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ABSTRACT

In the winter, the tidal flats in the Bay of Fundy are littered with large muddy icebergs

that are dense enough to sink. This sediment-laden ice to poses a risk to tidal power

infrastructure. I attempted to identify echoes from the interior of the ice using a broadband

echosounder system. Acoustic backscattering measurements from calibration targets

encased in bubble-free ice were used to potentially locate strong targets in ice. Scattering

from a planar surface of bubble-free ice overwhelmed echoes from encased targets, hence

I was unable to conclusively detect solid and hollow spheres in ice. The total echoes from

ice with inclusions could not be differentiated from ice without inclusions. My results

imply that echoes from sediment laden ice blocks cannot be interpreted by modelling

separate scattering mechanisms within the ice, and that future modelling should focus on

echoes from sediment-laden ice surfaces.
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CHAPTER 1

INTRODUCTION

Figure 1.1: A large (> 6 meters diameter) composite sediment-laden ice block rests on the

tidal flats near Debert, NS on February 19, 2013. Dense ice remains submerged throughout

the tidal cycle, evidenced by tracks along the seafloor.

1.1 Motivation

The tides in the Bay of Fundy remain among the most coveted untapped energy sources

on Earth. They may provide up to 2000 MW of electricity (Karsten et al., 2012) without

requiring fossil fuel combustion. In addition, the tides produce regular and relatively

predictable currents that are reliable and practical for long-term energy extraction. There

is significant economic incentive for communities in Atlantic Canada to develop tidal

power; both as an opportunity to generate affordable, renewable energy and to supply

technology and expertise to the offshore renewable energy industry. However, the potential
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Figure 1.2: Sediment-laden ice cliffs, that are approximately 5 meters tall, form along the

Kennetcook River on February 23, 2012. As these cliffs collapse, large sediment-laden ice

blocks are introduced to the tidal river.

rewards are tempered by the challenge of maintaining underwater infrastructure in the

Bay of Fundy’s powerful tidal currents. In particular, submerged debris transported by the

tidal currents may collide with tidal turbines. The added cost associated with subsurface

collisions threatens the viability of tidal energy projects. Sanders and Baddour (2008)

identify collisions with water-logged woody debris and with sediment-laden ice blocks

(see Figure 1.1) as realistic threats to underwater turbines.

1.1.1 Sediment-Laden Ice

Black (2013) described the processes that cause large ice cliffs to form on the banks of

tidal rivers near the Bay of Fundy (Figure 1.2). Mud from the river banks is frozen in the

ice (Black, 2013). As the ice walls collapse, large sediment-laden ice blocks (Figure 1.1)

are released and transported through the watershed to ultimately reach tidal estuaries in the

Bay of Fundy (Black, 2013), shown in Figure 1.3. Sediment-laden ice is abundant in the

Bay of Fundy in the winter (Hind, 1875; Desplanque and Mossman, 1998; Sanders and

Baddour, 2006; Black, 2013). As these blocks melt, they can preferentially lose water and

retain sediment, therein increasing the bulk density of the ice (Black, 2013). These blocks

may contain enough sediment to become negatively buoyant (Sanders and Baddour, 2006;

2



Figure 1.3: Sediment-laden ice blocks are common on tidal flats in the winter, pictured

February 19, 2013. While only a small proportion of the blocks sink, their abundance

suggests that sunken ice moves in the water column.

Black, 2013).

Sanderson and Redden (2015) remark that there is no evidence of sediment-laden ice

striking a tidal turbine, although no efforts to observe sediment-laden ice in the water

column have been attempted. Samples from sediment-laden ice blocks in Minas Passage

show that the majority of blocks are buoyant and unlikely to collide with an underwater

turbine (Sanderson and Redden, 2015); however, the lack of evidence does not guarantee

that a collision will not occur. Although only ∼10% of observed sediment-laden ice blocks

are denser than water (Black, 2013), they are abundant in the late-winter (Figure 1.3),

implying that a number of blocks will sink. In the case that submerged ice remains mobile,

there is a risk of collision with a tidal turbine (Sanders and Baddour, 2006).

Sanders (2011) believes there is enough circumstantial evidence that sediment-laden

ice can be transported by the tidal currents. In addition, the number of blocks that move

through an area is proportional to the current speed and the damage caused by an impact

scales as the cube of the current speed. Therefore, the potential for power production is

proportional to the potential damage of by a collision (Sanderson et al., 2012). Since

sediment-laden ice floating at the sea surface is not of interest, Sanders and Baddour (2008),

Sanderson and Redden (2015) and Trowse (2013) recommend monitoring sediment-laden

underwater using an echosounder to range and identify submerged hazards.
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1.1.2 Acoustic Detection of Submerged Ice

Evidence of sediment-laden ice blocks in the water column is sparse and the depth of

sediment-laden ice floes is not documented (Sanderson and Redden, 2015). In addition,

estimates of sediment-laden ice strength, a metric required to quantify the risk posed by

submerged ice, are not available. Sanderson et al. (2012) provide porosity measurements

from sediment-laden ice blocks in Minas Passage that they suggest may be used as a proxy

for block strength.

An echosounder system, which transmits and receives acoustic pulses, can be used to

locate and possibly identify submerged ice blocks (Sanders and Baddour, 2008); where the

distance of the scattering source is proportional to time it takes for the transmitted energy

to return to the echosounder. Echosounders have been used to identify ice at sea since the

sinking of the RMS Titanic (Frost, 2001), and have subsequently been used to study the

existence of elastic waves in ice (Ewing et al., 1934; Press and Ewing, 1951; Rothlisberger,

1972; Williams and Robinson, 1981; Chamuel, 1990), the acoustic reflectivity of the Arctic

ice canopy (Press et al., 1950; Langleben, 1970; Winebrenner, 1991), reverberation and

noise underneath sea ice (Brown and Brown, 1966; Mellen and Marsh, 1965; Milne, 1972),

ice keels and underwater protuberances (Stanton et al., 1986; Fricke, 1993; Mourad and

Williams, 1993; Abeele et al., 1996), the elastic and mechanical properties of ice (Anderson,

1963; Williams and Francois, 1992; Stein et al., 1998), absorption and attenuation of sound

in ice (Wen et al., 1991) and the propagation of acoustic signals in the Arctic ocean (Etter,

2013).

Less focus has been placed on modelling echoes from inside ice, since echoes from sea

ice surfaces are likely stronger than echoes from inclusions (Winebrenner, 1991). The

abundance of encased sediment and air bubbles imply that this may not be the case for

sediment-laden ice in the Bay of Fundy. For example, strong reflections from gaseous

inclusions in fish and zooplankton are used to identify and enumerate organisms underwater

(Stanton et al., 2000; Lavery et al., 2007; Simmonds and MacLennan, 2005; Ross et al.,

2013). The frequency dependence of echoes are interpreted using acoustic scattering

models that infer the properties of the scattering source. Love (1978) and Foote (1980)

shows that the echoes from fish depend on the size and shape of the swim bladder, as

a result of the strong reflection from air in water. In addition, bubble clouds strongly

scatter and attenuate acoustic signals in the ocean (Farmer et al., 2001), suggesting that air

4



cavities in ice could contribute significantly to the scattering from submerged ice blocks.

In the case of sediment-laden ice, scattering is expected occur at the ice-water interface

and from discontinuities or inclusions within the ice, assumed to be sediment or air bubbles,

shown in Figure 1.4. The amplitude of the wave scattered from each interface depends on

the change in elastic properties about an interface and the size and shape of the scatterer

with respect to the acoustic frequency. Since air bubbles are much less dense and more

compressible than ice, strong echoes may be produced from air encased in ice. Remote

estimates of sediment and air content may lead to estimates of block strength. Furthermore,

acoustic detection of ice inclusions is valuable in the Arctic, where the internal structure

of ice is important in understanding sediment transport (Nurnberg et al., 1994; Eicken

et al., 2005), structural integrity (Winebrenner, 1991), melt rate (Trowse, 2013) and the

feasibility of resource exploitation (Maksimov, 2011; Bassett et al., 2015).

There are currently no models that estimate the backscattering cross section from

sediment-laden ice, or from sediment and air inclusions in underwater ice. If an acoustic

pulse can penetrate the surface of a sediment-laden ice block, and the block contains

enough sediment or air (see Figure 1.4), scattering from inclusions within the ice could be

stronger than scattering from the ice surfaces. Scattering observed from inclusions in ice

may enable remote estimation of the sediment content or strength of a sediment-laden ice

block.

1.2 Objectives

The objective of this thesis is to determine if scattering models from solid and hollow

inclusions can be used to identify spherical targets in ice. I will:

(I) Select models for different scattering mechanisms of sediment-laden ice, focusing on

sediment and air inclusions.

(II) Measure acoustic backscattering from solid and air-filled spheres in water and in ice.

(III) Consider the feasibility of remotely detecting sediment and air content from scatter-

ing measurements.

My hypothesis is that echoes from solid and hollow spheres encased in ice can be

located and identified by comparing frequency dependent scattering strength with acoustic

5



Figure 1.4: A photograph of the surface of a sediment-laden ice block, taken on February

23, 2012, shows that they are primarily comprised of ice, sediment and air. Small scale

surface roughness is also apparent.

backscattering models. Backscattering was observed from an assortment of solid and

hollow spheres in water and ice. Solid and hollow spheres represent the two different

types of scattering expected to occur within sediment-laden ice blocks; solid spheres

represent idealized sediment particles and hollow spheres represent air bubbles encased

in ice. The validation of scattering models will allow for parameterization for sediment

and air inclusions in ice, informed by sediment and air content estimates, the models can

provide a framework for detecting the contents of sediment-laden ice underwater.

I describe acoustic scattering models for solid and fluid spheres in solid and fluid media

in Chapter 2. I compare broadband acoustic pulses scattered from target spheres in water

and encased in bubble-free ice blocks, following the procedure outlined in Chapter 3. The

frequency dependent scattering strength is used to evaluate the acoustic scattering models.

Observations from submerged target spheres, ice surfaces and target spheres encased in ice

are provided in Chapter 4. Modelling sediment-laden ice is presented in Chapter 5.
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CHAPTER 2

SCATTERING MODELS

Mathematical models are used to interpret acoustic echoes from scatterers embedded in an

elastic or fluid medium. An acoustic wave travels in a straight line until it encounters a

change in the medium, where a fraction of the wave energy changes direction and radiates

as scattered or refracted waves (Morse and Ingard, 1968). The strength of the scattered

wave is not constant in all directions and depends on the frequency of the transmitted

wave; as well as the size, shape and change in elasticity of the medium (Morse and Ingard,

1968). The properties of a medium change abruptly at encased targets, producing a distinct

scattered wave (Medwin and Clay, 1998). Consequently, if the properties of the transmitted

wave are known, the properties of the target can be inferred from the scattered wave

(Medwin and Clay, 1998).

Acoustic waves, which are a subclass of elastic waves, arise as particle motion is restored

by a medium’s elastic forces, causing a deformation to propagate (Graff , 1975). This gives

rise to two types of elastic wave; compressional waves that travel parallel to particle motion

and shear waves that travel perpendicular to particle motion (Graff , 1975). These waves

travel at different rates and are modelled as distinct waves (Graff , 1975). Mathematical

models compute the particle motion and the stresses that result from wave energy using a

combination of harmonic functions to represent incident, scattered and refracted waves. By

conserving energy at the target interface, the strength of the waves are computed (Graff ,

1975). This chapter outlines the formalism of this approach for scattering from solid and

fluid spheres encased in solid and fluid media.
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2.1 Governing Equations

Acoustic and elastic waves must satisfy the equation of motion (Equation 2.1) for a

homogeneous, isotropic, non-dispersive elastic medium (Morse, 1948).

(λ+ 2μ)∇(∇ · u)− μ∇× (∇× u) =
ρ∂2u
∂2t

(2.1)

where u is the instantaneous particle displacement vector, ρ is the density, λ is the first

Lamé parameter and μ is the shear modulus of the medium that contains the wave.

The divergence of Equation 2.1 produces a scalar wave equation, while the curl of

Equation 2.1 produces a vector wave equation,

∇2(∇ · u) =
ρ

λ+ 2μ

∂2(∇ · u)
∂2t

(2.2)

and

∇2(∇× u) =
ρ

μ

∂2(∇× u)
∂2t

(2.3)

where ∇·u represents localized pressure and ∇×u represents local shear. Consequently,

Equation 2.2 represents compressional (longitudinal) waves and Equation 2.3 represents

shear (transverse) waves. The speeds of the longitudinal, cl, and transverse, cs, waves are

thus

cl =

√
λ+ 2μ

ρ
and cs =

√
μ

ρ
(2.4)

with corresponding wavenumbers,

kl =
ω

cl
and ks =

ω

cs
(2.5)

where ω is the angular frequency ( ω = 2πf , where f is the frequency).

According to Helmholtz theorem, the particle displacement vector field that results from

propagating waves can be decomposed into a scalar potential, φ, and vector potential, �ψ

(Mow and Pao, 1971).

u = ∇φ+∇× �ψ. (2.6)
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Incident 
Plane
Wave

Spherical
Obstacle

Solid or Fluid Medium

Figure 2.1: The spherical coordinate system (Equation 2.8) from Mow and Pao (1971) is

used in the following scattering models.

The potentials will satisfy the following equations

∇2φ =
1

c2l

∂2φ

∂2t
(2.7a)

∇2 �ψ =
1

c2s

∂2 �ψ

∂2t
(2.7b)

where, ∇ · u = ∇ · ∇φ satisfies Equation 2.2 and ∇× u = ∇×∇× �ψ satisfies Equation

2.3 (Mow and Pao, 1971).

Solutions to these potentials can then be expressed as a combination of spherical

harmonic functions (Mow and Pao, 1971).

2.2 Modelling Scattering from Spheres

For the case of scattering from spherical obstacles, a spherical coordinate system will be

adopted (see Figure 2.1) with the target sphere centred at the origin. The transformation

from Cartesian to spherical coordinates is given by

r =
√
x2 + y2 + z2, θ = tan−1(y/x), ϕ = cos−1(z/r). (2.8)
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where r is the radial distance and θ represents the polar angle and ϕ is the azimuthal

angle. Azimuthal dependence is ignored due to the symmetry of the problem.

A transmitted acoustic pulse is expressed as a plane harmonic wave that is a solution to

Equations 2.7a and 2.7b (Abramowitz and Stegun, 1964).

φ(i) = φ0e
−i(kl1r cos θ ωt), (2.9a)

and

�ψ(i) = �ψ0e
−i(ks1r cos θ ωt) (2.9b)

where φ(i) represents the transmitted compressional wave and ψ(i) represents a trans-

mitted shear wave, kl1 and ks1 are the wave numbers for compressional and shear waves

in the medium that contains the transmitted wave, respectively; and φ0 and ψ0 represent

the amplitude of the incident compressional and shear waves. Our model assumes that the

incident wave is purely compressional, so ψ0 = 0 . Equation 2.9a is then expanded as a

sum of spherical harmonics (see Appendix A) (Boas, 1966).

φ(i) = φ0e
−iωt

∞∑
n=0

in(2n+ 1)jn(kl1r)Pn(cos θ) (2.10)

The expressions for scattered and refracted waves, in terms of spherical harmonic

functions (see Appendix A and Mow and Pao (1971)) are

φ
(s)
1 = φ0e

−iωt

∞∑
n=0

in(2n+ 1) An hn(kl1r) Pn(cos θ) (2.11)

�ψ
(s)
1 = φ0e

−iωt

∞∑
n=0

in(2n+ 1) Bn hn(ks1r) Pn(cos θ) (2.12)

φ
(r)
2 = φ0e

−iωt

∞∑
n=0

in(2n+ 1) Cn jn(kl2r) Pn(cos θ) (2.13)

�ψ
(r)
2 = φ0e

−iωt

∞∑
n=0

in(2n+ 1) Dn jn(ks2r) Pn(cos θ) (2.14)

The potentials corresponding to the scattered longitudinal wave, φ
(s)
1 , and scattered

transverse wave, �ψ
(r)
2 , are determined by the An and Bn amplitude coefficients, respec-

tively. The potentials corresponding to the refracted longitudinal wave, φ
(s)
1 , and refracted
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transverse wave,
�
ψ

(r)
2 , are determined by the Cn and Dn amplitude coefficients, respec-

tively. Note that, even though there is no transmitted shear wave, shearing occurs as the

wave changes speed in the target. The subscript of the potentials denote the medium that

contains the wave and specifies the elastic properties that constrain elastic motion, where 1

refers to the medium that contains the transmitted and scattered wave, and 2 refers to the

sphere.

The spherical Bessel functions of the first kind, jn, (see Figure A.1) and spherical

Hankel functions of the first kind, hn, (see Figure A.2) of order n, are harmonic functions

that are common solutions for problems with spherical or cylindrical symmetry. The

Legendre polynomials, Pn(cos θ), (see Figure A.3) of order n are used to describe the

angular dependence of scattering.

The coefficient matrices, An,Bn, Cn and Dn, are dimensionless and are determined by

solving the appropriate boundary conditions (Section 2.2.2). Solution for discrete values

of n refer to the decomposed modal solutions.

2.2.1 Particle Displacement and Stress

The boundary conditions are expressed using particle displacement and stress. Since

infinite pressure gradients are not allowed and the medium remains in contact with the

target at all times, particle displacement and stress must be continuous at all interfaces.

Expressions for particle displacement can be found in terms of spherical harmonic functions

(Equation 2.10 to Equation 2.14) by applying Equation 2.6, which defines the normal

particle displacement as the gradient of the scalar potential (∇φ) and the tangential particle

displacement as the curl of the vector potential (∇×ψ) (Mow and Pao, 1971; Graff , 1975).

Expressions for the gradient and curl operator, specified by the coordinate system of the

problem, are used to describe normal particle displacement, ur, and tangential particle

displacement (Graff , 1975), uθ, as

ur =
∂φ

∂r
+

1

r sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
(2.15)

uθ =
1

r

(
∂φ

∂θ
− ∂

∂θ

∂(rψ)

∂r

)
(2.16)

Expressions for normal stress, τrr, and tangential stress, τrθ , are given in Graff (1975)
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in terms of the elastic properties of the material and particle displacement due to compres-

sional and shear waves.

τrr = λ

{
∂ur

∂r
+

2ur

r
+

1

r

∂uθ

∂θ
+

uθ cot θ

r

}
+ 2μ

{
∂ur

∂r

}
(2.17)

τrθ = μ

{
1

r

∂ur

∂θ
+

∂uθ

∂r
+

uθ

r

}
(2.18)

Using Equations 2.15 and 2.16, the stress-displacement relations can be expressed in

terms of scalar and vector potentials (Graff , 1975)

τrr = 2μ
{k2

s

2
φ− 2

r

∂φ

∂r
− 1

r2 sin θ

∂

∂θ
(sin θ

∂φ

∂θ
)

+
1

r sin θ

∂

∂θ

(
sin θ

( ∂2ψ

∂θ∂r
− 1

r

∂ψ

∂r

))}
(2.19)

τrθ = μ
∂

∂θ

(
2

r

∂φ

∂r
− 2

r2
φ+ k2

sψ +
2

r

∂ψ

∂r
+

2

r2
ψ +

2

r2 sin θ

∂

∂θ
(sin θ

∂ψ

∂θ
)

)
. (2.20)

Normal and tangential particle displacements and stresses are required for the three

distinct waves (incident, scattered and refracted) in the problem.

2.2.2 Boundary Conditions for Scattering Models

Boundary condition equations describing the continuity of normal particle displacement

(Equation 2.21a), continuity of tangential particle displacement (Equation 2.21b), continu-

ity of normal stress (Equation 2.21c) and continuity of tangential stress (Equation 2.21d)

are given by

[u(i)
r ]r=a + [u(s)

r ]r=a = [u(r)
r ]r=a (2.21a)

[u
(i)
θ ]r=a + [u

(s)
θ ]r=a = [u

(r)
θ ]r=a (2.21b)

[τ (i)rr ]r=a + [τ (s)rr ]r=a = [τ (r)rr ]r=a (2.21c)

[τ
(i)
rθ ]r=a + [τ

(s)
rθ ]r=a = [τ

(r)
rθ ]r=a. (2.21d)

12



These boundary condition equations can be expressed by inserting the appropriate poten-

tial functions, from Equations 2.10 to 2.14, into Equations 2.15 to 2.20. The expressions for

particle displacement and stress are evaluated at r = a, where a is the radius of the sphere.

The superscript of the particle displacement and stress terms specify which potential is

used (incident, scattered or refracted). The amplitude coefficients, An,Bn, Cn and Dn,

can be solved for discrete modes ( for n ≥ 0) using Cramer’s rule (Gaunard and Uberall,

1978). This requires that there are at least as many boundary condition equations as distinct

amplitude coefficients.

Examples of these models have been selected from literature (Gaunard and Uberall,

1978; Flax and Uberall, 1980; Gaunard and Uberall, 1983) and reproduced by solving for

the appropriate boundary conditions for a range of material properties, found in Table 2.1 .

The boundary condition equations differ for the cases of a solid scatterer in a fluid, a solid

scatterer in a solid and a fluid scatterer in solid.

2.2.3 Case I: Solid Sphere in a Fluid Medium

The case of a solid sphere in a fluid medium was modelled by Faran (1951) using phase-

shift formalism, and has since been verified by numerous experiments (Faran, 1951;

Hampton and McKinney, 1961; Hickling, 1962; Chivers and Anson, 1982; Gaunard and

Uberall, 1983). Gaunard and Uberall (1983) confirm this result using Cramer’s rule

to solve for the amplitude coefficients. The shear modulus of the fluid medium is zero

(μ1 = 0). As a result, the fluid cannot support shear waves and the potential ψ
(s)
1 must

be zero; thus, one less boundary condition equation is required. The boundary condition

equations simplify to:

[u(i)
r ]Fs

r=a + [u(s)
r ]Fs

r=a = [u(r)
r ]Fs

r=a (2.22a)

[τ (i)rr ]
Fs
r=a + [τ (s)rr ]

Fs
r=a = [τ (r)rr ]

Fs
r=a (2.22b)

0 = [τ
(r)
rθ ]

Fs
r=a (2.22c)

where the superscript [ ]Fs denotes the appropriate elastic parameterization for the case of

scatter from a solid sphere in a fluid. Gaunard and Uberall (1983) provide a solution for

the amplitudes of the scattered longitudinal wave and refracted longitudinal and transverse

waves in terms of dn(ω) (in Appendix B.1), which express the boundary conditions in

terms of material properties and the transmit pulse frequency.
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⎡
⎢⎢⎢⎢⎣
d
(11)
n (ω) d

(12)
n (ω) d

(13)
n (ω)

d
(21)
n (ω) d

(22)
n (ω) d

(23)
n (ω)

d
(31)
n (ω) d

(32)
n (ω) d

(33)
n (ω)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

AFs
n (ω)

CFs
n (ω)

Dn
Fs(ω)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

d
(10)
n (ω)

d
(20)
n (ω)

d
(30)
n (ω)

⎤
⎥⎥⎥⎥⎦ (2.23)

Frequency dependent solutions for the amplitudes of discrete vibrational modes (n)

of the scattered compressional wave are calculated using Cramer’s Rule (Gaunard and

Uberall, 1983), where

An
Fs(ω) =

∣∣∣∣∣∣∣∣∣∣

d
(10)
n (ω) d

(12)
n (ω) d

(13)
n (ω)

d
(20)
n (ω) d

(22)
n (ω) d

(23)
n (ω)

d
(30)
n (ω) d

(32)
n (ω) d

(33)
n (ω)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

d
(11)
n (ω) d

(12)
n (ω) d

(13)
n (ω)

d
(21)
n (ω) d

(22)
n (ω) d

(23)
n (ω)

d
(31)
n (ω) d

(32)
n (ω) d

(33)
n (ω)

∣∣∣∣∣∣∣∣∣∣

−1

(2.24)

and | | is the determinant of the inset matrix.

The first five vibrational modes for a range of material properties with respect to

transmit frequency and the size of the sphere are provided in Figure 2.2 which shows that

the locations of resonances are independent of changes in water properties and slightly

dependent on the properties of the tungsten carbide sphere.

2.2.4 Case II: Solid Sphere in a Solid Medium

The full set of boundary conditions are required to solve the scattering amplitudes from

a solid sphere encased in a solid elastic medium, since both the medium and target can

support both compressional and shear waves. The full set of boundary condition equations

are required, where:

[u(i)
r ]Ssr=a + [u(s)

r ]Ssr=a = [u(r)
r ]Ssr=a (2.25a)

[u
(i)
θ ]Ssr=a + [u

(s)
θ ]Ssr=a = [u

(r)
θ ]Ssr=a (2.25b)

[τ (i)rr ]
Ss
r=a + [τ (s)rr ]

Ss
r=a = [τ (r)rr ]

Ss
r=a (2.25c)

[τ
(i)
rθ ]

Ss
r=a + [τ

(s)
rθ ]

Ss
r=a = [τ

(r)
rθ ]

Ss
r=a (2.25d)

where the superscript [ ]Ss denotes the appropriate elastic parameterization for the case

of scatter from a solid sphere in a solid. Flax and Uberall (1980) provide a solution for
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Figure 2.2: The first five vibrational modes for the amplitude coefficient for a compressional

wave scattered from a solid sphere in a fluid medium using Gaunard and Uberall (1983);

calculated for a tungsten carbide sphere in water using a range of material properties,

where ◦c is the median soundspeed, ↑ c is the highest expected soundspeed, ↓ c the lowest

expected soundspeed (see Table 2.1).
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the amplitude of the scattered longitudinal wave in terms of an(ω) (Appendix B.2), which

express the boundary conditions in terms of material properties and the transmit pulse

frequency.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b
(11)
n (ω) b

(12)
n (ω) b

(13)
n (ω) b

(14)
n (ω)

b
(21)
n (ω) b

(22)
n (ω) b

(23)
n (ω) b

(24)
n (ω)

b
(31)
n (ω) b

(32)
n (ω) b

(33)
n (ω) b

(34)
n (ω)

b
(41)
n (ω) b

(42)
n (ω) b

(43)
n (ω) b

(44)
n (ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ASs
n

Bn
Ss

CSs
n

Dn
Ss

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b
(10)
n (ω)

b
(20)
n (ω)

b
(30)
n (ω)

b
(40)
n (ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.26)

Frequency dependent solutions for the amplitudes of discrete vibrational modes of the

scattered compressional wave are calculated using Cramer’s Rule (Flax and Uberall, 1980),

where

ASs
n (ω) = ∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(10)
n (ω) b

(12)
n (ω) b

(13)
n (ω) b

(14)
n (ω)

b
(20)
n (ω) b

(22)
n (ω) b

(23)
n (ω) b

(24)
n (ω)

b
(30)
n (ω) b

(32)
n (ω) b

(33)
n (ω) b

(34)
n (ω)

b
(40)
n (ω) b

(42)
n (ω) b

(43)
n (ω) b

(44)
n (ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(11)
n (ω) b

(12)
n (ω) b

(13)
n (ω) b

(14)
n (ω)

b
(21)
n (ω) b

(22)
n (ω) b

(23)
n (ω) b

(24)
n (ω)

b
(31)
n (ω) b

(32)
n (ω) b

(33)
n (ω) b

(34)
n (ω)

b
(41)
n (ω) b

(42)
n (ω) b

(43)
n (ω) b

(44)
n (ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

(2.27)

The first five vibrational modes for a range of material properties with respect to

transmit frequency and the size of the sphere are provided in Figure 2.3 which shows that

the locations of resonances depend upon the properties of the ice and the tungsten carbide

sphere.

2.2.5 Case III: Fluid-Filled Sphere in a Solid Medium

When a sphere encased in a solid medium is filled with fluid, the sphere will not be able

to support shear waves and the potential [ψ
(r)
2 ]Sf must be zero and one less boundary
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Figure 2.3: The first five vibrational modes for the amplitude coefficient for a compressional

wave scattered from a solid sphere in a solid medium using Flax and Uberall (1980);

calculated for a tungsten carbide sphere in ice using a range of material properties, where

◦c is the median soundspeed, ↑ c is the highest expected soundspeed, ↓ c the lowest

expected soundspeed (see Table 2.1).
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condition equation is required. In this case, the boundary condition equations simplify to:

[u(i)
r ]Sfr=a + [u(s)

r ]Sfr=a = [u(r)
r ]Sfr=a (2.28a)

[τ (i)rr ]
Sf
r=a + [τ (s)rr ]

Sf
r=a = [τ (r)rr ]

Sf
r=a (2.28b)

[τ
(i)
rθ ]

Sf
r=a + [τ

(s)
rθ ]

Sf
r=a = 0 (2.28c)

where the superscript [ ]Sf denotes the appropriate elastic parameterization for the case

of scatter from a fluid sphere in a solid. Gaunard and Uberall (1978) provide a solution

for the amplitude of the scattered longitudinal wave in terms of cn(ω) (Appendix B.3),

which express the boundary conditions in terms of material properties and the transmit

pulse frequency.

⎡
⎢⎢⎢⎢⎣
c
(11)
n (ω) c

(12)
n (ω) c

(13)
n (ω)

c
(21)
n (ω) c

(22)
n (ω) c

(23)
n (ω)

c
(31)
n (ω) c

(32)
n (ω) c

(33)
n (ω)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ASf
n (ω)

Bn
Sf (ω)

CSf
n (ω)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c
(10)
n (ω)

c
(20)
n (ω)

c
(30)
n (ω)

⎤
⎥⎥⎥⎥⎦ (2.29)

Frequency dependent solutions for the amplitudes of discrete vibrational modes of the

scattered compressional wave are calculated using Cramer’s Rule (Gaunard and Uberall,

1978), where

An
Sf (ω) =

∣∣∣∣∣∣∣∣∣∣

c
(10)
n (ω) c

(12)
n (ω) c

(13)
n (ω)

c
(20)
n (ω) c

(22)
n (ω) c

(23)
n (ω)

c
(30)
n (ω) c

(32)
n (ω) c

(33)
n (ω)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

c
(11)
n (ω) c

(12)
n (ω) c

(13)
n (ω)

c
(21)
n (ω) c

(22)
n (ω) c

(23)
n (ω)

c
(31)
n (ω) c

(32)
n (ω) c

(33)
n (ω)

∣∣∣∣∣∣∣∣∣∣

−1

(2.30)

The first five vibrational modes for a range of material properties with respect to

transmit frequency and the size of the sphere are provided in Figure 2.4 which shows that

the locations of resonances depend upon the properties of the ice and are independent of

the elastic properties of the air inclusion.

2.2.6 Case IV: Fluid-Filled, Spherical Elastic Shell in Water

The case of acoustic scattering from a fluid sphere in water has been modelled by Anderson

(1950) (see Figure 2.5), using the same method of enforcing continuity of stress and
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Figure 2.4: The first five vibrational modes for the amplitude coefficient for a compressional

wave scattered from a fluid sphere in a solid medium using Gaunard and Uberall (1978);

calculated for an air cavity in ice using a range of material properties, where ◦c is the

median soundspeed, ↑ c is the highest expected soundspeed, ↓ c the lowest expected

soundspeed (see Table 2.1).
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Figure 2.5: The first five vibrational modes for the amplitude coefficient for a compressional

wave scattered from a fluid sphere in a fluid medium using Anderson (1950); calculated

for an air bubble in water using a range of material properties, where ◦c is the median

soundspeed, ↑ c is the highest expected soundspeed, ↓ c the lowest expected soundspeed

(see Table 2.1).

particle displacement across the interface of the sphere, where both the medium and sphere

cannot support shear waves. Thus, only two boundary condition equations are required;

continuity of pressure and continuity of normal particle displacement.

[u(i)
r ]Ff

r=a + [u(s)
r ]Ff

r=a = [u(r)
r ]Ff

r=a (2.31a)

[τ (i)rr ]
Ff
r=a + [τ (s)rr ]

Ff
r=a = [τ (r)rr ]

Ff
r=a (2.31b)

An expressions for the amplitude of the scattered compressional wave AFf
n is given in

Anderson (1950). The first five vibrational modes for a range of material properties with

respect to transmit frequency and the size of the sphere are provided in Figure 2.5 which

shows that the scattered compressional wave does not vary with the elastic properties of

the water or air bubble.

A solid shell is used to maintain a fluid sphere in water with a consistent size. This case
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has been modelled for shells of different sizes (Gaunard and Werby, 1985, 1987, 1991).

In this case, the elastic shell can support shear waves; although neither the water or the

fluid enclosed in the elastic shell will support shear waves. Six boundary conditions are

required to describe the incident and scattered compressional waves, the compressional

and shear waves refracted into the elastic shell and scattered from the encased fluid, and

the wave refracted into the encased fluid.

[u(i)
r ]Fs

r=a2
+ [u(s)

r ]Fs
r=a2

= [u(r)
r ]Fs

r=a2
(2.32a)

[τ (i)rr ]
Fs
r=a2

+ [τ (s)rr ]
Fs
r=a2

= [τ (r)rr ]
Fs
r=a2

(2.32b)

0 = [τ
(r)
rθ ]

Fs
r=a2

(2.32c)

[u(i)
r ]sfr=a1

+ [u(s)
r ]sfr=a1

= [u(r)
r ]sfr=a1

(2.32d)

[τ (i)rr ]
sf
r=a1

+ [τ (s)rr ]
sf
r=a1

= [τ (r)rr ]
sf
r=a1

(2.32e)

[τ
(i)
rθ ]

sf
r=a1

+ [τ
(s)
rθ ]

sf
r=a1

= 0 (2.32f)

where, [ ]Fs denotes waves in the water incident on the elastic shell and [ ]sf denotes

waves in the shell incident on the enclosed fluid, a1 is the radius of the fluid sphere enclosed

by the shell and a2 is the radius of the shell; thus, the shell thickness is a2 − a1. The

wave refracted into the shell is the wave scattered from the fluid inclusion (for example,

[τ
(r)
rr ]Fs

r=a2
≈ [τ

(i)
rr ]sfr=a1

).

The amplitude coefficient of a scattered wave is found using the same methodology in

Sections 2.2.3 to 2.2.5, where the dimensionless coefficients used to solve the boundary

condition equations are given in Gaunard and Werby (1987). The magnitude of the

scattered longitudinal wave is a function of the material properties of the water, elastic

shell and enclosed fluid; as well as the thickness of the shell (Gaunard and Werby, 1987).

The first five vibrational modes for a range of material properties are given in Figure 2.6,

which shows that the location of the resonances depends on the elastic properties of the

shell.

2.2.7 Planar Fluid-Solid Interface

If the target is encased in a solid medium and ensonified with a sound source that is outside

this medium, as for a target inside a submerged block of ice with an echosounder in the
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Figure 2.6: The first five vibrational modes for the amplitude coefficient for a compressional

wave scattered from a fluid-filled shell in a fluid medium using Gaunard and Werby (1987);

calculated for an air-filled polypropylene shell in water using a range of material properties,

where ◦c is the median soundspeed, ↑ c is the highest expected soundspeed, ↓ c the lowest

expected soundspeed (see Table 2.1).
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water, both the incident and transmitted wave will have to pass through the surface of the

solid. This will affect the amplitude of the acoustic wave that is incident on the sphere,

and thus the amplitude of the wave scattered from the sphere.

The reflection of sound from a planar water/ice interface was modelled by Langleben

(1970), Mayer et al. (1975) and Jezek (1985). Both Langleben (1970) and Mayer et al.

(1975) model the reflection by ignoring shear waves transmitted into the ice, and it is

assumed that the incident pulse is appropriately short so that multiple reflections can be

ignored, that lateral waves (ie. surface and flexural waves) can be ignored and that bulk

material properties are consistent throughout the ice. Observations from Crary (1954) and

Rothlisberger (1972) show that this model can reproduce observed reflections from ice

surfaces.

The energy scattered at a planar solid interface will be a function of the change in

elastic properties between the solid medium and surrounding fluid and also the shape,

size, orientation and roughness of the interface with respect to the incident acoustic beam

(Kinsler et al., 1972). Assuming a planar interface with negligible surface roughness,

surface reflection and transmission is given by Langleben (1970) as,

R12 =
(Z2/Z1 − cosϑt/ cosϑi)

2

(Z2/Z1 + cosϑt/ cosϑi)2
(2.33)

T12 =
((4 Z2 cosϑt)/(Z1 cosϑi))

2

(Z2/Z1 + cosϑt/ cosϑi)2
(2.34)

where R12 is the reflection coefficient and T12 is the transmission coefficient. The

subscript denotes the medium, where 1 refers to the surrounding medium and 2 refers

to the solid medium of interest. The specific acoustic impedance, Z, defined as Z = ρc,

expresses the ability of the medium to redistribute acoustic energy, ignoring possible shear

wave generation. The angle of incidence, ϑi, and the transmission angle, ϑt, are related by

Snell’s Law as ϑt = cos−1
(√

1− ( c2 sinϑi

c1
)2
)

. The critical angle, ϑc, is the largest angle

where transmission occurs, defined by Snell’s Law as ϑc = sin−1( c1
c2
). If ϑi > ϑc, then R12

= 1 and T12 = 0.

Jezek (1985) updates this model to incorporate shear, surface and flexural waves in ice;

however, since the models for spheres encased in solid media (Sections 2.2.4 and 2.2.5)

assume that only a longitudinal wave is incident on the sphere, I did not model shear wave
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transmission.

2.3 Expressions for Backscattering

2.3.1 Backscattering Cross Section

An acoustic far-field energy flux can be calculated using the amplitude coefficients for the

scattered compressional wave (An) for a sufficient number of modes.

The scattered pressure is expressed in terms of a form function, f∞(r, θ, ω), calculated in

terms of range, scattering angle and acoustic frequency. The form function is the scattered

compressional wave (φ
(s)
1 ), normalized by the incident wave (Gaunard and Uberall, 1978)

and has dimensions of meters.

f∞(r, θ, ω) =
φ
(s)
1

φ0

r
ei(kl1r−ωt)

=

r
∞∑
n=0

in(2n+ 1) An hn(kl1r)Pn(cos θ)

ei(kl1r)

(2.35)

The asymptotic approximation (kr 
 1) of the spherical Hankel function is applied

when the observation is separated from the object by many wavelengths (Gaunard and

Uberall, 1978),

hn(kr)−−−→kr>>1(−i)n+1 e
ikr

kr
. (2.36)

In the case of a monostatic system, the receiver and transmitter are the same and only

backscattering is observed, thus θ = π, where Pn(cos(π)) = (−1)n (Sessarego et al.,

1998) and the far-field backscattering form function simplifies to

f∞(π, ω) =
1

ikl1

∞∑
n=0

(−1)n(2n+ 1) An(ω). (2.37)

The acoustic backscattering cross section, σbs, can be calculated from this form function,

σbs(ω) = (|f∞(π, ω)|)2 . (2.38)
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The sum of amplitude coefficients converges when n > kl2a+ 5 (Gaunard and Uberall,

1978). The higher order modes model partial wave returns that extend the envelope of a

scattered wave and are responsible for certain resonances (Gaunard and Uberall, 1983).

In the case that a measured wave envelope is truncated to better isolate a target, models

summed over fewer modes provide an accurate representation of the front of the return

(Reeder, 2002).

2.3.2 Target Strength
2.3.2.1 Ice Surfaces

The expected target strength (TS) of the ice surface reflection (Brekhovskikh and Lysanov,

1982) is

TSRt = 10 log10

(
R12

2rI1

)
(2.39)

where rI1 is the range to the top ice surface. In the case of a finite solid encasing

medium, a reflection from the bottom surface may also be identified. The wave incident

on the bottom surface and the scattered wave will pass through the top ice surface. The

expected TS from the bottom surface reflection is

TSRb = 10 log10

(
T12T21R21

2rI2

)
(2.40)

where rI2 is the range to the bottom ice surface. The range dependence in this model

is due to the assumption that the surface of the ice is semi-infinite, compared to the size

of the beam. This assumption holds if the footprint of the beam is fully contained on the

solid surface.

This model does not include the effect of diffraction at the edges of the solid matrix, shear

wave reflection and transmission or mode conversion. The reflection from the surface is

modelled as though the beam width is narrower than the lateral extent of the ice surface. In

this case that footprint of the beam is not fully contained on the solid surface, the intensity

of the reflected wave should scale according to diffraction from a rectangular aperture

(Goodman, 1996), where the intensity as a function of angle is R12(θr) = sinc(πW sin(θ)
λ

),

where W is the width of the ice block, θr is the angle of the receiver from the edge of

the block that intersects the beam and λ is the acoustic wavelength (Goodman, 1996). In

this case, Equation 2.39 is not expected to accurately predict the magnitude of the wave
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Figure 2.7: Modelled Target Strength from a planar ice-water interface using Langleben
(1970) as a function of incidence angle. The reflection from the top surface (using Equation

2.39; red and orange) and bottom surface (using Equation 2.40; dark and light blue) are

given for multiple ranges of the surface from the transducer.

scattered at the surface of the solid; however, Equations 2.33 and 2.34 will provide a useful

estimate of the energy that is removed from the wave incident on the sphere and the wave

scattered from the sphere at the interface of the solid. Figure 2.7 shows that the strength of

the reflection increases at non-normal incidence and decreases with the range of the surface

from the transducer. A critical angle occurs at 27◦ where the wave no longer penetrates the

ice surface and is totally reflected.

2.3.2.2 Target Spheres

If I assume that scattering from the ice surfaces and multiple inclusions are incoherent, the

backscattering cross sections of each scatterer within the beam are combined to calculate

the far-field energy flux through 1m2, reported as TS in decibels.
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TSo(ω) = 10 log10

(
Vsam∑ σbs(ω)

1m2

)
(2.41a)

TSi(ω) = 10 log10

(
T12T21

Vsam∑ σbs(ω)

1m2

)
(2.41b)

TSI(ω) = 10 log10

(
T12T21

Vsam∑
σbs(ω) +

R12

2r
+

T12T21R21

2r/
1m2

) (2.41c)

where TSo is the expected target strength of target spheres in water, TSi of targets in

ice and TSI of the entire return from the ice. The echoes that pass through the ice surface

are compensated using the transmission coefficients, T12 and T21.
Vsam∑

σbs(ω) represents a

linear combination of backscattering cross sections for all target spheres in a given sample

volume, Vsam (see Section 3.2.2). While the assumption that scattering from multiple

spheres in ice is incoherent is over-simplistic, since the spherical targets are fixed in the

ice block and not randomly distributed, it provides a first-order estimate of the scattering

amplitude from multiple spheres. For ice with no inclusions, I assume
Vsam∑

σbs(ω) = 0.

Figure 2.8 provides TS from spheres in ice and water over a range of frequencies and

sphere sizes.
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Figure 2.8: Target Strengths for spheres in water (blue and black solid lines) and ice (red

and orange solid lines) as a function of frequency and medium properties (where k = ω/c)
and sphere radius (a). The models are parameterized for a tungsten-carbide sphere in water

(black) and ice (red), an air bubble in water (light blue) and ice (orange) and an air-filled

polypropylene shell in water (dark blue). The TS from an ice surface reflection at normal

incidence and 4 meters depth, is provided as a solid green line. Patches represent the

frequency dependent TS expected from 10 mm and 38 mm spheres in water (grey patches)

and ice (tan patches).
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CHAPTER 3

METHODS

Acoustic scattering data are interpreted by comparing observations with mathematical

models for the cases of a solid (Faran, 1951; Gaunard and Uberall, 1983) and fluid

(Anderson, 1950) spherical scatterer in a fluid medium and a solid (Flax and Uberall,

1980) or fluid-filled inclusion in a solid medium (Gaunard and Uberall, 1978). Acoustic

backscattering observations from solid and air-filled spheres in water and ice were collected

with a monostatic, 85kHz-155kHz broadband echosounder system.

3.1 Backscattering Measurements

Acoustic backscattering measurements of solid and air-filled spheres in water and ice were

collected in the Aquatron Tower Tank at Dalhousie University in Halifax, Nova Scotia in

September and October 2012 and August 2014.

3.1.1 The Echosounder

A monostatic echosounder system (Scifish 2100-B) (see Figure 3.1) contained a 17-cm

diameter single-beam piston-type broadband transducer with a centre frequency of 120

kHz and a 70kHz bandwidth. The transducer is assumed to produce an approximately

conical beam with side lobes, whose strength varied with angle, as seen in Figure 3.2.

The main lobe was the most energetic region of the beam, aligned with the centre of the

transducer, and had a full beam-width, θb(ω), between 16◦ at 90 kHz and 8◦ at 150 kHz.

The effects of the side lobes were not observed in backscattering in the tank. The footprint

of the main lobe of the beam, Ab(ω), is a function of the transducer diameter, D, the

range of the leading edge of the acoustic beam, Rb(ω), and the transducer beam angle,
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Figure 3.1: The Scifish 2100-B Broadband Sonar setup in the 10-meter deep Aquatron

Tower Tank. Targets were centred underneath the echosounder that both transmitted and

received acoustic pulses.
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Figure 3.2: The Directivity Index of the SciFish 2100-B, measured on December 14th,

2007, shows the frequency dependent main lobes (solid line) and side lobes (dashed line)

of the transmitted beam. The conical main lobe is the region of the beam that is at least -3

dB below the centre of the beam, where the transmit pulse is strongest.

θb(ω); where Ab = πrb(ω)
2, and rb(ω) is the beam radius (see Table 3.1 ) (Simmonds and

MacLennan, 2005). The range of the beam is R = ct/2 where c is the soundspeed in the

tank.

The sampling volume, Vb(ω) (see Figure 3.3) is

Vb(ω) =
π

3
ΔR (r2t (ω) + rt(ω)rb(ω) + r2b (ω)) (3.1a)

rt(ω) = (Rb −ΔR) tan

(
θb(ω)

2

)
+

D

2
(3.1b)

rb(ω) = Rb tan

(
θb(ω)

2

)
+

D

2
(3.1c)

where, ΔR is the depth of the sampling volume, rt is the radius of the beam at the top of

the sampling volume and rb is the radius of the beam at the bottom of the sampling volume

and θb(ω) is the frequency dependent beam angle. The height of the sampling volume is

discussed in Section 3.2.2.

The intensity of the beam is affected by diffraction near the transducer. The effect of

diffraction is negligible past the far-field distance of the transducer, Rff , given by
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Figure 3.3: The sampling volume is calculated using Equation 3.1a as a function of the

frequency-dependent beam width, θb, and transducer diameter, D, as well as the depth,R̃,

and the size of the sample volume, ΔR̃.

33



Table 3.1: The beam footprint with depth shows that the beam radius is frequency de-

pendent and varies due to the broadband pulse. The beam radius is smallest at 150 kHz

and largest at 90 kHz. The yellow entries show depths where the ice surface is partially

contained within the beam, and the red entries show depths where the ice is fully contained

in the beam.

Rb rb

Tank Depth (m) Beam Radius (m)

90 kHz 150 kHz

4 0.65 0.37

4.5 0.72 0.40

5 0.79 0.44

5.5 0.86 0.47

6 0.93 0.51

6.5 1.00 0.54

Rff =
ωD2

8c
(3.2)

where D is the diameter of the transducer face, ω is the angular frequency of the transmit

pulse and c is the speed of sound in the tank (Medwin and Clay, 1998). The operational

far-field distance of this system was 2.9 meters.

The echosounder was set to generate one millisecond acoustic pulses, 5 times per second

(0.5 % duty cycle) with a peak-to-peak voltage of 290 V. Each pulse was linear frequency-

modulated from 85 to 155 kHz. Acoustic backscattering was recorded by the echosounder

as peak-to-peak voltage (Sbs) for 16.4 ms with a 500 kHz sampling frequency (fS) and

the receiver gain was set to 17 dB, 20.1 dB, 22dB or 30 dB. Each recorded ping contains

8,192 samples spanning a maximum distance of 12.9 meters.

3.1.2 Target Spheres

Backscattering was observed from an assortment of solid and hollow spheres in water and

ice (see Table 3.2). Solid and hollow spheres represent the two different types of scattering

expected to occur within sediment-laden ice blocks; solid spheres representing idealized

sediment particles and hollow spheres representing air bubbles encased in ice.

The solid spheres were made of Tungsten Carbide (WC) (94% Tungsten Carbide, 6%

Cobalt) and had a diameter of either 38.1 mm or 10 mm. The hollow spheres had a
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Figure 3.4: Clear (control) ice block at the surface of the tower tank. This is block BLK1

(see Table 3.2) The ice was free of air and impurities. The clear ice blocks (BLK1 and

BLK5) fractured in the control runs, due to rapid expansion when introduced to the water.

Figure 3.5: BLK3 (see Table 3.2) contains a mixture of different scattering obstacles

encased in ice. Small tungsten-carbide spheres have been used to simulate sediment

inclusions and polypropylene shells of different sizes have been used to simulate air

cavities.
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polypropylene (PP) shell filled with air. Again, two sizes were used, a 38 mm diameter

sphere with a 1.2 mm thick shell and a 10 mm diameter sphere with a 1 mm thick shell.

The material properties for these spherical targets are given with their uncertainty in Table

2.1. Backscattering from WC spheres are accurately described by the Faran (1951) or

Gaunard and Uberall (1983) model (see Section 2.2.3), such that discrepancies between

backscattering measurements and the model are attributed to problems with the calibration

of the transducer (Stanton and Chu, 2008).

These solid and hollow spheres were encased in bubble-free ice blocks (see Figures

3.4, 3.5 and 3.6 for examples). The ice blocks were produced by Richard Chiasson of Ice

Creations in Caraquet, New Brunswick by slowly freezing water in sheets and removing

air and impurities with a vacuum, using a Clinebell Carving Block Ice Maker (Model:

CB300X2). Air bubbles and impurities produce unwanted scattering if not removed. Each

block was rectangular with dimensions of 1.00 m by 0.25 m by 0.50 m. The spheres were

frozen in a plane that is roughly 12.5 cm from the largest surface of the ice block. Two

inclusions free (ie. clear) ice blocks, intended as controls, and six ice blocks with various

inclusions were produced (see Table 3.2).

3.1.3 Experimental Setup

The echosounder was mounted, facing downwards, at the centre of the Aquatron Tower

Tank (see Figures 3.1 and 3.7), a cylindrical tank that is 10.6 m deep and 3.6 m in diameter.

The tank is made from steel-reinforced concrete and is lined with Polyester sand glass-fiber

with an epoxy sealant.

Using the setup sketched in Figure 3.7, backscattering was observed from individ-

ual spheres or ice blocks with spherical inclusions, that were held in the beam of the

echosounder. The echosounder was pinged and multiple pings were recorded (Nping > 100)

using the echosounder setup described in Section 3.1.1, with the targets at a range of depths

and with a range of receiver gain settings. Care was taken to ensure the targets were in

the far-field of the beam (Equation 3.2). The smaller targets were positioned so that they

were directly in the centre of the beam. The target spheres were held in a monofilament

cradle and with a three point harness made of monofilament lines. These experiments are

summarized in Table 3.3. Additional scattering from the nylon monofilament is assumed

to be negligible (Roberts and Jaffe, 2008). These lines were adjusted so that the sphere

moved laterally until the strongest return was located, assuming that the strongest return
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Figure 3.6: A net with weights was used to oppose the buoyancy of the ice block and a

camera was deployed to monitor the orientation and changes in size and shape of the ice

block. BLK6 (see Table 3.2) contained a 38.1 mm tungsten carbide sphere.
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Figure 3.7: A sketch of the experimental setup in the Aquatron Tower Tank. The

echosounder (SciFish 2100-B) mounted at the top transmits an acoustic pulse along

a conical beam into the water. As this acoustic pulse encounters submerged objects, a

fraction of the signal will scatter back to be recorded by the echosounder.
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Table 3.2: Summary of Target Spheres in Water and Ice

Target ID Date Comments

CLB1 38.1 mm WC sphere in water

CLB2 10 mm WC sphere in water

CLB3 38 mm hollow PP shell in water

CLB4

August 7th, 2014

10 mm hollow PP shell in water

BLK1 October 22nd, 2012 Clear ice block (Control)

BLK2 20-10mm hollow PP shells in ice

BLK3

16-10mm WC spheres,

26-10mm hollow PP shells and

17-38mm hollow PP shells in ice

BLK4

October 23rd, 2012

1-38mm hollow PP shell in ice

BLK5 Clear ice block (Control)

BLK6 1-38.1mm WC sphere in ice

BLK7

October 24th, 2012 14-10mm WC spheres,

19-10mm hollow PP shells and

9 -38mm hollow PP shells in ice

BLK8 October 25th, 2012 20-10mm WC spheres in ice

occured when the target occupied the centre of the beam. Buoyant spheres (CLB 3/4 in

Table 3.3) were weighed to ensure that they remained immobile during data collection.

The ice blocks with spherical inclusions were positioned in the beam of the echosounder

by attaching the ice to a weighted frame. These experiments are summarized in Table

3.4. The frame was weighted with 60 lbs of lead and held the ice in a monofilament net

(see Figure 3.7). The ice was held such that the beam encountered the 1/2 m x 1 m face

(Ai = 1/2 m2). A net, positioned beneath the block, caught the spheres that fell out as

the ice melted. The lead weights held the ice down, so that it could be lowered into the

far-field of the echosounder system. The setup was adjusted to make the surface of the ice

as perpendicular as possible to the incident beam.

In the far-field, the beam area was large enough to fully ensonify the spherical targets,

however, the relationship between the beam area and the surface of the ice blocks changed

with the depth, and to a lesser degree, the orientation of the ice in the tank. Since the

acoustic wavelength was much smaller than the width of the block, the beam width of
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Table 3.3: Summary of Experiments: Target Spheres in Water. Backscattering from

spheres [WC = solid tungsten-carbide spheres; PP = hollow (air-filled) polypropylene

shells] measured with multiple pings for each experiment, at a range of depths and gain

settings using a SciFish 2100-B echosounder.

Experiment ID Gain Setting Depth (in meters)

CLB1exp1 [38.1mm WC] 5.1

CLB1exp2 [38.1mm WC]
Normal Gain (22 dB)

7.3

CLB1exp3 [38.1mm WC] 6.2

CLB1exp4 [38.1mm WC]
Low Gain (17 dB)

8.1

CLB1exp5 [38.1mm WC] High Gain (30 dB) 4.8

CLB2exp1 [10 mm WC] 6.0

CLB2exp2 [10mm WC] 7.6

CLB3exp1 [38mm PP] 5.5

CLB3exp2 [38mm PP] 7.2

CLB4exp1 [10mm PP]

Normal Gain(22 dB)

5.5

the scattered wave is proportional to the width of the ice surface (see Section 2.2.7).

Consequently, the strength of the recorded echo from the ice surface should be relatively

unaffected by diffraction, since the surface area of the block was much larger than the

receiver. However, as the block melts and shrinks, the effect of diffraction becomes more

pronounced since it it more likely that scattering at the edges of the block will interfere

with the main echo. Therefore, changes in the position and orientation of the block become

important. However, this should not be an issue until the surface dimensions of the block

are comparable with the size of the receiver.

Since it was difficult to securely hold the block in place without introducing unwanted

scattering from rigid frames, a camera was lowered into the tank to photograph the melting

ice block, so that the changing shape and orientation of the ice could be observed. The

echosounder was also mounted at at 6◦ and 10◦ angles to observe the dependence of

backscattering from the ice block as a function of incidence angle (Table 3.4).

3.2 Data Processing

Backscattering data recorded by the echosounder were stored as a time series of peak-to-

peak voltage (Sbs), which is proportional to pressure fluctuations at the receiver. This time
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Table 3.4: Summary of Experiments: Target Spheres in Ice. Backscattering from spheres

encased in ice, measured with multiple pings for each experiment, at a range of depths and

incidence angles using a SciFish 2100-B echosounder. See Table 3.2 for description of

targets in each block.

Experiment ID

Time

Submerged

(minutes)

Incidence

Angle

(degrees)

Approx.

Depth

(meters)

Notes

BLK4exp1 2 0 5.3 This ice block is

BLK4exp2 12 0 5.3 slightly tilted.

BLK4exp3 14 0 5.3

BLK4exp4 23 10 5.3

BLK4exp5 38 6 5.3

BLK4exp6 62 0 5.3

BLK5exp1 5 0 4.8 This ice block

BLK5exp2 21 6 4.8 is extensively

BLK5exp3 39 10 4.8 fractured.

BLK5exp4 55 0 4.8

BLK5exp5 65 6 4.8

BLK5exp6 73 10 4.8

BLK5exp7 105 0 4.8

BLK6exp1 3 0 4.5

BLK6exp2 15 0 4.5

BLK6exp3 26 6 4.5

BLK6exp4 35 10 4.5 Ice cracked around the

BLK6exp5 45 0 4.5 sphere.

BLK6exp6 58 6 4.5

BLK7exp1 6 0 5.1 This ice block is sharply

BLK7exp2 15 0 5.1 tilted and fractured at

BLK7exp3 31 5 5.1 the edges.

BLK7exp4 55 0 5.1

BLK8exp1 6 0 6.2 Moved this block during

BLK8exp2 17 0 6.2 the experiment.

BLK8exp3 45 0 5.4

BLK8exp4 46 0 5.4
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Figure 3.8: Acoustic backscatter is expected to originate from the surface of submerged

ice and from inclusions within the ice. The raw acoustic data can be transformed into a

compressed pulse output to help differentiate discrete returns. A Fourier transform is then

applied to the compressed pulse data to generate observations of frequency dependent

acoustic backscatter.

series was used to calculate the frequency-dependent target strength (TSobs(ω)) which was

compared to the scattering models from Chapter 2. Figure 3.8 sketches the steps involved

in extracting TSobs(ω) from the raw acoustic backscatter measurements, discussed in detail

in the following subsections.

3.2.1 Pulse Compression

Pulse compression was applied to the backscattering time series to simultaneously increase

the signal-to-noise ratio and the spatial resolution of the signal (Stanton et al., 1998).

Without pulse compression, distinct returns would need to be separated by a distance of at

least half the pulse length to avoid overlap. Thus, without pulse compression the spatial

resolution can only be increased by decreasing the pulse length. However, the energy in the

pulse, hence the signal-to-noise ratio, is proportional to the pulse length; therefore, a long

pulse is needed to overcome noise (Stanton et al., 1998). Pulse compression correlates

a linear frequency modulated transmit pulse with the resultant echo. The correlation

transforms echoes from a uniform-amplitude pulse with a duration of tpulse, to a cardinal

sine with a duration of approximately tcp = 1/β (Klauder et al., 1960), where β is the
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bandwidth of the pulse. In this case, β = 70 kHz. The spatial resolution of the compressed

pulse output is c/2β (Stanton et al., 1998). As the name suggests, the energy in the return is

not reduced by pulse compression, instead, it is compressed toward the centre of the pulse.

This provides a selective, virtual gain to true echoes, proportional to βtpulse (Klauder et al.,

1960). Pulse compression increased the spatial resolution of our system from 70 cm to 1

cm and amplified the returns by 70.

The compressed pulse output, CP (t), is the scaled cross correlation of the broadband

transmit pulse, Str, and and the backscattering time series, Sbs (Chu and Stanton, 1998).

CP (t) = κc(Str ⊗ Sbs) (3.3)

where κc is a proportionality constant related to the autocorrelation of the transmit pulse

and ⊗ is the cross correlation (Stanton et al., 1998). The cross correlation will remove

background noise, since it is not correlated with the transmit pulse (Stanton et al., 1998).

A transmit pulse was not recorded in the tank, instead, a clipped transmit pulse appears in

the first 500 samples (for a 1 ms transmit pulse) of each backscattering data file, and was

used as Str (see Ross et al. (2013) for consequences of using a clipped transmit signal).

The envelope of the CP output is used to locate scattering sources and is corrected

for spherical spreading by multiplying the CP output by R2 (Simmonds and MacLennan,

2005). Peaks in the envelope of the CP output indicated returns most likely caused by

distinct scattering sources. Peaks in the CP envelope may also indicate multiple reflections

or partial-wave arrivals from a single target (Stanton and Chu, 2008).

3.2.2 Frequency Dependent Target Strength

Once a return was located, the sample volume is centred at the corresponding peak (R̃) in

the CP output and a Discrete Time Fourier Transform was applied,

Ŝbs(ω̃) =

NR̃+
Nfft
2∑

N=NR̃−Nfft
2

CP (N/fs)e
−iω N/fs (3.4)

where, Nfft is the size of the Fourier transform window, N denotes sample numbers

(starting at 0 at the beginning of the transmitted pulse) and NR̃ is the sample number

corresponding to the peak in the CP output, fs is the sampling frequency (fs = 500kHz),

and CP (N/fs) is the compressed pulse (see Equation 3.3) and NR̃ = 2fsR̃/c. The length
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of the sample volume, ΔR̃, (see Section 3.1.1) is set by the Fourier transform window,

where ΔR̃ = Nfftc/2fs. The depth vector, thus the length of the sample volume, depends

on the local soundspeed and changes from water to ice. Table 3.5 shows that windows

with Nfft > 64 cannot be used to isolate inclusions from the ice surfaces that were, at most,

25 cm apart.

Ŝbs(ω̃) is the backscattering spectra resolved at a set of discrete frequencies, ω̃. The

sampling frequency and number of samples contained in the Fourier transform window

determines the spectral resolution, ωres, which is also the lowest frequency resolvable

by the Fourier transform, where ωres = fs/Nfft. The Nyquist frequency, the maximum

resolvable frequency of this system, is fs/2 = 250 kHz. Backscattering spectra were plotted

across a 60 kHz band, centred at 120 kHz (90 kHz to 150 kHz), where the echosounder

system is most reliable (Ross et al., 2013).

Table 3.5: Fourier Transform Window Height in Water and Ice. The number of samples

used to calculate the FFT window (Nfft ) gives a different spatial resolution (ΔR) in water

and ice. The maximum spectral resolution (ωres) is also a function of the size of the FFT

window.

Nfft ΔR in water (cm) ΔR in ice (cm) ωres (kHz)

8 1.2 3.1 62.50

16 2.4 6.2 31.25

32 4.8 12.5 15.63

48 7.2 18.7 10.42

56 8.4 21.8 8.93

64 9.6 25.0 7.81

128 19.2 49.9 3.91

256 38.5 99.8 1.95

512 76.9 199.7 0.98

The backscattering spectra are used to calculate the frequency dependent target strength,

TS, which is the magnitude of backscattering within a given sample volume, Vb(ω),

normalized by the incident energy.

The target strength equation (Equation 3.5) was adapted from the SONAR equations

(Medwin and Clay, 1998), i.e. TS = EL+ 2TL− SL where TS is the target strength of

a single scatterer. The echo level, EL, is accounted for by removing the receiver gain from

the magnitude of the backscatter spectra. The source level, SL, is the transmit voltage
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with frequency dependent calibration adjustments. Transmission loss, TL, accounts for as

spherical spreading (20 logR) and attenuation (αR). Thus, the target strength equation is

TSobs(ω̃) = 20 log10 |Ŝbs(ω̃)| − GAIN [ Echo Level]

−20 log10 Vpp +K(ω) [ Source Level]

+40 log10 R̃ + 2 α(ω)R̃ [ Transmission Loss].
(3.5)

The calibration constant, K(ω), is the difference between backscattering from a single

tungsten carbide sphere measured by the echosounder system (TSclb(ω)) with an accu-

rate scattering model ([TS(ω)]fs), for example, the Gaunard and Uberall (1983) model

(Stanton and Chu, 2008), where

K(ω) = [TS(ω)]fS − TSclb(ω). (3.6)

Models from Chapter 2 predict TSmod (see Equations 2.39 to 2.41c) are compared with

observed target strength, TSobs (see Equation 3.5) using

ε = |TSmod − TSobs| (3.7)

where, ε is useful for comparing the validity of the models across different measure-

ments.
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CHAPTER 4

RESULTS

4.1 Echosounder Calibration

The echosounder was calibrated using tungsten carbide spheres. The calibration curve

(K(ω)) was calculated from the difference between the observed and predicted target

strength (TS) from a 38.1 mm diameter sphere, shown in Figure 4.1, following Equation

3.2.2. A 512-point Gaussian window, centred at the peak in the compressed pulse (CP )

envelope was used, resulting in a 980 Hz resolution TS spectrum that shows well defined

resonances. The observed frequency dependence matches the Gaunard and Uberall (1983)

model (Equation 2.41a) in the vicinity of the resonance at 135 kHz, parameterized using

a compressional WC soundspeed of 7286 m/s and a shear soundspeed of 4154 m/s, and

water soundspeed of 1502 m/s. The possible variation in elastic parameters of the sphere

and surrounding medium, given in Table 2.1, lead to uncertainty in the model (shown as a

pink patch in Figure 4.1). Note that the calibration curves depend upon spectral resolution

(Figure 4.2); windows smaller than 128 points deviate from the better resolved K(ω)s.

Thus, for windows smaller than 128 points a constant K = 28.75 dB was used. While this

does not capture the frequency dependence of the transducer sensitivity, it affords better

estimations of the echo amplitude.

Multiple backscattering observations from large and small WC spheres, shown in Figure

4.3, were independent of receiver gain and range to the target. The error bars in Figure 4.3

represent the average frequency dependent variance from all pings for each experiment.

Calibration curves obtained from the two sizes of spheres do not agree perfectly, likely as

a result of lower signal-to-noise ratio (SNR) in the returns from the small spheres. Thus,

the K(ω) obtained from the 38.1 mm WC sphere were used in the following analysis.
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Figure 4.1: Left panel: Mean uncalibrated target strength from a 38.1 mm diameter

WC sphere [CLB1exp1] (solid black line), calculated with a 980 Hz resolution from an

ensemble of pings (shown in blue), and the Gaunard and Uberall (1983) model (shown

with its uncertainty in red). Right panel: The CP envelope shows the average strength of

the return, calculated from an ensemble of pings, relative to the transmit pulse. The main

peak in the CP envelope (red x), shows the depth of the sphere (WC), and the size of the

FFT window is indicated in gold.
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Figure 4.3: K(ω) with a 980 Hz resolution determined from different observations from

38.1 mm diameter WC spheres, in red and orange solid lines, and 10 mm diameter WC

spheres in green solid lines. Error bars represent the mean variance and are centred at the

mean K for each experiment.
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4.2 Observations of Target Spheres in Water

4.2.1 Tungsten Carbide

Observed target strength, TS, calculated using Equation 3.5, for large solid spheres agrees

well with modelled TS, shown in Figure 4.4. The model accurately predicts strong

resonance at 91 kHz and slightly over-predicts the strength of the resonance at 135 kHz.

The data do not show the resonance predicted at 119 kHz. The model-measurement

mismatch, defined by Equation 3.7, is shown in Figure 4.5 for independent measurements

from large solid spheres. These observations from a 38.1 mm diameter WC sphere have a

mean absolute mismatch of 1 dB (Table 4.1). The Gaunard and Uberall (1983) model,

calculated using An
Fs(ω) in Equation 2.41a, consistently underestimated the observed TS

from 10 mm diameter solid WC spheres in water, shown in Figure 4.6. Noise appears in

the compressed pulse (right panel of Figure 4.6) as small, diffuse peaks before the large

peak associated with the sphere. The mean absolute mismatch from 10 mm diameter WC

spheres is 1.9 dB (Table 4.1).

4.2.2 Hollow Polypropylene

Observations from 38 mm diameter PP shells, shown in Figure 4.7 are similar to the

Anderson (1950) model, for an air bubble without a shell, using soundspeeds of 1502

m/s and 321 m/s, for water and air, respectively. Two distinct peaks appear in the CP

envelope (right panel of Figure 4.7) and were attributed to reflections from the top and

bottom of the PP shell (PPt and PPb, respectively) approximately 3 cm apart . The

Gaunard and Werby (1987) model explicitly considered air encased in a PP shell, using a

compressional PP soundspeed of 2097 m/s and a shear PP soundspeed of 748 m/s. This

model, characterized by multiple strong resonances, varies significantly over the plausible

range of shell properties (Figure 4.7). The observations were consistently overestimated

by the Gaunard and Werby (1987) model and did not show the resonances evident in the

model. Similar mismatch for 10 mm diameter PP shells (Figure 4.8), reinforce that the

Anderson (1950) model is more appropriate for these targets. Note that the observations

do not agree with either model at low frequencies. The mean absolute mismatch between

the Anderson (1950) model and observations is 1.2 dB for 38 mm PP shells and 2.1 dB

for 10 mm PP shells (Table 4.1). The mean absolute mismatch between the Gaunard and

Werby (1987) model and observations is 7.3 dB for 38 mm PP shells and 4.9 dB for 10 mm
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Figure 4.4: Left panel: Mean target strength from a 38.1 mm diameter WC sphere

[CLB1exp1] (solid black line), calculated with a 980 Hz resolution from an ensemble

of pings (shown in blue), and the Gaunard and Uberall (1983) model (shown with its

uncertainty in red). Right panel: The CP envelope shows the average strength of the

return, calculated from an ensemble of pings, relative to the transmit pulse, where the main

peak in the CP envelope (red x) shows the depth of the sphere (WC), and the size of the

FFT window, is indicated in gold.
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Figure 4.6: Left panel: Mean target strength from a 10 mm diameter WC sphere

[CLB2exp1] (solid black line), calculated with a 980 Hz resolution from an ensemble

of pings (shown in blue), and the Gaunard and Uberall (1983) model (shown with its

uncertainty in red). Right panel: The CP envelope shows the average strength of the

return, calculated from an ensemble of pings, relative to the transmit pulse, where the main

peak in the CP envelope (red x) shows the depth of the sphere (wc), and the size of the

FFT window, is indicated in gold.
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PP shells (Table 4.1). Mean TS from small hollow spheres is similar to mean TS from

small solid spheres (Figure 4.9), and TS from large solid and hollow spheres only differed

due to the strong resonance at 135 kHz, seen in the TS observed from the WC spheres,

but not the PP shells.

4.3 Target Spheres in Ice

4.3.1 Single Large Sphere

The returns from the target spheres were difficult to locate in ice due to the ice surface

reflection (ISt), seen in the CP envelope of Figure 4.10 (right panel). Note that the small

peaks between reflections from the top (ISt) and bottom (ISb) surfaces of the ice block are

approximately 5 times larger than the return from the WC sphere in water. The magnitude

of the CP envelope within the ice (Figure 4.10, right panel at 4.6 meters) suggests that

reverberation from the ice block surfaces was stronger than the backscattering from the

large WC sphere, since a distinct peak that could be attributed to the sphere was not

observed. As a result, the observed TS will be a combination of the return from the sphere

and reverberation from the ice surface. Since the exact location of the target spheres was

not monitored through the experiments (though it was known to be 12.5 cm from either

surface at the start), the best approximation was to centre a 32-point window at the peak

closest to the initial location of the spheres, 12.5 cm from the ice surface. The window

covers 12.5 cm in ice, so that as the ice melted, the sphere should be contained in this

window. The smaller window, which helps to isolate the echo from the sphere from ice

surface reverberation, has a spectral resolution of 16 kHz and only contained a portion of

the echo expected from the target sphere. I account for the decreased frequency resolution

by calculating the Flax and Uberall (1980) model, using only the first two modes (using

Equation 2.37, summing until n = 2). The higher order modes that are used to resolve

interference effects due to multiple wave arrivals can be ignored since the tail of the echo

was not contained in the 32-point window. However, even with this correction, the model

underestimated the observed TS from the large WC sphere (Figure 4.10). The model

did not describe reverberation from the ice surface; thus, as the block melted and the ice

surfaces moved closer to the sphere, both the magnitude of the mismatch and the observed

mid-block TS increased. The models underestimated TS from large WC inclusions under

all experimental conditions, as seen in Figure 4.11, with a mean absolute mismatch from a
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Figure 4.7: Left panel: Mean target strength from a 38 mm diameter air-filled PP shell

in water [CLB3exp1] (solid black line), calculated with a 980 Hz resolution from an

ensemble of pings (shown in blue), and the Gaunard and Werby (1987) and Anderson
(1950) models (shown with their respective uncertainties in orange and red). Right panel:

The CP envelope shows the average strength of the return, calculated from an ensemble

of pings, relative to the transmit pulse, where the main peak in the CP envelope (red x)

shows the depth of the sphere (PPt), followed by a reflection from the bottom of the sphere

(PPb) and and the size of the FFT window, is indicated in gold.
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Figure 4.8: Left panel: Mean target strength from a 10 mm diameter air-filled PP shell

in water [CLB4exp1] (solid black line), calculated with a 980 Hz resolution from an

ensemble of pings (shown in blue), and the Gaunard and Werby (1987) and Anderson
(1950) models (shown with their respective uncertainties in orange and red). Right panel:

The CP envelope shows the average strength of the return, calculated from an ensemble

of pings, relative to the transmit pulse, where the main peak in the CP envelope (red x)

shows the depth of the sphere (pp), and the size of the FFT window, is shown in gold.

56



90 110 130 150
−70

−60

−50

−40

−30

−20

−10

0

Frequency [kHz ]

T S

[dB

re 1m
2
]

C LB1 [3 8 . 1mm WC ]

C LB2 [1 0mm WC ]

C LB3 [3 8mm PP]

C LB4 [1 0mm PP]

Figure 4.9: Observed TS from 38.1 mm and 10 mm diameter WC spheres and 38 mm

and 10 mm diameter air-filled polypropylene shells. Mean TS is calculated with a 980

Hz resolution averaged over all experiments (Table 3.3). Error bars represent the variance

across experiments in the TS, centred at the mean TS.
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38.1 mm WC sphere in ice of 14.1 dB, averaged over all experiments (Table 4.1).

Compared to the large WC sphere, the mean observed mid block TS for large air

cavities in ice has a smaller model-measurement mismatch, but still does not agree with

the Gaunard and Uberall (1978) model predictions (Figure 4.12) . The reverberation was

weaker than during the WC sphere experiment, where the observations from BLK4 were

characterized by larger ping to ping variability. The ice surface reflection, at 5.31 m, in

Figure 4.12 (right panel) compared with 4.49 m in Figure 4.10, was much weaker; 13 %

vs. 51%. There was consequently weaker surface reverberation, but the echo from the

inclusion was still not clear in the CP envelope (Figure 4.12, right panel). The mean

absolute model-measurement mismatch from 38 mm PP shells in ice was 9.0 dB (Table

4.1).

Echoes from solid spheres, expected to have similar mean TS in water and ice, appeared

stronger in ice (Figure 4.13), however scattering from the spheres in ice could not be

unambiguously detected. Note that for the spheres in water, a 32-point window and

frequency independent calibration was used producing a TS where resonances from the

sphere in water are no longer resolved, compared with Figure 4.9.

4.3.2 Scattering from the Ice Surface

When the surface reflection from inclusion-free ice was windowed using a 32-point

window, shown in Figure 4.14, the Langleben (1970) model, calculated using Equation

2.39, significantly overestimated TS. Note that the CP envelope (Figure 4.14, right panel)

does not contain a strong surface reflection for the fractured block. Surface reflections

from ice blocks with minimal fracturing were stronger and were generally underestimated

by the reflection model (Figure 4.15 and 4.16) .

The observed TS from the surface reflections varied significantly between different

experiments (Figure 4.16). Observations of surface scattering from blocks with fractures

deviated the most from the Langleben (1970) model. Only one non-fractured block agreed

with the modelled TS, and the others had a similar frequency dependence with a mean

absolute mismatch of 7.2 dB, averaged over all experiments. Conversely, ice blocks with

fractured surfaces did not agree with the Langleben (1970) model, with a mean absolute

mismatch of 16.4 dB.

Observations isolated from the bottom surface show reasonable agreement with the

surface reflection model, adjusted for transmission through the surface of the ice calculated
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Figure 4.10: Left panel: Mean target strength from a 38.1 mm diameter WC sphere in ice

[BLK6exp1] (solid black line), calculated with a 16 kHz resolution from an ensemble of

pings (shown in blue) and the Flax and Uberall (1980) model (shown with its uncertainty

in red). The dark red solid line shows a truncated manifestation of this model, to compare

with low-resolution observations. Right panel: The CP envelope shows the average

strength of the return, calculated from an ensemble of pings, relative to the transmit pulse,

where the main peak in the CP envelope (red x) shows the assumed depth of the sphere

(WC), and the size of the FFT window, is indicated in gold. The surface of the ice (ISt)

produces a strong reflection, followed by a reflection from the bottom surface (ISb).
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Figure 4.11: Model-measurement mismatch, ε, from a 38.1 mm WC sphere in ice with a

16 kHz resolution. The mismatch is calculated from mean TS. Error bars represent the

ping to ping variance in the TS, centred at the mean ε.
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Figure 4.12: Left panel: Mean target strength from a 38 mm diameter hollow PP shell in

ice [BLK4exp1] (solid black line), calculated with a 16 kHz resolution from an ensemble

of pings (shown in blue) and the Gaunard and Uberall (1978) model (shown with its

uncertainty in red). The dark red solid line shows a truncated manifestation of this model,

to compare with low-resolution observations. Right panel: The CP envelope shows the

average strength of the return, calculated from an ensemble of pings, relative to the transmit

pulse, where the main peak in the CP envelope (red x) shows the assumed depth of the

sphere (PP), with the size of the FFT window, is indicated in gold. The surface of the ice

(ISt) produces a strong reflection, followed by a reflection from the bottom surface (ISb).
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Figure 4.13: Mean observed TS from WC and PP spheres in water and ice, as solid lines,

calculated with a 32-point window (16 kHz resolution). Error bars represent the variance

in the TS averaged over all experiments, centred at the mean TS.
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Figure 4.14: Left panel: Mean target strength from the surface of a fractured ice without

inclusions [BLK5exp1] (solid black line), calculated with a 16 kHz resolution from

an ensemble of pings (shown in blue), and a simple reflection model (shown with its

uncertainty in red). Right panel: The CP envelope shows the average strength of the

return, calculated from an ensemble of pings, relative to the transmit pulse, where the peak

in the CP envelope (red x) shows the surface of the ice (ISt), with the size of the FFT

window, is indicated in gold. The bottom surface of the ice (ISb) is followed by reflections

from fractures within the ice.

63



90 110 130 150
−70

−60

−50

−40

−30

−20

−10

0

T S

[dB

re 1m
2
]

Frequency [kHz ]

45.80%

−5.6

−5.5

−5.4

−5.3

CP

D
e
p
t
h

(
m
)

B LK 4e x p 2 : O b s e r v a t i on s ( Np i n g =101 )

L an g l e b e n ( 1970 ) M o d e l

c w = 1502 m/s

c i = 3900 m/s

FFT w i n d ow l e n g t h ( N = 32)

P P

I S t

I S b

Figure 4.15: Left panel: Mean target strength from the surface of an ice block without

fractures [BLK4exp2] (solid black line), calculated with a 16 kHz resolution from an

ensemble of pings (shown in blue), and simple reflection model (shown with its uncertainty

in red). Right panel: The CP envelope shows the average strength of the return, calculated

from an ensemble of pings, compared to the transmit pulse, where the peak in the CP
envelope (red x) shows the surface of the ice (ISt), and the size of the FFT window, is

indicated in gold. The peak from a hollow sphere (PP) and the bottom of the ice (ISb)

follow.
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using Equation 2.40 (Figure 4.17). The observation varied more than the surface reflection,

likely due to reverberation from within the ice.

4.3.3 Mixed Inclusions

TS from the blocks with multiple inclusions was modelled by linearly combining the

backscattering cross section from Gaunard and Uberall (1983) to account for the number

of spheres in the block, assuming that scattering is incoherent and intensities add; however,

multiple scattering was not considered. Observations from multiple small, solid spheres in

ice (see BLK 8 in Table 3.2) are underestimated using this simple combined model using

Equations 2.41b, where the backscattering cross section was summed for each sphere

contained in the beam (Figure 4.18). The 20 small solid spheres were frozen in a plane

parallel to the surface, and 12.5 cm from it, but, as with single spheres, did not appear

above the reverberation from the ice surface in the CP envelope. The observed TS varied

from ping to ping and frequently exhibited an interference-like frequency dependence. The

mean absolute mismatch from ice with multiple WC inclusions is 13.8 dB.

Observations from ice containing a mixture of different sized solid and hollow spheres

(see BLK7 in Table 3.2) were overestimated by a combined model (Figure 4.18), although

often had the same order of magnitude. The spheres, frozen in a parallel plane, could not

be clearly identified in the CP envelope, with strong reverberation following the block.

The mean absolute mismatch was generally higher for targets in ice (Table 4.1). The

uncertainty in the mismatch is the mean variance (squared standard deviation) in the

mismatch calculated for all experiments from each target.

Target strengths calculated using a window large enough to contain scattering from

both the top and bottom ice surfaces as well as any inclusions are shown in Figure 4.19.

Observations from ice blocks with different inclusions have similar TS demonstrating that

the total echo from the ice was dominated by the surface reflection.
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Figure 4.16: Model-measurement mismatch, ε, from ice surfaces with a 16 kHz resolution.

The mismatch is calculated from mean TS. Error bars represent the ping to ping variance

in the TS, centred at the mean ε.
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Figure 4.17: Left panel: Mean target strength from the bottom surface of an ice block

without fractures [BLK6exp1] (solid black line), calculated with a 16 kHz resolution

from an ensemble of pings (shown in blue), and simple reflection model adjusted for

transmission through the top surface (shown with its uncertainty in red). Right panel: The

CP envelope shows the average strength of the return, calculated from an ensemble of

pings, relative to the transmit pulse, where the peak in the CP envelope (red x) shows the

bottom surface of the ice (ISb), with the size of the FFT window, is indicated in gold.
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Figure 4.18: Model-measurement mismatch, ε, from ice with multiple inclusions with a 16

kHz resolution. Error bars represent the ping to ping variance in the TS, centred at the

mean ε.
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Figure 4.19: Mean observed total TS from ice blocks with various inclusions, calculated

using a 512 point window containing scattering from ice surfaces and inclusions with a

spectral resolution of 980 Hz. Error bars represent the variance across experiments in TS,

centred at the mean TS.
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Table 4.1: Summary of Mean Absolute Mismatch from Target Spheres. The mismatch

shows the mean absolute value from 90-150 kHz of the difference between modelled and

observed TS from each target, averaged and over all experiments. The uncertainty shows

the average ping to ping variance over all experiments.

Target

|ε|
Mean Absolute Mismatch

[dB re 1m2]

Uncertainty

[dB re 1m2]

Depth

[meters]

38.1 mm WC in water [CLB1] 1.0 0.5 5.1

10 mm WC in water [CLB2] 1.9 3.2 6.0

38 mm PP in water [CLB3] 1.2 0.7 5.5

10 mm PP in water [CLB4] 2.2 4.1 5.5

Fractured Ice Surface [BLK5] 16.4 3.5 4.8

Non-Fractured Ice Surface [BLK4,6] 7.2 1.6 5.3-6.2

38.1 mm WC in ice [BLK6] 14.0 3.5 4.5

38 mm PP in ice [BLK4] 9.0 4.8 5.3

Mixed Inclusions [BLK 7] 2.5 3.8 5.1

Multiple WC [BLK 8] 13.8 4.3 5.4
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CHAPTER 5

DISCUSSION

Echoes from solid and hollow spheres were observed in water and ice and compared with

acoustic scattering models. The observed frequency dependent TS from WC spheres in

water agreed with those of Gaunard and Uberall (1983) and Stanton and Chu (2008) and

could be used to calibrate the echosounder. Spheres were frozen in bubble-free ice blocks

and compared with models from Flax and Uberall (1980) for a solid spherical inclusion

and Gaunard and Uberall (1978) for a fluid spherical inclusion to determine whether

acoustic scattering models could be used to describe the scattering from spheres in ice.

5.1 Backscattering Observations

5.1.1 Detecting Target Spheres in Water
5.1.1.1 Solid Tungsten Carbide Spheres in Water

Target spheres in water were clearly identifiable as peaks in the CP envelopes (Figures 4.4,

4.6, 4.7 and 4.8) corresponding to the location of spheres in the tank. Equation 3.3 shows

that peaks in the CP output only occur where the transmitted pulse is backscattered since

any other signal will be uncorrelated with the transmitted pulse. Observed TS from target

sphere experiments in water confirm that the tank contained no other significant sources of

scattering, since peaks were only seen at the depth of the target spheres and the bottom of

the tank.

Smaller peaks that appear after the main peak attributed to the front of the sphere (Figure

4.4) are attributed to multiple wave arrivals from the sphere (Gaunard and Uberall, 1983);

due to surface waves, such as Rayleigh waves and whispering gallery waves, that travel

slower than pressure waves and circumnavigate the sphere before scattering energy back to
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the transducer, thus arriving later (Gaunard and Uberall, 1983). The delayed returns from

multiple waves extended the envelope of the scattered pressure wave and are responsible

for the resonances in the observations, which result from interference between multiple

scattered waves (Gaunard and Uberall, 1983).

Pulse compression effectively removed noise; for example no peaks were observed in

the CP envelope before the 38 mm diameter sphere (Figure 4.4). However, noise is evident

in the CP envelope before the return from the 10 mm diameter WC sphere in Figure 4.6,

which appears as a wide diffuse peak before the return from the sphere. The returns from

the 10 mm diameter spheres were less than 1% of the range corrected incident energy,

which is close to the order of magnitude of system noise (0.3 % scattered return vs. 0.03 %

noise floor; see Figure C.4) and the peak in the CP envelope is still clearly discernible. The

returns from 38.1 mm diameter WC spheres were 4 times stronger than 10 mm diameter

WC spheres (Figures 4.4 and 4.6), so that noise was not apparent in the CP envelopes

from large spheres. The small peaks that occurred in front of the return from the sphere

are artifacts from pulse compression, where some of the energy in the peak leaks out

resembling a cardinal sine function (Stanton and Chu, 2008). These processing side lobes

are significantly smaller than the main return and subsequent arrivals from the sphere

(Figure 4.4), thus they do not inhibit detection of the target.

As expected, observed TS agrees well with the Gaunard and Uberall (1983) model,

with a mean absolute mismatch of 1.0 dB for 38.1 mm spheres and 1.9 dB for 10 mm

spheres. The mismatch from the 38.1 mm diameter sphere is due to ping variability

between experiments. The largest mismatch for the 38.1 mm sphere occurs near resonant

frequencies (Figure 4.5), since the precise location of the resonances change slightly with

the size of the FFT window; where larger windows more accurately locate the resonant

frequencies, but introduce more noise into the spectrum as the proportion of the window

containing background noise increases (compare CLB1 and CLB3 in Figure 4.9 (980 Hz

resolution) and Figure 4.13 (16 kHz resolution)). Windows that contain less than 64 points

no longer reliably resolve the strongest resonance at 135 kHz (Figure 4.13).

The mismatch from the 10 mm WC sphere and the Gaunard and Uberall (1983) model

results from noise that could not be removed from the signal (Figure 4.6). The frequency

dependence from the observations agrees with the model, although significantly higher

mismatch occurs in the lower band of the receiver (between 90-110 dB) which is attributed
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to a higher noise floor at these frequencies (see Appendix C, Figure C.4 ), consistent with

Figure 4.8. Since the noise floor is higher in the low frequency range the return from the

sphere may be masked by noise and removed as a result of pulse compression. Scattering

observations from WC spheres are provided in Faran (1951), Gaunard and Uberall (1983),

Stanton and Chu (2008) and Dragonette et al. (1981) and also agree well with the Gaunard

and Uberall (1983) model, however these measurements are made using higher frequency

echosounders, where 14 < ka < 70, using spheres that are at least 25 mm in diameter. My

observations show that these models are valid for 10 mm and 38 mm diameter spheres

from 90-150 kHz (1 < ka < 12) Stanton and Chu (2008) suggest better resolution from

larger spheres, since the echo from the front interface and multiple wave arrivals will be

better resolved.

5.1.1.2 Echosounder Calibration

The strong scattering from the 38.1 mm diameter WC sphere and good model comparison

make it an ideal calibration target using the method of Stanton and Chu (2008) (Section

3.2.2), since it can be clearly distinguished from background noise (right panel, Figure

4.1). The uncalibrated return exhibited strong resonances and low ping variability (Figure

4.1), and therefore deviations from the Gaunard and Uberall (1983) model were attributed

to the frequency dependent response of the echosounder system (Stanton and Chu, 2008).

The observed TS spectra, and thus the calibrations, contained spectral noise that differed

between measurements, such as in Figure 4.5. Applying a 10 kHz moving average filter

smoothed the calibrations, producing a consistent frequency dependence. Calibrations

made from WC spheres of different sizes, gain settings and depths had a consistent

frequency dependence and magnitude (Figure 4.3). Note that excluding the diffuse noise

peak before the 10 mm WC sphere from the FFT window did not produce a significantly

better calibration. This suggests that the model-measurement mismatch is due to noise

recorded simultaneously with scattering from the sphere. The calibrations from 38.1 mm

WC were most affected by the size of the FFT window, where Figure 4.2 shows that

windows containing less than 128 points have a magnitude and frequency dependence that

is inconsistent with larger, more reliable, windows; due to the exclusion of multiple wave

arrivals from the window that are required to resolve the elastic resonant response of the

sphere.
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5.1.1.3 Hollow Polypropylene Shells in Water

The CP envelope from 38 mm diameter hollow spheres were also clearly distinguishable

in water (Figure 4.7). The scattering from PP shells was differentiated from that of WC

spheres by less pronounced multiple wave returns. This indicates that circumferential

shear waves were not as strong, compared with WC spheres. Gaunard and Werby (1991)

observed strong multiple wave arrivals from air-filled steel shells, which suggests that

the PP shell does not support strong circumferential waves, compared with steel, likely

because PP has a lower shear modulus (Table 2.1). Compared with Gaunard and Werby

(1991), my observations show that changing the material of the shell effects the envelope

of the scattered wave.

Since there are no comparisons of models and observations of scattering from air-filled

PP shells in the literature, I compared observed TS with the Gaunard and Werby (1987)

model and the Anderson (1950) model. Observations from both large and small hollow

shells agree well with the Anderson (1950) model, with a mean absolute mismatch of 1.2

dB and 2.2 dB, respectively, but are offset from the Gaunard and Werby (1987) model by

7.3 dB and 4.9 dB, respectively, partially owing to the poor resolution of resonances in

the observation (Figures 4.7 and 4.8). The absence of strong resonances in the observed

TS suggest that the properties of the shell are not well determined or that multiple wave

arrivals from the shell are smothered by the echo from the air-filled cavity. This result

suggests that hollow PP shells may be used to simulate scattering from large air bubbles

in water. For the small shells, the observations do not agree with the Anderson (1950)

model at low frequencies, consistent with low SNR from the small WC sphere (compare

CP envelope (right panel) in Figure 4.6 and 4.8 with Figure C.4). The apparent frequency

dependence in these observations could be due to a weak contribution from the PP shell,

or noise in the system. Anstee (2002) measured frequency dependent TS from various

spheres and spherical shells filled with different fluids, including a 400 mm diameter

air-filled nylon shell with a 3 mm wall thickness and concluded that air-filled plastic shells

are not viable calibration targets since scattering strength varies strongly with frequency.

In my case, since the shell is thinner (≈ 1 mm), it appeared to have an insignificant effect

on frequency dependence of the echo. Both Gaunard and Werby (1987) and Anstee (2002)

were able to model backscattered TS from air-filled steel or ceramic shells.
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The observed TS of target spheres in water suggest that backscattering across the 90-

150 kHz bandwidth is sufficient to differentiate between the different sizes of spheres,

but are less effective at differentiating the material properties of the spheres (Figure 4.9).

Observations from large solid and hollow spheres are only distinguishable by the presence

of a strong resonance at 135 kHz (ka=10.8), while the echo from small hollow spheres is

generally indistinguishable from the of small solid spheres. Since observed TS from WC

and PP target spheres agree with the scattering models, developed in Chapter 2; I expected

that these models with boundary conditions appropriate to ice as a surrounding medium

should also apply to these same targets in ice. However, let’s first consider scattering from

the ice surface.

5.1.2 Reflections from Ice Surfaces

Observations from the ice blocks typically show multiple strong reflections, where the first

return is the compressional wave reflected from the top surface, which can be modelled as

a simple planar interface (see Section 2.2.7). The reflection from the top surface of planar

ice without cracks is the strongest feature in the CP envelope in Figures 4.10 (BLK6), 4.12

(BLK4) and 4.15 (BLK4). Reflections from the top surface of the ice are underestimated

by the model by 8 dB at normal incidence (Figure 4.16). The observations generally

follow the expected spectral shape, except at low frequencies. This may indicate surface

roughness, which was not quantified. However, the effect of block shape and surface

roughness on TS can be considered negligible for observations made soon after the ice

was introduced to the water, since the ice was initially planar.

In addition, the top surface of the ice remained smooth and generally planar as the ice

melted. As the ice melted, a fresh water plume rose from the block, since the fresh melt

water from the block was lighter than the water in the tank (see Figure C.2). Since this

melting water flowed away from the ice block, it did not contribute to uneven melting

at the top surface. This plume may also explain the presence of small peaks in the CP

envelope that occur before the surface of the ice (Figures 4.10, 4.12 and 4.15 ). Conversely,

as the block melted from the bottom surface, fresh water would be forced past the block

due to buoyancy. Any small scale roughness that was present would trap the rising water

under the ice; a feedback that could produce the large scale roughness along the bottom

surface observed at the end of the experiments. Skyllingstad et al. (2003) and McPhee et al.

(2008) show that melt water below sea ice keels tends to flow upwards, forming convective
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cells beneath the ice sheet that can contribute to the growth of bottom roughness. This

melt water was observed using acoustic scattering measurements (McPhee et al., 2008).

Blocks with significant cracks (see Figure 5.1) reflected considerably less of the signal

back to the transducer (Figure 4.14) and are overestimated by as much as 15 dB by the

surface reflection model (Figure 4.16). This suggests that surface deformation, resulting

from cracks within the block, diminishes the echo from the top ice surface. This energy

is diffusely scattered and not transmitted into the ice. Previous observations show that

acoustic reflections from sea ice are best modelled by assuming that an acoustically soft

layer is present at the ice-water interface due to melting, cracks and open pores at the

ice surface (Mayer, 1974; Stanton et al., 1986; Garrison et al., 1991). Langleben (1970)

measured the reflection coefficient at seawater-sea ice interfaces and found that the density

of the surface layer increases (996 kg/m3), while the soundspeed decreases (1810 m/s),

which implies that the surface layer, referred to as the skeletal layer, is a mixture of ice

and water. The skeletal layer is assumed to lower the reflection strength from submerged

ice surfaces (Stanton et al., 1986). My observations show that the strength of the surface

reflection does not change significantly as the block melts (Figure 4.16) which implies that

a skeletal layer is not present as the bubble-free ice blocks melted. However, increased

surface roughness due to cracks is assumed to decrease the strength of the specular surface

reflection (Garrison et al., 1991).

The ice surface reflection model indicates that the strength of the reflection should

not vary strongly over the range of incidence angles (θ < 10◦) (Langleben, 1970) in

the scattering experiments (Figure 2.7), which generally agrees with my observations

(BLK4 and BLK5 in Figure 4.16). The dependence of the amplitude of the reflected

wave on incidence angle was modelled using Snell’s Law in Equation 2.33 (Medwin and

Clay, 1998), which implies that the strength of the surface reflection should increase,

since less energy is transmitted through the surface at non-normal incidence; however, at

significantly oblique incidence the reflection from the ice surface will not be scattered

toward the transducer. The strength of the reflection decreases in some observations (BLK6

in Figure 4.16) at oblique incidence,which indicates that the surface reflection was not

scattered toward the transducer. The surface reflection model also does not consider that

the beam encounters the lateral faces of the ice at oblique incidence, however it is unlikely

that scattering from the lateral faces will be recorded at the echosounder. Measurements

76



from Langleben (1970) agree with the simple reflection model and show that the strength

of the reflection from ice surfaces increases with increasing angle of incidence and shows

no tendency to increase with increasing frequency.

The surface reflection model assumes that only compressional waves will be transmitted

into the ice, which allowed me to ignore the effect of shear wave generation in the ice

block, which is deemed reasonable by observations of surface reflections from Langleben

(1970). However, Miller and Schmidt (1991) observed that a compressional wave at

oblique incidence generated shear waves in ice. These shear waves may scatter additional

compressional waves from the ice surface, due to mode conversion (Xie and Farmer, 1994),

that could extend the envelope of the bulk reflection from the ice surface, referred to here

as surface reverberation (seen in the right panel of Figure 4.15, following ISt).

Reflections from the bottom surface confirm that sound enters the non-cracked ice

block, but must encounter a strong enough target in order to be identified above surface

reverberation. Reflections from the bottom surface of the ice are underestimated by 8

dB using a combined ice surface reflection and transmission model. In non-cracked ice,

a strong peak after the top ice surface was associated with an echo from the bottom

ice surface (Figure 4.17), the strength of which was underestimated using estimates of

reflection and transmission at normal incidence (see Equation 2.40). As the ice melted, the

reflection from the bottom surface became harder to identify. The large variance in the

observations from the bottom ice surface can be attributed to overlapping reverberation

from other ice surfaces, since ice reverberation depends on the shape and location of the

ice in the tank, and thus changes between pings as the ice melts. The reflection from the

bottom ice surface will also become more diffuse as the ice melts and the bottom surface

becomes rough. A reflection from the opposite ice surface in ice have been identified in

sea ice reflections by Winebrenner (1991) and Garrison et al. (1991). Winebrenner (1991)

shows that the bottom reflection is only identified at low incidence angles and when the

skeletal layer is minimal.

5.1.2.1 Ice Reverberation

The reverberant echoes that follow the top and bottom surface of the ice can attributed

to reverberation, due to shear and flexural waves along the ice surfaces and multiple

reflections from compressional and shear waves trapped in the ice (Chamuel, 1990), or the

frame and lead weights used to oppose the buoyancy of the ice. Scattering from the frame

77



occurred more than a meter from the bottom surface of the ice and was clearly identified

in the backscattered signal. The structure of the reverberant echo varies significantly

between pings and experiments and appears to depend on the shape, surface roughness

and orientation of the block (Chamuel, 1990). Reverberation from ice surfaces have

been identified in a number of studies; summarized in Kutschale (1969). Milne (1964),

Brown and Brown (1966) and Mellen and Marsh (1965) attribute strong reverberation

from the underside of sea ice to surface roughness and local under-ice topography and

multiple reflection from within the ice sheet (Kutschale, 1969). My observations show

that reverberation following the ice block can be stronger than distinct surface reflections,

which suggests that multiple compressional waves arrive simultaneously at the receiver

(Figures 4.12 and 4.14) . Multiple reflections from ice surfaces can add constructively or

destructively depending on the phase of the scattered waves.

Reverberation from ice surfaces can also be attributed to scattered compressional waves

that are the result of mode conversion from flexural surface waves and shear waves in ice

(Xie and Farmer, 1994; Anderson, 1961; Weng and Yew, 1990; Mayer, 1974; Williams

and Robinson, 1981; Oliver et al., 1954; Hunkins, 1960; Miller and Schmidt, 1991). The

presence of flexural and shear waves on ice surfaces in contact with water were modelled

by Ewing et al. (1934) and Press and Ewing (1951), who predict that a floating ice sheet is

capable of supporting compressional, shear, longitudinal, flexural and surface (Rayleigh,

Stoneley and Love) waves. Dugan et al. (1992) observed flexural waves in ice between

1-10 kHz and Squire et al. (1995) shows that flexural waves with frequencies up to 100

kHz can exist in ice. Both Dugan et al. (1992) and Squire et al. (1995) show that acoustic

compressional waves dominate the vibrational motions of ice above 50 kHz. Surface and

flexural waves are coupled with the surrounding fluid and depend on the frequency of the

vibration, the density of the water and ice, the elasticity and flexural rigidity of the ice

sheet, the thickness of the ice and the depth of water (Press and Ewing, 1951). These

waves are dispersive, such that the wave speed depends on frequency (Anderson, 1963).

Flexural waves in Arctic ice have been observed by Williams and Robinson (1981) at less

then 1 Hz and surface waves in porous sea ice have been identified by Weng and Yew

(1990) between 1-10 kHz. In both cases, a seismic transducer was affixed to the ice surface.

The generation of shear and surface waves from a purely compressional incident wave

was observed by Mayer (1974) and Xie and Farmer (1994), who found that compressional
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waves at oblique incidence would form shear waves in ice. Flexural, surface and shear

waves are not supported in water and would only be identified in my experiments once

converted to compressional waves in water and scattered toward the transducer.

The interactions between shear waves along the surface of the ice and the surrounding

water due to mode conversion were ignored in my surface scattering model. Elastic wave

models are available, however, for non uniform (Robins, 1998), anisotropic (Mandal, 1991),

rough (Abeele et al., 1996) or porous (Weng and Yew, 1990) ice surfaces that consider

the effect of shear, flexural and surface waves; extrapolated from the Ewing et al. (1934)

elastic wave propagation model. The portion of ice reverberation that results from multiple

reflections by compressional waves may be explained by accounting for the time delay

from the main surface reflection and then estimating the magnitude of successive arrivals

by combining reflection and transmission coefficients (see Equations 2.33 and 2.34). Since

modelling multiple reflections of elastic waves from lateral ice surfaces was outside the

scope of my work, observations from inclusion-free ice blocks were made in an attempt to

characterize the reverberation from the ice surface as the block melted. A true control was

not obtained since all inclusion-free ice blocks cracked in the water (see Figure 5.1).

In addition, my observations show that the duration of reverberation varies between

experiments and is especially sensitive to cracks that act as sources of scattering within the

ice (compare the right panel, following ISb, of Figure 4.14 with Figure 4.15). Chamuel

(1990) suggest that surface and flexural waves are attenuated and scattered by cracks and

ice porosity, which implies that reverberation due to surface and flexural waves in my

experiment would be sensitive to surface cracks.

5.1.3 Detecting Target Spheres in Ice

Target spheres could not be located within the ice block. The inclusions did not produce

distinct CP peaks stronger than ice reverberation (Figure 4.10 and 4.12). The TS from

within the ice block suggests that the echoes from target spheres in ice are masked by

multiple waves scattered from the ice surface. The CP envelopes in Figure 4.10 and 4.12

show that, as expected (see Figure 2.8), the magnitude of the echo from ice surface was at

least an order of magnitude higher than the echo from target spheres . However, I observed

peaks that appeared to originate from within the ice that are 3 to 5 times stronger than the

echoes from target spheres in water (right panel, Figures 4.10 and 4.12). Since the target’s

impedance contrast is greater in water the strength of the echo from targets in water is
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Figure 5.1: Ice blocks without inclusions cracked extensively when introduced to the water.

expected to be stronger than from targets in ice. Hence, the peaks from within the ice

correspond to ice reverberation that masked the echo from the encased target spheres. Note

that the observed TS from inside the ice was characterized by large ping to ping variation

compared with target spheres in water (Figure 4.13), which is likely due to the variance

in ice reverberation, whose magnitude and envelope are affected by the ice melting and

shifting in the net throughout each experiment. The elastic wave models in Chamuel (1990)

and observations in Jezek et al. (1990) show that surface wave propagation and attenuation

are sensitive to melting and cracking at the ice surfaces.

As a result, when I isolated the scattering from the range of the spheres by applying

a 32-point window, 12.5 cm from the surface reflection, the observed TS isolated from

target spheres in ice did not reproduce the modelled frequency dependence (Figure 4.11).

Although the exact location of the spheres within the block was not quantified as the

ice block melted, most ice blocks contained a local maximum in the CP envelope near

the assumed location of the sphere (right panel, Figure 4.10). However, since this peak

occurred within reverberant echoes from the ice surface, I am not able to conclusively

attribute any peaks in the CP to the encased sphere. It is most likely that the reverberation

that masked the sphere is indicative of surface or shear waves, since there are no scattering

mechanisms or cracks between the surface and the encased target spheres in Figures 4.10

and 4.12. As a result, multiple reflections from compressional waves would arrive after
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scattering from an encased target.

Observations from multiple targets in ice also show poor agreement with models and

reinforce my conclusion that the ice surface dominates the echo and that cracks at the

surface diminish the the magnitude of the surface reflection and reverberation within the

ice (Figure 4.18). TS from the interior of non-cracked ice with multiple encased targets

(BLK8 in Figure 4.18) was underestimated by the combined scattering models (Equation

2.41b), while TS from the interior of cracked ice (BLK 7) with multiple targets is of the

same order of magnitude expected from the scattering model. Again, since the target

spheres did not produce a peak in the CP envelope I conclude that the echoes from ice

inclusions are swamped by ice reverberation.

Observed TS from ice blocks fully contained within the Fourier transform window are

generally indistinguishable (Figure 4.19), which supports the conclusion that scattering

from ice surfaces dominate the echo. This shows that even though the surface reflection

from the cracked blocks was lower than the reflection from blocks without cracks, including

the multiple wave returns in the window brings the observations into agreement with the

combined scattering model (see Equation 2.41c).

Unfortunately, the observed TS from spheres in ice did not allow me to comment on

the validity of the Flax and Uberall (1980) or Gaunard and Uberall (1978) models, since

the echoes from the spheres were smaller than those due to ice reverberation. However,

these models have been verified by previous observations; for example Sessarego et al.

(1998) showed that the Flax and Uberall (1980) model agrees well with scattering from an

aluminum inclusion in Plexiglas and Bin et al. (2006) showed that the Gaunard and Uberall

(1978) model can be used to predict scattering from air cavities in neoprene and rubber. In

both cases, the transducer is affixed to the encasing solid medium so that scattering did not

occur at the solid interface. Ying and Truell (1956) suggested that it is difficult to ensure

that the sphere is in contact with the solid medium, as a result, measurements validating

these models are sparse. In order to test these models where the transducer is not flush with

the surface of the solid, the spheres must be placed far from the solid interfaces, requiring

very large blocks. A model that predicts reverberation from the ice surfaces will be needed

to determine the adequate spacing (for example, see Chamuel (1990)).

My results demonstrate that propagation and mode conversion of elastic waves at ice

surfaces must be well characterized in order to separate surface scattering from internal
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scattering; which requires characterization of shape, surface roughness and crack extent

of the ice as it melts (Jezek et al., 1990). Note that both the spherical inclusion models

(Flax and Uberall (1980) model and the Gaunard and Uberall (1983) model) assume that

the solid medium is isotropic, which may not be appropriate for ice (Anderson, 1961).

Anderson (1963) suggested that sea ice will have both macroscopic anisotropy, due to

thermal gradients in the ice, and microscopic anisotropy, due to crystal orientation. An-

derson (1961) argue that surface waves observed on floating ice sheets can be modelled

by assuming the ice is locally polar anisotropic, or transversely isotropic; which mean

that the material properties are symmetric about one planar axis (Anderson, 1961). The

spherical inclusion models also assume that the wave incident on the sphere is purely com-

pressional, which also does not appear to be the case. Reflection models from Jezek (1985)

and Langleben (1970) imply that shear waves can be generated by compressional waves

that encounter the surface at non-normal incidence. Miller and Schmidt (1991) observed

compressional, flexural and transverse waves generated by a complex compressional wave

underneath Arctic sea ice.

5.2 Application to Sediment-Laden Ice

My results show that reverberation from the smooth, bubble-free ice surface is strong

enough to swamp echoes from large WC and air-filled spheres in ice. These spheres are

much stronger targets than individual air and sediment particles, and are more separated

from the ice surface and other inclusions then they would be in SL ice, which suggests that

it will be much harder to isolate scattering from individual sediment and air inclusions in ice.

The echoes from sediment and air inclusions will arrive at the echosounder simultaneously

with reverberation from the ice surface; and once echoes overlap, it is difficult to decompose

the signal by source contribution. Winebrenner (1991) mentions the possibility of observing

scattering from inhomogeneities in sea ice in acoustic reflections, and similarly concludes

surface scattering effects will dominate scattering from ice inclusions and suggest that

inclusions in ice may behave similarly to surface roughness and extend the envelope of the

scattered wave.

Since the surface of SL ice is expected to be rough and cracked, the strength of the

surface reflection is expected to be weaker in SL ice than the blocks in my experiment,

as Garrison et al. (1991) showed that the reflection from ice is strongly dependent on
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surface roughness and cracks. Both Black (2013) and Trowse (2013) describe a boundary

layer where melting occurs in SL ice, which is similar to the transition, or skeletal layer in

sea ice, described by Stanton et al. (1986) and Garrison et al. (1991). The skeletal layer,

which was not identified in my experiments, is expected to influence surface scattering

in SL ice. Winebrenner (1991) showed that transmission of elastic energy into ice would

be diminished by the skeletal layer. Sanderson et al. (2012) observed that the surface of

SL ice blocks is more porous than the interior of the ice block, and that at low tide, SL

ice blocks are observed by Sanders and Baddour (2008) to be covered in a thin layer of

unconsolidated mud, deposited as the tide recedes. This layer of sediment freezes to the

block and contributes to the growth of SL ice blocks (Black, 2013). In the case of a gradual

transition into a rigid ice matrix, shear and compressional waves will be attenuated at the

surface of SL ice, further inhibiting the likelihood of identifying inhomogeneities in ice

(Winebrenner, 1991).

Reverberation from the ice surfaces is also expected to increase as cracks and surface

roughness increase (Chamuel, 1990). My observations imply that reverberation from SL

ice blocks will likely be complex since the duration and magnitude of ice reverberation

appears to increase as the surface is deformed. In order to model the reflection from a

submerged SL ice block, the effect of surface roughness, porosity and crack extent on the

strength of the reflection must be verified.

My observations imply that scattering from sediment or air inside ice cannot be identified

using the Gaunard and Uberall (1978) or Gaunard and Uberall (1983) models; thus, these

models should not be used to estimate sediment content or porosity of SL ice blocks from

acoustic backscattering.

5.2.1 Recommendations for Future Work

Acoustic detection of ice strength may still be feasible, since the strength of the reflection

from ice surfaces depends on the extent of surface cracks. If surface cracking is a reasonable

measure of the ability of an ice block to withstand a collision, where surface cracks indicate

a network of internal fractures, the strength of the surface reflection may be used to assess

the risk ice blocks pose to tidal turbines. Stein et al. (1998) devised a method to monitor

the mechanical properties of ice by measuring the dispersion rate of the flexural waves.

However, this method requires that the transducer is fixed to the ice surface (Stein et al.,

1998). Stein et al. (1998) shows that if shear wave scattering can be detected, the ice density
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and lamé parameters are calculated from the longitudinal and shear soundspeed. Since

remote detection of SL ice requires that the transducer is not attached to the ice, properties

of shear waves in ice must be inferred from corresponding scattered compressional waves

using the mode conversion models provided in Graff (1975) and Aki and Richards (1980).

Furthermore, Weeks and Assur (1967) showed that the mechanical and elastic properties of

ice exhibit a strong temperature dependence, observed by Rajan et al. (1992) by measuring

the variation in temperature and wave speed in sea ice. These studies suggest a relationship

between the strength of the ice surface reflection and the strength of SL ice blocks. In order

to test this conjecture, the strength, surface fracture extent and porosity of sediment-laden

ice should be sampled (for example, see Notz et al. (2005)) and compared with surface

reflection observations and models.

Elastic wave propagation models for porous solids may be applied to porous sediment

laden ice blocks (Biot, 1962; Williams and Francois, 1992; Laible, 1995; Sharma, 2007).

Biot (1962) developed a theory which laid the foundation for poromechanics by coupling

increasing pore pressure to compression of the medium. Biot theory can be used to

determine the elastic moduli in anisotropic, open pore media, where the pore space is

connected; however, this method requires at least 12 parameters, many of which are

difficult to measure (Biot, 1962). Williams and Francois (1992) simplify the Biot theory

for an isotropic, closed pore medium; requiring 7 parameters that are measurable in ice

and related to ice temperature and salinity (Williams and Francois, 1992). This model

produced reasonable estimates of porosity and ice temperature and salinity in melting sea

ice (Williams and Francois, 1992). Sammelmann (1993) partitioned the sea ice into two

layers; a solid viscoelastic layer and a dendritic, skeletal (Biot-Stoll) layer. Estimates of

reflection coefficients are sensitive to small variations in the thickness and porosity of this

layer (Yew and Weng, 1987). If the porosity of ice could be controlled, an experiment to

measure the strength of the surface reflection while varying the porosity of the surface

layer of ice may provide a method to remotely estimate the surface strength of a SL ice

block. Observations of porosity in different layers of SL ice are provided by Sanderson

et al. (2012) and could be used to parameterize the Biot model to estimate the reflection

strength from SL ice blocks. Note, however, that this model does not incorporate scattering

from frozen or unconsolidated sediment in the skeletal layer.

Passive acoustic monitoring of sediment laden ice may be a cost-effective option for
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monitoring ice near turbines. Acoustic waves are naturally generated by ice cracking

and colliding in the water, which is identified as a major source of noise in the Arctic

(Dyer, 1993) . The acoustic emissions from cracking events have been modelled by Stein

(1988) and Farmer and Xie (1995) showed that it is possible to attribute transient acoustic

waves in water to acoustic emissions from large sea ice fracture events (Farmer and

Xie, 1995) and resultant flexural and Rayleigh surface waves that also produce acoustic

waves in water (Stein, 1988). Wadley et al. (1981) and Langhorne and Haskell (1996)

both showed that these acoustic emissions can be used to infer properties of the ice. For

example, Langhorne and Haskell (1996) suggested that the timing of fractures can be

used to indicate ice strength; where frequency acoustic emissions associated with cracking

preclude the failure of the ice block (Zakarauskas, 1993). While these fracturing events are

much louder than expected from SL ice, fracturing events from SL ice may have a unique

frequency dependence that allows them to be differentiated from other sound sources. In

addition, Weber (1978) showed that the sound of ice collisions can be used to track ice

floes; however, their observations showed that noise from an ice floe is too loud to detect

ice strengths or velocity changes.

Acoustic backscattering observations should be made from SL ice blocks. Observations

in a laboratory could be made from single, submerged SL ice block that are centred in the

beam of the transducer and ensonified at different grazing angles. Since reliable melt rate

model for SL ice is provided by Trowse (2013), surface reflection strength may provide

an additional measure of the development of a skeletal layer on submerged ice blocks.

Alternatively, an echosounder mounted to the surface or seafloor in Minas Passage, where

SL ice floes are proposed to occur, may identify submerged solid objects. While a large

range of target strengths are expected from the ice surface, observations from the Minas

Passage could be compared with observations from sea ice (for example, McCammon and

McDaniel (1985); Yew and Weng (1987); Laible and Rajan (1996); Stein et al. (1998)) to

provide a first order estimate of where and whether SL ice is found in the water column.

5.3 Summary and Conclusions

The goal of my thesis was to test the possibility that, using broadband acoustic techniques,

inclusions in ice could be isolated from surface scattering and identified by comparison
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with an acoustic scattering model. I found that scattering from a planar surface of bubble-

free ice overwhelmed the echo from a 38 mm and 10 mm tungsten carbide spheres and

polypropylene shells encased in ice. The surface echo inhibited the detection of the spheres

in ice, so that acoustic scattering models could not be verified. As such, I am unable to

conclusively detect or distinguish between solid and hollow spheres in ice using broadband

acoustics. The total echoes from ice with inclusions could not be differentiated from ice

without inclusions, however, inclusion free ice could not be maintained underwater without

cracking. This implies that echoes from sediment laden ice blocks cannot be interpreted by

modelling separate scattering mechanisms within the ice, and that future modelling should

focus on bulk parameterization of sediment laden ice.
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APPENDIX A

SPHERICAL HARMONICS

Spherical harmonics, composed of different kinds of spherical Bessel functions and Legen-

dre polynomials are common in wave scattering problems with spherical symmetry (Boas

(1966)). These functions form a complete orthonormal basis set, much like trigonometric

functions in the Fourier series, where any function can be expanded in terms of a sum of

orthogonal functions (Boas (1966)). The Bessel function, Jn, is defined using integral

notation,

Jn(kr) =
1

π

∫ π

0

cos(nτ − (kr) sin τ)dτ (A.1)

where unique solutions, normalized between 1 and 0, exist for all kr for discrete values

of n. Where n is the mode number of the function and kr is a dimensionless length. Any

function can be expressed as an infinite linear combination of Bessel functions, where

f(x) =
∞∑
n=0

cnJn(x) and cn are problem-specific coefficients, commonly determined by

initial or boundary conditions. While summing over an infinite number of modes is

prescribed, a finite number is often sufficient (n > kr + 5). The output of Equation A.1 is

a periodic function that resembles a sine or cosine that decays proportionally to 1/
√
kr.

The spherical Bessel function, jn, in Figure A.1, is a solution to Helmholtz differential

equation (Equation 2.7a and 2.7b) in spherical coordinates. The spherical Bessel functions

are related to the Bessel function of the first kind, Jn, by jn(kr) =
√

π
2kr

Jn+1/2(kr), where

n specifies the vibrational mode (Boas (1966)). The spherical Hankel function, hn, in

Figure A.2, is a combination of the spherical Bessel function with a spherical Neumann

function, yn, in the complex plane, such that hn = jn + iyn (Boas (1966)). The Bessel and

Neumann function are linearly independent solutions to the Helmholtz equation, where the
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Figure A.1: First five modes of the spherical Bessel function with respect to the dimen-

sionless wavenumber (kr).

Bessel function is bounded at the origin and the Neumann function diverges at the origin

(Boas (1966)). Correspondingly, the spherical Hankel functions are related to the Hankel

functions of the first kind, Hn, by hn(kr) =
√

π
2kr

Hn+1/2(kr) (Boas (1966)).

The derivatives of the spherical Bessel and Hankel functions are represented in terms of

recursion relationships (Morse (1948)),

j′n(kr) =
∂jn(kr)

∂(kr)
=

n

(kr)
jn(kr)− jn+1(kr) (A.2)

j′′n(kr) =
∂2jn(kr)

∂(kr)2
=

((n− 1)n− (kr)2)jn(kr) + 2krjn+1(kr)

(kr)2
. (A.3)

The Legendre polynomial, Pn(cosθ), describes the angular dependence of scatter (Boas

(1966)). Figure A.3 show the angular dependence of the Legendre polynomial. Note that
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Figure A.2: First five modes of the spherical Hankel function with respect to the dimen-

sionless wavenumber (kr).
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Figure A.3: First five modes of the Legendre Polynomial with respect to the angle between

the incident and observed wave, where 0◦ is the direction of incidence and 180◦ refers to

backscattering
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for the case of backscattering (θ = 180◦), the Legendre polynomial indicates that even and

odd modes are in quadrature (separated by a 90◦ phase), where Pn(cos(180
◦)) = (−1)n.
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APPENDIX B

SCATTERING COEFFICIENTS

B.1 Case I: Solid Sphere in a Fluid Medium

The coefficients from Gaunard and Uberall (1983) in Equation 2.23 and 2.24 were used

to predict the amplitude of a compressional wave scattered from a solid sphere in a fluid

medium.

d(10)n (ω) = −(
ρ1
ρ2

)(ks2r)
2jn(kl1r)

d(20)n (ω) = (kl1r)j
′
n(kl1r)

d(30)n (ω) = 0

d(11)n (ω) = (
ρ1
ρ2

)((ks2r)
2)hn(kl1r)

d(12)n (ω) = (2n(n+ 1)− (ks2r)
2)j(kl2r)− 4kl2rj

′(kl2r)

d(13)n (ω) = (2n(n+ 1)(ks2rj
′
n(ks2r)− jn(ks2r))

d(21)n (ω) = −kl1r(h
′
n(kl1r))

d(22)n (ω) = kl2rj
′
n(kl2r)

d(23)n (ω) = n(n+ 1)jn(ks2r)

d(31)n (ω) = 0

d(32)n (ω) = 2jn(kl2r)− kl2rj
′
n(kl2r)

d(33)n (ω) = 2ks2rj
′
n(ks2r) + ((ks2r)

2 − 2n(n+ 1) + 2)jn(ks2r)

(B.1)

92



B.2 Case II: Solid Sphere in a Solid Medium

The coefficients from Flax and Uberall (1980) in Equation 2.26 and 2.27 were used to

predict the amplitude of a compressional wave scattered from a solid sphere in a solid

medium.

b(11)n (ω) = −(
ρ1
ρ2

)((λ1hn(kl1r)− 2μ1h
′′
n(kl1r))

λ1 + 2μ1

)

b(12)n (ω) = 2(
ρ1
ρ2

)(n(n+ 1))(ks1r)
−2((ks1rh

′
n(ks1r))− hn(ks1r))

b(13)n (ω) = λ2jn(kl2r)− 2μ2j
′′
n(kl2r)

λ2 + 2μ2

b(14)n (ω) = −2n(n+ 1)(ks2r)
−2(ks2rj

′
n(ks2r)− jn(ks2r))

b(10)n (ω) = (
ρ1
ρ2

)((λ1jn(kl1r)− 2μ1j
′′
n(kl1r))

λ1 + 2μ1)

b(21)n (ω) = −hn(kl1r)

b(22)n (ω) = −(hn(ks1r) + (ks1rh
′
n(ks1r))

b(23)n (ω) = jn(kl2r)

b(24)n (ω) = jn(ks2r) + (ks2rj
′
n(ks2r))

b(20)n (ω) = jn(kl1r)

b(31)n (ω) = −2((kl1rh
′
n(kl1r))− hn(kl1r));

b(32)n (ω) = ((ks1r)
2h′′

n(ks1r)) + ((n+ 2)(n− 1)hn(ks1r))

b(33)n (ω) = (
2μ2

μ1

)(kl2rj
′
n(kl2r)− jn(kl2r))

b(34)n (ω) = (
2μ2

μ1

)(((ks2r)
2j′′n(ks2r)) + ((n+ 2)(n− 1)hn(ks2r)))

b(30)n (ω) = 2(kl1rj
′
n(kl1r)− jn(kl1r))

b(41)n (ω) = −kl1rh
′
n(kl1r)

b(42)n (ω) = −(n(n+ 1))hn(ks1r)

b(43)n (ω) = kl2rj
′
n(kl2r)

b(44)n (ω) = (n(n+ 1))jn(ks2r)

b(40)n (ω) = kl1rj
′
n(kl1r)

(B.2)
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B.3 Case III: Fluid Sphere in a Solid Medium

The coefficients from Gaunard and Uberall (1978) in Equation 2.29 and 2.30 were used

to predict the amplitude of a compressional wave scattered from a fluid sphere in a solid

medium.

c(11)n (ω) = kl1rj
′
n(kl1r)

c(12)n (ω) = (n(n+ 1))hn(ks1r)

c(13)n (ω) = −kl2rj
′
n(kl2r)

c(21)n (ω) = (2n(n+ 1)− (ks1r)
2)hn(kl1r)− 4kl1rh

′
n(kl1r)

c(22)n (ω) = (2n(n+ 1)ks1rh
′
n(ks1r))− hn(ks1r)

c(23)n (ω) =
ρ1
ρ2

(ks1r)
2jn(kl2r)

c(31)n (ω) = kl1rh
′
n(kl1r)− hn(kl1r)

c(32)n (ω) = (n(n+ 1)− 1− ks1r
2

2
)hn(ks1r)− ks1rh

′
n(ks1r)

c(33)n (ω) = 0;

c(10)n (ω) = −kl1rj
′
n(kl1r)

c(20)n (ω) = ((ks1r)
2 − 2n(n+ 1))jn(kl1r) + 4kl1rj

′
n(kl1r)

c(30)n (ω) = jn(kl1r) + kl1rj
′
n(kl1r)

(B.3)
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APPENDIX C

AQUATRON TANK WATER
PROPERTIES

Temperature and salinity measurements in the Tower Tank are shown in Figure C.1. These

measurements were made on August 6th, 2014, by Adam Comeau using a Sea-Bird

Electronics Glider Payload CTD. The temperature in the tank fluctuates between 14◦C

and 18◦C, while the salinity remains constant around 31.5 PSU. CTD measurements are

not available for other dates that experiments were conducted, however, an average surface

temperature of 24◦C was measured on October 22nd, 2012.
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Figure C.1: Temperature and salinity profiles collected in the Aquatron Tower Tank. The

crosses represent observations collected with a CTD by Adam Coumeau on August 6th,

2014. The solid lines are represent averages over half a meter depth.
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Water density and soundspeed are calculated from temperature and salinity measure-

ments, using the method of Millero et al. (2008) and Mackenzie (1981), respectively, and

presented in Figure C.2.
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Figure C.2: Density and soundpseed profiles are calculated from temperature and salinity

measurements from Figure C.1. The crosses represent discrete samples and the solid lines

are represent averages over half a meter depth.

The attenuation of sound in water is due to absorption of acoustic energy into heat and is

a function of water temperature, depth in the tank and frequency of the acoustic pulse. The

frequency dependent attenuation coefficient, α(ω), is used to account for attenuation of the

acoustic pulse as it propagates down the beam. Ainslie and McColm (1998) approximate

the attenuation coefficient as,

α(ω) = 4.9× 10−7(ω2) e−T/2+R/17 (C.1)

where T is the water temperature and R is the depth in the tank (Ainslie and McColm

(1998)). The attenuation in the Tower Tank, in Figure C.3, ranges between 2-6.5 dB/km,

where higher frequencies experience more attenuation.
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Figure C.3: Frequency dependent sound attenuation in the Aquatron Tower Tank is

calculated from CTD measurements, in Figure C.1. The attenuation coefficient is calculated

using the Ainslie and McColm (1998) equation.

A sample of the average background noise level in tank is provided in Figure C.4

calculated from a portion of the pulse compressed signal without scattering from targets.

The noise level in the tank is higher in the low frequency range of the echosounder system,

between 90-110 kHz.
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Figure C.4: Mean background noise level in the Aquaton Tower Tank on August 7th, 2014

[CLB1exp1] (solid black line), calculated from an ensemble of pings (shown in blue).

Right panel: The CP envelope shows the background noise level relative to the transmit

pulse, with the size of the FFT window shown in gold.
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