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Abstract

Our work in plasmonics is concerned with coherence properties of partially coherent,

twisted Gaussian-Schell model (TGSM) beams tightly focused on a thin metal film.

We have simulated the spectral density of in-coupled light and shown that it is strongly

affected by the surface plasmon polariton (SPP) generation. This also confirms our

original assumption that strong SPP coupling can be realized in this configuration.

The calculation of the angular momentum density shows that its distribution can

be controlled by the beam coherence length and a twist parameter magnitude. The

sharp angular momentum density maxima and their distribution tend to be smeared

out as the coherence length decreases. In addition, the axial component of angular

momentum distribution becomes delocalized as the strength of phase twist of an

incident beam is increased.
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Chapter 1

Introduction

1.1 Background

In the 19th century, the existence of electromagnetic waves was suggested by James

Clerk Maxwell [1]. He worked out mathematically the properties they might have,

after having collected and summarized research achievements in the field of elec-

tromagnetism by other researchers. Thus, the classical electromagnetic theory was

established. At the same time, Maxwell related optical phenomena to electromagnetic

phenomena, having pointed out that light was an electromagnetic wave, thereby build-

ing the electromagnetic theory of optics. This achievement made a great contribution

to the development of physics. The electromagnetic waves play an essential role in our

life, not only in the field of engineering, but also in various other fields like medicine

[2], space exploration [3] and communications [4], to name but a few. Plasmonics is a

branch of science connecting research on electromagnetic fields and on free electrons

in metals [5].

Research in plasmonics, which forms a major part of the fascinating field of

nanophotonics, has been growing rapidly since the first decade of the twenty-first

century [6]. It offers us new perspectives to explore the properties of electromagnetic

fields over dimensions smaller than the wavelength of light [7]. The light energy can

be tightly confined to metal-dielectric interfaces by plasmons. Hence, strong elec-

tromagnetic fields can be generated in a vicinity of metal/dielectric interfaces [8].

To date, plasmonics effects have been applied to a wide range of fields, including

nanoscale waveguides [9], high-resolution microscopy [10], sensors [11], and nonlinear

optics [12].
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1.2 Motivation and Objectives

The surface plasmon resonance can be supported at an interface between two materi-

als where the real part of the dielectric function changes sign across the interface [13],

such as silver and air. Coherent oscillations of the surface conduction electrons will

be produced at the carrier frequency of a driving electromagnetic wave [14]. How-

ever, a lot of researches in plasmonics deal with only deterministic situations [15, 16].

That means the physical quantities are expressed by mathematical functions that are

either fully specified or are predicted to be precisely measurable. The conclusions

drawn from deterministic and statistical analyses of the same realistic problem can

differ greatly [17]. That is the reason we employ statistical models in our research

to obtain simulation results corresponding to realistic laboratory conditions of noisy

light sources. The objective of this thesis is to control the field energy and angu-

lar momentum distributions by adjusting spatial coherence properties of the incident

light.

1.3 Thesis Contributions

This thesis is concerned with the energy and angular momentum distributions of sta-

tistical light beams tightly focused on a thin metal film. We have made the following

contributions :

• We apply statistical analyses to explore the properties of transmitted beams

near the metal film. The obtained theoretical results correspond to realistic

situation of the film illuminated by a noisy light source.

• We have simulated the spectra of transmitted light in the Kretschmann and

glass-air configurations. Our results indicate that transmitted electromagnetic

fields are strongly affected by the surface plasmon polariton (SPP) generation.

The results prove our original assumption that strong plasmon coupling can be

realized in the Kretschmann configuration.

• It has been demonstrated in the reference that coherence of the incident light

is controlled by both the beam width and a twist parameter [18].Our simulated
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results prove that coherence also affects the energy distribution of the SPP-

enhanced light fields.

• We simulated the angular momentum density of the SPP-enhanced transmitted

field in cases of no twist and maximal twist of the incident beam phase. The

results show that we can control the distribution and periodicity of the angular

momentum density by changing the strength of the twist parameter.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 starts out by providing an overview of

the theoretical foundations and background information—including introductions to

SPPs, coherence theory, and the principles of coherent-mode representation. Chapter

3 proceeds with the problem formulation, theoretical description, numerical modelling

and discussion of results. Finally, conclusions are presented in chapter 4.



Chapter 2

Background Information

2.1 Introduction to Surface Plasmon Polaritons

The prediction of the existence of surface plasmon polaritons (SPP) was first pre-

sented by Rufus Ritchie in 1957 [19]. SPPs represent surface charge density oscilla-

tions sustained by metal’s free electron gas at optical frequencies. Similar behavior

cannot be simply realized in other spectral ranges because metal parameters change

considerably with the electromagnetic wave carrier frequency. The SPPs excited at

the interface between a metal, possessing a negative dielectric permittivity, and a

dielectric can produce strongly enhanced optical near fields which propagate along

the metal surface.

2.1.1 Surface Plasmon Polariton Properties

It is sometimes stated that SPPs are quanta of surface charge density oscillations

[13]. SPPs can also be viewed as collective oscillations of the electron density at

the surface of a metal. The SPPs are naturally coupled to carrier waves at optical

frequencies. Solving the Maxwell equations with the appropriate boundary conditions

in the media gives us a dispersion relation for SPPs as [13]

kspp =
ω

c

√
εmεd

εm + εd
. (2.1)

Here εm denotes the complex dielectric permittivity of a noble metal that depends

on the frequency of light, with a negative real part, and εd stands for a positive

real dielectric constant of a dielectric material. To discuss some properties of SPPs,

the imaginary part of εm needs to be specified. Assume that εm = ε′m + iε′′m and

kspp = k′
spp + ik′′

spp with constraints that ε′m < 0 and |ε′m| >> ε′′m. It follows that kspp

can be determined as [13]

k′
spp =

ω

c

√
ε′mεd

ε′m + εd
, (2.2)

4
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and

k′′
spp �

ω

c

√
ε′mεd

ε′m + εd

ε′′mεd
2ε′m(ε′m + εd)

. (2.3)

The SPP wavelength is determined by the real part k′
spp, such that

λspp =
2π

k′
spp

≈
√

ε′m + εd
ε′mεd

λ. (2.4)

where λ represents the wavelength of the excitation light in vacuum.

On the other hand, the propagation length of SPPs along the interface is de-

termined by k′′
spp, which is responsible for an exponential decay of the electric field

amplitude, since the SPP energy is lost to ohmic resistance and is deposited in the

form of heat. The 1/e decay length of the electric field equals to 1/k′′
spp or 1/(2k′′

spp)

for the intensity. After comparing the 1/e decay lengths of SPPs on both sides of the

interface, it can be concluded that the decay length into the metal is much shorter

than into the dielectric.

2.1.2 Excitation of Surface Plasmon Polaritons

Figure 2.1: Dispersion relation at a gold/air interface. The solid line shows the
dispersion relation of SPPs derived from Eq.(2.1). The two dash-dotted straight lines
represent the free-space light line ω = ckx and the tilted light line in glass ω = ckx/n,
respectively(Figure source: Fig 12.6(a), pp.389, [13] ).

To excite SPPs, optical beam coupling with the SPP frequency is required. The
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SPPs can only be generated by fulfilling both energy and momentum conservation

conditions. Fig 2.1 exhibits an SPP dispersion relation.

We can see that for a given frequency ω, the wavenumber k′
spp is always greater

than the wavenumber of light in free space. The physical reason for this is the light

field has to drag electrons along the metal surface. Thus, light propagating in the

air cannot excite SPPs at a metal-air interface. In other words, the SPP dispersion

curve does not intersect the photon dispersion curve in the air. Consequently, we

need to increase the in-plane wave vector component of the SPP exciting light over

its value in the air. To this end, one can use evanescent waves created by a medium

with a refractive index n > 1, such as glass, to excite SPPs. The dispersion curve

of an example of such a wave is displayed in Fig 2.1, which is tilted by a factor of n

since ω = ck/n. There are two possible experimental configurations that fulfill our

requirements, both shown in Fig 2.2.

Figure 2.2: Experimental configurations to realize SPP excitation (a)Otto configu-
ration. (b)Kretschmann configuration.L: laser, D: detector, M: metal layer(Figure
source: Fig 12.6(b), pp.389, [13]).

In the Otto configuration, the SPPs are excited by the tail of an evanescent wave

coming out of the glass-air interface. However, this configuration is not experimen-

tally viable because it is hard to control the width of the tiny gap between the two

interfaces. That is the reason we apply an alternative, Kretschmann configuration in

our numerical simulations. In the Kretschmann configuration, a thin metal film is de-

posited on top of the glass prism. The film thickness can be conveniently controlled.

The SPPs can be excited by the evanescent wave penetrating through the metal film

with a proper thickness.
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2.2 Angular spectrum representation of optical fields

2.2.1 Introduction

The angular spectrum representation is a powerful mathematical technique to describe

laser beam propagation and light focusing as a superposition of plane and evanescent

waves of different directions calculated from Maxwell’s equations [13], which can then

be individually propagated through an optical system of interest. A plane wave is a

wave that propagates in one direction. The wavefronts of plane waves are perpen-

dicular to the direction of propagation and have the same value [20]. An evanescent

wave does not propagate but rather decays exponentially with distance [21].

If the angular spectrum representation is treated in the paraxial limit, it can be

regarded as the framework of Fourier optics, which finds numerous applications such

as spatial filtering [13], optical correlations [13] and computer generated holograms

[22]. Let E(r) to be an electric field at a certain point r = (x, y, z) in space.

Figure 2.3: The optical scattering problem expressed in the angular spectrum repre-
sentation(Figure source: Fig 2.9, pp.39, [13]).

In Fig 2.3 we sketch a typical scattering problem. One can choose an arbitrary

axis z and consider the field E in a plane z = const. The field E at any point in

space can be determined by combining the contributions of each plane wave since

the propagation characteristics of plane waves in free space are well known [23]. A

two-dimensional Fourier transform of the field E is defined as [13]
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Ê(kx, ky; z) =
1

4π2

∫∫ ∞

−∞
E(x, y, z)e−i(kxx+kyy)dxdy. (2.5)

Similarly, we express the inverse Fourier transform as

E(x, y, z) =

∫∫ ∞

−∞
Ê(kx, ky; z)e

i(kxx+kyy)dkxdky. (2.6)

Here x, y are the Cartesian coordinates in a plane transverse to the z-axis and

kx, ky are the corresponding spatial frequencies. If the medium is confined to be

homogeneous, isotropic, linear and source-free, the electric field has to satisfy the

vector Helmholtz equation in the form

(�2 + k2)E(r) = 0. (2.7)

Here k = (ω/c)n. In the space-time domain the electric field can be written as

E(r, t) = Re[E(r)e−iωt]. (2.8)

Substituting from (2.6) into (2.7), we obtain the expression

Ê(kx, ky; z) = Ê(kx, ky; 0)e
±ikzz, (2.9)

where

kz =

⎧⎨⎩
√
k2 − k2

x − k2
y, k2

x + k2
y ≤ k2, homogeneous waves;

i
√

k2
x + k2

y − k2, k2
x + k2

y > k2, evanescent waves.
(2.10)

The wavenumber kz is either real or imaginary and turns the factor exp(±ikzz)

into an oscillatory or exponentially decaying function, which determines the type of

wave. It follows from (2.6) and (2.9), that the electric field at an arbitrary position

can be represented as

E(x, y, z) =

∫∫ ∞

−∞
Ê(kx, ky; 0)e

i(kxx+kyy±kzz)dkxdky. (2.11)

Eq.(2.11) is known as the angular spectrum representation [13]. There is one more

aspect we should mention. Although the angular spectrum of E fulfills the Helmholtz

equation, it is not yet a rigorous solution of Maxwell’s equations in free space. It is
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necessary to require that the fields be divergence free, i.e. ∇ · E = 0. The condition

confines k to directions perpendicular to the spectral amplitudes.

2.2.2 Far-fields in the Angular Spectrum Representation

With the use of angular spectrum representation, a rigorous description of near fields

can be realized in terms of the corresponding far fields, which are conveniently de-

termined. Eq.(2.11) describes field propagation from the source z = 0 to any plane

z = const. The dimensionless unit vector s in the direction of r can be expressed as

[13]

s = (sx, sy, sz) =
(x
r
,
y

r
,
z

r

)
, (2.12)

where r = (x2 + y2 + z2)
1
2 is the distance from the origin. Eq.(2.11) can then be

transformed to

E∞(sx, sy, sz) = lim
kr→∞

∫∫
(k2x+k2y)≤k2

Ê(kx, ky; 0)e
ikr[ kx

k
sx+

ky
k
sy± kz

k
sz ]dkxdky. (2.13)

The integration range is confined to (k2
x + k2

y) ≤ k2 due to the exponential decay

of the evanescent waves. Eq.(2.13) can be expressed as [24]

E∞(sx, sy, sz) = −2πikszÊ(ksx, ksy; 0)
eikr

r
. (2.14)

It follows from Eq.(2.14) that the far-fields are entirely determined by the Fourier

spectra of the fields Ê(ksx, ksy; 0) in the source plane if we replace kx and ky by ksx

and ksy. This simply means that s fulfills the condition

s = (sx, sy, sz) =

(
kx
k
,
ky
k
,
kz
k

)
. (2.15)

The result implies that due to destructive interference, only one plane wave with

the wavevector k = (kx, ky, kz) at z = 0 contributes to the far-field in the direction s.

Thus we can treat the far-fields as a collection of rays with each ray being characterized

by a particular plane wave. On substituting from (2.15) into (2.14), the Fourier

spectrum of Ê is found to be given by

Ê(kx, ky; 0) =
ire−ikr

2πkz
E∞(kx, ky). (2.16)
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Eq.(2.16) can be substituted into (2.11) yielding

E(x, y, z) =
ire−ikr

2π

∫∫
(k2x+k2y)≤k2

E∞(kx, ky)e
i(kxx+kyy±kzz)

1

kz
dkxdky. (2.17)

Eq.(2.17) is a rigorous expression of near-field angular distributions in terms of far

fields [13].

2.3 Coherent-mode representation

2.3.1 Introduction to Coherence Theory

Coherence theory describes correlations among physical properties of a single wave,

or several waves. There are two types of coherence, temporal coherence and spatial

coherence [17]. Assume V (r, t) to be an optical field at a point specified by the

position vector r and at time t. V (r, t) is a fluctuating function of space and time

for any realistic optical field. The random field is stationary in the wide sense if its

cross-correlation function depends only on the difference between two time arguments

τ = t2 − t1, expressed as [25]

Γ(r1, r2, τ) = 〈V ∗(r1, t)V (r2, t+ τ)〉. (2.18)

Here angle brackets denote averaging over a field ensemble {V }. Eq. (2.18) is known
as the mutual coherence function and describes a statistical optical field in the space-

time domain. Assuming that Γ(r1, r2, τ) is absolutely integrable in the range −∞ <

τ < ∞ , it can be represented by its Fourier transform as

W (r1, r2, ω) =

∫ ∞

−∞
Γ(r1, r2, τ)exp(−iωτ)dτ, (2.19)

which is known as the cross-spectral density function of the field and is a central

quantity of the second-order coherence theory in the space-frequency domain [25].

The cross-spectral density function becomes the spectral density if r1 = r2 = r,

which can be expressed as

S(r, ω) = W (r, r, ω). (2.20)

It can be shown that [17]

|W (r1, r2, ω)| ≤ [S(r1, ω)]
1/2[S(r2, ω)]

1/2. (2.21)
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Thus the normalized cross-spectral density function can be defined as

μ(r1, r2, ω) =
W (r1, r2, ω)

[S(r1, ω)]1/2[S(r2, ω)]1/2
, (2.22)

known as the spectral degree of coherence. The magnitude of the spectral degree of

coherence satisfies the inequality [17]

0 ≤ |μ(r1, r2, ω)| ≤ 1. (2.23)

If |μ| = 0 for each pair of r1 and r2, the field is completely incoherent; when

|μ| = 1, it is completely coherent; and when 0 < |μ| < 1, it is partially coherent in

space.

2.3.2 Coherent-Mode Representation of Twisted Gaussian Schell-model

Beams

According to the theory advanced by E.Wolf in the 1980s, statistically stationary

optical fields with arbitrary coherence can be expressed as a superposition of coherent

modes in the space-frequency domain, which gives us a new insight into the physics

of generation, propagation, and transformation of optical fields. If the cross-spectral

density W (ρρρ1, ρρρ2, ω) is a continuous function, it can be expressed in the form of

Mercer’s expansion as [25]

W (ρρρ1, ρρρ2, ω) =
∑
n

λn(ω)ψ
∗
n(ρρρ1, ω)ψn(ρρρ2, ω), (2.24)

where {λn(ω)} and {ψn(ρρρ, ω)} are obtained by solving the integral equation as∫
W (ρρρ1, ρρρ2, ω)ψn(ρρρ1, ω)dρρρ1 = λn(ω)ψn(ρρρ2, ω). (2.25)

It is necessary to highlight that all the eigenvalues {λn(ω)} are real and nonnegative,

such that

λ∗
n(ω) = λn(ω) ≥ 0, (2.26)

and the eigenfunctions {ψn(ρρρ, ω)} are mutually orthonormal, such that∫
ψ∗
n(ρρρ, ω)ψm(ρρρ, ω)dρρρ = δnm, (2.27)

where δnm is the Kronecker symbol.
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The Gaussian Schell-model (GSM) sources have shown great promise in optical

coherence theory [12] since they model generic properties of many realistic partially

coherent sources. GSM have been widely used, either for exploring the relationship

between radiometry and coherence [26] or introducing the concept of twist phase for

partially coherent beams [27]. In our simulations, we employ the twisted Gaussian

Schell-model (TGSM) beams which carry a position-dependent twist phase. Here

the twist factor presence offers an opportunity to control coherence without affecting

the beam intensity profile [18]. TGSM beams have found numerous applications,

including the theory of partially coherent solitons [18] and a ghost imaging technique

[28]. The expression for the cross-spectral density of a TGSM beam WTGSM is

WTGSM(ρρρ1, ρρρ2)∝ exp

(
−ρ21 + ρ22

4σ2
I

)
exp

[
−(ρρρ1 − ρρρ2)

2

2σ2
c

]
exp [iuρ1ρ2 sin(φ1 − φ2)] .

(2.28)

Here σI and σc represent the beam width and the spatial coherence length, respec-

tively, and u is known as the twist parameter. The coherent-mode representation of

the cross-spectral density of TGSM was derived in Ref[18]:

WTGSM(ρρρ1, ρρρ2) =
∞∑

m=−∞

∞∑
n=0

λmnψ
∗
mn(ρ1, φ1)ψmn(ρ2, φ2), (2.29)

where

λmn =
n!

n+ |m|!ζ
n+

|m|
2 ηm, (2.30)

and

ψmn(ρ, φ) =

(
ρ

�⊥

)|m|
L|m|
n

(
ρ2

�⊥
2

)
e
− ρ2

2�⊥2 eimϕ. (2.31)

Here �⊥ denotes a characteristic width of each mode in the transverse plane, given by

�⊥ =

√
2σ2

cσ
2
I (1 + ζ)

(2σ2
I + σ2

c )(1− ζ)
, (2.32)

and the derivations of η and ζ are shown in Chapter 3.

The TGSM is treated as the incident source in our simulations. The coherent-

mode representation of TGSM beams greatly simplifies the calculation of focusing

integrals in Chapter 3.



Chapter 3

Angular Momentum Density of Surface Plasmon Enhanced

Electromagnetic Fields Excited by Tightly Focused

Statistical Beams

3.1 Theory

Tightly focused laser beams are used in fluorescence spectroscopy to study molecular

interactions in solutions, as well as kinetics of single molecules at the interfaces [29].

They also show great promise in confocal microscopy [30] and optical data storage

[31]. Furthermore, focused laser beams can be employed to trap nanoparticles and to

move them with high precision [32].

Figure 3.1: Illustrating SPP generation by tight focusing.

Investigations on optical manipulation of neutral nanoparticles have been ex-

tended to the control of optical torque and optical angular momentum [33]. It has

13
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been shown that light carries both spin angular momentum and orbital angular mo-

mentum, which can be used to rotate small particles [34]. Thus light has been applied

to the optical tweezer technology, which uses highly focused laser beams to provide

an attractive or repulsive force to physically move or rotate nanoparticles similar to

tweezers [32]. The coherence properties of the light source play an important role

in the simulation results. As a matter of fact, realistic light sources are necessarily

partially spatially coherent to some extent. In addition, decreasing the spatial co-

herence of light source generally reduces the interference signal produced by multiply

scattered light , while increasing the spatial coherence guarantees of undamped signal

strength in a large axial imaging range [35]. In this thesis, we use incident beams that

are partially spatially coherent. On the other hand, dielectric nanoparticles respond

rather weakly to applied optical fields necessitating the use of very tight optical traps.

To mitigate this circumstance, SPPs have been widely used to enhance the optical

response of sub-wavelength particles [36]. Plasmonics encompasses SPP studies and

nano-optics and it has found numerous applications ranging from merging photonics

and electronics at nanoscale dimensions [37] to cancer treatment [38].

In our thesis, SPPs are excited at an Ag-air interface by localized fields originating

from TGSM laser beams, which are tightly focused by a large numerical aperture

(N.A) objective (oil-immersion lens). The spread of incidence angles emanating from

the reference sphere of the lens and converging towards the focus includes the resonant

angles responsible for SPP excitation at the Ag/air interface, as illustrated in Fig 3.1.

Figure 3.2: The relationship between s-polarization and p-polarization.

Assume a plane wave is incident at the interface of two different materials as

illustrated in Fig 3.2. P-polarized light is understood to have an electric field direction

parallel to the plane of incidence, and s-polarized light has the electric field oriented
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Figure 3.3: Geometrical representation of the focusing process.

perpendicular to that plane. We only consider p-polarization of the incident beam as

there is no SPP produced by the s-polarization [39]. In terms of the unit vectors the

p-polarized electrical field can be expressed as

E
(p)
inc = (Einc · nρ)nρ. (3.1)

Here we introduce the unit vectors nρ, and nθ as shown in Fig 3.3. As the incident

beam is transmitted through the lens, the intensity law must be fulfilled, which means

that the energy incident on the aplanatic lens equals the energy leaving the lens . The

power carried by a beam of cross-section A equals to P = (1/2)Z
−1/2
με

∫ |E|2dA, where
Zμε =

√
μ0/εε0 denotes the wave impedance and A is the cross-section area in the

plane transverse to the propagation direction [13]. Here μ0 is the permeability in free

space. The field refracts at the spherical surface of the lens and the unit vector nρ is

mapped into nθ. The refracted electrical field, denoted by E∞, to indicate that the

field is evaluated at a large distance from the focus (x, y, z) = (0, 0, 0), is expressed

as [13]

E∞ = tp [(Einc · nρ)nθ] ·
√

n1

n2

(cos θ)1/2. (3.2)

Here n1 and n2 are the refractive indices of the materials on either side of the lens

and tp represents a Fresnel coefficient of the p-polarization [40]. The factor outside

the square brackets is due to the energy flux conservation along each ray [13]. Let us

assume that the incident TGSM beam is radially polarized such that
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Einc = Eincnρ. (3.3)

The unit vector nθ can be expressed in terms of the cylindrical unit vectors nρ

and nz using the angle θ. The z-axis is parallel to the incident beam propagation

direction as is indicated in Fig 3.3. Thus,

nθ = nρ cos θ − nz sin θ. (3.4)

Here θ is a convergence angle that a focused ray direction makes with the z-axis. We

can then decompose the focused field into radial and axial components as

E∞ = Einc [cos θnρ − sin θnz] (cos θ)
1/2. (3.5)

Here the factor n1/n2 is omitted because the two sides of the lens are composed of

the same material. The focal length of the lens is much larger than the wavelength

of light. Consequently, the field E∞ on the reference sphere, which can be regarded

as far-field, entirely determines the field E near the focus. According to Eq.(2.17)

expressed in the cylindrical coordinates, one can express E(ρ, ϕ, z) at an arbitrary

observation point as

E(ρ, ϕ, z) =
ik1fe

−ik1f

2π

θβ∫
θα

2π∫
0

E∞eik1z cos θeik1ρ sin θ cos(φ−ϕ) sin θdφdθ. (3.6)

Here f is a focal length and the distance r between the focal point and the surface of

the sphere was replaced by f . In addition, the integration with respect to θ is confined

to the tiny interval θα ≤ θ ≤ θβ to highlight the SPP affect on the transmitted

field distributions, where θα = 42.64◦ and θβ = 42.72◦(the simulation configuration

corresponds to a θspp = 42.7◦). Further, k1 and k3 are wavenumbers in glass and in

free space, respectively.

The angular spectrum representation of the transmitted field is given by

Et(ρ, ϕ, z) =
ik1fe

−ik1f

2π

θβ∫
θα

2π∫
0

Et
∞eik3zzeik1ρ sin θ cos(φ−ϕ) sin θdφdθ. (3.7)
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Here Et
∞ is a far-zone expression for the field transmitted through the metal film. It

can be determined by applying the appropriate boundary conditions in Eq.(3.5) and

is expressed as

Et
∞ = E∞T̃13e

−ik3zd = EincT̃13e
−ik3zd(cos θ)1/2

[
cos θnρ

− sin θnz

]
. (3.8)

The extra factor e−ik3zd ensures that this ratio is properly defined [40]. Here d denotes

the thickness of the metal film and T̃13 is a Fresnel transmission coefficient of the film

given by [40]

T̃13 =
tρ23t

ρ
12e

ik2zd

1− rρ21r
ρ
23e

2ik2zd
, (3.9)

where tpij and rpij (i, j = 1, 2, 3) are the p-polarization Fresnel transmission and reflec-

tion coefficients at each interface of the film. Using Eqs.(3.7) - (3.9), the transmitted

field can be decomposed into the radial and axial components with the magnitudes

Etρ =
ik1fe

−ik1f

2π

θβ∫
θα

2π∫
0

EincT̃13e
−ik3zd(cos θ)1/2eik3zzeik1ρ sin θ cos(φ−ϕ) sin θ cos θdφdθ,

Etz = − ik1fe
−ik1f

2π

θβ∫
θα

2π∫
0

EincT̃13e
−ik3zd(cos θ)1/2eik3zzeik1ρ sin θ cos(φ−ϕ) sin2 θdφdθ.

(3.10)

To any statistical optical field, Einc is a fluctuating function of the angular variables

and it should be regarded as a random process. Thus, according to the outline of

the second-order coherence theory of Chap.2, the cross-spectral density Wspp of the

electric field on the metal surface can be expressed as

Wspp = 〈E∗
t (ρ1, ϕ1, z)Et(ρ2, ϕ2, z)〉 . (3.11)
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Substituting Eq.(3.10) into (3.11), the Wspp is represented as

Wspp =

〈
k2
1f

2

4π2

θβ∫
θα

2π∫
0

E∗
inc(ρ1, φ1)K

∗
1dθ1dφ1

θβ∫
θα

2π∫
0

Einc(ρ2, φ2)K2dθ2dφ2

〉

=
k2
1f

2

4π2

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

〈E∗
inc(ρ1, φ1)Einc(ρ2, φ2)〉K∗

1K2dθ1dφ1dθ2dφ2

=
k2
1f

2

4π2

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

WTGSM(ρ1, φ1, ρ2, φ2)K
∗
1K2dθ1dφ1dθ2dφ2,

(3.12)

Here the functions Kj are defined as

Kj = exp[−ik3zd+ ik3zz + ik1ρ sin θj cos(φj − ϕ)]

×T̃13(cos θj)
1
2 sin θj ×

⎧⎨⎩cos θj, radial factor,

− sin θj, axial factor,

(3.13)

where j=1,2 and items in the square brackets denote the different factors used to

calculate radial and axial components of Wspp, respectively.

WTGSM in Eq.(3.12) can be regarded as the cross-spectral density of TGSM, as

we use a tightly focused twisted Gaussian-Schell model beam to excite SPPs. Recall

that the cross-spectral density of TGSM is expressed as

WTGSM(ρρρ1, ρρρ2)∝ exp

(
−ρ21 + ρ22

4σ2
I

)
exp

[
−(ρρρ1 − ρρρ2)

2

2σ2
c

]
exp [iuρ1ρ2 sin(φ1 − φ2)] ,

(3.14)

where ρρρ1, ρρρ2 as position vectors in the beam cross-section; σI and σc represent the

beam width and the spatial coherence length, respectively, and u stands for the twist

parameter.

WTGSM can be expressed in terms of the coherent-mode representation as [18]

WTGSM(ρρρ1, ρρρ2) =
∞∑

m=−∞

∞∑
n=0

λmnψ
∗
mn(ρ1, φ1)ψmn(ρ2, φ2), (3.15)

where

λmn =
n!

(n+ |m|)!ζ
n+

|m|
2 ηm, (3.16)
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and

ψmn(ρ, φ) =

(
ρ

�⊥

)|m|
L|m|
n

(
ρ2

�⊥
2

)
e
− ρ2

2�⊥2 eimϕ. (3.17)

Here L
|m|
n (x) is an associate Laguerre polynomial of order n and azimuthal index m;

�⊥ is a characteristic width of each mode in the transverse plane, given by

�⊥ =

√
2σ2

cσ
2
I (1 + ζ)

(2σ2
I + σ2

c )(1− ζ)
. (3.18)

The factors ζ and η in Eq.(3.16) specify the weight of each mode in the coherent-

mode representation of TGSM, through the expressions [18]

1

2σ2
I

=
1 + ζ − (η + 1/η)

√
ζ

(1− ζ)�⊥
2 , (3.19)

1

σ2
c

=
(η + 1/η)

√
ζ

(1− ζ)�⊥
2 , (3.20)

and

u =
(η − 1/η)

√
ζ

(1− ζ)�⊥
2 . (3.21)

Inverting these equations, the quantities ζ and η can be expressed in terms of the

beam parameters. From Eqs.(3.20) and (3.21), the relationship between uσ2
c and η is

found to be

η =

√
1 + uσ2

c

1− uσ2
c

. (3.22)

Together with the non-negativity of every coefficient λmn [25], it leads to the constraint

on the twist parameter, expressed as

−1 ≤ uσ2
c ≤ 1. (3.23)

The explicit derivations of modal weights in both maximal twist and no twist

cases are given in Appendix A. After substituting from Eqs.(A.10) and (A.12) into

Eq.(3.15), the cross-spectral density of a TGSM beam with the maximum twist can

be expressed as

WTGSM(ρρρ1, ρρρ2|uσ2
c = 1) =

∞∑
m=0

(1 + σ2
c/2σ

2
I )

−m

m!

(
ρ1ρ2

�⊥
2

)m

e−(ρ21+ρ22)/2�⊥
2

eim(φ2−φ1),

(3.24)
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and the cross-spectral density of a TGSM beam with no twist can be expressed

as

WTGSM(ρρρ1, ρρρ2|uσ2
c = 0) =

∞∑
m=−∞

∞∑
n=0

(
1 +

σ2
c

2σ2
I

− σc

σI

√
σ2
c

4σ2
I

+ 1

)n+
|m|
2

n!

(n+ |m|)!

×
(
ρ1ρ2

�⊥
2

)|m|
L|m|
n

(
ρ21
�⊥

2

)
L|m|
n

(
ρ22
�⊥

2

)
e−(ρ21+ρ22)/2�⊥

2

eim(φ2−φ1).

(3.25)

As is seen in Fig.3.3, ρ can be expressed in terms of θ as

ρ = f sin θ. (3.26)

Thus, the cross-spectral densities of TGSM beams can be represented as functions of

θ as

WTGSM(uσ2
c = 1) =

∞∑
m=0

(1 + σ2
c/2σ

2
I )

−m

m!

(
f sin θ1f sin θ2

�⊥
2

)m

×e−(f2 sin2 θ1+f2 sin2 θ2)/2�⊥2

eim(φ2−φ1)

, (3.27)

and

WTGSM(uσ2
c = 0) =

∞∑
m=−∞

∞∑
n=0

(
1 +

σ2
c

2σ2
I

− σc

σI

√
σ2
c

4σ2
I

+ 1

)n+
|m|
2

n!

(n+ |m|)!

×
(
f sin θ1f sin θ2

�⊥
2

)|m|
L|m|
n

(
f 2 sin2 θ1

�⊥
2

)
L|m|
n

(
f 2 sin2 θ2

�⊥
2

)
×e−(f2 sin2 θ1+f2 sin2 θ2)/2�⊥2

eim(φ2−φ1).

(3.28)

Further, substituting from Eqs.(3.27) and (3.28) into Eq.(3.12), the expressions

for the cross-spectral densities of the electric field near the film with no twist and

maximum twist can be written as

Wspp(ρρρ1, ρρρ2|uσ2
c = 1) =

k2
1f

2

4π2

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

∞∑
m=0

(1 + σ2
c/2σ

2
I )

−m

m!

(
f sin θ1f sin θ2

�⊥
2

)m

×e−(f2 sin2 θ1+f2 sin2 θ2)/2�⊥2

eim(φ2−φ1)K∗
1K2dθ1dφ1dθ2dφ2,

(3.29)
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and

Wspp(ρρρ1, ρρρ2|uσ2
c = 0) =

k2
1f

2

4π2

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

∞∑
m=−∞

∞∑
n=0

(
1 +

σ2
c

2σ2
I

− σc

σI

√
σ2
c

4σ2
I

+ 1

)n+
|m|
2

× n!

(n+ |m|)!
(
f sin θ1f sin θ2

�⊥
2

)|m|
L|m|
n

(
f 2 sin2 θ1

�⊥
2

)
L|m|
n

(
f 2 sin2 θ2

�⊥
2

)
×e−(f2 sin2 θ1+f2 sin2 θ2)/2�⊥2

eim(φ2−φ1)K∗
1K2dθ1dφ1dθ2dφ2.

(3.30)

Extracting the iteration factors, the rest parts of both Eqs.(3.29) and (3.30) can be de-

composed into products of two double integrals, which can be calculated respectively.

Then Eqs.(3.29) and (3.30) can be written as

Wspp(ρρρ1, ρρρ2|uσ2
c = 1) =

k2
1f

2

4π2

∞∑
m=0

(1 + σ2
c/2σ

2
I )

−m

m!

θβ∫
θα

2π∫
0

P ∗
1 dθ1dφ1

θβ∫
θα

2π∫
0

P2dθ2dφ2,

(3.31)

and

Wspp(ρρρ1, ρρρ2|uσ2
c = 0) =

k2
1f

2

4π2

∞∑
m=−∞

∞∑
n=0

(
1 +

σ2
c

2σ2
I

− σc

σI

√
σ2
c

4σ2
I

+ 1

)n+
|m|
2

n!

(n+ |m|)!

×
θβ∫

θα

2π∫
0

P ∗
1 dθ1dφ1

θβ∫
θα

2π∫
0

P2dθ2dφ2.

(3.32)

Here Pj is defined as

Pj =

(
f sin θj
�⊥

)|m|
L|m|
n

(
f 2 sin2 θj

�2⊥

)
e−(f2 sin2 θj)/2�

2
⊥eimφj

×e−ik3zd+ik3zz+ik1ρ sin θj cos (φj−ϕ)T̃ 13(cos θj)
1
2 sin θj ×

⎧⎨⎩cos θj, radial factor,

− sin θj, axial factor,

(3.33)

where j = 1, 2. and Pj differs when calculating different components of Wspp,

Notice that the Laguerre polynomial L
|m|
n (

f2sin2θj
�2⊥

) equals to 1 in the maximal

twist case because n = 0.



22

Thus Eqs.(3.31) and (3.32) give us the cross-spectral densities of SPP-enhanced

fields in both no twist and maximal twist cases.

Now let us consider the angular momentum density L of the fields near the inter-

face. The average angular momentum density L is defined as [41]

< L >=< ρρρ× S >, (3.34)

where ρρρ represents the in-plain position vector and S denotes the Poynting vector,

defined as S = E×H, where H is the magnetic field. One of the Maxwell equations

in free space takes the form

∇× E(r, t) = −μ0
∂H(r, t)

∂t
, (3.35)

in the space-time domain and

∇× E(r, ω) = −iμ0ωH(r, ω), (3.36)

in the space-frequency domain. Thus the magnetic field H can be expressed as

H = −(iωμ0)
−1(∇× E). (3.37)

Further, the magnetic fields near the film needs to be derived to obtain the ex-

plicit expression of angular momentum density of the SPP-enhanced fields. There

is no azimuthal component of Et, implying that Etϕ = 0. Recall Eq.(3.10) that

the transmitted electrical field Et can be decomposed into the radial and axial com-

ponents with the magnitudes Etρ and Etz. Applying Eq.(3.37) into Eq.(3.7), each

component of the magnetic field H in the cylindrical coordinates can be expressed in

terms of the electric field components as

Hρ = −(ωμ0)
−1[k1 sin θ sin(φ− ϕ)Etz]nρ,

Hϕ = −(ωμ0)
−1[k3zEtρ − k1 sin θ cos (φ− ϕ)Etz]nϕ,

Hz = (ωμ0)
−1[k1 sin θ sin (φ− ϕ)Etρ]nz.

(3.38)

The average magnitudes of Poynting vector components can be derived from

Eqs.(3.7) and (3.38) as
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Sρ = − 〈
Etz(θ1, φ1)H

∗
ϕ(θ2, φ2)

〉
= (ωμ0)

−1[k3z
〈
E∗

tρEtz

〉− k1 sin θ2 cos (φ2 − ϕ) 〈E∗
tzEtz〉],

Sϕ =
〈
Etz(θ1, φ1)H

∗
ρ(θ2, φ2)− Etρ(θ1, φ1)H

∗
z (θ2, φ2)

〉
= −(ωμ0)

−1[k1 sin θ2 sin(φ2 − ϕ)](〈E∗
tzEtz〉+

〈
E∗

tρEtρ

〉
),

Sz =
〈
Etρ(θ1, φ1)H

∗
ϕ(θ2, φ2)

〉
= −(ωμ0)

−1[k3z
〈
E∗

tρEtρ

〉− k1 sin θ2 cos (φ2 − ϕ) 〈E∗
tzEtρ〉].
(3.39)

Notice that the factors
〈
E∗

tρEtz

〉
, 〈E∗

tzEtz〉,
〈
E∗

tρEtρ

〉
and 〈E∗

tzEtρ〉 can be represented

in terms of WTGSM using Eqs.(3.10), (3.12) and (3.13). Here we define Kjρ and Kjz

developed from Eq.(3.13) to denote the option of Kj to calculate either of radial and

axial components, repectively, such that

Kjρ = exp[−ik3zd+ ik3zz + ik1ρ sin θj cos(φj − ϕ)]T̃13(cos θj)
1
2 sin θj cos θj,

Kjz = − exp[−ik3zd+ ik3zz + ik1ρ sin θj cos(φj − ϕ)]T̃13(cos θj)
1
2 sin2 θj,

(3.40)

where j = 1, 2.

Thus, substituting Eqs.(3.10) - (3.12) into (3.39), the Poynting vector components

can be expressed in terms of Eq.(3.40), respectively,

Sρ =
k2
1f

2

4π2ωμ0

[

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

k3zWTGSMK∗
2ρK1zdθ1dφ1dθ2dφ2

−
θβ∫

θα

2π∫
0

θβ∫
θα

2π∫
0

k1 sin θ2 cos (φ2 − ϕ)WTGSMK∗
2zK1zdθ1dφ1dθ2dφ2],

(3.41)

Sϕ =− k2
1f

2

4π2ωμ0

[

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

k1 sin(φ2 − ϕ) sin θ2WTGSMK∗
2zK1zdθ1dφ1dθ2dφ2

+

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

k1 sin(φ2 − ϕ) sin θ2WTGSMK∗
2ρK1ρdθ1dφ1dθ2dφ2],

(3.42)

and

Sz =− k2
1f

2

4π2ωμ0

[

θβ∫
θα

2π∫
0

θβ∫
θα

2π∫
0

k3zWTGSMK∗
2ρK1ρdθ1dφ1dθ2dφ2

−
θβ∫

θα

2π∫
0

θβ∫
θα

2π∫
0

k1 sin θ2 cos (φ2 − ϕ)WTGSMK∗
2zK1ρdθ1dφ1dθ2dφ2].

(3.43)
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Using the coherent-mode representation ofWTGSM expressed in Eqs.(3.27) and (3.28),

the expressions of Poynting vectors of the transmitted fields can be decomposed into

combinations of double integrals, similar to the derivation of Wspp. Thus, Eqs.(3.41)

- (3.43) can be transformed into

Sρ = B[

θβ∫
θα

2π∫
0

P1zdθ1dφ1

θβ∫
θα

2π∫
0

k3zP
∗
2ρdθ2dφ2

−
θβ∫

θα

2π∫
0

P1zdθ1dφ1

θβ∫
θα

2π∫
0

k1 sin θ2 cos (φ2 − ϕ)P ∗
2zdθ2dφ2],

(3.44)

Sϕ = −B[

θβ∫
θα

2π∫
0

P1zdθ1dφ1

θβ∫
θα

2π∫
0

k1 sin θ2 sin (φ2 − ϕ)P ∗
2zdθ2dφ2

+

θβ∫
θα

2π∫
0

P1ρdθ1dφ1

θβ∫
θα

2π∫
0

k1 sin θ2 sin (φ2 − ϕ)P ∗
2ρdθ2dφ2],

(3.45)

and

Sz =− B[

θβ∫
θα

2π∫
0

P1ρdθ1dφ1

θβ∫
θα

2π∫
0

k3zP
∗
2ρdθ2dφ2

−
θβ∫

θα

2π∫
0

P1ρdθ1dφ1

θβ∫
θα

2π∫
0

k1 sin θ2 cos (φ2 − ϕ)P ∗
2zdθ2dφ2],

(3.46)

where the parameters Pjρ and Pjz are factors developed from Eq.(3.33), expressed

as

Pjρ =

(
f sin θj
�⊥

)|m|
L|m|
n

(
f 2 sin2 θj

�2⊥

)
e−(f2 sin2 θj)/2�

2
⊥eimφj

× e−ik3zd+ik3zz+ik1ρ sin θj cos (φj−ϕ)T̃ 13(cos θj)
3
2 sin θj,

Pjz = −
(
f sin θj
�⊥

)|m|
L|m|
n

(
f 2 sin2 θj

�2⊥

)
e−(f2 sin2 θj)/2�

2
⊥eimφj

× e−ik3zd+ik3zz+ik1ρ sin θj cos (φj−ϕ)T̃ 13(cos θj)
1
2 sin2 θj,

(3.47)

and B is defined as
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B(uσc = 1) =
k2
1f

2

4π2ωμ0

∞∑
m=0

(1 + σ2
c/2σ

2
I )

−m

m!
, (3.48)

for the maximal twist case and as

B(uσc = 0) =
k2
1f

2

4π2ωμ0

∞∑
m=−∞

∞∑
n=0

(
1 +

σ2
c

2σ2
I

− σc

σI

√
σ2
c

4σ2
I

+ 1

)n+
|m|
2

n!

(n+ |m|)! , (3.49)

for the incident beams with no twist.

As a result, the expressions for nonzero components of the angular momentum

density L are obtained using Eqs.(3.44) - (3.46) as

< Lϕ >= −ρSznϕ, (3.50)

and

< Lz >= ρSϕnz. (3.51)

3.2 Results

Figure 3.4: Optical intensity in the glass-silver-air configuration.

In our numerical simulations, we excite SPPs on a 50nm thick silver film, cor-

responding to an SPP coupling angle θspp = ±42.7◦ with a tightly focused, radially

polarized twisted Gaussian-Schell model beam. The wavelength of the beam equals to

632nm. The integration domain is confined to a tiny angular area to stress a strong
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Figure 3.5: Optical intensity in the glass-air configuration.

impact of SPPs. Thus we choose a lens with N.A.=1.4 to make sure the angular

spread exceeds θspp. The relative permittivities are ε1 = 2.3, ε2 = −18.3 + 0.5i and

ε3 = 1, corresponding to glass, silver and air, respectively.

Fig 3.4 shows the simulation results for the cross-spectral densityWspp on the silver

surface parallel to the air-silver interface and having dimensions of 2 μm× 2μm. The

main peak of the optical intensity is centered at the optical axis, which is shown

in the figure. The results prove that the SPPs propagate from the axis toward the

periphery of the focal plane. To verify the SPP enhancement, we remove a silver

film from the configuration and present the resulting intensity distribution in Fig

3.5. Compared with Figure 3.4, the distribution of intensity in Fig.3.5 shows quite

similar properties. However, the maximum intensity is reduced by a factor of 30 in

the absence of SPPs. In addition, Figs.3.4 and 3.5 verify our original assumption that

strong plasmon coupling can be realized in the Kretschmann configuration.

The components of the average angular momentum density < L > of the transmit-

ted fields near the film are calculated as well. Fig.3.6 shows the azimuthal components

of < L > for input beams of different coherence states in the no twist case. It can

be seen in the figure that as the coherence length σc decreases, the incident beam

switches from the nearly coherent state to a nearly incoherent state. As a result, the

sharp angular momentum maxima and their periodic distribution tend to be smeared

out.
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Figure 3.6: Azimuthal component of the averaged angular momentum density in no
twist condition with (a)σc = 105σI , (b)σc = σI , (c)σc = 0.5σI .

In addition, the distribution and periodicity of the angular momentum density

can be controlled by adjusting the magnitude of the twist parameter. These results

are shown in Fig.3.7 and Fig.3.8 where the axial components of < L > are displayed

in both maximal twist and no twist cases with the same coherence length σc = 0.5σI .

Compared with the no twist case, the effective region of angular momentum density

in the maximal twist is much larger. Nevertheless, the magnitude of angular momen-

tum density declines obviously. It can be understood that the rotating energy of the

beam has been delocalized by employing twist effect into the incident beam. This

result can be applied in the optical microparticle manipulation, such as the optical



28

Figure 3.7: Axial component of the angular momentum density with uσ2
c = 1 and

coherence length σc = 0.5σI .

Figure 3.8: Axial component of the angular momentum density with u = 0 and
coherence length σc = 0.5σI .

tweezer technology, which is a well-known tool in numerous fields of biology, chem-

istry and physics [42]. Using this technology, particles may be trapped or moved

along certain trajectory at the focal plane of a microscopes objective according to

the field distribution of applied beam [43] and the rotation velocity of optical vortex

is controlled by the orbital angular momentum carried by the beam. A typical con-

figuration of trapping system is shown in Fig.(3.9). By controlling the twist phase

of the incident light, the distribution of angular momentum density will variate be-

tween the no twist and maximal twist cases. Thus, the results can be used to set

parameters of the trapping system, such as the optical torques and the operating area.

Another potential application of this result is to obtain a well-defined beam shape
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with a randomly-diffused intensity profile by the amplitude of twist phase, as the

similar function of homogenizer. Yet another potential application of our results is

to the generation of non-spreading partially coherent spatio-temporal beams, optical

bullets, in the plasmonics context [44].

Figure 3.9: Configuration of a holographic optical trapping system(Figure source:
[43]).



Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, we use partially coherent, twisted Gaussian-Schell model beams focused

by a lens to excite SPPs on a thin silver film. The properties of SPP-enhanced

transmitted beams are examined by adjusting the parameters affecting coherence,

including the coherence length of the beams and the twist parameter. The simulation

uses the so-called Kretschmann configuration, which is a convenient configuration to

be realized experimentally.

To derive the SPP-enhanced angular momentum density distribution of light, sev-

eral mathematical tools have been applied, including the angular spectrum representa-

tion, coherent-mode representation and far-fields transformation. The cross-spectral

density of in-coupled light has been simulated and shows reasonable properties. It

is strongly affected by the SPP generation, proving that the Kretschmann configu-

ration can produce SPPs. In addition, most of the incident beam energy is coupled

into SPPs.

The results of simulations indicate an opportunity to control the angular momen-

tum density distribution by adjusting the beam coherence length and the magnitude

of its twist phase. Potential applications are related to the areas of optical tweez-

ers [45, 46], higher dimensional classical and quantum communications [47, 48] and

microscopy [49] .

4.2 Recommendations for future work

Although the results presented here have demonstrated the intensity and angular

momentum density distribution control by adjusting the degree of coherence phase,

the work can be further extended in several aspects.

First of all, the results are based on numerical simulations, which means that

30
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the experimental validation is required. Furthermore, the incident beams applied in

our simulations have radial polarization. Finally, we can use other types of incident

polarization at the source plane, such as azimuthal and linear polarizations.
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Appendix A

Modal Weights in the Maximal Twist and No Twist Cases

We can use beam parameters σI and σc to determine ζ. By combining Eqs.(3.19) and

(3.20), it follows that

σ2
c

2σ2
I

=
1 + ζ − (η + 1/η)

√
ζ

(η + 1/η)
√
ζ

. (A.1)

Thus

(
1 +

σ2
c

2σ2
I

)
η2 + 1

η

√
ζ = 1 + ζ. (A.2)

Since η can be expressed in terms of u and σc, it can be derived that

η2 + 1 =
2

1− σ2
c

. (A.3)

On substituting from Eq.(A.3) into (A.2), it follows that

2

(
1 +

σ2
c

2σ2
I

)√
ζ = (1 + ζ)η(1− uσ2

c ). (A.4)

On substituting from Eq.(3.22) into (A.4), we obtain a quadratic equation for ζ as

ζ
√

1− u2σ4
c − 2(1 + σ2

c/2σ
2
I )
√
ζ +

√
1− u2σ4

c = 0. (A.5)

The solution to Eq.(A.5) reads

√
ζ =

(1 + σ2
c/2σ

2
I )±

√
(1 + σ2

c/2σ
2
I )

2 − (1− u2σ4
c )√

1− u2σ4
c

. (A.6)

If uσ2
c = 1, the right-hand side of Eq.(A.6) approaches infinity with the plus sign.

Thus solution of Eq.(A.6) makes sense with the minus sign and ζ is expressed as

ζ =
[(1 + σ2

c/2σ
2
I )−

√
(1 + σ2

c/2σ
2
I )

2 − (1− u2σ4
c )]

2

1− u2σ4
c

. (A.7)

It follows from Eq.(A.7) that
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ζ =
[(1 + σ2

c/2σ
2
I )− (1 + σ2

c/2σ
2
I )
√

1− (1−u2σ4
c )

(1+σ2
c/2σ

2
I )

2 ]
2

1− u2σ4
c

,

implying that in the limit uσ2
c → 1,one can expand the right-hand side into a Taylor

series resulting in the approximation

ζ �
[(1 + σ2

c/2σ
2
I )− (1 + σ2

c/2σ
2
I ) + (1 + σ2

c/2σ
2
I )

1−u2σ4
c

2(1+σ2
c/2σ

2
I ))

2 ]
2

1− u2σ4
c

,

or

ζ � 1− u2σ4
c

4(1 + σ2
c/2σ

2
I )

2
. (A.8)

Now we will consider two limiting situations: uσ2
c = 0 (no twist) and uσ2

c = 1

(maximal twist).

When uσ2
c = 1, η and ζ are found to satisfy the limiting conditions including

η =

√
2

1− uσ2
c

→ ∞,

√
ζ =

√
1− u2σ4

c

2(1 + σ2
c/2σ

2
I )

→ 0,

and

η
√
ζ =

√
2

1− uσ2
c

√
(1 + uσ2

c )(1− uσ2
c )

2(1 + σ2
c/2σ

2
I )

=
1√

2(1 + σ2
c/2σ

2
I )

< ∞.

Recall the expression for λmn in (3.16). It can be shown that when m ≤ 0, λmn → 0.

On the other hand, when m > 0, Eq.(3.16) implies in this limit that

λmn =
n!

(n+ |m|)!ζ
n(η

√
ζ)m → 0 unless n = 0. (A.9)

Thus only the modes with the azimuthal index n = 0 contribute to the field

density in the maximal twist case such that

λmn =

⎧⎨⎩
δn0

m!
(1 + σ2

c/2σ
2
I )

−m, m > 0;

0, m ≤ 0.
(A.10)

Here δn0 is the Kronecker delta symbol, defined as

δn0 =

⎧⎨⎩1, n = 0;

0, n �= 0.
(A.11)
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Similarly, the amplitudes of η and ζ in the no twist case can be found from Eqs.(A.6)

to (A.10) as

η = 1,

and

ζ =

(
1 +

σ2
c

2σ2
I

− σc

σI

√
σ2
c

4σ2
I

+ 1

)2

.

Thus in this case, λmn can be expressed as

λmn =

(
1 +

σ2
c

2σ2
I

− σc

σI

√
σ2
c

4σ2
I

+ 1

)n+
|m|
2

n!

(n+ |m|)! . (A.12)



Appendix B

Numerical Codes for Solving Spectral Density

%**********************************************************************

%Numerical Codes for Solving Spectral Density excited by focused TGSM

beam

%**********************************************************************

%

% Program author: Hao Cheng

% Department of Electrical and Computer Engineering

% Dalhousie University

% 1360 Barrington St.

% Halifax, NS B3J 2X4

% 902-999-7218

% hz427921@dal.ca

%

% Date of this version: Mar.28 2015

%

%**********************************************************************

clear all

clc

%%%parameters

ee1=2.3; %permittivity of glass

ee2=-18.3+0.51i; %permittivity of silver

ee3=1.0; %permittivity of air

n1=sqrt(ee1); %refractive index of glass

n2=sqrt(ee2); %refractive index of silver

n3=ee3; %refractive index of air

ee=8.8542e-12; %permittivity in free space

uu=1.2566e-6; %permeability in free space

cc=2.99792458e8; %speed of light

i=sqrt(-1);

f=1e-3; %focal length
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d=50e-9; %thickness of silver

wavelength=632e-9;

taoc=94; %coherence length

taoi=94e-5; %beam width

w=2*pi*cc/wavelength;

z=f+d;

k=w/cc; %wavenumber in free space

k1=k*n1;

k2=k*n2;

k3=k*n3;

ltrans=sqrt(1/(1/taocˆ2+1/(2*taoiˆ2)));

%%%equation

syms theta Fi ffi p m

k1z=k1*cos(theta);

k2z=sqrt(k2ˆ2-(k1*sin(theta))ˆ2);

k3z=sqrt(k3ˆ2-(k1*sin(theta))ˆ2);

t23=2*ee3*k2z*sqrt(ee2/ee3)/(ee3*k2z+ee2*k3z);

r23=(ee3*k2z-ee2*k3z)/(ee3*k2z+ee2*k3z);

t13=2*ee3*k1z*sqrt(ee1/ee3)/(ee3*k1z+ee1*k3z);

t12=2*ee2*k1z*sqrt(ee1/ee2)/(ee2*k1z+ee1*k2z);

r21=(ee1*k2z-ee2*k1z)/(ee1*k2z+ee2*k1z);

T13=t23*t12*exp(i*k2z*d)/(1-r21*r23*exp(2*i*k2z*d)); %Fresnel

coefficient

kernal1=cos(theta)*(f*sin(theta)/ltrans)ˆ(m)*exp(-(f*sin(theta))ˆ2/(2*

ltransˆ2))*(cos(theta))ˆ0.5*sin(theta);

kernal2=exp(i*m*Fi-i*k3z*d+i*k3z*(z-f)+i*k1*p*sin(theta)*cos(Fi-ffi))*

abs(T13)/k1z;

part1=kernal1*kernal2;

%loop to calculate spectral density on each point in domain

pp=linspace(0,1e-6,100);

fifi=linspace(0,2*pi,100);

for l=1:length(pp)

p1=pp(l)

for j=1:length(fifi)

f1=fifi(j)

x(l,j) = p1.*cos(f1);

y (l,j)= p1.*sin(f1);

C=0;

for mm=0:3
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kernalfinal1=inline(subs(part1,{p,ffi,m},{p1,f1,mm}),'theta','
Fi');

A=dblquad(kernalfinal1,0,0.2373*pi,0,2*pi);

%%part outside of integral

thegema=k1ˆ2*fˆ2/(4*piˆ2)*(1+taocˆ2/((2*taoi)ˆ2))ˆ(-mm)/

factorial(mm);

C(mm+1)=A*A'*thegema;

end

zz(l,j)=sum(C(:));

end

save('wpp u1 big','x','y','zz');

end



Appendix C

Numerical Codes for Solving Angular Momentum Density

%**********************************************************************

%Numerical Codes for Solving Angular Momentum Density excited by focused

TGSM beam

%**********************************************************************

%

% Program author: Hao Cheng

% Department of Electrical and Computer Engineering

% Dalhousie University

% 1360 Barrington St.

% Halifax, NS B3J 2X4

% 902-999-7218

% hz427921@dal.ca

%

% Date of this version: Mar.28 2015

%

%**********************************************************************

clear all

clc

%%%parameters

ee1=2.3; %permittivity of glass

ee2=-18.3+0.51i; %permittivity of silver

ee3=1.0; %permittivity of air

n1=sqrt(ee1); %refractive index of glass

n2=sqrt(ee2); %refractive index of silver

n3=ee3; %refractive index of air

ee=8.8542e-12; %permittivity in free space

uu=1.2566e-6; %permeability in free space

cc=2.99792458e8; %speed of light

i=sqrt(-1);

f=1e-3; %focal length
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d=50e-9;

wavelength=632e-9;

taoc=94;

taoi=94e-5;

w=2*pi*cc/wavelength;

z=f+d;

k=w/cc;

k1=k*n1;

k2=k*n2;

k3=k*n3;

ltrans=sqrt(1/(1/taocˆ2+1/(2*taoiˆ2)));

%%%equations

syms theta Fi ffi p m

k1z=k1*cos(theta);

k2z=sqrt(k2ˆ2-(k1*sin(theta))ˆ2);

k3z=sqrt(k3ˆ2-(k1*sin(theta))ˆ2);

t23=2*ee3*k2z*sqrt(ee2/ee3)/(ee3*k2z+ee2*k3z);

r23=(ee3*k2z-ee2*k3z)/(ee3*k2z+ee2*k3z);

t13=2*ee3*k1z*sqrt(ee1/ee3)/(ee3*k1z+ee1*k3z);

t12=2*ee2*k1z*sqrt(ee1/ee2)/(ee2*k1z+ee1*k2z);

r21=(ee1*k2z-ee2*k1z)/(ee1*k2z+ee2*k1z);

T13=t23*t12*exp(i*k2z*d)/(1-r21*r23*exp(2*i*k2z*d));

part1z=-sin(theta)*(f*sin(theta)/ltrans)ˆ(m)*exp(-(f*sin(theta))ˆ2/(2*

ltransˆ2))*(cos(theta))ˆ1.5*sin(theta);

part1p=cos(theta)*(f*sin(theta)/ltrans)ˆ(m)*exp(-(f*sin(theta))ˆ2/(2*

ltransˆ2))*(cos(theta))ˆ1.5*sin(theta);

part2=exp(i*m*Fi-i*k3z*d+i*k3z*(z-f)+i*k1*p*sin(theta)*cos(Fi-ffi))*abs(

T13)/k1z;

A=part1p*part2;

B=part1p*(part2*k3z);

C=part1z*part2*k1*sin(theta)*cos(Fi-ffi);

%%integral

pp=linspace(0,1e-6,100);

fifi=linspace(0,2*pi,100);

for l=1:length(pp)

p1=pp(l)

for j=1:length(fifi)

f1=fifi(j)

x(l,j) = p1.*cos(f1);
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y (l,j)= p1.*sin(f1);

X=0;

for mm=0:2

kernalfinalA=inline(subs(A,{p,ffi,m},{p1,f1,mm}),'theta','Fi')
;

kernalfinalB=inline(subs(B',{p,ffi,m},{p1,f1,mm}),'theta','Fi'
);

kernalfinalC=inline(subs(C',{p,ffi,m},{p1,f1,mm}),'theta','Fi'
);

A1=dblquad(kernalfinalA,0.2369*pi,0.2373*pi,0,2*pi);

B1=dblquad(kernalfinalB,0.2369*pi,0.2373*pi,0,2*pi);

C1=dblquad(kernalfinalC,0.2369*pi,0.2373*pi,0,2*pi);

%part outside of integral

thegema=k1ˆ4*fˆ2/(4*piˆ2)/w/uu*(1+taocˆ2/((2*taoi)ˆ2))ˆ(-mm)/

factorial(mm);

X(mm+1)=((A1)*((B1)-(C1)))*thegema;

end

zz(l,j)=sum(X(:));

end

save('Sz u1 big','x','y','zz');

end


