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Abstract

Estimating the population status and trajectory of marine fishes is hampered by lim-
ited data and the assumptions needed to augment these data gaps can have broad
implications. Poor management decisions based on poor inference can have far reach-
ing socio-economic and ecosystem consequences. Here, I examine critical assumptions
commonly employed in fisheries models and how they affect our beliefs on the pop-
ulation status of exploited marine fisheries. The assumption that catch rates are
proportional to abundance is a critical assumption that can influence estimates of
stock status. In chapter 3, this assumption is evaluated via a state-space modelling
framework to obtain better estimates of the stock status of cusk (Brosme brosme) by
incorporating multiple population time series in the estimation of population biomass.
By relaxing the assumption that catch rates were directly proportional to population
biomass, I found that the research trawl survey was likely hyperdepleted, thus ex-
aggerating estimates of population decline. Indeed, previous estimates of population
decline based solely on the the research trawl survey were 93% compared to my es-
timate of 64% once non-proportionality was incorporated in the modelling structure.
In chapter 4, I model the spatial distribution and population trajectory of different
size classes of thorny skate (Amblyraja radiata) to test for density dependent habitat
selection (DDHS). I found large declines in both abundance and distribution for all
size classes with the greatest declines observed in large juvenile and adult size classes.
I found strong evidence for DDHS for the large juvenile and adult size classes, how-
ever, small juveniles exhibited limited changes in distribution associated with changes
in abundance. In chapter 5, I examine how biological reference points used by fish-
eries to monitor harvest sustainability compare to those developed by conservation
organizations, such as the IUCN Red List, to estimate extinction risk. I show that the
two approaches frequently arrive at similar categorizations of stock status and differ-
ences are primarily a result of decline thresholds used to trigger conservation action.
Conservation and fisheries metrics aligned well (70.5% to 80.7% for riskier and more
conservative reference points respectively) despite their mathematical disconnect in
decline thresholds. My analyses suggest conservation and fisheries scientists will agree
on the status of exploited marine fishes in most cases, leaving only the question of
appropriate management responses for populations of mutual concern still unresolved.
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Chapter 1

Introduction

Wild marine capture fisheries currently have an annual global production of approx-

imately 80 – 90 million tons and it is generally accepted that this is close to, or at,

the maximum global production limit (Frid and Paramor, 2012). Indeed, as of 2011,

28.8% of the world’s managed fisheries were fished at biologically unsustainable levels,

61.3% of stocks were fully exploited and 9.9% were under utilized (FAO, 2014). Fish-

eries management is tasked to balance multiple and often conflicting objectives: max-

imizing biological or economic goals, reducing bycatch, meeting conservation goals,

and ensuring that exploited stocks are maintained above threshold levels in order to

minimize the risk of overfishing (Harwood and Stokes, 2003). To complicate matters,

limited data require that management frequently operates in a cloud of uncertainty

to meet these conflicting objectives (Wade, 2001). One of the main sources of un-

certainly lies in the challenges inherent in estimating the abundance of marine fishes

both precisely and accurately (Harwood and Stokes, 2003).

Estimating the status or abundance trajectory of marine fishes can be challenging

due to poor resolution of the current and historical range and distribution of many

marine fishes, generally low and potentially changing catchability due to gear changes

and increased fishing efficiency, and frequent high stochasticity in recruitment caused

by a myriad of biotic and abiotic forces (Millar and Methot, 2002; Fraser et al., 2007).

Precise and accurate abundance estimation is further hampered by sampling events

that are often limited in frequency and spatial breadth. Indeed, the conclusions that

are desired from fitting population models to estimate abundance frequently outstrips

the information contained in the available data (Schnute and Richards, 2001). As a

consequence, simplifying assumptions are required about model structure and data

relationships. Unfortunately, many of these assumptions are not directly testable and

their use has the potential to result in incorrect estimates of stock status (Schnute

1
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and Richards, 2001). These assumptions need to be critically examined and not be

haphazardly employed (Schnute and Richards, 2001).

The use of assumptions in fisheries models, particularly the assumption that catch

rates are proportional to population abundance, has led to some spectacular failures

in fisheries management (Harley et al., 2001; Walters and Martell, 2004). Indeed, one

of the critical assumptions that contributed to the collapse of the 400 year Atlantic

cod (Gadus morhua) fishery of the northwest Atlantic was that the catch rate series

calculated from the commercial cod fishery better reflected changes in the population

abundance compared to the Fisheries and Oceans Canada (DFO) fishery-independent

research survey (Walters and Martell, 2004). This assumption was incorrect and its

use resulted in management decisions that contributed to the collapse of the com-

mercial cod fishery in 1992. Cod populations in the northwest Atlantic are still at

historically low levels of abundance despite near removal of all sources of fishing mor-

tality (Bundy and Fanning, 2005; Shelton and Morgan, 2014). This demonstrates not

only the consequences of using poor assumptions but also that the consequences of

their use may not be easily reversible.

Changes in the trophic structure of marine ecosystems, and the abundance of

the species present in them, can arise from direct and indirect sources and may not

be reversible within expected time scales (Bundy and Fanning, 2005; Bundy et al.,

2009). The abundance and distribution of marine fish populations are a function of

a myriad of top-down and bottom-up controls (Baum and Worm, 2009) such as tem-

perature, depth, environmental variability, climate change (Rijnsdorp et al., 2009),

fishery exploitation and predator and prey dynamics and distribution (Swain and

Benôıt, 2006). Disentangling the causal mechanisms responsible for changes in popu-

lation distribution and abundance is rarely trivial and becomes increasingly complex

when indirect effects via cascading trophic interactions are considered (Fung et al.,

2013). This can have wide-ranging consequence on ecosystem structure and stability

(Myers et al., 2007; Petrie et al., 2009) and presents challenges and potentially diffi-

cult choices, such as favouring one fishery over another, for fisheries and ecosystem

management (Hutchings and Reynolds, 2004).

Substantial declines in population abundance as a consequence of exploitation

is frequently considered to be an unwanted side effect of fishing. Large declines in
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abundance, however, are frequently a management objective to increase the popu-

lation growth rate from compensatory density-dependent process in the population

dynamics (Rose et al., 2001). This fundamental concept of population dynamics

is exploited to increase fishery yields and is the basis for the concept of maximum

sustainable yield (MSY), the largest catch that can be removed sustainably from a

population indefinitely. Many fisheries management agencies, including those in the

U.S. and Canada, use reference points related to the concept of MSY: Bmsy, the pop-

ulation biomass that should provide the MSY and has historically been considered to

be a fisheries management target (Caddy and Mahon, 1995). Increasingly, however,

it is recognized both from economic (Grafton et al., 2007; Froese et al., 2010) and

ecosystem (Walters et al., 2005; Smith et al., 2011) perspectives that it is benefi-

cial to maintain populations above Bmsy, and thus it is better regarded as a limit

that should not be exceeded. Alternate reference points, such as those used by the

International Union for Conservation of Nature (IUCN), that are used to estimate

extinction risk can give potentially conflicting evaluation regarding the status of ex-

ploited fish communities. Therefore, not only does management need to function in

the cloud of uncertainty due to data limitations and necessary assumptions required

to support evaluations of population status but also consider potentially conflicting

advice regarding conservation and population sustainability.

1.1 Rationale & Goals of Research

To that end, the goals of this thesis can be divided in four main points:

1) Conduct a broad literature review to understand the consequences that seemingly

small assumptions can have on the inference of the population status of marine

fish populations.

2) Estimate the population status of cusk (Brosme brosme) using a Bayesian state-

space model and evaluate the assumption of proportionality of multiple catch

rate indices to population biomass.

3) Estimate changes in relative abundance and spatial structure of different size

classes of thorny skate (Amblyraja radiata) and test the assumption of homoge-

nous distribution on the Scotian shelf.
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4) Understand how abundance based biological reference points used by fisheries

compare to rate based reference points used by conservation organizations to

evaluate extinction risk and determine whether there is common ground between

the two approaches as they pertain to sustainability of exploited marine fish

populations.

1.2 Thesis Overview

In this thesis, I include four chapters which address the questions and goals listed

above. I begin with a critique of the common assumptions that are frequently used

to estimate the abundance and population status of marine fishes and discuss some

of the consequences that making wrong assumptions about models or data can have

on the inference on population status (Chapter 2). I particularly focus on the as-

sumption of proportionality of catch rates to population abundance through time

and space. Although the problem of nonproportionality is well known for commercial

catch rates it can also be an issue with fishery-independent data and lead to erroneous

designations of stock status particularly for species that are not the primary targets

of fisheries-independent surveys.

In Chapter 3, I employ a Bayesian state-space biomass production model to esti-

mate population trends for cusk. This chapter demonstrates how multiple time series

can be incorporated in a single model and model both process and observation error

simultaneously to estimate population biomass trends and test for non-proportionality

in multiple time series that alone may be biasing estimates of population status. I

also use a simulation approach to demonstrate the consequences to inference about

population status by not accounting for non-proportionality of each time series.

In Chapter 4, I examine changes in the abundance and distribution of different size

classes of thorny skate (Amblyraja radiata) and employ various statistical methods to

test for density dependent habitat selection for the different size classes.

Finally, Chapter 5 focuses on the how biological reference points used to monitor

harvest sustainability by fisheries compare to those developed by conservation organi-

zations, such as the IUCN, that are used estimate extinction risk. I show that the two

approaches frequently arrive at similar categorizations of stock status and the main

differences lie in the decline thresholds used by each to trigger conservation action.



5

I explicitly identify how abundance based fisheries reference points and rate based

conservation reference points largely share common ground in the goal of population

persistence and much of the disagreement between fisheries and marine conservation

fields is based on relatively subtle differences in the assumption in the approaches

employed.

1.3 Publications Arising From This Thesis

At this time two publications have arisen from this thesis, and another is being

considered.

Davies, T. D. and I. Jonsen 2011. Identifying Nonproportionality of Fishery-

Independent Survey Data to Estimate Population Trends and Assess Recovery Poten-

tial for Cusk (Brosme brosme). Canadian Journal of Fisheries and Aquatic Sciences

68(3): 413 – 425. doi:10.1139/F10-165.

Davies T.D. and J.K. Baum (2012) Extinction Risk and Overfishing: Reconciling

Conservation and Fisheries Perspectives on the Status of Marine Fishes. Scientific

Reports 2 doi: 10.1038/srep00561



Chapter 2

Estimating the Abundance Trajectory of Marine Fishes:

Common Pitfalls

2.1 Introduction

Over exploitation has been responsible for the collapse of large marine fisheries

(Hutchings and Festa-Bianchet, 2009); however, exploitation levels, and the effects

that the loss of many incidentally captured non-target species may have on ecosystems

are difficult to estimate and are poorly understood (Dulvy et al., 2004). In 2007,

approximately 28% of the world’s managed fisheries were either overexploited (19%),

depleted (8%) or recovering from depletion (1%), 52% of stocks were fully exploited

and 20% were underutilized (FAO, 2008). What is absent from these statistics are

incidentally captured (bycatch) species of little or no commercial importance that

are generally not actively monitored. Indeed, detailed population dynamics models

(i.e. fisheries stock assessments) are generally data intensive endeavors and thus

generally limited to target species of large-scale commercial fisheries (Davis, 2002;

Kelly and Codling, 2006). On the east coast of Canada, for example, population

assessments have been conducted for fewer than 5% of all marine fish species (Dulvy

et al., 2004; Hutchings and Baum, 2005) leaving the population status of many species,

particularly bycatch species, unknown. These species, or geographically restricted

populations, may be considered to be “data-poor”, where there is insufficient data to

infer the trajectory or exploitation history of the population with a precision that is

useful in guiding management decisions (Kruse et al., 2005).

Whether a population should be considered “data-poor” is really dependent on

what one wants to do with the data and the precision desired in the conclusions.

Because so many assumptions are required in the population assessment process of

most fish stocks, one could easily consider almost any marine population to be data-

poor (Walters and Martell, 2004). Global fisheries have continued to expand in range

6
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and exploit more trophic levels without a concurrent increase in monitoring. As

a result, the number of fished species with little or no data for their assessment is

increasing (Essington et al., 2006). Although the number of these fisheries is relatively

low in comparison to the majority of the world’s fisheries, their contribution has

increased from 20 to 30% of the worlds landings over the last 50 years (Vasconcellos

and Cochrane, 2005; Costello et al., 2012).

The monitoring and conservation of marine species can entail significant cost and

therefore a reasonable question to ask is: “why should we bother?” There are both

biocentric, and anthropocentric motivations for conserving marine fishes that are not

directly commercially exploited. The biocentric viewpoint assigns value to species,

species assemblages, and ecosystem services even if no economic benefit is derived

from these features themselves (Schug, 2008). Economic costs are inevitable due to

the expenses associated with the monitoring and management of these species. In

contrast, the anthropocentric viewpoint that pervades the fisheries literature (Far-

ber et al., 2002) generally uses biomass production as proxies for economic benefits

such as “maximum sustainable yield” (MSY) which is frequently used as a reference

point for the maximum amount of biomass that can sustainably be removed from a

fish stock. This concept generally has limited practical relevance to many bycatch

marine species or from the perspective that fisheries frequently have competing eco-

nomic, social and political objectives (Hilborn, 2007b). Anthropocentric motivations

to conserve commercially unimportant species may be found in the potential con-

sequences that the removal of non-target species may have on the organization of

complex oceanic food webs and trophic linkages with commercially important fish-

eries (Pope et al., 2000; Kaiser and Jennings, 2001). For example, Myers et al. (2007)

showed how the removal of apex predator shark guilds had devastating economic con-

sequences through a trophic cascade causing the collapse of a commercially important

scallop fishery in North Carolina, U.S. Awareness that non-target species may also

play important roles in stabilizing ecosystem functions and resilience has begun to

move traditional fisheries management towards an ecosystem-based approach to man-

agement that includes the interactions between fish predators and their prey species

(Fraser et al., 2007). Ultimately, legislation such as the Species at Risk Act (SARA;

2003) in Canada, or the Endangered Species Act (ESA; 1973) in the United States
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are designed with a mixture of biocentric and anthropocentric motivations (Farber

et al., 2002). If maintaining commercially unimportant populations at specified levels

of abundance is a goal of ecosystem management, data allowing the estimation and

tracking of the abundance of these populations are needed. When the data available

are not adequate to adequately describe the population of interest, assumptions need

to be employed to fill in these information gaps.

Numerous statistical models exist that can be used to estimate and/or track abun-

dance with the general rule (omitting model misspecification) that the more complex

the model, the greater the ecological realism and data requirements. Uncertainties

about the current and historical abundance, spatio-temporal distribution, movement

rates, and life-history parameters of many species are frequently poorly defined and

consequently many assumptions are needed to estimate the abundance trajectory of

many marine species (McAllister et al., 2001; Hall and Mainprize, 2005). Because of

the potential for indirect ecosystem consequences to occur from the removal of non-

target species that can suffer significant incidental mortality as bycatch (Crowder

and Murawski, 1998; Baum et al., 2003), it is essential that quantitative and unbi-

ased methods are used to assess the impact that indirect exploitation may be having

on these populations. Due to the lack of data, it is important that the assumptions

used to fill in data gaps are critically examined to ensure that proper assessments

are done and limited funds and efforts are directed where conservation concerns truly

exist. Unfortunately, the validity of many assumptions are frequently untestable due

to the lack of data, yet the consequences of making incorrect assumptions can have

broad implications. Indeed, careless interpretation of fisheries statistics increases con-

fusion and can undermine legitimate conservation efforts (Walters, 2003), potentially

close fisheries when it is not warranted, or conversely, result in the collapse of popu-

lations leading to fishery closures and have other socioeconomic and ecosystem wide

implications. It is therefore critical that the consequences of the assumptions used

in place of data be fully understood in the estimation of population abundance in

data-poor situations.
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2.2 Data

Estimating a reliable indicator of population abundance is necessary to answer

many ecological questions, effectively manage exploited populations, and evaluate

the effectiveness of recovery programs for species that have been impacted by human

disturbances. Monitoring the abundance of populations, or its rate of change, can

be challenging for many species as a complete census of the population is usually

impractical due to prohibitive financial, logistical and time constraints. Consequently,

the data available to estimate abundance are frequently limited to a relatively small

number of sampling events when put in the context of the vast geographical range

of many marine fish species. The frequently high levels of uncertainty in population

level parameter estimates derived from populations with few individuals and/or have

large or unknown spatial distributions can make the monitoring and study of many

marine populations difficult.

Fishery-dependent and fishery-independent data are the two general sources avail-

able for the assessment of marine fishes. Fishery-dependent data are derived from

commercial fishing activities and originate directly from the fisheries vessels via log

books, from independent scientific observers stationed on commercial vessels, or a

combination of the two via port sampling when catches are offloaded at ports. Species

misidentification and misreporting can occur in logbook data and numbers caught are

frequently only visually estimated and aggregated into species groups, some species

may be absent from logbook statistics, and consequently estimates of the number

caught can suffer from poor precision and accuracy. Data collected from scientific

observers onboard commercial vessels can provide more reliable estimates of catch

composition, however, these estimates are usually extrapolated from small samples

(e.g. a 300 kg random sample can be extrapolated to an entire bottom trawl set

that can be greater than 100 tonnes). Onboard observers occasionally collect size

and/or age structure data but these data are usually limited to the target species of

the fishery being monitored. Port sampling can collect similar age and size structure

information as onboard observers but without the advantage of having a presence on

the fishing vessels to ensure all catches are reported.

For some fish populations, commercial data can provide a wealth of information

as fishing fleets generally have far greater spatial and temporal coverage and can have
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higher catch rates than government operated research surveys. The exclusive use of

these data, however, can result in biased population estimates due to the influence

that the non-random fishing behaviour of commercial fleets can have on commercial

catch rates. Specifically, many assessment methods rely on the assumption that catch

rates are proportional to population abundance which is difficult to prove for many

target species (Hilborn and Walters, 1992; Harley et al., 2001), and especially so for

bycatch species (Heales et al., 2007). Standardization approaches exist that aid in

reducing the influence that fishing practices can have on commercial catch rates and

are discussed later.

Fishery-independent data are derived from activities that do not involve the com-

mercial harvest of fish and is usually collected by research surveys conducted by

federal or state/provincial governments or by academic institutions. For example, on

the east coast of Canada, a fishery-independent groundfish trawl survey of the Scotian

Shelf and Bay of Fundy has been conducted annually in July since 1970 by the Cana-

dian Department of Fisheries and Oceans (DFO). The survey was designed to monitor

commercially important groundfish stocks such as Atlantic cod (Gadus morhua) and

haddock (Melanogrammus aiglefin; Fisher and Frank, 2004). The survey follows a

stratified random design with stratification based on depth and geographic area with

the number of tows proportional to stratum area (Shackell and Frank, 2003). In

the calculation of a geographically aggregated CPUE index, separate abundance es-

timates are produced for each stratum which are proportionally weighted to stratum

size to calculate an overall weighted mean abundance (Blanchard et al., 2008). The

basis for a stratified design is that depth and location can have a large influence

on species distribution and abundance (Maunder and Punt, 2004); consequently the

variance of abundance estimates is less with a stratified, rather than a simple random

design (Stamatopoulos, 2002). Catch statistics are frequently reported as the num-

ber (or mass) of fish caught per unit of effort (for example, per hook, or per tow).

Fishery-independent data is frequently favoured over fishery-dependent data due to

their randomized designs and and strict sampling protocols that are used to reduce

bias that can be introduced from changes in gear and fishing behaviour.
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Various species specific behaviours, habitat preferences, demographic characteris-

tics, and gear types can greatly affect the catchability of individuals within a pop-

ulation and need to be considered when interpreting both fishery-independent and

fishery-dependent catch rate data. This can be important for fishery-independent

trawl surveys that restrict fishing to areas with low habitat complexity to avoid gear

damage thus potentially missing species or age-classes that favour more complex habi-

tat. Consequently, trawl surveys give a picture of a fish community that is restricted

in time and space and filtered by the selectivity of the survey gear that can be biased

towards different species and size classes (Fraser et al., 2007). Tagging and mark-

and-recapture data also fall under the category of fishery-independent data. Such

studies can be used to estimate the movement rates within and between stocks, the

natural mortality rate and reproductive output, growth rates, maturity schedules (the

percent of individuals mature at each age), and hooking or discard mortality rates.

These data can provide invaluable information to assess a population. Unfortunately

these data are rarely available for species that are not of high commercial importance

and can also contain bias if recaptures are derived from commercial fishing activities

(Pollock et al., 2004).

2.2.1 Missing the Context of Catch Data

Catch data is the minimum, and sometimes the only, data available to assess marine

fish populations impacted from commercial fishing and understand its exploitation

history (Vasconcellos and Cochrane, 2005). Although not directly targeted, bycatch

species are frequently retained and sold, or are at least recorded in logbooks or by

onboard observers. Unfortunately, commercial catch data alone are generally poor

indicators of fish abundance (Hilborn and Walters, 1992; Longhurst, 2007; Murawski

et al., 2007; Branch, 2008). Indeed, catch is influenced by numerous factors including

market demand, phase of fishery development (Vasconcellos and Cochrane, 2005),

operating costs, changing fishing regulations, processing capacity, the environment,

local abundance of predators and competitors (Longhurst, 2007), misreporting (Wat-

son and Pauly, 2001), and potential errors in catch databases. It is therefore rarely

utilized alone to assess the status of fish populations (Hilborn, 2007c; Murawski et al.,

2007; Branch, 2008).
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One noteworthy example of how using commercial catch data as an index of abun-

dance can lead to incorrect conclusions of stock status is found in a criticism of Worm

et al. (2006) which predicted that at present trends of over-exploitation, all of the

worlds commercial fisheries would be collapsed by 2048 (Figure 2.1). The foundation

of this claim was based on commercial catch data and defined a fishery to be collapsed

if its current catches were less than 10% of the largest historical catch. This analysis

has been broadly criticized on data use, statistical methodology, and interpretation

(Hilborn, 2007a,c; Jaenike, 2007; Longhurst, 2007; Murawski et al., 2007; Wilberg and

Miller, 2007; Branch, 2008; Kleiber and Maunder, 2008). The criticism by Hilborn

(2007a) focused on how the use of catch data alone can lead to faulty interpretations

about the condition of fishery ecosystems. In his review, Hilborn (2007a) used catch

data from American fisheries in the Bering Sea to illustrate the problems associated

with inferring the population status on the exclusive use of these data. Indeed, using

the methodology of Worm et al. (2006), the majority of the American fisheries in

the Bering Sea would be defined as collapsed, however, more complex abundance-

based analyses and assessments that used a combination of fishery-independent and

fishery-dependent data for this region have shown that only two species should be

classified as overfished (defined as less than one-half the biomass needed to produce

MSY). A broader analysis was conducted by de Mutsert et al. (2008) who examined

72 commercial fisheries in the Gulf of Mexico. Using the methodology of Worm et al.

(2006), ≈80% of these fisheries were identified as collapsed. In contrast, detailed

assessments that considered changes in regulations, market forces, and fishing effort

found that only 15 stocks (≈21%) should be considered to be collapsed (indicating

43 stocks incorrectly categorized as collapsed).

It is well established that the use of commercial catch data alone can lead to

erroneous designation of stock status and are unreliable indicators of the abundance

trajectory of many species due to the corrupting influence that management and

markets forces can have on catch statistics. Many fisheries in less developed countries

are lacking in the most basic fisheries statistics and therefore catch data may be the

only data available to assess a population. In these cases, where catches may be less

influenced by socioeconomic factors and management actions, catch data may provide
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Figure 2.1: Global loss of species from Large Marine Ecosystems (LMEs ). (A) Tra-
jectories of collapsed fish and invertebrate taxa over the past 50 years (diamonds,
collapses by year; triangles, cumulative collapses). Data are shown for all (black),
species-poor (< 500 species, blue), and species-rich (> 500 species, red) LMEs. Re-
gression lines are best-fit power models corrected for temporal autocorrelation. (B)
Map of all 64 LMEs, color-coded according to their total fish species richness. Figure
from Worm et al. (2006).
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reasonable estimates of population trends and result in fewer erroneous designations

of stock status (Kleisner et al., 2013).

2.2.2 Catch Standardization & Consequences of Data Aggregation

Standardizing catch data by the amount of fishing effort that was used to produce

that catch increases its value to identify population trends because it removes the

potential bias caused by changes in fishing effort. Dividing catches by effort creates

a ratio estimate of CPUE which is frequently used as an index of relative abundance.

Common standardization measures are number per hook (longline fisheries), tons per

tow (trawl fisheries), or tons per trip (any fishery with poor resolution of fishing

effort). This metric is a valuable tool to identify instances where catches are high

or increasing due to a concurrent increase in fishing effort rather than increases in

population abundance. Unfortunately, CPUE as a relative measure of population

abundance also has limitations and standardization approaches (e.g. Gavaris, 1980)

are frequently needed to remove factors other than population abundance that can

influence catch rates.

The non-random distribution of fish and fishing effort can result in biased esti-

mates of relative abundance if catches are simply summed over a region and divided

by the total fishing effort without regard to the interaction between the exploitation

history of the fishery, spatial distribution of the population (Walters, 2003), and/or

spatial restriction of a fishery or fishery-independent survey. Critical and difficult

to test assumptions that are frequently employed when using CPUE data are that

the catch rate index is proportional to abundance and the catchability of fish does

not change over time or as population size changes (Heales et al., 2007). When a

catch rate index declines more quickly than population abundance it is known as

hyperdepletion and can result, for example, from fishing effort being concentrated on

a vulnerable subset of a population that is depleted while a significant part of the

population remains unaccounted for in the catch rate index or survey design (Quinn

and Deriso, 1999). For example, the fixed area design of fishery-independent sur-

veys can result in a hyperdepleted catch rate index if the core density of a species

is outside the survey area and species specific processes such as density dependent

habitat selection results in incomplete mixing of the population within its full range
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(Blanchard et al., 2008). How a fishery-independent fixed-area survey can result in

a hyperdepleted catch rate index is illustrated in Figure 2.2. In this example, panels

a-c show the geographic range of a species at years 0, 5, and 10 (grey shading) with

degree of shading being proportional to fish density. Gridding represents the area

covered by the fishery-independent survey. Panels d-f show how the catch rate index

(solid lines) decreases much more quickly than the total abundance of the population

(dashed-lines) due to the most favoured habitat of the species of interest being outside

the survey area. In this example, assuming the catch rate index to be proportional

to population abundance would result in overestimates of population decline and ex-

ploitation rate. If however, there is little habitat selectivity and there is good mixing

between the surveyed and non-surveyed areas, hyperdepletion would not be expected

to occur in the catch rate index (Hilborn, 2001). Hyperdepletion has also been shown

to occur in multispecies aggregated catch rate indices (Kleiber and Maunder, 2008)

as a result of model assumptions rather than ecological processes such as density

dependent habitat selection.

It is well established that the non-random fishing behaviour of commercial fish-

ing vessels and species specific behaviours of many fish species such as shoaling and

range contraction in response to decreased abundance can lead to a situation known

as hyperstability where a catch rate index declines more slowly than population abun-

dance (Quinn and Deriso, 1999; Harley et al., 2001). This can be particularly severe

in fisheries that exploit spawning aggregations at known location at predictable times

of year. Indeed, when this occurs, catch rates can remain high even as the stock

declines because fish density at catch locations remains high and/or the processing

capacity of fishing vessels can become saturated. Assuming a hyperstable catch rate

index is proportional to abundance can result in underestimates of exploitation rate

and population decline (Hilborn and Walters, 1992). It is therefore important to ac-

count for changes in fishing behaviour and gear improvements by applying statistical

approaches to commercial catch rate indices.

To improve the link between catch rates and population abundance, it is bene-

ficial to remove the influence that other factors besides population abundance may

be having on a catch rate index (Maunder and Punt, 2004). Technological and gear

improvements, increased catch efficiency of fishers, latitude, gear depth, and time of
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Figure 2.2: Hypothetical scenario of a fishery-independent survey showing hyperde-
pletion in a catch rate index. Panels a-c show the geographic range of a species (grey
shading) with degree of shading being proportional to fish density at years 0, 5, and
10. Gridding represents the area covered by the fishery-independent survey. Panels
d-f show how the catch rate index (solid lines) drop much more quickly than the total
abundance of the population (dashed-lines) due to the most favoured habitat of the
species of interest being outside the survey area.
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year can all influence catch rates, and consequently influence trends in a catch rate

index. For example, Maunder and Punt (2004) describe an example where two fish-

ing vessels are exploiting the same stock which does not change in abundance over

a ten year period. In this scenario, one highly effective vessel with high catch rates

is initially responsible for 80% of the combined catches and reduces its contribution

to the fishery to 20% of all catches over the ten year period (Figure 2.3). In this

example, the combined CPUE catch rate shows a substantial decline even though the

abundance of the stock has stayed constant over the ten year period. If one were

to use the raw combined catch indices as an index of relative stock abundance, the

conclusion would be that the stock had decline by almost 50% over the time period

even though abundance of the stock had remained unchanged. Generalized linear

models (GLMs) were first applied by Gavaris (1980) to remove bias caused by fac-

tors other than population abundance that can influence trends in a catch rate index

and has received wide adoption in fisheries science. The general approach is to use

some linear combination of a set of explanatory variables (e.g. vessel, latitude, hook

depth etc.) and relate them to the catch rate index. This approach removes the

influence of the explanatory variables from the catch rate index making it a better

reflection of abundance trends. Generalized additive models (GAMs) and general-

ized linear mixed-effects models (GLMMs) can also be used but have not received as

wide an application (Maunder and Punt, 2004). These standardization approaches

are generally applied to fishery-dependent data rather than fishery-independent re-

search survey data due to the commonly held belief that survey design is adequate to

make fishery-independent data valid indices of relative abundance. However, there is

increased awareness that survey design alone may be insufficient for rare and inciden-

tally captured species and therefore standardization approaches will likely be more

broadly applied to fishery-independent data in the future (Maunder and Punt, 2004).

The assumption that the a priori standardization of fishery-independent data

through the survey design make them reliable measures of relative abundance needs

further examination for non-target species that have patchy distributions and/or are

poorly sampled by survey gear (Blanchard et al., 2008). Changing ocean temperatures

have been shown to modify the distribution of demersal fish species (Perry et al., 2005)
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Figure 2.3: Catch rate time series of two hypothetical fishers (left panel) and the
trend in raw combined catch rate (total catch divided by total effort of both fishers;
right panel) with fish abundance held constant. Fisher 1 (solid line) has a higher
catch rate compared to fisher 2 but reduces his contribution to the fishery from 80%
to 20% over years 1 to 10. A declining combined raw catch rate trend is observed
even though fish abundance is held constant. Figure from Maunder and Punt (2004).

and these changes in distribution will likely influence catch rates of fixed area fishery-

independent surveys thus potentially biasing the catch rate index. Similar to the

GLM methods of standardizing catch rates described above, a promising approach is

statistical habitat-based standardization (statHBS ) that allows for catch rate indices

to be adjusted by habitat type (substrate type, temperature, depth) and can also be

extended to include species associations (Maunder et al., 2006a). Detailed benthic

habitat data is becoming increasingly available and can be used within a statHBS

framework to predict species distribution and density outside fixed-area surveys and

potentially test fishery-independent survey data for nonproportionality.

When calculating a spatially aggregated commercial catch rate index, careful con-

sideration needs to be given to the exploitation history of a fish stock. When spatially

stratifying a catch rate index, catches should be partitioned into small enough spatial

units or time periods to effectively have random sampling within each unit. The con-

sequences of not stratifying a spatially aggregated CPUE index is that areas that are

more heavily fished gain more “weight” in the CPUE calculation which can bias the

index towards highly fished areas that have high catch rates. An additional problem

is how to treat catch rate data from the early developmental phases of the fishery

that usually have a much more restricted spatial distribution compared to the fully

developed fishery. Fishers do not fish at locations randomly, rather, they attempt to
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fish in areas that produce the greatest profit by maximizing catches and minimizing

expenses (such as fuel and travel time, Sampson, 1991). Consequently, when a fishery

first starts to develop, fishers will tend to focus their efforts at locations close to ports

that have high catch rates and gradually move effort farther away as catch rates near

home ports decline. If inference on the population trajectory is going to be made

on the current fishing distribution of the fleet, careful consideration of how to treat

historically unfished areas is needed. There are three general approaches (Walters,

2003):

Assumption 1: Restrict analysis to the fished areas contained in the dataset by omit-

ting a substantial (likely a majority) portion of the data and therefore be unable

to estimate the trend of overall stock abundance. Tracking abundance for the

relatively small areas that were exploited early in the fishery is of little value

as it would provide little indication of the status of the entire stock which is

likely the ultimate goal of the analysis.

Assumption 2: Assume catch rates in historically unfished areas would have been

the same as those that were fished early in the development of the fishery (I.e.

population exhibited complete mixing).

Assumption 3: Assume fish density of unfished areas to be some function of later

catches (such as assigning a mean of the first few years of fishing to unfished

areas earlier in the time series; I.e population had a heterogenous spatial struc-

ture through time).

Difficulties lie with all of these assumptions; however, one needs to be chosen if the

analysis is to proceed. We can discard applying the methods in assumption 1 because

our goal is to estimate the population trajectory of total population and not simply

in the restricted regions that were exploited early in the development of the fishery.

Assumption 2, although conceivable, is mathematically equivalent to the unlikely

assumptions that fishers employed simple random sampling when choosing fishing

locations early in the development of the fishery or that fish densities were randomly

distributed throughout the fishing areas within the spatial confines of what is currently

exploited. In contrast, assumption 3 seems to be the most reasonable because we know
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that fishers do not fish at random but rather fish at areas that maximize economic

returns. Assumption 3, however, does make broad assumptions about the historical

distribution of the population. Indeed, this assumption also implies that population

density in unfished areas did not change in response to reduced abundance caused

by fishing in neighbouring areas. More complex approaches such as temporal linear

interpolation could be employed; however, using the assumption that catch rates in

unfished cells are equal to the mean of the first three years of fishing is sufficient to

illustrate the consequences of using this assumption in place of assumption 2 which

assumes unfished cells have the same catch rate as fished cells throughout the time

series.

The consequences of choosing assumption 2 over assumption 3 is illustrated by

Walters (2003) that reanalyzed the data described in Myers and Worm (2003) who

concluded large tuna and billfish in the Pacific had declined by over 90% since 1950.

This conclusion is controversial and many aspects of the analysis and assumptions

about the data have been criticized (Maunder et al., 2006b; Polacheck, 2006; Sibert

et al., 2006; Kleiber and Maunder, 2008). The consequences of choosing either as-

sumption 2 or 3 are summarized in Figure 2.4 that shows that population declines

are more severe using the unlikely assumption that catch rates in the unfished cells

were equal to that of fished cells at the beginning of the time-series (assumption

2). Although both assumptions result in population declines, one would infer using

assumption 2 that populations have collapsed in contrast to what is inferred when

one uses assumption 3, which results in the populations being close to the “ideal”

biomass that produces MSY. Indeed, a common fisheries management strategy is

to substantially reduce population abundance in order to reduce density dependent

growth factors to increase population growth rates. Regardless, whether the popula-

tion is too low or at the desired level of abundance is a socioeconomic consideration

and is a different question from what is the current exploitation status of the stock.

Assumption 3 is more reasonable from the context of how the behaviour of commercial

fishers likely changed over time and how these changes in behaviour would influence

the catch rate statistics.
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Figure 2.4: Catch per unit effort (CPUE) trends for large tuna and billfish (total
number of fish per hook) from the 5 x 5 degree cell Japanese long-line database (Myers
and Worm 2003), estimated by three alternative methods for (a) Atlantic, (b) Pacific,
and (c) Indian oceans. Full spatial (solid line) assigns mean of first three observed
catch rates to each cell for years before it was first fished and the last observed catch
rate for years after it was last fished. Restricted spatial (!) is the mean catch rate
over only those cells that were actually fished each year. Ratio (") is simply total
catch summed over all cells divided by total effort. Figure from Walters (2003).
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2.3 Modelling Issues

The use of mathematical models helps to formalizes hypothesis testing and gives

a more transparent mechanism for addressing the assumptions used in an analysis.

As described above, assumptions about the data can have a large influence on the

inference on the status and trends of populations. An additional layer of uncertainty

is the result of the large natural variability in abundance of many marine populations

and frequently even larger observation error caused by limited sampling and few

individuals captured during sampling. Incorporating the stochastic forces affecting

populations and/or the observation processes requires that the mathematical model

be extended to a statistical model (Dennis et al., 2006). The majority of statistical

marine population assessment models have two implicit components: at least one

observation model that links the unknown quantity of interest (e.g. abundance) to the

observations (e.g. CPUE index), and at least one process model that represents the

unobservable processes governing the population dynamics. The observation model

is of particular importance in monitoring marine populations as fish are generally not

observed directly but inferred from a limited number of observations (e.g. spawners,

larval surveys, specific age-classes, indices of relative abundance) using a function to

link the parameter of interest, such as numbers or biomass, to the observations.

2.3.1 Data Mismatch

Production models are frequently used to assess stocks in data-poor situations where

only total landings and CPUE data are available. The CPUE data can be derived

from fishery-independent surveys, commercial catch rate indices, or both may be

included in the model, however, the latter approach requires some form of weighting

factor to inform the model which time series better tracks the abundance of the

population. Because it is unlikely that catch rate indices exploit the entire range and

all demographic components of a population, using multiple series can fill in these

data gaps.

The Schaefer form of a production model is frequently employed and can give

fairly accurate estimates of stock productivity and carrying capacity when there is

adequate contrast in the exploitation history of the stock (Hilborn and Walters, 1992).
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The Schaefer model is:

Bt+1 = Bt + rBt

(

1−
Bt

K

)

− Ct (2.1)

where Bt and Ct denote biomass and total fishery removals (ideally all catches and

total bycatch mortality from other fisheries) respectively for year t. Carrying capacity,

K, is the equilibrium unfished biomass of the population prior to commencement of

the fishery, and r is the intrinsic population growth rate.

An observation equation is used to link the unobserved states of the population

biomass to the process model as follows:

It =
Ct

Et

= qBt (2.2)

where It is the catch rate index at time t, Ct is the catch for the vessels used to

calculate the catch rate index, Et is the amount of effort required to produce that

catch, and q is the fraction of the abundance that is captured by one unit of effort

(often referred to as the catchability coefficient) and in this example is assumed to

be constant throughout the index time-series (Maunder and Punt, 2004).

Numerous criticisms of the Schaefer model exist that focus on the symmetric

dome-shaped production function implied by the model (Maunder, 2003), static model

parameters (Hilborn and Walters, 1992), and whether the observation model compo-

nent that assumes the catch rate index is proportional to biomass is realistic (Harley

et al., 2001). Data mismatch, however, is rarely addressed and can occur when the

catch rate index is temporally and/or spatially restricted and/or tracks a smaller

demographic component of the population due to gear selectivity issues in compar-

ison to the total fishery removal data used in the model. Fishery removals are an

aggregation of all direct and indirect (bycatch) mortality incurred by a population

from all gear types and fishing behaviours that impact the species of interest. There-

fore, there can be spatial and demographic components of the population contained

in the fishery removal data that are not present in the CPUE index. The implicit

assumption when using these two data sources within the same model is that the

non-overlapping components of the catch rate index and fishery removal data must

have the same proportional rates of change in order for the index to be remain being
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proportional to abundance. This is a similar issue presented by Kleiber and Maun-

der (2008) that examined the consequences of using a multispecies aggregated CPUE

and fishery removal data to track the abundance of individual stocks in multispecies

fisheries. Their finding indicated that the multispecies aggregated CPUE index was

hyper-responsive (i.e. would display either hyperdepletion or hyperstabilty) depend-

ing on the catchability and productivity of the individual species contained within

the index and fishery removal data; with hyperdepletion being more common. Once

the index being used is no longer a reliable index of abundance (or biomass), infer-

ence on the population trajectory and parameter estimates (r and K in the case of

the Schaefer model) become difficult to interpret and likely biased. Age, or stage

structured models that separate demographic components are able to more easily

accommodate different proportional rates of change in the various age components

of the population. Unfortunately, age-disaggregated data is frequently only available

for target high-value species and not for species of low commercial importance.

2.3.2 Conflicting Data

Trends contained in commercial and fishery-independent CPUE time-series are a re-

sult of many embedded processes such as environmental forcing, fishing behaviour (or

survey design), gear selectivity, and different levels of observation error in addition to

the population and demographic dynamics of the population being tracked (Rouyer

et al., 2008). It is therefore common when multiple time-series exist that they display

different and sometimes conflicting population trends due to differences in spatial or

temporal coverage and other embedded process. In this situation, the assessment

biologist needs to decide whether to use both indices in some way, or to choose the

catch rate index that is thought to better track the demographic component of the

stock of interest (e.g. spawning stock).

Incorporating multiple indices to estimate population trends can be advantageous

if the two indices have important non-overlapping spatial or temporal components.

For example, cusk (Brosme brosme) was designated as Threatened by the Committee

on the Status of Endangered Wildlife in Canada (COSEWIC) in 2003 due to a 93%

decline from 1970 to 2001 in the Scotian Shelf DFO summer bottom trawl survey in-

dex (COSEWIC, 2003). This estimate of decline has been contested due to concerns
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that because the trawl survey samples outside the preferred habitat and depth range

of cusk, it is unlikely that the trawl index is proportional to biomass (DFO, 2004).

In support of this concern, a commercial longline catch rate index, that is thought

to better track cusk biomass because it targets preferred cusk habitat, shows a much

less severe decline over the overlapping time period (Figure. 2.5). An ecological ex-

planation for the different trends is that the trawl index suffers from hyperdepletion

because it targets poor cusk habitat while the longline fishery targets deeper water

rocky habitats where substantial cusk densities remain. We used both indices in a

Bayesian state-space model and accommodated index non-proportionality and found

evidence that the trawl index suffered from hyperdepletion, thus exaggerating esti-

mates of biomass decline. Our median estimates were that cusk biomass declined

64% since 1970, rather than 93% as estimated in the COSEWIC assessment. By

using both indices and allowing for index non-proportionality, were able to obtain

biomass estimates back to 1970 rather than being limited to 1986, the beginning of

the longline index. Furthermore, if we had utilized the longline index exclusively, we

would have estimated cusk decline to be 62% from 1986 to 2007 (Davies and Jonsen,

2008) rather than 52% for this time period when both indices were included. By

utilizing both data sources and critically examining (and rejecting) the assumption

that the indices were proportional to biomass, we were able to obtain better estimates

of recent and historical biomass trends.
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Figure 2.5: Time-series of fishery independent bottom trawl (•), and commercial
longline catch-per-unit-effort (!) indices for cusk (Brosme brosme) from the 4Xnopq
NAFO subdivisions. Recorded landings (bars) are from the 4X NAFO division.



26

One of the most notorious examples of using poor assumptions when multiple

catch rate indices give conflicting signals on population trends is illustrated by the

the collapse of one of largest and historically relevant fisheries in the world: the

Newfoundland northern cod fishery. Data available were catch-at-age data, a fishery-

independent survey index, and a commercial catch rate index. The two catch rate

indices gave divergent signals from 1978 to 1986, with the commercial catch rate

index suggesting the stock had increased three-fold while the fishery-independent in-

dex suggested that the stock had been relatively stable over the time period (Figure

2.6). Although both indices were used in the assessment, the commercial index was

weighted more heavily in setting harvest levels, even though there was little scientific

justification to do so (Pennington and Strømme, 1998). The heavily weighted com-

mercial CPUE index was later found to suffer from fairly severe hyperstability issues

and the fishery-independent index that showed much lower population abundance

more closely tracked stock abundance. The consequence of assuming the commer-

cial index more closely tracked abundance was that unsustainable harvest levels were

consistently set and the 400 year cod fishery collapsed. Over 20 000 people lost their

livelihoods (Hilborn and Walters, 1992). This is an example to the very real human

costs that can occur in fisheries when poor assumptions are made.

Figure 2.6: Catch per tow and commercial catch rate index for Newfoundland north-
ern cod. Thick line is commercial CPUE, thin line is the fishery-independent survey.
Figure from Hilborn and Walters (1992).
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2.3.3 Power to Detect Trends

Fishery-independent surveys are increasingly being used to monitor non-commercial

species because they have known survey designs, document gear changes that may

change catchability, collect biological data that are frequently absent from commercial

catch statistics, and may be the only source of time-series distribution and abundance

data for rarer fish species and species of low commercial importance (Maxwell and

Jennings, 2005). The majority of research surveys were established to monitor abun-

dant target species that have relatively high catchability to the survey gear (Shackell

and Frank, 2003). The trend towards taking an ecosystem approach to fisheries mon-

itoring and management and increased conservation concern about non-target species

has broadened the use of these surveys beyond their original focus. The distribution

and range of many species is poorly understood and low catchability coupled with un-

known demographic gear selectivity makes it problematic to assess many non-target

species with these data (Maxwell and Jennings, 2005; Fraser et al., 2007). Increased

understanding of the value and limitations of current and historical survey data is

needed (Blanchard et al., 2008).

Whether a species is detected in a fish survey is a function of the sampling design,

the number of samples, the efficacy of the sampling methods to detect a species

within a sample unit, the abundance of the species, its habitat specificity, and its

geographical range relative to survey coverage (Cunningham and Lindenmayer, 2005).

Power analysis is used to estimate the probability that a test will detect a statistically

significant result under different experimental design and sampling intensities (Zar,

2007) and is a useful tool for determining whether benchmarks of recovery plans of

depleted species can be identified under various management scenarios and sampling

designs. Trends in abundance can be obscured by high levels of observation error

and year-to-year natural variation in abundance (process error). The power to detect

trends can be further reduced by low population sizes, habitat patchiness, density

dependent changes in distribution, and whether spatial distribution changes over

time due to changes in the environment (Blanchard et al., 2008).

A simulation approach offers a method to estimate the power of different sur-

vey designs to detect changes and trends in abundance of various species by using

different assumptions about their current and predicted distribution and life history
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parameters. Blanchard et al. (2008) used ideal free distribution theory to model the

density dependent habitat selection which is widely observed in fish populations, dif-

ferent levels of habitat patchiness, potential impacts of climate change, and various

survey designs to estimate the power of the English North Sea Groundfish Survey to

detect changes in abundance of non-target species. Their findings indicated that a

single survey that only covers part of the range of a species generally has little power

to detect trends in depletion and recovery or disentangle the relative impacts that

fishing and the environment may be having on population abundance. For example,

using a fixed stratified monitoring design, 25 years was needed to detect changes

in abundance of a population with 90% certainty that was defined to be increasing

at 2% per year if the species had a patchy distribution and whose range was not

fully within the survey area. Under climate change scenarios where fish distribution

changed over time, >30 years was needed to detect trends in abundance for patchy

distributed species. This suggests that fishery-independent surveys may be of little

use in tracking the recovery of depleted bycatch species whose range are only partially

covered by the research surveys and have patchy distributions and whether inference

about population trajectories derived from these data are valid. Unfortunately, due

to limited information on the spatial distribution of many bycatch species, the true

statistical power to detect abundance trends for many non-target species remains

unknown (Blanchard et al., 2008).

2.4 Ways Forward

The ability to obtain precise and unbiased estimates of the population size and

trajectory of marine populations is constrained by the number of assumptions re-

quired for most assessments due to the limited amounts of data available. Indeed,

the number of unknowns in most assessment models typically exceeds the number

of observations, and therefore numerous simplifying, and frequently untestable, as-

sumptions are needed in the assessment process (Schnute and Richards, 2001). Many

of these assumptions are easy to apply without fully realizing the consequences that

they may have on the conclusions of the analysis. Applying incorrect assumptions

can have large socioeconomic impacts and/or result in the depletion of vulnerable

fish populations. The prohibitive monitoring cost required to monitor marine species
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limits the certainty that is realistically achievable in marine population monitoring.

For instance, sampling intensity needs to be increased fourfold in order to double the

precision of an estimate because precision is inversely proportional to the square root

of the sample size (Pennington and Strømme, 1998). The costs required to assess all

marine species within levels of certainty needed to provide detailed management ad-

vice for each species would be prohibitive and logistically impractical. Consequently,

the monitoring of many species or taking an ecosystem approach to fisheries manage-

ment will always be within a large cloud of uncertainty and robust assessment and

monitoring strategies are needed to effectively manage these populations.

The most critical assumptions used when tracking the abundance of marine pop-

ulations lie in the observation component of most population models (Walters and

Martell, 2004). In particular, the assumptions about the spatial and temporal dis-

tribution and movement within the range of the population of interest can have

broad ramifications for population estimates. Both fisheries-dependent and fishery-

independent data have the potential for introducing bias. The non-random search

behaviour of commercial fishing activities can lead to over estimates of population

abundance which can result in unsustainable harvest levels. Conversely, patchy dis-

tribution and lack of mixing within the range of the population of interest can cause

hyperdepletion of a catch rate index and result in exaggerated estimates of popula-

tion decline and result in unnecessary socioeconomic hardship and/ the loss of limited

conservation funding that could have been applied elsewhere.

Collecting additional information about the spatial distribution of species can re-

duce the need to make as broad assumptions about the range, movement and patch-

iness of marine populations and be relatively low cost. Improved information on

changes in distribution, which would improve estimates of abundance, could be ob-

tained by linking presence-absence data from existing surveys and fisheries dependent

data in contiguous areas (Blanchard et al., 2008). Delineating changes in range and

distribution will become increasingly important as climate change has already changed

the distribution of groundfish, for example, in the North Sea (Perry et al., 2005). This

approach could identify changes in distribution and help to evaluate whether the pro-

portionality assumption of catch rates derived from surveys with restricted spatial
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designs is justified and whether changes in catch rates are due to changes in pop-

ulation abundance or simply movement of the population to outside of the survey

area.

Fishery-independent data is an important source of information for the assessment

of non-target marine fishes. Indeed, on the east coast of Canada, the summer bot-

tom trawl survey that began in 1970 is the longest contiguous time-series for many

commercially unimportant species on the Scotian Shelf. It is, however, important

to understand the limitations of these data, both in terms of statistical power to

detect trends and whether the assumption that the survey index is proportional to

abundance is justified. The statistical power of analyses using these data are lim-

ited, particularly when the species under study has a range that extends outside the

survey area, is patchily distributed, and has low catchability to the survey gear (Blan-

chard et al., 2008). The extreme costs associated with marine monitoring limits the

quantity of additional effort that can be allocated to monitoring commercially unim-

portant species. Other data sources, such as habitat mapping and remotely sensed

environmental data, can play a role in standardizing catch rate indices, identify habi-

tat associations that cause distribution patchiness, and estimate densities outside

surveyed areas in both time and space. Using habitat data to identify areas of patch-

iness would help delineate species specific stratification sampling designs that could

reduce the variance in catch rate indices. Indeed, stratified sampling designs exist

to accommodate patchiness in distributions and if these patches can be identified,

statistical power to detect trends will increase.

The use of demographic methods (Dulvy and Reynolds, 2002), meta-analysis (My-

ers and Mertz, 1998), and Bayesian methods (Etienne and Olff, 2005), or a combi-

nation there-of (McAllister et al., 2001), are additional approaches that can be used

to reduce the uncertainty in population studies of extinction risk, estimating popula-

tion trajectory, and inference using the distributional assumptions of poorly sampled

marine populations. Demographic approaches use theoretical life-history correlates

and data from better studied species to indirectly estimate extinction risk, growth,

and natural mortality rates (Dulvy and Reynolds, 2002). Basically, one infers that

a population that has similar life-history characteristics will be susceptible to simi-

lar levels of exploitation and population decline. Similarly, meta-analysis can reduce
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uncertainty in parameters of interest by combining data across multiple studies of

different populations much the same way that replicates are used in more traditional

hypothesis testing approaches (Myers and Mertz, 1998). Similarly, the Bayesian ap-

proach has commonalities to the demographic and meta-analytical approaches but

also provides an opportunity to objectively address uncertainty in assumptions that

can be appropriately modified through the use of priors based on quantitative data or

derived from more abstract expert opinion. For example, studies that examine catch-

ability of various species can be easily incorporated into a population assessment by

specifying a prior on the catchability parameter of the population model. A Bayesian

approach to population assessment allows one to admit the full range of uncertainty

and use the collective experience of multiple stake holders and information obtained

from demographic or meta-analytic approaches (Punt and Hilborn, 1997).

2.5 Conclusions

The ability to effectively monitor the abundance of many marine populations, and

their rates of change, is limited due to generally unknown proportionality relation-

ships of both commercial and fishery-independent catch data, relatively few sampling

events when put in the geographical range of most species, low catchability to survey

gear, and frequent non-static and patchy spatial and temporal distribution of many

species. Many assumptions need to be employed in the estimation process that can-

not be explicitly tested with data on-hand. Therefore, careful consideration of the

consequences of the assumptions used, and whether they are justified by data and/or

ecological theory, is critical to avoid unnecessary economic hardship, diverting lim-

ited conservation dollars away from where they are needed, and avoid population

depletions contrary to desired benchmarks.



Chapter 3

Identifying Nonproportionality of Fishery Independent

Survey Data to Estimate Population Trends and Assess

Recovery Potential for Cusk (Brosme brosme)

3.1 Introduction

Fisheries stock assessments are frequently based on data intensive population dy-

namics models and thus generally limited to the target species of large-scale commer-

cial fisheries Davis (2002); Kelly and Codling (2006). On the east coast of Canada, for

example, stock assessments have been conducted for fewer than 5% of all marine fish

species (Hutchings and Baum, 2005). Detailed life-history information and appropri-

ate long-term catch and monitoring data required for such assessments are typically

lacking for incidentally caught species (McAllister et al., 2001; Hall and Mainprize,

2005). These species may, however, experience significant incidental mortality as by-

catch (Crowder and Murawski, 1998; Baum et al., 2003), and it is therefore essential

that quantitative estimates of the impacts of exploitation on them are developed.

Cusk is a data-poor benthic teleost (Family Gadidae) of the north Atlantic, that

is commonly caught as bycatch in benthic longline and lobster fisheries (DFO, 2004).

Little is known about its life history and ecology; however, catch rates in eastern

Canada’s groundfish longline fishery suggest cusk prefer rocky complex habitat in

relatively deep water (400 - 600 m, Oldham, 1966; DFO, 2002). Life history parame-

ters including growth rate, natural mortality and maximum age are unknown. Cusk

is principally a bycatch species in Canada and the U.S., but is frequently retained

prior to landing limits being reached. In Canada, landings were unregulated until

1999, after which a limit of 1 000 t was imposed for the majority of the Scotian Shelf

Chapter published: Davies, T.D. and I.D. Jonsen. 2011. Identifying nonproportionality of
fishery independent survey data to estimate population trends and assess recovery potential for cusk
(Brosme brosme). Can. J. Fish Aquat. Sci. 68(3): 413 - 425. doi: 10.1139/F10-165
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(4VWX Northwest Atlantic Fisheries Organization (NAFO) divisions). Due to in-

creased conservation concerns, this limit was reduced to 750 t in 2003 and extended

to include the Canadian portion of Georges Bank (5Zc; DFO, 2008).

Cusk was designated as Threatened by the Committee on the Status of Endan-

gered Wildlife in Canada (COSEWIC) in 2003 based on an estimated 93% decline

between 1970 and 2001 in the Fisheries and Oceans Canada (DFO) Scotian Shelf sum-

mer bottom-trawl survey index (COSEWIC, 2003). This estimate has been contested

by DFO scientists because the trawl survey samples outside the preferred habitat and

depth range of cusk and therefore the survey index may not be proportional to cusk

population abundance (DFO, 2004). The assumption that catch rate indices are

proportional to abundance is commonly made in population models, and was used

in the COSEWIC assessment, despite the fact that it rarely holds (Richards and

Schnute, 1986; Harley et al., 2001; Maunder et al., 2006b). Non-proportionality has

been recognized to occur in commercial catch-rate data (Harley et al., 2001), however,

fishery-independent data can also suffer from non-proportionality if a large compo-

nent of the stock is found outside the survey area (Blanchard et al., 2008). Failure

to account for non-proportionality when present, in either commercial catch rate or

fishery-independent data can result in biased estimates of stock decline.

The objectives of our research were to estimate historical population trends, cur-

rent status, and recovery potential of western Scotian Shelf cusk (NAFO division

4X; Figure 3.1) by using two indices of relative biomass and evaluating each of them

for non-proportionality. We incorporated a fishery independent bottom-trawl survey

index and a fishery dependent catch-per-unit-effort (CPUE) benthic longline index

within a Bayesian state-space surplus production model and used a power curve func-

tion in the observation model to test for non-proportionality of the indices. We then

used the model-derived biomass and parameter estimates in stochastic simulations

to project biomass forward and assess recovery potential based on three different

landing limits. Finally, we used a simulation approach to evaluate consequences of

model misspecification and the advantages of using both indices to obtain unbiased

parameter estimates.
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ment units from which the commercial longline index is derived. Ragged dashed line
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3.2 Materials and Methods

3.2.1 Data

Time-series data for cusk on the western Scotian Shelf include annual reported land-

ings and two catch rate indices of relative biomass (Figure 3.2). One index is a

fishery-independent index based on the DFO summer bottom-trawl survey, and the

second is a fishery-dependent index derived from the commercial groundfish longline

fishery, in which cusk is bycatch. Due to insufficient data on unreported and inciden-

tal mortality, we make the assumption that reported landings are synonymous with

fishery removals and are known without error.
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Figure 3.2: Time-series of fishery independent bottom trawl (•), and commercial long-
line catch-per-unit-effort (!) indices for cusk from the 4Xnopq NAFO subdivisions.
Recorded landings (bars) are from the 4X NAFO division.

The DFO summer bottom-trawl survey covers most of the Scotian Shelf and has

been conducted each July since 1970. The survey follows a stratified random design

with stratification based on depth and geographic area (Shackell and Frank, 2003).

The stratified mean catch per standard 1.75-nmi tow is used as an index of relative

biomass. We restricted the index to only include the western Scotian Shelf (4X NAFO

division) so that it would cover the same region as the commercial catch rate index.

Cusk catch rates in the survey have always been low because the rocky complex

habitat preferred by cusk (Oldham, 1966) is poorly sampled by the survey trawl gear.

The CPUE index from the commercial groundfish longline fishery covers most

of the western Scotian Shelf (4Xnopq NAFO subdivisions) and spans from 1986 to
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2007. We focused on this fishery because it has the highest cusk catches in Atlantic

Canada (> 95% of all cusk landings on the Scotian Shelf and Georges Bank since

1990). Catches from areas of marginal cusk habitat, such as the Bay of Fundy and

shallow inshore regions were not included. The index was restricted to vessels of 25

to 149.9 gross registered tons since no effort information was available for smaller

longliners in early parts of the time-series. To avoid introducing bias from landing

limits being reached, we restricted the commercial catch rate index to the first three

months of each year’s fishing season (July to September).

Reported landings and the commercial index may be biased high in the time series.

The lack of a landings limit for cusk prior to 1999 could, for example, have resulted in

target-species such as cod (Gadus morhua) being reported as cusk when cod quotas

were exceeded, thus potentially inflating the cusk landings and commercial catch

rates. Because the level of misreporting could not be quantified we did not apply

corrections to either time series. However, the level of misreporting, if present, in the

longline fishery index prior to 1999 appears minor as the index follows the yearly catch

rate dynamics in the fishery-independent trawl index over the same period (Figure

3.2).

The lack of age and/or length disaggregated data for both indices limited our

choice of population models and our ability to track year class variability and popula-

tion age-structure. Although age and length disaggregated information exists for the

trawl survey time-series, commercial data was limited to yearly biomass and effort,

and landings simply as biomass. If catch-at-age/length data were available for all the

data series we could have compared the catch rates of each size class over time to

better understand the relationship of each time-series to population abundance.

Population Model

Recognition of the importance of both observation error and process variability has in-

creased the application of state-space models in the assessment of fish and endangered

species in the last decade (Harwood and Stokes, 2003; Clark and Bjørnstad, 2004).

State-space models differ from traditional deterministic population models in that

they consist of two components: a process model, which represents the unobservable

stochastic processes governing the population dynamics, and an observation model,
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which describes the error structure inherent in the observations (Meyer and Millar,

1999a; Harwood and Stokes, 2003). By coupling these components in a state-space

framework, the errors in the observations can be separated from natural variability in

the population processes.We employed a Schaefer surplus production model (Schae-

fer, 1954) as our process model because there was insufficient age-disaggregated and

life history data to use more complex age-structured models. Surplus production

models are commonly employed when indices of relative biomass and landings are

the only data available for population assessment (Hilborn and Walters, 1992). Im-

plicit assumptions of the Schaefer model are a symmetrical surplus production curve

where maximum surplus production (MSP) occurs at 50% of unfished biomass, and a

population at equilibrium (Schaefer, 1954; Hilborn and Walters, 1992). The Schaefer

surplus production model is:

Bt =

(

Bt−1 + rBt−1(1−
Bt−1

K
)− Ct−1

)

ηt (3.1)

where Bt−1 and Ct−1 denote biomass and catch (landings), respectively for year t-

1. Carrying capacity, K, is the biomass of the population at equilibrium prior to

commencement of the fishery; r is the intrinsic population growth rate; and ηt is

a log-normal random variable with a mean of zero and variance σ
2 to account for

stochasticity in the population dynamics, ηt ∼ LN(0, σ2). Recruitment, growth, and

natural and unreported fishing mortality are combined in the time-invariant param-

eter, r. All parameters are held constant over time (i.e. changes in the biotic and

abiotic environment are not included) and catchability is the same for all individuals

in the population.

The observation model relates the unobserved states, Bt, to the indices of relative

biomass, Ii,t, that are observed with error. We incorporate both the trawl survey index

and longline index in a single model by specifying a separate observation equation for

each. A commonly used observation model is:

Ii,t = qi Bt ǫi,t (3.2)

where Ii,t is the relative abundance of index i at time t ; qi is the catchability coefficient

for index i which describes the effectiveness of each unit of fishing effort; and ǫi,t is a
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log-normal random variable with a mean of zero and variance τ 2i to account for error

in the observations of index i, ǫi,t ∼ LN(0, τ 2i ).

A critical assumption of Eq. 3.2 is that the catch rate indices are assumed to

be proportional to biomass regardless of population size (ie. constant q). Because

our data are spatially aggregated and have no age-disaggregation, the catchability

parameter is a conglomeration of the three different processes governing the effective-

ness of the fishing gear: availability, catchability, and selectivity. Density dependent

habitat selection exhibited as range contraction to optimal habitat areas as abun-

dance declines is observed in many exploited fish stocks (Blanchard et al., 2008). We

hypothesize that as cusk biomass declined, remaining individuals retreated to opti-

mal habitat areas where they remained available to the longline fleet but were less

available to trawl gear, which is restricted to non-complex substrate that is consid-

ered to be poor cusk habitat. Unfortunately, spatially disaggregated catch rate data

for the commercial fleet was unavailable to directly test this hypothesis. Rather, to

account for this potential change in cusk availability to the trawl gear, we relaxed the

assumption of constant catchability by adding a shape parameter to the observation

model. This power curve relationship between the catch rate indices and population

biomass allows catchability to change as population biomass changes. Catchability

then becomes a function of q and β, (catchability = qBβ−1 (Harley et al., 2001)).

Our observation model becomes:

Ii,t = qi B
βi

t ǫi,t (3.3)

where βi is a shape parameter for index i.

Equation 3.3 reduces to Eq. 3.2 when β = 1. In the context of population declines,

β < 1 implies the catch rate index declines more slowly than population biomass, a

condition known as hyperstability (Figure 3.3). Hyperstability occurs in many com-

mercial catch rate indices (Harley et al., 2001) and can be the result of the non-random

search behaviour of fishers and/or schooling behaviour or range contraction of target

species (Rose and Kulka, 2000). Assuming proportionality of a hyperstable index can

result in underestimates of exploitation rate and total population decline (Hilborn

and Walters, 1992). Conversely, hyperdepletion occurs when β > 1 and describes the

situation where the catch rate declines faster than population biomass (Figure 3.3).
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This can occur when fishing effort is concentrated on a subset of the population that

may be depleted, while a significant subset of the population remains unaccounted for

in the catch rate index (Quinn and Deriso, 1999). For example, the fixed area design

of fishery-independent surveys can potentially result in a hyperdepleted catch rate

index if the core density of a species is outside the survey area and species specific

processes such as density dependent habitat selection results in incomplete mixing

of the population within its full range (Blanchard et al., 2008). Assuming a hyper-

depleted index is proportional to biomass can result in overestimates of population

decline and exploitation rate (e.g., Myers and Worm (2003) as pointed out by Walters

(2003), Maunder et al. (2006b) and Sibert et al. (2006)).
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Figure 3.3: Three possible power curve relationships of catch-per-unit-effort and
biomass. Figure adapted from (Hilborn and Walters, 1992).

Four variants of the observation component of the surplus production model were

compared: (1) both indices fixed to be proportional to biomass (ie. β = 1); (2) shape

parameters estimated for both indices; (3) the longline index fixed to be proportional

to biomass and a shape parameter estimated for the trawl index; and (4) the trawl

index fixed to be proportional to biomass and a shape parameter estimated for the

longline index.
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We implemented the state-space models in WinBUGS (version 1.4.3, Lunn et al.,

2000) via the R2WinBUGS package (Sturtz et al., 2005) in the statistical program-

ming environment R (R Development Core Team, 2008). WinBUGS uses a Markov

Chain Monte Carlo (MCMC) approach to estimate the joint posterior distribution

of the model parameters. Marginal posterior distributions of model parameters and

unobserved states were based on 300 000 iterations of two chains after discarding

the first 260 000 iterations (burn-in). These 40 000 iterations were reduced to 2 000

by sampling every 20th value to reduce sample autocorrelation. Models were consid-

ered to have converged when the potential scale reduction factor R̂ was < 1.2 for all

parameters (Brooks and Gelman, 1998). See Appendix A for WinBUGS code.

3.2.2 Priors

A potential advantage of the Bayesian approach is that other sources of information

can be incorporated into the analysis in the form of priors (Gelman et al., 2004).

Unfortunately, since little is known about cusk ecology or its catchability on trawl or

longline gear, we were limited to relatively broad flat priors (Table 3.1).We specified a

vague prior for carrying capacity, K, using a uniform distribution with a lower bound-

ary of the maximum reported landings of 5 219 t and an upper boundary of 500 000

t. Although the upper boundary is greater than reasonable predictions for K, it was

used to ensure that some probability density would be present in unlikely, although

possible estimates of K. The purpose of this prior was to restrict the parameter search

away from mathematically possible yet biologically implausible parameter combina-

tions (e.g. a high estimate for r coupled with an extremely low estimate for K ). We

made the assumption that the cusk population at the beginning of the trawl index

(1970) was equal to K with an error distribution equal to the estimated process error

because the trawl catch rate was relatively stable from 1970 to 1980, and estimating,

rather than specifying B0, increases confounding in the model parameters (Hilborn

and Walters, 1992). Furthermore, the low contrast and “one-way-trip” trends exhib-

ited by both the survey and commercial data make estimating B0 as a free parameter

difficult. Estimates of absolute decline therefore need to be viewed in the context of

this assumption.
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Parameter Prior
r (intrinsic growth rate) uniform(0,4)
K (carrying capacity; tons) uniform(5219, 500000)
σ2 (Process error variance) uniform(0, 100)
τ 2 (Observation error variance) uniform(0, 100)
q (Catchability coefficient) uniform(0,1)
β (Shape parameters) uniform(0.01,10)

Table 3.1: Summary of specified priors for Bayesian state-space model

We considered including an informative prior for the shape parameter, β. Harley

et al. (2001) obtained maximum-likelihood estimates of shape parameters for commer-

cial catch rate indices of flatfish, cod and other gadiformes and found strong evidence

of hyperstability in many indices. This property likely arose because of the search-

ing and targeting behaviour of fishers for these target species (Hilborn and Walters,

1992). We did not incorporate their findings into our analyses because cusk is taken

primarily as bycatch, and there was weak a priori reason to expect hyperstability in

the commercial catch rate index.

3.2.3 Model Selection & Sensitivity

We used two methods for model selection and to evaluate model fit. First, we utilized

the estimated deviance information criterion (DIC) which penalizes model complexity

and a lower score identifies a better model fit. Second, we conducted a retrospective

analysis by omitting the last seven years of the biomass indices (but retained the

landings data) and checked the model’s ability to predict the missing data by pro-

jecting the model forward seven years (e.g. (Gelman et al., 2004; Snover, 2008b)).

The decision to omit seven years was largely arbitrary, however, we felt that seven

years was a good balance between retaining enough data for representative model fits

and evaluating the predictive ability of the model. We used this approach to deter-

mine how well each model could predict future states and to assess the robustness

of the parameter estimates. This approach also had the added benefit of evaluating

the robustness of the recovery scenarios under different future catch rates. Lastly, we

evaluated the sensitivity of parameter estimates to alternative specifications of the r

and error variance priors for the model that received the most support according to
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the two criteria described above to ensure that the Bayesian analysis was not driven

by the priors (McAllister et al., 2001). Therefore, we re-fit Model 3 with either log-

normal priors with a mean of 0.25 or 1.0 and a variance of 1.0 for r and normal priors

with a mean and variance of 1.0 for the process and observation error variances (σ2,

τ
2

L
, and τ

2

T
).

3.2.4 Biomass Projections

Biomass was projected into the future to evaluate if the current landing limit of

750 t is sufficient to allow for population recovery. Because the error associated

with the observation process has no effect on the true population biomass, the state-

space approach can be particularly useful when generating biomass projections using

model derived population parameters. Indeed, if observation error is significant, and

simply combined with process error, the uncertainty of population projections can be

overestimated and potentially biased (Dennis et al., 2006).

Three catch landings levels were evaluated: 0, 750, and 1 500 t per year. Pro-

jections were done in R using a stochastic simulation approach with the retained

MCMC parameter realizations (B2007, r, K, σ) from the joint posterior probability

distribution of the model that assumed the longline index was proportional to biomass

but estimated a shape parameter for the trawl index (Model 3 because this model

received the most support according to the criterion described above). We changed

modeling platforms for the projections due to the lack of programming flexibility in

WinBUGS and because the lognormal distributional assumption of the population

in the retrospective model can become invalid at unsustainable specified catch lev-

els. We generated five process error deviated biomass realizations per year using the

retained associated parameter realizations (n=4 000 after burn-in and thinning; for

a total of 20 000 biomass estimates per year). Population realizations were fixed to

zero once they became extinct.

The equilibrium assumption of the Schaefer model means that a change in ex-

ploitation rate will result in an immediate change in the population growth rate,

thus potentially omitting important ecological processes such as recruitment time-

lags and changes in population growth rate resulting from an altered age structure.
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Consequently, projections will likely overestimate biomass increases in response to

reductions in fishing mortality.

3.2.5 Simulations

We used a simulation approach to investigate the consequences of model misspeci-

fication on the parameter and biomass estimates, and to quantify the advantage of

including both indices of relative biomass, rather than just one (Table 3.2).To retain

features of our best estimates of the true biomass trajectory, the landings data, and

index histories for this particular stock, we employed a method akin to a parametric

bootstrap by taking the median biomass estimates obtained from Model 3 as the true

biomass trajectory for our simulations. We created our simulated indices of relative

biomass (spanning 1970 to 2007 and 1986 to 2007 for the simulated trawl and long-

line indices, respectively) by multiplying the median yearly biomass estimates by the

estimated catchability coefficients for each index. We generated two indices for the

trawl index, one that was proportional to biomass, and a hyperdepleted index that

had a power curve relationship with a defined shape parameter of β = 2.5. Small

amounts of observation error (τ = 0.1) were added to each index for efficient MCMC

sampling. We kept the observation error low as we wanted to observe the effects

of model misspecification on the parameter estimates and not have the results ob-

scured by noise in the observation process. To aid in comparison between models, the

same random seed was used to generate observation noise for the proportional and

non-proportional trawl indices.

3.3 Results

3.3.1 Model Summaries & Trends

In all four models, posterior distributions for r and K were correlated and had a

strong positive skew. Both of these features were expected as r and K are frequently

confounded in a Shaefer model (Haddon, 2001) and the positive skew arises from

the defined log-normal distribution of the biomass parameter. Regardless, all models

passed convergence diagnostics. Model 1, in which both indices were defined to be

proportional to biomass, did not fit the data well. This is evident by the lack of fit
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Scenario Data
ID Model assumptions Plongline Ptrawl Strawl Landings

Model 3 Parameter estimates from Model 3 - - - -
A Trawl survey assumed proportional ! !

B Trawl survey assumed proportional ! !

C Longline index assumed proportional ! !

D Both indices assumed proportional ! ! !

E Both indices assumed proportional ! ! !

F Both indices assumed non-proportional ! ! !

G Trawl survey assumed non-proportional & ! ! !

longline index assumed proportional

Table 3.2: Summary of data and scenarios used for simulation evaluation. Two
simulated trawl indices were created, one that is proportional to biomass (Ptrawl),
and another that is hyperdepleted and follows a power curve (β=2.5; Strawl). Both
span from 1970 to 2007. The simulated longline series is proportional to biomass and
spans 1986 to 2007 (Plongline).

to the trawl index early in the time series and the underfitting during the transition

period of high to low biomass in the early 1990s (DIC: -436; Figure 3.4a & Figure

3.5a). The model accounted for the lack of fit by estimating a large observation error

variance (τ 2
T
) for the trawl index (Table 3.3). Posterior density plots indicated that

there was sufficient information to estimate the r and K parameters (Figure 3.6a &

b).
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Figure 3.4: Surplus production model fits to commercial longline catch-per-unit-effort
(!) and fishery-independent bottom trawl (•) indices. Panel (a) assumes both indices
are proportional to biomass (Model 1); Panel (b) Estimated shape parameters (βi) in
the observation equation for both indices (Model 2); Panel (c) is fit of model assuming
commercial longline index is proportional to biomass and estimates a shape parameter
for the bottom trawl survey (Model 3). Solid and dashed lines are median and 95%
credible limits, respectively.
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Figure 3.5: Biomass as proportion of carrying capacity (Bt/K ) estimates from surplus
production model fit to commercial longline catch-per-unit-effort (△) and fishery in-
dependent (◦) bottom trawl indices. Panel (a) assumes both indices are proportional
to biomass (Model 1); Panel (b) Estimated shape parameters (βi) in the observation
equation for both indices (Model 2); Panel (c) is fit of model assuming commercial
longline index is proportional to biomass and estimates a shape parameter for the
bottom trawl survey (Model 3). Observations have been scaled, where appropri-
ate, by the estimated catchability coefficient (qlongline;qtrawl) and shape parameter(s)
(βlongline;βtrawl) for each index. Solid and dashed lines are median and 95% credible
limits, respectively.
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Model 1 Model 2 Model 3
Parameter 2.5% median 97.5% 2.5% median 97.5% 2.5% median 97.5%
Intrinsic rate of pop. growth (r) 0.015 0.149 0.505 0.007 0.126 0.555 0.007 0.115 0.362
Carrying capacity (K ; tons) 24750 53270 126708 20480 57225 232605 24399 51580 192013
Biomass in 1970 (B1970; tons) 22477 53670 124902 14810 53900 235223 18470 47430 190718
Biomass in 2007 (B2007; tons) 1721 4204 10440 2248 15565 137713 5371 16900 85271
B1970/K 0.67 1.00 1.37 0.57 0.93 1.46 0.57 0.91 1.28
B2007/K 0.04 0.08 0.15 0.07 0.29 0.76 0.14 0.34 0.58
Longline catchability (qL) 5.1×10−5 1.3×10−4 3.1×10−4 8.0×10−6 3.6×10−5 1.2×10−4 8.9×10−6 4.2×10−5 1.3×10−4

Trawl catchability (qT ) 3.8×10−8 9.4×10−8 2.3×10−7 1.5×10−8 8.4×10−8 3.6×10−7 1.6×10−8 9.6×10−8 4.0×10−7

Process error variance (σ2) 0.00 0.02 0.14 0.00 0.04 0.25 0.01 0.03 0.09
Longline Obs. error variance (τ2

L
) 0.02 0.09 0.27 0.03 0.06 0.14 0.03 0.06 0.14

Trawl Obs. error variance (τ2
T
) 0.18 0.32 0.57 0.00 0.09 0.26 0.00 0.08 0.27

Shape parameter for longline - - - 0.35 0.83 3.49 - - -
Shape parameter for trawl - - - 1.00 2.06 8.61 1.62 2.48 3.60
Max. surplus prod. (MSP; tons) 340 2005 4012 153 1846 6486 142 1538 5281
Biomass giving MSP (BMSP; tons) 12380 26635 63373 10240 28615 116302 12200 25790 96025
B2007/Bmsp 0.08 0.15 0.31 0.14 0.58 1.52 0.27 0.68 1.16
DIC -436 -522 -577

Table 3.3: Summary of posterior quantiles of parameters for Models 1, 2 and 3.
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Model 1 which assumed both indices were proportional to biomass, (b) Model 2 which
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posteriors for the shape parameters for the commercial longline catch-per-unit-effort
and fishery-independent trawl indices respectively; and (c) Model 3 that estimated a
shape parameter for the trawl survey only. Priors are identified as dashed lines.

Estimating shape parameters for both indices (Model 2) improved the model fit

(Fig.3.4b; DIC: -522). The credible limits of the biomass estimates contained all

of the scaled index values. The credible limits were also substantially wider than

in Model 1 due to the increased uncertainty in K (Figure 3.5b). The median of

the posterior for r, although slightly smaller, was similar to Model 1 and credible

limits were slightly larger. Conversely, the median of the posterior for K was slightly

larger but the upper 95% credible limit was almost double that estimated by Model

1 (Table 3.3). Observation error for both indices was smaller than Model 1, and the

estimated observation error for the trawl index was larger than the longline index.

Although there was overlap in the posterior densities of the shape parameters, both

were identifiable and the modes of the posterior densities were well separated (Figure

3.6i). The median estimate for the longline index shape parameter was 0.83, however,
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about 62% of the probability density of the posterior was less than 1.0 which suggests

weak evidence that the index is hyperstable. Conversely, the median estimate for the

trawl index shape parameter was 2.06 and 97.5% of the probability density was greater

than 1.0 suggesting substantial hyperdepletion in the trawl index. The results from

Model 2 suggested that a more parsimonious model, in which a shape parameter is

estimated for the trawl index only, would result in a comparable model fit, and indeed

Model 3, with one less parameter, had the most support (DIC: -577). Model fit to the

observations was similar to Model 2 (Figure 3.4c); however, yearly biomass estimates

had tighter credible limits and still contained all scaled trawl and longline index values

(Figure 3.5c). Estimates of observation error for both indices were virtually identical

to Model 2. The range of uncertainty in K was greater compared to Model 1 but

less so than Model 2. In contrast, the credible limits of r were much more narrow,

yet the median estimate was similar to both Model 1 and 2. The model estimated

greater hyperdepletion in the trawl index compared to Model 2 and the posterior

of the estimated shape parameter was well defined and had less skew (Figure 3.6n).

We estimate a 59% decline in cusk biomass between 1970 and 2001, a 64% decline

from 1970 to 2007 and estimate stock biomass to be at 68% of maximum surplus

production under Schaefer model assumptions (MSP, Table 3.3) in 2007.

Model 4, in which a shape parameter was estimated for the longline index only, had

the least support of all shape parameter models (DIC: -497). Severe hyperstability

was estimated in the longline index (median: 0.41) and process error was substantially

larger than all other shape models (plots not shown).

3.3.2 Model Sensitivity

We evaluated the robustness of the model fits and parameter estimates for Models 1

to 3, and further tested Model 3 against alternate forms of the r prior. Omitting the

last seven years of data had little effect on the estimated parameters; however, the

predicted observations for both indices were all greater than the omitted data for all

models (Figure 3.7). Alternate forms of the r prior for Model 3 had relatively little

effect on either the model fit or parameter estimates. Indeed, the more informative of

the alternate log-normal priors, which had a mean and variance of 1.0, only changed

the median posterior estimate of r from 0.115 to 0.122 (95% credible limits of 0.03 -
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0.35), which is very similar to the original Model 3 that had a flat r prior (Table 3.3).

Similar minor changes to the parameter estimates were observed when we replaced

the flat priors with informative normal priors with a mean and variance of 1.0 for σ2,

τ
2

L
, and τ

2

T
. The median estimates for Model 3 became r : 0.124, K : 48 075, σ2: 0.036,

τ
2

L
: 0.064, and τ

2

T
: 0.085 which are very close to those estimated when flat priors were

used (Table 3.3).
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Figure 3.7: Standardized residuals of predicted catch rates with the last seven years
of observation data removed. Solid circles (•) are for years where observation data
are present (1970 to 2000) and open circles (◦) are where no observation data other
than fishery removals are included (2000 to 2007). Panels a to c are for the fishery
independent trawl index, and d to f are for the commercial longline catch rate index.

3.3.3 Biomass Projections

Population projections using the derived parameter estimates from Model 3 suggest

that the current landing limit of 750 t is sustainable and should result in a biomass
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increase (Figure 3.8), however, robustness test indicate a bias in predicted recovery

rates and the biomass predictions are likely overly optimistic (Figure 3.7). The pro-

jection predicts a median biomass increase to 50% of K by the end of the 15-year

projection period, which equates to the biomass level that would give MSP under

Shaefer model assumptions. In terms of risk, 4% of projected populations went ex-

tinct after 15 years at this landings limit. Terminal biomass estimates had wide

credible limits due to the large uncertainty in the parameter values and stochastic

nature of the projections. Indeed, some realizations of the joint posterior distribution

for the r parameter were close to zero (3.7% were < 0.01) resulting in very little

biomass production during the projection period. A landings limit of 1 500 t was

clearly unsustainable with 30% of the simulated populations going extinct after 15

years. Reducing landings to zero resulted in predicted biomass increases to 70% of

K after 15 years. An obvious limitation of the projections is that they are based on

equilibrium conditions, which do not account for the age-structure of the population

or recruitment time-lags. Furthermore, the robustness tests suggest that the models

have poor predictive ability and tend to over predict biomass increases.
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Figure 3.8: Stochastic projections using parameter realizations from the surplus pro-
duction model that estimated a shape parameter for the trawl survey and assumed
the longline index was proportional to biomass (Model 3). Solid and dashed lines
are median and 95% credible limits, respectively of biomass estimates corresponding
from high to low to catch levels of 0, 750, and 1500 tons per year.

3.3.4 Simulations

Simulations provided a clearer picture of the benefits of including both indices and the

consequences of model misspecification on parameter estimates. Beanplots comparing

posteriors of the parameter estimates between Model 3 and the simulated data reveal

that model misspecification can cause large biases in initial and terminal biomass

estimates and including both indices improved the precision of parameter estimates.

As with the models in the primary analysis, all models using simulated data had

negative mean deviance, pD, and DIC.

The biomass trajectory derived from Model 3 is the basis for all the simulated

data scenarios and is the baseline for comparison to all simulations (Table 3.2). Both

posteriors in the Model 3 column are identical, and hence, the beanplots are sym-

metrical. The parameter estimates for Scenario A show that even when the model

assumptions are consistent with the data, a single proportional index spanning the

entire time-period (38 years) had insufficient power to fully recapture the parameters

of interest (Figure 3.9). Scenario B describes the model fit that assumed proportion-

ality to a single 38-year hyperdepleted index and had similarly diffuse posteriors for r,

K, and B0 as scenario A, however, the biomass estimate for 2007 was lower compared

to both Model 3 and scenario B (Figure 3.9).
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Figure 3.9: Select model parameters from simulation models. Beanplots (Kampstra,
2008) compare the posteriors of select model parameters from Model 3 (white) to
the posteriors from alternate model scenarios (grey posteriors in columns B to G)
which use simulated indices of relative biomass derived from the median biomass
trajectory estimated from Model 3. The horizontal dotted line is the median of
posteriors of select model parameters from Model 3. The thick solid horizontal lines
are the medians of the posteriors of the alternative model and data scenarios. Rows
are estimates of: the intrinsic rate of population increase, r, carrying capacity, K,
biomass in 1970 and 2007, and the ratio of biomass divided by K. Model assumptions
and data used are summarized in Table 3.2.
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A single proportional index spanning only the last 22 years (Figure 3.9; scenario

C), akin to only using the longline index and landings data, leads to similarly diffuse

parameter estimates as those obtained by only using a single longer time series (sce-

nario A). However, the B/K ratios were less biased compared to scenario A although

median estimates for K and biomass estimates were still biased high compared to

Model 3 (Figure 3.9). This is likely a symptom of both the lack of CPUE data

prior to 1986 and possible limitations of the Schaefer process model to fully capture

the population dynamics. According to Schaefer model dynamics, the substantial

landings prior to 1990 should have resulted in a decline in biomass during this pe-

riod if the population was starting at carrying capacity. This was not observed in

the simulated trawl survey data (which closely resembles the true trawl data; Figure

3.2). Indeed, although some biomass decline was observed, the trawl survey declines

only slightly, far less than should have been observed if the population was following

Schaefer dynamics. The lack of observation data in the earlier years allows the model

to fully follow Schaefer dynamics earlier in the time series thus making K and initial

biomass larger than what is estimated by the model that used both datasets. Using

two indices which were proportional to biomass and modeled as such, allowed us to

recapture the parameters of interest (Figure 3.9; scenario D); both the posteriors and

medians were almost identical to that of Model 3. The median of the posterior for r

was slightly lower than the reference model (0.104 compared to 0.115) which is likely

due to MCMC noise and/or the observation error introduced to the simulated indices.

In contrast, when the simulated trawl index is hyperdepleted and the shorter index is

proportional to biomass, yet we do not account for non-proportionality in the model

(scenario E), the posteriors of K and 1970 biomass were almost identical to those of

Scenario B, which only used a simulated hyperdepleted trawl index, indicating that

the trawl index is driving the estimates of these two parameters (Figure 3.9E).

Scenario F had the same data characteristics as scenario E but estimated a shape

parameter for both indices. The model was able to obtain better parameters esti-

mates in comparison to scenario E with the exception of the 2007 biomass estimate

which was approximately 70% of the true value (Figure 3.9F). The medians of the

shape parameters were 0.81 (95% credible limits of 0.45 - 3.65) for the simulated pro-

portional longline index and 1.99 (95% credible limits of 1.13 - 8.93) for the simulated
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hyperdepleted trawl index both of which are very similar to those estimated by Model

2 in our primary analysis (Table 3.3). Finally, we were able to recapture the param-

eters of interest when the longer time-series was non-proportional and we included

non-proportionality in the model (Figure 3.9G). Similar to Scenario D, which cor-

rectly matched the model assumptions to the proportionality of the simulated data,

the median of the posterior of r was slightly lower than the reference model. The

model was able to estimate the non-proportional shape parameter close to its defined

value of 2.5 (median β = 2.44).

3.4 Discussion

By using a Bayesian state-space modeling approach in WinBUGS, we were able

to combine multiple indices in a single population model and identify and accom-

modate index non-proportionality, thereby improving estimates of cusk population

trends and current status. There was weak evidence for non-proportionality of the

commercial longline index, however, model fits substantially improved when a shape

parameter was estimated in the observation equation of the trawl index, suggest-

ing hyperdepletion of the trawl survey index for cusk. Using Model 3 as a baseline

for the “true” biomass trajectory we determined that including both indices in the

model resulted in more precise and unbiased parameter estimates, and yielded better

biomass estimates in the terminal and beginning years of the indices. COSEWIC’s

estimate of decline was primarily based on decline observed in the trawl survey index

and assumed it was proportional to biomass. Our median estimates of decline of 59%

between 1970 and 2001, and a 64% decline from 1970 to 2007, while still substan-

tial, are much less severe than the 93% decline from 1970 to 2001 estimated in the

COSEWIC assessment that used the raw index data (COSEWIC, 2003). However,

because our biomass estimates are smoothed by the model and determining percent

declines from raw index data can be unreliable, to make the estimates of decline of

the two analyses more comparable we ran the model using only the survey data and

estimated a median 89% decline from 1970 to 2001 assuming the index was propor-

tional to biomass. Use of the longline index alone, also leads to overestimates of cusk

decline: a decline of 81% from 1970 to 2007, and 63% from 1986 to 2007 compared

to 52% for this time period when both indices are used and non-proportionality of
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the survey index is included in the model (i.e. Model 3). Our lower estimate of

decline will likely not have an impact on the COSEWIC designated status for cusk.

Although the estimated decline is less severe, the new aging analyses, although pre-

liminary, suggest that generation time is approximately 15 years, rather than 9, as

cited in the COSEWIC report (COSEWIC, 2003). A decline of 64% in 2.5 gen-

erations is sufficient to warrant Threatened status under the COSEWIC guidelines

(COSEWIC 2009). Accounting for non-proportionality can substantially improve es-

timates of population trends, however, our simulations highlight that caution needs

to be applied when using estimates of index non-proportionality from other analyses.

For example, in Scenario F of our simulations, 70% of the probability density of the

estimated shape parameter for the simulated longline index was less than 1.0 (median

0.81), even though the index was simulated to be directly proportional to biomass.

This is an indication that there is confounding in the estimation of multiple shape

parameters and thus using shape parameter estimates as informative priors in other

analyses could lead to biased biomass trajectories. Furthermore, in our primary anal-

ysis, Model 4 had a median shape parameter estimate 0.41 and had more DIC support

compared to Model 1 that assumed both indices were proportional to biomass. This

estimate of hyperstability is far more severe than those estimated for directed com-

mercial fisheries (Harley et al., 2001) and is therefore unlikely for a bycatch species

such as cusk. Therefore, when specifying a model with shape parameter(s), it is im-

portant to consider whether there is an a priori reason to expect non-proportionality

in the indices.

Our simulation models also show that including multiple indices substantially

increases power to recapture parameter estimates when non-proportionality is ac-

counted for in the model when, and if, present in the data. We also discovered that

DIC alone may not be a reliable metric for some Bayesian state-space model appli-

cations. An additional model we preliminarily tested, but is not described in the

manuscript, was to test for a knife edge change in catchability in the trawl survey in

1992 when the survey trawl index rapidly declined. According to DIC, this model had

the most support using both the real and the simulated data even though in the latter

case we specified that a change in catchability was not responsible for the declines.
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This underscores the importance of using simulated data to investigate further the

plausibility of the models.

We have shown that simply assuming the trawl survey index to be proportional

to biomass can result in incorrect estimates of population change. This is of concern

because this trawl survey is being used increasingly for population assessments of by-

catch species because it is frequently the only source of long-term fishery-independent

time-series data on the east coast of Canada. Non-proportionality may be an issue

for any species whose distribution is not well represented in the trawl survey design.

While it maybe tempting to discard indices that have questionable proportionality

relationships in favor of other time-series data with known relationships to popula-

tion biomass, this approach is unsatisfactory for a number of reasons. First, the index

to biomass relationship is poorly known for most bycatch species and choosing one

index over another will likely be ad hoc. Second, the potentially non-proportional

index may be the longest time-series available and other indices may have little con-

trast and only begin after population declines have already occurred. Discarding long

time-series has the potential to create shifting baselines (Pauly, 1995) where current

estimates of population status are viewed from a recent perspective. This can lead

to underestimates of population decline (Rosenberg et al., 2005). Even with the in-

clusion of these relatively long time-series data, a lack of baseline data will still be a

challenge because they began on the east coast of Canada in 1970, which is well after

large scale industrial fishing began.

Although we were limited to using broad flat priors in this analysis, the Bayesian

approach allows for ancillary information to be incorporated through the priors to

reduce uncertainty in the parameter and biomass estimates and hence is particularly

useful for data-poor species (Chaloupka and Balazs, 2007; Swain et al., 2009). For

example, demographic methods can be used to construct a prior for r (McAllister

et al., 2001). We abandoned efforts to develop an informative r prior as the dearth

of life history data and current uncertainty in aging would have resulted in a highly

diffuse and bi-modal prior that would have added little to the analysis. Indeed, pre-

liminary radio-carbon bomb calibration of cusk otoliths suggest that 95% of cusk are

mature by 15 years and maximum age may be over 40 (P. Comeau personal communi-

cation, 2008; Marine Fish Division, Bedford Institute of Oceanography, Fisheries and
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Oceans Canada, Box 1006, 1 Challenger Drive Dartmouth, NS B2Y 4A2 Canada),

which is twice that of earlier estimates (COSEWIC, 2003). Developing a credible

prior for carrying capacity is also problematic as the true historical biomass of cusk

before the onset of fishing will never be known with much precision. However, a joint

posterior probability plot (not shown) of the r and K parameters indicate substan-

tial confounding between the two. Although this can cause problems for parameter

estimation, it also means an informative prior on r also provides information for the

K parameter as well (McAllister et al., 2001).

The stochastic projections suggest that the current landing limit of 750 t should

be sufficient to increase population biomass. However, the retrospective analysis

we conducted by removing the last seven years of data indicate that biomass should

have increased over the last seven years but this has not been observed. This suggests

that our projections have limited value for determining if biomass increases should

be expected at the current landing limit and calls into question the utility of our

parameter estimates for predicting population recovery. The lack of recovery may be

due to a number of factors. First, landing limits may be ineffective because of high

bycatch mortality. Although landing limits were designed to reduce fishery induced

mortality, they may be ineffective because, as a relatively deep water species, cusk

may suffer substantial barotrauma when captured. There are no estimates of bycatch

mortality in the longline fishery, but estimates in the lobster fishery, which operates

at similar depths, are >50% (DFO, 2008). In our analyses, we equated landings

with fishery removals and therefore we almost certainly underestimated true fishing

mortality after 1999 when the first landings limit was implemented. Second, the

Schaefer model does not include age-structure or recruitment time lags, and therefore

our projections may exaggerate the predicted recovery rate. Evidence that time

lags may be important can be seen in Figure 3.2 where substantial biomass was

removed in the early 1970s without a concurrent decline in the trawl survey index.

Also, the symmetrical biomass production relationship of the Schaefer model may

be unrealistic if age structure has a strong influence on the population production

rate (Maunder, 2003). Third, abnormally poor recruitment between 2000 and 2007

could also explain the lack of recovery. Alternatively, a regime change of reduced

productivity or increased natural mortality in the latter period of the time series
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would result in a decrease population growth rate and be consistent with our poor

model predictions. We attempted to model this by estimating separate r parameters

before and after, the mid-90’s, but model fits did not improve, nor did the predictive

ability of the model. Unfortunately, there are limited data to test these hypotheses.

In conclusion, our analysis suggests that the cusk fishery-independent trawl survey

index suffers from hyperdepletion, which, if not accounted for results in exaggerated

estimates of population decline. The high levels of uncertainty in our parameter

estimates are a result of the limited data available as well as the low contrast and

“one-way trip” trends in both catch rate indices. High levels of uncertainty in pop-

ulation parameters and historical biomass levels are characteristic of many bycatch

species and management strategies that include these levels of uncertainty need to be

employed. Managers also may seek to increase monitoring to achieve greater certainty

in parameter estimates, and hence greater management control of this species. The

effectiveness of the current landings limit to aid population recovery is uncertain as

our robustness tests suggest that the population should be recovering, but monitoring

data suggest that it is not. Further research is needed to estimate bycatch rates in

the longline fishery to determine whether a landings limit is an effective management

strategy for cusk recovery. In addition, further aging and age validation research

is needed so that more realistic models, for example, that include time lags in re-

cruitment can be used (e.g. (Meyer and Millar, 1999b; Millar and Meyer, 2000)).

Although we were unable to include life-history information through the use of in-

formative priors, the Bayesian approach is promising for the assessment of poorly

monitored species where data is limited and time series have little information on

population parameters.



Chapter 4

Changes in the Distribution and Abundance of Different Size

Classes of Thorny Skate (Amblyraja radiata) on the Scotian

Shelf

4.1 Introduction

Large scale changes in marine ecosystems resulting from environmental change

and/or exploitation by fisheries arise from both direct and indirect mechanisms and

may not be reversible within expected time scales (Bundy et al., 2009; Petrie et al.,

2009; Bundy and Fanning, 2005). The abundance and distribution of marine fish pop-

ulations are a function of a myriad of top-down and bottom-up controls (Baum and

Worm, 2009) such as temperature, depth, environmental variability, climate change

(Rijnsdorp et al., 2009), fishery exploitation and predator and prey dynamics and dis-

tribution (Swain and Benôıt, 2006). Disentangling the causal mechanisms responsible

for changes in population distribution and abundance is rarely trivial and becomes

increasingly complex when indirect effects via cascading trophic interactions are con-

sidered (Fung et al., 2013). This can have wide-ranging consequence on ecosystem

structure and stability (Petrie et al., 2009; Myers et al., 2007) and presents challenges

and potentially difficult choices for fisheries and ecosystem management (Hutchings

and Reynolds, 2004).

The relative abundance and distribution of thorny skate (Amblyraja radiate) has

changed dramatically over the past forty years in the northwest Atlantic (Swain and

Benôıt, 2006; Shackell et al., 2005). Thorny skate has consequently been designated

as a species of special concern by the Committee on the Status of Endangered Wildlife

in Canada (COSEWIC, 2012). Population declines in the 1970s to the early 1990s

may be a result of high levels of fishing mortality from thorny skate being incidentally

captured in the large commercial groundfish fisheries (Swain et al., 2013) which were

largely closed in the early 1990s due to the collapse of many groundfish populations

60
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in Atlantic Canada. Limited fishery mortality on thorny skates occurred from 1994

to 2006 during a directed fishery for winter skate (Leucoraja ocellata) on the eastern

Scotian Shelf from 1994 to 2006 where larger thorny skate made up approximately

5% of retained landings (Swain et al., 2013; DFO, 2006). Despite the near elimination

of all major sources of direct and indirect fishing mortality thorny skate populations

have continued to decline. Like many elamobranchs, skates may be at greater risk

of extinction because of a relatively low resilience to heavy exploitation due to its

relatively slow growth rate, late maturation, and low fecundity compared to teleosts

(Dulvy and Reynolds, 2002).

Changes in distribution are frequently concurrent with large changes in abundance

(Borregaard and Rahbek, 2010; Holt et al., 2002; Swain and Sinclair, 1994). An ideal

free distribution (IFD) model can be used to explain these changes and predicts range

contraction at reduced levels of abundance (Shackell et al., 2005; Shepherd and Litvak,

2004). A central assumption of this model is that animals have complete information

about all available environments and choose to occupy habitats that maximize their

reproductive success. Habitat suitability is a function of the availability of biotic and

abiotic resources and the demand on these resources from intraspecies competition

(Borregaard and Rahbek, 2010; Shepherd and Litvak, 2004). At elevated levels of

abundance, competition for resources (e.g. food, predation avoidance, access to re-

productive sites etc) reduce the habitat quality as more animals attempt to exploit

a common limiting resource (Shackell et al., 2005). As this occurs, other habitats

that are less suitable in the absence of competition become relatively more attrac-

tive. This resultant pattern in distribution due to habitat choice exhibits itself as

density dependant habitat selection (DDHS; (Shepherd and Litvak, 2004)). Habitat

choice and resource needs are not static throughout the life history of most marine

fishes and partitioning a population into important life stages can help to understand

the causal mechanisms that govern its distribution patterns (Gerber et al., 2005).

It can be important to account for the demographic structure and spatial distri-

bution of a population to understand how populations have been affected by fishing,

predation, or habitat loss to develop effective recovery strategies for populations re-

duced to low levels of abundance (Miller and Rudolf, 2011; Gerber et al., 2005).

Indeed, for many fish species, reproductive potential is strongly linked to maturity
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schedules and to the age and size of the reproductive component of the population

(Trippel et al., 1997). Further, ontogentic habitat shifts are common in mobile marine

organisms and distribution can be differentially influenced by predators that target

prey at different life stages (Snover, 2008a). Habitat and diet preferences can also

have an ontogenetic basis and interactions between these factors is important to iden-

tify critical habitat and important trophic linkages that may be limiting recovery and

changes in distribution (Scharf et al., 2000).

The continued decline and changes in distribution of thorny skate on the Sco-

tian Shelf despite removal of fishing mortality point to a need to identify potential

mechanisms that may be driving these patterns. Here, I compare and contrast the

demographic components of the thorny skate population on the Scotian Shelf and

how each exhibit different patterns in changes in abundance, range and distribution

over the past 44 years.

4.2 Materials and Methods

4.2.1 Fisheries & Abiotic Data

Time-series data for thorny skate are from the summer bottom-trawl survey that has

been conducted each July since 1970 by Fisheries and Ocean Canada (DFO). The

survey covers the majority of the Scotian Shelf (Figure 4.1) and follows a stratified

random design with stratification based on depth and geographic area and sampling

intensity proportional to stratum size. Number of tows per year has been inconsistent

with more tows recently compared to the beginning of the survey (mean of 139 tows

per year in the 1970’s compared to 203 tows per year from 2003 to 2013). My area

of interest are the 48 strata that comprise the 4VWX Northwest Atlantic Fisheries

Organization (NAFO) area. All strata were sampled at least once per year with the

exception of one stratum that was not surveyed in 1984 (stratum 474). The stratified

mean catch per standard 1.75 nautical mile tow (1 international nautical mile = 1.852

km) is used as the basis for an index of relative abundance. More detailed description

about sampling design is summarized in Shackell et al. (2005). All statistical analyses

were done in the statistical programming environment R (R Core Team, 2013).
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Figure 4.1: Survey area of the Fisheries and Oceans Canada annual bottom trawl

survey on the Scotian Shelf. The area covered by strata 443–445 is a bathymetrically

complex area of mixed depths, with depths ≤ 50 fathoms comprising stratum 443,

51–100 fathoms stratum 444, and >100 fathoms 445. The depiction of these strata

in the figures do not show their actual geographic locations, which are discontinuous

within the 443–445 area.
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4.2.2 Trends in Population Abundance and Geographical Range

I partitioned catches of thorny skate into the ecologically relevant size classes identified

in Swain et al. (2013) which corresponded to small and large juveniles (≤ 32cm; >32

and ≤ 53cm, respectively), and adults (>53cm). I describe yearly variation in the

relative abundance of partitioned size classes and sexes by calculating the stratified

mean catch per standard tow in the summer survey for the NAFO division 4VWX as

follows:

N̄t =
L∑

h=1

Ah

AT

ȳht (4.1)

where N̄t is the mean standardized catch rate for year t, Ah is the area of stratum h,

AT is the total area surveyed, L is the number of strata, and ȳht is the mean catch

rate of each size class and sex in each stratum h in year t. A third category for sexes

combined was also calculated. AT was 50032 nm2 in all years, except 1984 where

one stratum was not sampled reducing the total area sampled to 49871 nm2 for that

year. I used Local Polynomial Regression Fitting (LOESS) to smooth yearly catch

rate variation and to estimate total declines in relative abundance.

I calculated the minimum area over which 95% of skates were distributed as a

measure of geographic range for each sex and size class by first generating a cumulative

distribution function (cdf ) using the following equation for each sex and size class

(Swain and Morin, 1996).

Ft(c) = 100

∑
L

h=1

∑
nht

i=1

Ah

nht

XhitI
∑

L

h=1

∑
nht

i=1

Ah

nht

Xhit

where I = {1 if Xhi≤ c

0 otherwise
(4.2)

Ft(c) provides an estimate of the percentage of skate (of a given size class and

sex for each year) that occur at a local density of c or less. Xhit is the number of

skate captured in stratum h, in tow i, in year t and nht is the number of tows in

stratum h in year t. Because the equation calculates estimates of Ft(c) at observed

catch levels, I used linear interpolation to approximate Ft(c) at desired discrete values

when needed. I then used the following equation to calculate the area over which the

most sparsely distributed 5% of skate are estimated to occur for each size group and

sex:

Gt(c) = 100
L∑

h=1

nht∑

i=1

Ah

nht

XhitI where I = {1 if Xhi≤ c

0 othewise
(4.3)
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where Gt(c5%) is the estimated area containing the most sparsely distributed 5%

of thorny skate for each year. Finally, I calculated the minimum area containing 95%

of skate (Dt95) by:

Dt95 = AT −Gt(c5%) (4.4)

I calculated estimates ofDt50 in a similar manner. Differences greater than a factor

of two between estimates of Dt95 and Dt50 can give a signal of non-homogenous dis-

tribution throughout a species range and is indicative that density dependent habitat

selection may exist. An IFD model predicts that declines in abundance are expected

to be greater in suboptimal compared to preferred habitats which would manifest

itself in large differences between estimates of Dt95 and Dt50. Estimates of Dt95 and

Dt50 were standardized to the proportion of total area sampled (i.e bounded by 0

and 1.0) to accommodate 1984 when one stratum was not sampled. I used Pearson

product-moment correlations of the natural log of abundance and the arcsine square-

root transformed distribution index for each sex and size group (Shackell et al., 2005)

to test the relationship between relative abundance and area occupied. Next, I used

estimates of stock area that contained 95% of thorny skates in a linear model to

test whether size class, sex or logged yearly abundance were significant in predicting

total area occupied. The arcsine transformed proportion of the total area area oc-

cupied that contained at least 95% of thorny skate was the dependent variable and

was regressed against the natural logarithm of relative abundance and the categorical

variables size class and sex.

4.2.3 Regional Variation in Rates of Local Density Change

Under IFD theory, catch rates in marginal habitats change more quickly relative to

shelf wide estimates of relative abundance, and conversely, core habitat areas should

either decline more slowly or not decline at all. To test whether stratum level catch

rates have changed linearly with stock abundance, I use a power curve relationship

between stratum level catch rates to the shelf wide stratified mean catch rate per tow

using the following equation:

yhit = αhN̄
βh

t (4.5)
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where yhit is the skate catch (for a particular length and sex) in tow i of stratum h

in year t and N̄t is the shelf wide relative abundance estimates calculated in equation

(4.1) in year t (i.e the yearly stratified mean catch per tow of each age and sex).

Estimates of βh are used as a signal to identify core habitat areas. When stratum

level catch rates decline more quickly than N̄t, a relationship known as hyperdepletion

occurs (resulting in estimates of β > 1) and is used as a signal to identify marginal

habitat areas. Conversely, core habitat areas would be expected to exhibit a hyper-

stable relationship where stratum level catch rates remain high despite declines in

shelf wide abundance and is identified when β < 1. I evaluated Poisson and negative

binomial (Venables and Ripley, 2002) distributions both with a log-link function. I

was concerned that the low catchability of skates to the trawl gear may result in over

dispersion that could not be fully accommodated by the negative binomial and there-

fore I also fit a zero-inflated negative binomial model (ZINB). I used a likelihood ratio

test for model selection to choose between the Poisson model and negative binomial

model and the Vuong’s test to compare the negative binomial to the ZINB model

(Zeileis et al., 2008)

I tested for evidence of DDHS by using weighted correlation of my estimates of

β (weighted by the inverse of the standard errors (Pasek et al., 2012)) with an index

of habitat quality which I defined to be the natural logarithm of the stratum level

mean catch rate of the years with relative abundance between the 25 – 50% quantiles

of LOESS smoothed estimates of relative abundance. Although these bounds are

somewhat arbitrary, I wanted to restrict ranges of abundance to periods where habitat

choice was not restricted by high population density (Gillis and Kramer, 1987) or a

complete loss of signal due to stratum level extirpation caused by low population

size. I also tested for correlation between estimates of β and categorical assignments

of habitat quality based on the mean depth of each stratum. Categories of mean

stratum depth were assign as shallow, midrange, deep or mixed based on depths of

≤ 50, 51 - 100, > 100 fathoms, and mixed depths respectively (Simon and Comeau,

1994).
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4.2.4 Distribution in Periods of Low Versus High Abundance

I test for shifts in distribution between periods of low and high abundance by compar-

ing catch rates from the years that had catches in the lowest 20th, to the those in the

upper 80th, quantiles obtained from the LOESS smoothed estimates of regional strat-

ified mean catch rates calculated using equation 4.1. This corresponded to nine years

for each category and size class. I used a negative binomial generalized linear model

with a log link function and regressed tow catches with strata, abundance period

(either high or low) and their interaction, and year nested in abundance period.

4.3 Results

4.3.1 Population Trends and Geographical Range

All size classes of thorny skate have shown steep declines in relative abundance in the

DFO summer trawl over the last 44 years (Figure 4.2). There was little difference

in overall rates of decline between sexes within each size class. The greatest decline

was observed in the adult size class, a reduction of 95% in relative abundance by

2013 from its peak at the beginning of the time series (sexes combined). For the

first time, no adult female thorny skates were captured in the summer survey in 2013.

Large juveniles also showed a substantial reduction (86%) in relative abundance (sexes

combined) by 2013 after a peak biomass in 1980. Small juveniles showed the smallest,

yet still substantial, decline of 67% after peaking in 1979. The minimum area over

which 95% of skates were distributed (D95; sexes aggregated) was either at, or near,

its maximum for all size classes at the beginning of time series (Figure 4.3). Similar to

changes in relative abundance, adults and large juveniles had the largest reductions

in estimates of area occupied compared to more modest reductions in range observed

for small juveniles. Based on LOESS smoothed estimates, adults and large juveniles

started with the widest distribution, being found across 45.6 and 39.2% of 4VWX at

their maximum but declined to 3.6 and 9.3% respectively by 2013. Small juveniles

were distributed less broadly at 26% of 4VWX, however, they showed lesser but still

substantial reductions by 2013 (down to 10%). Maximum estimates of D50 for adult,

large and small juvenile thorny skates were 10.1, 7.9 and 4.3% and declined to 1.1,

2.3 and 2.2 % by 2013, respectively.
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Figure 4.2: Stratified mean catch per tow of thorny skate in 4VWX for juvenile,
large juveniles, and adult size classes from 1970 – 2013. Trend line is based on local
polynomial regression fitting (LOESS) and shaded region is the 95% confidence region
of the LOESS smooth.

Pearson product-moment correlations between the arcsine square-root transformed

D95 distribution index and the natural logarithm of relative abundance were highly

significant for adults and large juveniles of both sexes but were either marginally or

not significant for small juveniles (Table 4.1 & Figure 4.4). The level of correlation

was substantially less for the D50 index such that there was no significant correlation

for area occupied and relative abundance for small juveniles. These results are further

supported by the generalized linear model that identified size-class and abundance,

but not sex, as significant factors in area occupied and explained 64% of the variation

in D95 and 46% of the variation in D50 (Table 4.2). Effects of size-class and relative

abundance were highly significant, and those terms and their interaction accounted

for the majority of explained variation in stock area. Because sex was not a significant

predictor of stock area, all further analyses aggregate sexes within each size-class.
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Sex Size class Correlation p-value 2.5% 97.5%
Female Small juvenile 0.32 0.03 0.0288 0.57
Male Small juvenile 0.21 0.16 -0.0880 0.48
Sexes combined Small juvenile 0.31 0.04 0.0190 0.56
Female Large juvenile 0.82 0.00 0.6915 0.90
Male Large juvenile 0.78 0.00 0.6281 0.87
Sexes combined Large juvenile 0.75 0.00 0.5850 0.86
Female Adult 0.95 0.00 0.9150 0.97
Male Adult 0.90 0.00 0.8255 0.95
Sexes combined Adult 0.92 0.00 0.8617 0.96
Female Stages combined 0.83 0.00 0.7024 0.90
Male Stages combined 0.70 0.00 0.5126 0.83
Sexes combined Stages combined 0.78 0.00 0.6228 0.87

Table 4.1: Pearson Product correlations between annual indices of stock area (D95;
arcsine square-root-transformed) and the natural log of relative abundance
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Figure 4.3: Minimum area containing 50 and 95% of thorny skate (sexes combined)
in 4VWX from 1970 – 2013. Trend line is based on local polynomial regression fitting
(LOESS) and shaded region is the 95% confidence region of the LOESS smooth.



70

D95 as D50 as
Variable R

2
D95 proportion R

2
R

2
D50 proportion R

2

Sex 64% 0.0 46% 0.5
Size class 7.4 12.4
Abundance 45.3 24.9
Sex × size class 0.1 1.1
Sex × abundance 0.2 1.0
Size class × abundance 45.1 54
Sex × size class × abundance 1.8 6

Table 4.2: Effects of sex, size class, and relative abundance on area occupied (D95

or D50) for thorny skate in the 4VWX area. Values are the percentage of explained
variation as a proportion of R2 of the model of each term. Asterisks indicate the
significance level (P =0.01; P =0.001; P<0.0001).

Measures of D95 likely include a larger proportion of less ideal habitats compared

to estimates of D50. For example, at the beginning of the time series 95% of adults

were found over 45.6% of the shelf compared to 50% of the adults being found on

10.1% of the shelf. Correlations between stock area and relative abundance were

highly significant for large juveniles and adults for both levels of stock area (D95 or

D50) giving a strong signal for DDHS, however, correlations were only marginally or

not significant for small juveniles (Figure 4.4). Small juveniles showed only a small

correlation between D95 and relative abundance but correlation was absent between

the relative abundance and the measure that effectively focused on core habitats (D50)

suggesting that strong DDHS does not occur in many areas where small juveniles are

found (Figure 4.4).
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Figure 4.4: Pearson product correlation between the arcsine square-root-transformed
minimum area containing 50% and 95% of thorny skate and the natural logarithm of
the mean stratified catch per tow in 4VWX from 1970 – 2013. See Tables 4.1 & 4.3
for numerical estimates.

Sex Size class Correlation p-value 2.5% 97.5%
Female Small juvenile -0.05 0.73 -0.3444 0.25
Male Small juvenile -0.06 0.70 -0.3503 0.24
Sexes combined Small juvenile -0.12 0.44 -0.4025 0.18
Female Large juvenile 0.53 0.00 0.2710 0.71
Male Large juvenile 0.40 0.01 0.1161 0.62
Sexes combined Large juvenile 0.43 0.00 0.1559 0.65
Female Adult 0.89 0.00 0.8040 0.94
Male Adult 0.66 0.00 0.4570 0.80
Sexes combined Adult 0.74 0.00 0.5732 0.85
Female Stages combined 0.48 0.00 0.2186 0.68
Male Stages combined 0.40 0.01 0.1112 0.62
Sexes combined Stages combined 0.44 0.00 0.1686 0.65

Table 4.3: Pearson Product correlations between annual indices of stock area (D50;
arcsine square-root-transformed) and the natural log of relative abundance
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4.3.2 Regional Variation in Rates of Local Density Change

I found the negative binomial model was selected over the Poisson model for more

than 90% of strata for all size classes and 65% of the ZINB models. Therefore, I

used the negative binomial distribution for all model comparisons. The majority of

models converged, however, 2, 1, and 2 stratum did not converge for small and large

juveniles and adults, respectively and thus were omitted from further analysis.

Small juveniles had the largest number of strata where estimates of β were not

significantly different from zero (Table 4.4) and no trend between regional and local

catch rates was identified. Not surprisingly because of the non-significance of the

Pearson Product Correlation tests for small juveniles, the majority of strata were

either proportional (n=17) or not significant (n=23) to regional trends in abundance

and only one small stratum (stratum 451) located in the most south easterly edge of

the shelf was hyperstable (Figure 4.5). Stratum level catch rates of large juveniles

were mostly proportional (n=19) or not significant (n=10), however, almost one-

third of the strata were hyperdepleted (n=15) and only three strata were hyperstable

(Figure 4.6). Adults had the same number of hyperdepleted strata and were generally

the same strata that exhibited hyperdepletion for large juveniles. Adults also had

the most proportional (n=25) and hyperstable (n=4) strata and only two were not

significant (Figure 4.7).

Combined Small Large
size classes juveniles juveniles Adult Total

Hyperdepleted 21 5 15 15 56
Hyperstable 4 1 3 4 12
Not significant 8 23 10 2 43
Proportional 15 17 19 25 76
Total 48 46 47 46 187

Table 4.4: Negative binomial model fit results of relationship between stratum level
catch rates to yearly stratified mean catch rates for thorny skate in 4VWX. See Figures
4.5 to 4.7.

Generally, very few strata were identified as being hyperstable. Not surprisingly,

most strata were identified as being proportional to regional catch rates with the

exception of small juveniles that were dominated by strata where no relationship
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Figure 4.5: Proportionality of stratum catch rates for small juvenile thorny skates
relative to the yearly stratified mean catch rate (skates per tow) in 4VWX from 1970
– 2013. Note that strata 443, 444, and 445 are within the same area but are depth
stratified.
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Figure 4.6: Proportionality of stratum catch rates for large juvenile thorny skates
relative to the yearly stratified mean catch rate (skates per tow) in 4VWX from 1970
– 2013. Note that strata 443, 444, and 445 are within the same area but are depth
stratified.
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Figure 4.7: Proportionality of stratum catch rates for adult thorny skates relative to
the yearly stratified mean catch rate (skates per tow) in 4VWX from 1970 – 2013.
Note that strata 443, 444, and 445 are within the same area but are depth stratified.



76

was identified (i.e. non-signficant). Hyperdepletion was found to occur more than

four times as often as hyperstability. The large difference between Dt95 and Dt50 for

large juveniles and adults (Figure 4.3) is an indication that thorny skates have been

extirpated from many strata after the large declines in relative abundance. Indeed,

a large number of strata that were identified to have local catch rates that were

hyperdepleted had extremely low or no catches by 2013. Stratum 451 that is a deep

stratum on the SE slope of Banquereau Bank in the south eastern corner of the shelf

(Figure 4.1) had significant and negative estimates for (β: -1.59 (-2.58 – -0.61)) for

small juveniles indicating that catches increased in this stratum while population

declined. Large juveniles and adults also had negative estimates for β for stratum

451, however, upper confidence limits spanned zero and thus were considered to be

non-significant.

The weighted correlation tests between estimates of β and my index of habitat

quality were significant for large juvenile and adults providing further evidence for

DDHS for these size classes (Figure 4.8). Tabulation of the categories of β to mean

stratum depth (Tables 4.5 – 4.7) indicated that all hyperstable strata were either

of midrange or deep depth and the majority of hyperdepleted strata were shallow

(Figure 4.9).

hyper hyper not not
proportional depleted stable significant modelled Total

Shallow 7 5 0 4 1 17
Midrange 6 0 0 10 0 16
Deep 3 0 1 9 1 14
Mixed 1 0 0 0 0 1
Total 17 5 1 23 2 48

Table 4.5: Strata depth and proportionality relationship for small juvenile thorny
skate.
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Figure 4.8: Relationship between habitat quality and proportionality of strata level

catches to survey area relative abundance. Index of habitat quality is the log of the

strata level mean of the years with relative abundance within the 25 to 50% quantiles

maximum stratified mean catch per tow for each stage estimated from a LOESS

smoothing algorithm. β is the estimated proportionality relationship parameter of the

strata level catch rates and the area wide yearly stratified mean abundance described

earlier where β > 1, equal to 1, and < 1 indicate the strata is either hyperdepleted,

proportional, or hyperstable respectively, relative to the stratified mean catch rate

index. Only strata with significant estimates of β and strata with mean catches

> 0 are modelled. Error bars are the 95% confidence limits of the estimates of β.

Regression is weighted by the inverse of the standard error for estimates of β and

non-significant estimates of β had a weight of zero.
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hyper hyper not not
proportional depleted stable significant modelled Total

Shallow 7 8 0 1 1 17
Midrange 8 3 3 2 0 16
Deep 3 4 0 7 0 14
Mixed 1 0 0 0 0 1
Total 19 15 3 10 1 48

Table 4.6: Strata depth and proportionality relationship for large juvenile thorny
skate.

hyper hyper not not
proportional depleted stable significant modelled Total

Shallow 9 8 0 0 0 17
Midrange 8 5 1 0 2 16
Deep 8 1 3 2 0 14
Mixed 0 1 0 0 0 1
Total 25 15 4 2 2 48

Table 4.7: Strata depth and proportionality relationship for adult thorny skate.

4.3.3 Distribution in Periods of Low Versus High Abundance

Large shifts in distribution were apparent for both large juveniles and adults but

were much less pronounced for small juveniles. Comparison of the catch rates of the

different size classes showed a hollowing-out of the species range for all size classes

but was most extreme for adults (see Figures B.1 – B.3).

Indeed, abundant catches of adults in 1970 have been reduced to less than 10

individuals in 2013 and were restricted to the most eastern part of the Scotian Shelf.

Once I adjusted catch rates to a common mean abundance to focus on changes in

distribution during the nine years of highest and lowest abundance, range shifts were

similarly substantial and showed strong shifts from a shelf-wide distribution to being

centred on the most north and south eastern parts of the shelf and the upper Bay

of Fundy (Figures 4.10 – 4.12). Direct comparisons of adjusted catch rates showed

a similar pattern for all size classes. Strata 440–452 which are found on the eastern

portion of the shelf exhibited similar adjusted catch rates in the high abundance

period compared to remaining strata (453–495) that showed lower adjusted catch
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Figure 4.9: Relationship between habitat type (based on depth) and proportionality
of strata level catches to survey area relative abundance. β is the estimated pro-
portionality relationship parameter of the strata level catch rates and the area wide
yearly stratified mean abundance described earlier where β > 1, equal to 1, and < 1
indicate the strata is either hyperdepleted, proportional, or hyperstable respectively,
relative to the stratified mean catch rate index. Only strata with significant estimates
of β and strata with mean catches > 0 are modelled. Regression is weighted by the
inverse of the standard error for estimates of β and non-significant estimates of β had
a weight of zero..
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rates during the low abundance period (Figure 4.13). The most striking change was

observed in the adult size-class where catches were zero in many strata during the

nine-year period of low abundance.

Models with terms for strata, abundance period, their interaction, and year nested

in abundance period showed that both small and large juveniles had more significant

differences in the interaction term (both 21 out of the 48 strata) compared to adults

that only had six. During periods of high abundance, however, adults were found

in all strata but were absent from 22 strata during the period of low abundance.

Juveniles were absent from fewer strata with small and large juveniles being absent

from 2 and 1 strata during periods of high abundance and absent from 13 and 12

during the low abundance period, respectively.

4.4 Discussion

The large declines in abundance of all size classes of thorny skates brings into

question the long-term viability of the population on the Scotian Shelf. Indeed, no

adult females were captured in 2013 which is a first for the 44 year long research survey.

Similarly large declines in area occupied, particularly for the large juvenile and adult

size classes, resulted in a distribution restricted primarily to the most easterly and

western areas of the Scotian Shelf. Associated declines in relative abundance and

area occupied gave strong evidence for DDHS for large juveniles and adults but was

relatively weak for small juveniles.

Adults had the largest distribution over the shelf at the beginning of the time-series

compared to both juvenile size classes and also showed the greatest proportional de-

cline in both relative abundance and stock area. The initial broader geographic range

of adults could reflect a wider habitat and/or dietary breadth as there are ontogenetic

shifts in the diet of thorny skate. The diet of small juveniles is primarily made up of

invertebrates and increasingly focuses on fishes as they get older. For example, fish in

the family Gadidae and offal historically made up more than 50% of the diet of large

thorny skates compared to juveniles where fish were almost absent from their diet

(Templeman, 1982). The differences in the strength of correlation between relative

abundance and stock area for the different size classes of thorny skate may have a

basis in the diet preferences as many Gadoid prey species have also exhibited large
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Figure 4.10: Relative abundance of small juvenile thorny skates years of highest and
lowest (90 and 10% quantiles) mean catch per tow.
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Figure 4.11: Distribution of large juveniles thorny skates during six years of highest
and lowest (90 and 10% quantiles) mean catch per tow.
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Figure 4.12: Distribution of adult thorny skates during six years of highest and lowest
(90 and 10% quantiles) mean catch per tow.
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mum average catch during each period of low (blue bars) or high abundance (orange
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declines in abundance and distribution (Shackell et al., 2005). Alternatively, predator

avoidance, from both fishing and/or potentially grey seals (Halichoerus grypus), may

also be a contributing driver for these changes. For example, there was a directed

fishery on the eastern Scotian Shelf from 1994 to 2006 for winter skate that also

captured large thorny skate although no obvious changes in the rate of population

decline can be seen in the catch rate index over this time period. Alternatively, grey

seals have exhibited a near exponential increase in abundance on the eastern Scotian

Shelf since the 1970s due to recovery from hunting (Fu et al., 2012; DFO, 2011b).

The seal population on the Scotian Shelf is now at the highest population observed

in the past hundred years (DFO, 2011a) and the majority of their diet is fish (Bowen

and Harrison, 1994).

The analysis that correlated strata proportionality to the index of habitat quality

found strong evidence for DDHS for large juveniles and adults but not so for small

juveniles (Figure 4.8). These results were not driven by the number of core habitat

areas identified but rather by the number of hyperdepleted strata identified for each

size class. Indeed, there were generally four times more hyperdepleted than hyper-

statble strata for all size classes (Table 4.4) and no shallow strata were identified

as being hyperstable. The negative estimate of β for small juveniles in the deep

strata along the edge of Banquereau Bank (stratum 451) indicates that abundance

within this stratum increased while population abundance decreased. This stratum

also maintained comparatively higher densities of large juveniles and adults, however,

estimates of β spanned zero and were thus deemed to not be significant. Skate re-

distributing themselves to deeper areas is consistent with the observation that seals

most commonly forage in shallower water (Breed et al., 2009) and this observed shift

in habitat usage towards deeper depths may be a response to increased predation risk

from seals. Further research is needed to investigate these patterns.

Large changes in range observed during the contrast between periods of low and

high abundance were strongest in adults compared to the two juvenile size-classes

Catches, however, of adults have always been low giving the tests comparing periods

of low and high abundance low statistical power. For example, far fewer strata showed

significant differences in the adult size-class even though all other test suggest a very

strong DDHS effect and even extirpation from many local habitats during periods
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of low abundance. As mentioned previously, low statistical power is frequently a

problem when estimating patterns and trends of species with low catchability and

low abundance (Blanchard et al., 2008) and this is an example of how a variety of

approaches are needed.

The present study demonstrates how different size-classes of thorny skate are

differentially changing in both abundance and distribution on the Scotian Shelf. The

extremely large declines in the reproductively mature size-class of thorny skate and

its extirpation from a large portion of the shelf suggests that the populations viability

may be in danger. The large declines of large bodied thorny skates in terms of both

abundance and restricted distribution to the eastern portion of the Scotian Shelf and

the upper Bay of Fundy has implications for delineating protected areas to encourage

population recovery or stop further declines.



Chapter 5

Extinction Risk and Overfishing: Reconciling Conservation

and Fisheries Perspectives on the Status of Marine Fishes

5.1 Introduction

Human impacts on natural ecosystems are diverse and accelerating (MEA (Mil-

lennium Ecosystem Assessment), 2005; Halpern et al., 2008). On land, where the

primary threat to wildlife is habitat loss, recent comprehensive assessments of birds,

mammals, and amphibians have revealed 13%, 21%, and 30% of these species to be

threatened with a heightened risk of extinction, respectively (Hoffmann et al., 2010).

But whereas there is a general consensus in the scientific community about the status

of terrestrial species (Butchart et al., 2010; Hoffmann et al., 2010), the state of marine

species, and in particular marine fishes, remains deeply controversial (Worm et al.,

2006; Hilborn, 2007b; Longhurst, 2007; Branch, 2008; Pauly, 2009; Branch et al.,

2011).

Much of the controversy over the status of marine fishes can be traced to divergent

beliefs about how these species should be regarded - as commodities to be managed

for maximum productivity, or as wildlife, and integral components of diverse ecosys-

tems (Reynolds et al., 2005; Salomon et al., 2011). Within fisheries contexts, the

most valuable populations are evaluated using complex population dynamics mod-

els, termed stock assessments, that estimate biomass trajectories as well as reference

points against which to benchmark population status (Hilborn and Stokes, 2010). In

contrast, conservation evaluations typically focus on extinction risk; for exploited ma-

rine species this is most commonly evaluated against the rate of change in abundance

(Mace et al., 2008). Under the most widely used conservation framework, the Inter-

national Union for Conservation of Nature’s (IUCN) Red List of Threatened Species,

Chapter published: Davies, T.D. and J.K. Baum. 2012. Extinction risk and over fishing:
reconciling conservation and fisheries perspectives on the status of marine fishes. Sci. Rep. (online:
10.1038 /srep00561)
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species that have declined ≥50% within the most recent ten year or three generation

period (whichever is longer) are considered to be threatened with extinction (IUCN

Standards and Petitions Subcommittee, 2011).

A longstanding and unresolved aspect of this debate is the relevance of Red List

evaluations to marine fishes. Critics have argued that these conservation evaluations

exaggerate threat status for marine fishes, positing these species have low extinction

risk relative to other vertebrates, may still number in the millions of individuals when

listed as threatened, and that declines in abundance are usually the result of managed

exploitation (Matsuda et al., 1998; Musick, 1999; Powles et al., 2000; Punt, 2000; FAO,

2002; Mace et al., 2002; Mace, 2004). Embedded in these criticisms is the question of

whether the Red List and fisheries assessments disagree as to which populations are

in trouble, which is our focus herein, or whether they agree but still differ as to what

the appropriate management response should be for populations deemed to be in

trouble. Disagreement about the latter stems from the fact that there are significant

biological differences between falling below a fishery reference point, which might

signal impaired productivity or recruitment, and being threatened with extinction.

While populations threatened with extinction require bold management action, such

as mandatory prohibitions on all forms of human-induced mortality, overfished ones

may require only a moderate management response, such as catch restrictions to stop

or reverse their declines. Critics argue that, in the worst cases, threat listings could

lead to unnecessary fisheries closures with high associated socioeconomic costs (Rice

and Legacè, 2007). Despite these concerns, momentum for marine fish conservation

listings is growing (Figure 5.1; IUCN (2011); GMSA (2012)). In light of this trend,

and because the relevance of extinction risk criteria to marine fishes and the state of

marine fisheries are both still hotly debated (COSEWIC, 2005; Worm et al., 2006;

Longhurst, 2007; Branch, 2008; Cooke, 2011; Hilborn, 14 Apr 2011; Sala et al., Apr 21

2011), there is an urgent need to understand why fisheries scientists’ and conservation

biologists’ perceptions about the status of marine fishes differ.

Here, we take a critical step toward resolving this debate by systematically evalu-

ating two of its central questions: 1) What is the status of marine fishes according to

fisheries (above or below reference points) and conservation (Red List threatened or

not) metrics? and 2) How well do these metrics align? We hypothesize that if the Red
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Figure 5.1: Total number of marine fish species on the IUCN Red List each year by
category. Red List categories are Data Deficient (DD), Least Concern (LC), Near
Threatened (NT), or one of the three threatened categories, Vulnerable (VU), En-
dangered (EN), Critically Endangered (CR). Inset is expanded view of the species
listed in threatened categories: VU, EN, or CR.
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List is an accurate measure of extinction risk then comparing a population’s Red List

status with its fishery status should result in poor alignment, since falling below a

fishery reference point is not generally considered equivalent to heightened extinction

risk. In contrast, if alignment between these metrics is high, it suggests that the Red

List exaggerates extinction risk but shows that the two metrics do provide consistent

measures of when a population is considered to be in trouble and requiring improved

management measures. We used the IUCN Red List (Version 2011.2 (IUCN, 2011))

and a new compilation of fisheries stock assessments from around the world (updated

from Ricard et al. (2012)), to first summarize the extinction risk categorizations of

the 4048 marine fish species on the Red List, and the fisheries statuses of 166 assessed

marine fish populations relative to their reference points. Direct comparison of con-

servation and fishery statuses are challenging because Red List evaluations typically

are conducted at the species, not population, level and because few populations with

stock assessments also have recent Red Listings (n=31) (IUCN Standards and Peti-

tions Subcommittee, 2011; Ricard et al., 2012). To facilitate such a comparison, we

assigned each assessed marine fish population to a Red List Category using the most

common IUCN Criteria (A1), which measures the proportional change in the mature

component of populations over the longer of ten years or three generations (IUCN

Standards and Petitions Subcommittee, 2011). We then quantified the alignment of

these two metrics using a hits, misses, false alarms framework (Rice, 2003) (Table

5.1), and diagnosed why discrepancies occur.

5.2 Materials and Methods

5.2.1 Data.

To assess the fishery status of marine populations, we used all available recent stock

assessments with estimates of adult (spawning stock) biomass and biological reference

points (referred to herein as assessed populations). All assessments, except those

from Europe (n=42), are from Version 1.0 of the RAM Legacy Stock Assessment

Database, a new global database of stock assessments for commercially exploited

marine populations (Ricard et al., 2012). For European populations, we obtained the

2011 assessments from the International Council for the Exploration of the Sea (ICES)
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(ICES, 2012). Overall, populations in our analysis came from Argentina, Australia,

Canada, Europe, New Zealand, South Africa, and the U.S., and their adult biomass

time series averaged 46 years (range 15 - 132 years). We benchmarked the biomass of

populations against the upper and lower biological reference points from their stock

assessments (Hilborn and Stokes, 2010), rather than estimating a common set of

reference points (as in Worm et al. (2009); Ricard et al. (2012)). Assessments from

the RAM Legacy Database used Bmsy and 0.5Bmsy; European ones used Bpa and

B lim. Six of the European populations had only Bpa calculated, and four had only

B lim. For these we used the relationship:

Blim = Bpae
(−1.645σ) (5.1)

from (Marshall et al., 2003) with σ = 0.3 to estimate these few missing reference

points.

To assess the conservation status of marine fish populations, we first summarized

the status of all marine fishes listed on the Red List (Version 2011.2 (IUCN, 2011)).

However, the limited number of marine fish populations with both a recent stock

assessment and a recent IUCN Red List evaluation (n=31, with Red List evaluations

coming from only twenty-four different fish species) precluded a broad direct compar-

ison of these two metrics. Instead, we estimated the Red List status of all assessed

marine fish populations according to Criterion A1,which requires an estimate of gen-

eration length. Generation length is defined as the average age of mature individuals

in a population and thus reflects the turnover rate of breeding individuals (IUCN

Standards and Petitions Subcommittee, 2011). We estimated generation length for

all assessed marine fish populations as:

Generation length = A50 + 0.25× (longevity − A50) (5.2)

modified from the IUCN guidelines (IUCN Standards and Petitions Subcommittee,

2011), using population specific estimates for A50 (the age at 50% maturity), and

longevity, the theoretical maximum age of each population prior to the commence-

ment of exploitation, wherever possible. We extracted these estimates (A50 n=93,

longevity n=74) from the RAM Legacy Database, and when absent, sought them
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from the populations’ respective assessments and/or the primary literature. Where

population-specific longevity estimates were not available, we used species-level esti-

mates, seeking these first from the primary literature and secondarily from FishBase

(Froese and Pauly, 2011) (n=63). In the six cases where these also were not available,

we used the maximum age from the stock assessment model (typically a “plus group”

in which all individuals greater than that age are combined, as in Dulvy et al. (2005)).

The mean age at A50 of assessed populations was 5.7 years (range 0.3 - 38 years), and

the mean generation length was 12.7 years (range 1.6 - 69 years) (Table S1). Thus,

while some previous analyses have used 15 years as a coarse approximation for three

generations in marine fishes (Hutchings and Reynolds, 2004; Rice and Legacè, 2007),

our analysis - in which three generations averages 38.1 years - reveals this to be a

significant underestimate.

5.2.2 Analysis

We assigned each population to Red List Categories by calculating its proportional

change in adult biomass over the longer of ten years or three generations (Criterion

A1 (IUCN Standards and Petitions Subcommittee, 2011)), in each of two time peri-

ods: 1) the current Red List status by calculating the proportional change in biomass

back from the most recently available biomass estimate, 2) the theoretical “worst

case” Red Listing by identifying the time period of greatest proportional decline in

biomass. According to the Red List Guidelines, Criterion A1 applies when declines

are reversible, understood, and have ceased; when these conditions are not met, one

of Criterion A2 – A4, which have lower decline thresholds for threatened status (30%,

as opposed to 50% for A1), is to be used (IUCN Standards and Petitions Subcom-

mittee, 2011). We used Criterion A1 for each of our main analyses because all of

the populations included have stock assessments and are managed to some degree,

suggesting declines are potentially reversible, and the cause is understood to be pri-

marily fishing in each case. Criterion A1 also has been most commonly applied to

marine fishes (Dulvy et al., 2005). An additional analysis, based upon the A2 – A4

decline threshold is presented in Table S3. In all of our Red List assignments, we

calculated the proportional change in biomass between the mean of the last three

years and the mean of the first three years of the time period under consideration, so
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as to reduce the influence of single year fluctuations in population biomass on threat

designation. Although we initially considered estimating the proportional change in

biomass by fitting generalized linear models, we found they occasionally fit the data

poorly. Where three generations was longer than a population’s time series (n=45),

the entire time series was used.

We then quantified the alignment between populations’ estimated current Red

List status and their current fisheries status using a hits, misses and false alarms

framework (Table 5.1 Rice (2003); Piet and Rice (2004); Dulvy et al. (2005)). We

assigned the fisheries status of each population first by benchmarking it against its

upper biomass reference point, and second against its lower biomass reference point

(described in Data), in each case designating the population as being above or below

the reference point by comparing its mean biomass in the most recent three years to

the reference point. There are four possible outcomes under the hits, misses, false

alarms framework: i) a positive hit occurs when a population is below its reference

point and the Red List criterion for a threatened listing is met; ii) a negative hit

occurs when a population is above its reference point and the threat criterion is not

met; iii) a miss occurs when a population is below its reference point but did not meet

the criterion for a threatened listing; and iv) a false alarm occurs when a population is

above its reference point but the threat criterion is (erroneously) met. Thus, positive

and negative hits are indicative of alignment between the conservation and fisheries

metrics, while misses and false alarms indicate inconsistent signals.

Fishery IUCN Red List status (%)
Status Threatened Not threatened
OK False Alarm Hit (True negative)
In trouble Hit (True positive) Miss

Table 5.1: Framework for assessing the performance of the IUCN Red List (Criterion
A1) in relation to fisheries reference points. The fishery status categories of “Okay”
or “In trouble” correspond to whether the biomass of the population was above or
below its fishery reference point (e.g. Bmsy or B lim), respectively. The IUCN Red List
status of threatened includes populations fitting the Red List Critically Endangered,
Endangered, and Vulnerable categories.
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We examined the extent of the alignment or misalignment by comparing individual

Red List threat categories (CR, EN,VU) with the upper and lower reference points,

and two additional ones, 1.5Bmsy and 0.2Bmsy). 1.5Bmsy is an arbitrary level used to

identify populations well above their upper reference points, while 0.2Bmsy has been

used as a metric of “collapsed” populations (Pinsky et al., 2011; Worm et al., 2009).

Listing a population as Critically Endangered when its biomass is well above its up-

per reference point (e.g. >1.5Bmsy) would be indicative of an egregious false alarm,

whereas a Vulnerable listing when biomass is just slightly above the upper reference

point would be a minor one. At the other extreme, listing a population as not threat-

ened when its biomass is well below its lower reference point (e.g. <0.2Bmsy) would be

an egregious miss, whereas listing such a population as Critically Endangered would

be a strong positive hit.

Finally, we repeated the application of the hits, misses, false alarms framework

twice more, to gauge the alignment between the theoretical “worst case” Red Listing

for each population and its fishery status at the end of this decline period, when

benchmarked against i) its upper fisheries biomass reference point or ii) its lower one.

5.3 Results

5.3.1 Status of Marine Fishes

We first evaluated the fishery status of each assessed population by comparing its

current adult biomass to the upper and lower reference points from its stock assess-

ment. Because there is no consensus amongst fisheries scientists as to which reference

point is most robust, different management agencies use different types of reference

points. Many fisheries management agencies, including the U.S. and Canada, use

reference points related to the concept of maximum sustainable yield (MSY): Bmsy,

the population biomass that should provide the MSY is often considered by jurisdic-

tions as a fisheries target. Increasingly, however, it is recognized both from economic

(Grafton et al., 2007; Froese et al., 2010) and ecosystem (Smith et al., 2011; Walters

et al., 2005) perspectives that it is beneficial to maintain populations above Bmsy, and

thus it would be better regarded as a limit. Still, in at least the U.S. and Australia,

0.5Bmsy is used as the lower limit (Campell, 2010; Rayns, 2007). Thus we also used
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0.5Bmsy as a lower reference point in our analyses of populations with MSY based

reference points. Populations in Europe are benchmarked against a lower reference

point B limit (B lim), the biomass below which recruitment is likely to be impaired, and

an upper one Bprecautionary (Bpa), meant to provide a buffer above B lim (Murawski,

2010). We note that because MSY is a measure of population productivity, there is

no fixed proportion of Bmsy for all populations below which recruitment is impaired,

nor is there a direct translation between Bmsy and B lim. We included both types of

reference points in our analyses because they are the benchmarks used by the fisheries

management agencies themselves to flag populations they consider to be in trouble.

Forty percent (n=67) of assessed marine fish populations currently are below

their upper (more conservative) reference point (Bpa or Bmsy), and over half of these

populations (n=35, 21% of total) also are below their lower (riskier) reference point

(B lim or 0.5Bmsy; Figure 5.2A and B). Of these overfished populations, five U.S. ones

(Georges Bank Atlantic cod (Gadus morhua, Figure 5.3A), southern New England-

Mid Atlantic winter flounder (Pseudopleuronectes americanus) and yellowtail flounder

(Limanda ferruginea, Figure 5.3G), southern Atlantic coast red snapper (Lutjanus

campechanus), and southern California cowcod (Sebastes levis) appear to be in the

worst shape, having each declined to less than 10% of their upper reference points

(Table S2).

In comparison, 29.5% (n=49) of assessed populations currently would be classified

as threatened on the Red List (Criterion A1; Figure 5.2C), almost midway between

the numbers considered to be in trouble from conservative and risky fisheries per-

spectives. Of these threatened populations, eight (4.8% of total) have declined by

a sufficient amount (≥90%) to be classified as Critically Endangered (CR) : U.S.

populations of snowy grouper (Epinephelus niveatus), southern California cowcod (S.

levis), and red snapper (L. campechanus) on the southern Atlantic coast and Gulf of

Mexico; blue warehou (Seriolella brama) and orange roughy (Hoplostethus atlanticus)

in Australia; southern bluefin tuna (Thunnus maccoyii); and Irish Sea cod (Figure

5.3C, Table S2). Nineteen populations (11.4% of total), including Georges Bank At-

lantic cod (G. morhua, Figure 5.3A) and Atlantic bluefin tuna (Thunnus thynnus,

Figure 5.3B), would qualify as Endangered (EN), declines ≥70% but <90%), and the

remaining twenty-two threatened populations (13.3% of total), including two rockfish
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Figure 5.2: Proportion (%) of marine fish populations that currently meet (A-C),
or have ever met (D-F), fisheries or conservation criteria for concern. (A) Current
adult biomass of European populations (n=42) as proportion of their Bpa and B lim

reference points, and (D) the minimum adult biomass ever experienced by those same
populations as proportion of their reference points. Colors correspond to fisheries
threat level: above upper ICES reference point Bpa (green), between upper and lower
ICES reference points (yellow), and below B lim (red); (B) Current adult biomass of
all other assessed populations (n=124) as proportion of their Bmsy reference point,
and (E) the minimum adult biomass ever experienced by those same populations
as proportion of their Bmsy reference point. Colors correspond to increasing threat,
from not overfished (green) through to overfished (orange and red). (C) Estimated
percent change in adult biomass for each population (n=166), from the most recent
year back over the longer of ten years or three generations, and the corresponding
IUCN Red List category: CR (red), EN (orange); VU (yellow); or not threatened
(green), under Criterion A1. (F) Estimated greatest percent decline in adult biomass
for the same populations (n=166) over the longer of ten years or three generations,
and the corresponding IUCN Red List category, as above.
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Figure 5.3: Time series of adult biomass illustrating cases of alignment and misalignment. Populations are
organized by management region: US (left column), non-US (middle column), or Europe (right column), and illustrate
cases where the current fisheries reference points and estimated IUCN Red List status (Criterion A1) align (positive
hits (top row) or negative hits (2nd row)), where the Red List would miss listing a population that is overfished as
threatened (3rd row), or would list a population that is not considered overfished as threatened, producing a false
alarm (bottom row): (A) Georges Bank Atlantic cod (Gadus morhua), (B) Atlantic bluefin tuna (Thunnus thynnus),
(C) Irish Sea Atlantic cod (G. morhua), (D) U.S. northern Pacific Coast petrale sole (Eopsetta jordani), (E) Central
western Pacific yellowfin tuna (Thunnus albacares), (F) Iceland cod (G. morhua), (G) Southern New England-Mid
Atlantic yellowtail flounder (Limanda ferruginea), ( H) Western Pacific Ocean striped marlin (Kajikia audax), (I)
North Sea and eastern Channel whiting (Merlangius merlangus), (J) Bering Sea and Aleutian Islands Greenland
turbot (Reinhardtius hippoglossoides), (K) Indian Ocean bigeye tuna (T. obesus), and (L) Faroe Plateau Atlantic cod
(G. morhua). Note (L) is only a false alarm from the perspective of its lower fisheries reference point. Colored circles
correspond to IUCN Red List categories: Critically Endangered (red), Endangered (orange), Vulnerable (yellow), or
not threatened (green); associated estimated decline is located in the upper left of each plot. Colored dotted lines
correspond to fisheries reference points: Bmsy or Bpa (green), 0.5Bmsy (yellow), 0.2Bmsy or B lim (red).
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(Sebastes spp.), Bering Sea and Aleutian Islands Greenland turbot (Reinhardtius hip-

poglossoides, Figure 5.3J), Indian Ocean bigeye tuna (Thunnus obesus, Figure 5.3K),

and four Atlantic cod populations (G. morhua, including the Faroe Plateau popu-

lation, Figure 5.3L) would qualify as Vulnerable (VU), declines ≥50% but <70%)

(Table S2).

In contrast, only 13.5% (n=399) of the 2952 marine fish species listed on the IUCN

Red List (in categories other than Data Deficient) are considered to be threatened,

and very few of these are considered to be at a high risk of extinction (n=59 CR,

2.0% of total and n=69 EN, 2.3% of total; Figure 5.1). The vast majority are clas-

sified as Least Concern (n=2350; 79.6%). When only those marine fishes subject to

large scale intentional use (Threat 5.4.2 (IUCN, 2011); total n=282) were considered,

however, the proportion of threatened ones more than doubled, to 29.1% (n=82),

almost exactly the same as in our estimated Red List.

To set the current status of marine fishes in context, we asked what proportion

of assessed populations would ever have been considered to be in trouble from fish-

eries and conservation perspectives? Almost three-quarters (73%) of populations have

fallen below their upper fisheries benchmark at some point in the past, and just over

half (54%) have ever fallen below their lower one. The extent of overexploitation

varied significantly by region: whereas all populations under European management

(n=42) have been below their upper benchmark (Bpa) and 71% have been below their

lower one (B lim) (Figure 5.2D), only 77% and 58% of U.S populations (n=77), and

45% and 30% of non-U.S. populations (n=47) have been below their upper (Bmsy)

or lower (0.5Bmsy) benchmarks, respectively (Figure 5.2E). From a conservation per-

spective, 60% (n=100) of assessed marine fish populations could have been classified

as threatened at some point in their past, according to Criterion A1, which is almost

midway between the number of populations that have ever been considered to be in

trouble from conservative or risky fisheries perspectives, and over twice as many as

would be listed currently (Figure 5.2F). Under this “worst case” scenario, 14 popula-

tions would have been classified as Critically Endangered, 48 as Endangered, and 38

as Vulnerable.
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5.3.2 Alignment of Conservation and Fisheries Metrics

Overall, the current fishery and conservation statuses of individual marine fish pop-

ulations are well-aligned: 75.9% alignment (sum of positive and negative hits) when

estimated Red Listings were compared to the populations benchmarked against their

upper (more conservative) fisheries reference points, and 80.7% when populations

were compared to their lower (riskier) ones (Table C.4). In both cases, negative

hits, where populations were not considered to be in trouble from either a fishery or

conservation standpoint, made up the majority of alignments (Figure 5.3D-F). Mis-

alignments were dominated by misses, where the Red List criterion failed to classify

a population below its fishery reference point as threatened, when Red Listings were

compared to the upper fisheries reference points (17.5%, Figure 5.3G-I). False alarms,

where the Red List classified a population as threatened but the population was above

its fishery reference point, dominated when Red Listings were compared to the lower

reference points (13.9%; Figure 5.3J-L; Table C.4). Different outcomes can occur only

for populations whose biomass is between its two reference points. Western Pacific

striped marlin (Kajikia audax ), for example, is categorized as a miss when compared

to its upper reference point (Bmsy) but a negative hit when compared to its lower

one (0.5Bmsy; Figure 5.3H). Alignment was greater for European populations, bench-

marked against Bpa (81.0%) and B lim (90.5%), than for U.S. and other populations,

benchmarked against Bmsy (74.2%) and 0.5Bmsy (77.4%). Relative to those other

populations, European ones had a greater proportion of negative hits, and almost no

false alarms (none for Bpa and two (4.8%) for B lim). A related analysis based upon

Red List Criterion A4, which identifies populations as threatened for declines ≥30%,

showed a much higher proportion of false alarms and lower overall alignment than

analyses using Criterion A1 (Table S3).

To gain further insight into the extent of the alignment, and severity of misalign-

ments, we compared the alignment of each population’s individual estimated Red List

category (Criterion A1: CR, EN, VU or not threatened) with its upper and lower

fisheries reference points, as well as two additional MSY-based ones (1.5Bmsy and

0.2Bmsy). Five populations were considered to be of greatest concern from both con-

servation and fisheries perspectives, being classified as Critically Endangered and

below their lowest fisheries reference point (B lim or 0.2Bmsy): Irish Sea cod (G.
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False Number of
Ref. point Hit(+ve) Hit (-ve) Miss Alarm populations

A) Current Upper 22.9 53.0 17.5 6.6 166
Status Lower 15.7 65.1 5.4 13.9 166

B) Greatest Upper 47.0 33.1 6.6 13.3 166
Decline Lower 32.5 38.0 1.8 27.7 166

Table 5.2: The proportion (%) of populations meeting each of four possible alignment
outcomes (positive hit, negative hit, miss or false alarm) under four different scenarios.
A) Current estimated Red List status or B) Estimated Red List status following the
population’s greatest decline, each compared to upper (more conservative; Bmsy or
Bpa) or lower (riskier; 0.5Bmsy or B lim) reference points.

morhua, Figure 5.3C), southern Atlantic coast red snapper (L. campechanus) and

snowy grouper (E. niveatus), southern California cowcod (S. levis), and southern

bluefin tuna (T. maccoyii). We found few egregious errors, where populations were

categorized at opposite extremes of the fisheries and conservation metrics: only nine

populations (4.8% of European, Table 5.3; and 3.2% of other populations, Table 5.4)

that were below their lowest fisheries reference point were classified as not threat-

ened, and only eleven populations (all Bmsy-based ones) that were above their upper

fisheries reference point were classified as threatened (0.8% EN and 4.0% VU; Table

5.4). Encouragingly, there were no cases where a population above its upper reference

point was classified as Critically Endangered. In fact, most misalignments occurred

when populations either were near the threshold of where they would be classified as

threatened or near their fisheries reference points (e.g. Figure 5.3K-L).

Finally, the overall level of alignment between populations’ theoretical “worst

case” conservation status, according to Criterion A1, and their fishery status at the

corresponding point in time was similar to that of the current statuses: 80.1% for

the upper fisheries reference points, and 70.5% for the lower ones (Table C.4). The

relative proportion of positive and negative hits, however, was substantially different,

with over twice as many positive hits under this worst case scenario than currently.

Moreover, the number of false alarms doubled, occurring in 13.3% and 27.7% of

populations when compared to upper and lower reference points respectively, while

misses became rare (Table C.4).
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5.4 Discussion

Extinction risk criteria and fisheries reference points provided consistent signals

for most assessed marine fishes. Total alignment was high both for populations’ cur-

rent statuses (75.9% and 80.7% for upper and lower reference points, respectively)

and their “worst case” scenarios (80.1% and 70.5%), although the composition of hits

differed markedly (Table C.4). Negative hits dominated the alignment of populations’

current statuses, indicating populations that are considered to be both well-managed

and at a low risk of extinction. Still, almost 23% of populations currently are consid-

ered to be in trouble from both conservation and fisheries perspectives, and a further

24.1% are considered to be in trouble from either conservation (6.6%) or (the more

conservative) fisheries perspectives (17.5%). In contrast, the “worst case” analysis

was dominated by positive hits, revealing that almost half of populations would have

be considered both threatened and overfished (by more conservative standards) at

some point in their past (Table C.4). Although we focus our discussion solely on the

analyses involving Criterion A1, we note that our general discussion points relating

to the causes and consequences of misalignment between conservation and fisheries

reference points, also holds for Criterion A4 (Table S3).

Despite high overall alignment, the concern that the Red List exaggerates the

threat status of marine fishes (Matsuda et al., 1998; Punt, 2000) is warranted under

some circumstances. We found the proportion of false alarms varied substantially

depending on the time period and reference points, with the greatest proportion

(27.7%) occurring when “worst case” Red Listings were compared to lower reference

points (Table C.4). False alarms arise under this scenario because the reference

points are so low that despite substantial declines, the populations remain above

them. Notably, fewer than half of these same Red List evaluations were flagged as

false alarms when the populations were benchmarked against upper reference points

(13.3%, Table C.4).

False alarms reflect conflicting signals between conservation and fisheries met-

rics, and a concern is that threat listings in these cases may undermine successful

fishery management, giving the impression that populations are not being properly

managed even when, according to fishery metrics, they are. Additionally, legislation

in Australia (Environmental Protection and Biodiversity Conservation Act), Canada
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(Species at Risk Act), and the U.S. (Endangered Species Act) requires mandatory

conservation measures be implemented if a population is deemed threatened with

extinction (Rice and Legacè, 2007; Powles, 2011), potentially resulting in catch re-

strictions and lost income to communities depending on the resource. Critics of the

Red List argue such conservation measures can be overly aggressive because rapid

declines in managed fish populations typically result from the “fishing-down” phase

of developing fisheries, in which biomass is reduced to a target level (e.g. Bmsy) after

which the exploitation rate is set to maintain the population at that level (Punt, 2000).

Our analysis partially supports this contention: ten of eleven populations classified

as false alarms in our “worst case” scenario analysis (whose decline ended at least ten

years prior to the end of its time series, to allow investigation of subsequent popula-

tion changes), subsequently stabilized above their upper fishery reference points, such

that their current statuses aligned as negative hits. Recognizing this may occur, the

IUCN guidelines provide flexibility in extinction risk evaluation for populations whose

declines are being actively managed (IUCN Standards and Petitions Subcommittee,

2011). In fisheries lacking effective management controls, however, it seems unlikely

that population declines would be curtailed in this manner. For these populations,

false alarms may in fact be useful warning signals of impending overfishing. Indeed,

even in our analysis of the most data-rich, and presumably best managed marine

fishes effective curtailment of declining populations was not the norm: the majority

of populations meeting the Red List A1 criterion for threatened also had fallen below

their fisheries reference points and thus were positive hits, not false alarms (Table

C.4).

Encouragingly, false alarms were rare when the current statuses of marine fishes

were compared, especially when populations were benchmarked against their upper

reference points (n=14, 6.6%, Table C.4; Figures 5.3J-L and S1). Few of these false

alarms were egregious: none of the populations was listed as Critically Endangered,

which would have indicated an enormous mismatch between the two metrics, and only

three were listed as Endangered (Figure 5.3J, Tables 5.3 and 5.4). What’s more, two

of the false alarms, smooth oreo (Pseudocyttus maculatus) on the west end of New

Zealand’s Chatham Rise and orange roughy (H. atlanticus) along the mid-east coast

of New Zealand, were very close to their fishery reference point thresholds (the latter
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had recently been below it) and thus were on the verge of being classified as positive

hits (Figure S1). Legitimate concern remains, however, for the other nine false alarms.

Threat status was exaggerated for many of these populations because they started

at very high biomass (mean = 4.9 Bmsy, range = 2.8 to 11.2 Bmsy; Figure S1). For

populations exhibiting high long-term variability, such as these, establishing relevant

population baselines is a challenge (Hilborn and Sibert, 1988). Greenland turbot (R.

hippoglossoides) in the Bering Sea and Aleutian Islands, for example, plummeted only

after peaking at an estimated 13 times Bmsy during the 1970s North Pacific regime

shift, and thus we evaluated it as Endangered when it was still at 1.5Bmsy (Figure

5.3J). Notably, where extreme fluctuations or repeated natural population cycles are

shown to be the drivers of declines, they are not to invoke threatened listings (Red

List Guidelines Section 4.7: Extreme fluctuations) to avoid triggering false alarms.

Although false alarms are a real concern, the perception that the Red List is

systematically biased towards exaggerating threat status in marine fishes is unfounded

- misses also occur, and were in fact the main source of misalignment in our analysis

of current status and upper reference points (17.5%; Table C.4, Figures 5.3G-I and

S1). Four of these cases were egregious misalignments: Southern New England winter

flounder (P. americanus) and three of yellowtail flounder (L. ferruginea) populations

on the U.S. east coast were each below 0.2Bmsy yet evaluated as not threatened

(Tables 5.3 and 5.4). Yet, we caution that such misses should not necessarily be

regarded as a failure of the Red List criterion. Exploited populations may stabilize

at low biomass following substantial declines (as occurs in their initial fishing down

phase), and if they persist in that state for multiple generations it suggests they do not

face imminent extinction and the Red List criterion is working appropriately. Such

populations would still require increased management and conservation attention to

maintain current biomass levels or restore them to former levels. Misses are, however,

of concern for those populations below their fishery reference points that have not

stabilized, but instead continue to decline at a rate insufficient to trigger an IUCN

threat listing and subsequence conservation action. In such cases, the Red List would

only be effective if a population declined to the extent that it triggered one of the other

threat criteria (IUCN Standards and Petitions Subcommittee, 2011). This could have

serious implications for data-poor populations in which the fishery status is unknown
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and the Red List is the only means of assessing population status, as it implies that

populations requiring conservation attention will be overlooked.

The propensity for misses to occur appears greater for populations with shorter

generation times and those for which artificially short generation times are used in

Red List calculations (Dulvy et al., 2005; Rice and Legacè, 2007). Such populations

must decline at a faster annual rate to trigger a threatened designation (Mace et al.,

2008) and the three-generation period can be too short to capture the full extent

of their declines, as illustrated by striped marlin (Figures 5.3H). Indeed, 39.1% of

populations in our analysis for which the three generation period was ≤20 years were

misses (when benchmarked against upper reference points), compared to only 9.2%

for those with longer generation times. Similarly, when we fixed the three generation

period for all populations to be 15 years (as in (Hutchings and Reynolds, 2004; Rice

and Legacè, 2007)), the number of populations classified as Endangered or Critically

Endangered dropped from twenty-seven to six, while the number of misses increased

substantially (69% when benchmarked against upper reference points, 135% against

lower ones; Tables C.4 and S4). This may explain why an earlier comparison of fishery

statuses and Red List statuses estimated using shorter generation times had a much

higher proportion of misses (48% overall; Dulvy et al. (2005)) than our analysis.

Longer exploitation times also may increase the likelihood of misses because these

populations are more likely to have already undergone their most substantial declines

(during their initial fishing down phase) and have stabilized (e.g. Figure 5.3H).

Misalignment between Red Listings (A1) and fisheries reference points is heavily

influenced by the fundamental difference in how these two metrics evaluate if pop-

ulations are in trouble. The former is a rate based approach, while the latter is

based upon relative biomass levels without reference to the time period over which

the changes occurred. Perfect alignment would occur if, for example, all populations

started at unfished biomass, B0, their maximum sustainable yields occurred at 50% of

this level (i.e. the simplistic assumption of the Schaefer model (Schaefer, 1954)), and

they declined by at least this amount. In reality, the proportion of B0 at which Bmsy

occurs is strongly linked to compensatory population dynamics, and often occurs at

much lower levels (Myers et al., 1999). Species with high maximum population growth

rates, such as herring (Clupea harengus),can have Bmsy:B0 ratios between 0.20 and



105

0.30 (Hilborn and Stokes, 2010). Reference points also may be set at a fixed ratio

of B0 when data to estimate Bmsy are lacking (e.g. Australia uses a default Bmsy

of 0.4 B0 in such cases (Hilborn and Stokes, 2010)). This mathematical disconnect

is a major source of misalignment between these conservation and fishery metrics:

whereas a ≥50% decline would trigger a threatened listing under the Red List, a 70%

or 85% decline would be needed for a productive population (assuming a Bmsy:B0

ratio of 0.3) to fall below its upper or lower fishery reference points, respectively (e.g.

Figure 5.3J-L). These populations are prone to false alarms early in the development

of their fisheries if their populations started at high biomass.

Several caveats must be borne in mind when interpreting our findings. First, al-

though the Red List is primarily a species level assessment tool, we conducted our

evaluations at the population level. Apart from the pragmatic reason that this facili-

tated direct comparisons fisheries assessments for widely distributed species, such as

many marine fishes, the population is the most relevant level when considering eco-

logical roles and contributions to individual ecosystems. Populations can be highly

adapted to local conditions, such that specific morphological and behavioral adap-

tations may limit the potential for recolonization by populations from other regions

(Hutchings, 2001). Moreover, loss of individual populations typically precedes species

level extinctions (Musick et al., 2000; Gärdenfors et al., 2001). As such, regional Red

List assessments have been conducted for many marine fish species (IUCN Standards

and Petitions Subcommittee, 2011; IUCN, 2011). Second, only the most data rich

populations, which have stock assessments and reference points, could be included

in our analysis. These populations all are actively managed, which could limit the

transferability of our findings to fisheries lacking the management control necessary

to effectively curtail exploitation rates. For relatively data-poor fisheries (i.e. those

without a stock assessment or reference points, but with some index of abundance),

however, our results suggest threat listings could serve as accurate flags for ones that

are in trouble.

Additionally, we assumed fishery reference points are true measures of marine fish

population status. Clearly, however, there is great variation in the types of reference

points used which can strongly influence alignment of fishery and conservation metrics

(Tables C.4 - 5.4). Reference points used in Europe are, for example, set at a much
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lower proportion of B0 than MSY-based ones (Froese et al., 2010; Murawski, 2010),

and we therefore had expected to find low levels of alignment for these populations.

Instead, European populations had very high alignment (90.5%) compared to Bmsy

managed ones (77.4%), and alignments comprised mainly of negative hits (Table 5.3)

despite these populations generally being in poor shape (Froese et al., 2010). This

seemingly contradictory finding arises from the extremely low reference points and

the long exploitation history of European populations, such that for these populations

the majority of declines occurred prior to the most recent three-generation period and

did not trigger the Red List threat criteria. If European fisheries management moves

to more conservative Bmsy-based reference points, as is proposed for 2015 (Froese and

Proelß, 2010), many of these depleted but stable populations would likely become

misses. A general move by fisheries management agencies around the world towards

Bmsy based reference points (Grafton et al., 2007; Hilborn, 2010), would help alleviate

the problem of a lack of consistent reference points that has hindered recent global

fisheries analyses (Worm et al., 2009; Hutchings et al., 2010; Ricard et al., 2012)

Reference point IUCN Red List status (%)
CR EN VU not threatened Total populations

≥Bpa 0.0 0.0 0.0 59.5 25
<Bpa - ≥Blim 0.0 0.0 4.8 14.3 8
<Blim 2.4 9.5 4.8 4.8 9
Total 2.4 9.5 9.5 78.6 42

Table 5.3: The proportion (%) alignment between the estimated IUCN Red List
Status and the actual (upper (Bpa) and lower (B lim)) fishery reference points of Eu-
ropean marine fish populations (managed by ICES). IUCN threatened categories are
Critically Endangered (CR), Endangered (EN), Vulnerable (VU).

Perhaps the most critical assumption of our analysis is that we equated falling

below a fishery reference point with a Red List threatened status, and hence an

increased extinction risk. This assumption embodies a central component of the

debate about the relevance of the Red List to marine fishes: few fisheries scientists

would consider overfished populations to be at risk of extinction. Thus, while the mix

of false alarms and misses in our results provides empirical empirical support that

the Red List is not systematically biased towards exaggerating when populations
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Reference point IUCN Red List status
CR EN VU NT Total populations

> 1.5 Bmsy 0.0 0.8 4.0 32.3 46
1.0-1.5 Bmsy 0.0 1.6 2.4 18.5 28
0.5-1.0 Bmsy 0.0 3.2 4.8 11.3 24
0.2-0.5 Bmsy 2.4 4.8 1.6 2.4 14
<0.2 Bmsy 3.2 1.6 1.6 3.2 12
Total 5.6 12.1 14.5 67.7 124

Table 5.4: The proportion (%) alignment between the estimated IUCN Red List
Status and the actual Bmsy fishery reference points of US and other non-European
marine fish populations. IUCN threatened categories are Critically Endangered (CR),
Endangered (EN), Vulnerable (VU).

are in trouble, the overall high degree of alignment suggests that the Red List does

exaggerate actual extinction risk, since populations just below their reference points

are unlikely to face a heightened risk of extinction. This conclusion is supported

by simulation models that suggest marine fishes with threatened listings have low

probabilities of going extinct in the near future (Matsuda et al., 1998; Punt, 2000),

and by the discrepancy between the number of marine fishes listed on the Red List

as being threatened with extinction (n=399, Fig. 1) and the number listed as having

gone extinct (n=1, New Zealand Grayling (Prototroctes oxyrhynchus) (IUCN, 2011)).

Still, we acknowledge that the process of extinction is poorly understood (Mace et al.,

2008; Reynolds et al., 2005; Hutchings, 2001), and that while global extinctions of

marine fishes appear to be exceedingly rare, local extirpations are not (Dulvy et al.,

2003). Thus, while it appears marine fishes listed as threatened are not necessarily

imminently at risk of biological extinction, substantial declines in their abundance still

are likely to have significant consequences for biodiversity, ecosystem functioning, and

human welfare (Holmlund and Hammer, 1999), especially if such depletions are not

easily reversed. Others have therefore suggested the Red List categories should be

renamed as conservation priorities I-IV (Hutchings, 2001) to better reflect its intent

of serving as a method of conservation prioritization. We believe such a renaming is

unlikely, but would advocate consideration of the Red List threat categories in this
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manner as a useful heuristic solution for helping to move the debate between the

fisheries and conservation communities forward.

Despite fundamental differences in methodology, Red List and fisheries assess-

ments for marine fishes align well. Thus, while debate about the relevance of the Red

List to marine fishes continues (COSEWIC, 2005; Cooke, 2011), the empirical evi-

dence indicates conservation and fisheries scientists will, in most cases, agree on which

exploited marine fishes are in trouble and require improved management measures.

We hope this research will encourage similar scrutiny of other conservation evalua-

tion frameworks, which have been developed for marine fishes to “improve upon” the

Red List (Musick, 1999; FAO, 2002; Powles, 2011). Those who argue that the Red

List exaggerates threat status for marine fishes also may be surprised to learn the

proportion of marine fishes listed as threatened on the Red List is very low (13.5%;

Figure 5.1 IUCN (2011)). Although this contention was borne out for some of the

marine fish populations in our analysis (typically those assessed against riskier ref-

erence points or in the “fishing down” phase of fishery development (Punt, 2000)),

more populations were considered to be in trouble from both perspectives (positive

hits) than by the Red List alone (false alarms). Moreover, for fisheries lacking stock

assessments and management controls to curtail fishing mortality, such threat listings

might serve as useful warnings signals of (impending) overfishing. Indeed, while stock

assessments are a financial impossibility in most fisheries (n∼=350 assessments globally

(Ricard et al., 2012)), the Red List provides a relatively easy and transparent means

of flagging populations in trouble (n=2952 marine fish assessments to date (IUCN,

2011)). Our results suggest it also is an accurate means of doing so. Thus, with

momentum for conservation evaluations of marine fishes growing, we urge fisheries

scientists to recognize the Red List as a useful, complementary approach to evaluating

the global impacts of marine fisheries, and for the fisheries and conservation commu-

nities to work together to determine mutually acceptable management responses for

population which they both deem to be of concern.



Chapter 6

Discussion

My thesis has yielded a number of important findings relevant to the estimation of

population status and trajectory of exploited marine fishes and how conservation and

fisheries reference points align.

6.1 Summary of Findings

In Chapter 2, I discuss some common assumptions that are used when estimating

population abundance and trajectory of marine fishes. I critique a number of pub-

lished studies that have used assumptions that later proved to be incorrect. For this

chapter, I focus on a critical relationship in fish population models: how catch rates

relate to population abundance both in time and space. I provide examples for how

critical this assumption is and how the intersection of the spatial distribution of a

fish population and the sampling method (i.e. fishery independent or fishery depen-

dent collection methods) has the potential to result in biased estimates of population

trends. Using biased estimates of population status in the management of fish pop-

ulations without adequate precaution can lead to poor management outcomes and

potentially catastrophic fishery collapses.

In Chapter 3, I examined the population status of cusk, a species that was cate-

gorized as “threatened” by COSEWIC in 2003, based on an estimated 93% decline

between 1970 to 2001 in the DFO Scotian Shelf summer bottom trawl survey index.

I demonstrate how fishery-independent data can also suffer from issues of nonpro-

portionality and result in biased estimates of population status if the potential for

nonproportionality is not accounted for in the model structure. The analysis used two

indices of relative biomass, one fishery-dependent and the other fishery independent,

in a Bayesian state-space model where I relaxed the assumption of strict proportional-

ity of catch rates to population biomass by using a power curve relationship. I found

that the research survey was strongly hyperdepleted, likely due to the differences in

109
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habitat preferences of cusk and research survey site selection, and when used alone

led to highly biased estimates of population decline. By incorporating multiple data

sources and allowing for nonproportionality of the catch rates indices my estimates

of decline over the same time period were 64% compared to 93% when only the re-

search survey data was used. I also demonstrated that a metric used for Bayesian

model selection, Deviance Information Criterion (DIC), was not a reliable metric for

model selection for this particular modelling approach by conducting an extensive

simulation evaluation. Further, I also demonstrated via simulation the consequences

of assuming proportionality of the two non proportional catch rates indices would

have on the inference of population trends.

In Chapter 4, I demonstrated how the abundance and distribution of different

size classes of thorny skate have changed on the Scotian Shelf over the last 44 years.

The analysis showed profound differences in changes in distribution and abundance

of the different size classes with the most extreme changes occurring in adults. By

assuming an ideal free distribution model I was able to show there was weak evidence

for density dependent habitat selection for small juveniles but was likely for large

juveniles and adults.

In Chapter 5 I examine how perceptions of population status are influenced by

the method in which they are estimated. I compared the alignment of abundance

based biological reference points that are used for the management of marine fish-

eries to those used to evaluate extinction risk by conservation organization. I found

that the two approaches had a high degree of alignment (70.5% to 80.7% for riskier

and more conservative reference points respectively) despite the differences in math-

ematic thresholds used by each approach. Further, the data necessary to estimate

an extinction risk categorization is far less than most biological reference points and

can therefore be employed in data limited situations. Indeed, both approaches should

be considered to be complementary to evaluating the status marine fisheries and this

research shows the common ground that both approaches share in the shared interest

of population sustainability.
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6.2 Future Research

My research has shed light on the consequences that poor assumptions, particu-

larly about the spatial structure of a population, can have on the estimation of stock

status. A number of lines of future research exist that would further the understand-

ing about the research topics that I have examined here.

In Chapter 3, my explanation for the hyperdepletion in the research survey catch

rate series was that cusk prefer rocky complex habitat that was not sufficiently sam-

pled by the trawl gear and thus biased estimates of population decline. The critical

assumption of my analysis was that the differences in the spatial coverage of the re-

search survey and the spatial distribution of cusk is adequately approximated by the

power curve that I employed in the observation equation of my population model.

An alternate and more direct approach would be to standardize both the commercial

fishery dependent and fishery independent catch rate series as they pertain to habi-

tat characteristics at specific catch locations. At a minimum, this would provide an

objective test to my conjecture that differences in the trends in relative abundance

of the two series arose from the different habitats sampled by the two gear types.

In Chapter 4, I investigated changes in distribution of different size classes of

thorny skate on the Scotian Shelf What is lacking from these analyses is a causal

link, i.e what is responsible for these changes in distribution and abundance? All

major sources of fishing mortality have been removed yet declines in abundance and

changes in distribution are still being observed. Grey seals are a potential mechanism

to explain these patterns, however, data are currently limited to test this hypothesis.

In my last research chapter, I compare fishery-based biological reference points to

estimates of extinction derived using IUCN extinction risk criteria for 166 marine fish

populations. There were, however, features of the data that were used for this analysis

that may have exaggerated alignment between the two approaches. For my method

of estimating extinction risk, I assigned each population to Red List Categories by

calculating its proportional change in adult biomass over the longer of ten years or

three generations. Many of the marine fishes examined have long generation times

and the estimates of three generations (mean 38.1) exceeded the length of the time

series that was used in analysis. Therefore, my estimates of extinction risk included

the developmental phase of the fishery when a rapid “fishing down” of the population
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is frequently a management objective to increase the population growth rate from

compensatory density-dependent processes in the population dynamics. Once this

decline phase is outside the three generation window, I expect comparisons of the rate

based approach to calculate extinction risk to have much less alignment in population

designations.

This research taken together increases our understanding of the population trends,

and factors that may be affecting these observed trends for cusk and thorny skate. The

high level of alignment I identified between extinction risk and fishery based reference

points show that the methods used by fisheries and conservation scientists largely

agree upon similar designations of stock status during the developmental phases of a

fishery.
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Appendix A

Supplemental Information for Identifying

Nonproportionality of Fishery Independent Survey Data to

Estimate Population Trends and Assess Recovery Potential

for Cusk (Brosme brosme) (Chapter 3)

Here I provide the WinBUGS code and data for the state-space surplus production

model that also estimated a shape parameter in the observation equation for the

fishery-independent trawl survey (I2). The code was modified from that published in

Meyer and Millar (1999).

model; {

# Prior for intrinsic rate of increase; r

r ~ dunif(0, 4)

# Prior for carrying capacity K (t)

logK ~ dunif(8.56,13.12) # 8.56 is log(max(landing))

K <- exp(logK)

# Priors for catchabilities; q

for (i in 1:2) { q[i] ~ dunif(0,1) }

# Prior for process noise; sigma

sigma ~ dunif(0, 10)

isigma2 <- pow(sigma, -2)

# Prior for observation errors; tau

for(i in 1:2){ tau[i] ~ dunif(0, 10)

itau2[i] <- pow(tau[i], -2) }

# Prior for shape parameter

shapeRV ~ dunif(0.01,10)

# Prior for initial population size as proportion of K; P[1]

Pmed[1]<-log(1) # proportion of carrying capacity
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P[1] ~ dlnorm(Pmed[1], isigma2)I(0.01, 10)

# State equation

for(t in 2:T2) {

Pmed[t] <-log(max(P[t-1] + r*P[t-1]*(1-P[t-1])-C[t-1]/K,0.0001))

P[t] ~ dlnorm(Pmed[t], isigma2)I(0.0001, 10) }

# Observation equations

# Commerical Index

for (t in 1:T1) {

Imed1[t] <- log(q[1] * K * P[t+16])

I1[t] ~ dlnorm(Imed1[t], itau2[1])

Pred1[t] ~ dlnorm(Imed1[t], itau2[1]) }

# Fishery independent survey with shape equation

for (t in 1:T2) {

Imed2[t] <- log(q[2] * K * pow(P[t],shapeRV))

I2[t] ~ dlnorm(Imed2[t], itau2[2])

Pred2[t] ~ dlnorm(Imed2[t], itau2[2]) }

# Biomass estmation

for(t in 1:T2) {

B[t] <- P[t] * K }

# Management Parameters

MSY <- r * K / 4

Bmsy <- K / 2 } }

# Data Section

list(I1=c(1.571590, 1.872840, 1.266000, 1.116690, 1.143340, 1.977970,

1.675930, 0.894639, 0.579649, 1.135370, 0.764688, 1.124050, 1.011710,

0.612211, 0.695887, 0.985724,0.649635, 0.443307, 0.686838, 0.572330,

0.412810, 0.683190),I2=c(0.00314667, 0.00436356, 0.00519993,

0.00386293, 0.00559915, 0.00443471, 0.00457475, 0.00496960, 0.00487649,

0.00365140, 0.00189693, 0.00420523, 0.00407129, 0.00258319, 0.00421571,



129

0.00190961, 0.00170143, 0.00425573, 0.00331920, 0.00266711, 0.00157374,

0.00381933, 0.00107107, 0.00031410, 0.00033406, 0.00041117, 0.00037375,

0.00045440, 0.00026304, 0.00044221, 0.00047269, 0.00054054, 0.00040099,

0.00008497, 0.00030616, 0.00020843, 0.00020934, 0.00041708), T1=22,

T2=38, C=c(2870, 4395, 5219, 5212,4638, 4557, 2402,2835, 4398, 4013,

3616, 3488, 4417, 3176, 2399, 1831, 1639, 3154, 2279, 2304, 2448, 3125,

3678, 2039, 1207, 1530, 1044, 1476, 1304, 880,732, 1043, 872 ,688, 492,

632, 601))

#init section (single chain)

list(q=c(0.001, 0.001), r=0.1, sigma =0.5, tau=c(0.75 ,0.5), P=c(0.562,

0.779, 0.929, 0.690, 1.00, 0.792, 0.817, 0.888, 0.871, 0.652, 0.339,

0.751, 0.727, 0.461, 0.753, 0.341, 0.304, 0.760, 0.593, 0.476, 0.281,

0.682, 0.191, 0.0561, 0.060, 0.073, 0.067, 0.0812, 0.0470, 0.079,

0.084, 0.097, 0.072 ,0.015, 0.055, 0.037, 0.037, 0.074), logK=11,

shapeRV=0.5)

Meyer, R. and Millar, R. 1999. BUGS in Bayesian stock assessments. Can. J. Fish. Aquat.
Sci. 56(6): 1078 – 1087. doi:10.1139/cjfas-56-6-1078.
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Figure B.1: Changes in small juvenile thorny skate catches from DFO summer survey

from 1970 to 2013
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Figure B.2: Changes in large juvenile thorny skate catches from DFO summer survey

from 1970 to 2013
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Figure B.3: Changes in adult thorny skate catches from DFO summer survey from

1970 to 2013
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Table C1. Description of the 166 assessed marine fish populations. Population ordering by stock identification code (from the RAM Legacy Database), description includes common and

scientific name, management country, estimated generation time, and fishery reference point type.

Stockid Common Scientific Management Generation Reference

name name country length type

ACADREDGOMGB Acadian redfish Gulf of Maine / Georges Bank Sebastes fasciatus USA 16.7 BMSY

ALBASPAC Albacore tuna South Pacific Ocean Thunnus alalunga Multinational 6.4 BMSY

ALPLAICBSAI Alaska plaice Bering Sea and Aleutian Islands Pleuronectes quadrituberculatus USA 12.7 BMSY

AMPL5YZ American Plaice NAFO-5YZ Hippoglossoides platessoides USA 13.8 BMSY

ARFLOUNDBSAI Arrowtooth flounder Bering Sea and Aleutian Islands Reinhardtius stomias USA 8.4 BMSY

ARFLOUNDGA Arrowtooth flounder Gulf of Alaska Atheresthes stomias USA 8.4 BMSY

ARFLOUNDPCOAST Arrowtooth flounder Pacific Coast Reinhardtius stomias USA 10.1 BMSY

ARGANCHONARG Argentine anchoita Northern Argentina Engraulis anchoita Argentina 2.5 BMSY

ARGANCHOSARG Argentine anchoita Southern Argentina Engraulis anchoita Argentina 2.5 BMSY

ARGHAKENARG Argentine hake Northern Argentina Merluccius hubbsi Argentina 5.5 BMSY

ARGHAKESARG Argentine hake Southern Argentina Merluccius hubbsi Argentina 5.5 BMSY

ATBTUNAWATL Bluefin tuna Western Atlantic Thunnus thynnus Multinational 14.0 BMSY

ATKABSAI Atka mackerel Bering Sea and Aleutian Islands Pleurogrammus monopterygius USA 6.2 BMSY

ATLCROAKMATLC Atlantic croaker Mid-Atlantic Coast Micropogonias undulatus USA 1.6 BMSY

AUSSALMONNZ Australian salmon New Zealand Arripis trutta New Zealand 9.5 BMSY

BGROCKPCOAST Blackgill rockfish Pacific Coast Sebastes melanostomus USA 37.5 BMSY

BIGEYEIO Bigeye tuna Indian Ocean Thunnus obesus Multinational 5.6 BMSY

BIGEYEWPO Bigeye tuna Western Pacific Ocean Thunnus obesus Multinational 5.5 BMSY

BLACKOREOWECR Black oreo West end of Chatham Rise Allocyttus niger New Zealand 53.5 BMSY

BLACKROCKNPCOAST Black rockfish Northern Pacific Coast Sebastes melanops USA 20.2 BMSY

BLACKROCKSPCOAST Black rockfish Southern Pacific Coast Sebastes melanops USA 17.8 BMSY

BLUEROCKCAL Blue rockfish California Sebastes mystinus USA 15.5 BMSY

BSBASSMATLC Black sea bass Mid-Atlantic Coast Centropristis striata USA 5.3 BMSY

CABEZNCAL Cabezon Northern California Scorpaenichthys marmoratus USA 5.5 BMSY

CABEZSCAL Cabezon Southern California Scorpaenichthys marmoratus USA 5.5 BMSY

CHAKESA Shallow-water cape hake South Africa Merluccius capensis South Africa 4.0 BMSY

CMACKPCOAST Pacific chub mackerel Pacific Coast Scomber japonicus USA 6.7 BMSY

CODBA2224 Atlantic cod Baltic Areas 22 and 24 Gadus morhua Multinational 8.4 Bpa

CODCOASTNOR Atlantic cod coastal Norway Gadus morhua Multinational 10.0 Bpa

CODFAPL Atlantic cod Faroe Plateau Gadus morhua Multinational 8.5 Bpa

CODGB Atlantic cod Georges Bank Gadus morhua USA 7.8 BMSY

CODICE Atlantic cod Iceland Gadus morhua Multinational 11.1 Bpa

CODIS Atlantic cod Irish Sea Gadus morhua Multinational 7.7 Bpa

CODKAT Atlantic cod Kattegat Gadus morhua Multinational 7.7 Bpa

CODNEAR Atlantic cod Northeast Arctic Gadus morhua Multinational 11.1 Bpa

CODNS Atlantic cod North Sea Gadus morhua Multinational 9.0 Bpa

CODVIa Atlantic cod West of Scotland Gadus morhua Multinational 7.7 Bpa

COWCODSCAL Cowcod Southern California Sebastes levis USA 22.0 BMSY

CROCKPCOAST Canary rockfish Pacific Coast Sebastes pinniger USA 30.7 BMSY

DEEPCHAKESA Deep-water cape hake South Africa Merluccius paradoxus South Africa 3.5 BMSY
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DEEPFLATHEADSE Deepwater flathead Southeast Australia Platycephalus conatus Australia 11.3 BMSY

DSOLEPCOAST Dover sole Pacific Coast Microstomus pacificus USA 16.3 BMSY

DUSROCKGA Dusky rockfish Gulf of Alaska Sebastes variabilis USA 27.5 BMSY

ESOLEPCOAST English sole Pacific Coast Parophrys vetulus USA 10.0 BMSY

FLSOLEBSAI Flathead sole Bering Sea and Aleutian Islands Hippoglossoides elassodon USA 12.5 BMSY

FLSOLEGA Flathead sole Gulf of Alaska Hippoglossoides elassodon USA 11.8 BMSY

GAGGM Gag Gulf of Mexico Mycteroperca microlepis USA 10.5 BMSY

GAGSATLC Gag Southern Atlantic coast Mycteroperca microlepis USA 10.1 BMSY

GEMFISHNZ common gemfish New Zealand Rexea solandri New Zealand 10.0 BMSY

GEMFISHSE common gemfish Southeast Australia Rexea solandri Australia 6.3 BMSY

GHALBSAI Greenland turbot Bering Sea and Aleutian Islands Reinhardtius hippoglossoides USA 13.1 BMSY

GOPHERSPCOAST Gopher rockfish Southern Pacific Coast Sebastes carnatus USA 10.1 BMSY

GRAMBERSATLC Greater amberjack Southern Atlantic coast Seriola dumerili USA 5.2 BMSY

HAD5Y Haddock NAFO-5Y Melanogrammus aeglefinus USA 6.8 BMSY

HADFAPL Haddock Faroe Plateau Melanogrammus aeglefinus Multinational 7.3 Bpa

HADGB Haddock Georges Bank Melanogrammus aeglefinus USA 6.5 BMSY

HADICE Haddock Iceland Melanogrammus aeglefinus Multinational 8.0 Bpa

HADNEAR Haddock Northeast Arctic Melanogrammus aeglefinus Multinational 9.5 Bpa

HADNS-IIIa Haddock ICES IIIa and North Sea Melanogrammus aeglefinus Multinational 6.9 Bpa

HADVIa Haddock West of Scotland Melanogrammus aeglefinus Multinational 6.5 Bpa

HERR30 Herring ICES 30 Clupea harengus Multinational 7.2 Bpa

HERRIsum Herring Iceland (Summer spawners) Clupea harengus Multinational 8.0 Bpa

HERRNIRS Herring Northern Irish Sea Clupea harengus Multinational 6.7 Bpa

HERRNS Herring North Sea Clupea harengus Multinational 7.0 Bpa

HERRNWATLC Atlantic herring Northwestern Atlantic Coast Clupea harengus USA 7.7 BMSY

HERRVIa Herring ICES VIa Clupea harengus Multinational 6.9 Bpa

HERRVIaVIIbc Herring ICES VIa-VIIb-VIIc Clupea harengus Multinational 6.9 Bpa

KELPGREENLINGORECOAST Kelp greenling Oregon Coast Hexagrammos decagrammus USA 6.3 BMSY

KINGKLIPSA Kingklip South Africa Genypterus capensis South Africa 11.3 BMSY

LNOSESKAPCOAST Longnose skate Pacific Coast Raja rhina USA 16.6 BMSY

LSTHORNHPCOAST Longspine thornyhead Pacific Coast Sebastolobus altivelis USA 21.4 BMSY

MACKGOMCHATT Atlantic mackerel Gulf of Maine / Cape Hatteras Scomber scombrus USA 6.2 BMSY

MORWONGSE Jackass morwong Southeast Australia Nemadactylus macropterus Australia 14.7 BMSY

MUTSNAPSATLCGM Mutton snapper Southern Atlantic coast and Gulf of Mexico Lutjanus analis USA 12.8 BMSY

NPOUTNS Norway pout North Sea Trisopterus esmarkii Multinational 2.2 Bpa

NROCKBSAI Northern rockfish Bering Sea and Aleutian Islands Sebastes polyspinis USA 18.4 BMSY

NROCKGA Northern rockfish Gulf of Alaska Sebastes polyspinis USA 26.5 BMSY

NRSOLEEBSAI Northern rock sole Eastern Bering Sea and Aleutian Islands Lepidopsetta polyxystra USA 11.6 BMSY

NZLINGESE New Zealand ling Eastern half of Southeast Australia Genypterus blacodes Australia 9.7 BMSY

NZLINGLIN3-4 New Zealand ling New Zealand Areas LIN 3 and 4 Genypterus blacodes New Zealand 14.3 BMSY

NZLINGLIN5-6 New Zealand ling New Zealand Areas LIN 5 and 6 Genypterus blacodes New Zealand 13.5 BMSY

NZLINGLIN6b New Zealand ling New Zealand Area LIN 6b Genypterus blacodes New Zealand 14.3 BMSY

NZLINGLIN72 New Zealand ling New Zealand Area LIN 72 Genypterus blacodes New Zealand 14.1 BMSY

NZLINGLIN7WC New Zealand ling New Zealand Area LIN 7WC - WCSI Genypterus blacodes New Zealand 13.7 BMSY
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NZLINGWSE New Zealand ling Western half of Southeast Australia Genypterus blacodes Australia 9.7 BMSY

NZSNAPNZ8 New Zealand snapper New Zealand Area 8 Chrysophrys auratus New Zealand 11.0 BMSY

OROUGHYNZMEC Orange roughy New Zealand Mid East Coast Hoplostethus atlanticus New Zealand 60.7 BMSY

OROUGHYSE Orange roughy Southeast Australia Hoplostethus atlanticus Australia 69.0 BMSY

PATGRENADIERSARG Patagonian grenadier Southern Argentina Macruronus magellanicus Argentina 8.9 BMSY

PCODBSAI Pacific cod Bering Sea and Aleutian Islands Gadus macrocephalus USA 8.2 BMSY

PCODGA Pacific cod Gulf of Alaska Gadus macrocephalus USA 7.7 BMSY

PERCHEBSAI Pacific Ocean perch Eastern Bering Sea and Aleutian Islands Sebastes alutus USA 32.9 BMSY

PHAKEPCOAST Pacific hake Pacific Coast Merluccius productus USA 6.0 BMSY

PLAICECHW European Plaice ICES VIIe Pleuronectes platessa Multinational 14.7 Bpa

POLLFAPL Pollock Faroe Plateau Pollachius virens Multinational 10.0 Bpa

POLLNEAR Pollock Northeast Arctic Pollachius virens Multinational 10.0 Bpa

POLLNS-VI-IIIa Pollock ICES IIIa, VI and North Sea Pollachius virens Multinational 9.6 Bpa

POPERCHGA Pacific ocean perch Gulf of Alaska Sebastes alutus USA 32.9 BMSY

POPERCHPCOAST Pacific ocean perch Pacific Coast Sebastes alutus USA 31.0 BMSY

PSOLENPCOAST Petrale sole Northern Pacific Coast Eopsetta jordani USA 10.0 BMSY

PSOLESPCOAST Petrale sole Southern Pacific Coast Eopsetta jordani USA 10.0 BMSY

PTOOTHFISHMI Patagonian toothfish Macquarie Island Dissostichus eleginoides Australia 23.0 BMSY

PTOOTHFISHPEI Patagonian toothfish South Africa Subantarctic Prince Edward Islands Dissostichus eleginoides South Africa 23.0 BMSY

REXSOLEGA Rex sole Gulf of Alaska Glyptocephalus zachirus USA 10.9 BMSY

REYEROCKBSAI Rougheye rockfish Bering Sea and Aleutian Islands Sebastes aleutianus USA 49.3 BMSY

REYEROCKGA Rougheye rockfish Gulf of Alaska Sebastes aleutianus USA 49.3 BMSY

RPORGYSATLC Red porgy Southern Atlantic coast Pagrus pagrus USA 6.0 BMSY

RSNAPEGM Red snapper Eastern Gulf of Mexico Lutjanus campechanus USA 15.7 BMSY

RSNAPSATLC Red snapper Southern Atlantic coast Lutjanus campechanus USA 15.5 BMSY

RSNAPWGM Red snapper Western Gulf of Mexico Lutjanus campechanus USA 15.7 BMSY

SABLEFEBSAIGA Sablefish Eastern Bering Sea / Aleutian Islands / Gulf of Alaska Anoplopoma fimbria USA 33.4 BMSY

SABLEFPCAN Sablefish Pacific Coast of Canada Anoplopoma fimbria Canada 32.8 BMSY

SBT Southern bluefin tuna Southern Oceans Thunnus maccoyii Multinational 18.0 BMSY

SBWHITACIR Southern blue whiting Campbell Island Rise Micromesistius australis New Zealand 8.0 BMSY

SFLOUNMATLC Summer flounder Mid-Atlantic Coast Paralichthys dentatus USA 3.2 BMSY

SILVERFISHSE Silverfish Southeast Australia Seriolella punctata Australia 8.0 BMSY

SKJCWPAC Skipjack tuna Central Western Pacific Katsuwonus pelamis Multinational 3.2 BMSY

SMOOTHOREOCR Smooth oreo Chatham Rise Pseudocyttus maculatus New Zealand 47.9 BMSY

SMOOTHOREOWECR Smooth oreo West end of Chatham Rise Pseudocyttus maculatus New Zealand 44.1 BMSY

SNOWGROUPSATLC Snowy grouper Southern Atlantic coast Epinephelus niveatus USA 9.7 BMSY

SOLECS common European sole Celtic Sea Solea vulgaris Multinational 8.8 Bpa

SOLEIS common European sole Irish Sea Solea vulgaris Multinational 8.3 Bpa

SOLEVIII common European sole Bay of Biscay Solea vulgaris Multinational 8.3 Bpa

SOUTHHAKECR Southern hake Chatham Rise Merluccius australis New Zealand 12.7 BMSY

SOUTHHAKESA Southern hake Sub-Antarctic Merluccius australis New Zealand 12.9 BMSY

SPANMACKSATLC Spanish mackerel Southern Atlantic Coast Scomberomorus maculatus USA 1.7 BMSY

SSTHORNHPCOAST Shortspine thornyhead Pacific Coast Sebastolobus alascanus USA 35.5 BMSY

STFLOUNNPCOAST Starry flounder Northern Pacific Coast Platichthys stellatus USA 8.3 BMSY



1
3
8

STFLOUNSPCOAST Starry flounder Southern Pacific Coast Platichthys stellatus USA 8.3 BMSY

STMARLINSWPO Striped marlin Southwestern Pacific Ocean Kajikia audax Multinational 5.3 BMSY

SWHITSE School whiting Southeast Australia Sillago flindersi Australia 6.0 BMSY

TIGERFLATSE Tiger flathead Southeast Australia Neoplatycephalus richardsoni Australia 9.3 BMSY

TILESATLC Tilefish Southern Atlantic coast Lopholatilus chamaeleonticeps USA 14.6 BMSY

TREVALLYTRE7 Trevally New Zealand Areas TRE 7 Pseudocaranx dentex New Zealand 16.0 BMSY

WAREHOUESE Blue Warehou Eastern half of Southeast Australia Seriolella brama Australia 6.0 BMSY

WAREHOUWSE Blue Warehou Western half of Southeast Australia Seriolella brama Australia 6.0 BMSY

WEAKFISHATLC Weakfish Atlantic Coast Cynoscion regalis USA 5.3 BMSY

WHAKEGBGOM White hake Georges Bank / Gulf of Maine Urophycis tenuis USA 7.7 BMSY

WHITNS-VIId-IIIa Whiting ICES IIIa, VIId and North Sea Merlangius merlangus Multinational 6.1 Bpa

WHITVIIek Whiting ICES VIIe-k Merlangius merlangus Multinational 5.9 Bpa

WINFLOUN5Z Winter Flounder NAFO-5Z Pseudopleuronectes americanus USA 4.9 BMSY

WINFLOUNSNEMATL Winter Flounder Southern New England-Mid Atlantic Pseudopleuronectes americanus USA 5.7 BMSY

WITFLOUN5Y Witch Flounder NAFO-5Y Glyptocephalus cynoglossus USA 10.7 BMSY

WPOLLAI Walleye pollock Aleutian Islands Theragra chalcogramma USA 7.1 BMSY

WPOLLEBS Walleye pollock Eastern Bering Sea Theragra chalcogramma USA 6.4 BMSY

WPOLLGA Walleye pollock Gulf of Alaska Theragra chalcogramma USA 9.2 BMSY

YELLCCODGOM Yellowtail flounder Cape Cod / Gulf of Maine Limanda ferruginea USA 4.5 BMSY

YELLGB Yellowtail flounder Georges Bank Limanda ferruginea USA 4.5 BMSY

YELLSNEMATL Yellowtail Flounder Southern New England-Mid Atlantic Limanda ferruginea USA 4.5 BMSY

YEYEROCKPCOAST Yelloweye rockfish Pacific Coast Sebastes ruberrimus USA 42.1 BMSY

YFINATL Yellowfin tuna Atlantic Thunnus albacares Multinational 3.7 BMSY

YFINCWPAC Yellowfin tuna Central Western Pacific Thunnus albacares Multinational 3.7 BMSY

YSOLEBSAI Yellowfin sole Bering Sea and Aleutian Islands Limanda aspera USA 14.4 BMSY

YTROCKNPCOAST Yellowtail rockfish Northern Pacific Coast Sebastes flavidus USA 21.3 BMSY

ANCHOBAYB Anchovy ICES VIII Engraulis encrasicolus Multinational 2.0 Bpa

CODVIIek Celtic Sea cod Gadus morhua Multinational 7.7 Bpa

HADROCK Haddock Rockall Bank Melanogrammus aeglefinus Multinational 6.9 Bpa

HERRSIRS Celtic Sea and South of Ireland Herring Ammodytes marinus Multinational 6.7 Bpa

PLAICNS European Plaice North Sea Pleuronectes platessa Multinational 14.4 Bpa

POLLIEG Iceland and East Greenland pollock in Division Va (Icelandic saithe) Ammodytes marinus Multinational 9.6 Bpa

SEELNSSA1 North Sea Sandeel in the Dogger Bank area (SA 1) Ammodytes marinus Multinational 3.6 Bpa

SEELNSSA2 North Sea Sandeel in the South Eastern North Sea (SA 2) Clupea harengus Multinational 3.6 Bpa

SEELNSSA3 North Sea Sandeel in the Central Eastern North Sea (SA 3) Pollachius virens Multinational 3.6 Bpa

SOLENS common European sole North Sea Solea vulgaris Multinational 8.4 Bpa

SOLEVIId common European sole ICES VIId Solea vulgaris Multinational 8.7 Bpa

WHITVIa Whiting ICES VIa Merlangius merlangus Multinational 6.1 Bpa

Table C.1:
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Table C2. Threat status and alignment for the 166 assessed marine fish populations. Population ordering by stock identification code. Included are the estimated percent decline (numbers

in parentheses indicate an increase in population biomass), estimated Red List threat status, biomass relative to reference point at end of decline, alignment between threat status and the upper and

lower fisheries references points, and final year of the population decline. IUCN threatened categories are Critically Endangered (CR), Endangered (EN), Vulnerable (VU) and not threatened. Refer

to Table S1 for further population descriptions.

Stockid Percent Estimated IUCN Biomass relative Alignment relative Alignment relative Final Year

decline threat category to upper reference point to upper reference point to lower reference point

ACADREDGOMGB (59.9) not threatened 0.7 miss -ve hit 2007

ALBASPAC 42.6 not threatened 2.7 -ve hit -ve hit 2006

ALPLAICBSAI (38.5) not threatened 2.2 -ve hit -ve hit 2008

AMPL5YZ 59.1 VU 0.6 +ve hit false 2007

ARFLOUNDBSAI (274.4) not threatened 2.5 -ve hit -ve hit 2008

ARFLOUNDGA (104.9) not threatened 3.0 -ve hit -ve hit 2010

ARFLOUNDPCOAST (56.6) not threatened 3.6 -ve hit -ve hit 2007

ARGANCHONARG 24 not threatened 1.8 -ve hit -ve hit 2007

ARGANCHOSARG 16.4 not threatened 2.6 -ve hit -ve hit 2007

ARGHAKENARG 66.6 VU 0.2 +ve hit +ve hit 2007

ARGHAKESARG 25.8 not threatened 0.4 miss miss 2008

ATBTUNAWATL 81.3 EN 0.6 +ve hit false 2007

ATKABSAI 8.2 not threatened 1.7 -ve hit -ve hit 2009

ATLCROAKMATLC (5.7) not threatened 1.5 -ve hit -ve hit 2002

AUSSALMONNZ 50.3 VU 1.7 false false 2006

BGROCKPCOAST 47.6 not threatened 1.3 -ve hit -ve hit 2005

BIGEYEIO 54 VU 1.3 false false 2004

BIGEYEWPO 35.9 not threatened 1.2 -ve hit -ve hit 2006

BLACKOREOWECR 69 VU 1.0 +ve hit false 2007

BLACKROCKNPCOAST 47.1 not threatened 1.7 -ve hit -ve hit 2006

BLACKROCKSPCOAST 26.5 not threatened 2.1 -ve hit -ve hit 2007

BLUEROCKCAL 65.2 VU 0.7 +ve hit false 2007

BSBASSMATLC (65.2) not threatened 0.9 miss -ve hit 2007

CABEZNCAL (32) not threatened 1.1 -ve hit -ve hit 2005

CABEZSCAL (35.5) not threatened 0.6 miss -ve hit 2005

CHAKESA 30 not threatened 2.2 -ve hit -ve hit 2008

CMACKPCOAST 75.9 EN 0.5 +ve hit +ve hit 2008

CODBA2224 2.3 not threatened 1.2 -ve hit hit.n 2011

CODCOASTNOR 46.3 not threatened 0.5 miss miss 2010

CODFAPL 56.9 VU 0.8 +ve hit false 2011

CODGB 76 EN 0.1 +ve hit +ve hit 2007

CODICE (4.7) not threatened 1.7 -ve hit hit.n 2011

CODIS 90.5 CR 0.1 +ve hit hit.p 2010

CODKAT 80 EN 0.2 +ve hit hit.p 2010

CODNEAR (287.6) not threatened 2.1 -ve hit hit.n 2010

CODNS 58.3 VU 0.4 +ve hit hit.p 2011

CODVIa 67.3 VU 0.3 +ve hit hit.p 2011

COWCODSCAL 94.4 CR 0.1 +ve hit +ve hit 2007
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CROCKPCOAST 77.2 EN 0.6 +ve hit false 2009

DEEPCHAKESA 23 not threatened 0.8 miss -ve hit 2008

DEEPFLATHEADSE 48.2 not threatened 1.4 -ve hit -ve hit 2007

DSOLEPCOAST 20.9 not threatened 1.5 -ve hit -ve hit 2005

DUSROCKGA (200.1) not threatened 1.5 -ve hit -ve hit 2007

ESOLEPCOAST (170.1) not threatened 6.4 -ve hit -ve hit 2007

FLSOLEBSAI (1097.6) not threatened 1.9 -ve hit -ve hit 2008

FLSOLEGA (61.5) not threatened 2.6 -ve hit -ve hit 2010

GAGGM (16.3) not threatened 1.0 miss -ve hit 2004

GAGSATLC 16.5 not threatened 0.9 miss -ve hit 2005

GEMFISHNZ 70.9 EN 1.6 false false 2006

GEMFISHSE 69.7 VU 0.2 +ve hit +ve hit 2007

GHALBSAI 86.9 EN 1.5 false false 2009

GOPHERSPCOAST (69.8) not threatened 2.5 -ve hit -ve hit 2005

GRAMBERSATLC (0.6) not threatened 1.3 -ve hit -ve hit 2006

HAD5Y (308.7) not threatened 1.1 -ve hit -ve hit 2007

HADFAPL 46.6 not threatened 0.7 miss hit.n 2011

HADGB (1085.4) not threatened 1.5 -ve hit -ve hit 2007

HADICE (66.6) not threatened 1.6 -ve hit hit.n 2011

HADNEAR (311.7) not threatened 3.4 -ve hit hit.n 2010

HADNS-IIIa (147.1) not threatened 1.5 -ve hit hit.n 2011

HADVIa 21.1 not threatened 0.8 miss hit.n 2011

HERR30 (49.3) not threatened 1.2 -ve hit hit.n 2011

HERRIsum 3.9 not threatened 1.3 -ve hit hit.n 2011

HERRNIRS (11.2) not threatened 1.2 -ve hit hit.n 2010

HERRNS (55.1) not threatened 1.1 -ve hit hit.n 2011

HERRNWATLC (782.9) not threatened 1.6 -ve hit -ve hit 2005

HERRVIa 45.9 not threatened 0.9 miss hit.n 2010

HERRVIaVIIbc 87.7 EN 0.2 +ve hit hit.p 2010

KELPGREENLINGORECOAST 22.8 not threatened 1.4 -ve hit -ve hit 2005

KINGKLIPSA 27.7 not threatened 1.2 -ve hit -ve hit 2008

LNOSESKAPCOAST 24.7 not threatened 1.8 -ve hit -ve hit 2007

LSTHORNHPCOAST 28.5 not threatened 2.7 -ve hit -ve hit 2005

MACKGOMCHATT (82.4) not threatened 3.6 -ve hit -ve hit 2004

MORWONGSE 86.1 EN 0.3 +ve hit +ve hit 2007

MUTSNAPSATLCGM (25) not threatened 1.0 -ve hit -ve hit 2006

NPOUTNS (56) not threatened 1.3 -ve hit hit.n 2011

NROCKBSAI (108.8) not threatened 1.4 -ve hit -ve hit 2009

NROCKGA 59.9 VU 1.6 false false 2008

NRSOLEEBSAI (1154) not threatened 3.1 -ve hit -ve hit 2007

NZLINGESE 67.8 VU 0.7 +ve hit false 2007

NZLINGLIN3-4 38.1 not threatened 3.0 -ve hit -ve hit 2007

NZLINGLIN5-6 25.6 not threatened 4.0 -ve hit -ve hit 2007

NZLINGLIN6b 43.6 not threatened 2.3 -ve hit -ve hit 2006
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NZLINGLIN72 42.8 not threatened 2.6 -ve hit -ve hit 2007

NZLINGLIN7WC 30.6 not threatened 2.0 -ve hit -ve hit 2008

NZLINGWSE 41.3 not threatened 1.2 -ve hit -ve hit 2007

NZSNAPNZ8 82 EN 0.4 +ve hit +ve hit 2005

OROUGHYNZMEC 75.9 EN 1.1 false false 2004

OROUGHYSE 90.4 CR 0.5 +ve hit +ve hit 2007

PATGRENADIERSARG 10.5 not threatened 1.7 -ve hit -ve hit 2006

PCODBSAI 49.3 not threatened 1.1 -ve hit -ve hit 2008

PCODGA 29.1 not threatened 0.9 miss -ve hit 2008

PERCHEBSAI (434.1) not threatened 1.3 -ve hit -ve hit 2009

PHAKEPCOAST 67.4 VU 1.7 false false 2008

PLAICECHW 32.5 not threatened 0.8 miss hit.n 2010

POLLFAPL (14.7) not threatened 1.9 -ve hit hit.n 2011

POLLNEAR (113.9) not threatened 1.8 -ve hit hit.n 2011

POLLNS-VI-IIIa (6.2) not threatened 1.2 -ve hit hit.n 2010

POPERCHGA (332.7) not threatened 1.4 -ve hit -ve hit 2010

POPERCHPCOAST 70.2 EN 0.6 +ve hit false 2007

PSOLENPCOAST 29.4 not threatened 1.7 -ve hit -ve hit 2005

PSOLESPCOAST (19.5) not threatened 0.8 miss -ve hit 2005

PTOOTHFISHMI 46.6 not threatened 2.3 -ve hit -ve hit 2010

PTOOTHFISHPEI 61.3 VU 1.9 false false 2008

REXSOLEGA (36.3) not threatened 2.5 -ve hit -ve hit 2007

REYEROCKBSAI (8.4) not threatened 1.1 -ve hit -ve hit 2009

REYEROCKGA 18 not threatened 1.6 -ve hit -ve hit 2007

RPORGYSATLC 23.8 not threatened 0.5 miss -ve hit 2004

RSNAPEGM 91.4 CR 0.2 +ve hit +ve hit 2003

RSNAPSATLC 97.5 CR 0.0 +ve hit +ve hit 2006

RSNAPWGM 57.2 VU 0.3 +ve hit +ve hit 2003

SABLEFEBSAIGA 31.4 not threatened 1.0 -ve hit -ve hit 2008

SABLEFPCAN 44.3 not threatened 0.5 miss -ve hit 2004

SBT 94.2 CR 0.2 +ve hit +ve hit 2009

SBWHITACIR (4.4) not threatened 1.3 -ve hit -ve hit 2006

SFLOUNMATLC (58.2) not threatened 0.7 miss -ve hit 2007

SILVERFISHSE 46.3 not threatened 1.1 -ve hit -ve hit 2006

SKJCWPAC (9.7) not threatened 4.0 -ve hit -ve hit 2006

SMOOTHOREOCR 41.4 not threatened 2.3 -ve hit -ve hit 2006

SMOOTHOREOWECR 68.2 VU 1.2 false false 2004

SNOWGROUPSATLC 90.5 CR 0.2 +ve hit +ve hit 2002

SOLECS (28.4) not threatened 1.8 -ve hit hit.n 2011

SOLEIS 81.9 EN 0.4 +ve hit hit.p 2011

SOLEVIII 18.4 not threatened 0.9 miss hit.n 2011

SOUTHHAKECR 55.9 VU 2.1 false false 2006

SOUTHHAKESA 34.7 not threatened 3.0 -ve hit -ve hit 2007

SPANMACKSATLC (20.2) not threatened 0.3 miss miss 2007
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SSTHORNHPCOAST 37.1 not threatened 1.6 -ve hit -ve hit 2005

STFLOUNNPCOAST (118.9) not threatened 1.3 -ve hit -ve hit 2005

STFLOUNSPCOAST (283.3) not threatened 1.6 -ve hit -ve hit 2005

STMARLINSWPO 25.8 not threatened 0.6 miss -ve hit 2003

SWHITSE 41 not threatened 0.7 miss -ve hit 2007

TIGERFLATSE (132.5) not threatened 2.1 -ve hit -ve hit 2006

TILESATLC 66.2 VU 1.0 +ve hit false 2002

TREVALLYTRE7 58.8 VU 1.5 false false 2005

WAREHOUESE 93.5 CR 0.5 +ve hit +ve hit 2006

WAREHOUWSE 74.2 EN 0.5 +ve hit +ve hit 2006

WEAKFISHATLC 75.9 EN 0.2 +ve hit +ve hit 2008

WHAKEGBGOM 59.5 VU 0.3 +ve hit +ve hit 2007

WHITNS-VIId-IIIa 35.9 not threatened 0.6 miss miss 2010

WHITVIIek 35.5 not threatened 1.5 -ve hit hit.n 2010

WINFLOUN5Z 6.2 not threatened 0.3 miss miss 2006

WINFLOUNSNEMATL 33.8 not threatened 0.1 miss miss 2007

WITFLOUN5Y 72.1 EN 0.3 +ve hit +ve hit 2007

WPOLLAI 80.3 EN 0.9 +ve hit false 2008

WPOLLEBS 37.1 not threatened 0.9 miss -ve hit 2008

WPOLLGA 69.9 VU 0.8 +ve hit false 2008

YELLCCODGOM (8.5) not threatened 0.2 miss miss 2007

YELLGB (86.1) not threatened 0.1 miss miss 2007

YELLSNEMATL (159.3) not threatened 0.1 miss miss 2007

YEYEROCKPCOAST 84.9 EN 0.4 +ve hit +ve hit 2006

YFINATL 31.6 not threatened 1.1 -ve hit -ve hit 2006

YFINCWPAC 43.3 not threatened 1.3 -ve hit -ve hit 2005

YSOLEBSAI (460) not threatened 2.0 -ve hit -ve hit 2008

YTROCKNPCOAST 38.6 not threatened 1.4 -ve hit -ve hit 2005

ANCHOBAYB (1.9) not threatened 1.8 -ve hit hit.n 2011

CODVIIek 56.1 VU 0.9 +ve hit false 2011

HADROCK 17.1 not threatened 1.7 -ve hit hit.n 2011

HERRSIRS (79.1) not threatened 2.3 -ve hit hit.n 2010

PLAICNS (1.5) not threatened 1.7 -ve hit hit.n 2010

POLLIEG 34 not threatened 1.5 -ve hit hit.n 2011

SEELNSSA1 (130.5) not threatened 1.6 -ve hit hit.n 2011

SEELNSSA2 (111.2) not threatened 1.4 -ve hit hit.n 2011

SEELNSSA3 (108.2) not threatened 0.9 miss hit.n 2011

SOLENS (3.2) not threatened 1.0 -ve hit hit.n 2010

SOLEVIId (25.2) not threatened 1.5 -ve hit hit.n 2011

WHITVIa 84.9 EN 0.2 +ve hit hit.p 2011

Table C.2:
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Table C3. The proportion (%) of populations meeting each of four possible alignment outcomes (positive hit,
negative hit, miss or false alarm) under four different scenarios using IUCN Criterion A4. The A4 criterion
a population as being threatened if a 30% decline is observed over the longer of 10 years or three generations. A) Current
estimated Red List status or B) Estimated Red List status following the population’s greatest decline, each compared to upper
(more conservative; Bmsy or Bpa) or lower (riskier; 0.5Bmsy or B lim) reference points.

Ref. point Hit(+ve) Hit (-ve) Miss False Alarm # of populations
A) Current Status Upper 28.3 39.2 12.0 20.5 166

Lower 17.5 47.6 3.6 31.3 166
B) Greatest Decline Upper 51.8 16.9 1.8 29.5 166

Lower 33.7 18.1 0.6 47.6 166

Table C.3:



144

Table C4. Alignment of populations over a 15 year decline period. The proportion (%) of populations meeting each
of four possible outcomes (positive hit, negative hit, miss or false alarm) over a decline period of 15 years for all populations
when A) their current estimated Red List status or B) their estimated Red List status following their greatest decline is
compared to either their upper (more conservative; Bmsy or Bpa) or lower (riskier; 0.5Bmsy or B lim) reference points.

Ref. point Hit(+ve) Hit (-ve) Miss False Alarm # of populations
A) Current Status Upper 10.8 54.8 29.5 4.8 166

Lower 9.4 71.7 12.7 7.2 166
B) Greatest Decline Upper 46.4 29.5 9.0 15.1 166

Lower 30.1 35.5 3.0 31.3 166

Table C.4:
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Figure C.1: Time series of adult biomass for the 166 assessed marine fish populations.
Population codes and associated descriptions are listed in Tables S1 and S2. Colored
dotted lines correspond to fisheries reference points: Bmsy or Bpa (green), 0.5Bmsy

(yellow), 0.2Bmsy or B lim (red). Colored circles and thick dashed lines show the
three-generation period considered for the Red List evaluation; colors correspond
to the estimated Red List category: CR (red), EN (orange), VU (yellow), or not
threatened (black), under Criterion A1. Thick dashed lines are illustrative only and
do not indicate regression lines.
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1.5

2.0

2.5

CROCKPCOAST

+ve hit

1910 1940 1970 2000

0

1

2

3

4

5

6

DEEPCHAKESA

miss

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

DEEPFLATHEADSE

−ve hit

1910 1940 1970 2000

0.0

0.5

1.0

1.5

2.0

2.5

DSOLEPCOAST

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

DUSROCKGA

−ve hit

1870 1910 1950 1990

0

1

2

3

4

5

6

7

ESOLEPCOAST

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

FLSOLEBSAI

−ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FLSOLEGA

−ve hit
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1960 1980 2000

0.0

0.5

1.0

1.5

2.0

GAGGM

miss

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

GAGSATLC

miss

1950 1970 1990 2010

0

1

2

3

4

5

6

7

GEMFISHNZ

false

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

GEMFISHSE

+ve hit

1960 1980 2000

0

5

10

15

GHALBSAI

false

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

GOPHERSPCOAST

−ve hit

1940 1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

GRAMBERSATLC

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

HAD5Y

−ve hit

1950 1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

HADFAPL

miss

1930 1960 1990

0.0

0.5

1.0

1.5

2.0

HADGB

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

HADICE

−ve hit

1950 1970 1990 2010

0

1

2

3

4

5

HADNEAR

−ve hit
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1960 1980 2000

0

1

2

3

4

5

6

7

HADNS−IIIa

−ve hit

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1990 2000 2010

0

1

2

3

HADROCK

−ve hit

1970 1990 2010

0

1

2

3

HADVIa

miss

1970 1990 2010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

HERR30

−ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

HERRIsum

−ve hit

1960 1980 2000

0

1

2

3

4

HERRNIRS

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

HERRNS

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

HERRNWATLC

−ve hit

1950 1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

HERRSIRS

−ve hit

1950 1970 1990 2010

0

1

2

3

4

5

6

HERRVIa

miss

1950 1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

HERRVIaVIIbc

+ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

KELPGREENLINGORECOAST

−ve hit
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1930 1960 1990

0.0

0.5

1.0

1.5

2.0

2.5

KINGKLIPSA

−ve hit

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1910 1940 1970 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LNOSESKAPCOAST

−ve hit

1960 1980 2000

0

1

2

3

4

LSTHORNHPCOAST

−ve hit

1960 1980 2000

0

1

2

3

4

MACKGOMCHATT

−ve hit

1910 1940 1970 2000

0.0

0.5

1.0

1.5

2.0

MORWONGSE

+ve hit

1980 1990 2000 2010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MUTSNAPSATLCGM

−ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

NPOUTNS

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

NROCKBSAI

−ve hit

1960 1980 2000

0

1

2

3

4

NROCKGA

false

1970 1990 2010

0

1

2

3

4

NRSOLEEBSAI

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

NZLINGESE

+ve hit

1970 1990 2010

0

1

2

3

4

5

NZLINGLIN3−4

−ve hit
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1970 1990 2010

0

1

2

3

4

5

6

NZLINGLIN5−6

−ve hit

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1980 1990 2000 2010

0

1

2

3

4

NZLINGLIN6b

−ve hit

1970 1990 2010

0

1

2

3

4

5

NZLINGLIN72

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

NZLINGLIN7WC

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

NZLINGWSE

−ve hit

1930 1960 1990

0

1

2

3

4

5

NZSNAPNZ8

+ve hit

1980 1990 2000 2010

0

1

2

3

4

5

OROUGHYNZMEC

false

1970 1990 2010

0

2

4

6

8

OROUGHYSE

+ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

PATGRENADIERSARG

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

PCODBSAI

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

PCODGA

miss

1970 1990 2010

0.0

0.5

1.0

1.5

PERCHEBSAI

−ve hit
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1960 1980 2000

0

2

4

6

8

10

PHAKEPCOAST

false

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

PLAICECHW

miss

1950 1970 1990 2010

0.0

0.5

1.0

1.5

2.0

PLAICNS

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

POLLFAPL

−ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

POLLIEG

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

POLLNEAR

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

POLLNS−VI−IIIa

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

POPERCHGA

−ve hit

1950 1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

POPERCHPCOAST

+ve hit

1910 1940 1970 2000

0

1

2

3

4

5

6

PSOLENPCOAST

−ve hit

1870 1910 1950 1990

0

1

2

3

4

PSOLESPCOAST

miss

1970 1990 2010

0

1

2

3

4

PTOOTHFISHMI

−ve hit
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1960 1980 2000

0

1

2

3

4

5

6

PTOOTHFISHPEI

false

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

REXSOLEGA

−ve hit

1970 1990 2010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

REYEROCKBSAI

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

REYEROCKGA

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

RPORGYSATLC

miss

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RSNAPEGM

+ve hit

1940 1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

RSNAPSATLC

+ve hit

1980 1990 2000 2010

0.0

0.2

0.4

0.6

0.8

1.0

RSNAPWGM

+ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

SABLEFEBSAIGA

−ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

SABLEFPCAN

miss

1930 1960 1990

0

1

2

3

4

SBT

+ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

SBWHITACIR

−ve hit
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1980 1990 2000 2010

0

1

2

3

4

5

SEELNSSA1

−ve hit

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SEELNSSA2

−ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

SEELNSSA3

miss

1980 1990 2000 2010

0.0

0.2

0.4

0.6

0.8

SFLOUNMATLC

miss

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

SILVERFISHSE

−ve hit

1970 1990 2010

0

1

2

3

4

5

SKJCWPAC

−ve hit

1970 1990 2010

0

1

2

3

4

SMOOTHOREOCR

−ve hit

1970 1990 2010

0

1

2

3

4

SMOOTHOREOWECR

false

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SNOWGROUPSATLC

+ve hit

1970 1990 2010

0

1

2

3

4

SOLECS

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

SOLEIS

+ve hit

1950 1970 1990 2010

0

1

2

3

SOLENS

−ve hit
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1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

SOLEVIId

−ve hit

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1980 1990 2000 2010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SOLEVIII

miss

1970 1990 2010

0

1

2

3

4

5

6

SOUTHHAKECR

false

1970 1990 2010

0

2

4

6

SOUTHHAKESA

−ve hit

1950 1970 1990 2010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SPANMACKSATLC

miss

1900 1930 1960 1990

0.0

0.5

1.0

1.5

2.0

2.5

SSTHORNHPCOAST

−ve hit

1970 1990 2010

0

1

2

3

4

5

STFLOUNNPCOAST

−ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

STFLOUNSPCOAST

−ve hit

1950 1970 1990 2010

0

1

2

3

4

STMARLINSWPO

miss

1940 1960 1980 2000

0.0

0.5

1.0

1.5

2.0

SWHITSE

miss

1910 1940 1970 2000

0

1

2

3

4

5

TIGERFLATSE

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

TILESATLC

+ve hit
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1940 1960 1980 2000

0

1

2

3

4

TREVALLYTRE7

false

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1980 1990 2000 2010

0

2

4

6

8

WAREHOUESE

+ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

WAREHOUWSE

+ve hit

1980 1990 2000 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

WEAKFISHATLC

+ve hit

1960 1980 2000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

WHAKEGBGOM

+ve hit

1990 2000 2010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

WHITNS−VIId−IIIa

miss

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

WHITVIa

+ve hit

1980 1990 2000 2010

0

1

2

3

4

WHITVIIek

−ve hit

1980 1990 2000 2010

0.0

0.2

0.4

0.6

0.8

1.0

WINFLOUN5Z

miss

1980 1990 2000 2010

0.0

0.1

0.2

0.3

0.4

WINFLOUNSNEMATL

miss

1980 1990 2000 2010

0.0

0.5

1.0

1.5

WITFLOUN5Y

+ve hit

1970 1990 2010

0

1

2

3

4

5

6

WPOLLAI

+ve hit
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1960 1980 2000

0.0

0.5

1.0

1.5

2.0

WPOLLEBS

miss

P
o
p
u
la

ti
o
n
 a

s
 p

ro
p
o
rt

io
n
 o

f 
u
p
p
e
r 

re
fe

re
n
c
e
 p

o
in

t

Year

1970 1990 2010

0

1

2

3

4

WPOLLGA

+ve hit

1980 1990 2000 2010

0.0

0.1

0.2

0.3

YELLCCODGOM

miss

1970 1990 2010

0.0

0.1

0.2

0.3

0.4

0.5

YELLGB

miss

1970 1990 2010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

YELLSNEMATL

miss

1920 1950 1980 2010

0.0

0.5

1.0

1.5

2.0

2.5

YEYEROCKPCOAST

+ve hit

1970 1990 2010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

YFINATL

−ve hit

1950 1970 1990 2010

0

1

2

3

4

5

6

YFINCWPAC

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

YSOLEBSAI

−ve hit

1960 1980 2000

0.0

0.5

1.0

1.5

2.0

2.5

YTROCKNPCOAST

−ve hit

159


