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Abstract

Environmental change in the ocean has raised significant concern over the continued pro-

ductivity of global fisheries resources. In this thesis, I investigate time-varying rates of

population growth and biomass production (i.e. ‘nonstationary productivity’) in global

fish stocks by analyzing a new global database of fisheries time series. Using Bayesian

population models, I describe nonstationary productivity in individual stocks, and then

synthesize results at regional, taxonomic, and global scales. I demonstrate significant

regional and global trends in two aspects of stock productivity: juvenile recruitment (the

production of individual fish) and total productivity (the production of stock biomass).

Importantly, these declines can be explained by changes in temperature, phytoplankton,

and the intensity of historical overfishing. Further, observed trends are shown to signifi-

cantly alter rebuilding timelines for depleted stocks. These results help track the historical

trends and current status of stock productivity and reveal key environmental drivers at

the regional and global scale.
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Chapter 1

Introduction

A hallmark of human prosperity is the sustainable exploitation of natural ecosystems and

their biological resources. Wild marine fisheries are a central example which provide a sig-

nificant source of animal protein for more than half of the world’s population [1]. Numeri-

cally, wild fisheries produce roughly 90 million tonnes of consumable biomass per year [1].

That equals an annual quantity of food greater than 1
3

of the entire human biomass on

earth [2]. However, observations and predictions of global climate change increasingly

suggest fundamental shifts in ecosystem productivity which may impact our ability to

sustainably exploit fisheries resources. For example, atmospheric CO2 accumulation over

the 21st Century is predicted to cause accelerated ocean warming [3], acidification [4, 5],

deoxygenation [6,7], and sea-level rise [8]; all of which impose dramatic, yet poorly under-

stood consequences for the health of fish populations [9–11] and their supporting marine

ecosystems [5, 12]. Basic ecological research has focused on responses to climate forcing

with increasing recognition of nonlinear and nonstationary response processes, including

state-shifts [13], critical transitions [14], and environmental regime-shifts [15]. Analytical

work has also become a priority with efforts to understand nonstationary processes using

empirical analyses such as early warning signs [14,16,17], critical slowing-down [18], and

‘flickering’ [18,19]. Taken together, modern evidence suggests that nonstationary ecolog-

ical processes are the rule, rather than the exception in contemporary ecosystems, with

important but poorly constrained consequences for fisheries productivity.

In practical terms, nonstationary processes suggest that past ecological data may be

unrepresentative of current ecosystems, which has dangerous consequences when trying

1
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to make predictions and sustainably exploit populations. This situation was summarized

more than 25 years ago and echoes even more loudly today:

Hidden in most of the literature on fisheries modelling and stock assessment is the assump-

tion that there are stationary relationships between key rate processes and population size

measures. By stationarity, I mean a relationship that may be clouded by white, serially

uncorrelated, noise, but has a statistically invariant distribution of rate variables for each

value of the state variable. So we blithely fit long time series of stock-recruitment data as

though the older recruitment observations were still representative of what similar spawning

stock sizes would produce today, we plug growth curves estimated 10 years ago into yield-

per-recruit analyses, and pretend in the analysis of catch at age data that natural mortality

rates have been constant through time.

- Carl Walters (1987; CJFAS ; [20])

Despite the recognition of nonstationary processes, it is less clear how to empirically

model and predict such processes in the context of fisheries. In theory, the strategy should

be both adaptive and ecosystem-based, designed to fluidly incorporate new quantitative

biological knowledge when ecological conditions change. But in practise this remains a

major challenge. Here I propose a particular strategy based on adaptive single species

models and Bayesian probability. Conceptually, the core methodology makes use of time-

varying extensions of classical production models in which key production rate parameters

are treated as dynamic latent state variables. The latent productivity state is described

by a probability distribution and dynamically updated on account of new observations.

As I will explore in the thesis, there are well-developed statistical tools to infer and pre-

dict such states based on sequential Bayesian updating [21–24]. My goal is to empirically

apply these methods to a new global database of fisheries time series [25] and to describe

nonstationary fish stock productivity at the broadest possible scale. I first assess the mag-

nitudes, spatiotemporal patterns, and potential drivers of nonstationary productivity, and

then characterize the consequences for key management outcomes such as rebuilding time
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lines for depleted stocks.

Structure of the thesis

In this thesis, I apply sequential Bayesian updating to extend two canonical fisheries mod-

els to the nonstationary case. The goal is to apply these models to all available fisheries

time series [25] and then synthesize nonstationary productivity using meta-analyses at

the regional, taxonomic, and global scales. The nonstationary models describe two dis-

tinct aspects of productivity, juvenile recruitment and total biomass production. Each

process is quantified by a small number of fundamental biological parameters which gov-

ern stock production rates and feed directly into traditional management. The Bayesian

extensions allow these parameters to vary in time and are sequentially updated on ac-

count of new time series data. In this sense, key biological parameters are observationally

tracked as dynamic states analogous to weather tracking and prediction. The research is

primarily a synthesis of three fundamental components: simple population models and

well-understood statistical methods, applied to a publicly available global database of

fisheries time series - the RAM Legacy Stock Assessment Database (www.ramlegacy.org).

In Chapter 2, I focus on nonstationary recruitment capacity by extending the well-

known Ricker model which governs the production dynamics of juvenile offspring as a

function of adult biomass. The magnitude of annual recruitment is highly variable, yet it

provides the basis for population growth and stock productivity by determining the initial

number of fish that may grow, die, or be harvested by the fishery [26]. Recruitment

capacity is described by two parameters: α, the maximum reproductive rate, and β,

the strength of population density-dependence. After selecting 262 appropriate stocks

from the RAM database, I tested for significant variability in these parameters and then

quantified the magnitudes of trends. I summarized patterns by global, regional, and

taxonomic grouping by performing a post-hoc meta-analysis of linear slopes. I then related
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these patterns to regional trends in environmental and fishing-related variables.

In Chapter 3, I investigate global patterns of nonstationary total productivity by

extending the Graham-Schaefer model to infer variation in the intrinsic productivity pa-

rameter r which combines recruitment, individual growth, and natural mortality. Using

time series from 211 assessed stocks I quantified variability in r using sequential Bayesian

updating and summarized regional, taxonomic, and global patterns. I then calculated

the consequences for the rebuilding potential for 147 of the 211 stocks currently below

their target biomass levels and estimated probabilistic rebuilding timelines on the basis

of contemporary productivity.

In Chapter 4, I conclude the thesis with a discussion of the broader implications of

the results, focusing on areas of follow-up research.



Chapter 2

Environmental change drives declining recruitment capacity in

global fish stocks∗

Abstract

It has recently been shown that marine fish and invertebrates are shifting their regional

and global distributions in response to climate change, but it is unclear whether their

productivity is being affected as well. Future projections of climate impacts on produc-

tivity are varied, while past changes due to documented environmental trends and the

biological legacy of historical overfishing remain unresolved. Here we applied dynamic

linear models with time-varying biological parameters to analyze time series from 262 fish

stocks of 127 species in 39 large marine ecosystems and high-seas areas (hereafter LMEs).

We discovered widespread changes in the relationship between population size and the

production of juvenile offspring (recruitment), suggesting fundamental biological change

in fish stock productivity across broad spatial and temporal scales. Globally, we estimate

that recruitment capacity has declined by approximately 3% per decade relative to the his-

torical maximum. However there is an observed contrast between highly negative trends

in the North Atlantic and more neutral patterns in the North Pacific. Most importantly,

the extent of biological change in each LME was significantly related to regional ocean

warming, declining phytoplankton biomass, and the intensity of historical overfishing in

that ecosystem. We conclude that observed environmental change over the last 50-100

years has already compromised the productive capacity of stocks at the recruitment stage

∗In review at time of submission as: Britten GL, M Dowd, B Worm. 2014. Environmental change
drives declining recruitment capacity in global fish stocks. Nature

5
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of the life cycle. These results provide an empirical baseline for ecosystem-based fisheries

management and may help revise expectations for future food production from the oceans.

2.1 Introduction

Human well-being is closely linked with the productivity of marine fisheries, which provide

a significant source of protein for more than half of the world’s population [1]. However,

climate change may increase or decrease productivity through a variety of physical and

biological mechanisms, including larger habitat areas for temperate species [27], altered

body sizes [28], food availability [29], and increased exposure to oxygen-depleted and

acidic waters [5]. Recent research has documented marked changes in the distributional

patterns of marine species that are consistent with climate forcing [30,31]. However, it is

not empirically understood whether environmental changes [29,32,33] are already affecting

the productive capacity of populations at a global scale, or whether stocks are biologically

compromised due to the long-term selection effects of historical overfishing [34, 35]. Here

we address this question by evaluating trends in the relation between the size of the adult

population (or spawning stock) and annual production of juvenile offspring (recruits) using

a new global database of stock-recruit time series [25]. We then relate recruitment patterns

to environmental variables associated with temperature, phytoplankton abundance, and

historical overfishing.

Fisheries scientists model recruitment with simple mathematical functions that relate

the quantity of spawning stock biomass to the annual production of recruits. The mag-

nitude of annual recruitment is highly variable, yet it provides the basis for population

growth and stock productivity by determining the initial number of fish that may grow,

die, or be harvested by the fishery [26] (i.e. total productivity is the product of recruit-

ment, individual growth, and mortality). As such, the stock-recruit relationship has been

identified as ‘the most important and generally most difficult problem in the biological
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assessment of fisheries’ [26]. The most commonly used recruitment function is the well-

known Ricker model

Rt = αBt−τe
−βBt−τ ,

where recruitment R at time t is an increasing function of the spawning stock biomass B

(lagged by the age of recruitment τ), with negative exponential density-dependent feed-

back. The two model parameters, α and β, characterize the magnitude of recruitment,

where α is the maximum reproductive rate (or density-independent recruitment) and β

gives the rate at which recruitment is reduced by density-dependent feedbacks. These two

parameters combine to give the maximum recruitment capacity for an individual stock

when dR
dB

= 0 and d2R
dB2 < 0, yielding

RMAX =
α

β
e−1,

where e is Euler’s constant. Note that RMAX is a measure of inherent biological produc-

tivity, and is independent of actual biomass.

When recruitment models are fitted to data (Figure 2.1A-F) there is often consider-

able structure in the residual variation (Figure 2.1G-I) which suggests that time-varying

ecological processes have affected the stock-recruit relationship. Trends can be observed

as directed declines (Figure 2.1G), threshold-like dynamics (Figure 2.1H), or regime shifts

(Figure 2.1I; note that the observed shift coincided with the 1977 reversal of the Pacific

Decadal Oscillation [15]). We quantified the time variability in the stock-recruit relation-

ship using a dynamic linear model (DLM) representation of the Ricker model, allowing the

biological parameters to vary in time [36, 37], i.e. {α, β} → {αt, βt}. We combined these

parameters to evaluate changes in RMAX for individual stocks, where ∆RMAX represents



8

the linear slope for an individual stock over time, standardized relative to the historical

maximum. Using meta-analytic methods, we averaged individual ∆RMAX across multiple

stocks at the ecosystem and taxonomic level (denoted ∆Rk
MAX to indicate the average

across grouping k) and then related these to regional trends in sea surface temperature

(∆SST [32]), chlorophyll (∆CHL [29], a widely-used a proxy of phytoplankton biomass),

and a measure of historical overfishing (taken as the average ratio of historical stock

biomass to target biomass [25], denoted B:BMSY). See Appendix A for detailed method-

ology.

2.2 Results

We found the stock-recruitment data supported time-varying recruitment capacity (RMAX)

for 79% (n = 208) of stocks according to model selection (Figure 2.2). Of these, 69%

(n = 139) showed negative trends (Figure 2.2). For all stocks combined, ∆Rk
MAX was

estimated at approximately -3% per decade (P < 0.001, Figure 2.2D). However there was

a broad-scale divergence in values between the North Pacific and North Atlantic oceans,

with the North Atlantic showing steeper declines. In contrast, the North Pacific showed

approximately neutral trends across 4 LMEs, each with a relatively large number of stocks.

Across all LMEs, we estimated that 31 out of all 39 LMEs (79%), and 20 out of 27 LMEs

with >3 assessed stocks (74%), showed negative ∆Rk
MAX (Figure 2.2). The most positive

value was found in the Gulf of Mexico, while the heavily depleted Newfoundland and

Labrador LME showed the most negative value (Figure 2.2B). At the taxonomic level,

groundfish (bottom-associated species such as flatfishes, Pleuronectiformes, and cod-like

Gadiformes) showed the most negative ∆Rk
MAX (Figure 2.2C). At the species level, the

most negative values were observed for several North Atlantic species such as American

plaice (Hippoglossoides platessoides), European plaice (Pleuronectes platessa), common

European sole (Solea vulgaris), and Atlantic cod (Gadus morhua). In the North Pacific,
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however, many groundfish species showed opposite patterns, with stocks of rex sole (Glyp-

tocephalus zachirus), flathead sole (Hippoglossoides elassodon), and arrowtooth flounder

(Atheresthes stomias) trending positively. Pelagic (open-water) species such as herring

(Clupea harengus, C. pallasii) and swordfish (Xiphias gladius) often showed ∆Rk
MAX val-

ues closer to zero.

In general, we found individual stock-recruit parameters changed in a way that resulted

in stronger density-dependent processes and reduced maximum reproductive rates. Of

individual stocks with negative ∆RMAX , 71% displayed more negative β parameters and

29% experienced declining α. We also found that ∆RMAX was generally independent to

the assumed form of density-dependence in the stock-recruit model, or to whether the

model let α or β vary in time, indicating robustness in these estimates (see Appendix A

for details and sensitivity analyses).

Importantly, trends in recruitment capacity were found to be significantly related to

environmental and fishing-related variables (∆SST, ∆CHL, B:BMSY) across all LMEs

(Figure 2.3). Considering all species together (Figure 2.3A), ∆Rk
MAX in each LME was

positively associated with ∆CHL and negatively associated with ∆SST in that ecosys-

tem (Figure 2.4A,B), and accounted for 27% of the total variance (as measured by ad-

justed R2). Again, an interesting contrast emerged between trends in the heavily ex-

ploited groundfish (combining orders Pleuronectiformes and Gadiformes, Figure 2.3B)

and the predominantly pelagic Perciformes and Clupeiformes (Figure 2.3C). For ground-

fish, ∆Rk
MAX was significantly related to changes in temperature (∆SST, Figures 2.3B

& 2.4A), phytoplankton biomass (∆CHL, Figure 2.4B), and the historical intensity of

exploitation (mean B:BMSY, Figure 2.4C). These three variables explained 76% of the

variance across these species, representing 21 LMEs. Variation in the more pelagic taxa

(combining Perciformes and Clupeiformes) was mostly related to ∆SST (Figures 2.3C

& 2.4A), which explained 41% of the variance across 23 LMEs. To evaluate more recent

changes, we also assessed these relationships using data since 2000 only (see Appendix A).
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These results were consistent with the overall findings and gave similar trends in recruit-

ment capacity with highly significant relationships to environmental drivers, including a

negative effect of ∆SST and positive effect of ∆CHL for all stocks combined.

2.3 Discussion

Taken together, these results provide empirical context for understanding contemporary

changes in the productivity of fish stocks. To date, forecasts of fisheries productivity

under future climate change scenarios have varied in their predictions. For example, the

productivity of temperate species has been projected to increase 30-40% based on expan-

sion of fish habitat and increased primary productivity [27], while models of individual

fish metabolism predict shrinking body sizes with warming oceans [28] which could affect

fecundity and productivity. Here we utilized the history of recorded stock-recruitment

data to show that observed environmental changes already have negative impacts on the

recruitment stage of the life cycle. However, we caution that these trends in recruitment

biology should be combined with other model-based forecasts that weigh factors related

to habitat quantity and quality to more fully determine expected change in both biomass

distribution and productivity. We further note that the drivers of recruitment capacity

identified here likely vary in importance among stocks and regions. Changes in tem-

perature, plankton concentration, and overfishing are all known to affect recruitment in

sometimes complex ways, including effects at both the adult (e.g. maternal effects on re-

cruitment [38]) and larval stages (e.g. environmental effects on hatching and survival [39]).

Our results make neither assumptions nor inferences regarding specific mechanisms. It is

imperative that additional, local-scale analysis be performed to understand how specific

drivers interact to drive the recruitment capacity of individual stocks.

At larger scales, the apparent divergence in productivity among the North Pacific

and North Atlantic provides an interesting contrast. The North Pacific experienced a
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broad-scale oceanographic regime shift in the 1970s [15], which resulted in relatively flat

long-term environmental trends (Figure 2.4). Observed patterns suggest that recruitment

capacity may have tracked this variability (e.g. Figure 2.1I), resulting in small ∆RMAX

values overall. Shorter histories of exploitation and lower exploitation rates [40] are also

likely to have tempered declines in this region due to overfishing. In contrast, the North

Atlantic is marked by strong directional environmental change and long-term overexploita-

tion (Figure 2.4). Environmental and fishing-related trends in this region were among the

most severe across all three variables (∆SST, ∆CHL, B:BMSY) and were closely related

to ∆RMAX . An exception for the North Atlantic is the positive ∆RMAX in the Gulf of

Mexico (which mostly predates the Deepwater Horizon spill in 2010 [41]). It is important

to note that the relative scarcity of stock assessments in other regions of the world (grey

areas in Figure 2.4C and see [25, 42]) limits our understanding of global fish populations

as a whole.

In addition to impacting the productivity of marine fish stocks, observed changes

in recruitment parameters may also have consequences for the stability of populations.

Recent theoretical work has linked observed patterns of population stability [43] to changes

in stock-recruitment parameters [44] due to age-selective fishing. It was hypothesized that

population stability has decreased in stocks due to increases in the mean and variance of

the maximum reproductive rate α caused by the truncation of population age structure

by fishing. Our results, however, suggest that such increases in α are not often observed

in assessed fish populations, where α has generally trended downward. Rather, frequently

observed increases in the magnitude of the density-dependent parameter β may provide an

alternative explanation for reduced stabilities in exploited stocks based on the well-known

destabilizing effects of strong density-dependent feedbacks [45].

In summary, empirically estimated trends in recruitment capacity (Figures 2.1 & 2.2)

provide strong evidence for climate- and fishing-related changes in the productivity of



12

marine fish stocks (Figure 2.3). These shifts are significantly related to ongoing environ-

mental and biological change at the ecosystem scale; specifically changes in sea surface

temperature, phytoplankton biomass, and the history of stock biomass depletion (Figure

2.4). The reality of time-varying biological parameters requires managers to revisit the

common assumptions of fixed maximum sustainable yields [20] and emphasizes the need

for ecosystem-based management strategies that investigate and account for observed en-

vironmental and fishing-related impacts on the population dynamics of fish stocks. Such

strategies are a prerequisite to ensuring the successful rebuilding and sustainable harvest-

ing of fisheries resources in a rapidly changing environment.
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2.4 Figures

Figure 2.1. Patterns in stock-recruitment data. Ricker models fitted to
stock-recruitment data (A-C) often display systematic errors (D-F). Model residuals can
show diverse behaviours, including progressive declines (G), abrupt thresholds (H) or
reversing regime shifts (I). Data are standardized to have unit variance.
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Figure 2.2. Meta-analysis. Standardized trends in recruitment capacity (∆RMAX ;
units % change RMAX per decade, relative to the historical maximum). (A) ∆Rk

MAX

(representing the meta-analytic average ∆RMAX) by large marine ecosystem (LME)
containing > 3 assessed stocks. The color of the circle gives the direction and magnitude
of ∆Rk

MAX and the size of the circle gives the number of stocks in the LME. (B)
Meta-analytic ∆Rk

MAX per LME and standard error. (C) Taxon-level ∆Rk
MAX for

species with > 3 assessed stocks (dark circles) and by taxonomic order (open circles).
(D) All 262 individual stock ∆RMAX with the grand meta-analytic mean (P < 0.001)
and standard error (shaded bar). Meta-analytic means were derived by averaging the
individual stock trends by inverse-variance weighting.
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Figure 2.3. Drivers of recruitment capacity. Relationships between LME-level ∆Rk
MAX and environmental and

fisheries variables using weighted multiple regression (weighted according to the number of stocks in the LME). The
regression variables were selected using BIC. The three LME-specific covariates included: i) trends in sea surface
temperature (∆SST), ii) trends in chlorophyll concentration (∆CHL), and iii) the historical mean ratio of stock biomass to
target biomass (B:BMSY). The regression slopes were normalized by transforming the regression variables to unit variance.
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Figure 2.4. Spatial distribution of environmental drivers by LME. Linear
trends in sea surface temperature (∆SST; Panel A; [32]) span the period 1957− 2009.
Linear trends in chlorophyll concentration (∆CHL, used as a common proxy for
phytoplankton biomass; Panel B; [29]) span the period 1899− 2010, and, where
available, the historical ratio of biomass to target biomass(B:BMSY; scaled between 0-1);
Panel C; [25]) span the period of formal stock assessments on a stock-by-stock basis.



Chapter 3

Rebuilding global fisheries under nonstationary productivity∗

Abstract

After a long history of overexploitation, the rebuilding of global fish stocks has become

a major international management goal and an explicit Convention on Biological Di-

versity (CBD) target for 2020. The objective is to rebuild depleted stocks to biomass

levels that produce maximum sustainable yield (MSY), i.e. BMSY. However, it has re-

cently been shown that a fundamental component of productivity, juvenile recruitment,

has experienced highly nonstationary behaviour in recent decades, with currently un-

known consequences for total productivity (i.e. the annual production of biomass). We

evaluated nonstationary productivity by developing a Bayesian production model with

time-varying intrinsic productivity parameter r, which determines both the magnitude

of MSY and timescales of population rebuilding. We inferred nonstationary productivity

from observed biomass time series of 211 assessed stocks and evaluated current rebuilding

times to BMSY for 147 currently depleted stocks. Results reveal significant changes in

productivity over time with 60% of stocks showing variation in r of 10% per year, or

more, leading to long systematic periods of previously unrecognized over- or underfishing.

We further show that the nonlinear dependence between rebuilding time and r causes a

highly skewed rebuilding time distribution when nonstationary parameters are taken into

account. These results indicate that the rebuilding of many depleted stocks will be longer

than previously thought due to dynamic variation and uncertainty in key parameters.

∗Prepared for submission as: Britten GL, M Dowd, L Kanary, B Worm. 2014. Rebuilding global
fisheries under nonstationary productivity. PNAS
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More stringent controls on fishing mortality and an adaptive management approach that

accounts for nonstationary productivity are required to rebuild stocks and meet interna-

tional biodiversity targets.

3.1 Introduction

With widespread recognition of the economic and ecological risks caused by progressive

fisheries depletion [40,46,47], scientists and policy makers have shifted focus to the rebuild-

ing of depleted stocks [40,48,49]. Rebuilding initiatives have received major international

support, beginning with the Magnuson-Stevens act in the United States, which legally

mandates a ten year rebuilding plan for all depleted stocks [49] followed by major fish-

eries reform in Europe [50], and the declaration of an explicit Convention on Biological

Diversity (CBD) rebuilding target for 2020 [51]. Such explicit timelines require a funda-

mental understanding of both rebuilding potential and productivity dynamics in global

fish stocks; however, the increasing realization of rapid environmental change affecting

fish population dynamics [7, 29, 32] suggests that rebuilding potential may be a moving

target.

From a management perspective, dynamic changes in productivity challenge the ap-

propriateness of rebuilding times estimated on the basis of historical data [20]. For ex-

ample, environmentally driven regime-shifts are now recognized as a pervasive ecological

phenomenon [13, 14, 52] and have been shown to widely impact fish populations [53].

Furthermore, a recent global meta-analysis of recruitment capacity (which couples with

growth and mortality to set total productivity) found that many regions of the world

show significantly declining recruitment capacity over the last several decades, linked to

warming ocean temperatures, declining phytoplankton abundance, and historical overfish-

ing [54]. With the backdrop of climate change, these nonstationary ecological processes
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present managers with tremendous uncertainty with respect to current and future pro-

ductivity and rebuilding times estimated therefrom. Most previous analyses, however,

assume stationary productivity [20,48,49] and may not reflect current conditions.

Here we investigated global patterns of nonstationary total productivity by recon-

structing historical patterns of variation and uncertainty in the intrinsic productivity

parameter r, arguably the most fundamental parameter in population ecology and fish-

eries management. We first quantified the extent of nonstationary productivity among

211 assessed stocks (147 of which are depleted below BMSY) from the global RAM Legacy

Stock Assessment database [25] and then estimated Bayesian rebuilding time distributions

under various fishing levels on the basis of current productivity.

Specifically, we extended the well-known Graham-Schaefer surplus production model

[48, 49, 55] to allow the intrinsic productivity parameter r to vary as a latent stochastic

process

Bt+1 = Bt + rtBt

(
1− K

Bt

)
− Ct,

where B is the total biomass at times t and t + 1, K is the carrying capacity, C is the

catch and the time-varying intrinsic productivity rt is parameterized as a random walk

with constant slope, rt+1 = rt + ∆r + ert where ∆r is the time-invariant slope and ert is

a Gaussian variable with variance σ2
r (see Methods). The latent intrinsic productivity

was fitted to observed stock biomass and catch series using Bayesian state space methods

based on Kalman filtering and smoothing [23, 24]. The basic concept is to treat rt as a

hierarchical state variable which varies along with B and C and use the time series to

update the probability distribution sequentially over time. We first applied the analy-

sis to each individual stock and then aggregated the stock-specific results at the level of
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Large Marine Ecosystem (LME) and taxonomic order to investigate broader-scale pat-

terns of variability. To characterize contemporary intrinsic productivity, we averaged over

the posteriors of the last five years for each inferred rt series. Based on contemporary

productivity, we then calculated the probabilistic predictive posterior rebuilding time dis-

tribution for each stock by varying levels of annual fishing mortality, denoted F .

3.2 Results

The analysis revealed that intrinsic productivity was highly variable across stocks and

often deviated widely from predictions based on static parameters (Figure 3.1). Trends

were regularly observed as long term directional change (e.g. Figure 3.1A,B) or regime

shifts (e.g. Figure 3.1C,D) which diverged from stationary models for decadal periods

or longer. Such behaviours indicate that fixed harvest strategies lead to systematic pe-

riods of historical over- and underfishing which are biased towards historically averaged

productivity.

Across all stocks, we found that 60% of stocks exhibited variation in rt of 10% per year

or more. When aggregating regionally, we found that productivity has declined most in

the Patagonian Sea, Faroe Plateau, and Australian LMEs (Figure 3.2B), although each of

these regions is represented by limited samples (< 5 stocks). Other regions with declines

were the Baltic Sea, Scotian and Iceland shelves (each with > 5 stocks available for anal-

ysis). Regions with increasing productivity included the Benguela and Agulas currents (3

stocks each) and the Gulf of Mexico (7 stocks). Taxonomically, there was less variation

with trends centering near zero for most orders (Figure 3.2D). Omeriformes showed a

large positive trend in rt but this was highly variable across 4 stocks. Perciformes showed

relatively consistent declines across 19 stocks but with magnitudes only slightly below

zero. Across all stocks, there was no strong directional trend despite high interannual

variability (Figure 3.2E,F). The overall maximum a posteriori (MAP) mean value of the
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intrinsic productivity was estimated at r = 0.39 (Figure 3.2E) with the MAP mean annual

rate of change estimated at approximately zero across all stocks (Figure 3.2F).

We also found that the most depleted stocks (i.e. the lowest B:BMSY) are the ones

with the lowest contemporary rt values (Figure 3.3A). However, we found no relationship

between stock status and rate of change in productivity (Figure 3.3B). This means that

unproductive stocks tend to be the most currently depleted, but are not necessarily de-

clining in productivity. The rebuilding contours show that rebuilding times are highly

variable and strongly depend on the magnitude of fishing mortality (Figure 3.4). Under

no fishing, 106 out of 133 stocks are predicted to recover within 10 years (i.e. the mode

rt predicts t ≤ 10) rebuilding; Figure 3.4A). However that number drops to 60 out of

133 when fishing at 80% FMSY (Figure 3.4B). A total of 14 stocks were estimated to

have negative contemporary rt and were not predicted to recover based on this calcula-

tion (grey area in Figure 3.4). When calculating rebuilding times based on probabilistic

intrinsic productivity (Figure 3.5A), we found a highly skewed rebuilding distribution

(Figure 3.5B). We applied this analysis to the 133 depleted stocks with positive contem-

porary productivity and found that the 95% credible interval often stretched to 20 or

30 years based on the characteristically strong positive skew (Figure 3.5C). This is a re-

sult of the nonlinear dependence between rebuilding time and contemporary productivity.

3.3 Discussion

In summary, the timeline for rebuilding depleted fish stocks will be determined by con-

temporary productivity which may not be reflected well by historical data (e.g. Figure

3.1). We have shown that intrinsic productivity rt is highly variable in the majority of

individual stocks, with diverse behaviours including slow linear changes and regime-shifts

over time (Figure 3.1). The regular and persistent divergence between stationary and
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nonstationary predictions indicates that management strategies based on fixed produc-

tivity are biased toward historical conditions and can lead to systematic historical over-

and underfishing (Figure 3.1B,D). As a result, rebuilding times are set by the balance

between current fishing mortality and contemporary productivity (Figure 3.4), leading to

broad and highly skewed rebuilding time probabilities when nonstationary parameters are

taken into account (Figure 3.5). These results suggest that rebuilding will be significantly

delayed for many stocks and highlight the need for more decisive rebuilding plans that

account for nonstationary ecosystem properties and fisheries productivity.

The increasing recognition of climate change and other nonstationary processes in

ecology and fisheries forces the need for approaches to resource management that are

adaptive [20] and ecosystem-based [56, 57]. A fundamental aspect of ecosystem-based

fisheries management is the active maintenance of the supporting ecosystems to promote

stock productivity [56]; however, adaptive management must also include quantitative

strategies to update biological knowledge in the context of new ecosystem conditions

[57, 58]. The general class of methods applied here (i.e. hierarchical state space models

with dynamic biological parameters) provide intuitive and fully probabilistic methods

for this based on sequential Bayesian updating. A major advantage of these methods is

that they readily extend classical population and fisheries models to the nonstationary

case. This way, key management parameters can be adaptively updated over time and

integrated with pre-existing stock assessment theory and infrastructure. For example,

target fishing mortality (F
MSY

) may be dynamically updated as biological parameters

change in response to ecosystem conditions.

The high variation in productivity is consistent with previous work on regime-shifts [53]

and non-stationary recruitment capacity in global stocks [54]. However, weaker aggregated

trends were observed in both our results (Figure 3.2) regime-shift analyses [53]. As a

supplemental analysis, we correlated recruitment capacity slopes [54] with productivity

slopes estimated here but found only a weak and insignificant relationship (R2 = 19%,
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P = 0.21). It is possible that other ecological processes have compensated for declining

recruitment (i.e. changes in somatic growth and mortality); however it is also possible that

hidden stationarity assumptions [20] in the stock assessments lead to biomass estimates

that are biased toward constant long term total productivity. Directly analyzing raw

survey data with nonstationary methods may be needed to better identify relationships

between total productivity, recruitment, mortality, and growth.

Given the rebuilding focus of global fisheries management, our work has demonstrated

that nonstationary productivity may delay efforts to rebuild depleted stocks. Current

meta-analyses of rebuilding still focus on static biological parameters [48, 49] which ef-

fectively capture mean productivity over the period of historical data. These timelines

likely over- or underestimate rebuilding potential and the appropriate fishing levels for

individual stocks and do not account for uncertainties with respect to biological change.

In contrast, nonstationary models suggest much larger uncertainty bounds, indicating

that many stocks will experience delayed rebuilding. We caveat this by acknowledging

the simplicity of our biological model (Graham-Schaefer) which was chosen for general-

ity rather than specificity; but note that it is still in regular use and forms the basis of

more complex models [55]. At the individual stock level, our estimated rebuilding times

are thus an approximation and should be followed up with more detailed stock-specific

models.

In conclusion, nonstationary stock productivity has strong implications for the re-

building timeline of global fisheries. Ignoring nonstationary processes risks over- and un-

derfishing the resource and biases rebuilding times toward historical conditions which are

increasingly unrepresentative of contemporary ecosystems. As nonstationary ecological

behaviour is recognized as the rule rather than the exception, fisheries management needs

to embrace adaptive methods and directly respond to varying environmental conditions.

Our results suggest that such approaches will be required if we hope to rebuild stocks and

meet international biodiversity targets in the face of rapid environmental change.
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3.4 Figures

Figure 3.1. Examples of nonstationary stock productivity. Two example stocks (A-B: Eastern Scotian Shelf Atlantic
cod, and C-D: Bluefin tuna from the East Atlantic) are shown fit with a stationary and nonstationary Graham-Schaefer
model (fixed vs. time-varying intrinsic r, respectively). Panels (A, C) give the annual surplus production (open circles are
observed values) while panels (B, D) give the theoretical maximum sustainable yield (crosses are recorded catches). The
stationary model is shown with the solid line and the nonstationary model line is dashed. The green areas are where
productivity is higher than would be predicted based on a stationary productivity and red is where productivity is lower.
Note progressive decline in cod productivity and regime-like behavior in tuna.
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Figure 3.2. Meta-analysis of productivity. Panels show intrinsic productivity r
and estimated rate of change ∆r for Large Marine Ecosystems (A, B), major taxonomic
orders (C, D), and all individual stocks (E, F). Solid line gives the grand median value
for each grouping.
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Figure 3.3. Relationship between contemporary productivity and stock status. (A) Gives the relationship
between contemporary intrinsic productivity (estimated as the mode of r over the last five years) versus the mean ratio of
estimated B to BMSY, denoted B:BMSY. Panel (B) gives the mode of the mean annual rate of change in rt, denoted ∆r ,
versus B:BMSY.
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Figure 3.4. Rebuilding time as a function of contemporary productivity and stock status. (A) Predicted
rebuilding time contours (in years t until B is greater than BMSY when starting below) as a function of the ratio of current
biomass B to target BMSY under no fishing (F = 0). (B) Rebuilding contours when fishing pressure F is set at 80% of FMSY.
Contemporary stock status (mean B:BMSY for the most recent five years) and the estimated contemporary productivity with
95% credible interval (dot gives the mode, or most probable value) are superimposed for 133 depleted fish stocks.
Populations in the grey-shaded areas have negative contemporary productivity and are not predicted to recover.
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Figure 3.5. Skewed rebuilding time distribution under nonstationary productivity. When contemporary intrinsic
productivity is described by a Gaussian probability distribution (A), the resulting rebuilding distribution is highly skewed
due to the nonlinear dependence between rebuilding and productivity (B). Panel (C) gives the empirical rebuilding time
distributions for 133 fish stocks currently below BMSY. Note the characteristic strong positive skew.



Chapter 4

Discussion

Adapting to global climate change represents a key societal challenge for the 21st century.

A major component of this effort is understanding and managing the impacts on the

dynamics and productivity of our biological resources. I have attempted to address non-

stationary productivity in global fish stocks by formulating and applying nonstationary

extensions of two canonical productivity models at the regional, taxonomic, and global

scales. The work was synthetic by integrating well-understood statistical tools with clas-

sic population models and applying them to a new and publicly available global database

of fisheries time series. In Chapter 2, I evaluated nonstationary productivity in juvenile

recruitment and demonstrated that recruitment capacity is declining in the majority of

stocks and regions. These patterns were regionally coherent at the ecosystem level and

were significantly linked to changes in the environment; specifically, temperature, phy-

toplankton, along with the degree of historical overfishing. In Chapter 3, I combined

recruitment, growth, and natural mortality to focus on total productivity. I showed sig-

nificant variability at the stock level and quantified the impacts for rebuilding timelines

of depleted stocks. The results have informed the historical and contemporary status

of fish stock productivity, revealed key environmental drivers, and have provided critical

management feedback for understanding rebuilding potential in contemporary stocks.

Here I will attempt to highlight the salient implications of this work, focusing on

follow-up research. I discuss two primary topics. The first concerns disparate trends

between declining recruitment and more stable total productivity. This apparent incon-

sistency implies a ‘missing ingredient’ in our understanding of global fisheries ecology. I

29
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discuss the relevant hypotheses and suggest research to test them empirically. Secondly, I

discuss the implications of nonstationary productivity for adaptive and ecosystem-based

fisheries management - first suggesting continued research into adaptive single species

methods and then highlighting the prospects for integrating empirically-based adaptive

strategies within a fully ecosystem-based fisheries management (EBFM) paradigm.

4.1 Productivity, recruitment, mortality, and growth

Throughout the thesis I have assumed that total productivity is the product of juvenile

recruitment (no. of individuals produced by the spawning stock), individual growth (the

accumulation of individual biomass), and integrated survivorship. Therefore declining

patterns of recruitment observed in Chapter 2 would imply declining productivity, if

other processes remain constant. However, results from Chapters 2 & 3 showed that long

term trends in total productivity were remarkably flat when compared to recruitment.

There are only a number of possible explanatory hypotheses:

1. Either growth or mortality (or both) have compensated for declining recruitment,

resulting in relatively flat long term total productivity.

2. Declines in recruitment capacity are lagged relative to total productivity, meaning

that the declines in recruitment will affect productivity in the future.

3. Stationary assumptions in the stock assessments leads to biomass estimates that

tend to be more constrained toward constant total productivity, while recruitment

is more empirically free to vary.

All three are very interesting and warrant further investigation. Hypothesis 1 should

be readily testable with growth and mortality data. These data are often collected and

analyzed within stock assessments but are not readily included in the RAM Legacy Stock
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Assessment Database. I previously began extracting raw weight-at-age and abundance-

at-age tables from the assessment documents but this proved complicated and outside

the scope of my research. Based on preliminary analyses, most trends in growth ap-

peared negative but further data synthesis and analysis are required to properly test the

hypothesis. This should be a priority for follow-up research.

The ultimate test of hypothesis 2 is time. However it may also be testable in the interim

by correlating trends at more local scales. The trend estimates reported in Chapters 2 &

3 were calculated on a multidecadal scale, therefore my results only imply that long term

trends in recruitment capacity were stronger than long term trends in total productivity.

It is possible that there have been more recent trends in productivity which correlate with

more recent trends in recruitment. This is a relatively straightforward extension of the

work presented here and should be followed up in the short term.

Hypothesis 3 is more difficult to address. The general problem of ‘assessment bias’ was

raised by Walters [20] but he gave no reason to believe that recruitment or total productiv-

ity would be any more or less prone to this problem. However, the distinction was raised

by an experienced stock assessment scientist [59] who pointed to a possible explanation

by way of subjective management decisions made within the assessments. Specifically,

one often sums contributions from biomass, recruitment, and growth when minimizing

a cost function to fit an assessment model. Due to management constraints, there can

be a subjective tendency to up-weight biomass deviations and down-weight recruitment

within the cost function [59] resulting in biomass estimates which more closely resemble

the deterministic model solution, relative to recruitment. This is a difficult hypothesis

to test based on available information [25] but has potentially serious implications for

management. If such a situation were true, the observation of declining recruitment may

point to declining productivity which remains clouded in the assessments due to to in-

herent stationarity assumptions in the assessment models. This highlights the need to

integrate nonstationary methods directly into the assessment models in order to diagnose
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nonstationary processes from raw survey-based fisheries data.

Another important question concerns the environmental drivers of total productivity.

In Chapter 2 I related nonstationary recruitment capacity to trends in ocean temperature

and phytoplankton abundance. But in Chapter 3 I focused on management consequences

of total productivity and did not explore potential relationships with environmental vari-

ables. I do note, however that recruitment capacity displayed much higher variation at

the regional level which suggested a stronger environmental signal. Total productivity was

more regionally static so the environmental signal is likely weaker; however this should

be followed up with statistical analyses.

4.2 Adaptive ecosystem-based fisheries management

Here I discuss the implications of nonstationary processes for adaptive ecosystem-based

fisheries management. I first discuss adaptive and ecosystem-based separately, and then I

discuss the possibility of integrating adaptive Bayesian methods within a fully ecosystem-

based approach.

Regarding adaptive management strategies, this work has focused on how to adapt

quantitative biological parameters in the light of single-species time series; however there

remains a critical question of how to adapt management and optimal harvest strategies

in response to nonstationary productivity. In my view, there are two considerations:

1. How does annual F relate to optimal long term maximum sustainable yield in the

context of nonstationary resources? It is unlikely that matching annual F to time-

varying F
MSY

achieves this goal, due to the fact that F
MSY

is optimized with respect

to population equilibrium [55]. However this is a testable theoretical question.

2. How does one maximize long term sustainable yield of nonstationary resources in

the context are socioeconomic constraints? The allocation of individual licenses and

annual quota may impose a constraint whereby fishing effort can only be changed
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slowly to maintain a sustainable employment environment. Based on the socioe-

conomics of individual fisheries, managers may then impose a maximum tolerable

flexibility within which it is acceptable to adjust quota in response to annual pro-

ductivity predictions. This is another constraint to consider in the optimization of

long term yield with respect to nonstationary resources.

Regarding ecosystem-based fisheries management (EBFM), the adaptive single-species

methods used in this thesis do not explicitly model ecosystem processes. True EBFM is

predicated on modelling the ecosystem directly including ‘end-to-end’ relationships with

fish stock productivity [9, 60]. While there is significant practical disagreement regard-

ing the appropriate implementation of EBFM [57, 61], there is clear tension between

the tractability of single-species models and ecosystem complexity [62]. Furthermore,

calibrating ecosystem-scale models with historical data runs the same risks identified

by Walters [20] whereby critical ecosystem properties are nonstationary and challenge

the appropriateness of parameters calibrated with historical data. Excitingly, however,

ecosystem-scale models based on empirical Bayesian updating are already coming on-

line [63–66]. In such models, dynamic biological parameters are modelled in the lower

trophic levels and updated on account of sophisticated oceanographic observations. The

act of sequentially conditioning on new observations provides a full probabilistic online

description of the ecosystem state. The next logical step is integrate end-to-end models

(e.g. [60, 67]) with Bayesian updating to make probabilistic online predictions of stock

stock productivity based on ecosystem conditions. By constraining ecosystem complexity

in an empirical and probabilistic way, these methods are ripe to form the basis of 21st

century ecosystem-based fisheries management and will only become more powerful with

novel observing platforms and advanced computational tools.
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4.3 Conclusions

In conclusion, it is becoming increasingly clear that fisheries are responding to their chang-

ing environment. Therefore, our management of fish stocks must increasingly observe and

adapt to nonstationary ecological conditions. Results in Chapters 2 & 3 have identified

key environmental drivers, regional priorities, and management implications for depleted

populations. I have also highlighted an empirical tool for understanding such processes

through nonstationary extensions of classical biological models using sequential Bayesian

updating. The situation is neatly summarized by well-known engineering paradigm, one

can’t manage what one doesn’t measure. Indeed it is not until we measure ecological

change that we can break ourselves from the dangerous assumption that the future will

resemble the past. Only then can we speak of sustainable fisheries managment. I hope

these results have furthered that effort.
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Appendix A

Methods for Chapter 1

Environmental change drivers declining recruitment capacity in

global fish stocks

A.1 Data

The stock-recruitment data were extracted from the RAM Legacy Stock Assessment

Database [25]. This is a global, quality controlled database, available publically at

http://ramlegacy.marinebiodiversity.ca/. Stock assessments provide estimates of both

spawning stock biomass (kg) and recruitment (no. individuals). We analyzed 262 of the

420 time series available in the database. This subset was chosen according to: 1) The

abundance time series must be estimated via Virtual Population Analysis (VPA) or an-

other stock assessment model that does not use a deterministic recruitment function in

estimating stock and recruitment abundances; and 2) the spawning stock biomass and

recruitment time series must be estimated directly, as opposed to those based on indirect

proxies such as spawner egg abundance. All series were then normalized to unit variance

for easy comparison across stocks and regions. A list of species used in the analysis, along

with their designated LME can be found in Table A.1.

A.2 State space model parameterization

The Ricker model can be linearized by re-expressing recruitment as log survival

log

(
Rt

Bt−τ

)
= logα− βBt−τ .
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This model can be fitted to data as a linear regression which is made explicit by setting

y = log Rt
Bt−τ

, θ0 = logα, and θ1 = β. In matrix notation we write the linear regression

model

y = [1,Bt−τ ]

 θ0,

θ1

+ e = Hθ + e,

where e is a normally distributed random error vector with zero-mean and covariance Σ,

and H is the Tx2 design matrix of the regression model (where T is the length of the

time series) with a vector of ones on the first column and the observed spawning stock

biomass Bt−τ as the right column.

To model nonstationary recruitment, we let the recruitment parameters θ vary in

time, yielding a dynamic linear regression, which is a special case of a linear Gaussian

state space model (a.k.a. dynamic linear model)

yt = Htθt + wt wt ∼ N(0,R = σ2
o),

θt = θt−1 + vt vt ∼ N

0,Q =

 σ2
θ0

0

0 σ2
θ0


 ,

where yt is the observed log survival at time t, wt is a realization of the Gaussian obser-

vation error at time t with variance R, and vt is a realization of the bivariate Gaussian

process error at time t with covariance Q. Given numerical parameter values for R and

Q, along with the initial value distribution (or prior distribution) for the recruitment pa-

rameters, denoted θ0, the optimal reconstruction for the latent time-varying recruitment

parameters θt are estimated using the Kalman filter and smoother. For clarity, we make
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the distinction between variance parameters (R and Q) which need to be estimated by

maximum likelihood, and recruitment parameters (θt) which are analytically determined

by the Kalman filter/smoother algorithm, conditional on R, Q, and θ0.

A.3 State space model estimation

The algorithm above assumes that the variance parameters are known; but for a given time

series we estimate the variance parameters by Maximum Likelihood Estimation (MLE)

which is based on the normally distributed one-step ahead prediction errors of the filtering

algorithm, termed the innovations. The innovations for the dynamic regression are given

by

δt = yt −Htθ̂t|t−1.

The error covariance of the innovations is defined by

Ft = HtMtH
′
t + R.

The log likelihood of the innovations can then be written down as

logL(R,Q) = c− 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

δ′tFtδt,

and maximized using standard nonlinear optimization, yielding MLE estimates of R, Q,

and subsequently θt|N by applying the Kalman smoother algorithm. All calculations were

written in the R language (www.r-project.org) and the optimization was performed using

the numerical routines within the R base package.
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A.4 Model Selection

To determine whether individual recruitment time series have stationary or nonstation-

ary parameters, we applied model selection using various parameterizations of the matrix

Q. We used the Bayesian Information Criterion (BIC) for model selection which is given as

BIC = −2 log L̂+ k log T,

where log L̂ is the optimized value of the log likelihood, k is number of nonzero estimable

variance parameters in the dynamic regression model, and T is the length (number of

years) of an individual recruitment time series. We consider four parameterizations

of Q which represent: 1) static stock-recruit relationship (all elements of Q equal to

zero; k = 1); 2) time-varying maximum reproductive rate, static density-dependence

(Q[1,1] 6= 0, all others zero; k = 2); 3) static maximum reproductive rate, time-varying

density-dependence (Q[2,2] 6= 0, all other zero; k = 2); 4) time-varying maximum repro-

ductive rate and density-dependence ({Q[1,1],Q[2,2]} 6= 0, all others zero; k = 3). Under

each parameterization, the Kalman filter/smoother algorithm yields a likelihood which

is optimized to compute the BIC. (Note that we adopt the BIC over the more common

Akakie Information Criterion (AIC) to be more conservative in model selection in the

sense that BIC favors fewer parameters due to its stricter penalty term (i.e. for n ≥ 8,

the BIC penalty k lnn is greater than the AIC penalty 2k) and will thus discriminate

more strongly against time-varying recruitment parameters).

A.5 Post-hoc trend estimation

The dynamic linear regression analysis yields θt|N for 262 fish populations. For an individ-

ual stock i we use θit|N to calculate Ri
MAX(t) and then summarize the trend using a linear
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slope based on generalized least squares regression in order to account for autocorrelation

Ri
MAX(t) = bi0 + bi1t+ eit,

where bi0 is the intercept of the linear regression for stock i, bi1 is the slope multiplied by

time index t, and eit is the regression error at time t with covariance Σ. To standardize

the rate of change in recruitment and avoid excessive decimal places, we define

∆Ri
MAX =

bi1
max(Ri

MAX(t))
∗ 10 years,

which represents the rate per decade (10 years) as a percent relative the historical maxi-

mum of Ri
MAX .

To estimate the uncertainty in ∆Ri
MAX according to the uncertainty in the estimated

time-evolving recruitment parameters, we use a resampling scheme as follows.

Resample Linear Slope:

for j = 1, 2, . . . , 500

1. Sample a time sequence from smoother distribution: θi,jt|N ∼ N(θit|N , Pt|N)).

2. Compute Ri,j
MAX(t) as a function of θi,jt|N .

3. Estimate the regression coefficients of Ri,j
MAX(t) = bi,j0 + bi,j1 t + ei,jt using least

squares.

4. Compute ∆Ri,j
MAX =

bi,j1
max(Ri,jMAX(t))

∗ 10.

This procedure yields bootstrapped distributions of ∆Ri
MAX for use in the subsequent
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analyses. This scheme was adopted for the specific purpose of propagating the uncer-

tainty in θt|N , opposed to simply taking the standard error on the least squares regression

which would assume θt|N known and fixed. Due to the nonlinearity in RMAX(t) we use

the median and median absolute deviation (MAD) as summary statistics for robustness.

A.6 Meta-analysis

To combine the results of the individual trend analyses, we perform a random-effects

meta-analysis at the taxonomic, regional, and global scales. For any particular grouping

k of i = 1, 2, , Nk stocks (i.e. taxonomic, regional, or global), the random-effects model is

written

∆Ri
MAX = ∆Rk

MAX + ξi + ψi,

where ∆Ri
MAX is the estimated linear slope of RMAX for stock i, ∆Rk

MAX is the overall

mean ∆RMAX for the N stocks in group k, ξi is the deviation of the observed ∆Ri
MAX

from the true ∆Ri
MAX , and ψi is the deviation of the true ∆Ri

MAX from ∆Rk
MAX . In

the estimation, weights are applied according to the inverse variance of the bootstrap

distribution of ∆Ri
MAX . The meta-analysis model was implemented in the R package

rmeta [68].

A.7 Drivers of ∆Rk
MAX

We related the LME-specific ∆Rk
MAX values to LME-specific environmental and fisheries-

related variables including linear trends in sea surface temperature (∆SST spanning 1957-

2006), chlorophyll concentration (∆CHL a widely-used proxy for phytoplankton biomass;

1899-2010), and an index of historical overfishing, taken as the mean historical ratio of
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annual biomass to target biomass levels (B:BMSY) as extracted from the stock assess-

ments [25]. We perform a multiple regression of the form

∆Rk
MAX = c0 + c1∆SST + c2∆CHL + c3B:BMSY + ek,

where ∆Rk
MAX is the meta-analytic mean estimated per LME k containing (each con-

taining a different number of stocks), ek is the LME-specific regression error, and the

constants denoted ci where i = {0, 1, 2, 3} are the partial regression coefficients. The

regression was weighted according to the number of stocks in each LME. The best fitting

variables were chosen according to BIC model selection. We tested two interactions be-

tween ∆SST and B:BMSY, and ∆CHL and B:BMSY, but neither were retained in model

selection. We also tested for spatial correlation but it was not favored based on BIC.

All independent variables were standardized to unit variance in order to standardize the

regression coefficients. Pairwise scatterplots of the environmental variables are plotted in

Figure A.5 and indicate negligible colinearity.

The multiple regression analysis was performed three times on three sets of species.

The first included all species with each LME. Secondly and thirdly, we took two subsets of

the species within each LME according to their taxonomic order. One taxonomic group-

ing included Gadiformes and Pleuronectiformes and the other included Clupeiformes and

Perciformes. These orders do not occur in all LMEs, therefore the regression analysis

on the subsets included a limited number of species. The Gadiformes and Pleuronecti-

formes occurred in 21 LMEs and the Perciformes and Clupeiformes occurred in 23 LMEs.

A.8 Analysis of Recruitment since the year 2000

In order to diagnose more recent changes in recruitment, we repeated the meta-analysis

and environmental regression analysis using time-varying recruitment parameters, stock
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biomass, and temperature since the year 2000. This was done through the following steps:

1. We first calculated all single-stock bootstrapped linear slopes using time-varying

recruitment parameters since 2000 only.

2. We then performed the regional meta-analysis on the single-species species slopes

to obtain the regional slopes for the period since 2000.

3. We calculated SST and B:BMSY since 2000 (note that ∆CHL did not change here

because we already used linear slope estimates from Boyce et al. 2014 [29], therefore

the estimated rate of change is constant since 1890).

4. We performed the regional multiple regression on the basis of variables calculated

since 2000.

A.9 Basic R code

#########################################################################
#########################################################################
## ------------------------------------------------------------------- ##
## This code represents the likelihood function for the Kalman filter ##
## It computes the hidden states of a linear Gaussian state space model##
## \\ as a function of the variance parameters ----------------------- ##
## \\ and evaluates the likelihood ----------------------------------- ##
## This function is numerically optimized ---------------------------- ##
## \\ to give the Maximum Likelihood Estimates for the variances ----- ##
## ------------------------------------------------------------------- ##
#########################################################################
#########################################################################

kallike <- function(theta)

{
D <- matrix(c(1,0,0,1),ncol=2)
ID <- matrix(0,ncol=2,nrow=2)
diag(ID) <- 1

ones <- rep(1,T)
H <- cbind(ones,ssb)
xf <- matrix(0,2,T)
x <- matrix(0,2,T)
Ppreds <- array(0,dim=c(T,2,2))
P <- array(0,dim=c(T,2,2))
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F <- matrix(0,nrow=T)
v <- numeric(T)

R <- exp(theta[1])

sig.i <- 1e+7
P[1,1,1] <- P[1,2,2] <- sqrt(sig.i)

for(k in 1:(T-1))
{

xold <- matrix(x[,k])
Pold <- P[k,,]

xfnew <- D%*%xold
Ppred <- D%*%Pold%*%t(D)+Q
xf[,k+1] <- matrix(xfnew)
Ppreds[k+1,,] <- Ppred

yobs <- matrix(y[k+1])
Fnew <- H[k+1,]%*%Ppred%*%matrix(H[k+1,])+R
K <- Ppred%*%matrix(H[k+1,])%*%pseudoinverse(Fnew)
xnew <- xfnew+K%*%(yobs-(H[k+1,])%*%xfnew)
Pnew <- (ID-(K%*%H[k+1,]))%*%Ppred

x[,k+1] <- xnew
P[k+1,,] <- Pnew
F[k+1] <- Fnew
v[k+1] <- (yobs-(H[k+1,])%*%xfnew)

}

L <- 0

for(k in 2:T)
{

F1 <- as.matrix(F[k])
L <- L-T/2*log(2*pi)-1/2*log(det(matrix(F1)))

\\ -1/2*t(v[k])%*%pseudoinverse(F1)%*%v[k]
}

return(-L)
}
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A.10 Appendix Figures

Figure A.1. The generalized Ricker model and alternate forms of
density-dependence. The shape parameter γ in the generalized Ricker model has a
strong effect on the form of density-dependence in the stock-recruit relationship.
Increasing values of γ lead to stronger density-dependence feedback, and as γ → 0 the
generalized Ricker describes a linear relation between stock and recruitment with slope
α.
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Figure A.2. Effect of γ transformation on recruitment parameters α and β.
As examples, Panels A and B give the estimated recruitment parameters for Peruvian
anchoveta (North-Central Peru) and Panels C and D give recruitment parameters for
Southern blue whiting (Southern Argentina). The two stocks exhibited time-varying α
and β, respectively, according to model selection. The reader should note that varying γ
affects the magnitude of the parameters, but not the time-variability. As a result, the
standardized slopes (when expressed in terms of % relative to historical maximum)
remain constant and independent of γ.
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Figure A.3. Sensitivity analysis. To test the sensitivity of ΔRMAX to alternate forms of the stock-recruit relationship,
the dynamic regression models were applied to the generalized Ricker model using prescribed values for the shape parameter
γ (see Figures A.1 and A.2). Panels A and B give the distribution and median of α and β estimates under each value of γ
(note γ = 1 recovers the traditional Ricker model used in this study) and Panel C gives the distribution of the standardized
linear slopes ΔRMAX under the γ transformations. These results imply that the ΔRMAX quantity (when expressed in terms
of % relative to historical maximum) was independent of the form of density-dependence in the generalized Ricker model.
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Figure A.4. Sensitivity of ΔRMAX to model selection and specification. We tested the sensitivity of individual
ΔRMAX to the parameterization of the covariance matrix of the recruitment parameters Q. Panel A gives the distribution of
ΔRMAX (and standard error) when choosing the elements of Q according to BIC model selection. Panel B gives the
distribution ΔRMAX when performing model selection between static stock-recruit vs. time-varying α, and Panel C gives
ΔRMAX for model selection between static stock-recruit and time-varying β. These results imply that maximum recruitment
potential was relatively independent of whether we allowed α or β to vary.
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Figure A.5. Covariation in environmental and fishing related variables used in the multiple regression
analysis of LMEs. Each point represents an LME and the value of the Pearson correlation coefficient is labelled in the
corner of each plot. Scatterplots indicate negligible colinearity.
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Figure A.6. Partial regressions of LME-specifc ∆Rk
MAX (representing ∆RMAX

at the LME level) against three potential drivers, ∆SST, ∆CHL, and
B:BMSY. Panels A and B represents all taxa, Panels C-E represent orders Gadiformes
and Pleuronectiformes, and Panel F represents orders Clupeiformes and Perciformes.
Plotted are LMEs with > 1 stock present. The notation ∆Rk

MAX |X, where X is an
independent variable, represents the residuals of ∆Rk

MAX after being regressed against
X.
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Figure A.7. Relationship between ΔRk
MAX over two time periods. On the x

axis is ΔRk
MAX when calculated using all years in the stock assessments (as reported in

the paper) and the y axis gives ΔRk
MAX when using data since the year 2000 (y axis).

Note the relatively high uncertainties in the y direction, yielding no significant departure
from the black 1:1 line.
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Figure A.8. Results from multiple regression analysis based on ΔRk
MAX since

2000. The top row gives the results from the paper where all years in the stock
assessments were used. The bottom row shows the relationship between ΔRk

MAX since
2000 and ΔSST and B:BMSY variables calculated since 2000 (note that the ΔCHL
variable does not change over this period because the variable already represents a linear
slope since 1899 [29]).
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Table A.1. Stocks used in recruitment analysis

Common Stock ID [25] Large Marine Ecosystem

Acadian redfish Gulf of Maine & Georges

Bank
Northeast U.S. Continental Shelf

Alaska plaice Bering Sea and Aleutian

Islands
East Bering Sea

Albacore tuna North Pacific North Pacific ocean

Albacore tuna South Pacific Ocean South Pacific ocean

American lobster Georges Bank Northeast U.S. Continental Shelf

American lobster Gulf of Maine Northeast U.S. Continental Shelf

American lobster Southern New England Northeast U.S. Continental Shelf

American Plaice NAFO-23K Newfoundland-Labrador Shelf

American Plaice NAFO-3LNO Newfoundland-Labrador Shelf

American Plaice NAFO-3M Newfoundland-Labrador Shelf

American Plaice NAFO-5YZ
Northeast U.S. Continental Shelf Scotian

Shelf

Anchovy ICES VIII Iberian Coastal

Anchovy kilka Caspian Sea Black Sea

Anchovy South Africa Benguela Current & Agulhas Current

Argentine anchoita Northern Patagonian Shelf & South Brazil Shelf

Argentine anchoita Southern Patagonian Shelf

Argentine hake Northern Argentina Patagonian Shelf & South Brazil Shelf

Argentine hake Southern Argentina Patagonian Shelf

Arrowtooth flounder Bering Sea and

Aleutian Islands
East Bering Sea

Arrowtooth flounder Gulf of Alaska Gulf of Alaska

Arrowtooth flounder Pacific Coast Gulf of Alaska

Atka mackerel Bering Sea and Aleutian

Islands
East Bering Sea

Atlantic butterfish Gulf of Maine & Cape

Hatteras
Northeast U.S. Continental Shelf

Atlantic cod Baltic Areas 22 and 24 Baltic Sea

Atlantic cod Baltic Areas 25-32 Baltic Sea
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Atlantic Cod Celtic Sea Celtic-Biscay Shelf

Atlantic cod coastal Norway Barents Sea & Norwegian Sea

Atlantic cod Faroe Plateau Faroe Plateau

Atlantic cod Georges Bank Northeast U.S. Continental Shelf

Atlantic cod Gulf of Maine Northeast U.S. Continental Shelf

Atlantic cod Iceland Iceland Shelf

Atlantic cod Irish Sea Celtic-Biscay Shelf

Atlantic cod Kattegat North Sea

Atlantic cod NAFO 2J3KL inshore Newfoundland-Labrador Shelf

Atlantic cod NAFO 3M Newfoundland-Labrador Shelf

Atlantic cod NAFO 3NO Newfoundland-Labrador Shelf

Atlantic cod NAFO 3Pn4RS Newfoundland-Labrador Shelf

Atlantic cod NAFO 3Ps Newfoundland-Labrador Shelf

Atlantic cod NAFO 4TVn Scotian Shelf

Atlantic cod NAFO 5Zjm Northeast U.S. Continental Shelf

Atlantic cod North Sea North Sea

Atlantic cod Northeast Arctic Barents Sea & Norwegian Sea

Atlantic cod West of Scotland Celtic-Biscay Shelf

Atlantic croaker Mid-Atlantic Coast
Southeast U.S. Continental Shelf &

Northeast U.S. Continental Shelf

Atlantic herring Northwestern Atlantic

Coast
Northeast U.S. Continental Shelf

Atlantic mackerel Gulf of Maine & Cape

Hatteras
Northeast U.S. Continental Shelf

Australian salmon New Zealand New Zealand Shelf

Bigeye tuna Eastern Pacific
North Pacific ocean & South Pacific

ocean

Bigeye tuna Western Pacific Ocean
North Pacific ocean & South Pacific

ocean

Black Grouper Gulf of Mexico Gulf of Mexico

Black rockfish Northern Pacific Coast California Current

Black sea bass Mid-Atlantic Coast Northeast U.S. Continental Shelf

Blue mackerel East China Sea East China Sea
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Blue marlin Pacific Ocean
North Pacific ocean & South Pacific

ocean

Blue Warehou Eastern half of Southeast

Australia

East-Central Autralian Shelf &

Southwest Australian Shelf

Blue Warehou Western half of Southeast

Australia
Southwest Australian Shelf

Bluefin tuna Eastern Atlantic
North Atlantic ocean & South Atlantic

ocean

Bluefin tuna Western Atlantic
North Atlantic ocean & South Atlantic

ocean

Bluefish Atlantic Coast
Southeast U.S. Continental Shelf &

Northeast U.S. Continental Shelf

Cabezon Oregon Coast California Current

California scorpionfish Southern California California Current

Canary rockfish Pacific Coast California Current

Capelin Barents Sea Barents Sea

Capelin Iceland Iceland Shelf

Chilean jack mackerel Chilean EEZ and

offshore & Humboldt Current

Chilipepper Southern Pacific Coast California Current

Chub mackerel Tsushima Strait East China Sea & Sea of Japan

common European sole Bay of Biscay Baltic Sea

common European sole Celtic Sea Celtic-Biscay Shelf

common European sole ICES Kattegat and

Skagerrak
North Sea

common European sole ICES VIId Celtic-Biscay Shelf & North Sea

common European sole Irish Sea Celtic-Biscay Shelf

common European sole North Sea North Sea

common European sole Western English

Channel
Celtic-Biscay Shelf

common gemfish New Zealand New Zealand Shelf

common gemfish Southeast Australia
East-Central Australian Shelf &

Southwest Australian Shelf

Darkblotched rockfish Pacific Coast California Current
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Deep-water cape hake South Africa Benguela Current & Agulhas Current

Deepwater flathead Southeast Australia
East-Central Autralian Shelf &

Southwest Australian Shelf

Dover sole Gulf of Alaska Gulf of Alaska

Dover sole Pacific Coast California Current

Dusky rockfish Gulf of Alaska Gulf of Alaska

English sole Pacific Coast California Current

European pilchard ICES VIIIc-IXa Iberian Coastal

European Plaice ICES IIIa North Sea

European Plaice ICES VIId North Sea & Celtic-Biscay Shelf

European Plaice ICES VIIe Celtic-Biscay Shelf

European Plaice ICES VIIf-g Celtic-Biscay Shelf

European Plaice Irish Sea Celtic-Biscay Shelf

European Plaice North Sea North Sea

Flathead sole Bering Sea and Aleutian

Islands
East Bering Sea

Flathead sole Gulf of Alaska Gulf of Alaska

flounder Inland Sea of Japan Sea of Japan

Fourspotted megrim ICES VIIIc-IXa Iberian Coastal

Gag Gulf of Mexico Gulf of Mexico

Gag Southern Atlantic coast Southeast U.S. Continental Shelf

Giant stargazer NZ Area STA7 New Zealand Shelf

Golden Redfish Northeast Arctic Barents Sea & Norwegian Sea

Gopher rockfish Southern Pacific Coast California Current

Greater amberjack Southern Atlantic coast Southeast U.S. Continental Shelf

Greenland halibut NAFO 23KLMNO Newfoundland-Labrador Shelf

Greenland halibut Northeast Arctic Norwegian Sea & Barents Sea

Haddock Faroe Plateau Faroe Plateau

Haddock Georges Bank Northeast U.S. Continental Shelf

Haddock Iceland Iceland Shelf

Haddock ICES IIIa and North Sea North Sea

Haddock ICES VIIb-k Celtic-Biscay Shelf & Iberian Coastal

Haddock Irish Sea Celtic-Biscay Shelf
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Haddock NAFO-4X5Y
Northeast U.S. Continental Shelf &

Scotian Shelf

Haddock NAFO-5Y Northeast U.S. Continental Shelf

Haddock NAFO-5Zejm Northeast U.S. Continental Shelf

Haddock Northeast Arctic Norwegian Sea & Barents Sea

Haddock West of Scotland Celtic-Biscay Shelf

Hake Northeast Atlantic North North Sea & Celtic-Biscay Shelf

Hake Northeast Atlantic South Iberian Coastal

Herring Iceland (Summer spawners) Iceland Shelf

Herring ICES 22-24-IIIa North Sea & Baltic Sea

Herring ICES 25-32 Baltic Sea

Herring ICES 28 Baltic Sea

Herring ICES 30 Baltic Sea

Herring ICES 31 Baltic Sea

Herring ICES VIa Celtic-Biscay Shelf

Herring ICES VIa-VIIb-VIIc Celtic-Biscay Shelf

Herring ICES VIIa-g-h-j Celtic-Biscay Shelf

Herring NAFO 4R fall spawners Newfoundland-Labrador Shelf

Herring NAFO 4R spring spawners Newfoundland-Labrador Shelf

Herring NAFO 4T fall spawners Scotian Shelf

Herring NAFO 4T spring spawners Scotian Shelf

Herring North Sea North Sea

Herring Northern Irish Sea Celtic-Biscay Shelf

Herring Scotian Shelf and Bay of Fundy
Northeast U.S. Continental Shelf &

Scotian Shelf

Hoki Eastern New Zealand New Zealand Shelf

Hoki Western New Zealand New Zealand Shelf

Jackass morwong Southeast Australia
East-Central Autralian Shelf &

Southwest Australian Shelf

Japanese anchovy Pacific Coast of Japan Kuroshio Current

Japanese jack mackerel Tsushima Strait East China Sea & Sea of Japan

Japanese pilchard Tsushima Strait East China Sea & Sea of Japan
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Japanese Spanish mackerel Inland Sea of

Japan
Sea of Japan & East Sea

Kelp greenling Oregon Coast California Current

Lingcod Northern Pacific Coast California Current

Lingcod Southern Pacific Coast California Current

Longspine thornyhead Pacific Coast California Current

Mackerel ICES Northeast Atlantic
Celtic-Biscay Shelf & North Sea & Faroe

Plateau

Megrim ICES VIIIc-IXa Iberian Coastal

Monkfish Southern Georges Bank &

Mid-Atlantic
Northeast U.S. Continental Shelf

Mutton snapper Southern Atlantic coast

and Gulf of Mexico

Gulf of Mexico & Southeast U.S.

Continental Shelf

New Zealand ling Eastern half of Southeast

Australia

Southwest Australian Shelf &

West-Central Australian Shelf

New Zealand ling New Zealand Area LIN 6b New Zealand Shelf

New Zealand ling New Zealand Area LIN 72 New Zealand Shelf

New Zealand ling New Zealand Area LIN

7WC - WCSI
New Zealand Shelf

New Zealand ling New Zealand Areas LIN 3

and 4
New Zealand Shelf

New Zealand ling New Zealand Areas LIN 5

and 6
New Zealand Shelf

New Zealand ling Western half of Southeast

Australia
Southwest Australian Shelf

New Zealand snapper New Zealand Area 8 New Zealand Shelf

Northern rock sole Eastern Bering Sea and

Aleutian Islands
East Bering Sea

Northern rockfish Bering Sea and Aleutian

Islands
East Bering Sea

Northern rockfish Gulf of Alaska Gulf of Alaska

Norway pout North Sea North Sea

Olive flounder East China Sea East China Sea

Olive flounder Sea of Japan North Sea of Japan
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Pacific bluefin tuna Pacific Ocean
North Pacific ocean & South Pacific

ocean

Pacific chub mackerel Pacific Coast California Current

Pacific cod Bering Sea and Aleutian Islands East Bering Sea

Pacific cod Gulf of Alaska Gulf of Alaska

Pacific hake Pacific Coast California Current

Pacific halibut North Pacific Gulf of Alaska

Pacific herring Central Coast Gulf of Alaska

Pacific herring Prince Rupert District Gulf of Alaska

Pacific herring Prince William Sound Gulf of Alaska

Pacific herring Queen Charlotte Islands Gulf of Alaska

Pacific herring Sitka Gulf of Alaska

Pacific herring Strait of Georgia Gulf of Alaska

Pacific herring West Coast of Vancouver

Island
Gulf of Alaska

Pacific Ocean perch Eastern Bering Sea and

Aleutian Islands
East Bering Sea

Pacific ocean perch Gulf of Alaska Gulf of Alaska

Pacific sardine Pacific Coast California Current

Pacific saury Northwest Pacific Oyashio Current

Patagonian grenadier Southern Argentina Patagonian Shelf

Patagonian toothfish Macquarie Island New Zealand Shelf

Patagonian toothfish South Africa

Subantarctic Prince Edward Islands
Antarctic

Peruvian anchoveta North-Central Peru Humboldt Current

Petrale sole Pacific Coast California Current

Pollock Faroe Plateau Faroe Plateau

Pollock ICES IIIa, VI and North Sea North Sea

Pollock NAFO-4X5YZ
Northeast U.S. Continental Shelf &

Scotian Shelf

Pollock Northeast Arctic Barents Sea & Norwegian Sea

Pollock or saithe Iceland Grounds Iceland Shelf

Red grouper Gulf of Mexico Gulf of Mexico
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Red porgy Southern Atlantic coast Southeast U.S. Continental Shelf

Red seabream Inland Sea of Japan Sea of Japan

Red seabream Pacific Ocean East China Sea

Red snapper Eastern Gulf of Mexico Gulf of Mexico

Red snapper Southern Atlantic coast
Gulf of Mexico & Southeast U.S.

Continental Shelf

Red snapper Western Gulf of Mexico Gulf of Mexico

Redfish species NAFO 3M Newfoundland-Labrador Shelf

Rex sole Gulf of Alaska Gulf of Alaska

Rock sole Hecate Strait Gulf of Alaska

Rougheye rockfish Bering Sea and Aleutian

Islands
East Bering Sea

Rougheye rockfish Gulf of Alaska Gulf of Alaska

Sablefish Eastern Bering Sea & Aleutian

Islands & Gulf of Alaska
East Bering Sea & Gulf of Alaska

Sablefish Pacific Coast California Current

Sandeel North Sea Area 1 North Sea

Sandeel North Sea Area 2 North Sea

Sandeel North Sea Area 3 North Sea

Sardine South Africa Benguela Current & Agulhas Current

Scami Bay of Plenty New Zealand Shelf

Scampi Wairapa & Hawke Bay New Zealand Shelf

School whiting Southeast Australia
Southwest Australian Shelf &

West-Central Australian Shelf

Scup Atlantic Coast North east U.S. Continental Shelf

Sea bream Sea of Japan Sea of Japan

Shallow-water cape hake South Africa Benguela Current & Agulhas Current

Shortbelly rockfish Pacific Coast California Current

Shortspine thornyhead Pacific Coast California Current

Silverfish Southeast Australia
Southwest Australian Shelf &

East-Central Australian Shelf

Snapper Northern Spencer Gulf Southwest Australian Shelf

Snapper Southern Gulf St. Vincent Southwest Australian Shelf
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Snapper Southern Spencer Gulf Southwest Australian Shelf

Snowy grouper Southern Atlantic coast

Southeast U.S. Continental Shelf &

Caribbean Sea & North Brazil Shelf &

East Brazil Shelf

Southern blue whiting Campbell Island Rise New Zealand Shelf

Southern blue whiting Southern Argentina Patagonian Shelf

Southern bluefin tuna Southern Oceans
South Atlantic ocean & South Pacific

ocean

Southern hake Chatham Rise New Zealand Shelf

Southern hake Sub-Antarctic New Zealand Shelf

Southern spiny lobster South Africa South

coast
Benguela Current & Agulhas Current

Spanish mackerel Southern Atlantic Coast Southeast U.S. Continental Shelf

Spiny dogfish Atlantic Coast
Northeast U.S. Continental Shelf &

Scotian Shelf & Newfoundland-Labrador

Splitnose Rockfish Pacific Coast California Current

Sprat ICES Baltic Areas 22-32 Baltic Sea

Starry flounder Northern Pacific Coast California Current

Starry flounder Southern Pacific Coast California Current

Striped bass Gulf of Maine & Cape Hatteras
Southeast U.S. Continental Shelf &

Northeast U.S.

Striped marlin North Pacific North Pacific ocean

Striped marlin Northeast Pacific North Pacific ocean

Striped marlin Western and Central North

Pacific

North Pacific ocean & South Pacific

ocean

Summer flounder Mid-Atlantic Coast
Southeast U.S. Continental Shelf &

Northeast U.S.

Swordfish Eastern Pacific North Pacific

ocean & South Pacific ocean

Swordfish Indian Ocean Indian ocean

Swordfish North Pacific North Pacific ocean

Tarakihi New Zealand New Zealand Shelf
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Tilefish Southern Atlantic coast

Northeast U.S. Continental Shelf &

Southeast U.S. Continental Shelf & Gulf

of Mexico

Trevally New Zealand Areas TRE 7 New Zealand Shelf

Walleye pollock Aleutian Islands East Bering Sea

Walleye pollock Eastern Bering Sea East Bering Sea

Walleye pollock Gulf of Alaska Gulf of Alaska

White hake Georges Bank & Gulf of Maine Northeast U.S. Continental Shelf

White marlin Atlantic
North Atlantic ocean & South Atlantic

ocean

Whiting ICES IIIa, VIId and North Sea North Sea

Whiting ICES VIa Celtic-Biscay Shelf

Whiting ICES VIIe-k Celtic-Biscay Shelf

Whiting Northeast Atlantic

Celtic-Biscay Shelf & North Sea &

Norwegian Sea & Barents Sea & Faroe

Plateau & Iceland Shelf

Widow rockfish Pacific Coast California Current

Winter Flounder NAFO-5Z Northeast U.S. Continental Shelf

Winter Flounder Southern New

England-Mid Atlantic
Northeast U.S. Continental Shelf

Witch Flounder NAFO-5Y Gulf of Alaska

Yellowfin sole Bering Sea and Aleutian

Islands
East Bering Sea

Yellowfin tuna Eastern Pacific
North Pacific ocean & South Pacific

ocean

Yellowfin tuna Indian Ocean Indian ocean

Yellowtail flounder Cape Cod & Gulf of

Maine
Northeast U.S. Continental Shelf

Yellowtail flounder Georges Bank Northeast U.S. Continental Shelf

Yellowtail Flounder Southern New

England-Mid Atlantic
Northeast U.S. Continental Shelf

Yellowtail rockfish Northern Pacific Coast California Current

Yellowtail snapper Southern Atlantic Coast
Gulf of Mexico & Southeast U.S.

Continental Shelf



Appendix B

Methods for Chapter 3

Rebuilding global fisheries under nonstationary productivity

B.1 Data

To analyze total productivity, data were extracted from the RAM Legacy Stock Assess-

ment Database [25]. This is a global, quality controlled database, available publically at

http://ramlegacy.marinebiodiversity.ca/. Stock assessments provide estimates of both to-

tal stock biomass (kg) and catch (kg). We analyzed 211 of the 420 time series available

in the database. This subset was chosen according to: 1) Visually inspection to determine

if the assessment data do not represent purely deterministic model output; and 2) The

biomass time series must be estimated directly, as opposed to those based on indirect

proxies. A list of species used in the analysis, along with their designated LME can be

found in Table B.1.

B.2 Population dynamics

We model the biomass dynamics using the discrete logistic model minus catch which gives

the canonical Graham-Schaefer model

Bt+1 = Bt + rBt

(
1− K

Bt

)
− Ct, (B.1)

where r is the intrinsic productivity and K is the carrying capacity.
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The observed surplus production for this model is defined by Bt+1 − Bt + Ct which

represents the total change in biomass. At equilibrium Bt+1−Bt = 0, the catch is equal to

surplus production and therefore maximizing catch is equal to maximizing rBt(1−K/Bt)

which provides the maximum sustainable yield of the resource. This results in the biomass

that produces MSY

BMSY =
1

2
K.

Substituting this quantity into the logistic model yields MSY

MSY = rBMSY

(
1− BMSY

K

)
= r

K

4
.

Rebuilding times were calculated as the time (in years) to exceed BMSY when a stock is

depleted below. Our expression for rebuilding time depends on the solution to the contin-

uous form of B.1. To derive rebuilding time, we first solve the initial value problem for the

continuous Graham-Schaefer with the initial condition B = B0. Setting the solution equal

to BMSY we arrive at the expression for the number of years to rebuilding as a function of

the initial condition B0/BMSY, the intrinsic productivity, and the level of fishing mortality

t = ln


2BMSY

(
1− F

r

)
B0

− 1

1− 2F

r

 1

r − F
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B.3 State space model parameterization

Using estimates of annual biomass B and catch C, and fixing K at the maximum observed

catch plus biomass to focus on productivity, we solve for the annually observed intrinsic

productivity and model the observed value as a true biological rate plus annual noise

robst =
K(Bt −Bt+1 − Ct)

Bt(Bt −K)
= rtruet + eobst .

We assume that the biological rate evolves as a random walk with an underlying trend,

expressed as a stochastic difference equation

rt = Drt−1 + er
t =

 rt
∆r

 =

1 1

0 1


rt−1

∆r

+

ert
0

 ,

The time-varying biological rates are modelled as a Gaussian process to be estimated using

the Kalman filter and smoother [23,24]. For the Bayesian implementation, we utilize the

conjugate Gaussian-inverse-gamma parameterization [23] for the probability distributions

eobst | φσ2
obs
∼ Gaussian(0, σ2

obs = φ−1
σ2
obs

),

er
t | φr ∼ Gaussian(0,Σ = diag(σ2

r = φ−1
r , σ2

∆r = 0∆r)),

φσ2
obs
∼ Gamma(ασ2

obs
, βσ2

obs
),

φr ∼ Gamma(αr, βr),

where the notion ∼ Gaussian(x, y) reads ‘is Gaussian distributed with mean parameter

x and variance parameter y’, ∼ Gamma(x, y) reads ‘is gamma distributed with shape
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parameter x and scale parameter y’. The bold face type represents a multivariate vector

or matrix based on its context. The model parameterizes rt as a random walk with vari-

ance φ−1
r and constant slope ∆r. Hence Σ = diag(φ−1

r , 0∆r) meaning ∆r has no variance

with respect to time and is assumed fixed. For priors, I assigned ασ2
obs
, βσ2

obs
, αr, βr on a

stock by stock basis to satisfy the following informative conditions: 1) Zero probability at

zero observation and process variance; and 2) broad probability between zero and a value

that represented 1
2

standard deviation of the raw time series. That is, I chose prior den-

sities such that the observation error standard deviation σobs was primarily constrained

between (0, 1
2
sd(B)) and fell away quickly thereafter (i.e. maximum possible observation

error equal to half the standard deviation of biomass). Priors for σr were similarly con-

strained between (0, 1
2
sd(robs). These represent mildly informative ‘empirical’ priors that

bound variances within reasonable values but give no relative weight to observation or

process error.

B.4 State space model estimation

The conjugacy of the Gaussian-inverse-gamma parameterization results in gamma dis-

tributed posterior conditional distributions

φσ2
obs
| robst ∼ Gamma

(
{ασ2

obs
+
T

2
}, {βσ2

obs
+

1

2

T∑
t=1

(robst −Hrt)
2}

)
,

φr | robst ∼ Gamma

(
{αr +

T

2
}, {βr +

1

2

T∑
t=1

(rt −Drt−1)2}

)
,

which can be sampled directly using standard Gibbs MCMC sampling in order to build

the joint and marginal posterior distributions. All computations were performed in R.
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B.5 Recovery time

With the marginal posterior samples of rt, the posterior predictive distribution for recov-

ery time t is found by propagating the samples through the recovery time equation.

B.6 Basic R code

##################################################################################
##################################################################################
## This code performs Bayesian inference on linear Gaussian state space model - ##
## The model is defined as a random walk + slope ------------------------------ ##
## The code specifies priors and storage space, then performs Gibbs sampling -- ##
## \\ by successively conditioning on each unknown parameters and sampling ---- ##
## \\ the conditional distribution -------------------------------------------- ##
## Note that the code below makes use of a ’Filter’ function which runs ------- ##
## \\ the Kalman filter, conditional on R and Q ------------------------------- ##
## The code to run the Kalman filter is given in Appendix A and --------------- ##
## \\ with suitable re-specification of matrices D and H ---------------------- ##
##################################################################################
##################################################################################

n.data <- length(data)

MC <- 100
keep <- 1:MC
n.keep <- length(keep)

# Priors
sigma_obs_shape <- 2
sigma_obs_rate <- 0.01
sigma_state_shape <- 2
sigma_state_rate <- 4

# Storage
state_post <- array(NA, dim=c(n.keep, n.data + 1, 2))
sigma_obs_post <- rep(NA, n.keep)
sigma_state_post <- rep ( NA, n.keep )

# Gibbs Sampler
for ( i in 1:MC )
{

# Sample states conditional on R and Q
theta <- Filter(data, R, Q)
theta.pred <- theta[-n.data+1,]%*%t(D)
theta.res <- theta[-1,] - theta.pred

# Sample R conditional on states and Q
fit <- theta[-1,] %*% t(H)
rss <- sum ((data-fit)ˆ2)
R_prime <- rgamma(1, shape = sigma_obs_shape + n.data/2,

rate = sigma_obs_rate + rss/2)
R <- 1/R_prime
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# Sample Q conditional on states and R
rss <- sum(theta.res[,2]ˆ2)
Q_prime <- rgamma(1, shape = sigma_state_shape + n.data/2,

rate = sigma_state_rate + rss/2)
Q <- 1/Q_prime

# Store
state_post[j,,] <- theta
sigma_obs_post[j] <- R
sigma_state_post[j] <- Q

}
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,

Table B.1. Stocks used in the analysis of total productivity

Common Stock ID [25] Large Marine Ecosystem

Albacore tuna South Pacific Ocean South Pacific ocean

American Plaice NAFO-3LNO Newfoundland-Labrador Shelf

American Plaice NAFO-3M Newfoundland-Labrador Shelf

American Plaice NAFO-5YZ
Northeast U.S. Continental Shelf &

Scotian Shelf

Anchovy kilka Caspian Sea Black Sea

Anchovy South Africa Benguela Current & Agulhas Current

Argentine hake Northern Argentina Patagonian Shelf & South Brazil Shelf

Argentine hake Southern Argentina Patagonian Shelf

Atka mackerel Bering Sea and Aleutian

Islands
East Bering Sea

Atlantic cod Baltic Areas 22 and 24 Baltic Sea

Atlantic cod Baltic Areas 25-32 Baltic Sea

Atlantic cod coastal Norway Barents Sea & Norwegian Sea

Atlantic cod Faroe Plateau Faroe Plateau

Atlantic cod Georges Bank Northeast U.S. Continental Shelf

Atlantic cod Gulf of Maine Northeast U.S. Continental Shelf

Atlantic cod Iceland Iceland Shelf

Atlantic cod Irish Sea Celtic-Biscay Shelf

Atlantic cod Kattegat North Sea

Atlantic cod NAFO 2J3KL inshore Newfoundland-Labrador Shelf

Atlantic cod NAFO 3NO Newfoundland-Labrador Shelf

Atlantic cod NAFO 3Pn4RS Newfoundland-Labrador Shelf

Atlantic cod NAFO 3Ps Newfoundland-Labrador Shelf

Atlantic cod NAFO 4TVn Scotian Shelf

Atlantic cod NAFO 5Zjm Northeast U.S. Continental Shelf

Atlantic cod North Sea North Sea

Atlantic cod Northeast Arctic Barents Sea & Norwegian Sea

Atlantic cod West of Scotland Celtic-Biscay Shelf
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Atlantic menhaden Atlantic
Southeast U.S. Continental Shelf &

Northeast U.S. Continental Shelf

Bigeye tuna Western Pacific Ocean Western Pacific ocean

Black sea bass Mid-Atlantic Coast Northeast U.S. Continental Shelf

Bluefin tuna Eastern Atlantic
North Atlantic ocean & South Atlantic

ocean

Bluefish Atlantic Coast
Southeast U.S. Continental Shelf &

Northeast U.S. Continental Shelf

Capelin Barents Sea Barents Sea

Capelin Iceland Iceland Shelf

common European sole Bay of Biscay Baltic Sea

common European sole Celtic Sea Celtic-Biscay Shelf

common European sole ICES Kattegat and

Skagerrak
North Sea

common European sole ICES VIId Celtic-Biscay Shelf

common European sole ICES VIId North Sea

common European sole Irish Sea Celtic-Biscay Shelf

common European sole Western English

Channel
Celtic-Biscay Shelf

common gemfish New Zealand New Zealand Shelf

common gemfish Southeast Australia
East Central Australian Shelf &

Southeast Australian Shelf

English sole Hecate Strait Gulf of Alaska

European Plaice ICES VIIe Celtic-Biscay Shelf

European Plaice ICES VIIf-g Celtic-Biscay Shelf

European Plaice Irish Sea Celtic-Biscay Shelf

Flathead sole Bering Sea and Aleutian

Islands
East Bering Sea

Fourspotted megrim ICES VIIIc-IXa Iberian Coastal

Gag Gulf of Mexico Gulf of Mexico

Golden Redfish Northeast Arctic Barents Sea & Norwegian Sea

Gopher rockfish Southern Pacific Coast California Current

Greenland halibut NAFO 23KLMNO Newfoundland-Labrador Shelf
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Greenland halibut Northeast Arctic Norwegian Sea & Barents Sea

Gulf menhaden Gulf of Mexico Gulf of Mexico

Haddock Faroe Plateau Faroe Plateau

Haddock Georges Bank Northeast U.S. Continental Shelf

Haddock Iceland Iceland Shelf

Haddock ICES IIIa and North Sea North Sea

Haddock ICES VIIb-k Celtic-Biscay Shelf

Haddock ICES VIIb-k Iberian Coastal

Haddock Irish Sea Celtic-Biscay Shelf

Haddock NAFO-4X5Y
Northeast U.S. Continental Shelf &

Scotian Shelf

Haddock NAFO-5Y Northeast U.S. Continental Shelf

Haddock NAFO-5Zejm Northeast U.S. Continental Shelf

Haddock Northeast Arctic Norwegian Sea & Barents Sea

Haddock Rockall Bank Faroe Plateau

Haddock West of Scotland Celtic-Biscay Shelf

Hake Northeast Atlantic North North Sea

Hake Northeast Atlantic North Celtic-Biscay Shelf

Herring Iceland (Summer spawners) Iceland Shelf

Herring ICES 22-24-IIIa North Sea

Herring ICES 22-24-IIIa Baltic Sea

Herring ICES 25-32 Baltic Sea

Herring ICES 28 Baltic Sea

Herring ICES 30 Baltic Sea

Herring ICES 31 Baltic Sea

Herring ICES VIa Celtic-Biscay Shelf

Herring ICES VIa-VIIb-VIIc Celtic-Biscay Shelf

Herring NAFO 4R spring spawners Newfoundland-Labrador Shelf

Herring NAFO 4T fall spawners Scotian Shelf

Herring NAFO 4T spring spawners Scotian Shelf

Herring North Sea North Sea

Herring Northern Irish Sea Celtic-Biscay Shelf

Hoki Eastern New Zealand New Zealand Shelf
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Hoki Western New Zealand New Zealand Shelf

King mackerel Gulf of Mexico Gulf of Mexico

King mackerel Southern Atlantic Coast Southeast U.S. Continental Shelf

Longspine thornyhead Pacific Coast California Current

Mackerel ICES Northeast Atlantic
Celtic-Biscay Shelf & North Sea & Faroe

Plateau

Megrim ICES VIIIc-IXa Iberian Coastal

Monkfish Gulf of Maine & Northern

Georges Bank
Northeast U.S. Continental Shelf

New Zealand ling New Zealand Area LIN 6b New Zealand Shelf

New Zealand ling New Zealand Area LIN 72 New Zealand Shelf

New Zealand ling New Zealand Area LIN

7WC - WCSI
New Zealand Shelf

New Zealand ling New Zealand Areas LIN 3

and 4
New Zealand Shelf

New Zealand ling New Zealand Areas LIN 5

and 6
New Zealand Shelf

Northern rockfish Bering Sea and Aleutian

Islands
East Bering Sea

Norway pout North Sea North Sea

Pacific cod Bering Sea and Aleutian Islands East Bering Sea

Pacific cod Gulf of Alaska Gulf of Alaska

Pacific cod Hecate Strait Gulf of Alaska

Pacific cod West Coast of Vancouver Island Gulf of Alaska

Pacific hake Pacific Coast California Current

Pacific halibut North Pacific Gulf of Alaska

Pacific herring Central Coast Gulf of Alaska

Pacific herring Prince Rupert District Gulf of Alaska

Pacific herring Prince William Sound Gulf of Alaska

Pacific herring Queen Charlotte Islands Gulf of Alaska

Pacific herring Sitka Gulf of Alaska

Pacific herring Straight of Georgia Gulf of Alaska
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Pacific herring West Coast of Vancouver

Island
Gulf of Alaska

Pacific Ocean perch Eastern Bering Sea and

Aleutian Islands
East Bering Sea

Pacific sardine Pacific Coast California Current

Patagonian grenadier Southern Argentina Patagonian Shelf

Pollock Faroe Plateau Faroe Plateau

Pollock ICES IIIa, VI and North Sea North Sea

Pollock NAFO-4X5YZ
Northeast U.S. Continental Shelf &

Scotian Shelf

Pollock Northeast Arctic Barents Sea & Norwegian Sea

Red grouper Gulf of Mexico Gulf of Mexico

Red porgy Southern Atlantic coast Southeast U.S. Continental Shelf

Redfish species NAFO 3M Newfoundland-Labrador Shelf

Rex sole Gulf of Alaska Gulf of Alaska

Rock sole Hecate Strait Gulf of Alaska

Rougheye rockfish Gulf of Alaska Gulf of Alaska

Sablefish

Eastern Bering Sea & Aleutian Islands &

Gulf of Alaska & East Bering Sea & Gulf

of Alaska

Silverfish Southeast Australia
Southeast Australian Shelf & East

Central Australian Shelf

Snowy grouper Southern Atlantic coast

Southeast U.S. Continental Shelf &

Caribbean Sea & North Brazil Shelf &

East Brazil Shelf

Southern blue whiting Campbell Island Rise New Zealand Shelf

Southern hake Chatham Rise New Zealand Shelf

Southern hake Sub-Antarctic New Zealand Shelf

Southern spiny lobster South Africa South

coast
Benguela Current & Agulhas Current

Spanish mackerel Southern Atlantic Coast Southeast U.S. Continental Shelf

Spiny dogfish Atlantic Coast

Northeast U.S. Continental Shelf &

Scotian Shelf & Newfoundland-Labrador

Shelf
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Sprat ICES Baltic Areas 22-32 Baltic Sea

Summer flounder Mid-Atlantic Coast
Southeast U.S. Continental Shelf &

Northeast U.S. Continental Shelf

Tasmanian giant crab Tasmania Southeast Australian Shelf

Tilefish Southern Atlantic coast

Northeast U.S. Continental Shelf &

Southeast U.S. Continental Shelf & Gulf

of Mexico

Trevally New Zealand Areas TRE 7 New Zealand Shelf

Walleye pollock Eastern Bering Sea East Bering Sea

White hake Georges Bank & Gulf of Maine Northeast U.S. Continental Shelf

Whiting ICES IIIa, VIId and North Sea North Sea

Whiting ICES VIIe-k Celtic-Biscay Shelf

Whiting Northeast Atlantic Celtic-Biscay

Shelf & North Sea & Norwegian Sea &

Barents Sea & Faroe Plateau

Iceland Shelf

Winter Flounder NAFO-5Z Northeast U.S. Continental Shelf

Winter Flounder Southern New

England-Mid Atlantic
Northeast U.S. Continental Shelf

Yellowtail flounder Cape Cod & Gulf of

Maine
Northeast U.S. Continental Shelf

Yellowtail flounder Georges Bank Northeast U.S. Continental Shelf

Yellowtail Flounder Southern New

England-Mid Atlantic
Northeast U.S. Continental Shelf

Yellowtail rockfish Northern Pacific Coast
California Current



Bibliography

1. FAO, The Status of World Fisheries and Aquaculture. United Nations Food And
Agriculture Organisation, 2012.

2. S. C. Walpole, D. Prieto-Merino, P. Edwards, J. Cleland, G. Stevens, and I. Roberts,
“The weight of nations: an estimation of adult human biomass.,” BMC public
health, vol. 12, p. 439, Jan. 2012.

3. C. Mora, A. G. Frazier, R. J. Longman, R. S. Dacks, M. M. Walton, E. J. Tong,
J. J. Sanchez, L. R. Kaiser, Y. O. Stender, J. M. Anderson, C. M. Ambrosino,
I. Fernandez-Silva, L. M. Giuseffi, and T. W. Giambelluca, “The projected timing
of climate departure from recent variability.,” Nature, vol. 502, pp. 183–7, Oct.
2013.

4. P. L. Munday, D. L. Dixson, M. I. Mccormick, M. Meekan, M. C. O. Ferrari, and
D. P. Chivers, “Replenishment of fish populations is threatened by ocean acidifica-
tion,” Proceedings of the National Academy of Sciences, vol. 107, no. 29, pp. 12930–
12934, 2010.

5. C. Mora, C.-L. Wei, A. Rollo, T. Amaro, A. R. Baco, D. Billett, L. Bopp, Q. Chen,
M. Collier, R. Danovaro, A. J. Gooday, B. M. Grupe, P. R. Halloran, J. Ingels,
D. O. B. Jones, L. a. Levin, H. Nakano, K. Norling, E. Ramirez-Llodra, M. Rex,
H. a. Ruhl, C. R. Smith, A. K. Sweetman, A. R. Thurber, J. F. Tjiputra, P. Usseglio,
L. Watling, T. Wu, and M. Yasuhara, “Biotic and human vulnerability to projected
changes in ocean biogeochemistry over the 21st century.,” PLoS biology, vol. 11,
p. e1001682, Oct. 2013.
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