
FULLY DYNAMIC GRAPH ORIENTATION

by

Ganggui Tang

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2014

c© Copyright by Ganggui Tang, 2014

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

Acknowledgements . vii

Chapter 1 Introduction . 1

1.1 Related Work . 4

1.1.1 Arboricity and Static Graph Orientation 4

1.1.2 Dynamic Graph Orientation 4

1.1.3 Graph Matching . 5

1.1.4 Adjacency Queries . 7

1.1.5 Coordinate Queries . 7

1.2 Our Contributions . 8

1.3 Organization of the Thesis . 11

Chapter 2 Dynamic Edge Orientation with Amortized Update Time 13

2.1 Reduction from Online Orientations to Offline Orientations 13

2.2 A Smooth Trade-off on Maintaining Edge Orientations 14

2.3 Applications . 19

2.3.1 Maintaining Maximal Matchings 19

2.3.2 Coordinate Queries . 20

Chapter 3 Dynamic Edge Orientation with Worst-Case Update Ti-

me . 22

3.1 Preliminaries . 22

3.2 Maintaining Edge Orientations . 23

3.2.1 A New Invariant . 23

ii

3.2.2 Auxiliary Data Structures . 25

3.2.3 Handling Edge Insertions . 25

3.2.4 Handling Edge Deletions . 27

3.2.5 Bounding Δ by
√
2m . 29

3.3 Applications . 30

3.3.1 A New Algorithm to Maintain Dynamic Maximal Matching

with Worst-Case Time Bounds 30

3.3.2 Adjacency Query Data Structure with Worst-case Time Bounds 31

3.3.3 Coordinate Queries . 31

Chapter 4 Maintaining Graph Orientations without Edge Reorien-

tation . 33

4.1 Orienting Dynamic Graphs Online without Edge Reorientations . . . 33

4.2 Lower Bounds . 34

4.2.1 Insertion-Only Update Sequences 34

4.2.2 Update Sequences of Length at Most α(n − 1) 36

4.2.3 Arbitrary Update Sequences 41

4.3 Upper Bounds . 41

4.3.1 Insertion-Only Update Sequences 41

4.3.2 Update Sequences of Length at Most α(n − 1) 42

4.3.3 Arbitrary Update Sequences 43

Chapter 5 Conclusion and Future Work 46

Bibliography . 48

iii

List of Tables

Table 1.1 Summary of lower and upper bounds on maximum out-degree

without reorientation . 11

iv

List of Figures

Figure 1.1 An example of graph matching 2

Figure 2.1 Offline recursive strategy . 16

Figure 4.1 Inductive definition of S(G, d) 35

Figure 4.2 The graph GS(G,d) . 38

v

Abstract

In this thesis we consider the problem of edge orientation, where the goal is to orient

the edges of an undirected dynamic graph with n vertices so that the out-degree of

every vertex is bounded, typically by a function of the graph’s arboricity.

Our first result is to show that anO(βα)-orientation can be maintained inO(lg(n
βα
)

/β) amortized edge insertion time and O(βα) worst-case edge deletion time, for any

β ≥ 1, where α is the maximum arboricity of the graph over the entire update

sequence. This generalizes previous results by Brodal and Fagerberg [5] and Kowa-

lik [30], which are special cases of our result with β = 1 and β = lg n, respectively.

As an application of this result, we show how to maintain a maximal matching of a

graph in O(α+
√
α lg n) amortized update time, which is currently the best result for

graphs with arboricity α = o(lg n). When α is a constant, which is the case for planar

graphs, for instance, our work shows that a maximal matching can be maintained in

O(
√
lg n) amortized time, while previously the best approach required O(lg n/ lg lg n)

amortized time [41].

Our second result is a new algorithm that maintains a Δ-orientation in worst-case

O(Δ) insertion and deletion time, where Δ ≤ min(2α lg(n/α) + 2α,
√
2m), α is the

arboricity of the graph at the time of the update, and m is the number of edges

of the graph at the time of the update. Compared with the result of Kopelowitz

et al. [29], our algorithm gives a new trade-off with faster insertion time but higher

maximum vertex out-degree and slower deletion time when α = ω(lg n). In addition,

it is simpler than [29] and does not require edge reorientation during insertion. We

apply it to maintain a maximal matching in worst-case O(min(α lg(n/α),
√
m)) up-

date time using linear space and represent a dynamic graph to support adjacency

queries in O(lg lgΔ) worst-case time, edge insertions in O(Δ) worst-case time, and

edge deletions in O(Δ lg lgΔ) worst-case time.

More results in this thesis include new trade-offs for the coordinate query prob-

lem [29] achieved by applying our approaches to maintaining graph orientations, as

well as lower and upper bounds on the maximum out-degree guaranteed by a specific

algorithm that maintains an edge orientation without changing the directions of edges

during updates.

vi

Acknowledgements

First and foremost, I would like to give my sincere gratitude to my supervisors

Dr. Meng He and Dr. Norbert Zeh. This work would not have been possible without

their patient guidance, inspiration and encouragement.

In addition, I would like to thank my thesis readers Dr. Alex Brodsky and Dr.

Michael McAllister for their insightful and detailed comments.

I also would like to give my thanks to NSERC for funding my study and research.

Finally, I would like to thank my family’s understanding and support. I would

not have started this journey without their love and support.

vii

Chapter 1

Introduction

The problem of orienting the edges of a dynamic undirected graph to guarantee a low

upper bound on the maximum out-degree of its vertices has attracted much attention

in recent years [5, 29, 30, 41]. In this problem, an orientation of a graph G = (V,E)

is a directed graph
−→
G = (V,

−→
E) defined by assigning each edge of G a direction.

−→
G

is called a Δ-orientation if the out-degree of each vertex in
−→
G is bounded by Δ. The

goal is to maintain a Δ-orientation of G with efficient support of edge insertion and

deletion, for Δ as small as possible. For dense graphs, Δ has to be large, so this

problem is more interesting when the graph is sparse.

As the arboricity of a graph is often used as a measurement of the sparsity of

the graph, it is typically used as a parameter when bounding Δ. The arboricity,

α, of a graph G is defined formally as α = max
J

|E(J)|
|V (J)|−1

, where J = (V (J), E(J)) is

any subgraph of G induced by at least two vertices [39]. Many classes of graphs in

practice have arboricity bounded by a constant, including planar graphs, graphs of

bounded genus, and graphs of bounded tree width. Nash-Williams [39, 40] proved

that G has arboricity α if and only if α is the smallest number of subsets that E can

be partitioned into so that each subset of edges with their endpoints is a forest. Such

a decomposition can be computed in polynomial time [19, 43]. In this partition, if we

choose a root for each tree and orient the edges towards the root, then each vertex

has out-degree at most one in each tree, which immediately gives an α-orientation of

the given static graph.

1

2

v1

v2 v3

v6

v4

v5v7

Figure 1.1: An example of graph matching

The most fundamental application of edge orientation is perhaps the representa-

tion of graphs supporting adjacency queries. This is based on the following observa-

tion [4, 27]: With a Δ-orientation of G, if we store the out-neighbors of each vertex

in a list, then an adjacency query can be answered in O(Δ) time by scanning the list

of each of the two vertices given in the query to see if one is an out-neighbour of the

other. Thus, if we can maintain a Δ-orientation of a sparse graph efficiently, then

we immediately obtain a linear-space dynamic graph representation that supports

adjacency queries in O(Δ) time [5].

Recently, Neiman and Solomon [41] found that edge orientations also have appli-

cations in maintaining maximal matchings of dynamic graphs. A matching, M , of a

graph G is a set of edges of G that do not share any endpoints. If a matching M has

the maximum number of edges, then it is called a maximum cardinality matching. A

maximal matching is defined to be a matching, M , that satisfies the following condi-

tion: there does not exist an edge, g, of G, such that M ∪ {g} is still a matching of

G. Denote the number of edges of a maximum cardinality matching of G by ν(G).

Then, if a matching of G has at least ν(G)/γ edges, we call it a γ-approximate maxi-

mum cardinality matching, where γ ≥ 1. Clearly a maximum cardinality matching is a

3

maximal matching, but a maximal matching is not necessarily a maximum cardinality

matching. It is well-known that any maximal matching is a 2-approximate maximum

cardinality matching [1]. For example, in Figure 1.1, M1 = {v1v2, v3v4, v6v7} is a

maximum cardinality matching of the graph, M2 = {v1v3, v5v7} is a maximal match-

ing of the graph and is also a 3/2-approximate maximum cardinality matching, and

M3 = {v1v2, v3v4} is a 3/2-approximate maximum cardinality matching but not a

maximal matching. Graph matching is a fundamental problem in graph theory, and

it has many applications in combinatorial optimization [14, 24, 33, 34, 35]. In the

dynamic setting, the problem is to maintain a maximal matching or an approximate

maximum cardinality matching under edge insertions and deletions. Recent progress

on this problem [22, 29, 41] generated more interest in edge orientations.

Kopelowitz et al. [29] also showed that any solution to the dynamic edge orienta-

tion can be applied to the coordinate query problem. In this problem, we maintain an

n× n symmetric matrix A and an n-dimensional vector −→x so that given any integer

i ∈ [1, · · · , n], ∑n
j=1 aijxj can be computed efficiently. This is called a coordinate

query. Kopelowitz et al. showed that coordinate queries and updates of −→x and A

can be reduced to queries and updates of an orientation of a graph whose adjacency

matrix is A. If a Δ-orientation of the graph can be maintained in ti insertion time

and td deletion time, then a coordinate query or an update to an element of −→x can

be performed in O(Δ) time, an update to an entry in A from a non-zero value to zero

can be performed in O(td) time, an update to an entry in A from zero to a non-zero

value can be performed in O(ti) time, and an update to an entry in A from a non-zero

value to a different non-zero value can be performed in O(1) time.

Edge orientations have also been applied to other problems such as bounded short-

est path in planar graphs [29, 32], Steiner forest [15], subgraph listing problems in

dynamic planar graphs [9], counting subgraphs [13], dynamic dominance in sparse

4

graphs [16], graph colouring [31], reporting maximal independent sets [16], comput-

ing the girth of a graph [32], and load balancing [6]. Motivated by these applications,

we study the problem of orienting dynamic graphs and its applications to maintaining

maximal matchings, adjacency queries, and coordinate queries.

1.1 Related Work

1.1.1 Arboricity and Static Graph Orientation

Nash-Williams [39, 40] showed that the exact arboricity of a graph is equal to the

smallest number of forests that the graph can be decomposed into. Picard and

Queyranne [43] presented the first algorithm to decompose an arbitrary graph into the

smallest number of forests in O(n2m lg2 n) time1, where n is number of vertices and

m is number of edges in the graph. Later, this was improved to O(αn
√
m+ αn lg n)

time by Gabow and Westermann [19]. The arboricity of a planar graph is at most 3

since any subgraph with n vertices of a planar graph has at most 3n−6 edges. Grossi

and Lodi [21] proposed an algorithm to decompose a planar graph into three forests in

O(n lg n) time. With the α forests that a graph is decomposed into, we can compute

an α-orientation of this graph in linear time as described earlier in this chapter.

Arikati et al. [4] proposed an algorithm to compute a δ-orientation of a graph in

O(n + m) time without knowing its arboricity, where δ ≤ 2α − 1. This algorithm

can thus also be used to compute a 2-approximation of the arboricity of a graph in

O(n+m) time.

1.1.2 Dynamic Graph Orientation

Brodal and Fagerberg [5] first studied the problem of maintaining an edge orientation

of a dynamic graph with n vertices under an arboricity-α-preserving sequence of

1In this thesis, lg n denotes log2 n.

5

edge insertions and deletions. Here, an update operation is considered arboricity-

α-preserving if, when applied to a graph of arboricity at most α, the arboricity of

the graph after the update remains bounded by α. They proposed an approach

that can maintain an O(α)-orientation in O(1) amortized insertion time, O(α+ lg n)

amortized deletion time, and using O(m + n) space, where m is the current number

of edges. In their algorithm for update operations, some edges may change their

orientations, i.e., be reoriented. They proved that the amortized number of edge

reorientations achieved by their algorithm is within a constant factor of the amortized

number of edge reorientations achieved by the optimal algorithm that knows the entire

update sequence beforehand. Later, Kowalik [30] showed that Brodal and Fagerberg’s

approach can maintain an O(α lg n)-orientation with constant amortized insertion

time and constant worst-case deletion time.

More recently, Kopelowitz et al. [29] considered the problem of maintaining edge

orientations with worst-case time bounds. They proposed two algorithms: The first

algorithm maintains an O(Δ)-orientation in O(Δ2) worst-case insertion time and

O(Δ) worst-case deletion time, where Δ ≤ infβ>1{βα + logβ n} and α is the ar-

boricity of the graph at the time of the update. The second algorithm improves

the insertion time to O(βαΔ), but it requires knowledge of the maximum arboricity

during updates beforehand. This restriction can be eliminated by using more compli-

cated algorithms [28]. Both algorithms use O(n +m) space, where n and m denote

the number of vertices and edges in the graph, respectively.

1.1.3 Graph Matching

Hopcroft and Karp [25] introduced the currently best algorithm for computing a

maximum cardinality matching (MCM) of a bipartite graph. Its running time is

O(m
√
n). Later, it was extended to general graphs by Micali and Vazirani [36] with

the same time complexity. To support updates to the graph, Tarjan [45] introduced

6

an algorithm to maintain a MCM in O(m) worst-case time per update. Sankowski [44]

introduced a randomized algorithm with O(n1.495) update time which is more efficient

for dense graphs. For trees, Gupta and Sharma [23] proposed an algorithm with

O(log n) worst-case update time.

In a weighted graph, amaximum weight matching is a matching with the maximum

total weight of its edges. Algorithms with time complexity O(m
√
n log n log(nN)) and

O(m
√
n log(nN)) to compute a maximum weight matching (MWM) were proposed

by Gabow and Tarjan [20] and Duan et al. [12], respectively, where N is the maximum

weight of the edges in the graph.

As the results above demonstrate, a MCM or MWM is expensive to compute.

However, an approximate MCM or MWM can be computed efficiently. Hopcroft and

Karp [25] and Micali and Vazirani [36] presented algorithms that can compute a (1+ε)-

approximate MCM in O(mε−1) time, for any ε < 1. A (1 + ε)-approximate MWM

can be computed in O(mε−1 log ε−1) time using an algorithm by Duan et al. [12].

To maintain an approximate MCM in dynamic graphs, Neiman and Solomon [41]

introduced a solution to maintain a maximal matching of a graph, which is also a

3/2-approximate MCM of the graph, using O(
√
m) worst-case update time. This is

the first approach that can maintain a maximal matching in o(m) worst-case update

time. Later, Gupta and Peng [22] proposed an algorithm to maintain a (1 + ε)-

approximate MCM using O(
√
mε−2) worst-case update time. The matching that

they maintain is not necessarily a maximal matching since their algorithm uses the

strategy of recomputing an MCM after a certain number of updates to guarantee the

approximation ratio, and the updates performed before each recomputation may cause

the matching to become non-maximal. They also extended their result to maintain

an approximate MWM in a weighted graph where edges have weights between [1,N]

in O(
√
m logN) worst-case update time.

To support more efficient updates for graphs with low arboricity, Neiman and

7

Solomon [41] showed how to use graph orientation to maintain a maximal matching.

Their approach can maintain a maximal matching in O(m + n) space and supports

updates in O(Δ + logΔ/α n) amortized time, for any Δ > 2α. When α = o(lg n),

the update time becomes O(lgn
lg((lgn)/α)

+ α). Following the same idea, Kopelowitz

et al. [29] made use of their solution for graph orientation to maintain a maximal

matching in O(βαΔ) worst-case insertion time and O(Δ) worst-case deletion time,

where Δ ≤ infβ>1{βα + logβ n}.

1.1.4 Adjacency Queries

As mentioned in Chapter 1 paragraph 3, solutions to maintaining an edge orientation

on dynamic graphs can be used directly to support adjacency queries. Kowalik [30]

showed that by maintaining the list of the out-neighbours of each vertex using the

dynamic dictionary of Andersson and Thorup [3], a graph can be represented in

O(m + n) space and support adjacency queries and edge deletions in O(lg lg lg n)

worst-case time, and edge insertions in O(lg lg lg n) amortized time, provided that

α = O(polylog(n)). Using the same strategy, Kopelowitz et al. [29] presented a linear-

space representation of graphs with arboricity α = polylog(n) that supports adjacency

queries in O(lg lgΔ) worst-case time, edge insertions in O(βαΔ lg lgΔ) worst-case

time, and edge deletions in O(Δ lg lgΔ) worst-case time, where Δ ≤ infβ>1{βα +

	logβ n
}.

1.1.5 Coordinate Queries

Let A be an n×n symmetric matrix and −→x be an n-dimensional vector. Kopelowitz et

al. [29] provided a solution to answer coordinate queries on them in O(Δ) worst-case

time, where Δ = infβ>1{βα + logβ n} and α is the arboricity of the graph G whose

adjacency matrix is A, by using their solution to maintain an edge orientation [29]

in their reduction for the coordinate query problem [29] as mentioned in Chapter 1

8

paragraph 5. In this solution, an update to an entry in A from zero to a non-zero

value can be performed in O(αβΔ) worst-case time, an update to an entry in A from

a non-zero value to zero and an update to an element of −→x can be performed in O(Δ)

worst-case time, and an update to an entry in A from a non-zero value to a different

non-zero value can be performed in O(1) worst-case time.

By using Brodal and Fagerberg’s and Kowalik’s solutions to edge orientation [5, 30]

in Kopelowitz et al.’s reduction to the coordinate query problem [29], more results

can be obtained. Here we consider the total time required to answer a sequence

of requests, which also gives a bound on the amortized cost of each operation. In

a request sequence, let nq denote the number of coordinate queries, nx denote the

number of the updates to the elements of −→x , ni denote the number of the updates to

the entries in A from zero to non-zero values, nd denote the number of the updates to

the entries in A from non-zero values to zero, and no denote the number of the updates

to the entries in A from non-zero values to different non-zero values. Then, if we use

Brodal and Fagerberg’s solution [5] to maintain an edge orientation in the reduction,

the total time to answer the request sequence is O(ni·(α+log n)+(nx+nq+nd)·α+no),

where α is the maximum arboricity of the graph G whose adjacency matrix is A. If

we use Kowalik’s solution [30] to maintain an edge orientation in the reduction, then

the total time to answer the request sequence is O(ni + (nx + nq + nd) · α log n+ no).

1.2 Our Contributions

First, we provide a new analysis of the algorithm of Brodal and Fagerberg [5] for

graphs with arbitrary arboricity, by constructing a new offline algorithm for the edge

orientation problem. Our new analysis shows that an O(βα)-orientation can be main-

tained in linear space with O(lg(n/(βα))
β

) amortized insertion time and O(βα) worst-

case deletion time, for any β ≥ 1. Furthermore, no edge reorientation is required

when performing an edge deletion. This presents a trade-off between the maximum

9

out-degree of vertices and insertion time in the analysis of the algorithm by Brodal

and Fagerberg, which was never proved before. If we set β = 1, then our analysis

shows that this algorithm maintains an O(α)-orientation while supporting insertions

in O(lg n) amortized time and deletions in O(α) worst-case time. This is compara-

ble to Brodal and Fagerberg’s original analysis. By setting β = lg n, the algorithm

maintains an O(α lg n)-orientation with a constant number of edge reorientations

per edge insertion in the amortized sense and zero reorientations for each deletion,

which matches Kowalik’s analysis [30].2 When β =
√

lgn
α
, this algorithm maintains

an O(
√
α lg n)-orientation with O(

√
α lg n) amortized insertion time and O(

√
α lg n)

worst-case deletion time. This trade-off can not be shown using previous analyses.

Second, we apply our result on edge orientation to improve previous results

on maintaining maximal matchings under arboricity-α-preserving update sequences.

More specifically, we can maintain a maximal matching using O(m + n) space and

O(α +
√
α lg n) amortized update time, which is currently the best result on main-

taining a maximal matching for low arboricity graphs. Our result matches the result

of Neiman and Solomon [41] when α = Ω(lg n), while it strictly improves their results

when α = o(lg n). To see the improvement when α = o(lg n), suppose α = lgn
f(n)

,

where f(n) is an arbitrary function in ω(1). Then Neiman and Solomon’s result sup-

ports updates in O(lgn
lg f(n)

) amortized time, while ours requires O(lgn√
f(n)

) time. The

improvement is most significant for graphs with constant arboricity, such as planar

graphs: a maximal matching can be maintained in O(
√
lg n) amortized time with our

work, while previously it required O(lg n/ lg lg n) amortized time [41]. In addition,

we apply our result on edge orientation to improve the previous results on answering

2Kowalik’s analysis [30] of the deletion time does not include the time required to find the
location of the given edge within the list of out-neighbours of one of its endpoints and thus his
model implicitly requires such a location to be given when performing deletion. In our work, unless
otherwise specified, we follow the original model of Brodal and Fagerberg [5], which maintains out-
neighbours in linked lists, and the time required to search each list for the edge to be deleted is part
of the deletion time. Thus, when comparing with Kowalik’s analysis, we consider the number of
reorientations.

10

a sequence of requests in the coordinate query problem.

Third, we design solutions to these problems that guarantee worst-case time

bounds. We show how to maintain a Δ-orientation in O(Δ) worst-case insertion

and deletion time, where Δ ≤ min(2α lg(n/α) + 2α,
√
2m), α is the arboricity of the

graph at the time of the update, andm is the number of edges of the graph at the time

of the update. This is a new trade-off when compared with the result of Kopelowitz et

al. [29]: When α = ω(lg n), our insertion time is O(α lg n), which is better than their

O(α2 + α lg n) insertion time. However, our maximum out-degree and deletion time

are worse. Our approach is simpler and does not require edge reorientation during

insertion. The same bounds can be proved when applying our result to maintain a

maximal matching, which again compares similarly to the result of Kopelowitz et al.

We can also use this to represent a graph with O(polylog(n)) arboricity to support

adjacency queries in O(lg lgΔ) worst-case time, edge insertions in O(Δ) worst-case

time, and edge deletions in O(Δ lg lgΔ) worst-case time. For graphs with constant

arboricity such as planar graphs, our representation supports adjacency queries, in-

sertions and deletions in O(lg lg lg n), O(lg n) and O(lg n lg lg lg n) time, respectively,

improving Kopelowitz et al.’s result, which provides the same support for queries

and deletions, but requires O(lg n lg lg lg n) time for insertions. The fact that our in-

sertion algorithm for edge orientation does not require reorientations makes such an

improvement possible. For non-constant α, our result is a new trade-off: our insertion

is faster by a factor of lg lg lg n than the result of Kopelowitz et al. but deletions may

be slower by a factor of α. All our solutions use O(n + m) space. Again, we apply

our solution to maintaining an edge orientation with worst-case time bounds to the

coordinate query problem to get similar tradeoffs.

Finally, we prove lower and upper bounds on the maximum out-degree, Δ, of any

node in an oriented graph when using a simple online algorithm to handle updates.

The algorithm supports edge insertions and edge deletions without requiring edge

11

Insertion-Only Updates At most α(n−1) Updates Arbitrary Updates

Lower Ω(lg n) Ω(min{ 3
√

α(n− 1),
√
n}),

for any α ≥ 3
Ω(

√
n), for any α ≥

3

Upper O(min(α lg(n/α),
√
m)) O(

√
α(n− 1)) O((αn)2/3)

Table 1.1: Summary of lower and upper bounds on maximum out-degree without
reorientation

reorientations. It handles an edge insertion by orienting the newly inserted edge from

the endpoint with lower out-degree to the endpoint with higher out-degree or orient-

ing the edge arbitrarily if both endpoints have equal out-degree. It handles an edge

deletion by simply deleting the edge. We show that Δ = O(min(α lg(n/α),
√
m))

after performing an update sequence that contains edge insertions only, where α

is the maximum arboricity of the graph throughout the update sequence and m

is the length of the update sequence. However, if deletions are allowed, some up-

date sequences of length at most α(n − 1) may force a vertex to have out-degree

Ω(min{ 3
√

α(n− 1),
√
n}). We summarize our results in Table 1.1. The row “Lower”

presents lower bounds on Δ. The row “Upper” presents upper bounds on Δ. The

column “Insertion-Only Updates” presents lower and upper bounds on Δ after per-

forming an update sequence that contains insertions only. The column “At most

α(n−1) Updates” presents lower and upper bounds on Δ after performing an update

sequence that contains at most α(n − 1) updates including insertions and deletions.

The column “Arbitrary Updates” presents lower and upper bounds on Δ after per-

forming an arbitrary update sequence.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we present our solution

with amortized update bounds and its application to maintaining maximal matchings

and coordinate queries. In Chapter 3, we present our solution with worst-case update

bounds and its application to maintaining maximal matchings, adjacency queries,

12

and coordinate queries. In Chapter 4, we prove the lower and upper bounds of the

maximum out-degree of a vertex in an orientation maintained using an algorithm

that does not require edge reorientations during updates. In Chapter 5, we present

concluding remarks and list some open problems.

Chapter 2

Dynamic Edge Orientation with Amortized Update Time

In this chapter, we present a solution to maintaining an edge orientation with amor-

tized time bounds. Brodal and Fagerberg [5] analyzed their algorithm by reducing

the problem of maintaining an edge orientation under online updates to the problem

of finding a sequence of orientations for an update sequence given offline such that

the total number of edge reorientations is minimized. We use the same strategy in

our solution. We first recall their reduction in Section 2.1. Then, in Section 2.2, we

present a new offline algorithm to orient dynamic graphs and use Brodal and Fager-

berg’s reduction to obtain our solution to maintaining an edge orientation undertake

online updates. In Section 2.3, we present applications of our solution to maximal

matching and coordinate queries, respectively.

2.1 Reduction from Online Orientations to Offline Orientations

Brodal and Fagerberg [5] proved the following lemma that reduces online graph ori-

entation to the offline version of the same problem.

Lemma 1 ([5]) There exists an online reorientation algorithm A with the following

property:

Let G0, G1, . . . , Gq be the sequence of graphs produced by an arboricity-α-preserving

sequence of updates, where G0 is the empty graph and Gi is the graph obtained after

the first i updates. Further assume that the update sequence contains k insertions. If

there exists a δ-orientation sequence
−→
G 0,

−→
G 1, . . . ,

−→
G q that involves at most kr edge

13

14

reorientations, then A can maintain a Δ-orientation under this update sequence using

O(n+m) space, O(rΔ
Δ+1−2δ

) amortized time per insertion, and O(Δ) worst-case time

per deletion, provided Δ ≥ 2δ > 2α.

We will use this lemma in our own solution in the same way that Brodal and

Fagerberg [5] and Kowalik [30] did. Brodal and Fagerberg presented an offline al-

gorithm to maintain a δ-orientation of a graph of arboricity α, where δ > α, with

no edge reorientations for insertions and at most 	logδ/α n
 edge reorientations per

deletion. Kowalik presented an offline algorithm to maintain a (4α(�logαn� + 1))-

orientation of a graph of arboricity α with at most 2(k+2kα/β) edge reorientations,

where k is number of insertions in the update sequence and β is an integer in [1,+∞].

Combined with Lemma 1, their results on online graph orientation follow.

2.2 A Smooth Trade-off on Maintaining Edge Orientations

In our offline strategy, let U be an arbitrary arboricity-α-preserving update sequence

on an initially empty graph G with n vertices. Denote by Gi the graph after the ith

update as in Lemma 1 (G0 denotes the initial empty graph). We show how to obtain

a sequence of δ-orientations
−→
G 0,

−→
G 1, . . . ,

−→
G |U | with a provable upper bound on the

total number of edge reorientations, for a parameter δ to be determined later. Note

that it is trivial to orient the empty graph G0.

We divide U into phases containing βαn consecutive update operations each for

some parameters β ≥ 1, except the last phase, which may contain fewer operations.

For simplicity, we assume that βαn is an integer. For the graph at the end of each

full phase containing βαn operations, we compute an α-orientation using the ap-

proach mentioned in Section 1.1.1, which makes use of the algorithm in [19, 43]. This

determines the orientation of the graph at the end of each phase with the possible

exception of the last phase, i.e.,
−→
Gβαn,

−→
G 2βαn,

−→
G 3βαn, . . . ,

−→
G �|U |/(βαn)�(βαn).

15

To orient each graph Gi where i is not divisible by βαn, we need the following

definition:

Definition 1 Consider a phase, P , of |P | ≤ βαn consecutive updates on a graph G

with n vertices. An update operation that inserts or deletes an edge between vertices

x and y is said to update x and y. A vertex of G is hot in P if it is updated by at

least 4βα operations of P , and cold otherwise. The hot region, HP (G), of G in P

is the subgraph of G induced by all the hot vertices of G in P , while the cold region,

CP (G), of G is defined to be G \HP (G).

The δ-orientation sequence is determined recursively. We use the following strat-

egy for each phase, P , of U . Let Gi+j denote the graph after the jth operation in P .

Thus, Gi denotes the graph immediately before any operation in P is performed, and

by our previous discussion,
−→
G i is an α-orientation of G. At the current level of recur-

sion, we only determine the orientations of edges in graphs Gi+j with j ∈ [1..|P | − 1]

if |P | = βαn or j ∈ [1..|P |] if |P | < βαn that have at least one cold endpoint. Edges

with only hot endpoints are oriented recursively. We consider the graphs Gi+j in

increasing order of j: For an edge that is present in both Gi+j−1 and Gi+j, if its

orientation in Gi+j−1 has already been determined, then in Gi+j, we maintain the

same orientation. There are no new edges to be oriented in Gi+j if the jth operation

in P deletes an edge. If this operation inserts an edge, then there are three cases. In

the first case, this edge is between a hot vertex and a cold vertex, and we orient it

from the cold vertex to the hot vertex. In the second case, the edge is between two

cold vertices, and we orient it arbitrarily. In the remaining case, the edge is between

two hot vertices, and we do not orient this edge in this level of recursion.

To recursively orient the edges between hot vertices in phase P , let n′ denote

the number of vertices of G that are hot vertices in this phase. As each hot vertex

is updated by at least 4βα operations in P and each operation may update up to

16

Level 1

Level 2

Level 3

ULevel 0

Cold Region

Hot Region

Cold Region Cold Region

Hot Hot

βαn′′ βαn′′

n vertices

n′ ≤ n/2 vertices

βαn′′ βαn′′

βαn′ βαn′

Cold Region

Hot Region

Cold Cold Cold Cold

Hot Hot Hot Hot
n′′ ≤ n′/2

βαn updates βαn updates

. . .

.

. . .

. . .

.

Figure 2.1: Offline recursive strategy

two hot vertices, the number of operations in P that update hot vertices is at least

2βαn′. As this can not be larger than the total number of operations in P , we have

2βαn′ ≤ |P | ≤ βαn, which implies n′ ≤ n/2. If n′ < 4βα, we arbitrarily orient the

edges inserted between these hot vertices by operations in phase P excluding the last

operation if the phase is full (recall that after the last operation of a full phase, the

graph is oriented by computing an α-orientation, so we exclude the last operation in

full phase here). Otherwise, we set n to be n′, set U to be the sequence of operations

in P that update hot vertices only, and apply the same recursive strategy to HP (G).

Upon returning from the recursion on HP (G), the direction of each edge inserted

between hot vertices has been decided, as it is part of the graph HP (G). Thus, we

have oriented all edges of all the Gis. Figure 2.1 illustrates our recursive strategy.

17

We now prove the following upper bound on vertex out-degrees:

Lemma 2 The offline algorithm in this section computes a sequence of (4βα + α)-

orientations
−→
G 0,

−→
G 1, . . . ,

−→
G q.

Proof. We prove by induction that at each level of recursion, we construct (4βα+α)-

orientations throughout each phase. In the base case where we stop the recursion, we

consider a graph with at most 4βα vertices. In this case, even though we orient edges

arbitrarily upon insertion, the maximum out-degree of any vertex is at most 4βα− 1

as the total number of vertices is at most 4βα.

In the inductive case, for an arbitrary phase P , let Gi+j denote the graph after

the jth operation in P . We first consider an arbitrary cold vertex x in this phase.

Before any operation in P is performed, in
−→
Gi, the out-degree of x is at most α as

−→
Gi

is computed as an α-orientation. By Definition 1, fewer than 4βα edges inserted in

P have x as an endpoint. Thus the maximum out-degree of x in phase P is less than

α + 4βα.

Now consider an arbitrary hot vertex y. As any edge between y and a cold vertex

is oriented towards y, the out-degree of y is always equal to its out-degree in HP (G),

which is bounded by 4βα + α by the inductive hypothesis.

To bound the total number of edge reorientations, we have:

Lemma 3 The total number of edge reorientations in the orientation sequence
−→
G 0,

−→
G 1,

. . . ,
−→
G |U | is O(|U |

β
· lg(n/(βα))).

Proof. We number each level of recursion by its recursion depth starting from 0.

Thus, at level 0, we consider the original graph G with n vertices. At level 1, each

of the subgraphs being considered corresponds to a phase at level 0 and contains

the hot region of G in this phase, which has at most n/2 vertices, and so on. The

number of vertices in each subgraph considered at level i is thus at most n/2i, and

18

the number of vertices of each graph considered at the last level is at most 4βα.

Therefore, the number of levels is O(lg(n/(βα))) and the number of edges in each

subgraph considered at level i is at most α(n/2i − 1) by the definition of arboricity.

Note that at any given level, reorientation only happens at the end of each full

phase defined for a subgraph at that level, when we recompute an α-orientation

and use it to orient the subgraph. We also observe that each operation in U may

be considered at most once at each level of partition. As the number of levels is

O(lg(n/(βα))), it suffices to prove that, when amortizing the number of reorientations

at the end of each full phase at any level over the operations in that phase, the

number of reorientations charged to each operation in this phase is at most 1/β. To

see that this is true, let t denote the number of vertices in a subgraph considered at an

arbitrary level. By our algorithm, the update sequence considered for this subgraph

is divided into phases containing βαt operations each, except the last phase, which

may contain fewer. Edge reorientations take place at the end of each full phase that

contains exactly βαt operations. As the total number of edges in the subgraph is

at most α(t − 1), the number of edge reorientations at the end of each such phase

is thus at most α(t − 1). When amortizing these edge reorientations over the βαt

operations in the phase, each update is charged for at most α(t − 1)/(βαt) < 1/β

edge reorientations. Since each operation in U is considered at most once at each

level as mentioned above, each level is charged for at most |U |
β

edge reorientations

in total. Thus, with O(lg(n/(βα))) levels, the total number of edge reorientations is

O(|U |
β

· lg(n/(βα))).

Combining Lemmas 2 and 3, we have:

Lemma 4 Given an arboricity-α-preserving sequence of edge insertions and deletions

on an initially empty graph with n vertices and an arbitrary parameter β ≥ 1, there

exists a sequence of (4βα + α)-orientations such that the amortized number of edge

19

reorientation for each edge insertion or deletion is O(lg(n/(βα))
β

).

Combining Lemma 4 with Lemma 1, we have our first main result:

Theorem 1 There exists an online algorithm for maintaining a Δ-orientation of an

initially empty graph on n vertices under arboricity-α-preserving updates that uses

O(n+m) space and supports edge insertions in O(lg(n/(βα))
β

· Δ
Δ+1−2δ

) amortized time

and edge deletions in O(Δ) worst-case time, provided δ = (4β+1)α, for an arbitrary

parameter β ≥ 1, and Δ ≥ 2δ. Edge deletions do not incur any edge reorientations.

Proof. As the graph is initially empty, the number, k, of insertions is greater than

or equal to the number, k′, of deletions in U . Thus, Lemma 4 shows that the total

number of edge reorientations is O((k+k′) lg(n/(βα))
β

) = O(k · (lg(n/(βα))
β

)). The theorem

now follows from Lemma 1 by defining r = O(lg(n/(βα))
β

).

The tradeoffs summarized in Section 1.2 are obtained by setting Δ = 3δ in Theo-

rem 1. By setting Δ = 3δ, we get Δ
Δ+1−2δ

= 3δ
δ+1

≤ 3 and O(lg(n/(βα))
β

) amortized edge

insertion time.

2.3 Applications

2.3.1 Maintaining Maximal Matchings

Neiman and Solomon [41] proposed an amortized algorithm to maintain maximal

matchings by making use of Brodal and Fagerberg’s solution [5] for edge orientation.

Their reduction shows that if a Δ-orientation for a graph G on n vertices under

arboricity-α-preserving updates can be maintained in O(m+n) space with amortized

update time t, where m denotes the current number of edges, then a maximal match-

ing can also be maintained in O(m+ n) space with O(Δ+ t) amortized update time.

Thus, the following result follows from Theorem 1:

20

Theorem 2 There exists an online algorithm for maintaining a maximal matching

of a graph on n vertices under arboricity-α-preserving updates that uses O(n + m)

space and supports updates in T = O(α +
√
α lg n) amortized time.

Proof. We first observe that combining Theorem 1 with parameter Δ = 3δ with

Neiman and Solomon’s reduction mentioned in Section 1.1.3, a maximal matching

can be maintained in O(βα + lg(n/(βα))
β

) amortized update time and using O(n +m)

space. When α ≥ lg n, we set β = 1 and the update time becomes O(α). Otherwise,

we set set β =
√

lgn
α
, and the update time becomes O(

√
α lg n). This completes this

proof.

2.3.2 Coordinate Queries

Using Theorem 1 in Kopelowitz et al.’s reduction for the coordinate query problem [29]

mentioned in Chapter 1, we have the following theorem:

Theorem 3 Let A be an n×n symmetric matrix and −→x be an n-dimensional vector.

Consider a sequence of requests, consisting of nq coordinate queries, nx updates to the

elements of −→x , nd updates to the entries in A from non-zero values to zero, ni updates

to the entries in A from zero to non-zero values, and no updates to the entries in A

from non-zero values to different non-zero values. All these requests can be processed

in O(
√
ni(nx + nq + nd)α lg n + no) time in total when nx + nq + nd < ni

lgn
α

or in

O(ni lg n+ (nx + nq + nd)α+ no) time in total when nx + nq + nd ≥ ni
lgn
α
, where α is

the maximum arboricity of the graph G whose adjacency matrix is A, provided that

ni, nx, nq, nd and no are known in advance.

Proof. By Theorem 1 and Kopelowitz et al.’s reduction, the total time to process the

request sequence is T = O(ni · lg(n/(βα))
β

+ (nx + nq + nd) · (βα) + no) = O(ni · lgn
β

+

(nx + nq + nd) · (βα) + no). If nx + nq + nd < ni
lgn
α
, then

√
ni lgn

(nx+nq+nd)α
> 1. By

choosing β =
√

ni lgn
(nx+nq+nd)α

≥ 1, we get T = O(
√

ni(nx + nq + nd)α lg n + no). If

21

nx+nq +nd ≥ ni
lgn
α
, we get T = O(ni lg n+(nx+nq +nd)α+no) by choosing β = 1.

This completes the proof.

It is obvious that Theorem 3 provides a more efficient solution when nx + nq +

nd < ni
lgn
α

compared to the previous results described in section 1.1.5, provided that

ni, nx, nq, nd and no are known in advance.

Chapter 3

Dynamic Edge Orientation with Worst-Case Update Ti-

me

In this chapter, we present a new solution to maintaining edge orientations under

edge insertions and deletions with worst-case time bounds. In Section 3.1, we first

discuss a data structure introduced by Kopelowitz et al. [29], which is also used in

our solution. Then we present our new graph orientation algorithm in Section 3.2

and some of its applications in Section 3.3. In the rest of this thesis, do(u) denotes

the out-degree of vertex u unless stated otherwise.

3.1 Preliminaries

Kopelowitz et al. [29] defined the following data structure problem to help them

maintain a number of invariants in their work, and we will also make use of this data

structure in our solution: Let X be a dynamic set, where each element xi ∈ X is

associated with a nonnegative integer key ki. The element x0 is designated as the

center element of X, which cannot be inserted or deleted, but the value of its key can

be updated. The goal is to support the following operations:

• ReportMax(X): return a pointer to an element in X with the maximum key;

• Increment(X, x): Increment the key of an element x ∈ X \ {x0} by 1, given a

pointer to x;

• Decrement(X, x): Decrement the key of an element x ∈ X \ {x0} by 1, given a

pointer to x;

22

23

• Insert(X, x, k): Insert a new element x with key k into X, provided k ≤ k0+1;

• Delete(X, x): Delete an element x ∈ X \ {x0} from X, given a pointer to x;

• IncrementCenter(X): Increment k0 by 1;

• DecrementCenter(X): Decrement k0 by 1.

The following lemma summarizes the solution to this problem presented by Kop-

elowitz et al. [29].

Lemma 5 ([29]) Let X be a dynamic set in which each element xi is associated

with a key ki and a fixed element x0 is designated to be X’s center. Then X can

be maintained in O(|X| + k0) space to support ReportMax, Increment, Decrement,

Insert and Delete in O(1) time, and IncrementCenter and DecrementCenter in

O(k0) time.

3.2 Maintaining Edge Orientations

3.2.1 A New Invariant

Our solution with worst-case time bounds maintains the following invariant over the

entire graph G during updates:

Invariant 1 For each vertex u, there exists an ordering of its out-neighbours, v0, v1, v2,

. . . , vdo(u)−1, such that do(vi) ≥ i for all i = 0, 1, . . . , do(u)− 1.

There are connections between this invariant and the two invariants considered

by Kopelowitz et al. [29], but they are different invariants. Their invariants require

each vertex u has at least min{do(u), βα} out-neighbours have out-degree at least

do(u) − 1, for any chosen β > 1. Our invariant provides a weaker bound on the

maximum out-degree of the vertices in the graph. The following two lemmas show

why Invariant 1 can be used to bound the maximum vertex out-degree.

24

Lemma 6 If the maximum out-degree, Δ, of a vertex in a directed graph G of ar-

boricity α satisfying Invariant 1 is greater than 4α, then there are 2kα vertices whose

out-degrees are at least Δ− 2kα ≥ 2α, for k = 1, 2, . . . , �Δ/(2α)� − 1.

Proof. Let u be a vertex with out-degree Δ in G. We prove our claim by induc-

tion on k. In the base case, k = 1. Let v0, v1, v2, . . . , vΔ−1 be u’s out-neighbours

listed in the order specified in Invariant 1. Then do(vΔ−1) ≥ Δ − 1, do(vΔ−2) ≥
Δ − 2, . . . , do(vΔ−2α) ≥ Δ − 2α by Invariant 1, which means u has at least 2α out-

neighbours with out-degrees greater than or equal to Δ− 2α.

Now assume the claim holds for k − 1. We prove it for k. By the inductive

hypothesis, there is a set, V1, of 2
k−1α vertices with out-degrees at least Δ−2(k−1)α.

By Invariant 1, each vertex in V1 has 2α out-neighbours whose out-degrees are at least

Δ − 2(k − 1)α − 2α = Δ − 2kα. We add these out-neighbours of each vertex in V1

to another set V2. Note that some vertices in V1 may share out-neighbors. Since any

vertex in V1∪V2 has out-degree at least Δ−2kα, it remains to give a lower bound on

|V1 ∪ V2|. Consider the subgraph G∗ induced by V1 ∪ V2. For each vertex in V1, there

are 2α distinct edges between it and its out-neighbours in V2. Thus, the number of

edges in G∗ is at least 2α|V1| = 2kα2. As G has arboricity α and G∗ is a subgraph of

G, we have α ≥ |E(G∗)|
|V (G∗)|−1

≥ 2kα2

|V1∪V2|−1
. Therefore, |V1 ∪ V2| ≥ 2kα and the claim holds

also for k.

Lemma 7 If a directed graph G satisfies Invariant 1, then the out-degree of any

vertex in G is at most 2α lg(n/α) + 2α.

Proof. Let Δ denote the maximum out-degree of the nodes in G. If Δ ≤ 4α, the

lemma holds because, in an undirected graph, we always have α ≤ n/2 and thus

2α lg(n/α) + 2α ≥ 4α. Otherwise, by Lemma 6, the number of vertices whose out-

degrees are at least 2α is at least 2�Δ/(2α)�−1α. This implies that, the total number of

edges of G is at least 2�Δ/(2α)�−1α · 2α = 2�Δ/(2α)�α2. Since the arboricity of G is α,

25

we have (2�Δ/(2α)�α2)/(n − 1) ≤ α and thus (2(Δ/(2α))−1α2)/(n − 1) < α. Solving for

Δ in this inequality yields Δ < 2α lg n−1
α

+ 2α. This completes the proof.

3.2.2 Auxiliary Data Structures

To maintain Invariant 1, we borrow ideas from [29] but our algorithms for edge

insertion and deletion turn out to be simpler. As in [29], for each vertex u, we

construct a data structure Bu to maintain information for its in-neighbours, which is

further used to decide which edges should be reoriented. More precisely, for vertex u,

we construct a dynamic set Bu whose center element is u itself, with do(u) as its key.

Bu \ {u} then contains as elements all the in-neighbours of u, and the key for each

such element is the out-degree of this in-neighbour. We represent Bu using Lemma 5.

All these auxiliary data structures use O(m+n) space in total, where m is the current

number of edges in G.

We also construct the adjacency lists for G with edge orientations, by maintaining

the outgoing edges of each vertex in a doubly linked list. This also requires O(m+n)

space. We store a pointer to u’s representation in Bv with edge (u, v) and vice a versa.

With this, when our algorithm for edge deletion uses ReportMax to find an edge for

reorientation, we can update adjacency lists in constant time. Such a construction is

also required to make the approach in [29] work, but it was not mentioned explicitly.

As it is trivial to maintain the adjacency lists with these pointers and the maintainence

cost is subsumed by our final time bounds, we do not explicitly discuss how to update

these lists in the rest of this section.

3.2.3 Handling Edge Insertions

To insert an edge (u, v), we orient it from u to v if do(u) ≤ do(v). Otherwise, it is

oriented from v to u. We then update the auxiliary data structures associated with

the vertex that is the tail of the newly inserted edge, as well as its out-neighbors.

26

Algorithm 1 Insert(G, (u, v))

1: {Assume without loss of generality that do(u) ≤ do(v)}
2: Orient edge (u, v) from u to v
3: IncrementCenter(Bu)
4: Insert(Bv, u, do(u))
5: for each out-neighbour, y, of u such that y �= v do
6: Increment(By, u)
7: end for

Algorithm 1 presents the pseudo code.

To see that our algorithm for edge insertion maintains Invariant 1, assume without

loss of generality that the newly inserted edge is oriented from u to v by our algorithm.

Let Gi−1 and Gi denote the graphs before and after this edge insertion, respectively,

and let do(x, j) denote the out-degree of vertex x in graph Gj. Assume inductively

that the invariant is maintained in Gi−1 (the base case is a graph with no edges, so

the invariant holds trivially). Orienting the edge from u to v can only violate the

invariant of u and in-neighbours of u since other vertices and their out-neighbours’

out-degrees are not changed. The increase of the out-degree of an out-neighbour of a

vertex will not violate the invariant of the vertex, so the invariant is still maintained

for the in-neighbours of u. To argue that the invariant is also maintained for u, let

u0, u1, . . . , udo(u,i−1) be the out-neighbours of u in Gi−1 listed in the order specified in

the invariant. After insertion, v also became an out-neighbour of u, and we consider

the list u0, u1, . . . , udo(u,i−1), v, which contains all the out-neighbours of u in Gi. By

our algorithm, we have do(u, i) = do(u, i − 1) + 1 and do(v, i) = do(v, i − 1). As

do(v, i − 1) ≥ do(u, i − 1), we have do(v, i) ≥ do(u, i) − 1. Furthermore, the out-

degrees of all other out-neighbours of u remain unchanged after insertion. Thus, the

invariant is maintained in Gi. It is easy to see that all the auxiliary data structures

are updated correctly after we orient u to v.

To see the time complexity of Algorithm 1, we analyze it step by step. Line 2

takes O(1) time with the auxiliary data structures described in Section 3.2.2. Line

27

3 takes O(do(u)) time, by Lemma 5, since we use do(u) as the key of the center

element of Bu. Line 4 takes O(1) time, by Lemma 5. Each iteration of the for loop

in line 5 takes O(1) time since line 6 takes O(1) time by Lemma 5. In addition, the

number of iterations of the for loop is bounded by do(u). Therefore, lines 3 and 5–7

take O(do(u)) time. do(u) is bounded by Δ, by Lemma 7 and because the algorithm

maintains Invariant 1. Thus, in total, Algorithm 1 takes O(Δ) time.

By the above analysis, we have the following lemma:

Lemma 8 If a directed n-vertex graph G of arboricity α satisfies Invariant 1, then

Algorithm 1 can handle an edge insertion into G in O(2α lg(n/α) + 2α) worst-case

time. The graph G satisfies Invariant 1 after the insertion.

3.2.4 Handling Edge Deletions

Algorithm 2 presents the pseudocode of edge deletion. We first remove the edge to be

deleted in lines 2–3. After the edge deletion, the out-degree of u is decreased by 1 and

the out-degrees of all out-neighbours of u remain unchanged, so the invariant is hold

for u. The only vertices for which Invariant 1 may not hold have to be in-neighbours

of u. To find out whether the invariant is still maintained for all the in-neighbours

of u, we locate the in-neighbour, x, with the largest out-degree in line 4. If the test

in the while statement at line 5 is false, then any in-neighbour’s out-degree is at most

one greater than do(u) since x is the in-neighbour with the maximum out-degree. In

this case, the invariant still holds for any in-neighbour of u. If the result of the test

condition in the while statement is true, then it is possible (though not necessary)

that the invariant is not maintained for x and some other in-neighbours of u. To

maintain the invariants for these vertices, we reverse the direction of the edge (x, u)

in line 6, and update auxiliary data structures accordingly in lines 7–8. After this, the

out-degree of u becomes the same as its original out-degree before this edge deletion

28

Algorithm 2 Deletion: Delete(G,(u, v))

1: {Assume without loss of generality that the edge (u, v) is oriented towards v}
2: Remove edge (u, v)
3: Delete(Bv, u)
4: x ← ReportMax(Bu)
5: while do(u) < do(x)− 1 do
6: Flip the orientation of edge (x, u) so that it is oriented from u to x
7: Delete(Bu, x)
8: Insert(Bx, u, do(u))
9: u ← x
10: x ← ReportMax(Bu)
11: end while
12: DecrementCenter(Bu)
13: for each out-neighbour, x, of u do
14: Decrement(Bx, u)
15: end for

is performed, and thus the invariant cannot be violated for any of its in-neighbours

whose out-degree did not change. The invariant also holds for vertex u since the only

new out-neighbour, x, of u has out-degree at least equal to do(u) after reorientation

and the other out-neighbours of u are not changed. The only in-neighbour whose

out-degree has been changed is x, and it is easy to see that the invariant is also

maintained for x as a result of the above steps: x lost one out-neighbour but its

out-degree was also decreased by 1. Now the only vertices for which Invariant 1 may

not hold have to be in-neighbours of x. For x, we then repeat the same process that

we applied to u. It is clear that if the while loops eventually terminates, then after

the while loop in lines 5–11, the invariant is maintained, and lines 12–15 make sure

that all the auxiliary structures are up-to-date.

We have the following lemma showing that this while loop always terminates,

which further implies the correctness of our edge deletion algorithm:

Lemma 9 When performing an edge deletion on a Δ-orientation of G, the while loop

in Algorithms 2 iterates at most Δ+ 1 times.

29

Proof. By line 5 of Algorithm 2, at the end of each iteration of the while loop, u is

set to be a vertex whose out-degree is strictly larger than the original out-degree of

u before this edge deletion operation is performed. As the out-degree of a vertex is

in the interval [0,Δ], this loop is iterated at most Δ + 1 times.

The time complexity of Algorithm 2 is dominated by the cost of the while loop

in lines 5–11 and the for loop in lines 13–15, as well as the time required by the

DecrementCenter operation in line 12. Each iteration of each of the while loops

takes constant time, so the two while loops take O(Δ) time by Lemma 9. In addition,

line 12 takes at most Δ time by Lemma 5. Thus, the algorithm takes O(Δ) time.

By Algorithm 2, Lemma 9 and the above analysis, we have Lemma 10.

Lemma 10 If a directed n-vertex graph G of arboricity α satisfies Invariant 1, then

Algorithm 2 can handle an edge deletion in G in O(Δ) worst-case time, where Δ <

2α lg(n/α) + 2α. The graph G satisfies Invariant 1 after the deletion.

3.2.5 Bounding Δ by
√
2m

We now further bound the maximum vertex out-degree, Δ, in an arbitrary directed

graph that satisfies Invariant 1 by a function of the number of edges in the graph.

Lemma 11 If a directed graph G satisfies Invariant 1, then the out-degree of any

vertex in G is at most
√
2m, where m is the number of edges in G.

Proof. We give a proof by contradiction. Assume to the contrary that there is a vertex

u with out-degree do(u) >
√
2m in a graph G that satisfies Invariant 1. Then vertex u

must have out-neighbours v0, v1, . . . , v√2m, such that do(vi) ≥ i, for i = 0, 1, . . . ,
√
2m.

The outgoing edges of all vi’s and u are distinct. Therefore, the total number of edges

in the graph is at least 1+2+ . . .+
√
2m+(

√
2m+1) = 1

2
(
√
2m+1)(

√
2m+2) > m,

which contradicts the fact that G has m edges.

30

Combining Lemmas 7, 8, 10, and 11, we have the following theorem:

Theorem 4 A Δ-orientation of a graph on n vertices can be maintained in O(n+m)

space so that an edge insertion or deletion can be performed in O(Δ) worst-case time,

where Δ ≤ min(2α lg(n/α) + 2α,
√
2m), α is the arboricity of the graph at the time

of the update, and m is the number of edges of the graph at the time of the update.

Furthermore, an edge insertion does not incur edge reorientation, while a deletion

incurs at most Δ+ 1 reorientations.

3.3 Applications

3.3.1 A New Algorithm to Maintain Dynamic Maximal Matching with

Worst-Case Time Bounds

As in Kopelowitz et al. [29], we design our solutions to maintaining a maximal match-

ing with worst-case time bounds by applying our result on maintaining edge orien-

tation, again with worst-case bounds, to the approach of Neiman and Solomon [41].

The other data structures used in [41] can also be replaced by data structures with

constant worst-case time bounds1.

Theorem 4 can then be applied to achieve new results on maximal matchings:

Theorem 5 A maximal matching of a graph on n vertices can be maintained in

O(min(α lg(n/α),
√
m)) worst-case update time using O(n+m) space, where α is the

arboricity of the graph at the time of the update, and m is the number of edges of the

graph at the time of the update.

1These details are not included in [29], but the reason why they are omitted is that it is sim-
ple to come up with these date structures, as confirmed in personal communication with Tsvi
Kopelowitz [28].

31

3.3.2 Adjacency Query Data Structure with Worst-case Time Bounds

Kowalik [30] showed that in a solution that maintains a Δ-orientation of a graph of

arboricity α for any Δ = O(α polylog(n)), if we maintain the set of outgoing edges

of each vertex using the dynamic dictionary of Andersson and Thorup [3], adjacency

queries can be supported in O(lg lgΔ) time, provided that α = O(polylog(n)). The

time of each edge insertion or deletion is then the sum of the time required to perform

this operation to maintain a Δ-orientation and O(t lg lgΔ), where t is the number of

update performed to these dictionaries. Using Theorem 4 in this reduction, we have

the following theorem:

Theorem 6 A graph with n vertices and m edges can be represented in O(m + n)

space to support adjacency queries in O(lg lgΔ) worst-case time, edge insertion in

O(Δ) worst-case time, and edge deletion in O(Δ lg lgΔ) worst-case time, where Δ =

O(min(α lg(n/α),
√
m)) and α is the arboricity of the graph at the time of the update,

provided α = O(polylog(n)).

Proof. To maintain the dictionaries mentioned in above reduction during updates, it

suffices to perform at most two update operations to them each time we insert, delete

or reorient an edge. Thus, if we apply our solution from Theorem 4, we update these

dictionaries O(1) and O(Δ) times when we perform an edge insertion or deletion,

respectively. Therefore, the time for an edge insertion is O(Δ + lg lgΔ) = O(Δ),

while an edge deletion takes O(Δ lg lgΔ) time.

3.3.3 Coordinate Queries

Using Theorem 4 in Kopelowitz et al.’s reduction for the coordinate query problem [29]

mentioned in Chapter 1, we have the following corollary:

32

Corollary 1 Let A denote an n×n symmetric matrix and −→x denote an n-dimensional

vector. A and −→x can be maintained in O(m+ n) space to answer coordinate queries

in O(Δ) worst-case time, where Δ ≤ min(2α lg(n/α) + 2α,
√
2m), α is the arboricity

of the graph G whose adjacency matrix is A, and m is the number of the edges in G.

Furthermore, an update to an entry in A from a non-zero value to zero, an update to

an entry in A from zero to a non-zero value, and an update to an element of −→x can be

performed in O(Δ) worst-case time, and an update to an entry in A from a non-zero

value to a different non-zero value can be performed in O(1) worst-case time.

Comparing our solution to Kopelowitz et al.’s solution [29] to the coordinate query

problem, our solution provides more efficient support for the updates to the entries

in A from zero to non-zero values when α = ω(lg n).

Chapter 4

Maintaining Graph Orientations without Edge Reorientation

We have designed algorithms to orient dynamic graphs with amortized and worst-

case time bounds in previous chapters. Edge reorientation is commonly used in these

algorithms to bound the maximum out-degree, Δ, in a dynamic setting. A tight bound

on the number of reorientations to maintain a Δ-orientation is still not known. Brodal

and Fagerberg showed that their algorithm achieves a number of edge reorientations

that is within a constant factor of the optimal bound, but they did not prove a tight

bound on the optimal number of edge reorientations.

In this chapter we consider a related problem. We are interested in finding lower

and upper bounds on Δ for an algorithm that does not perform any edge reorien-

tations. In Section 4.1, we introduce a simple online algorithm to handle updates

without reorientation. In Section 4.2, we prove lower bounds on Δ for different up-

date sequences when this algorithm is used to maintain an orientation. In Section 4.3,

we prove upper bounds on Δ for the same algorithm. We require all update sequences

to be arboricity-α-preserving.

4.1 Orienting Dynamic Graphs Online without Edge Reorientations

The algorithm we analyze in this chapter is the following: To insert an edge (u, v),

we orient it from u to v if do(u) ≤ do(v). Otherwise, it is oriented from v to u. To

delete an edge (u, v), we simply search for the edge and delete it. Let Awre denote

this algorithm.

33

34

4.2 Lower Bounds

Let (u, v)iG denote the insertion of an edge oriented from u to v into G. Let (u, v)dG

denote the deletion of an edge oriented from u to v from G. We use these in the

description of some update sequences to be defined later.

4.2.1 Insertion-Only Update Sequences

We first analyze algorithm Awre by considering update sequences that contain only

insertions. Note that an arboricity-α-preserving insertion sequence has at most α(n−
1) operations because the final graph must have arboricity at most α and thus at most

α(n− 1) edges.

Lemma 12 Consider an initially empty n-vertex graph G. There exists an arboricity-

α-preserving insertion sequence that forces at least one vertex of G to have out-degree

Ω(lg n) if insertions are handled by algorithm Awre.

Proof. It suffices to prove the lemma for α = 1, as this implies the correctness of the

lemma for larger values of α. Specifically, we prove that every graph G with n ≥ 1

vertices and no edges admits a sequence of no more than n − 1 edge insertions that

forces at least one vertex of G to have out-degree at least �lg n� and transforms G

into a forest.

The proof is by induction on n. For n = 1, the claim is trivial because the only

vertex in a 1-vertex graph has out-degree 0 = lg 1 without the need to perform any

insertions. So assume n > 1 and the claim holds for all n′ < n.

If n is not a power of 2, then �lg n� = �lg(n − 1)�. By the inductive hypothesis,

there exists an insertion sequence of no more than n−2 edge insertions on an (n−1)-

vertex graph that forces at least one vertex to have out-degree at least �lg(n− 1)� =
�lg n� and transforms G into a forest. The same process can be applied to an n-vertex

graph by simply not using one of the vertices in the construction.

35

v1

v2

v3

v4 v4 v2 v6 v8

v3 v1 v5 v7

(a) d = 2

v1 vj

(b) d = 3

(c) General d

. . .
d− 1d− 1

Figure 4.1: Inductive definition of S(G, d)

If n is a power of 2, we divide the vertex set of G into two disjoint subsets V ′ and

V ′′ of size n/2 each. By the inductive hypothesis, there exists an insertion sequence

of length at most n/2− 1 over V ′ that creates a forest with vertex set V ′ and forces

at least one vertex in V ′ to have out-degree at least lg(n/2) = lg n − 1. Let v′ ∈ V ′

be such a vertex. Analogously, there exists an insertion sequence of length at most

n/2 − 1 over V ′′ that creates a forest with vertex set V ′′ and forces at least one

vertex in V ′′ to have out-degree at least lg n − 1. Let v′′ ∈ V ′′ be such a vertex. By

concatenating these two update sequences and then adding an edge between v′ and

v′′, we obtain an update sequence of length at most 2(n/2 − 1) + 1 = n − 1 that

creates a forest with the same vertex set of G. Moreover, no matter how we orient

the edge between v′ and v′′, either v′ or v′′ has degree at least lg n after this insertion.

Thus, the claim holds also for n. Figure 4.1 illustrates the process of performing an

update sequence S(G, d) defined by above inductive proof to force one vertex of G to

have out-degree d. The dashed lines correspond the edges added between v′ and v′′

at each inductive step.

36

4.2.2 Update Sequences of Length at Most α(n − 1)

We next consider update sequences of length at most α(n−1), where n is the number

of vertices in the graph, for two reasons. First, an insertion-only update sequence is a

special update sequence of length at most α(n− 1) without deletions. By Lemma 15,

which is presented later, the maximum out-degree, Δ, is bounded by O(α log n) in

this special case. It is interesting to know how deletions impact the largest possible

value of Δ. Second, a (2α−1)-orientation of a graph can be computed in O(α(n−1))

time [4], so if we recompute a (2α−1)-orientation after α(n−1) updates, the overhead

of rebuilding is only O(1) amortized time. This can be combined with algorithm Awre

to handle each update using O(1) edge reorientations amortized.

Lemma 13 Consider an initially empty n-vertex graph G. For any α ≥ 3, there

exists an arboricity-α-preserving update sequence of length at most α(n − 1) that

forces at least one vertex of G to have out-degree Ω(min{ 3
√
α(n− 1),

√
n}) if updates

are handled by algorithm Awre.

Proof. It suffices to prove the lemma by giving an arboricity-3-preserving update

sequence of length no greater than α(n − 1) that produces a vertex of out-degree

Ω(min{ 3
√

α(n− 1),
√
n}).

We inductively define an update sequence S(G, d), for any positive integer d, such

that after the operations in S(G, d) are performed, there are d+ 1 vertices in G with

out-degrees are 0, 1, . . . , d−1, d, provided that n is sufficiently large. Let V denote the

vertices of G and VS(G,d) denote the vertices updated by the operations in S(G, d).

Let GS(G,d) denote the subgraph of G defined by vertices in VS(G,d) and the edges

between them after the operations in S(G, d) are performed.

In the base case, d = 1, and S(G, 1) contains a single edge insertion between

two arbitrary vertices, x and y. Then (x, y)iG increases x’s out-degree to 1. There-

fore, there are vertices, x and y, with out-degrees 1 and 0 in G, respectively, after

37

performing S(G, 1).

Assume that we already know how to construct S(G, d − 1) and we want to

construct S(G, d). We define S(G, d) by performing a sequence, Ud, of extra up-

dates, on G after performing S(G, d − 1). Let u0, u1, . . . , ud−1 denote the vertices

whose out-degrees become 0, 1, . . . , d − 1, respectively, after performing S(G, d − 1).

We define Ud to be the concatenation of d subsequences. The k’th subsequence

is denoted by sq(Ud, k), where 0 ≤ k ≤ d − 1. Let v be an arbitrary vertex in

V \ VS(G,d−1). The first d − 1 subsequences of Ud is are used to increase v’s out-

degree to d − 1. The last subsequence increases ud−1’s out-degree to d. Each of the

first d − 2 subsequences of Ud is further composed of three subsequences. To define

sq(Ud, k), for 0 ≤ k ≤ d − 3, let vk be an arbitrary vertex that is not v and has not

been updated by any operations before sq(Ud, k). The first subsequence of sq(Ud, k)

contains k edge insertions between vk and the vertices u0, u1, . . . , uk−1, i.e., inser-

tions {(vk, u0)
iG , (vk, u1)

iG , . . . , (vk, uk−1)
iG}. Each of these edge insertions inserts an

edge between vk and another vertex, up, whose out-degree is equal to do(vk), for

p = 0, 1, . . . , k − 1. Therefore, by calling Insert(G, (vk, up)), the newly inserted edge

is always oriented from vk to up. Hence, performing this subsequence will increase

vk’s out-degree to k. The second subsequence of sq(Ud, k) is a single edge insertion

(v, vk)
iG to increase v’s out-degree by one. This edge is oriented from v to vk because

v’s out-degree is k−1 at the time of the insertion while vk’s out-degree is k. The third

subsequence of sq(Ud, k) contains deletions of the edges inserted in the first subse-

quence of sq(Ud, k), i.e., deletions {(vk, u0)
dG , (vk, u1)

dG , . . . , (vk, uk−1)
dG}. Note that

v’s out-degree is d − 2 after performing the first d − 2 subsequences of Ud. The sec-

ond last subsequence, sq(Ud, d− 2), of Ud contains a single edge insertion (v, ud−2)
iG ,

which increases v’s out-degree to d − 1. The last subsequence, sq(Ud, d − 1), of Ud

contains a single edge insertion (ud−1, v)
iG , which increases ud−1’s out-degree to d.

38

ud−1

u0 u1 u2 u3 vud−2

vkv0 vd−3

uk−1. . .

. . .

. . .

.

Figure 4.2: The graph GS(G,d)

Performing Ud increases the out-degree of ud−1 from d−1 to d, and increases the out-

degree of v from 0 to d− 1. The out-degrees of u0, u1, . . . , ud−2 remain 0, 1, . . . , d− 2,

respectively. Therefore, there are d+1 vertices with out-degrees 0, 1, . . . , d after per-

forming S(G, d − 1) ◦ Ud, where ◦ denotes sequence concatenation. Thus, we have

S(G, d) = S(G, d − 1) ◦ Ud. Figure 4.2 illustrates the above process. The dashed

lines correspond to outgoing edges of vk that are inserted and later deleted as part of

sq(Ud, k).

We claim that S(G, d) is an arboricity-3-preserving update sequence by showing

that G can always be decomposed into three forests. To see this, we first prove by

induction that GS(G,d) can be decomposed into two forests for any positive integer d.

In particular, we prove that GS(G,d) consists entirely of the following vertices and

edges:

• A vertex, z, with out-degree d.

• The d out-neighbours of z, denoted by y0, y1, . . . , yd−1, form a path. More

39

precisely, there is exactly one edge from yj to yj−1, for j = 1, 2, . . . , d− 1.

• Each yi has exactly i out-neighbours. One out-neighbour is yi−1, and all the

other out-neighbours have out-degree 0.

This implies that GS(G,d) can be decomposed into two forests since the edges between

vertices y0, y1, . . . , yd−1 form a forest and the remaining edges form the other.

We now prove the above claim regarding GS(G,d). In the base case, d = 1. The

graph GS(G,1) has two vertices connected by a single edge and the graph G \ GS(G,1)

has no edges. Thus, the claim holds trivially. Next assume that this claim holds for

GS(G,d−1). We prove it for GS(G,d). Let u0, u1, . . . , ud−1 denote the vertices whose out-

degrees in GS(G,d) are 0, 1, . . . , d − 1, respectively, and such that the out-neighbours

of ud−1 are u0, u1, . . . , ud−2 (here we use the same vertex names as used in the con-

struction of S(G, d)). Figure 4.2 illustrates this inductive hypothesis. Then, by the

induction hypothesis, there is an edge from ui to ui−1, for i = 1, 2, . . . , d−2. Each ui,

where 0 ≤ i ≤ d− 2, has exactly i out-neighbours, which are ui−1 and i− 1 vertices

with out-degree 0 in G \ {u0, u1, . . . , ud−1}. Then, from the way we construct Ud, in

GS(G,d), v has an outgoing edge that connects to ud−2 and an incoming edge from

ud−1. The remaining outgoing edges of v connect to v0, v1, . . . , vd−3. Each vertex vk

has out-degree 0 after the delete operations in sq(Ud, k) are performed. Hence, ud−1

has out-degree d and its out-neighbours u0, u1, . . . , ud−1, v form a path in GS(G,d).

The out-neighbours of the vertices u0, u1, . . . , ud−2, v in G \ {u0, u1, . . . , ud−1, v} have

out-degree 0 in GS(G,d). The out-neighbour of v in {u0, u1, . . . , ud−1, v} is ud−1 in

GS(G,d). The out-neighbours of ui in {u0, u1, . . . , ud−1, v}, where 0 < i ≤ d− 2, is ui−1

in GS(G,d). Thus, the induction hypothesis holds also for GS(G,d).

Note that after an arbitrary operation in any subsequence Ud in GS(G,d) is per-

formed, the edges of G that are not in GS(G,d) are the edges that are inserted as the

outgoing edges of the same vertex, so they form a forest. These edges are the outgoing

40

edges of a vertex, vk, for a certain k ∈ [0, d − 3], inserted in the first subsequence of

sq(Ud, k) and later deleted in the third subsequence of sq(Ud, k). Therefore, graph G

can always be decomposed into three forests when performing Ud for any integer d.

Hence S(G, d) is an arboricity-3-preserving update sequence.

Now we bound |VS(G,d)| and |S(G, d)|. From the way in which we construct S(G, d),

we can see that each subsequence sq(Ud, k) of Ud except the last one updates a vertex

that has not been updated before, so Ud updates d − 1 new vertices and |VS(G,d)| =
|VS(G,d−1)| + d − 1. Recalling that |VS(G,1)| = 2 in the base case, we have |VS(G,d)| =
2 + 1 + 2 + 3 + . . .+ (d− 1) = 1

2
d(d− 1) + 2. In addition, for each of the first d− 2

subsequences of Ud, where d ≥ 2, the length of the first subsequence of sq(Ud, k)

is k. The second subsequence has one operation, and the third subsequence has

k operations. Therefore, |sq(Ud, k)| = 2k + 1 and the total length of the first d − 2

subsequences of Ud is
∑d−3

k=0(2k+1) = (d−2)2. Since each of the last two subsequences

of Ud contains a single edge insertion, |Ud| = (d−2)2+2. This shows that |S(G, d)| =
|S(G, d − 1)| + (d − 2)2 + 2 and thus |S(G, d)| = |S(G, 1)| + ∑d

r=2((r − 2)2 + 2) =

1
3
d3 − 3

2
d2 + 25

6
d − 2 since |S(G, 1)| = 1. Note that |VS(G,d)| < d2 and |S(G, d)| < d3

when n ≥ 3.

It remains to prove that the update sequence S(G, �min{ 3
√
α(n− 1),

√
n}�), which

produces a vertex of out-degree Ω(min{ 3
√
α(n− 1),

√
n}�)), does not run out of ver-

tices and has length no greater than α(n−1). Formally: |V
S(G,�min{ 3

√
α(n−1),

√
n}�)| ≤ n

and |S(G, �min{ 3
√

α(n− 1),
√
n}�)| ≤ α(n − 1). There are two cases. In the first

case,
√
n ≥ 3

√
α(n− 1) and the sequence is S(G, � 3

√
α(n− 1)�). From the conclu-

sion in the previous paragraph |V
S(G,� 3

√
α(n−1)�)| < (� 3

√
α(n− 1)�)2 ≤ (

√
n)2 = n

and |S(G, � 3
√

α(n− 1)�)| < (� 3
√

α(n− 1)�)3 ≤ α(n − 1). In the second case,
√
n <

3
√

α(n− 1) and the sequence is S(G, �√n�). Thus, |VS(G,�√n�)| < (�√n�)2 ≤ (
√
n)2 =

n and |S(G, �√n�)| < (�√n�)3 ≤ (
√
n)3 < (3

√
α(n− 1))3 = α(n− 1). This completes

the proof.

41

4.2.3 Arbitrary Update Sequences

We now consider arbitrary update sequences.

Lemma 14 Consider an initially empty n-vertex graph G whose edges are updated

using algorithm Awre. For any α ≥ 3, there exists an arboricity-α-preserving update

sequence that produces a vertex of out-degree Ω(
√
n).

Proof. It suffices to prove the lemma by giving an arboricity-3-preserving update

sequence that produces a vertex of out-degree Ω(
√
n).

We claim that the update sequence S(G, �√n�) defined in the proof of lemma 13

is such a sequence. To see this, it suffices to show that |VS(G,�√n�)| ≤ n, i.e., there are

enough vertices in G so that update sequence S(G, �√n�) can be performed. From

the proof of Lemma 13, |VS(G,�√n�)| < (�√n�)2 ≤ n. This completes the proof.

4.3 Upper Bounds

In this section, we prove upper bounds on Δ when algorithm Awre is used to handle

updates. Specifically, in Section 4.3.1, we prove an upper bound on Δ for insertion-

only update sequences; in Section 4.3.2, we prove an upper bound on Δ for update

sequences of length at most α(n− 1); and in Section 4.3.3, we prove an upper bound

on Δ for arbitrary update sequences.

4.3.1 Insertion-Only Update Sequences

Lemma 15 Consider an initially empty n-vertex graph G whose edges are updated

using algorithm Awre. There does not exist an arboricity-α-preserving insertion se-

quence that produces a vertex of out-degree greater than min(2α lg(n/α) + 2α,
√
2m),

where m is the the length of the update sequence.

42

Proof. By Lemmas 7 and 11, it suffices to prove that the orientation ofG always main-

tains Invariant 1 if algorithm Awre is used to handle the operations in an arboricity-

α-preserving insertion sequence.

Let
−→
G denote the orientation of G after an arbitrary update in an arboricity-α-

preserving insertion sequence and u denote an arbitrary vertex of
−→
G . Let d be the

out-degree of u. Let v0, v1, . . . , vd−1 be the out-neighbours of u sorted in the order in

which the edges (u, v0), (u, v1), . . . , (u, vd−1) are inserted. Then, do(u) = i immediately

before the edge (u, vi) is inserted. Thus, do(vi) ≥ i when inserting the edge (u, vi)

since the edge (u, vi) was oriented from u to vi by algorithm Awre. Moreover, when

the updates in an insertion-only update sequence are being performed, a vertex’s out-

degree never decreases. Therefore, u’s out-neighbours v0, v1, . . . , vd−1 have out-degree

do(v0) ≥ 0, do(v1) ≥ 1, . . . , do(vd−1) ≥ d − 1 in
−→
G , respectively. Hence,

−→
G maintains

Invariant 1 during the entire update sequence.

4.3.2 Update Sequences of Length at Most α(n − 1)

Lemma 16 Consider an initially empty n-vertex graph G whose edges are updated

using algorithm Awre. There does not exist an arboricity-α-preserving update se-

quence of length at most α(n − 1) that produces a vertex of out-degree greater than

O(
√

α(n− 1)).

Proof. Let
−→
G denote the orientation of G after an arbitrary update in an update

sequence of length at most α(n − 1). Let u be a vertex with the maximum out-

degree in
−→
G and let d be its out-degree. Let v0, v1, v2, . . . , vd−1 be the out-neighbours

of u sorted in the order in which the edges (u, v0), (u, v1), . . . , (u, vd−1) are inserted.

Then, do(u) = i immediately before the edge (u, vi) is inserted. Thus, do(vi) ≥
i when inserting the edge (u, vi) since the edge (u, vi) was oriented from u to vi

by algorithm Awre. In addition, all the outgoing edges of v0, v1, v2, . . . , vd−1, u are

43

distinct and the update sequence starts from the empty graph, so there are at least

0 + 1+ 2+ 3+ . . .+ d− 1 + d = 1
2
d(d+ 1) update operations in the update sequence

to insert these edges. Since the length of the update sequence is at most α(n − 1),

we have 1
2
d(d + 1) ≤ α(n − 1). Therefore, d = O(

√
α(n− 1)). This completes the

proof.

4.3.3 Arbitrary Update Sequences

Lemma 17 Consider an initially empty n-vertex graph G whose edges are updated

using algorithm Awre. There does not exist an arboricity-α-preserving update sequence

that produces a vertex of out-degree greater than O((αn)2/3).

Proof. Let U = 〈u1, u2, . . . , uk〉 be an arbitrary arboricity-α-preserving update se-

quence on an initially empty graph G0 with n vertices, and let Gi be the graph

produced by applying the update sequence 〈u1, u2, . . . , ui〉 to G0. The core of the

proof is to show that, if Gk has a vertex whose out-degree is d, then there exists a

graph Gi, i ≤ k, that has at least (2d−4)3/2

5
edges. Since U is arboricity-α-preserving,

Gi has arboricity at most α. Since Gi has n vertices and an n-vertex graph of ar-

boricity at most α has at most α(n− 1) edges, we must have (2d−4)3/2

5
≤ α(n− 1) and

thus d < (5α(n−1))2/3

2
+ 2 = O((αn)2/3).

Let x be a vertex with out-degree d in Gk. Since we will argue about out-degrees

in different graphs Gi, we use di(x) to denote the out-degree of vertex x in Gi. In

other words, dk(x) = d. Since deletions do not increase vertex degrees, we can assume

w.l.o.g. that the last update uk in U is an insertion and it is the one that increases

x’s out-degree from d − 1 to d, that is, dk−1(x) = d − 1. Let (x, y) be the out-edge

of x added by uk. Since dk−1(x) = d − 1 and the edge (x, y) is oriented from x to y

in Gk, we must have dk−1(y) ≥ d − 1. We now define i0 := k − 1, V0 := {x, y}, E0

to be the set of out-edges of x and y in Gk−1, and D0 := {dk−1(x), dk−1(y)}. D0 is a

44

multiset, that is, may contain the same value more than once. We use (i0, V0, E0, D0)

as the seed to generate a sequence of tuples S := 〈(ij, Vj, Ej, Dj)|j ≥ 0〉 such that, for

all j, Dj = {d′j(z)|z ∈ Vj}, where dij(z) ≥ d′j(z) for all z ∈ Vj, and Ej contains d
′
j(z)

out-edges for each vertex z ∈ Vj. In particular,
∑

j =
∑

d∈Dj
d is a lower bound on

the total number of out-edges of the vertices in Vj in Gij . For j = 0, these conditions

are clearly satisfied,
∑

0 ≥ 2(d − 1), and minD0 = d − 1. The last step of the proof

is to show that there exists an index j such that
∑

j ≥ (2d−4)3/2

5
.

Given a tuple (ij, Vj, Ej, Dj), if minDj = 0, we terminate the construction and

(ij, Vj, Ej, Dj) is the last tuple in S. If minDj > 0, we construct (ij+1, Vj+1, Ej+1, Dj+1)

as follows. We call this the (j + 1)st step in the construction of S. Since all edges in

Ej are edges of Gij , there exists a maximal index ij+1 < ij such that uij+1+1 inserts an

edge (x, y) ∈ Ej. By the choice of ij+1, all edges in Ej \{(x, y)} are edges of Gij+1
. We

define sets V ′
j+1 := Vj, E

′
j+1 := Ej \ {(x, y)}, and D′

j+1 := Dj \ {d′j(x)} ∪ {d′j(x)− 1}.
The tuple (ij+1, V

′
j+1, E

′
j+1, D

′
j+1) clearly satisfies the conditions stated above.

If y ∈ Vj, the we define (ij+1, Vj+1, Ej+1, Dj+1) := (ij+1, V
′
j+1, E

′
j+1, D

′
j+1) and call

the (j + 1)st step decreasing because
∑

j+1 =
∑

j −1.

If y /∈ Vj, we set Vj+1 := V ′
j+1 ∪ {y}, Ej+1 := E ′

j+1 ∪ Ej+1(y), where Ej+1(y) is

the set of out-edges of y in Gij+1
, and Dj+1 := D′

j+1 ∪ {dij+1
(y)}. In this case, we

call the (j + 1)st step increasing because
∑

j+1 =
∑

j +d′j(x) − 2, which is greater

than
∑

j unless d′j(x) ≤ 2. To prove this bound on
∑

j+1, it suffices to observe that

dij+1
(y) ≥ dij+1

(x) ≥ d′j(x)− 1 because the insertion of edge (x, y) into Gij+1
orients

the edge from x to y.

Note that, no matter whether the (j+1)st step is decreaseng or increasing, we have

minDj+1 ≥ minDj − 1 because in both cases we replace d′j(x) in Dj with d′j(x) − 1

in Dj+1 and, if the (j + 1)st step is increasing, we add dij+1
(y) ≥ d′j(x)− 1 to Dj+1.

Thus, the sequence S has at least minD0 = d− 1 steps.

It remains to prove that there exists a tuple (ij, Vj, Ej, Dj) ∈ S such that
∑

j ≥

45

(2d−4)3/2

5
. Let 0 < j1 < j2 < . . . be the sequence of indices of increasing steps in

the construction of S, and let δh =
∑

jh
−∑

jh−1 +1 for all h ≥ 1. Then, since
∑

j−1 −
∑

j = 1 for every decreasing step, we have
∑

jh
=

∑
0 +

∑h
l=1 δl − jh. Next

observe that Vj+1 ⊇ Vj for all j, that Vj+1 = Vj if the (j+1)st step is decreasing, and

that |Vj+1| = |Vj|+ 1 if the (j + 1)st step is increasing. Thus, since |V0| = 2, we have

|Vjh | = h+ 2. For each 0 ≤ j ≤ jh, the update uij+1 inserts an edge between vertices

in Vj ⊆ Vjh and this edge is not inserted by the update uij′+1 corresponding to any

other step j′ �= j. The former follows because we just observed that Vj ⊆ Vj+1 for all

j. The latter can be seen as follows: Since Vj ⊆ Vj+1 for all j, there exists exactly

one index j for any vertex x ∈ Vjh such that x /∈ Vj and x ∈ Vj+1. (This holds even

for the vertices in V0 after defining V−1 = ∅.) By the properties of the tuples in S,

Ej′ contains no out-edges of x, for any 0 ≤ j′ ≤ j. In the (j + 1)st step, we add all

out-edges of x in Gij+1
to Ej+1. For each subsequent step j′′ ≥ j + 1 such that uij′′+1

inserts an out-edge (x, y) of x, this edge belongs to Ej′′−1 but not to Ej′′ . Thus every

out-edge of x is inserted by at most one update operation uij′′+1 corresponding to a

step in S. The fact that each of the first jh steps can be charged to a unique (directed)

edge in a graph with |Vh| = h+ 2 vertices implies that jh ≤ (h+ 2)(h+ 1). Together

with the fact that
∑

0 ≥ 2(d− 1), we have
∑

jh
≥ 2(d− 1)− (h+2)(h+1)+

∑h
l=1 δl.

Since S contains at least d−1 steps and we have just argued that jh ≤ (h+2)(h+1),

S contains at least
√
d− 1− 1 increasing steps. For the lth increasing step, we have

δl ≥ d′jl(x) ≥ minDjl . Since jl ≥ (l + 2)(l + 1), minD0 = d − 1, and minDj+1 ≥
minDj − 1 for all j, we thus have δl ≥ minDjl ≥ d − 1 − (l + 2)(l + 1). Plugging

this into the inequality for
∑

jh
, we obtain that

∑
jh

≥ (3d−5)h+6d−h3−3h2

3
. Now, since

there are at least
√
d− 1− 1 increasing steps, we cam set h := 	√d− 1− 1
 in this

inequality. This gives
∑

jh
≥ (2d−4)

√
d−1+8

3
> (2d−4)

√
2d−2

5
> (2d−4)3/2

5
, as claimed. This

finishes the proof.

Chapter 5

Conclusion and Future Work

Graph orientation has been used to solve many fundamental graph problems, in-

cluding adjacency queries and maintaining maximal matchings. Motivated by these

applications, we studied this problem in three major directions in this thesis: design-

ing solutions with amortized time bounds, designing solutions with worst-case time

bounds, and proving lower and upper bounds on the maximum vertex out-degree with

an online algorithm that handles updates without requiring edge reorientation.

To design solutions with amortized time bounds, we proposed a new offline strat-

egy to prove that Brodal and Fagerberg’s online algorithm can maintain an O(βα)-

orientation in O(lg(n/(βα))
β

) amortized insertion time and O(βα) worst-case deletion

time under arboricity-α-preserving updates, where n is the number of vertices of the

graph, for any chosen β ≥ 1. This result shows a new tradeoff between update time

and the maximum vertex out-degree in the orientation. We apply it to maintain

maximal matchings of dynamic graphs, and our solution is currently the best for any

sparse graph whose arboricity is o(lg n). This is interesting as maximal matching is

a fundamental problem in graph theory.

To guarantee worst-case time bounds, we proposed a new algorithm to maintain

an O(Δ)-orientation with O(Δ) worst-case update time, where Δ ≤ min(2α lg(n/α)+

2α,
√
2m). This algorithm gives a different tradeoff between insertion and deletion

times when α = ω(lg n), compared to Kopelowitz and Krauthgamer’s algorithm which

requires O(α2 + α lg n) time for insertion and O(α + lg n) time for deletion, and our

insertion algorithm does not require edge reorientation. We apply it to maintain

46

47

maximal matchings of dynamic graphs with O(min(α lg(n/α),
√
m)) worst-case up-

date time using O(n +m) space. This result matches the previously best result for

arbitrary graphs, and its time complexity adapts to the arboricity of graphs. We also

apply it to get an adjacency query data structure with a lg lg lg n factor speed up for

insertion when the graph’s arboricity is upper bounded by O(1).

To prove lower and upper bounds on maximum vertex out-degree, we proved that

we can maintain an O((αn)2/3)-orientation by simply orienting a newly inserted edge

from the endpoint with lower out-degree to the endpoint with higher out-degree or

orienting the edge arbitrarily if both endpoints have equal out-degree. We also proved

that with the same strategy, the maximum vertex out-degree is upper bounded by

min(2α lg(n/α) + 2α,
√
2m) during the execution of the operations in an insertion-

only arboricity-α-preserving update sequence, but the maximum vertex out-degree

can go up to Ω(min{ 3
√

α(n− 1),
√
n}) even in only α(n− 1) updates, for any α ≥ 3,

when deletions are allowed, which reflects the impact of deletions on the orientation.

There are still many open problems on dynamic graph orientation. The first is

whether we can maintain an O(α)-orientation of a graph of arboricity α in O(α) or

O(1) amortized update time. The second is how to maintain an O(α)-orientation of a

graph of arboricity α in logarithmic or polylogarithmic worst-case update time. The

third is to find tight lower and upper bounds on the number of edge reorientations

per update for an optimal algorithm to maintain a certain orientation of a dynamic

graph. These open problems are open even for graphs of arboricity one.

These open problems are about update time and maximum vertex out-degree.

Some applications may care more about space efficiency. Thus, another open problem

is how to represent low-arboricity graphs succinctly to support adjacency queries.

This open problem was proposed by Brodal and Fagerberg [5]. Note that there are

succinct data structures for planar graphs [8, 38], but not for arbitrary graphs with

constant arboricity.

Bibliography

[1] Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Main-
taining approximate maximum weighted matching in fully dynamic graphs. In
IARCS Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India,
pages 257–266, 2012.

[2] Arne Andersson. Faster deterministic sorting and searching in linear space.
In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96,
Burlington, Vermont, USA, 14-16 October, 1996, page 135141. IEEE Computer
Society, 1996.

[3] Arne A. Andersson and Mikkel Thorup. Tight(er) worst-case bounds on dynamic
searching and priority queues. In Proceedings of the 32th Annual ACM Sympo-
sium on Theory of Computing, STOC ’00, pages 335–342, New York, NY, USA,
2000. ACM.

[4] Srinivasa Rao Arikati, Anil Maheshwari, and Christos D. Zaroliagis. Efficient
computation of implicit representations of sparse graphs. Discrete Applied Math-
ematics, 78(1-3):1–16, 1997.

[5] Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representation of sparse
graphs. In Proceedings of the 6th International Workshop on Algorithms and
Data Structures, WADS ’99, pages 342–351, London, UK, UK, 1999. Springer-
Verlag.

[6] Julie Anne Cain, Peter Sanders, and Nick Wormald. The random graph threshold
for k-orientiability and a fast algorithm for optimal multiple-choice allocation.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, pages 469–476, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics.

[7] Boliong Chen, Makoto Matsumoto, Jianfang Wang, Zhongfu Zhang, and Jianxun
Zhang. A short proof of Nash-Williams’ theorem for the arboricity of a graph.
Graphs and Combinatorics, 10(1):27–28, 1994.

[8] Yi-Ting Chiang, Ching-Chi Lin, and Hsueh-I Lu. Orderly spanning trees with
applications. SIAM Journal on Computing, 34(4):924–945, April 2005.

[9] Marek Chrobak and David Eppstein. Planar orientations with low out-degree and
compaction of adjacency matrices. Theoretical Computer Science, 86(2):243–266,
September 1991.

48

49

[10] David Richard Clark. Compact Pat Trees. PhD thesis, Waterloo, Ont., Canada,
Canada, 1998. UMI Order No. GAXNQ-21335.

[11] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der
Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper
and lower bounds. SIAM Journal on Computing, 23(4):738–761, August 1994.

[12] Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for approxi-
mate and exact maximum weight matching. Computing Research Repository,
abs/1112.0790, 2011.

[13] Zdeněk Dvořák and Vojtěch Tůma. A dynamic data structure for counting sub-
graphs in sparse graphs. In Proceedings of the 13th International Conference on
Algorithms and Data Structures, WADS’13, pages 304–315, Berlin, Heidelberg,
2013. Springer-Verlag.

[14] Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the Chinese
postman. Mathematical Programming, 5(1):88–124, 1973.

[15] David Eisenstat, Philip Klein, and Claire Mathieu. An efficient polynomial-time
approximation scheme for Steiner forest in planar graphs. In Proceedings of the
Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’12, pages 626–638. SIAM, 2012.

[16] David Eppstein. All maximal independent sets and dynamic dominance for sparse
graphs. ACM Transactions on Algorithms, 5(4):38:1–38:14, November 2009.

[17] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
withO(1) worst case access time. Journal of the ACM, 31(3):538–544, June 1984.

[18] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic
bound with fusion trees. Journal of Computer and System Sciences, 47(3):424–
436, December 1993.

[19] Harold Gabow and Herbert Westermann. Forests, frames, and games: Algo-
rithms for matroid sums and applications. In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, STOC ’88, pages 407–421, New York,
NY, USA, 1988. ACM.

[20] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general
graph matching problems. Journal of the ACM, 38(4):815–853, October 1991.

[21] Roberto Grossi and Elena Lodi. Simple planar graph partition into three forests.
Discrete Applied Mathematics, 84(1-3):121–132, 1998.

[22] Manoj Gupta and Richard Peng. Fully dynamic (1+ε)-approximate matchings.
In Proceedings of the 54th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 548–557, Berkeley, CA, USA, 2013. IEEE.

50

[23] Manoj Gupta and Ankit Sharma. An O(log(n)) fully dynamic algorithm for
maximum matching in a tree. CoRR, abs/0901.2900, 2009.

[24] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4(3):221–225, 1975.

[25] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[26] Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In
Jan van Leeuwen, editor,WG ’93 Proceedings of the 19th International Workshop
on Graph-Theoretic Concepts in Computer Science, volume 790 of Lecture Notes
in Computer Science, pages 99–111. Springer, 1993.

[27] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of
graphs. SIAM Journal On Discrete Mathematics, 5(4):596–603, 1992.

[28] Tsvi Kopelowitz. Personal communication, 2014.

[29] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting
fully dynamic graphs with worst-case time bounds. In International Colloquium
on Automata, Languages and Programming(ICALP)(2), pages 532–543, 2014.

[30] Lukasz Kowalik. Adjacency queries in dynamic sparse graphs. Information Pro-
cessing Letters, 102(5):191–195, 2007.

[31] Lukasz Kowalik. Fast 3-coloring triangle-free planar graphs. Algorithmica,
58(3):770–789, 2010.

[32] Lukasz Kowalik and Maciej Kurowski. Oracles for bounded-length shortest paths
in planar graphs. ACM Transactions on Algorithms, 2(3):335–363, 2006.

[33] Mei-Ko Kwan. Graphic programming using odd or even points. Chinese Math,
1(273-277):110, 1962.

[34] Eugene L Lawler. Combinatorial optimization: Networks and matroids. Courier
Dover Publications, 1976.

[35] L. Lovász and M.D. Plummer. Matching Theory. AMS Chelsea Publishing, 1986.

[36] Silvio Micali and Vijay V. Vazirani. An O(
√|V ||e|) algorithm for finding maxi-

mum matching in general graphs. In Proceedings of the 21st Annual Symposium
on Foundations of Computer Science, SFCS ’80, pages 17–27, Washington, DC,
USA, 1980. IEEE Computer Society.

[37] Peter Bro Miltersen. Error correcting codes, perfect hashing circuits, and de-
terministic dynamic dictionaries. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’98, pages 556–563, Philadelphia, PA,
USA, 1998. Society for Industrial and Applied Mathematics.

51

[38] J. I. Munro and V. Raman. Succinct representation of balanced parentheses,
static trees and planar graphs. In Proceedings of the 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, pages 118–126, Washington, DC,
USA, 1997. IEEE Computer Society.

[39] C. St. J. A Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal
of the London Mathematical Society, 36(1):445–450, 1961.

[40] C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal
of the London Mathematical Society, 39(1):12, 1964.

[41] Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dy-
namic maximal matching. In Proceedings of the 45th Annual ACM Symposium
on Theory of Computing, STOC ’13, pages 745–754, New York, NY, USA, 2013.
ACM.

[42] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a
small vertex cover. In Proceedings of the 42th ACM Symposium on Theory of
Computing, STOC ’10, pages 457–464, New York, NY, USA, 2010. ACM.

[43] Jean-Claude Picard and Maurice Queyranne. A network flow solution to some
nonlinear 0-1 programming problems, with applications to graph theory. Net-
works, 12(2):141–159, 1982.

[44] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pages 118–126, Philadelphia, PA, USA, 2007. Society for Industrial
and Applied Mathematics.

[45] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1983.

