-cipher text attacks are targeted on symmetric key

encryption schemes. Both attacks work on the principle of choosing a piece of infor-

mation for retrieving an original message for a given cipher text or a cipher text for a

given plain text. In this approach, since the key is changed for every block encrypted,

chosen-plain text and chosen-cipher text attacks are hard to launch. A differential

attack compares an input value with an output value to obtain a possible key. Since

this proposal relies on both a key and an ICT, and the key is chosen from a strong

key, a differential attack is difficult to implement. In linear cryptanalysis, an equation

is formed from plain text and cipher text, which is equated to possible key bits to

reveal some information about the message. To avoid this issue, the key generation

process is switched between prediction and derivation techniques. A distinguishing

attack focuses on stream ciphers, which compare a given sequence of values to check

the randomness. A dynamically generated key ensures that there will be no relation

between the current and previous key, so launching a distinguishing attack is difficult.

6.2.3 Security Analysis using Cryptool

In addition to the attacks mentioned above, tests were done using a cryptanalysis

tool called Cryptool [1]. As mentioned earlier, though the key generation part is in

the nature of a stream cipher, the actual encryption process adopts a block cipher

53

Figure 6.4: Sample 1 — HIDE

approach. The security analysis of the proposed approach was compared with ex-

isting block cipher algorithms such as AES, DES, IDEA, MARS, Twofish etc. (the

implementation of which is available as a built in option in Cryptool). Graphs are

presented below with five different scenarios, which are based on the cryptanalysis

tests (entropy test, periodicity test, frequency test, poker test, run test and serial

test) [41] [5] [36]. The results from this analysis show that the proposed algorithm

passes the above mentioned tests and that the security level is no lower than the pool

of example algorithms used. Figures 6.4, 6.5, 6.6, 6.7, 6.8 display the sample graphs,

which were taken from the security analysis with different sample inputs.

The proposed algorithm provides non-linearity in the key cycle, which is achieved

by using an intermediate cipher text block. However, using cipher text to encrypt

a message is vulnerable, so two rounds of encryption were designed with an ICT as

the second round key generator instead of the cipher text. Applying key generation

from a key for the first round and an ICT for the second round ensures a dynamic

property in successive keys.

54

Figure 6.5: Sample 2 — HIDE

Figure 6.6: Sample 3 — HIDE

55

Figure 6.7: Sample 4 — HIDE

Figure 6.8: Sample 5 — HIDE

56

6.2.4 Performance Evaluation

The performance analysis of this approach has yet to be tested, but it is expected

to be computationally efficient, which is based on the following claims. Initially, the

computation is required only for the encryption part, but the integrity check does not

require any additional computation process. As the key generation process is a bitwise

operation, it is the only difficulty in this approach. The number of operations required

per bit is only fourteen, which includes encryption (or decryption), an integrity check

and key generation operations. A qualitative analysis proves that an increase in

performance would require an increase in the hardware component, which may not

be appropriate depending on the requirements of the application. However, future

work on the key generation part is expecting to reduce the hardware requirement,

increase the computational efficiency of the proposed approach.

6.3 Discussion

The key functionalities necessary to implement confidentiality, integrity and authen-

tication in a single symmetric key encryption without using any external algorithms

were described. The combining of the different security goals into one algorithm will

reduce the overall computation cost required by the cryptosystem, which will improve

the efficiency of the proposed approaches. Hashing is not used for integrity nor are

there external algorithms for authentication. Instead, simple random bit generation

is introduced for authentication (S-SCARS only). Consequently, the computational

cost for the proposed protocol will be less than the computational cost of performing

encryption with hashing and authentication, which can be summarized as:

Cost(Authentication+Encryption+Integrity)1 < Cost(Encryption+Integrity)2 <

Cost(Signature+ Encryption) << [Cost(Signature) + Cost(Encryption)] [43]

On the one hand, S-SCARS uses expansion and bit flipping functions, which en-

sures integrity and random number generation for authentication. On the other hand,

HIDE uses the prediction and derivation combination to ensure integrity. Further,

both schemes adopt XOR operations, which ensures confidentiality. In summary,

S-SCARS ensures confidentiality, integrity and authentication, whereas HIDE offers

1S-SCARS
2HIDE

57

only confidentiality and integrity. A qualitative security analysis, including tests

against standard data analysis proves that the proposed schemes are secure.

Chapter 7

Conclusion and Future Work

This thesis proposes two novel symmetric key encryption algorithms, namely, S-

SCARS and HIDE. S-SCARS offers confidentiality, integrity and authentication for

resource-constrained systems such as RFID without using multiple algorithms, whereas

HIDE is a hybrid approach of stream and block ciphers that is designed to offer con-

fidentiality, integrity and dynamic key generation.

In conclusion, the uniqueness of the algorithms is to achieve more than one secu-

rity goal without using additional algorithms and this is accomplished with limited

resources. A qualitative security analysis has been performed to evaluate the se-

curity features of the proposed approaches and is compared with standard security

algorithms. Overall, the proposed algorithms use less resources with better security

compared with existing protocols.

The resource utilization of HIDE was expected to be higher than S-SCARS. Sur-

prisingly, both algorithms use comparatively the same amount of resources. In ad-

dition, the security analyses of the algorithms were tested using Cryptool, which is

considered as an educational tool. Finally, proposed approaches are not available in

real-time environment. For these reasons, improved security analysis, study of hard-

ware implementation for HIDE, and real-time algorithm deployment will be conducted

in the future.

58

Bibliography

[1] The cryptool portal @ONLINE, 2014.

[2] Zahra Ahmadian, Mahmoud Salmasizadeh, and Mohammad Reza Aref. Desyn-
chronization attack on rapp ultralightweight authentication protocol. Informa-
tion processing letters, 113(7):205–209, 2013.

[3] NG Bardis, AP Markovskyy, and DV Andrikou. Method for designing pseudo-
random binary sequences generators on nonlinear feedback shift register(nfsr).
WSEAS Transactions on Communications, 3(2):758–763, 2004.

[4] Lejla Batina, Jorge Guajardo, Tim Kerins, Nele Mentens, Pim Tuyls, and Ingrid
Verbauwhede. Public-key cryptography for rfid-tags. In Pervasive Computing
and Communications Workshops, 2007. PerCom Workshops’ 07. Fifth Annual
IEEE International Conference on, pages 217–222. IEEE, 2007.

[5] Dan Biebighauser. Testing random number generators @ONLINE, 2000.

[6] Chih-Chun Chang, Sead Muftic, and David J Nagel. Measurement of energy
costs of security in wireless sensor nodes. In Computer Communications and
Networks, 2007. ICCCN 2007. Proceedings of 16th International Conference on,
pages 95–102. IEEE, 2007.

[7] Chih-Chun Chang, David J Nagel, and Sead Muftic. Balancing security and
energy consumption in wireless sensor networks. In Mobile Ad-Hoc and Sensor
Networks, pages 469–480. Springer, 2007.

[8] Xiangqian Chen, Kia Makki, Kang Yen, and N. Pissinou. Sensor network secu-
rity: a survey. Communications Surveys Tutorials, IEEE, 11(2):52–73, Second
2009.

[9] Hung-Yu Chien. Sasi: A new ultralightweight rfid authentication protocol pro-
viding strong authentication and strong integrity. Dependable and Secure Com-
puting, IEEE Transactions on, 4(4):337–340, 2007.

[10] Christophe De Cannière. Trivium: A stream cipher construction inspired by
block cipher design principles. In Information Security, pages 171–186. Springer,
2006.

[11] Yevgeniy Dodis and Jee Hea An. Concealment and its applications to authenti-
cated encryption. In Advances in Cryptology EUROCRYPT 2003, pages 312–329.
Springer, 2003.

59

60

[12] Elena Dubrova, Maxim Teslenko, and Hannu Tenhunen. On analysis and syn-
thesis of (n, k)-non-linear feedback shift registers. In Design, Automation and
Test in Europe, 2008. DATE’08, pages 1286–1291. IEEE, 2008.

[13] Daniel Engels, Xinxin Fan, Guang Gong, Honggang Hu, and Eric M Smith.
Hummingbird: ultra-lightweight cryptography for resource-constrained devices.
In Financial Cryptography and Data Security, pages 3–18. Springer, 2010.

[14] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. Aes implemen-
tation on a grain of sand. IEE Proceedings-Information Security, 152(1):13–20,
2005.

[15] T Good and M Benaissa. Hardware results for selected stream cipher candidates.
State of the Art of Stream Ciphers, pages 191–204, 2007.

[16] Martin Hell, Thomas Johansson, and Lennart Brynielsson. An overview of distin-
guishing attacks on stream ciphers. Cryptography and Communications, 1(1):71–
94, 2009.

[17] Honggang Hu and Guang Gong. Periods on two kinds of nonlinear feedback
shift registers with time varying feedback functions. International Journal of
Foundations of Computer Science, 22(06):1317–1329, 2011.

[18] Ming Hu and Yan Wang. The collision rate tests of two known message digest
algorithms. In Computational Intelligence and Security, 2009. CIS’09. Interna-
tional Conference on, volume 2, pages 319–323. IEEE, 2009.

[19] Pradip M Jawandhiya, Mangesh M Ghonge, MS Ali, and JS Deshpande. A
survey of mobile ad hoc network attacks. International Journal of Engineering
Science and Technology, 2(9):4063–4071, 2010.

[20] Zahra Jeddi, Esmaeil Amini, and Magdy Bayoumi. Rbs: Redundant bit secu-
rity algorithm for rfid systems. In Computer Communications and Networks
(ICCCN), 2012 21st International Conference on, pages 1–5. IEEE, 2012.

[21] Zahra Jeddi, Esmaeil Amini, and Magdy Bayoumi. A novel authenticated encryp-
tion algorithm for rfid systems. In Digital System Design (DSD), 2013 Euromicro
Conference on, pages 658–661. IEEE, 2013.

[22] Kutuboddin Jinabade and Krupa Rasane. Efficient implementation of humming-
bird cryptographic algorithm on a reconfigurable platform. International Journal
of Engineering, 2(7), 2013.

[23] A. Juels. Rfid security and privacy: a research survey. Selected Areas in Com-
munications, IEEE Journal on, 24(2):381–394, Feb 2006.

[24] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Communication-efficient group
key agreement. Trusted Information: The New Decade Challenge, pages 229–244,
2002.

61

[25] Lars R Knudsen. Practically secure feistel ciphers. In Fast Software Encryption,
pages 211–221. Springer, 1994.

[26] Yogesh Kumar, Rajiv Munjal, and Harsh Sharma. Comparison of symmetric
and asymmetric cryptography with existing vulnerabilities and countermeasures.
International Journal of Computer Science and Management Studies, 11(03),
2011.

[27] Xuhong Li, Wei Zhang, Xia Wang, and Muhai Li. Novel convertible authenti-
cated encryption schemes without using hash functions. In Computer Science
and Automation Engineering (CSAE), 2012 IEEE International Conference on,
volume 1, pages 504–508. IEEE, 2012.

[28] Hong Lv, Jian-Xia Xie, Jun-Chu Fang, and Peng Qi. Generating of a nonlinear
pseudorandom sequence using linear feedback shift register. In ICT Convergence
(ICTC), 2012 International Conference on, pages 432–435. IEEE, 2012.

[29] Kalikinkar Mandal and Guang Gong. Probabilistic generation of good span n
sequences from nonlinear feedback shift registers. University of Waterloo, 2012.

[30] David Molnar and David Wagner. Privacy and security in library rfid: issues,
practices, and architectures. In Proceedings of the 11th ACM conference on
Computer and communications security, pages 210–219. ACM, 2004.

[31] J. Narayanaswamy, R. V. Sampangi, and S. Sampalli. HIDE: Hybrid symmet-
ric key algorithm for integrity check, dynamic key generation and encryption.
In Proceedings of the 1st International Conference on Information Systems Se-
curity and Privacy (ICISSP-2015), pages 124–131. SCITEPRESS (Science and
Technology Publications, Lda.), 2015.

[32] Jayagopal Narayanaswamy, Raghav V Sampangi, and Srinivas Sampalli. Scars:
Simplified cryptographic algorithm for rfid systems. In RFID Technology and
Applications Conference (RFID-TA), 2014 IEEE, pages 32–37. IEEE, 2014.

[33] Chris Northwood. Cryptography, attacks and countermeasures @ONLINE.

[34] Axel York Poschmann. Lightweight cryptography: cryptographic engineering for
a pervasive world. PhD thesis, Ruhr-University Bochum, Germany, 2009.

[35] Tomasz Rachwalik, Janusz Szmidt, Robert Wicik, and Janusz Zablocki. Gen-
eration of nonlinear feedback shift registers with special-purpose hardware. In
Communications and Information Systems Conference (MCC), 2012 Military,
pages 1–4. IEEE, 2012.

[36] Juan Soto. Statistical testing of random number generators @ONLINE.

[37] Francois-Xavier Standaert, Gilles Piret, and Jean-Jacques Quisquater. Crypt-
analysis of block ciphers: A survey. UCL Crypto Group Technical Report Series,
Technical Report CG-2003, 2, 2003.

62

[38] Irfan Syamsuddin, Tharam Dillon, Elizabeth Chang, and Song Han. A survey of
rfid authentication protocols based on hash-chain method. In Convergence and
Hybrid Information Technology, 2008. ICCIT’08. Third International Conference
on, volume 2, pages 559–564. IEEE, 2008.

[39] Ton Van Deursen and Sasa Radomirovic. Attacks on rfid protocols. IACR
Cryptology ePrint Archive, 2008:310, 2008.

[40] Yang Wang, Mark Manulis, Man Ho Au, and Willy Susilo. Relations among pri-
vacy notions for signcryption and key invisible sign-then-encrypt. In Information
Security and Privacy, pages 187–202. Springer, 2013.

[41] Yue Wu, Joseph P Noonan, and Sos Agaian. A novel information entropy based
randomness test for image encryption. In Systems, Man, and Cybernetics (SMC),
2011 IEEE International Conference on, pages 2676–2680. IEEE, 2011.

[42] Kencheng Zeng, C-H Yang, D-Y Wei, and TRN Rao. Pseudorandom bit gener-
ators in stream-cipher cryptography. Computer, 24(2):8–17, 1991.

[43] Yuliang Zheng. Digital signcryption or how to achieve cost (signature & en-
cryption) cost (signature)+ cost (encryption). In Advances in Cryptology-
CRYPTO’97, pages 165–179. Springer, 1997.

[44] Mohd Zaid Waqiyuddin Mohd Zulkifli. Attack on cryptography @ONLINE, April
2008.

