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ABSTRACT 

Of particular concern to patients is the effect of surgery upon brain functions following a 

surgical intervention. Indeed, post-operative neurocognitive complications occur in up to 

60% of patients. These include: stroke, seizures, and delirium. Delirium is a temporary 

disturbance of consciousness, attention, cognition, and/or perception, which occurs 

frequently among hospitalized patients. It develops over a short period and tends to 

fluctuate. Several risk factors predispose patients to post-operative delirium, including: 

medications, age, male gender, major surgery (cardiac and orthopedic), and others. 

Delirium occurs relatively frequently (10% to 15%) among patients who undergo cardiac 

surgery. Patients who experience delirium after cardiac surgeries are at higher risk of 

multiple adverse outcomes (e.g.: infections, prolonged hospitalization, and death). 

Identification of patients at risk will allow targeted personalized preventive strategies that 

might improve the patient transition through the process of care. This thesis demonstrates 

the development of several predictive models, using a data mining approach, to predict 

the development of delirium in patients undergoing cardiac surgery. The developed 

models were derived from a large contemporary registry, and their performance was 

evaluated on an independent dataset. This work also addresses the issue of class 

imbalance and its effect on model performance. The findings of this research suggest that, 

applying machine learning and data mining techniques on complex medical data is 

capable of achieving superior results in comparison to standard statistical approaches. 

With increased adaptation of electronic health records, data mining techniques offer novel 

approaches to aid in the prediction of complex relationships, a typical property of adverse 

medical events. These models will aid the recovery of high-risk patients by enabling a 

more proactive approach, initiating preventive measures in a timely fashion. 
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CHAPTER 1: INTRODUCTION 

1.1. Predicting Post-operative Complications 

A 16th-century French surgeon, Ambroise Paré, stated that to perform surgery is: “to 

eliminate that which is superfluous, restore that which has been dislocated, separate that 

which has been united, join that which has been divided and repair the defects of nature.” 

Surgical techniques have been developed since the ancient times to treat injuries and 

traumas, and to preserve limb and life. The oldest operation for which evidence exists is 

trepanation [1]. Trepanation, making a burr hole, is a surgical procedure in which a hole 

is drilled into the human skull, exposing the dura mater with the intention of treating 

health problems related to intracranial diseases. The term may also refer to any hole 

created through other body surfaces with the intention to relief pressure. Although 

surgeons were considered experts with vast knowledge in life sciences and delicate hands, 

making them able to relieve suffering and end misery; surgery was always feared because 

of its association with pain and the potentially horrific experience. Surgeons therefore had 

to be swift and perform hasty procedures. Until the discovery of anesthetic agents, 

surgeons were largely restricted to amputations and external growth removals. 

It was not until the middle of the 19th century, when the American surgeon, Crawford 

Long, demonstrated the use of “ether” as a general anesthetic agent, which enabled 

surgeons to perform surgery while minimizing the patient pain and awareness of the 

procedure[2]. In enhancing the surgeon’s ability to perform more extensive operations 

without making the patient suffer, this discovery revolutionized surgery and, therefore, 

medical care. With advances in the practice of surgery, such as sterility, anesthesia, and 

post-operative care, the likelihood of dying because of surgery declined. Therefore, the 

concerns of patients shifted somewhat, from focusing entirely on the possibility of death 

to thinking more about their recovery: when they would be able to return to work and 

other activities, their level of independence, and their overall quality of life[3-6].    



Because neurocognitive complications after any medical intervention can cause a big 

burden on the patient, medical team and society, every effort should be made to prevent 

them. Post-operative neurocognitive complications occur in up to 60% of patients[7]; 

these include stroke (permanent or transient), seizures, and delirium. Stroke, defined as 

the rapid loss of brain function resulting from any disturbance in the blood supply to the 

brain, is considered to be a major complication after surgery – especially after cardiac 

surgery, where it occurs in up to 6% of patients. Delirium or acute confusion is a 

temporary mental disorder that occurs frequently among hospitalized patients[8]. The 

incidence of delirium varies from 1-52% among reports[7], reflecting an inconsistency 

that may be attributed to the lack both of a standard definition and of good detection tools. 

Delirium is certainly an adverse neurocognitive outcome after cardiac surgery; especially 

in vulnerable patients and it influences additional complications[9, 10].  

Delirium symptoms range from a disturbance in consciousness (e.g., coma, disorders 

related to concentration, and attention) to cognitive disorders involving disorientation and 

hallucinations. There is also a motor component, and presentation ranges from a 

depression-like inactive state, to an agitated hyperactive state. This diversity of possible 

presentations, along with its sudden onset and unpredictable course, makes early 

detection difficult. According to a paper by Royston and Cox, from the patient’s point of 

view, delirium, and subsequent cognitive decline is among the most feared adverse events 

following surgery[3].  

Patients undergoing cardiac surgery are considered to be at higher risk of developing 

delirium because of several factors. In several studies, delirium – especially after cardiac 

surgery – was linked to increased morbidity and mortality[10-13]. The effects of delirium 

can extend beyond the initial hospitalization; a retrospective review by Martin et.al 

discovered that patients with delirium following coronary arteries bypass graft surgery 

(CABG) exhibit an increased long-term risk of death and stroke[14]. In another study, 

time to discharge was 11 days longer for patients who developed delirium after elective 

cardiac surgery[8]. Bakker et. al found that patients who developed post-operative 

delirium had lower preoperative Mini-Mental State Examination (MMSE) score, higher 

creatinine level, longer extra corporeal circulation (ECC) time, and a significantly higher 

mortality at 30 days from surgery[15]. Type of surgery, symptomatic cerebrovascular 



disease, advanced age, and diabetes mellitus are some of the proposed pre-operative 

factors that contribute to post-operative neurocognitive complications, especially 

delirium[16]. Delirium following cardiac surgery has also been associated with a higher 

European System for cardiac operative risk evaluation score (EURO-Score) [8, 17, 18]. 

One study identified delirium as a predictor of post-CABG sepsis[9]. Others have 

demonstrated a strong association between delirium and post-operative infections in 

cardiac surgery patients[14, 18-20].  

One of the most significant predisposing factors for delirium is the patient age at 

surgery[8, 12, 15, 19, 21-24]. Some authors have also linked delirium to frailty[25-29]. 

Frailty is a common geriatric syndrome that is associated with steep declines in health and 

functioning among older adults[30-32]. Recent studies indicate a substantial, and 

alarming, increase in the number of elderly frail patients undergoing cardiac surgery[33, 

34]. The dramatic increase in the numbers of elderly patients who are undergoing cardiac 

interventions can be attributed to the advances in pre-, intra-, and post-operative 

techniques. Almost 45% of patients over the age of 60 years undergoing cardiac 

procedures develop delirium[18]. Several studies have shown that preventive 

interventions can decrease the incidence of delirium and improve outcomes[24, 35-37]. 

Therefore, prevention or early recognition of delirium is essential. 

Fortunately, there is no lack of data in health care. Regrettably, the medical community 

has recognized the “data rich, information poor” (DRIP) syndrome since the early 1990 

s[38]. The DRIP syndrome refers to the abundance of data, but the data does not inform 

practice and decisions because it is not presented in the right context with relevant 

comparisons [38]. Predictive analytics deal with the abstraction of information from data 

and using this information to uncover obscured trends and hidden patterns, which can be 

used to mitigate risks and exploit opportunities for the future. Predictive analytics can 

enhance health care performance by reducing readmissions and providing preventive care. 

Providing preventive care by identifying patients with existing conditions that may lead to 

undesirable consequences, and acting to avert such outcomes. 

There is a growing interest in health care frameworks that focuses on prevention, health 

promotion, and the use of novel technologies to allow health care professionals to take a 



more active role in reducing the burden on the system by targeting treatments to those 

who will most likely gain the maximum benefit and least harm from them[39-41]. 

Providing health care professionals with the right information at the right time, will 

improve the quality of care[42-44]. This information can also be used to enhance patient 

education, compliance, and involvement through automated prompts for specific 

tasks[45-47]. Predictive models that are embedded in clinical decision support systems 

will ensure the delivery of appropriate and comprehensive care based on up-to-date 

practice guidelines and personalized plans[48-50]. 

1.2. Research Objectives  

Several pre-, intra-, and post-operative factors have been linked to the development of 

post-operative delirium (e.g., frailty, type of surgery, gender, post-operative transfusion, 

post-operative renal failure)[7-11, 15, 17, 20-23, 25, 26, 51]. Further, patients that 

experience post-operative delirium are at increased risk of developing infectious 

complications, especially wound infections, and pneumonia[14, 18, 19, 52]. The negative 

consequences of delirium on post-operative outcomes, especially after cardiac surgery, 

are well documented[7, 10, 12-14, 21, 25]; but anticipating its development is not well 

documented in the literature[8, 11, 15, 17]. So far, models that predict delirium in adult 

cardiac surgery patients published in the medical literature have mainly relied on 

conventional statistical approaches, primarily logistic regression (LR). LR produces a 

linear combination of the attributes with weights that illustrates the attribute’s statistical 

significance[53, 54]. Creating a simplified representation of how a subset of attribute 

influences the result. However, accurate models are complex[55].  

A concise model is more likely to miss valuable information about ambiguous, yet 

important, relationships. A predictive model will inform future decisions by clarifying the 

process that leads to a specific result or an outcome. Clarifying the process will highlight 

key attributes that influence the final result, identify areas of potential obstacles and 

initiate appropriate interventions to improve future results. The final model will aid health 

care professionals in implementing customized treatment plans by identifying patients 



who are prone to adverse events, which will trigger appropriate early preventive 

interventions.  

The ultimate goal is to develop a model that will improve early detection; and a complex 

problem, like delirium, will require a complex solution to achieve better results. The 

proposed solution was to develop a predictive model that is capable of distinguishing 

vulnerable cardiac surgery patients that are prone to post-operative delirium. To develop 

this solution, two main objectives were formulated (Table 1-1): 

1. Identify key attributes/features that contribute to the development of 

postoperative delirium after cardiac surgery. Two main methods were utilized. 

First, a conventional manual selection based on statistical significance and domain 

knowledge. Then, machine learning feature selection methods were used to 

identify interesting attributes that were not picked up by the conventional 

approach.  

2. Develop several predictive models that are capable of identifying patients 

who are prone to post operative delirium and compare their performance. 

The primary goal was to verify if using a complex data-mining model would 

improve the predictive power when compared to the traditional statistical 

approach. Hence, it correctly identifies patients at risk so preventive measures can 

be initiated and negative consequences can be mitigated. 

  



 

Table 1-1 Thesis research objectives, methods and expected outcomes 

Objective Methods Expected Outcome 

Identify key 
attributes/features 

• Conventional 
approach (Statistical 
significance and 
domain knowledge) 

• Machine learning 
feature selection 
methods 

• Identify key attributes 

• Discover hidden 
attributes that can be 
identified by feature 
selection methods 

Develop 
predictive models 

• Traditional statistical 
method: Logistic 
regression 
(Reference model) 

• Data-mining 
methods: Artificial 
Neural Networks 
and Bayesian Belief 
Networks 

• Evaluate the predictive 
performance 

• Discern if complex 
data-mining methods 
will outperform 
traditional methods 

Mitigate the 
impact of 
outcome class 
imbalance on 
performance and 
model stability 

• Several imbalance 
class manipulation 
techniques are 
explored 

• Manipulating the class 
imbalance might 
improve classifier 
performance 

• Some models might be 
more stable than others 

 

Several modifiable pre-operative features can be tackled in an effort to optimize the 

patient medical and physical condition prior to surgery (e.g.: frailty and pre-operative 

rehabilitation program, diabetic control, nutritional education, pre-operative hemoglobin 

level, smoking cessation…etc.). This information can also be used to alarm the care team; 

so more attentive monitoring will be enforced (e.g.: confusion assessment method) with 

appropriate resources devoted for these patients. In this thesis, I will demonstrate that 

adapting data mining approaches to flag cardiac surgery patients that are at higher risk of 

developing post-operative delirium will yield better predictions when compared to 

traditional methods.  



1.3. Research Tasks 

Predictive models utilize all available information, past and present, to forecast the future 

to avoid threats, boost revenue, and help attain positive results. The methodology of this 

thesis is based on a data-mining pipeline, which involves the analysis of a large data set to 

discover new and useful patterns that might help define a particular problem and suggest 

novel solutions. Here, the problem we wanted to address was post-operative delirium, a 

dichotomous (binary) outcome of (yes/no) in cardiac surgery patients. To accomplish our 

objectives, we went through the following steps: 

1. Detecting key features: The first step in detecting useful patterns is identifying 

key features. Several approaches will be used, including: conventional statistical 

analysis (univariate and multivariate analysis), cluster analysis, and machine 

learning feature selection methods. Feature selection is a task of choosing the 

features that are necessary and sufficient to delineate the target concept. 

2. Build predictive models: In this work we used 5 different models: LR, artificial 

neural networks with 1 hidden layer (ANN-1 Hidden), artificial neural networks 

with 2 hidden layers (ANN-2 Hidden), Bayesian belief networks with 1 parent 

(BBN-1 Parent), and Bayesian belief networks with 2 parents (BBN-2 Parents). 

These models were built using the training set. LR is a well-known statistical data 

model that is extensively used in medicine. ANN is distinguished machine 

learning algorithmic approach that is inspired by the human brain architecture of 

connected neurons. BBN provides a graphical model of causal relationships that is 

supplemented by the probabilistic power of Bayesian statistics. 

3. Models performance evaluation: The LR, ANN-1 Hidden, ANN-2 Hidden, 

BBN-1 parent, and BBN-2 parents models performance were evaluated on an test 

set that was not seen before by the models. There is a significant imbalance of the 

outcome distribution (delirium: 11.4% positive cases) in the final dataset. The use 

of predictive accuracy as an evaluation measure of the models will lead to false 

conclusions; the receiver operator characteristics-area under the curve (ROC-

AUC) is a more appropriate measure and it was used to evaluate general 



performance[56-59]. Other measures were used to compare the core performance 

of each model and its ability to recognize positive cases (e.g.: Kappa statistics, F1-

score, precision, recall, and specificity) with the primary focus on the F1-score[29, 

57, 60-68].  

4. The effect of outcome class imbalance on model performance, and proposed 

solutions: Like most real life scenarios, we are attentive to the fact that the dataset 

is describing an infrequent but important event, delirium. It has been reported that 

one of causes of a poor classifier performance is related to class imbalance in 

which observations in training data from one class outnumber the other class. This 

encouraged us to explore the effect of applying several data mining techniques 

that overcome the class imbalance effects on the models performance (LR, ANN-

1 hidden, ANN-2 hidden, BBN-1 parent, and BBN-2 parents) and examine the 

their stability (e.g.: data level resampling and applying cost)[56-59, 65, 69, 70]. 

1.4. Thesis Organization 

The remainder of the thesis is organized as follows: Chapter 2 presents the background, 

research motivation, and core concepts related to the research question. Chapter 3 outlines 

the data source, the preparation process, feature selection, and the description of the final 

dataset. Chapters 4 describes the evaluation measures of a classification task in the 

presence of imbalanced class, how to deal with imbalance, the applied classification 

methods that were used to develop a predictive model for delirium, and the results of the 

performed experiments. Finally, Chapter 5 includes a discussion of the major findings and 

limitations of this research, potential directions for future research, and concluding 

remarks.



CHAPTER 2: BACKGROUND 

2.1. Neurocognitive Disorders 

The moment that a patient requires a medical intervention, whether it’s something simple, 

like an x-ray or a prescription, or something more complex, like a course of 

chemotherapy or a surgical procedure, he or she is at risk for the complications and side 

effects associated with that intervention.  

While death because of surgery is a genuine concern among patients, the failure to regain 

normal brain function is an equally important – and somewhat more realistic – worry[3]. 

People are more familiar with this worrisome possibility for several reasons, including 

media attention and greater access to mass information (varying in quality and validity). 

The revolution of pre-, intra-, and post-operative care has also contributed to these fears 

in an indirect manner, making deaths related to anesthesia and surgery much less of a 

concern and thus shifting the focus of patients to their post-intervention quality of life. 

Royston and Cox stated, “From the patients point of view, delirium, and subsequent 

cognitive decline is among the most feared adverse events following surgery”[3]. In the 

mid-1980s, the cardiac surgical community started to notice that some of the patients who 

are undergoing open heart surgery demonstrated a deficit in cognitive function that 

extended up to the 8 weeks after surgery[71]. 

Post-operative deficits in brain function represent a type of acquired brain injury, which 

includes any type of brain damage or neurological disruption occurring after birth. The 

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) has 

recently switched to the term ‘neurocognitive disorder,’ which is on the same spectrum of 

impairments with causes that include trauma, vascular disease, Alzheimer disease, and 

infection. The term neurocognitive disorder provides a diagnosis for people experiencing 

cognitive symptoms alone, without memory or physical impairments[21]. This means that 

many individuals who are not currently receiving recognition or services (due to the lack 



of memory or physical impairments) will now qualify. Due to the complexity and 

localization of the various functions overseen by the brain, organic damage can cause a 

wide range of effects that are not limited to cognitive deficits[21]. Sight, hearing, and 

movement can all be affected by damage to specific areas of the brain. Therefore, people 

with neurocognitive disorders have a higher proportion of co-morbid disabilities 

compared to the general population[21]. 

Neurocognitive disorders are linked to mental health disorders. A neurocognitive disorder 

is defined by a shift in abilities and functioning, potentially leading to mental health 

issues. The Australian Institute of Health and Welfare (AIHW) states that over 40% of 

people with an acute brain injury have a co-morbid mental health issue[72]. In the same 

report, 96% of people with acute brain injury aged 65 years or over suffered a physical 

disability. In comparison, those less than 65 years were more likely to suffer more 

psychiatric and intellectual disability[21]. 

There are several major consequences of post-operative neurocognitive complications, the 

most direct of which is prevention of patient recovery, delaying hospital discharge and, 

therefore, a return to normal life activities. From a policy point of view, this resumption 

of daily life is a major concern. A prime example of this concern is a patient’s ability to 

resume operating their automobile. If a patient’s career is dependent on their ability to 

commute or travel from one location to another and they suffer a neurocognitive 

complication that will impair their ability to drive, this will have a major effect on the 

patient’s life. 

For elderly patients, the possibility of losing their independence because of a surgical 

complication is a larger concern than mortality. In a study assessing the perception of 

death and health status in elderly patients (mean age of 70 years) with heart failure in 

Sweden, Strömberg and Jaarsma found that many patients were concerned about suffering 

and losing their independence, and the possibility of not receiving good care[73]. 

With life expectancy relatively unaffected, a neurocognitive complication has the 

potential to adversely affect individuals during the remainder of their lives. The incidence 

of neurocognitive complications rises as people age, which will increase the incidence of 

fall, dependence, and the burden on the health care system[13, 26, 33, 74, 75]. Careful 



detection of and early intervention for neurocognitive complications in this group of 

patients is necessary in order to mitigate lasting and secondary effects. 

2.2. Delirium  

2.2.1. Definition, Etiology, and General Information 

Delirium is a disturbance of consciousness, attention, cognition, and perception. The 

disturbance develops over a short period of time (usually from hours to days) and tends to 

fluctuate during the course of the day[25]. According to DSM-5, delirium represents a 

sudden and significant decline from a previous level of functioning that cannot be better 

accounted for by a preexisting or evolving dementia. There is usually evidence from the 

patient history, physical examination, or laboratory tests that the delirium is a direct 

physiological consequence of a general medical condition, substance intoxication or 

withdrawal, use of a medication, toxin exposure, or a combination of these factors[21]. 

The medical community has always been aware of delirium’s wide range of presentations, 

from extremely dangerous agitation to depression-like isolation. Nonetheless, the latest 

updates of the DSM-5 and Geriatric Psychiatry, Fifth Edition were the first place to 

formally establish 3 distinct subclasses based on presentation: hyperactive, hypoactive, 

and mixed[21]. A new entity, attenuated delirium syndrome, was also added as a 

diagnosis for the presence of some but not all of the diagnostic criteria for delirium[21]. 

The occurrence of delirium is linked to many types of factors, including: systemic illness 

(e.g., infection, electrolytes imbalance, hypoxia, renal dysfunction, liver dysfunction, 

heart failure, neurological pathology, etc), medications (e.g., analgesics, steroids, 

sedatives, antidepressants, anti-Parkinsonism and others), and numerous other risk factors 

(age above 60, male gender, major surgery, dehydration, substance abuse, functional 

independence, depression, admission to the intensive care unit (ICU), anemia, sleep 

deprivation, anxiety, uncontrolled pain, and others)[21, 25, 76]. Reade and Finfer recently 

delineated an ICU triad of pain, agitation, and delirium. The notion of a triad emphasizes 

the complexity of delirium and other related problems, which highlights how difficult it is 



to find a single intervention that can be used as a preventive measure without negative 

consequences[76] (Figure 2-1[76]).  

 

Figure 2-1: Causes and Interactions of Pain, Agitation, and Delirium.  
From: Reade MC, Finfer S. N Engl J Med 2014; 370:444-454. Publication Title: Sedation 
and Delirium in the Intensive Care Unit. Copyright © (2014) Massachusetts Medical 
Society. Reprinted with permission from Massachusetts Medical Society. 

 

Delirium is most prevalent in the hospitalized elderly, and its diagnosis varies based on 

the patient’s medical status, the type of care, and the detection tools used. The general 

prevalence of delirium across the entire community is low (l-2%) but increases with age, 

rising to 14% among individuals older than 85 years. The prevalence is 10-30% in elderly 

(age >65 years) who present to emergency departments, in which case the delirium is 

often secondary to another medical problem. The incidence of delirium during 

hospitalization is between 6 and 56%. Delirium occurs in 15-53% of older individuals 



post-operatively and in 70-87% of those in intensive care. It occurs in up to 60% of 

individuals in nursing homes and in up to 83% of all individuals at the end of life[21]. 

Before diagnosing a patient with delirium, the health care team needs to rule out 

reversible causes. These include hypoxia, hypoglycemia, complex partial seizure, 

encephalopathy (viral, bacterial, metabolic, or hypertensive), renal failure, heart failure, 

infection, subdural hematoma, electrolyte disturbance, and as a side effect of several 

medications. The team needs to consider the possibility that delirium may be a secondary 

manifestation of an ongoing pathological process. If the underlying insults are discovered 

early and acted on in a timely fashion, delirium can be reversed. 

The diagnosis of delirium is mainly based on clinical suspicion. The National Institute for 

Health and Clinical Excellence in the United Kingdom (UK) produced a comprehensive 

447 page set of guidelines, entitled “DELIRIUM: diagnosis, prevention and management,” 

in an effort to educate the medical community and standardize the process of managing 

delirium”[24]. They stated, “Delirium is common but is frequently unrecognized by 

doctors and nurses despite the fact that it can be life-threatening and lead to serious 

preventable complications.” In this document, they identified several diagnostic tools. In 

the general floor and long-term facilities setting, these tools include the Abbreviated 

Mental test (AMT), the clock-drawing test, the MMSE, the Confusion Assessment 

Method (CAM) and the Delirium Index (DI). The AMT, a 10-item questionnaire that was 

first used by Ni Chonchubhair in 1995 to diagnose delirium in the elderly, is administered 

the day before surgery and then again on the third day after surgery[77].  

Formally described in 1990 by Inouye et.al[78], the CAM and has undergone several 

modifications, exists in both a long and a short version. The short version evaluates the 

criteria: acute onset, fluctuating course, inattention, and disorganized thinking or altered 

level of consciousness. The long version has 6 additional criteria (disorientation, impaired 

memory, perceptual disturbance, psychomotor agitation, psychomotor retardation, and 

altered sleep cycle). 

In the ICU setting, the available tools include the confusion assessment method in the 

intensive care unit (CAM-ICU) and the Richmond agitation sedation scale (RASS). The 

CAM-ICU, described in 2001 by Ely et al., assesses the following features: acute onset or 



fluctuation course and inattention, with either disorganized thinking or altered level of 

consciousness[79]. The inattention aspect of the assessment is based on Attention 

Screening Examination (ASE) scores. 

In the UK guideline, the CAM short version has the highest specificity and positive 

predictive value (PPV) when administered by a general physician, psychologist, 

geriatrician, or resident during their geriatrics rotation or a psychiatrist in a non-ICU 

setting. Likewise, when the CAM-ICU is administered by an ICU nurse, it has a high 

specificity and PPV in all studies[24]. 

The guidelines have established that the diagnosis of delirium should be a 2-stage process. 

The first stage is intended to alert the primary health care team to the possibility that a 

patient may be developing delirium. Following from that, the second stage involves a 

comprehensive clinical assessment by an appropriately trained health care professional. 

The diagnosis of delirium has been associated with a variety of additional complications. 

Mortality and readmission appear are significantly linked to the occurrence of delirium, in 

a time-independent manner. There is also strong evidence that delirium decreases the 

likelihood of discharge, resulting in a longer stay in the hospital; this effect is especially 

strong when the delirium has developed in the ICU[24]. 

2.2.2. Delirium and Cardiac Surgery 

Patients who are undergoing cardiac surgery are considered to be at higher risk of 

developing delirium due to several factors, including: surgical complexity, presence of 

other co-morbidities, and age. Several studies have indicated that there has been a 

dramatic shift of the demographics of the cardiac surgical population, with fewer smokers, 

more diabetics, and older patients[33, 34, 80]. In one study by Buth et al. that looked at 

the demographics and characteristics of a cohort of cardiac surgery patients from 2001-

2010, frailty increased dramatically over time[33]. In another study by Pierri et.al that 

examined a cohort from 1999-2007, they found that over the 9-year study period, patients 

were getting older, and they were operating on sicker patients (shock, higher New York 

Heart Association (NYHA) classification, and unstable angina), with more co-morbidities 

(hypertension and morbid obesity), and a lower ejection fraction (<30%)[34]. 



Older age, critical illness, and undergoing cardiac surgery are some of the well-

established risk factors for developing post-operative delirium[21]. Some of the factors 

that are particular to cardiac surgery include: pre-operative EURO-Score[8], length of 

stay in the ICU[19, 23], prolonged mechanical ventilation [19, 23], prolonged aortic cross 

clamp time[20], undergoing valve surgery[22], history of cerebrovascular disease[18], left 

ventricular dysfunction[18], and diabetes mellitus[18]. The biggest issue with these risk 

factors is that most of them are based on an observational small cohort of patients (44-142 

patients). One literature review on medication that can cause delirium after cardiac 

surgery concluded that: intraoperative fentanyl, intraoperative ketamine, preoperative 

antipsychotics, and post-operative inotropes were associated with post cardiac surgery 

delirium[29]. 

In several studies, delirium after cardiac surgery was associated with early, intermediate, 

and late morbidity and mortality. One study identified delirium as a predictor of post-

CABG sepsis[9]. In this study, delirium was the second most important predictor of post-

operative sepsis after emergent operation, with an odds ratio (OR)=2.32 and a 95% 

confidence interval (95% CI)=1.59-3.39[9]. A key conclusion of this paper is that 

delirium is a malignant process, and not the benign and self-limiting process that it is 

often regarded as in the medical community. This group of researchers has also 

demonstrated that patients who develop delirium have a median post-operative hospital 

stay of 12 days, compared to 6 days for those who did not develop delirium. Delirium was 

identified as an independent predictor of all-cause mortality, with a Hazard Ratio 

(HR)=1.52 and a 95%CI, 1.29-1.78; and hospitalization for stroke HR=1.54, 95%CI=1.10 

- 2.17[14]. Another study of 5,034 consecutive patients undergoing CABG surgery at a 

single institution from 1997-2007 identified delirium after cardiac surgery as a strong 

independent predictor of mortality up to 10 years post-operatively (adjusted HR=1.65, 

95% CI=1.38–1.97), even when data was adjusted for perioperative risk factors. This was 

more prominent in patients younger than 65 years (HR=2.42) and in those without prior 

stroke (HR=1.83)[10]. 

In recognition of the importance of delirium within the cardiac surgical population, some 

have attempted to develop a predictive model. For example, Afonso et al. conducted a 

prospective observational study on 112 consecutive adult cardiac surgical patients. 



Patients were evaluated twice daily for delirium using RASS and CAM-ICU, and the 

overall incidence of delirium was 34%. Increased age (OR=2.5, 95% CI=1.6-3.9, for 

every 10 years) and surgical procedure duration (OR=1.3, 95% CI=1.1-1.5, for every 30 

minutes) were found to be independently associated with post-operative delirium[17]. 

Similarly, Bakker et al. prospectively enrolled 201 cardiac surgery patients aged 70 and 

above. They found that a low MMSE score (27 vs. 28, p-value=0.026), a higher pre-

operative creatinine level (98 vs. 88 mol/l, p-value=0.003) and an increased ECC time 

(145 vs. 113 min, p-value < 0.001) were independent predictors of post-operative 

delirium[15]. 

Unfortunately, all of the previously published models focus on selecting a subset of well-

known attributes. These attributes have already been demonstrated to influence the 

development of post-operative delirium. Also, all of these models used the same 

technique, LR.   

Logistic regression takes a binary outcome expressed as a probability that must fall 

between 0 and 1 and transform a non-linear outcome to a linear probability using the 

natural logarithmic scale. This generally includes only a subset of attributes that are 

considered important based on their statistical contribution. Selecting a subset limits the 

number of allowed attributes and possible interactions in the model. However, there are 

situations where the use of these models is unfitting, as it will require many assumptions 

that in reality may not be true. Violating these assumptions may produce an error in 

prediction and hypothesis testing. In addition, logistic models use a linear combination of 

variables and, therefore, are not suitable for modeling multifaceted relationships. 

Traditional methods suffer from their inability to capture pattern complexity and uncover 

hidden process dynamics. To overcome the limitations of traditional methods, machine 

learning techniques were developed. Machine learning techniques are based on the 

rigorous mathematical principles of traditional methods but augment their performance by 

allowing complex interactions and discovering the process dynamics as they unfold in 

reality.  



2.3. Machine Learning and Medicine 

2.3.1. Machine Learning, Knowledge Discovery, and Data Mining 

For as long as humans have existed, people have tried to analyze information in the hopes 

of finding patterns and making accurate predictions. A classic example is weather 

forecast: in earlier times, knowing what kind of weather the coming days and weeks 

would bring was crucial because it affected whether or not people could plant, harvest, 

travel, and survive. Then, people had only limited information upon which to predict the 

weather – phenomena such as the behavior of animals and the positions of the sun, moon, 

and the stars. Today; however, meteorologists use complex equations and state-of-the-art 

computer systems linked to networks of satellites and weather stations around the globe, 

allowing for a much better understanding of weather and, therefore, more accurate 

predictions. These sensors gather massive amounts of information, which needs to be 

captured, stored, normalized, and analyzed in a very short time span. However, even with 

the modern technology of today, there are so many attributes that forecasting the weather 

is still not perfectly accurate. 

Russell Ackoff, who in 1989 described a hierarchy of knowledge, ranging from data to 

wisdom (Figure 2-3 [81]). In Ackoff’s hierarchy, data – mere symbols with no inherent 

significance beyond their existence – is transferred via analysis into information, which 

does have applicable meaning. At the next level, knowledge results from the addition of 

context, such that the information can be better understood. Next, insight into how things 

work results from the synthesis of new knowledge and information. Lastly, wisdom 

reflects the broad understanding of a phenomenon, including the acknowledgement that 

much is and will remain unknown. 



 

Figure 2-2: Data to Wisdom Pyramid  
(Based on the hierarchy of profound knowledge from Russell Ackoff) 
 

Starting in the early-1980s, the amount of data available for analysis began to exceed 

current capabilities to efficiently analyze and extract meaningful information from that 

data. The amount of generated data has continued to increase exponentially, primarily 

because of the computerization of our society and the fast development of powerful 

collection, storage, and analytical tools. Techniques such as data mining (DM) rose to 

prominence as a way of dealing with several aspects of this data explosion. One issue was 

how to efficiently store and collect such large amounts of data. Computers becoming 

cheaper and more powerful, ultimately giving most consumers access to these masses of 

information has addressed this, partly. The extraction of meaningful information from this 

data; however, requires costly physical resources, including teams of human analysts and 

many man-hours. In general, without proper tools, some of any data set’s meaning will go 

undiscovered, with much of the data never analyzed at all. 

Data mining is the interdisciplinary process of discovering interesting patterns and 

knowledge from large amounts of data, or big data, and integrates techniques from 

several disciples, including statistics, machine learning, pattern recognition, data 

visualization, and databases[64]. The concept of ‘big data’ does not have an exact size – it 

is more of a moving target that grows in parallel with the size of data sets, often defined 



in terms of the 3 Vs: volume, variety, and velocity. Essentially, big data refers to any data 

sets with sizes that exceed the abilities of commonly used software tools to capture, 

curate, manage, and process the data within a reasonable amount of time[82].  

To follow the application of data mining described in this thesis; it is important to 

understand some related concepts. Statistics is defined as the science that deals with the 

mathematics of the collection, organization, and interpretation of numerical data, 

especially the analysis of population characteristics by inference from sampling. Machine 

learning is the study of providing computers with the ability to learn without being 

explicitly programmed. Database science is the science and technology of collecting, 

storing, and managing data so that users can retrieve, add, update, or remove that data. 

The major distinction between DM and a database query is that in a query you simply ask 

“How many” whereas in DM you take this question a step further and ask, “What are the 

important/associated features that resulted in that pattern.” Predictive analytics is an 

approach in which data are analyzed for meaningful patterns that can provide actionable 

insights, which can in turn be used to enhance preventive actions and provide cost-

effective management that improves the domain products (examples in health care 

include patient outcomes, patient satisfaction, resources allocation, system re-structuring, 

and others)[40]. Sometimes used as a synonym for DM, knowledge discovery from 

databases (KDD) is the process of analyzing data from different perspectives and 

summarizing it into useful information through the extraction of interesting (non-trivial, 

implicit, previously unknown, and potentially useful) patterns or knowledge from huge 

amounts of data. DM can be viewed as a temporal phase in the development of machine 

learning and statistical learning, as a new application area has emerged, and ad hoc 

techniques are gradually being usurped by established techniques that have long 

pedigrees in learning theory or statistics. 

Some experts consider DM to be one step in the process of knowledge discovery (Figure 

2-3), a process that starts with the posing of a question based on a problem and the 

existing knowledge regarding that problem. Identification of the problem and the question 

is followed by determination of the appropriate data for answering the question and 

collection of the data form available sources. Target data is then selected, pre-processed 

and subjected to data mining to produce a pattern or a model that can be analyzed. Such 



analysis will generate some insight and knowledge that can be used to facilitate and 

inform future decisions. 

 

Figure 2-3: From Data to Action (Knowledge Discovery Process) 

 

The most troubling and critical aspect of the growing gap between the volume of data and 

our abilities to timely process and analyze it; is the possibility that patterns of significant 

meaning – that may, in the context of medicine, save lives – remain hidden owed to our 

limitations[83]. Nonetheless, in marketing, banking, insurance, aviation, automotive 

industries, and many other disciplines, the massive amounts of generated data are 

successfully analyzed in a matter of seconds (whether by fully or partly automated 

processes) in order uncover useful patterns. In banking, data mining outlier identification 

techniques are used for the detection of fraud transactions. Data mining clustering 

techniques can be used to identify different customer clusters that have similar shopping 

behaviors, in which targeted advertising can be applied on to improve future revenue and 

product sales.  

The information acquired via the data mining process acts as the basis for proper actions, 

applicable adjustments, and intelligent decisions. These sectors have caught up with the 

explosion of data, apparently understanding that being able to acquire meaningful 

information from large data sets ultimately leads to customers coming back and waste of 

time and resources being reduced[83].  



2.3.2. Machine Learning in Medicine 

Medical science generates incredible amounts of data. However, one might argue that 

medical science fails to make the best possible use of this information (primarily in the 

form of study results in medical literature and data points in health records) to serve its 

goal, which is the maintenance of health. MEDLINE, the U.S. National Library of 

Medicine’s (NLM) premier bibliographic database, is the most comprehensive medical 

literature database, with over 19 million references to journal articles in the life sciences. 

It includes citations from nearly 5,600 worldwide journals, and 2,000-4,000 new 

references are added each day[84]. In a study published in the Journal of the Medical 

Library Association (JMLA) in 2004, authors found that 7,287 articles are published each 

month within the subset of 341 active primary care journals. A well-trained physician 

would need to devote about 627 hours – or 26 days! – every month in order to critically 

appraise these articles, extract useful information, and integrate this information into his 

or her practice[85].  

In reality, though, 81% of physicians report spending less than 5 hours per month reading 

medical journals. Clearly, there is no lack of data available. The critical task is to extract 

useful information and to detect and understand recurrent patterns in an efficient manner, 

promoting the delivery of evidence-based, data-supported, value-driven and patient-

centered care. 

There are numerous examples of authors using this non-traditional, data-driven approach 

to tackle medical problems, with several articles using such methodologies to improve 

early and precise detection of diseases (e.g., breast cancer, atrial fibrillation, etc.)[86, 87]. 

One such study employs a voice signal analysis for early detection of Parkinson 

disease[88]. Other studies use additional data-driven approaches to better understand 

specific grouping patterns (like genetic DNA clusters, disease groups, complications 

patterns, infectious disease epidemics, and others)[89]. Optimization of health care 

resources has also been tackled using such an approach (e.g.: outbreak detection and cost 

forecasting)[90-92]. The prevalence of medical research articles employing data mining 

procedures has increased dramatically in recent years. The first such medical publication 

appeared in 1978, according to PubMed[93]. The appearance of these types of papers 



increased slowly in the years that followed and then more rapidly during the last 20 years, 

with 265 such articles per year published between 2010 and 2013 (Figure 2-4). 

Figure 2-4: Medical Data Mining Publications on PubMed   

(Search conducted at the 31-January-2014)[93] 
 

In one example of a medical research study that applies data mining methods, Yan et al. 

used a clustering method called self-organizing maps of optic nerve images obtained via 

confocal scanning laser tomography (CSLT) in normal subjects and patients with 

glaucoma, with the goal of devising a new 5 categories sub-classification of glaucoma 

based on morphological features[94]. In another paper by Qiang et al., the researchers 

report a technique for recognizing vascular patterns associated with cervical lesions in 

colposcopic images. The lesion patterns are usually confusing and complex, such that 

even trained physicians can have difficulty recognizing typical patterns. Using only 12 

out of 24 features, the authors were able to generate a model that can differentiate each 

pattern with 80% accuracy[95].  

Mao et al. used a comparable approach to address an important problem: early detection 

of deteriorating health conditions (mainly pre-shock status) in patients who are in the 

general hospital wards (prior to transfer to intensive care). They applied a data mining 

framework to solve this problem, developing an early warning system designed to 

identify the signs of clinical deterioration and provide early warning of serious clinical 



events. They developed this system using a very large amount of data – 41,503 patient 

visits. The proposed system achieved a high specificity (95%) and was able to detect 

deterioration in a patient’s health condition at least 4 hours before transfer to ICU, and all 

the patients who were transferred to the ICU had an alert less than 24 hours before they 

were transferred[96]. In a paper by Pandey et al., they tested several clustering algorithms 

to assist in the prediction of heart disease[97]. Their findings indicate that, with the right 

algorithm, patients that are at higher risk of developing heart disease can be identified 

early, enabling more effective interventions. 

2.4. Chapter Summary 

Unlike some disciplines, medical science has mostly failed to keep up with the data 

explosion during recent decades, so that far more information is produced than 

professionals in the field could possibly assess and apply appropriately. In this era of 

open access and large data sets, physicians must harness these options in order to be up-

to-date and acquire the best, most useful information. Data mining shows great potential 

for addressing this problem and enabling people working in the medical field to make the 

most of the massive amount of data available. 

Although data mining can explain the past, the real power lies in its ability of predicting 

the future with great confidence. Predictive analytics will help the health care community 

uncover patterns and hidden relationships between data points previously buried or 

thought to be unrelated. That, in turn, will fill in gaps in knowledge; optimize the flow of 

care, and trigger a significant paradigm shift away from a volume-based health care 

system and towards a value-based health care organization. 

This work will illustrate that the use of a knowledge discovery techniques to address post-

operative delirium in cardiac surgery by potentially enhancing our understanding of the 

underlying process. It will not only provide further support for many already-recognized 

attributes, but it will reveal new and unexpected links between attributes that might 

influence the development of post-operative delirium. This research will also demonstrate 

the predictive power of DM techniques compared to conventional statistical methods, as 



they are able to produce a more accurate representation and solution. The use of these 

solutions will improve the identification of high-risk patients, alerting the health care 

team and triggering appropriate interventions in a timely fashion. Preventing further 

deterioration, and negative effects. 



CHAPTER 3: THE DATASET AND PREPROCESSING STEP 

This chapter will discuss the dataset, and the data preparation steps (Figure 3-1: Data Pre-

Processing methodology, page: 26). The dataset is a cohort of actual patients who 

underwent cardiac surgery in Halifax, Nova Scotia, Canada. The data is a portion of the 

Maritime Heart Center Cardiac Surgery Registry. The registry is from a comprehensive, 

ongoing detailed clinical database that captures all cardiac surgery patients in Atlantic 

Canada since June 1995. It has more than 20,000 patients. The acquired data represent a 

cohort of patients who underwent cardiac surgery in the center between 2006 and 2012. 

The original dataset contained 5,798 patients, and each patient had 220 attributes.  

After acquiring the data, the first task was to construct attributes that are not explicitly 

captured in the registry, but their components are (e.g.: length of stay in days, creatinine 

clearance and etc.). Next, redundant attributes were removed (e.g.: date of admission, 

creatinine and etc.). Afterward, univariate and bivariate analysis were applied to identify 

key attributes that influence delirium.  

Several preprocessing steps were applied to prepare the data for model construction, 

reduce the attribute vector space (262 attributes) down to a more practical size, and 

isolate key attributes. These steps include: dimension reduction using clustering, 

discretization, and feature selection. Ultimately, we were able to identify 22 pre-, intra-, 

and post-operative attributes that significantly influence the development of post-

operative delirium in our cohort. The pre-processing steps are summarized in Figure 3-1. 

  



 

Figure 3-1: Data Pre-Processing methodology 



3.1. The Dataset 

3.1.1. Maritime Heart Center Cardiac Surgery Registry 

The Maritime Heart Center Cardiac Surgery Registry is an ongoing detailed clinical 

database that collects pre-, intra-, and post-operative information on cardiac surgery 

patients. The database captures information related to all cardiac surgical procedures that 

take place in the Queen Elizabeth II Health Sciences Center (QEII-HSC), which is the 

sole cardiac surgical center in the province of Nova Scotia, Canada as well as for parts of 

the surrounding Atlantic provinces (New Brunswick, Newfoundland, and Prince Edward 

Island), constituting a region of 2 million people. The QEII-HSC is the tertiary referral 

center in Atlantic Canada that has the capability to perform complex cardiac procedures. 

An average of 1,000 open heart surgeries are being performed every year. It is also the 

only cardiac transplant and advanced heart failure center in Atlantic Canada. The registry 

started collecting patient information in June 1995, and has since undergone numerous 

iterations to improve it and make it more comprehensive. The latest version of the 

registry is based on the framework and data definitions used by The Society of Thoracic 

Surgeons (STS), and has more than 20,000 patients and more than 500 different variables. 

Many of the definitions are altered and customized to the fit the MHC registry primary 

goals (e.g.: Quality Improvement). 

Following the STS definition, this data set defines delirium as mental disturbance marked 

by illness, confusion, and cerebral excitement, with a comparatively short course[98]. 

This definition will only include patients with agitated delirium, which represents the 

smaller portion of patients who develop post-operative delirium compared to the mixed 

and hypoactive types[27, 28, 52, 99]. In the MHC, Delirium is defined as short-lived 

mental disturbance marked by illusions, confusion, or cerebral excitement, requiring 

temporary medical/physical intervention, a consult, or extends the patient’s hospital stay. 

Delirium is captured via manual chart abstraction, which is done by trained chart 

abstracters. The chart abstracters look for any subjective documentation of delirium by 

the medical team in the chart. 

 



3.1.2. Research Ethics 

Full ethics approval was obtained from the institutional research ethics board, in keeping 

with the Tri-Council Policy Statement: Ethical Conduct for Research Involving 

Humans[100]. Our request was reviewed by the Capital District Health District Health 

Authority (CDHA) Research Ethics Board (REB) and was approved on the 18th of 

September 2013 (File Number: CDHA-RS/2014-087). Under Section 2.1 c) of the Tri-

Council Policy Statement[100], the ethics board granted a waiver of informed consent. 

An additional REB application to the MHC data access committee was submitted and 

approved at the 22nd of October 2013 File Number: MHC proposal 2013/032). Access to 

the full data set was granted at the 12th of November 2013. 

3.1.3. Study Population 

The study included all patients undergoing isolated CABG, valve, and CABG with valve 

cardiac procedures, including redoes (patients who had undergone a previous cardiac 

surgery), at the QEII-HSC in Halifax, Nova Scotia, between January 2006 and December 

2012. We focused on that segment of the database because it was comprehensive and 

stable, although throughout the observation period the definition of delirium did not 

change. The valve procedures that we included are: aortic valve replacement (AVR) with 

mechanical or prosthetic valve, mitral valve replacement (MVR) with mechanical or 

prosthetic valve and mitral valve repair (MV-Rep), irrespective of the repair technique. 

Given the abovementioned criterion, our initial dataset included 5,978 patients. 

3.1.4. Requested attributes 

To determine the appropriate variables to include in our analysis, we conducted an 

extensive literature review of all articles that were published on delirium after surgery, 

with a focus on cardiac surgery. Based on this literature review, in combination with a 

review of the variables available in the MHC registry, 220 attributes were requested (all 

available in the MHC registry) and they were divided into 10 main categories: a) 

demographics, b) frailty, c) comorbidities, d) previous cardiac intervention, e) cardiac 



specific, f) pre-operative, g) intra-operative, h) post-operative, i) discharge, and j) newly 

created. For more details on how did we create these attributes and the equations, please 

refer to APPENDIX A: ATTRIBUTES, page 120. After that, redundant attributes 

were removed (e.g.: date of admission, creatinine and etc.). Univariate and bivariate 

analysis were applied to isolate key attributes with significant influence on delirium. 

Delirium was coded as a binary outcome (present=yes and absent=no).  

Several preprocessing steps were used in an attempt to reduce the attribute vector space 

(262 attributes). These steps include: dimension reduction using clustering, discretization, 

and feature selection. Non-normally distributed continuous attributes were discretized in 

an attempt to overcome. We were able to identify 22 pre-, intra-, and post-operative 

attributes that significantly influence the development of post-operative delirium in our 

cohort. 

3.1.5. Clustering Correlated Attributes With Expectation Maximization  

The expectation-maximization (EM) algorithm is a probabilistic algorithm that belongs to 

the partitioning clustering methods. It attempts to construct a “latent” attribute that can be 

used to maximize the likelihood estimate of the model[64, 115]. The expectation 

maximization (EM) algorithm was used to cluster correlated attributes in an attempt to 

reduce the attribute vector space, while maximizing retained information.  

3.1.6. Original Data Format and Analytical Software 

The dataset contained 5,798 patients/rows and 221 attributes/columns (requested 

attributes plus a study ID). All binary attributes were originally coded as 0/1 (0=no and 

1=yes). Missing attributes were coded in different ways based on the type of the data; 

categorical were coded as “9,” numeric were coded as “-9,” dates were coded as 

“01/01/1900”. Also, some attributes had “unknown” or “unk” to denote missing or un-

coded values for character attributes with text. 

In this study we used multiple platforms based on the software capabilities and the 

analyst’s comfort with the available functionalities in each package. The following 

software was used in this thesis: Microsoft Excel 2013[101], Statistical Analysis Software 



(SAS) V9.3[102], Waikato Environment for Knowledge Acquisition (WEKA) 

V3.7.10[103], and R V3.0.1[104].  

3.1.7. Data Exploration and Statistical Analysis 

After recoding, 221 attributes were examined (the first attribute was excluded, as it was a 

study ID but was kept to cross reference the rows). All date attributes were used to 

generate length of stay continuous attributes. Statistical measures of central tendency 

(mean, median, mode, inter-quartile ranges, standard deviation and others), shape of 

distribution and outliers were examined. Continuous attributes were examined and when 

the shape of the distribution was of close to a normal (Gaussian) distribution; mean and 

standard deviations were used. When the shape was extremely skewed (non-normal 

distribution); median, 25% inter-quartile range (IQR) and 75% IQR were used. 

Categorical attributes are reported with frequency in percent. Imputation of missing 

values was not used in an attempt to prevent the introduction of bias, through artificial 

speculation of a single result.  

Patient characteristics of the full data set are displayed in Table 3-1. Delirium was 

documented only in 661 patients (11.4%). The mean age was 67 years. The majority of 

patients were male (74%). Ten percent of patients were older than 80 years. Only 13% 

had history of cerebrovascular disease (CVD). CABG was the most commonly performed 

procedure (67%). Out of the 3,886 patients that underwent CABG, 67 % had at least 3 

distal grafts and 91% of them had at least one internal mammary artery distal anastomosis. 

19% of patients received a blood product intra-operatively. Eighteen percent of patients 

required mechanical ventilation for >24 hours. Almost 56% stayed in the ICU for 24 

hours or less. Only 7% had pneumonia and only 2.7% developed sepsis. Seventeen 

percent of patients developed a neurological complication, but only 2% suffered a 

permanent stroke.  

In-hospital mortality was 3.7% and 83% of patients were discharged home. Fifty-two 

percent of patients spent less than a week in the hospital from the day of surgery. Figure 

3-2 illustrates some of the key attributes distributions in the full data set. It clearly 

displays the imbalanced representation of delirium in our dataset. 



Table 3-1: Full Dataset of Patient’s Characteristics 
 TOTAL (N=5798) 
Preoperative  

Age, y, mean (± SD) 67 (11) 
Age < 60, %  25.4 
Age  80, % 11.9 
Male, % 74 
CVD, % 13 
EUROII Score, median 2 
EF >50, % 72 
Frail, % 7 
HTN, % 76 
DM, % 37 
DLP, % 81 
COPD, % 14.5 
NYHA Class  3, % 43.5 
A-Fib, % 12 

Intraoperative  
CABG, % 67 
Valve procedure, % 21.5 
Cross clamp time, min, mean (± SD) 84 (39) 
CPB time, min, mean (± SD) 125 (54) 
On-Pump, % 99 

3 Distal anastomosis, % 48 
Intra-operative TEE, % 65 
Intra-operative blood products, % 19 

Post-operative  
Mechanical ventilation >24hrs, % 18 
ICU stay 24hrs, % 52 
Readmission to the ICU, % 4.5 
Cardiac tamponade, % 2.7 
Post-operative A-Fib, % 33 
Post-operative pneumonia, % 7 
Post-operative new renal failure, % 7 
Post-operative permanent stroke, % 2 
Discharge home, % 82.5 
Length of stay from surgery < 1 week, % 52.3 
In-hospital mortality, % 3.7 
Delirium, % 11.4 

 



 

Figure 3-2: Full Dataset of Patient’s Characteristics 

 
  



3.1.8. Delirium in the Full Dataset 

After examining the general characteristics of the full original dataset; the influence of the 

available attributes on delirium was evaluated. As indicated earlier, only 11.4% of the 

study patients developed post-operative delirium (Table 3-1 and Figure 3-2).   

The attributes were divided into continuous and categorical. Secondary to the large 

sample size, a large number of the independent attributes had a significant p-value 

(<0.05). Summary tables of all statistical analysis results are provided in APPENDIX B 

Table B-1 to Table B-12. 

CABG surgery was the most frequently performed surgery (67%). Delirium had a higher 

prevalence in patients who underwent a valve procedure, a combined procedure, required 

intra-operative trans-esophageal echocardiography (TEE), and required the use of intra-

operative inotropes. The length of stay in the ICU was exhibiting a non-Gaussian 

distribution. The median length of ICU stay for patients who developed delirium was 95 

hours (first, third IQR=26, 216) compared to a median of 23 hours (first, third IQR=20, 

46) in the patients who did not (See Figure B-2 and Figure B-3). Several approaches were 

exploited to maintain CVICUhrs as continuous and fitting it to a normal distribution, but 

unfortunately all our attempts did not improve its implementation. Several authors 

identified the length of ICU stay as an important predictor of post-operative delirium and 

because of its skewed behavior; CVICUhrs was discretized into 3 categories based on the 

ICU literature[12, 19, 23, 24, 52, 76].  

Post-operatively, only 7.2% of patients developed pneumonia. However, patients who had 

delirium were 3.5 times at higher risk of having pneumonia. Fourteen percent of the 

patients were discharged to another health care institution (e.g.: rehabilitation center, 

another hospital, or a nursing home), defined as a health care institution transfer to 

recover as they were not yet fit to go home, but patients who had delirium were 3.8 times 

more likely to be discharged to an institution. Median in-hospital stay from surgery for 

patients who developed delirium was 16 days (first and third Quartiles: 10 - 27) compared 

to 7 days (first and third Quartiles: 5 -10) for patients who did not develop delirium. 



 

3.1.9. Alive Dataset 

After excluding patients who had in-hospital mortality (APPENDIX B.I In-Hospital 

Mortality, Post-Operative Stroke and Delirium page 125), we attempted to guarantee that 

the new “Alive” data set had a similar representation as the full one. During the study 

period, the center performed 7,209 open-heart surgeries. The “Full” dataset represented 

80% of the surgical procedures performed during the study period. After excluding in-

hospital mortality patients, the “Alive” dataset comprised 77.5% during the study period 

(Figure 3-3). 

Figure 3-3: MHC Surgical Case Load During 2006-2012 
(Datasets representation compared to the total number of cases for each year) 
  



Similarly, the “Alive” dataset’s representation was similar to the full dataset in terms of 

patients’ pre-, intra-, and post-operative characteristics (Table 3-2 and Figure 3-5). 

Delirium was documented in 634 patients (11.4%), which means that we only lost 3 

patients due to in-hospital mortality. Mean age was 67 years. The majority of patients 

were still males (75%). Only 13% had history of CVD. CABG was the most commonly 

performed procedure (68%). Fifteen and six tenths percent of patients required prolonged 

post-operative mechanical ventilation. Thirty-three percent of patients developed post-

operative atrial fibrillation (A-Fib). Only 6.4% had pneumonia, 1.7% developed sepsis, 

1.5% suffered a permanent stroke, 14% of patients were discharged to an institution, and 

52% of patients spent less than a week in the hospital from the day of surgery. 

After excluding patients with in-hospital mortality, the “Alive” dataset had an almost 

similar patient’s characteristics (Figure 3-4). Discharge home showed a statistically 

significant difference between the 2 datasets, but this can be justified. As most patents 

that survive after 30 days from their surgery will eventually be able to be discharged 

home.  



Table 3-2: Alive Dataset Patient’s Characteristics 
 TOTAL (N=5584) 
Preoperative  

Age, y, mean (± SD) 67 (11) 
Age < 60, %  26.1 
Age  80, % 9.31 
Male, % 75 
CVD, % 13 
EUROII score, median 1.8 
EF >50, % 72.6 
Frail, % 6.6 
HTN, % 76 
DM, % 37 
DLP, % 82 
COPD, % 14 
NYHA class  3, % 42.5 
A-Fib, % 12 

Intraoperative  
CABG, % 68 
Valve procedure, % 21.5 
Cross clamp time, min, mean (± SD) 83 (38) 
CPB time, min, mean (± SD) 122(50) 
On-pump, % 99 

3 distal anastomosis, % 48 
Intra-operative TEE, % 64 
Intra-operative blood products, % 17 

Post-operative  
Mechanical ventilation >24hrs, % 15.6 
ICU stay 24hrs, % 44 
Readmission to the ICU, % 4 
Cardiac tamponade, % 2.3 
New A-Fib, % 33 
Pneumonia, % 6.4 
New onset renal failure, % 5.8 
Permanent Stroke, % 1.5 
Discharge home, % 86 
Length of stay from surgery < 1 week, % 52.2 
Delirium, % 11.4 

 
 

 

  



 

Figure 3-4: Comparison Between the Full and Alive Datasets Characteristics  
  



3.2. Dimension Reduction and Features Selection 

In many learning problems there are hundreds or thousands of potential features. The 

majority of learning methods do not behave well in this circumstance because, from a 

statistical point of view, examples with many irrelevant, but noisy, features provide very 

little information. A feature subset selection is a task of choosing a small subset of 

features that ideally are necessary and sufficient to describe the target concept[105]. 

The primary objective of dimension reduction is to reduce the number of predictors and 

try to confirm their independence[106]. In classification, the primary goal is to find a low-

dimensional transformation of the feature vectors that retains information needed to 

predict the class labels[107]. By doing so; we can avoid overfitting, generate a more 

efficient faster model, improve the understanding of the underlying process, and create 

model that can be comprehended by the domain experts[108]. A lower dimensional 

feature space can also improve data visualization and improve exploratory data analysis.  

The attributes vector space was reduced down to 92 attributes. After that, several steps 

were taken in an effort to decrease the attribute vector space to a reasonable one.  

3.2.1. Clustering in Medical Data Mining 

Clustering is categorizing observations based on their similarity so that 2 observations 

that belong to a cluster are more similar than 2 observations from a different cluster. In 

medicine, clustering can be used to group the patients into different categories such as: 

normal and abnormal; low, medium, or high-risk; class 1, 2, 3, or 4. Several authors have 

used different clustering as a dimension reduction technique[109]. Similarity measures 

are usually used for clustering the attributes[64, 65, 109]. In contrast to classification, 

clustering is considered to be an unsupervised learning technique, in which the class label 

will not be provided. This means that there is no pre-determined assignment of clusters 

and the clusters are created based on the available information that is presented to the 

algorithm. 

Different clustering techniques were successfully applied in the medical domain. Belciug 

et al. used 3 different clustering techniques (k-means, self-organizing map/Kohonen 



network, and cluster networks) to detect the recurrence of breast cancer[110]. Escudero et 

al., was able to divide a dataset of a patient with Alzheimer disease into pathologic and 

non-pathologic utilizing the patients bio-profile (patient’s medical history that is 

temporally correlated with their biochemical markers) using k-means[111]. Hierarchical 

clustering methods are heavily used in biochemical medicine and genetics[112, 113]. 

Other methods have also been used in the medical domain[69, 114]. 

3.2.2. EM for Dimension Reduction 

The expectation-maximization (EM) algorithm is a probabilistic algorithm that belongs to 

the partitioning clustering methods. It attempts to construct a “latent” attribute that can be 

used to maximize the likelihood estimate of the model[64, 115]. Several authors have 

successfully implemented EM as a technique for dimension reduction[106, 107, 116, 117]. 

Based on our clinical domain knowledge and the patient population, we knew that some 

of the attributes are correlated. Some examples of these attributes are: diabetes mellitus 

and the use of insulin, the use of angiotensin converting enzyme inhibitors (ACEI) and 

angiotensin receptor blockers (ARB), aspirin (ASA) and lipid lowering agents, several 

pre-operative arrhythmias other than A-Fib, and others. In an attempt to reduce the 

attribute vector space but simultaneously retain as much information as possible, the EM 

algorithm was used as a dimension reduction method. Clustering was done with the EM 

algorithm that is provided in WEKA using the default setting. Seven latent attributes were 

produced, but only 2 were clinically interesting (DM clustering and preoperative 

arrhythmia clustering). 

3.2.3. Excluded Attributes 

Several attributes were excluded from the analysis for the following reasons: 

• More than 33% of the observations are missing: these attributes were removed as 

replacing these observations with their mean or median would lead to 

questionable results that might be not accurate. The use of classifier-based 

imputation techniques on the training set was another option[118-120], but it was 

not attempted as the implemented classifiers adapt to missing values, and several 



authors discourage the use of these techniques to impute a large portion of the data 

(>25%)[118, 121] because it might lead to false conclusions. Some examples of 

these attributes include: CVA type and Pre-operative coronary catheterization. 

• Too infrequent (less than 1% occurrence): these are attributes that are sparse in 

our dataset and no meaningful conclusions can be drawn from them. Several 

techniques exist to make use of these sparse attributes, such as generating new 

artificial observation, resampling, and others. The use of these techniques in the 

presence of a very small representation will raise some red flags on the validity of 

these attributes. Some examples of these attributes include: conversion from off-

pump to on-pump (9/5584=0.16%) and active endocarditis (37/5584=0.662%). 

• Unclear temporal relationship: the main interest in this work is to identify patients 

who are at risk of developing delirium, which usually occurs within the first 48-72 

hours after surgery. Attributes that did not have a clear temporal relationship with 

delirium were excluded. Some examples of these attributes include: low cardiac 

output syndrome (in the database definition this attribute can occur at any time 

within the patient hospital stay) and subsequent or (re-operation after the index 

operation within the same admission, this can be less or more than 72 hours). 

3.2.4. Attributes Selection 

After including the new cluster-based attributes (7 new attributes), feature space reduction 

was applied utilizing: 

a. A conventional approach of manual selection based on statistical significance and 

domain knowledge 

b. A data mining approach was used to support the selected attributes by the 

conventional approach and to uncover overlooked, but important, attributes using 

feature selection methods 



3.2.4.A. Manual Selection Based on Statistical Analysis 

All “Date” attributes were used to generate length of stay continuous attributes. Statistical 

measures of central tendency (mean, median, mode, inter-quartile ranges, standard 

deviation, and others), shape of distribution, and outliers were examined. Continuous 

attributes were examined and when the shape of the distribution was close to a normal 

(Gaussian) distribution, mean and standard deviations were used. When the shape was 

extremely skewed (non-normal distribution), median, 25% inter-quartile range (IQR) and 

75% IQR were used. Categorical attributes are reported with frequency in percent. 

Continuous attributes with normal distribution were tested using the student t-test and 

analysis of variance (ANOVA). Continuous attributes with non-normal distribution were 

tested using the Wilcoxon-Mann Whitney test. The Kruskal-Wallis test was used for 

ordinal attributes. Categorical attributes were examined using the chi-square test. 

Univariate and bivariate analysis of the 92 attributes was conducted, and a candidate list 

based on a statistical significance of a p-value <0.05 and the appropriate measure of 

association was composed of 26 candidate attributes (Table 3-3). 

Table 3-3: List of Candidate Attributes  

Attribute Attribute 

Length of stay in the ICU CHF 
Prolonged ventilation Pre-op A-Fib 
EUROII score AS 
Age CVD 
Procedure difficulty Clustered DM 
Blood product within       
48 hrs 

Frail 

Intra-operative TEE History of turn down 
Timing of IABP Hemo-dynamic instability 
Intra-op inotropes MR 
Pre-op creatinine clearance Clustered arrhythmia 
EF categories COPD 
Pre-op hemoglobin Pre-op intubation 
Pre-op inotropes Gender 



 

3.2.4.B. Feature Selection Methods 

Several feature selection methods were used, aiming to corroborate the statistical analysis 

and isolate features that were not detected by the conventional approach. For more details 

on the feature selection methods, please referee to APPENDIX B.VII Feature Selection 

Methods, page 146. All of the feature selection experiments were conducted in WEKA 

3.7[103].  

Five different attribute evaluators were independently applied. The filter-based attribute 

selection methods were applied on the “Alive” Training dataset. The top 30 attributes 

nominated by each method were matched to the 26 selected attributes based on 

conventional statistical approach (see Table 3-3). Length of stay in the ICU and 

prolonged ventilation were really important as they appeared in all 5 methods. EUROII 

score and blood product transfusion within 48 hours was considered important in 4 out 

the 5 methods. Nearly all the attributes that appeared 3 times (e.g.: Age, CVD, etc.) were 

picked up by the same methods (GainRatioAttributeEval, SignificanceAttributeEval, and 

SymmetricalUncertAttributeEval), this might be due to the fact that these methods rely on   

the attribute influence probability on the target class (Figure 3-5). Surprisingly, some of 

the attributes that were picked up by multiple feature selection methods were not deemed 

important by the classical statistical approach although they were clinically relevant. 



 

Figure 3-5: Co-occurrence in the top 30 Attributes in Filter Selection Methods 
(Blue bar: the attribute was considered to have an influence on the development of post-
operative delirium by the conventional statistical approach and some of feature selection 
methods, Orange bar: the attribute was not considered to have an influence on the 
development of post-operative delirium by the conventional statistical approach, but was 
identified as an important attribute by some of the feature selection methods) 
  



3.3. Description of the Final Dataset 

Based on the conventional feature selection approach (statistical and domain knowledge), 

26 attributes had a significant influence on the development of post-operative delirium in 

the “Alive” dataset. At the same time, feature selection methods were independently 

applied on the “Alive” dataset. Nearly all of the 26 candidate attributes were within the 

top attributes chosen by several feature selection methods. Attributes with very low 

frequency or redundant ones were removed (e.g.: hemo-dynamic instability is correlated 

with European System for Cardiac Operative Risk Evaluation II (EUROII) score and was 

documented in 70 out 5,584 patients). In the case of highly correlated attributes, the 

objective one was retained (e.g.: congestive heart failure [29] and EF categories, EF was 

retained as it is more objective). While “history of turn down” had a low frequency (75 

out 5,584 patients), it was preserved in the candidate list as it was highly ranked by all of 

the feature selection methods. This final dataset was included 22 candidate attributes 

(Table 3-4 and Figure 3-6) and 1 binary outcome class (delirium: yes/no). 



Table 3-4: Final Alive Dataset General Characteristics 

Attribute Type Possible Values 
Missing  

(N=5584) 

Length of stay in 
the ICU 

Ordinal <24, 24-72, >72 hrs 0 

Prolonged 
Ventilation 

Categorical Yes/No 0 

EUROII score Continuous 0-100 % 0 
Age Continuous 19-95 years 0 
Procedure difficulty Categorical Single/Combined 0 
Blood product 
within 48 hrs 

Categorical Yes/No 0 

Intra-operative TEE Categorical Yes/No 16 
Timing of IABP Ordinal None, pre-, intra-, post-operative 0 
Intra-op inotropes Categorical Yes/No 2 
Pre-op creatinine 
clearance 

Continuous 4-203 ml/min 14 

EF categories Ordinal <30 30-50, >50 % 25 
Pre-op hemoglobin Continuous 10-196 mg/dl 13 
Pre-op A-Fib Categorical Yes/No 0 
AS Ordinal None, trivial, mild, moderate, critical 141 
CVD Categorical Yes/No 0 
Clustered DM Categorical Cluster 1 or cluster 2 0 
Frail Categorical Yes/No 0 
History of turn 
down 

Categorical Yes/No 0 

MR Ordinal None, trivial, mild, moderate, severe 143 
Clustered 
arrhythmia 

Categorical Cluster 1 or cluster 2 0 

COPD Categorical Yes/No 0 
Gender Categorical Male/Female 0 
Delirium Categorical Yes/No 0 
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3.3.1. Selected Attributes Definitions 

Delirium: defined as a mental disturbance marked by illusions, confusion, or cerebral 

excitement requiring medical/physical intervention, a consult, or extends the patient’s 

hospital stay. This definition will only include patients with hyperactive delirium, which 

usually represent the smaller portion of delirium. In reality, hypoactive delirium is more 

common in elderly (>65 years) and has been linked to worse outcomes including 

prolonged ventilation, prolonged hospital stay, and even death [12, 19, 20, 24, 28, 76, 99]. 

Delirium was detected in 11.4% of the study cohort. The MHC registry is mainly based 

on chart abstraction, the MHC does not apply a standard delirium detection tool, and the 

definition dose only include hyperactive delirium; all of these reasons attribute to the low 

incidence of delirium.  

Age: defined as the age of the patient at the time of surgery in years. The mean age for 

patients who developed delirium was 71 compared to 66 for those who did not. 

Frail (Frialty): defined as any impairment in activities of daily living using the Katz 

index of activities of daily living (ADL), ambulation, or a documented history of 

dementia. Only 7% of the study cohort was considered frail. The Katz index of ADL, an 

internationally validated measure of dependency in elderly patients, ranks adequacy of 

performance in 6 functions (feeding, bathing, dressing, transferring, toileting, and urinary 

continence). Each function receives a score of 0 or 1, and the total score can range from 0 

(complete dependence) to 6 (complete independence)[26, 122]. 

Length of stay in the ICU: patients were divided into 3 categories based on length of 

stay in the ICU in hours. 52% of patients spent less than 24 hours in the ICU and 19% 

stayed in the ICU for more than 72 hours. Of note, the definition of hours in the ICU 

includes the total hours a patient spent in the ICU that will include readmission and is not 

specific for the single longest admission. We realize that this might be a weakness in the 

definition and might bias the data. 

Prolonged ventilation (>24 hours): patient required mechanical ventilation for more 

than a total of 24 hours during the index admission. 16% of patients required prolonged 

mechanical ventilation. The definition of prolonged ventilation includes the total hours a 



patient was on mechanical ventilation that will include re-intubation time and is not 

specific for the single longest one. We realize that this might be a weakness in the 

definition and might bias the data. 

Procedure Difficulty: defined as a single versus a combined index procedure, regardless 

of the combination (procedures: CABG, AVR, MVR, or MV-Rep). 12% of the study 

cohort underwent a combined procedure. 

Blood product within 48 hours: defined as a patient receiving a blood product (packed 

red blood cells transfusion, Platelets, Cryo-participate, or fresh frozen plasma) in surgery 

and within the first 48 hours from surgery. Twenty-nine percent of the study cohort 

received a blood product within 48 hours. 

Intra-operative TEE: defined as a patient having an intra-operative TEE during surgery. 

64% of the study cohort had an intra-operative TEE. 

EUROII score: patient calculated European System for Cardiac Operative Risk 

Evaluation II score. The median EUROII score for patients who developed delirium was 

4.2% compared to 1.6% for those who did not. 

Timing of Intra-aortic Balloon Pump (IABP): defined as the time of insertion of an 

IABP. 5% required an IABP pre-operatively and only 1% required it post operatively. 

Intra-operative inotropes: defined as the start of inotropes (drugs to support the 

circulation) during the operation. Thirty percent of patients required intra-operative 

inotropic support. 

Pre-operative creatinine clearance: pre-operative calculated patient creatinine clearance 

based on the Jelliffe formula. The mean creatinine clearance for patients who developed 

delirium was 54.5 ml/min compared to 68.3 ml/min for those who did not. 

EF categories: patient’s ejection fraction divided into 3 categories. Seventy-three percent 

had an EF >50% and only 6 % had an EF <30%. 

Pre-operative hemoglobin: patient’s pre-operative hemoglobin level. The mean 

hemoglobin level for patients who developed delirium was 125 mg/dl compared to 133 

mg/dl for those who did not. 



Pre-operative atrial fibrillation: patient’s documented history of pre-operative A-Fib. 

Twelve percent of the study cohort had a history of pre-operative A-Fib. 

Aortic valve stenosis (AS): patient’s documented history of aortic valve stenosis and its 

severity. Twenty-one percent of the study cohort had critical AS and 74 % did not have a 

documented history of AS. 

Mitral valve regurgitation (MR): patient’s documented history of mitral valve 

regurgitation and its severity. Five percent of the study cohort had severe MR and 60 % 

did not have a documented history of MR. 

Cerebrovascular disease (CVD): defined as any pre-operative history of transient 

ischemic attack, reversible ischemic neurologic deficient, cerebrovascular accident, 

cerebrovascular surgery, or any carotid disease. Twelve and five tenths percent of the 

study cohort had CVD. 

Chronic obstructive pulmonary disease (COPD): defined as a patient requiring 

pharmacological therapy for COPD, or has a documented FEV1 (forced expiratory 

volume at the first second) <75% of predicted value for age. Forteen percent of the study 

cohort had COPD. 

History of turn down: defined as a patient who was previously referred for surgery and 

was labeled non-operable by another surgeon. One and four tenths percent of the study 

cohort were turned down before. 

Gender: seventy four percent of patients were male. Out of the 634 patients who 

developed delirium, 24% of them were female. The distribution of males and females was 

almost the same across patients who did and did not develop delirium. 

Clustered DM: clustering of DM and Diabetic Control. Sixty-four percent of the patients 

were in cluster “0.” 

Clustered Arrhythmia: clustering of pre-operative arrhythmia other than A-Fib 

(ventricular, AV-Block, complete heart block and others). Twenty-three percent of the 

patients were in cluster “0.” 



3.4. Chapter Summary 

In this chapter, we discussed an essential data mining task; pre-processing. The data 

source and the dataset were described. Then, the attributes impact on the outcome of 

interest (delirium) was evaluated. Candidate attributes were nominated (Table 3-3). In an 

attempt to reduce the attribute’s vector space, clustering of correlated attributes was done 

using the EM algorithm. Subsequently, the most significant attributes were chosen. The 

candidate attributes selection was based on the conventional approach (statistical 

significance, domain knowledge, and problem understanding). The candidate attributes 

list was then corroborated with the use of several feature selection methods to validate the 

selection of these attributes and uncover potentially important ones that were overlooked. 

Ultimately, 22 attributes were considered to have a strong influence of the development 

of delirium after cardiac surgery. Several pre-operative modifiable features were 

identified, some of which have not yet been described in the literature (e.g.: frailty, 

diabetic control, pre-operative hemoglobin, and history of turning down). These features 

were used as an input vector for building the LR, ANN, and BBN models. 

  



CHAPTER 4: PREDICTIVE MODELS FOR DELIRIUM 

“Remember that all models are wrong; the practical question is how wrong 

do they have to be to not be useful.”  

George E. P. Box (1919-2013) 

Outcome prediction is considered a classification problem in the data-mining world. 

According to the Merriam-Webster online dictionary, classification is defined as “the 

systematic arrangement of things in groups or categories according to established criteria 

and observed similarities”[123] .  

In predictive modeling, it is vital to appreciate the nature of the predicted class and the 

impact of class imbalance on the model performance. The most commonly used model 

performance measure is predictive accuracy[58, 64, 65, 68]. The use of predictive 

accuracy in the presence of class imbalance is inappropriate and can lead to false 

conclusions[58, 59, 64, 65]. In the presence of class imbalance, others measures of 

performance should be used to compare different models[56-59, 64, 65, 67, 68, 124, 125].  

In this chapter we start by explaining the steps that were taken to prepare the final dataset 

for model building (Figure 4-1). Then, model performance evaluation measures will be 

explained in the case of balanced and unbalanced class representation. We will address 

the issue of class imbalance, its effect on model building, and proposed solutions to 

overcome its negative effect. After that, we will discuss the currently available models for 

detecting delirium after cardiac surgery. Then we will describe the different molding 

techniques that were used in this work. After that, we will describe the application of 

these modeling techniques on the “Alive” dataset in an effort to generate a model that is 

capable of predicting delirium. We start by developing a Logistic regression model that 

will be used as a reference model that other models will be compared too. Several models 

will be developed and compared to the reference model to discern the best model. Then 

several experiments will be conducted in an effort to mitigate the effect of the outcome 

class imbalance on model performance. 



4.1. Classifier Building and Performance Evaluation  

This section will explain the steps that were taken to prepare the “Alive” dataset, 

described in chapter 3, for model/classifier building and evaluation.  Then, 

model/classifier performance evaluation measures will be explained. The choice of these 

measures is based on an extensive literature review that was conducted, in addition to 

recommendations from authorities in data mining and predictive analytics domains[56-59, 

64, 65, 67-70, 124, 126-128]. Figure 4-1 summarizes the classifier building process and 

evaluation methodology for the classification experiments. 

The low prevalence of delirium (11.4%) results in a target class imbalance. Here, only 1 

of every 9 patients in the “Alive” dataset exhibits post-operative delirium. We will 

discuss the negative effects of target class imbalance on the model performance and how 

to deal with it[57-59, 64, 65, 69, 70, 125]. 

 

Figure 4-1: Overview of classifier building and evaluation methodology 

 

 



4.1.1. Hold-Out or Cross Validation 

Several methods are available for testing a model’s performance. The effectiveness of 

these methods – and, ultimately, the choice of method – depends primarily on the amount 

of data available. The goal is to maximize the amount of data available for training, in 

order to support the algorithm learning process. Cross-validation starts by dividing the 

data set in “k” mutually exclusive partitions, which will represent the test sets for each of 

the “k” models that will be built using the remaining data. The hold-out method splits the 

original full data set into 2 partitions, one for training and another for testing. 

The cost of the hold-out method relates to the amount of data kept out for testing. If the 

model is trained on a small dataset, its error will be exaggerated. Such pessimistic 

predictions are always better in real life implementations in comparison to overconfident 

ones[128]. The hold-out method is usually preferred when the dataset is large: while there 

is no exact threshold for choosing this method, most authors prefer it when there are more 

than 1,000 observations in the dataset[56, 64]. Experts encourage stratification (stratified 

hold-out sample), which ensures that most attributes – particularly the outcome/class – 

have a comparable distribution across datasets[65]. Some of the pros and cons of the 

Hold-out method are displayed in APPENDIX C. 

The stratified Hold-out method was used here in order to ensure equal representation of 

essential attributes across the datasets (Table 4-1), to reassure the generalizability and 

applicability of the results. An 80/20 split was used, with 80% for training and 20% for 

testing. This split, chosen in order to maximize the amount of available data for the 

learning step, resulted in a training dataset of 4,467 patients and a testing set of 1,117 

patients. This final datasets (training and test) had a list of 22 candidate attributes and 1 

binary outcome class (delirium: yes/no). The characteristics and missing values frequency 

counts for each attribute in the training and test subsets are summarized in Table C-14, 

page 151. 

 

 

 



Table 4-1: Training and Test Subsets General Characteristics 

Attribute 
“Alive” Dataset (N=5584) 

Training (N=4467) Test (N=1117) 

Delirium, n (%) 507 (11.4) 127 (11.4) 

Male gender, n (%)  3327 (74.5) 832 (74.5) 

EF, n (%)   

• <30% 261 (5.8) 51 (5) 

• >50% 3228 (72.2) 809 (72.5) 

Frail, n (%) 289 (6.5) 78 (7) 

EUROII score, median 1.7 1.8 

Pre-operative creatinine clearance based 
on Jelliffe formula, mean (SD) 67 (25) 68 (25) 

Pre-operative A-Fib, n (%) 527 (11.8) 131 (11.7) 

CABG procedure, n (%) 3034 (67.9) 742 (66.5) 

Blood products transfusion within 48 
hours, n (%) 1267 (28.4) 327 (29.3) 

Mechanical ventilation >24 hours, n (%) 695 (15.6) 179 (16) 

CVICU length of stay in hours, n (%)   

• <24 2523 (56.5) 623 (56) 

• >72 824 (18.5) 215 (19) 

 

4.1.2. Evaluating Classifier Performance 

In the presence of class imbalance, predictive accuracy may not be the most appropriate 

measure of model performance[57-59, 64, 65, 125]. As a result, more objective 

evaluation measures, such as F1-measuere, Kappa statistic, ROC-AUC and others may be 

used[57-59, 64, 65, 125]. These measures are derived from the contingency table 

produced by the classifier. 

A binary classifier will generate a 2x2 confusion matrix (contingency table) that describes 

the performance of a model/classifier with its predictions (predicted) against the actual 

target classes (actual). The confusion matrix of a binary class problem and the resulting 

definitions of measures used in this work are defined in Table 4-2. 



Table 4-2: Confusion Matrix Example 

  Predicted Class  

  + -  

Actual Class 

+ True 
Positive 

False 
Negative 

Sensitivity 
(Recall) 

- False 
Positive 

True 
Negative Specificity 

  PPV 
(Precision) NPV Accuracy 

 

Sensitivity (recall) relates to how inclusive the test is; that is, the degree to which it can 

correctly detect observations with the condition. In a medical context, it is the probability 

that a test will be positive in an individual that actually have or will develop the disease. 

Specificity relates to the test’s ability to correctly identify observations without the 

condition. In a medical context, it is the probability that a test will be negative for 

individuals that actually do not have and will not develop the disease. 

Accuracy refers to the test performance using the entire data set, irrespective of the 

classes or their distribution. It relates to a test’s ability to correctly identify observation 

assignments. In the presence of class imbalance, this measure will be misleading because 

the minority class (positive cases) has a small contribution to the error rate, such that the 

algorithm will tend to favor the majority class.  

In the case of the “Alive” dataset, the algorithm would wrongly label all positive 

observations in the test dataset as negative (127 positive for delirium); the predictive 

accuracy of such a model would be 89%. Given the importance of early detection and 

prevention of delirium[12, 21, 24, 25, 36, 76], missing high-risk patients has serious 

consequences in the case of delirium. 



Because predictive accuracy is not suitable measure in this case, the ROC-AUC was used. 

The ROC-AUC is a general model performance measure that is common in several 

disciplines (e.g., medicine, engineering, computer science, biology, and others), and is the 

advocated measure in the presence of class imbalance[56-59, 64, 65, 68, 124, 125]. the 

receiver operator characteristics (ROC) illustrates the performance of a classifier in a 2-

dimensional graph by plotting the false positive rate (1-specificity) on the x-axis against 

the true positive rate (sensitivity) on the y-axis for all potential points, thus demonstrating 

the trade-off between true and false alarm rates.  

The area under the curve (AUC) refers to the area covered by the model in the square 

formed by the x-axis and y-axis. It represents the overall accuracy of a test, ranging 

between 0 and 1. It is equivalent to the probability that a model will appropriately rank a 

positive instance higher than -1.0[126, 127, 129, 130], with values approaching 1.0 

indicating higher sensitivity and specificity. Values close to 0.5 indicate accuracy similar 

to that of random chance[126, 127, 129, 130]. The ROC-AUC allows visualization of 

performance over a spectrum of different conditions, rather than relying only on a point 

estimate (e.g., accuracy)[131].  

When comparing several models developed from the same dataset, Hanley and 

McNeil[132] developed a method to that takes into account the correlation between the 

AUC induced by the paired nature (same cases) of the data. This test was used to compare 

the ROC-AUC of the different models.  

If several models had a comparable general performance, the McNemar’s test should used 

to verify the ROC-AUC test results. Mainly used to analyze matched pairs of data, 

McNemar’s test has been described and used by several authors in machine learning 

literature, and some authors advocate its use as an adjunct to the ROC-AUC for the 

development and improvement of algorithms[62, 133].  

Precision (positive predictive value (PPV)) refers to the degree of correctness. It is the 

percentage of actually positive observations that were considered by the test as positive. 

In a medical context, it is the probability that a patient has the disease if the test is 

positive.  



The Kappa statistic is a measure that compares observed accuracy with expected accuracy 

(that of random chance)[134]. It is used to evaluate a single model or evaluate different 

models that were evaluated on the same data, and is often used as a measure of reliability 

when 2 or more independent observers are evaluating the same thing[135]. In machine 

learning, one rater is the actual labeled values and the other rater is the algorithm used to 

perform the classification[64-66, 134]. The Kappa statistic is standardized to fall on a 

scale of (-1, 1). A value of 1 indicates perfect agreement, 0 indicates the degree of 

agreement expected from random chance, and negative values indicate potential 

systematic disagreement[135].  

The F1-score is defined as the harmonic mean of precision and recall[64, 65]. When 

comparing ratios, the harmonic mean gives a more realistic picture of the true mean 

compared to the arithmetic mean[61, 66]. Since the harmonic mean of a list of numbers 

tends more strongly towards the least elements of the list, compared to the arithmetic 

mean, it tends to diminish the influence of outliers and augment the impact of small 

ones[136]. Thus, it expresses a realistic picture of system performance, essentially 

demonstrating the worst-case scenario.  

For further details on the applicability of a screening test in relation to its performance 

measures, please refer to APPENDIX C: MODELING, C.III Screening Test and 

Performance Measures in the Context, page 159. 

4.1.3. Dealing with Imbalance 

Data sets are unbalanced when one or more of the classes represent a small proportion of 

the set (called the minority class) while other classes make up the majority. In this 

situation, classification algorithms tends to predict the majority class very well but 

perform poorly on the minority class, an effect that has been attributed to 3 main 

reasons[57-59]: 1) the goal of minimizing the overall error (maximize accuracy), to which 

the minority class contributes very little; 2) the algorithm’s assumption that classes are 

balanced; and 3) the assumption that impact of making an error is equal. In reality, these 

assumptions usually do not hold.  



Class imbalance is a popular problem in the data science community[56-59, 137]. Two 

main strategies for dealing with the issue depend on the level of the intervention (data 

level manipulation or algorithm parameters manipulation)[56-59]. For more details, 

please refer to APPENDIX C: MODELING, C.IV Addressing Class Imbalance, page 

160. 

In an attempt to fairly evaluate the effect of data manipulation on the developed model’s 

performance, both approaches were independently applied. Two data level techniques 

(spread sub-sampling and Synthetic Minority Over-sampling Technique (SMOTE)[58]) 

and 1 algorithm parameter manipulation technique (cost sensitive classification[59]) were 

used in this work. 

4.1.4. Classifier Performance Evaluation  

The “Alive” dataset is reasonably large (5,584 observations) and is composed of a 

homogeneous population of cardiac surgery patients, with a prevalence of delirium of 

only 11.4% (Figure 4-1 & Table 3-4). During preparation of the training and testing sets, 

the distribution of several attributes was intentionally preserved across the 2 datasets in 

order to ensure the reproducibility and validity of the tested algorithms, with the specific 

aim of minimizing the impact of prevalence upon precision and therefore decreasing the 

need for re-calibration. 

Due to the large imbalance within the dataset, with far more negative cases (1:9 ratio of 

delirium: no delirium), accuracy was not the appropriate measure to use[56-59, 131]. The 

ROC-AUC was used to evaluate the model’s general performance. Compared to accuracy, 

the ROC-AUC, takes into account the class distribution and gives more weight to correct 

classification of the minority class, thus generating genuine results[56-59, 70, 126, 127, 

129, 130]. 



4.2. Current Predictive Models for Delirium after Cardiac Surgery 

Undergoing cardiac surgery is an independent predictor for developing delirium[17, 24, 

25, 78]. The diagnosis of delirium is mainly based on clinical suspicion. Currently, 

multiple assessment tools are available, including the Abbreviated Mental test, clock-

drawing test, MMSE, CAM, Delirium Index, CAM-ICU, and the Richmond Agitation 

Sedation Scale[12, 21, 24, 25]. While all these detection tools aim to detect delirium in 

the post-operative setting, none of them are specific to cardiac surgery patients. 

Several authors have tried to create models that can detect cardiac surgery patients who 

are at higher risk of developing post-operative delirium. Existing research relies mainly 

on LR as the main statistical modeling tool. Afonso et al. developed a predictive model 

for the detection of post-operative delirium in cardiac surgery patients by conducting a 

prospective observational study with a series of 112 patients[17]. Using LR, they were 

able to show that increased age and procedure time were independent predictors of post-

operative delirium. In a retrospective review with 2,160 patients – of which only 90 

developed delirium – LR was used on a small number of patients (n=16) in order to 

develop a model to predict severe delirium[20].  

Stransky et al. conducted a prospective study on 506 patients who underwent CABG 

and/or valvular surgery, primarily focusing on hypoactive delirium after cardiac 

surgery[28]. Patients who developed hyperactive and mixed delirium were excluded. 

Forty-two patients (9%) had documented hypoactive delirium within the first 3 days after 

surgery. A LR model was developed; several factors (age, preoperative depression, 

preoperative diuretics, aortic cross clamp time, and number of pRBCs transfused) were 

associated with hypoactive delirium. The model was not tested on an independent 

validation cohort. Smulter et al., focusing on patients 70 years and older who were 

undergoing cardiac surgery (n=142), found that combining predisposing and precipitating 

factors resulted in a better model performance (ROC: 0.802 compared to 0.729 for 

precipitating and 0.695 for predisposing)[19]. Katznelson et al.[37] had the largest cohort 

(n=1,059 patients). Using stepwise LR, they identified several independent predictors of 

post-operative delirium, including older age, preoperative depression, preoperative renal 



dysfunction, complex cardiac surgery, perioperative intra-aortic balloon pump support, 

and massive blood transfusion with an ROC of 0.77. In this study, bootstrap sampling 

was used to validate the model. 

4.3. Contemporary Classification Methods for Forecasting Delirium 

A predictive model is considered to be useful if it is simple and easy to calculate, has a 

clear structure, and is validated in independent data sets with good generalization[138].. 

Several machine-learning algorithms have been utilized to solve real life medical 

problems[69, 70, 87-89, 93-97, 109-111, 113, 114, 139-145]. Some of the commonly 

applied algorithms to solve medical classification problems are: LR, ANN, Bayesian 

techniques, decision trees and support vector machines, K-nearest neighbor and ensemble 

methods[53, 69, 86-89, 93, 94, 96, 97, 109, 111, 113, 141-147].  

Studies in the medical literature primarily focus on the classical statistical approach, LR. 

Yet, this technique has not been able to produce consistent results [8, 10, 11, 13, 15, 17-

20, 22-24, 29, 51, 52, 75, 79, 180]. No other approaches have been explored in the 

medical community. 

The choice of algorithms in this study was based on the commonly used methods that are 

usually compared to LR in the medical data mining literature. In medical data mining 

classification tasks, LR is usually compared to ANN[144, 148-150]. Bayesian approaches 

have been used in the medical domain but are less common because of their 

computational complexity, and are rarely compared to LR[66, 67, 124, 125, 147, 151]. 

Compared to LR, ANN and BBN allow complex nonlinear interactions, can handle 

missing data, and are capable of self-learning. All of these features allow them to handle 

the complexity that characterizes medical data and its nature. 

The following section will briefly introduce the 3 modeling approaches that were used in 

this work: LR, ANN, and BBNs. For more details, please see APPENDIX C: 

MODELING.  



4.4. Predictive Models 

4.4.1. Logistic Regression 

Logistic regression, the preferred and most widely used binary classification method in 

medical literature [8, 10, 11, 13, 15, 17-20, 22, 23, 28, 29, 35, 37, 51, 52, 75, 79], 

examines the relationship between a binary outcome (dependent) attribute, such as 

presence or absence of disease, and predictor (independent) attribute(s), which may be 

continuous (e.g., age), categorical (e.g., gender), or even ordinal (e.g., level of education). 

The presence or absence of a disease within a specified time period may be predicted 

based on many attributes including, the patient’s age, past medical history, and family 

history [53, 54]. LR assigns a regression coefficient to each attribute, indicating the 

amount of influence it has on the outcome. This effect is usually expressed as an odds 

ratio (OR), which represents the effect by which the odds of an outcome change for a 1-

unit change in the independent attribute[53, 54, 144]. 

One of the specific goals of LR, and of predictive modeling in general, is to generate a 

concise model that explains the outcome while neither over-fitting, nor losing important 

information. Another important consideration when building the model is the candidate 

attributes selection method. Candidate attributes selection methods, which include direct, 

sequential, and stepwise; are all based on assessing the statistical contribution of the 

attribute to the improvement of the model fit. Stepwise selection chooses attributes based 

on predefined statistical criteria, as influenced by the data itself [54].  

A major advantage of LR is that it creates simplified picture of the relationship between 

the outcome and predictors that can be easily explained, since odds ratios are interpreted 

directly. One of its major drawbacks is that, by creating a linear combination of attributes, 

it cannot handle nonlinear complex interactions, which are characteristic of complex 

biological, chemical, and eco-systems. For more details, please refer to APPENDIX C: 

MODELING Logistic Regression, page 164.  

 



4.4.2. Artificial Neural Networks 

Artificial neural networks (ANNs) are computational models inspired by the biological 

function of the nervous system, specifically the brain. It consists of highly interconnected 

neurons (nodes), and the overall ability to predict outcomes is determined by the 

connections between these neurons [64, 66]. In comparison to LR, ANNs apply nonlinear 

mathematical models that simulate the brain’s own problem-solving processes[150]. They 

are considered to be complex non-linear systems that can deal with noisy or incomplete 

data, allow multiple and simultaneous multilevel interactions, and have a high ability to 

generalize based on the input [57, 65, 144]. Like a network of neurons in the brain, they 

learn by adjusting the connection weights between present neurons. ANNs are dynamic 

models that learn from reality (adaptive learning), exhibit self-organization and parallel 

processing, deal efficiently with non-linear relationships, and feature high tolerance to 

redundant information[152].  

Usually, a neural network is organized in layers, each of which is composed of several 

nodes (neurons). The layers are usually divided into 3 main categories: input, hidden, and 

output (Figure 4-2). In a classification task, the input layer represents the attributes and 

the output layer represents the outcome; it is the hidden layer, representing the actual 

processing of information, where most of the work happens. There is usually a single 

level in the input and output layers. In contrast, the hidden layer can be made of multiple 

levels. Increasing the levels in the hidden layer will increase the network complexity, 

although doing so may lead to overfitting and does not necessarily improve performance 

[64-66].  

In back-propagation neural networks (BPNN), the most commonly used architecture in 

classification tasks, learning occurs with each cycle through a forward activation flow of 

outputs combined with backwards error propagation of weight adjustments. In a binary 

classification, the sigmoid, or logistic, function is usually used as an activation function, 

allowing the BPNN to model classification problems that are linearly inseparable[64]. 

BPNNs suffer from some drawbacks: it is difficult to directly interpret the symbolic 

meaning of the denoted connection weights, it is unpredictable because the network 

attempts to discover the optimal solution independently (black box modeling), and it also 



tends to be slower to train. In binary classification, the assignment of an observation to 

one possible outcome is based on the output threshold of 0.5 probability of the 

observation belonging to that class[64, 65]. For more details, please refer APPENDIX 

C: MODELING Artificial Neural Networks, page 166. 

 

Figure 4-2: ANN Architecture 
  



4.4.3. Bayesian Belief Networks 

Probability refers to the likelihood that something is going to happen in the future. It is 

usually represented on a scale between 0 and 1, and can be represented mathematically 

with the following equation:  

 

In decision-making, probabilities, because they have an inherent uncertainty to them, are 

usually thought of as guides rather than absolutes[153]. In Bayesian terms, probability 

measures a degree of belief. In the case of multiple attributes, it assumes that all of the 

attributes are independent from one another (class-conditional independence). In reality, 

however, this is rarely true. In biological systems, for example, there are many 

interconnected and simultaneous interactions that are heavily influenced by earlier events. 

BBNs were introduced, in part, to mitigate the effects of class-conditional independence 

[154, 155].  

BBNs decompose the problem space to multiple smaller subspaces, identifying a joint 

conditional probability distribution that is relevant to each subspace and constructing 

links (arcs) between these subspaces that are based on a probabilistic dependency pattern.  

A BBN has 2 main components: a directed acyclic graph (DAG) and a conditional 

probability table (CPT) for each attribute[64, 65]. A directed graph represents the causal 

relationship between a parent attribute and its children [67, 125, 155]. The network 

topology may either be imposed by a domain expert or inferred from the data [64, 67, 

125]. Each attribute will have a CPT that is only based on the dependencies that it has 

with its antecedents/parents[67, 125, 155].  

The main advantages of this approach are that it acknowledges dependencies between 

attributes, provides a simple but elegant graphical representation of the relationships, 

handles noisy data, provides causal or evidential relationships, and can be easily 

interpreted by humans and machines; in addition, model parameters have a clear semantic 

interpretation[67, 125, 156]. Its limitations relate to its heavy dependence on the quality 

of the data, its inability to handle continuous data (i.e., it requires discretization), and its 



requirement of complete data (no missing data, otherwise it auto imputes). For more 

details, please refer to APPENDIX C: MODELING Bayesian Belief Networks. 

4.5. Forecasting Delirium in Cardiac Surgery 

Logistic regression is the solely preferred modeling approach used for predicting delirium 

in the medical literature[8, 10, 11, 13, 15, 17-20, 22-25, 27-29, 35-37, 51, 52, 75, 76, 79]. 

In this work, the first step was to develop a LR model from the “Alive training” dataset. 

This model will be used as a reference model that will be compared to the machine 

learning models. Following that, 4 more models were generated using the same “Alive 

training” dataset using ANNs and BBNs. Each model was then applied on a test dataset 

and their prediction performance was compared.  

Each classifier general performance was assessed with: ROC-AUC, sensitivity, and 

specificity [57-59, 64, 65, 125]. The Hanley and McNeil repeated measures ROC test was 

used to compare the ROC-AUC of the different models[132]. The McNemar’s test was 

used to verify the ROC-AUC test results[62, 133]. Three core performance measures 

(Kappa statistics, precision, and F1-score) were used to differentiate equivalent 

models[57-59, 64, 65, 125]. 

The classification task consisted of 4 main experiments:  

• In experiment 1, the original training data was used to develop the initial models 

and compare their performance (un-manipulated training subset). The goal of this 

experiment is to develop models from a dataset that resembles the actual 

prevalence of the outcome class without any manipulation and compares their 

performance to discern the best performing model that is capable of detecting 

patients that are prone to develop delirium (positive cases). 

• Experiments 2-4 were conducted to explore different recommended methods for 

mitigating the effect of class imbalance on model performance. It is not practical 

to change the model every time a new observation is added, and a common 

practice is to re-evaluate the model based on the variation in the data or strategic 



initiatives and decisions[157-162]. The main goal was to evaluate the impact of 

changing the classifier’s environment upon its performance and distinguish which 

method will significantly improve the classifier ability of detecting positive cases 

without compromising other metrics  

 Experiments 2: a data-level manipulation method, over-sampling with 

SMOTE, was applied on the training dataset 

 Experiments 3: a data-level manipulation method, under-sampling with 

SpreadSubSample, was applied on the training dataset 

 Experiments 4: an algorithm-level manipulation method, cost sensitive 

classification, was applied on the classifiers 

Classification techniques were carried out using the open source Waikato Environment 

for Knowledge Analysis (WEKA), SAS V9.3, and R V3.0.1[101, 102, 104].   

The systematic approach used for all of the experiments included dividing the final 

dataset into an “Alive training” and “Alive test” subsets. The “Alive training” set was 

used to construct the models using the mentioned algorithms. Afterward, the models 

performance was evaluated on the “Alive test” set. 

In order to ensure the uniformity and reproducibility of the results, all data-level 

manipulation techniques were applied only on the “Alive training” subset. To avoid the 

data manipulation on the developed models, the “Alive test” subset was not subjected to 

any of the manipulation techniques. All of the reported measures were based on the 

performance of the developed models on the “Alive test” set. Figure 4-3 and Figure 4-4 

summarize the steps taken in the experiment. 



 

Figure 4-3: Experiment 1 - Original data with class imbalance 

 



 

Figure 4-4: Experiments 2, 3, and 4 – Class imbalance manipulation techniques 



4.5.1.  Experiment 1: Original Training Set 

Stepwise logistic regression was used to develop the reference model, in addition to 2 

ANN models and 2 BBN models were developed. The general and core performances of 

these 5 models were then assessed.  

4.5.1.A. Experiment 1- Logistic Regression 

This model was developed in SAS V9.3. The SAS “Proc Logistic” function was used, 

with an alpha=0.05. Figure C-17 demonstrates the final model SAS code. 

The stepwise approach started by creating dummy attributes for the categorical data, 

identifying an intercept with a starting -2Log Likelihood=3,059.85. Via 8 steps, the 

analysis converged with an ROC-AUC=81.7% for the training set and identified 8 

attributes as predictors of delirium, with a -2Log Likelihood=2,485.9 for the final model. 

The Hosmer and Lemeshow goodness-of-fit test, which tests a null hypothesis where 

there is no difference between the observed and predicted values of the outcome, was 

applied. The result of this test was significant (Chi2=30.2, p-value=<0.05), such that the 

null hypothesis can be rejected and the model is considered to be a rational clarification 

of the available data. The pseudo R2 was 12.5% and max-rescaled R2 was 24.5%. 

The multivariate stepwise LR analysis deemed 8 out of the 22 candidate attributes to be 

important independent predictors of post-operative delirium, 4 of which were 

preoperative and 4 of which were intra- and post-operative (Table 4-3). Figure 4-5 

demonstrates a forest plot of the odds ratios of developing delirium in the developed 

model. Odds ratio (OR) is a measure of association between an exposure and an outcome. 

For example, in this model, the odds of developing delirium (outcome) in a patient that 

had prolonged ventilation (exposure) are 60% higher than the ones who did not with an 

effect ranging from 17% to 117% in the studied population. Patients who stayed in the 

ICU for more than 72 hours had a 500% higher chance of developing delirium compared 

to the ones who did not. 



 

Figure 4-5: Odds Ratio Forest Plot of the Original Logistic Regression Model 

 

  



Table 4-3: Experiment 1- Predictors of Post-operative Delirium in Multivariate Analysis 

Parameter Value Coefficient Standard 
Error 

Odds Ratio 
(95% CI) p-value 

Intercept  -6.6924 0.4254  < 0.05 

Age Per year 0.0411 0.00555 1.042 
(1.03-1.05) < 0.05 

Gender Male 0.5445 0.1266 1.724 
(1.35-2.2) < 0.05 

Ejection Fraction <30% 0.1871 0.1911 1.2 
(0.83-1.75) 0.3275 

Ejection Fraction 30-50% 0.3299 0.1196 1.39 
(1.1-1.76) < 0.05 

Cerebrovascular 
Disease Yes 0.525 0.1361 1.69 

(1.3-2.21) < 0.05 

Intra-Operative TEE Yes 0.4244 0.1309 1.53 
(1.18-1.98) < 0.05 

Blood Product 
transfusion within the 
first 48 hours 

Yes 0.3968 0.1181 1.49 
(1.18-1.87) < 0.05 

Length of stay in the 
ICU 24-72 hours 0.4447 0.1471 1.56 

(1.17-2.08) < 0.05 

Length of stay in the 
ICU >72 hours 1.6051 0.1714 4.98 

(3.56-6.97) < 0.05 

Mechanical Ventilation   
>24 hours Yes 0.4684 0.1573 1.6 

(1.17-2.17) < 0.05 

 

The resulting model was validated using the test set, with an ROC-AUC of 77.7% 

indicating good discriminative power. The specificity (97.8%) and the negative predictive 

value (89.2%) of the model were good, whereas sensitivity (8.6%) and the positive 

predictive value (33%) were poor. The F1-score for the positive class (delirium=yes) was 

13.8%. The Kappa statistic was 9.5%.  

4.5.1.B. Experiment 1 – Artificial Neural Networks with 1 Hidden Layer 

The same training dataset was used to generate an ANN model that included all the 

candidate attributes. WEKA 3.7 has a built an ANN that uses the back propagation 

algorithm and allows the user to adjust and manipulate several parameters when 

constructing the network. All the nodes in this algorithm have a built-in default sigmoid 

function, such that the output nodes for a task involving regression of a numeric outcome 

will be as linear units. However, this algorithm was selected here because of its 



previously documented successful application to various problems in medicine [69, 144, 

149, 150, 163-165].   

Most experts advocate using a single hidden layer, as most classification problems can be 

solved this way, and increasing the number of hidden layers has the potential to over-train 

the network and lead to over-fitting. The learning rate (weight adjustment at each cycle) 

is usually between=0.1–0.3, and the momentum (how fast weight changes affect current 

weight changes, by smoothening the path and decreasing oscillations) is typically 

between=0–0.2[65, 124, 144, 148-150].  

After several iterations, optimal settings using a single hidden layer were established 

(Figure C-19). The optimal number of nodes in the hidden layer was 3 with a learning 

rate of 0.275. The decay was set to false and momentum to “0” to allow us to identify the 

optimal structure without any regularization or smoothing. The NominalToBinaryFilter 

was set to false as the multinomial attributes were ordinal (e.g.: EF category and length of 

stay in the ICU) and turning off the filter is usually recommended[65]. Based on these 

settings, the training set was used to determine the network’s structure and weight. The 

model’s performance was then evaluated using the test dataset. The ROC-AUC was 

76.7% with an F1-score=34.5%. These particular settings were used throughout the thesis 

for the generation of ANNs with 1 hidden layer models. 

4.5.1.C. Experiment 1 – Artificial Neural Networks with 2 Hidden Layers 

In this experiment, the effect of adding another hidden layer was explored. Although, 

adding a second layer for a binary class problem might not improve performance and will 

increase computational complexity, it might help clarifying the decision boundary. The 

same iterative process was applied in order to determine the optimal structure for a 

network with 2 hidden layers. After several iterations and adjustments, optimal settings 

were established (Figure C-20). In this network structure, performance was improved by 

dividing the ordinal attributes into binary. Based on these settings, the training set was 

used to obtain the network’s structure and weight. These settings were used in the 

generation of ANNs with 2 hidden layers throughout this thesis. In this experiment, the 



model’s performance was evaluated using the test dataset. The ROC-AUC was 76.9% 

with an F1-score=37.2%. 

4.5.1.D. Experiment 1 – Bayesian Belief Network with a Single Parent 

The same training dataset was used to generate a simple BBN model that included all of 

our candidate attributes. For more information about the BBN setting options, please refer 

to APPENDIX C: MODELING C.VI.iv Bayesian Belief Network, page 176. 

In this thesis, the default setting in WEKA was used, with the training set used to obtain 

the network’s structure and probabilities (Figure 4-6). Then, the model performance was 

evaluated on the test dataset. The ROC-AUC was 75.7% with an F1-score=37%. This 

produces a model that is almost identical to a Naïve Bayesian model. This structure is 

very interesting, easy to understand and simple; it minimizes the complexity of the 

problem space. 

 

Figure 4-6: Experiment 1- BBN with 1 Parent 



4.5.1.E.  Experiment 1 – Bayesian Belief Network with 2 Parents 

Based on the results obtained from the single parent BBN in the previous experiment, we 

explored implementation of a more complex structure using an advanced search 

algorithm. The LAGD (Look Ahead in a Good Direction) HillClimbing algorithm 

logically studies and chooses the best sequence, which will result in the highest score and 

a better network; instead of examining all possible moves at each step. LAGD Hill 

Climbing algorithm is a stochastic process that adds and deletes connections, disregarding 

the order of the attributes, but can look ahead a specified number of steps, examining 

several structures and choosing the best one. The WEKA version of LAGDHillClimbing 

algorithm first finds a subset of the best possible moves and then explores the graph 

subspace for the best sequence among them[166-168].  

Setting the number of parents to a node in a BBN is a hard task, especially if the network 

structure is not known, and increasing the number is associated with increased 

complexity[169]. Several authors advocate restricting the number of parent nodes (in-

degree), as it will decrease the computational expense and time[169, 170]. Unfortunately, 

there is no formal way to calculate the best number of parents, most of the time it is based 

on a combination of heuristics, trial and error, domain knowledge, and the best model[65, 

67, 125, 170]. 

In this thesis, the LAGDHillClimbing algorithm was used and several experiments were 

conducted. The default setting in WEKA was used. The best results were obtained when 

the number of parents was restricted to 2, Figure C-23. Alpha was set to a smaller value 

(Alpha=0.1), to ease its effect in an effort to approximate the results to simulate 

maximum likelihood estimates[67, 125, 171]. 

The training set was used to obtain the network structure and probabilities. Then, the 

model performance was evaluated on the test dataset. The ROC-AUC was 76.4% with an 

F1-score=39.2%. Figure 4-7 is an illustration network topology using the above setting in 

WEKA.  

In this representation, the BBN algorithm has discovered some interesting relationships 

between some attributes, and some of the attributes have no direct connection to delirium. 



This displays the BBN’s distinct ability of extracting important and interesting 

relationships directly from the data, and representing these relationships in a human 

interpretable and machine-readable fashion without the need of prior domain expertise or 

an input from the analyst. 

 

 

Figure 4-7: Experiment 1- BBN With 2 Parents 
Solid black arrows: Direct causal relationship, Solid red arrow: Direct influential 
relationship, Dashed black arrows: Indirect causal relationship.   

 

4.5.1.F. Summary of Experiment 1 

The results from experiment 1 are summarized in Table 4-4. Figure 4-8 illustrates the 

ROC-AUC and the F1-score of all 5 models. The ROC-AUC was primarily used to assess 

the classifier’s general performance. The primary goal is to determine the best classifier 

to accurately identify patients who will develop delirium. The F1-score for the positive 

cases was used, as it is the most reliable measure because it displays the worst-case 

scenario for the classifier. 

  



Table 4-4: Summary of Experiment 1 Results 
 ROC-AUC Kappa Recall Specificity Precision  F1-Score 

LR 77.7 † 9.5 8.6 98.7 † 33.3 13.8 
ANN (1 Hidden) 76.7 28.4 27.6 95.9 ‡ 46.1 † 34.5 
ANN (2 Hidden) 76.9 ‡ 29.01 ‡ 37.8 ‡ 91.6 36.6 37.2 ‡ 
BBN (1 Parent) 75.7 26.5 49.6 † 84.7 29.4 37 
BBN (2 parents) 76.4 31.8 † 37 93.3 41.5 ‡ 39.2 † 
*Measurements are in % 
† Best performing model, ‡ Second best performing Model 

 

Logistic Regression had the best ROC-AUC and specificity, but was the worst in all other 

measures. BBN with 2 parents had the best F1 measure and Kappa statistics. The ANN 

with 2 hidden layers had the second best scores in 4 measures (ROC-AUC, Kappa, Recall, 

and F1-score).  

Logistic regression uses maximum likelihood estimates by Fisher scoring (modified 

Newton-Raphson method) find the local minima in the sample space, by processing the 

data in a modified batch-gradient decent format (iterative maximum likelihood 

reweighted least squares algorithm)[53, 54, 172, 173]. In WEKA 3.7, ANN uses a 

modified form of Stochastic Gradient Descent (SGD) that is computationally more 

efficient, but still much slower than batch gradient descent (BGD). BBN in WEKA 3.7 

uses a similar form of SGD but the difference here is that it searches for the optimal 

network topology before it starts looking for the local minima.  

Graphically, Figure 4-9 illustrates that the ROC-AUC’s for all of the models were very 

close to each other and overlapping (for more details about the ROC, please refer to 

APPENDIX C, page156). This indicates that there is no difference in the performance of 

any of the models.  

The Hanley and McNeil repeated measures ROC test was applied. The correlation 

coefficient “r,” using the Kendall tau, was =0.12-0.13. Alpha was set at =0.05 and we 

applied a 2-tailed test (null hypothesis: the 2 ROCs are not different). In both cases there 

was no statistical difference between any of the methods compared to LR. The general 

performance of all 5 models (discriminative power, which refers to the ability of a model 

to distinguish between positive cases from negative ones) was comparable ( 



Table 4-5). The McNemar’s test was used to discern which model had a superior 

performance. In Table 4-6, BBN with 1 parent had a statistically significant worse 

performance compared to LR. ANN with 2 hidden layers was slightly worse than ANN 

with 1 hidden layer and BBN with 2 parents had an equal performance compared to LR, 

with ANN with 1 hidden layer making less mistakes and BBN with 2 parents making 

slightly more mistakes.  

The choice of classifier will depend on its key role. In this case, all classifiers had an 

equivalent general performance. When another test was applied to evaluate their general 

performance (McNemar’s test), only 3 had a comparable performance. Since the best 

measure to assess and generate the worst-case scenario for a classifier is the F1-score, 

BBN with 2 parents had the best performance. BBN with 2 parents other core 

performance measures (Kappa and precision) were also on the high side of the scale 

compared to the other models. In summary, the general performance of ANN with 1 

hidden layer and BBN with 2 parents was equivalent to LR. The BBN with 2 parents 

showed the best core performance results (Table 4-4, Figure 4-8, Figure 4-9). 

 

Table 4-5: Hanley and McNeil Repeated Measures ROC Test of Experiment 1 P-Values 
 ANN          

(1 Hidden) 
ANN         

(2 Hidden) 
BBN         

(1 Parent) 
BBN          

(2 parents) 
Logistic 

Regression 0.38 0.41 0.28 0.35 

*Two-tailed Test with an Alpha=0.05  

 

Table 4-6: McNemar’s Test Results of Experiment 1 
  Logistic Regression McNemar’s Test Compared to 

Logistic 
Regression   Success Failed Chi2 p-value 

ANN (1 Hidden) Success 947 37 0.23 0.63 = Failed 32 101 
ANN (2 Hidden) Success 915 40 5.09 0.024  Failed 64 98 
BBN (1 Parent) Success 850 52 31.9 <0.05  Failed 129 86 
BBN (2 parents) Success 929 42 0.53 0.47 = Failed 50 96 
: Worse performance, : Better Performance, =: Same performance  



4.5.1.G. Experiment 1 Conclusion 

The results from Experiment 1 have highlighted several interesting observations: 

Relying on a single measure, the ROC-AUC, to evaluate a predictive model performance 

might falsely indicate that all 5 models have the same capabilities. When evaluating a 

predictive model, clinicians need to assess the performance from several standpoints 

using different measures (e.g.: F1-score and Kappa), to correctly determine its ability in 

accurately predicting the outcome of interest. 

Based on the McNemar’s test, ANN-1 hidden layer and BBN-2 parents had similar 

performance to LR. The ROC-AUC test indicated that all 5 models are equal. Although, 

looking at their performance from a different perspective, using the McNemar’s test 

revealed that 3 out of the 5 models actually had a comparable performance. 

 Logistic regression was superior in identifying patients who will not develop delirium 

(high specificity) but had a very poor performance in distinguishing the patients that are 

at risk (low precision, recall). This is reflected in the low F1-score. This is most likely due 

to the imbalance class representation and the use of batch gradient decent that is 

influenced by the class distribution. 

ANN-1 hidden layer and BBN-2 parents demonstrated a superior ability of distinguishing 

patients at risk of developing delirium without compromising their specificity, which is 

reflected in the high F1-score. A lesser effect of class distribution imbalance was noticed, 

most likely due to algorithms ability of accommodating and establishing non-linear 

relationships. The BBN-2 parents generated the best model, and it also had an elegant 

representation that can be symbolized and read by machines, yet comprehended by 

domain experts.  
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4.5.2. Experiment 2: Synthetic Minority Over-sampling Technique 

In this experiment, the impact of creating artificial observation on performance of the 

created models was explored. The models settings were kept the same, as described in 

Experiment 1. The random initialization of weights in ANN and probabilities in BBN 

might be different. The experiments were repeated with different attribute arrangement, 

and the results were consistent.  

If the primary goal is to assess the effect of manipulating the training dataset sample size 

on several models, the recommended practice in the machine learning literature is to 

maintain the model parameters constant throughout the experiments, avoiding the 

inherent bias associated with adjusting the parameters[56-59, 65, 66, 70, 174-176]. If the 

primary goal is maximizing a particular classifier performance, adjusting the parameters 

is appropriate[56-59, 177, 178].  

In this section, the main goal was to evaluate the impact of increasing the amount of data 

available for learning and expanding the algorithm sample search subspace, diverting its 

attention away from the majority class, on the developed models performance to examine 

the stability of the models on the same test data. 

The SMOTE approach [58], which is available in WEKA under filters was used. Models 

were compared to the reference, un-manipulated “Alive” data LR model. For more 

information about SMOTE, please refer to page 162. 



 

Figure 4-10: Data Level Manipulation with SMOTE – Experiment 2 
 

 



In this work, the original setting of the algorithm in WEKA was used and over-sampling 

was done at 3 different levels: 100%, 200%, and 300%. Figure 4-10 represents a 

summary of experiment 2.The generated models had the exact setting that was used in 

Experiment 1: ANN with 1 hidden layer: Figure C-19, ANN with 2 hidden layers: Figure 

C-20, BBN with 1 parent: Figure C-21, Figure C-22, and BBN with 2 parents: Figure 

C-23. 

4.5.2.A. Experiment 2 Results 

At 3 different levels of over-sampling (100, 200, and 300%), SMOTE was applied , 

which generated 3 new training datasets. SMOTE with 100% generated a sample of 4,974 

patients with an increase of the minority class from 507 to 1,014 cases (100% ). 

SMOTE with 200% generated a sample of 5481 patients with an increase of the minority 

class from 507 to 1,521 cases (200% ). SMOTE with 300% generated a sample of 5,988 

patients with an increase of the minority class from 507 to 2,028 cases (300% ). In all 3 

datasets, the majority class observations number was constant at 3,960 cases. This 

produced an incremental increase of the minority class distribution from 11.4% in the 

original dataset to 34% in the SMOTE with 300% dataset (Figure 4-11). 

 



 

Figure 4-11: Outcome Class (Delirium) Distribution across SMOTE Datasets 
 

Table 4-7, Figure 4-12, Figure 4-18, and Figure 4-19 illustrate a summary of Experiment 

2 results with SMOTE. Compared to the performance of the original LR model; there was 

an incremental improvement, correlated with the sample size, in the LR model recall, 

precision, Kappa, and F1-score on the expense of ROC-AUC and specificity. The ANN 

models suffered a sizable decrease of performance, most likely due to the change in the 

optimal network for the present data. The BBN were the most resistant to change, 

although the BBN with 2 parents sustained more damage, most likely due to the change in 

the network structure. 

  



Table 4-7: Summary of Experiment 2 Results-SMOTE 
 ROC-AUC Kappa Recall Specificity Precision  F1-Score 

Original  
LR 77.7 † 9.5 8.6 98.7 † 33.3 13.8 

SMOTE 100% 
LR 73.6 23.5 27.6 93.6 ‡ 35.7 † 31.1 

ANN   
(1 Hidden) 72.9 13.5 19.7 92.5 25.3 22.1 

ANN  
(2 Hidden) 67.7 15.7 20.5 93.3 28.3 23.7 

BBN  
(1 Parent) 75.4 ‡ 26.7 † 52.8 † 83.6 29.3 37.6 ‡ 

BBN  
(2 parents) 74.5 24.7 36.2 ‡ 90 31.7 33.8 

SMOTE 200% 
LR 71.6 24.6 33.9 91.1 32.8 ‡ 33.3 

ANN   
(1 Hidden) 71.6 12.6 22 90.4 22.8 22.4 

ANN  
(2 Hidden) 70 16.8 23.6 92.1 27.8 25.5 

BBN  
(1 Parent) 75.2 25 ‡ 48.8 ‡ 84 28.3 35.8 

BBN  
(2 parents) 72.2 21.4 33.9 89.2 28.7 31 

SMOTE 300% 
LR 70.5 24.7 37 89.6 31.3 39 † 

ANN  
 (1 Hidden) 68.1 11.3 22.8 88.9 20.9 21.8 

ANN  
(2 Hidden) 72.1 19.7 34.6 87.7 26.5 30 

BBN  
(1 Parent) 75.2 24 47.2 84.1 27.6 34.9 

BBN  
(2 parents) 72.3 20.6 30.7 90.4 29.1 29.9 

*Measurements are in % 
† Best performing model, ‡ Second best performing Model 

 

  



The addition of synthetic observations from the feature sub-space produced a noticeable 

improvement in the general performance (ROC-AUC) and F1-score of LR; secondary to 

the robustness and stability of the algorithm due to the uniform approach it takes to find 

the local minima in the sample space.  

Figure 4-13 and Figure 4-14 demonstrates the effect of applying SMOTE on the original 

classifiers ROC-AUC and F1-scores, respectively. Both ANN classifiers sustained the 

most damage because they are dependent on learning rate, which might indicate that this 

is not the optimal network structure for the offered sample. Of note, the performance of 

ANN with 1 hidden layer got worse as the sample size increased. In the case of ANN with 

2 hidden layers, as the sample size increased the performance improved. The BBN 

models were the most stable and had less profound changes. The F1-scores of ANN and 

BBN have improved; but compared to the original models, they are worse. 

4.5.2.B. Conclusion of Experiment 2 

Increasing the sample size with SMOTE has dramatically improved LR performance, but 

had an opposite effect on the other models. ANN sustained more damage compared to 

BBN that was more stable, most likely due to the change in the sample space, which lead 

to a drastic re-configuration of the optimal network. 
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4.5.3. Experiment 3: Spread Sub-sample 

In this experiment, the impact of under-sampling on performance of the created models 

will be explored. The models settings were kept the same, as described in Experiment 1. 

The random initialization of weights in ANN and probabilities in BBN might be different. 

However, the experiments were repeated with different attribute arrangement and the 

results were consistent.  

As the primary goal was to evaluate the effect of training data sample manipulation on the 

model development, the recommended practice in the machine learning literature is to 

maintain the model parameters constant throughout the experiments and to avoid the 

inherent bias associated with adjusting the parameters[56-59, 65, 66, 70, 174-176].  

In this section, the main goal was to evaluate the impact of decreasing the amount of data 

available for learning and restricting the search subspace, directing it toward the minority 

class, on the developed models performance to examine the stability of the models on a 

consistent test data. 

In WEKA, the SpreadSubSample option under the supervised instance filter was used. 

This will produce a random sub-sample of the original dataset. This filter allows the 

analyst to specify the maximum “spread"” between the minority and majority class 

(difference in class frequencies). The original settings of the algorithm in WEKA were 

maintained and the distribution of spread (majority : minority) was manipulated at 3 

different levels: 1:1, 1.5:1, and 2.5:1. Figure 4-15 represents a summary of Experiment 3. 

The generated models had the exact setting that was used in Experiment 1: ANN with 1 

Hidden layer: Figure C-19, ANN with 2 Hidden layers: Figure C-20, BBN with 1 Parent: 

Figure C-21, Figure C-22, BBN with 2 Parents: Figure C-23.  



 

Figure 4-15: Data Level Manipulation with Spread Sub-sampling – Experiment 3 
 

 



4.5.3.A. Experiment 3 Results 

Spread sub-sampling was applied at 3 different ratios of majority: minority class 

distribution (1:1, 1.5:1, and 2.5:1), which generated 3 new training datasets. Sub-sample 

at 1:1 created a sample of 1,014 patients with 507 positive cases (minority) and 507 

negative cases (majority). Sub-sample at 1.5:1 created a sample of 1,267 patients with 

507 positive cases (minority) and 760 negative cases (majority). Sub-sample at 2.5:1 

created a sample of 1,774 patients with 507 positive cases (minority) and 1,267 negative 

cases (majority). In all 3 datasets, the minority class was constant, 507 cases. This lead to 

a steady decrease in the minority class distribution from 50% in the sub-sample 1:1 

dataset to 29% in the sub-sample-2.5:1 dataset (Figure 4-16). 

Figure 4-16: Outcome Class (Delirium) Distribution across Sub-sample Datasets 

Table 4-8, Figure 4-17, Figure 4-18, and Figure 4-19 represent a summary of Experiment 

3 results with spread sub-sampling. Compared to the original LR model performance; 

reducing the sample space did not affect the general performance of the LR (ROC-AUC) 

but improved recall, precision, Kappa, and F1-score on the expense specificity. The LR 

model with a 2.5:1 ratio of sub-sampling has produced the highest F1-score so far 

(40.5%), with very reasonable performance in other measures.  



The use of sub-sampling had some moderate negative effect on the ANN with 2 hidden 

layers, most likely due to the change in the optimal network structure. The other models 

had minor decline in their performance. 

 

Table 4-8: Summary of Experiment 3 Results – Spread Sub-sample 
 ROC-AUC Kappa Recall  Specificity Precision  F1-

Score 
Original LR 77.7 9.5 8.6 98.7 † 33.3 13.8 

Spread Sub-sample 1:1 
LR 76.8 22.8 63.8 74.8 24.5 35.4 

ANN  
(1 Hidden) 75.3 16.7 73.2 62.7 20.1 31.6 

ANN  
(2 Hidden) 74.1 20.2 74 † 66.8 22.2 34.2 

BBN  
(1 Parent) 75.8 21.2 70.1 ‡ 70 23.1 34.7 

BBN  
(2 parents) 74.9 19.4 68.5 68.8 22 33.3 

Spread Sub-sample 1.5:1 
ANN  

(1 Hidden) 76.7 26 55.1 81.8 28 ‡ 37.1 

ANN  
(2 Hidden) 75.6 23.1 65.4 74.3 24.6 35.8 

BBN  
(1 Parent) 74.9 20.7 66.9 71.1 22.9 34.1 

BBN  
(2 parents) 75.2 22.2 63.8 74.3 24.1 35.1 

Spread Sub-sample 2.5:1 
ANN  

(1 Hidden) 77.1 ‡ 31.4† 48.8 88.2 ‡ 34.6 † 40.5 † 

ANN  
(2 Hidden) 76.3 27.5‡ 62.2 79.7 28.2 38.8 ‡ 

BBN  
(1 Parent) 70.6 22.6 55.1 79.1 25.3 34.7 

BBN  
(2 parents) 75.7 23.7 59.8 77.7 25.6 35.8 

*Measurements are in % 
† Best performing model, ‡ Second best performing Model 

  



4.5.3.C. Conclusion of Experiment 3 

The use of Spread Sub-sample has dramatically improved LR performance but had a 

minor effect on the other models. The improvement in LR might be due to the 

maximization of the provided information in the sub-sampled dataset with more focused 

class boundaries. The minor to moderate decline of the other models performance might 

be due to the sub-optimal parameters setting of the networks. If the network parameters 

were optimized, the performance of these algorithms would have been better. But in this 

case, it will create a new network structure that is learned in a different setting, and 

comparing their performance will be challenging.   
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4.5.4. Experiment 4: Applying Cost 

In this section, the main goal was to evaluate the impact of attaching a cost to the 

classification task, advising the classifier of the uneven ramification of each class, and 

rewarding it for choosing the minority class correctly, evaluating the models performance 

on the test data. 

Since the price misclassification is not equal, cost is not constant and attaching a cost to a 

medical complication is hard. Also, delirium is a multifactorial process that can be 

initiated through different triggers. Identifying a single cost that can be attached to post-

operative delirium after cardiac surgery requires a full understanding of the process that 

leads to its development. Unfortunately, the triggers of post-operative delirium are not 

clear yet. 

In this experiment, cost sensitive classification was applied during the development of the 

models. In this case, the development of the models involved imposing a penalty/reward 

of choosing the wrong/right answer, pressing the algorithm to pick wisely. The models 

settings were kept the same, as described in Experiment 1. The random initialization of 

weights in ANN and probabilities in BBN might be different. Although, the experiments 

were repeated with different attribute arrangement, the results were the same. 

If several candidate classifiers exist and choosing one is the task, the recommended 

practice in the machine learning literature is to maintain the model parameters constant 

throughout the experiments and to avoid the inherent bias associated with adjusting the 

parameters[56-59, 65, 66, 69, 70, 174, 176]. In reality, changing the cost is a less 

expensive task than re-developing the classifier from scratch and requires minimal change 

to the model infrastructure[56-59, 65, 66, 69, 70, 159, 174-177, 179]. 

In WEKA, applying cost to a classifier can be done in the meta-classifier tab. The 

classifier is called “CostSensitiveClassifier” that makes its base classifier cost-sensitive. 

Two methods can be used to introduce cost-sensitivity: first, reweighting training 

instances according to the total cost assigned to each class; or second, predicting the class 

with minimum expected misclassification cost (rather than the most likely class). In this 

work we used the reweighting technique.  



Applying the reweighting technique involves deep understanding of the domain and some 

sense of the attached cost to the misclassification. In this work, several cost matrices were 

applied with the goal to maximize the F1-score. Most classification algorithms’ main goal 

is to minimize the error rate. They assume that the distribution of categories among the 

outcome class is balanced and that all misclassification errors have an equal effect 

(cost)[57]. In real life applications, these assumptions are not true.  

Figure 4-20 demonstrates the setting of 3 different cost matrices that were used. The 

classifiers were rewarded for correctly labeling the minority class. For example, looking 

at cost matrix 4, when correctly identifying a patient with delirium it, the classifier 

receives 4 points, but when it correctly identifies a patient who did not develop delirium, 

it only receives 1 point. By adjusting the reward/penalty (Cost) matrix, it will be 

necessary for the algorithm to balance the probabilistic estimates or decision thresholds, 

directing the algorithm attention towards the class of interest, the minority class.  

Cost Matrix 1.5 Cost Matrix 4 Cost Matrix 6.5 

Predicted  Yes No Predicted  Yes No Predicted  Yes No 

Class (Yes) 1.5 0 Class (Yes) 4 0 Class (Yes) 6.5 0 

Class (No) 0 1 Class (No) 0 1 Class (No) 0 1 

Figure 4-20: Experiment 4 Cost Matrices 
 

The cost sensitive classification approach that was used in experiment 4 is summarized in 

Figure 4-22. In these experiments, the same training dataset from Experiment 1 was used. 

No manipulation was applied to any of the data sets. The proportion of delirium (positive 

class) was 11.4%. Models had the exact setting that was used in Experiment 1: ANN with 

1 hidden layer: Figure C-19, ANN with 2 Hidden layers: Figure C-20, BBN with 1 

Parent: Figure C-21, Figure C-22, and BBN with 2 Parents: Figure C-23. 

 



 
 
Figure 4-21: Algorithm Level Manipulation by Applying Cost– Experiment 4 



4.5.4.A.    Experiment 4 results 

Three different ratios of minority : majority class recognition costs were applied (1.5:1, 

4:1, and 6.5:1). 507 cases belonged to the minority class and 990 cases were majority, 

Table 4-9 and Figure 4-23 represent a summary of Experiment 4 results with cost 

sensitive classification applied. Compared to the performance of the original LR model, 

applying cost did not affect the general performance of most of the models (ROC-AUC) 

but improved recall, precision, Kappa, and F1-score with no major effect on specificity 

(Figure 4-23 and Figure 4-24). The ANN with 2 hidden layers with a cost ratio of 4:1 has 

produced the highest F1-score (41.8%), with second best Kappa, sensitivity, and precision. 

  



Table 4-9: Summary of Experiment 4 Results – Cost Sensitive Classification 
 ROC-AUC Kappa Recall  Specificity Precision  F1-

Score 
Original LR 77.7 9.5 8.6 98.7 † 33.3 13.8 

Cost 1.5:1 
LR 77.9 ‡ 26.4 26.8 95.4 ‡ 42.5 † 32.9 

ANN  
(1 Hidden) 74.4 26.1 34.6 91.5 34.4 34.5 

ANN  
(2 Hidden) 71.4 22.4 29.1 92.2 32.5 30.7 

BBN  
(1 Parent) 75.7 27.1 54.3 83 29.1 37.9  

BBN  
(2 parents) 76.5 32.6 † 41.7 91.2 39.3 ‡ 40.5 ‡ 

Cost 4:1 
ANN  

(1 Hidden) 78 30.5 51.2 86.7 33  40.1  

ANN  
(2 Hidden) 77.1 22.4 62.9  74.8 24.3 35.1 

BBN  
(1 Parent) 75.9 31.3 ‡ 64.6 ‡ 81.5 30.9 41.8 † 

BBN  
(2 parents) 75.5 22.2 58.3 77.2 24.7 34.7 

Cost 6.5:1 
ANN  

(1 Hidden) 78 26.6 61.4 79.4 27.6 38.1 

ANN  
(2 Hidden) 78.5 † 26.4  66.1 † 77 26.9 38.3 

BBN  
(1 Parent) 75.2 25.5 59.8 79.2 27 37.2 

BBN  
(2 parents) 75.8 22.4 63 74.8 24.3 35.1 

*Measurements are in % 
† Best performing model, ‡ Second best performing Model 

 

4.5.4.B. Conclusion of Experiment 4 

Applying cost sensitive classification has generally improved core performance without 

compromising general measures (Table 4-9 and Figure 4-23). ANN with 2 layers has 

demonstrated the best results. The BBN models were robust and resistant to manipulation 

throughout the experiments, specifically BBN with 2 parents (Figure 4-23 and Figure 

4-24).
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4.6. Chapter Summary 

Developing a predictive model requires a good understanding of the problem in hand, and 

a systematic approach. In binary classification, the most commonly applied approach in 

medical literature is LR. The un-manipulated “Alive” training dataset was used to 

develop a reference model by applying LR. The ROC-AUC was 77.7%, specificity was 

high (99%) but sensitivity was low (9%). The poor sensitivity can be attributed to the 

class imbalance in the problem space (11.4% positive cases). The reference model has 

identified 8 out the 22 candidate attributes as significant (see Figure 4-5) with good 

discrimination (-2 Log Likelihood: Intercept=3059.85  Model=2485.9, and a significant 

Hosmer and Lemeshow goodness-of-fit test).  

After that, 2 ANN models and 2 BBN models were developed. The same training set was 

used to generate the models and the developed models were tested on the same 

independent test set. The Hanley and McNeil repeated measures ROC test showed that all 

of the models had an equivalent general performance. McNemar’s test was used to 

corroborate these results, while the ANN (with 1 hidden layer) and the BBN (with 2 

parents) had an equivalent performance when compared to the reference model. The core 

performance of the BBN (with 2 parents) generated the best F1-score (39.2%) and Kappa 

(31.8%), and the ANN (with 1 hidden layer) had the best precision (46.1%) (See Table 

4-4: Summary of Experiment 1 Results). 

Several experiments were conducted to investigate the effect of data and algorithm level 

manipulation on the performance and evaluate the stability of the developed models. The 

use of SMOTE has dramatically improved the performance of LR but caused a noticeable 

negative effect on the performance of ANN models. The BBN models exhibited some 

decline but were more stable. Reducing the amount of data available for training and 

using spread sub-sampling revealed a similar trend. The performance of LR has 

dramatically improved with a less profound effect on the other algorithms.  



Next, the effect of imposing cost on the algorithm was evaluated. Cost sensitive 

classification was implemented by rewarding the algorithms for properly labeling the 

positive class. All of the models’ performance measures have improved, especially 

sensitivity, albeit at the expense of specificity. Cost served as a more realistic approach 

and can be rationalized and replicated in nature. Throughout the experiments, BBN with 2 

parents had the most stable general and core performance. Although, ANN with 2 parents 

generated the best F1-score, it had a very unstable performance.  

4.7. Conclusion 

Cognitive decline after surgery is a major concern, especially to patients and their 

families. Patients undergoing cardiac surgery are at higher risk of developing delirium, 

which have been linked to post-operative cognitive and functional decline. With the 

changing demographics and medical profile of patients undergoing cardiac surgery, 

increasing their vulnerability to adverse events; preventive strategies will become a 

fundamental part of the process of care.  

The ultimate goal is to construct a model that is capable of identifying patients that are at 

risk of developing delirium after cardiac surgery in an attempt to initiate preventive 

measures that can divert the patient trajectory away from developing delirium. Because 

delirium is a complex multidimensional problem, relying on a simple solution may not 

generate satisfactory results. That was apparent from the original LR model results from 

Experiment 1. Although the ROC-AUC of the LR is considered to be good (~78%), it 

was mainly influenced by the presence of too many negative examples that resulted in 

very high specificity (~99%), yet very poor recall (~9%) and a low F-1 Score (~14%). 

Looking at a single measure, the ROC-AUC, to evaluate the model performance might 

lead to false conclusions. Clinicians and scientists need to be aware of the shortcomings 

of using a single measure, such as the ROC-AUC, when evaluating a predictive model. 

Examining the performance of predictive models requires a deeper understanding how to 

evaluate their performance, and considering different angles (measures such as the F1-



score and tests like the McNemar’s test) to determine their usefulness in predicting the 

outcome of interest. 

In terms of ANN-1 hidden layer and BBN-2 parents, they had similar general 

performance (ROC-AUC and McNemar’s test), but superior ability of distinguishing 

positive cases (having a high recall, precision, Kappa, and F1-score). Class imbalance had 

a smaller effect on their performance, mainly due to their ability to distinguish non-linear 

relationships and to model them.  

To mitigate the expected negative effect of inadequate representation of positive events 

(class imbalance), several data mining class imbalance techniques were explored on the 

classifiers developed in Experiment 1. All of the applied techniques have improved the 

performance of the LR model, demonstrated by the significant increase in the F1-score. 

Increasing the number of positive cases or decreasing the sample search space directed 

the algorithm focus to the positive class. In the case of applying cost, we assume that 

because we informed the algorithm of the inequality of error and its significances, the 

cost function and the search of local minima were more fitting to the problem.  

Although ANN-1 hidden layer relies on SGD to identify its local minima, the change of 

the training sample space negatively affected its performance. We believe this is due to 

the high variance in the optimal network structure that is influenced by the available input 

data. Applying cost had minimal effect on the ANN-1 hidden layer. This might be due to 

that fact that ANN evaluates each variable at each step and applying cost will not affect 

the performance because the algorithm had adjusted the cost through the built in back-

propagation adjustments of weights. 

BBN-2 parents, like ANN-1 hidden layer, rely on SGD to find its local minima in the 

sample space. Increasing the number of positive cases or decreasing the sample search 

space had a less negative effect on the BBN-2 parents in comparison to ANN-1 hidden 

layer. Applying cost did not improve the BBN-2 parents performance because it 

optimized the network topology based on set scoring criteria (e.g.: MDL, AIC, Bayes), 

which searches for the best network structure before calculating probabilities. 

Throughout experiments 2–4, manipulating the data or the algorithm parameters did not 

improve the ROC-AUC. It was very clear that a tradeoff between recall (sensitivity) and 



specificity. But increasing recall (increasing the classifier ability of correctly labeling that 

did develop delirium) did not improve the algorithm precision, which indicates that the 

algorithm was making more mistakes by labeling negative examples as positive (false 

positive). 

When comparing all of the experiments, the un-manipulated BBN-2 parents provided a 

simple but elegant graphical representation of the problem space that can be interpreted 

and validated by domain experts, and also can be applied by a machine to predict delirium. 

 

 



Table 4-10: Summary of All Experiments 
  ROC-AUC Accuracy Kappa Recall Specificity Precision F1-Score 

Original Logistic Regression 77.7 87.7 ‡ 9.5 ¡ 8.6 ¡ 98.7 † 33.3 13.8 ¡ 

Experiment 1 

(Un-manipulated) 

ANN (1 Hidden) 76.7 88.1 † 28.4 27.6 95.9 ‡ 46.1 † 34.5 

ANN (2 Hidden) 76.9 85.5 29.01 37.8 91.6 36.6 37.2 

BBN (1 Parent) 75.7 80.8 26.5 49.6 84.7 29.4 37 

BBN (2 parents) 76.4 86.9 31.8  ‡ 37 93.3 41.5 39.2 

Experiment 2 

(SMOTE 100%) 

Logistic Regression 73.6 86.1 23.5 27.6 93.6 35.7 31.1 

ANN (1 Hidden) 72.9 84.2 13.5 19.7 92.5 25.3 22.1 

ANN (2 Hidden) 67.7 ¡ 85.1 15.7 20.5 93.3 28.3 23.7 

BBN (1 Parent) 75.4 80.1 26.7 52.8 83.6 29.3 37.6 

BBN (2 parents) 74.5 83.9 24.7 36.2 90 31.7 33.8 

Experiment 2 

(SMOTE 200%) 

Logistic Regression 70.5 84.6 24.7 37 89.6 31.3 39 

ANN (1 Hidden) 68.1 82.6 11.3 22.8 88.9 20.9 ¡ 21.8 

ANN (2 Hidden) 72.1 85.1 19.7 34.6 87.7 26.5 30 

BBN (1 Parent) 75.2 80.1 24 47.2 84.1 27.6 34.9 

BBN (2 parents) 72.3 82.9 20.6 30.7 90.4 29.1 29.9 

Experiment 2 

(SMOTE 300%) 

Logistic Regression 70.5 83.6 24.7 37 89.6 31.3 39 

ANN (1 Hidden) 68.1 81.4 11.3 22.8 88.9 20.9 21.8 

ANN (2 Hidden) 72.1 81.7 19.7 34.6 87.7 26.5 30 

BBN (1 Parent) 75.2 80 24 47.2 84.1 27.6 34.9 

BBN (2 parents) 72.3 83.6 20.6 30.7 90.4 29.1 29.9 

Experiment 3 

(Sub-Sample 1:1) 

Logistic Regression 76.8 73.6 22.8 63.8 74.8 24.5 35.4 

ANN (1 Hidden) 75.3 63.9 ¡ 16.7 73.2 ‡ 62.7 ¡ 20.1 ¡ 31.6 

ANN (2 Hidden) 74.1 67.6 20.2 74 † 66.8 22.2 34.2 

BBN (1 Parent) 75.8 70 21.2 70.1 70 23.1 34.7 

BBN (2 parents) 74.9 68.8 19.4 68.5   68.8 22 33.3 

Experiment 3 

(Sub-Sample 1.5:1) 

Logistic Regression 76.7 78.8 26 55.1 81.8 28 37.1 

ANN (1 Hidden) 75.6 73.3 23.1 65.4 74.3 24.6 35.8 

ANN (2 Hidden) 74.9 70.6 20.7 66.9 71.1 22.9 34.1 

BBN (1 Parent) 75.2 73 22.2 63.8 74.3 24.1 35.1 

BBN (2 parents) 75.8 73.8 21.3 59.8 75.6 23.9 34.2 

Experiment 3 

(Sub-Sample 2.5:1) 

Logistic Regression 77.1 83.7 31.4 48.8 88.2 34.6 40.5 ‡ 

ANN (1 Hidden) 76.3 77.7 27.5 62.2 79.7 28.2 38.8 

ANN (2 Hidden) 70.6 76.4 22.6 55.1 79.1 25.3 34.7 

BBN (1 Parent) 75.7 76 23.7 59.8 77.7 25.6 35.8 

BBN (2 parents) 74.9 79.1 24.3 50.4 82.8 27.4 35.5 

Experiment 4 

(Cost 1.5:1) 

Logistic Regression 77.9 87.6 26.4 26.8 95.4 42.5 ‡ 32.9 

ANN (1 Hidden) 74.4 85.1 26.1 34.6 91.5 34.4 34.5 

ANN (2 Hidden) 71.4 85.1 22.4 29.1 92.2 32.5 30.7 

BBN (1 Parent) 75.7 80 27.1 54.3 83 29.1 37.9 

BBN (2 parents) 76.5 86 32.6 † 41.7 91.2 39.3 40.5 ‡ 

Experiment 4 

(Cost 4:1) 

Logistic Regression 78  ‡ 82.6 30.5 51.2 86.7 33‡ 40.1 

ANN (1 Hidden) 77.1 73.5 22.4 62.9 74.8 24.3 35.1 

ANN (2 Hidden) 75.9 79.6 31.3 64.6 81.5 30.9 41.8 † 

BBN (1 Parent) 75.5 75 22.2 58.3 77.2 24.7 34.7 

BBN (2 parents) 75.6 79.9 28.3 56.7 82.8 29.8 39 

Experiment 4 

(Cost 6.5:1) 

Logistic Regression 78  ‡ 77.4 26.6 61.4 79.4 27.6 38.1 

ANN (1 Hidden) 78.5 † 75.7 26.4 66.1 77 26.9 38.3 

ANN (2 Hidden) 75.2 77 25.5 59.8 79.2 27 37.2 

BBN (1 Parent) 75.8 74 22.4 63 74.8 24.3 35.1 

BBN (2 parents) 76.5 74.1 22.8 62.2 75.7 24.7 35.3 

*Measurements are in % 

† Best performing model, ‡ Second best performing Model, ¡ Worse Performance 
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CHAPTER 5: DISCUSSION 

Advances in technology have greatly increased the amount of data and information 

available for clinical decision-making. Analyzing this information will uncover new 

knowledge, which can be used to create superior predictive models that are geared 

towards providing personalized plans supported by high quality, evidence-based care. 

This thesis presents the application of several data mining methods to generate a 

predictive model for delirium after cardiac surgery. 

5.1.  Preventing Delirium after Cardiac Surgery 

Post-operative delirium is clinically challenging, but can be prevented if approached 

proactively. Patients undergoing cardiovascular surgical procedures are at higher risk of 

developing delirium[9, 10, 14]. Therefore, prevention and early recognition of delirium 

are important. Yet conventional statistical methods have not been able to produce reliable 

models that can be generalized and used effectively to detect delirium[8, 10, 11, 13, 15, 

17-20, 22-24, 29, 51, 52, 75, 79, 180]. 

Recently there has been a trend towards complementing evidence-based medicine with 

personalized medicine. In evidence-based medicine, the choice of ideal therapy is based 

on population studies and clinical trials. This approach benefits from the large sample size 

and statistical power in a fairly uniform group of patients; but it overlooks the fact that 

every patient is different. To overcome this limitation, personalized predictive models are 

being developed. Personalized predictive models exploit all available information from 

each patient to identify the best intervention for an individual patient[40, 41, 43, 69, 139-

141, 144, 181]. This approach improves outcomes, as it is draws a more holistic picture to 

alleviate uncertainty in predicting outcomes based only on the treatment[40, 41, 43, 139, 

140, 142, 182]. Identifying the right group of patients that can benefit from a specific 

intervention will reduce the costs and improves the results of the intervention. Identifying 

patients who may not respond to an intervention could prevent undesirable possible 



adverse effects and redirect resources. In this work, we demonstrated the machine 

learning methods are capable of tackling complex medical predictive problems and are 

able of generating better predictions; with a statistically comparable general performance 

(ROC-AUC=76.4-77.7%) but a significantly improved ability of identifying positive 

cases (F1-Score for BBN with 2 parents=39.2% and ANN with 1 hidden layer= 37.2%, 

compared to the reference LR= 13.8%). These methods can be used to support critical 

decisions, optimize utilization, and improve patients’ outcomes. 

5.2. Objectives and Methods Summary 

Three objectives were identified in this thesis, to aid the prediction of delirium following 

cardiac surgery (INTRODUCTION 1.2 Research Objectives, page 4 and Table 1-1 

Thesis research objectives, methods and expected outcomes, page 6). Table 5-1 presents 

the objectives with how they were answered in this thesis, and what the overall 

contribution of these methods to the development of a predictive model for the detection 

of post-operative delirium in cardiac surgery patients.  

The objectives and achievements from this research are relisted here: 

1. The first objective was to identify key features that influence the development of 

delirium after cardiac surgery. To accomplish this objective, we went through 

several pre-processing steps to identify the optimal attribute vector space that can 

optimize the learning process and capture the complexity of delirium. We adapted 

the conventional statistical approach that is based on statistical significance and 

domain knowledge to identify candidate attributes. Machine learning feature 

selection methods were used to corroborate the results of the conventional 

approach and highlight hidden important attributes. By doing so, we discovered 

that 5 attributes were picked at least 80% of the time by all methods (EUROII 

score, blood product transfusion within 48 hours from surgery, prolonged 

mechanical ventilation, prolonged ICU stay, and history of being turned down) 

signifying their importance. One of the main contributions of this is that it 



highlighted the relationship of blood product transfusion and prolonged stay in the 

ICU because of delirium.  

2. The second objective was to develop predictive models that are capable of 

capturing the complexity associated with delirium in adult cardiac surgery patients. 

Five different models were developed using the training set: LR, ANN-1 hidden 

layer, ANN-2 hidden layers, BBN-1 parent, and BBN-2 parents. Then, we 

evaluated the performance of these models on an independent test set to identify 

what worked best. The LR model, the conventional modeling approach according 

to medical literature, resulted in a good ROC-AUC (~78%) and specificity, but 

had a poor performance in all other measures. ANN-1 hidden layer and BBN-2 

parents produced an equivalent ROC-AUC but had superior results in all other 

metrics. We were able to show that applying data mining models to a complex 

medical task will generate superior results when compared to traditional methods, 

based on a comparable AUC of the LR, ANN and BNN (76.4-77.7%) but a 

superior ability of the ANN and BBN of identifying positive cases (F1-Score: 37.2 

and 39.2) when compared to LR (F1-Score: 13.8).  

3. The third objective was to experiment with different approaches that are designed 

to address the issue of class imbalance. We assumed that the poor performance of 

the classifiers was due to the outcome class imbalance. To mitigate the effect of 

class imbalance and evaluate the impact of manipulating the outcome class 

representation on the model performance, several techniques that are designed to 

deal with class imbalance were used (either manipulating the class representation 

at the training data level or the way that the algorithm handles the miss 

classification error for each class). At the data level, increasing the number of 

positive examples in the sample space (by using SMOTE or sub-sampling) 

resulted in a dramatic improvement in the LR performance with some 

deterioration of the other classifiers (ANN-1 hidden layer >> BBN-2 parents). At 

the algorithm level, applying cost has also resulted in a dramatic improvement in 

the LR performance with minimal effect on the other classifiers (ANN-1 hidden 

layer > BBN-2 parents). 



Table 5-1: Contributions of the Methods Developed in this Thesis 

Objective Method(s) Contribution Impact on Delirium  
-Identify pre-, intra-, 
and post-operative 
attributes that influence 
the development of 
delirium after cardiac 
surgery 

-Conventional 
statistical (statistical 
significance and 
domain knowledge) 
-Feature selection 
methods 
 

-Decreased the feature 
space from 229 down 
to 26 key candidate 
attributes 
-Identified several 
critical attributes 
-Highlighted several 
pre-operative features 
-Used machine 
learning methods to 
corroborate the 
conventional approach  

-Preoperative 
interventions can be 
directed towards 
optimizing the patient 
medical and physical 
condition before 
surgery 
-These risk factors will 
inform the patient’s 
choices 
-Alert the care team so 
appropriate measures 
can be taken 

-Develop a model to 
predict delirium in 
cardiac surgery patients 
and evaluate their 
performance on an 
independent dataset 
 

-5 different models 
were developed from 
the “Alive” training 
dataset: LR, ANN-1 
hidden layer, ANN-2 
hidden layers, BBN-1 
parent, and BBN-2 
parents. 

-ANN-1 hidden layer 
and BBN-2 parents 
generated superior 
results in predicting 
delirium when 
compared to LR 

-Predicting a complex 
problem, like delirium, 
will require a complex 
solution to capture the 
hidden non-linearity 
-Machine learning 
algorithms can be 
applied to solve 
complex medical tasks 
- BBN has a simple but 
elegant graphical 
representation that can 
be understood by 
machines and humans 

-Class imbalance 
manipulation and its 
effect on the models 

-Two data level 
techniques (SMOTE 
and SpreadSubSample) 
and a single algorithm 
parameter manipulation 
technique (cost) were 
applied to the 
developed algorithms 

-Algorithms that are 
based on BGD (LR) 
had a significant 
improvement with all 
manipulation 
techniques 
-Algorithms that are 
based on SGD (ANN 
and BBN) suffered 
some deterioration. 
This is most likely to 
change of the optimal 
network structure. 

-Class imbalance 
manipulation 
techniques can be used 
to evaluate the model 
stability and durability 
in different 
environments 
-BBN-2 parents model 
have shown a decent 
stability throughout the 
experiments, which 
might indicate its 
generalizability and 
validity in predicting 
delirium when 
compared to the other 
models  

 



5.3.  Pre-, Intra-, and Post-operative Predictors of Delirium           

after Cardiac Surgery 

One of the contributions of this work is that it highlighted several modifiable pre-

operative factors that, if optimized before surgery, might help in preventing delirium. 

These include: pre-operative hemoglobin, pre-operative intubation pre-operative diabetic 

control, and frailty. If an intervention can be directed towards optimizing the patient 

medical and physical condition before surgery and performing surgery electively, we 

believe that the incidence of delirium will decline. These attributes might inform patient 

choices and alert the medical team, so appropriate interventions can be initiated in a 

timely fashion to minimize potential complications.  

5.4. Developing a Model to Predict Delirium after Cardiac Surgery 

5.4.1. The Traditional Method for Predicting Delirium 

The traditional approach in the medical literature to predict delirium would be to use a 

binary LR model. This technique will identify the important independent attributes. This 

approach generated a model that included 8 independent attributes (out of 22 candidates) 

with a reasonable discriminative power in an independent test set (ROC-AUC= 77.7%) 

and good fit to the data (Hosmer and Lemeshow goodness-of-fit test Chi2= 30.2, p-

value=<0.05). However, recall (8.6%) and precision (33.3%) were poor. This might be 

secondary to the class imbalance and the approach that LR takes to minimize the error. In 

this situation we assume that this is the best model, that these are the most important 

attributes that influence the outcome, and overlook any other possible scenarios. 

Clinicians and health care professionals need to be aware of the shortcomings of using a 

single measure, such as ROC-AUC, when evaluating a predictive model. 

 

 



5.4.2. Alternative Modeling Methods for Predicting Delirium 

Data mining techniques have a great potential for discovering hidden important patterns 

and generating useful information from these patterns that will lead to actionable insight.  

The traditional statistical approach generated a model that had a reasonable performance 

on an independent dataset (ROC-AUC= 77.7%). When the same attributes were applied 

to 2 different modeling methods (ANN and BBN); a similar general performance was 

obtained (ROC-AUC: 75.7–76.9%). Although, looking into their core performance, these 

methods exhibited a better predictive power (see Table 4-4: Summary of Experiment 1 

Results, page 76 and Figure 4-8: Experiment 1 results – Original training Set, page 79). 

We believe that ANN and BBN had better results because they incorporated several 

attributes into the models and allowed the model to come up with the best prediction that 

fits the problem space. Some of the included attributes had very low statistical 

significance; but the ANN and BBN models have identified some hidden potential in 

them that have resulted in better predictions. 

Unfortunately, none of the developed models displayed superior results in predicting 

delirium (ROC-AUC <85%). This might be due several reasons, which include: the 

significant class imbalance, the complexity of the problem space, and the possibility of 

missing some important attributes. 

5.4.3. Model stability and Enhancement with Manipulation 

To explore the impact of class imbalance manipulation; two different methods were used 

(sample manipulation and cost sensitive learning). Attempting to adjust the distribution of 

classes, by either increasing the minority class representation in the sample space, making 

it more general, or decreasing the over represented majority class and focusing the 

classifier attention on a smaller sample space, have significantly improved the 

performance of LR.  

Over-sampling with SMOTE has caused a significant deterioration of the ANN models’ 

performance at all levels, most likely due to the change in the optimal network structure 

because of the change in the sample space. In the case of BBN, some decrease in 



performance was also noticed but it was not as significant. In the over-sampling 

experiments, the methods have overestimated the predictive accuracy although the 

distribution of classes went from 12:88% to as close as 34:66%. The ROC-AUC gave a 

more dependable representation of the classifier performance. This supports the notion 

that is published in the data mining and predictive modeling literature in the case of class 

imbalance; the use of ROC-AUC is a more appropriate measure for the assessment to 

compare different models even if the distribution is adjusted with new synthetic 

samples[56-59, 64, 65, 67, 68, 127, 129]. 

Under-sampling with SpreadSubSample has dramatically improved all of our models 

recall but with no much effect on the ROC-AUC. This is mainly due to the noticeable 

decrease in the specificity. An interesting observation was the tradeoff between sensitivity 

and specificity; also, increasing sensitivity did not improve precision, Kappa and the F1-

score. Under-sampling moved the predictive accuracy closer to the ROC-AUC (see  

Figure 4-17: Experiment 3 Results – Spread Sub-sample, page 94). We speculate that this 

is due to the reduction of noise and restricting the sample space. 

Applying cost sensitive classification by rewarding the algorithms for making the right 

choice had the best results in our experiments. The application of cost improved the core 

performance without compromising the other measures. Adding cost will cause a certain 

decrease in specificity but with a noteworthy improvement in the other measures without 

affecting the ROC-AUC. Applying cost at the ratios of 1.5:1 and 4:1 have produced very 

balanced and decent models. Although ANN with 2 Hidden layers and LR at a cost of 4:1 

generated the best F1-score, the BBN with 2 parents had the best overall performance ( 

Figure 4-25) 

5.5. Limitations 

Some of the limitations of this work include the latent bias of retrospective studies that is 

based on observational data that is based on chart abstraction. The quality of the acquired 

data might profoundly impact the models and their interpretation. The prevalence of 



delirium was only 11.4%. This low representation is most likely due to the definition of 

delirium in the source database (only agitated sub-type). This will limit the ability to 

generalize the developed models to the other types of delirium other than the agitated type, 

which only represents 2-15-% of all delirium cases [12, 15, 20, 22, 25, 27]. Hypoactive 

delirium has a higher prevalence and is associated to postoperative complications and 

mortality [12, 19, 20, 24, 28, 76, 99]. Because the diagnosis of delirium is based on chart 

abstraction from the daily progress or nursing notes and is not based on a standard tool, 

the diagnostic accuracy of delirium in the dataset is questioned and most likely it is 

overlooking a grater portion of patients who actually developed delirium. 

The generated models were tested on a test set and their general performance was 

considered satisfactory. Even though different methods were used, none of the models 

had a superior general performance (~78%). This might indicate that there are some 

missing important features that are not captured by these models. Additional clinical, 

biochemical, psychological and genetic features such as history of depression, family 

history of post operative delirium, poly-pharmacy, pre-operative mini mental test, 

inflammatory biomarkers levels (C-reactive protein and Cerebral fluid dopamine levels), 

and genetic predisposition to neuropsychological disorders may help explain why some 

patients are more prone to the development of postoperative delirium.  

One of the major drawbacks of ANN is that it is considered as “Black Box Modeling”. It 

lacks the ease of interpretability by none experts (like medical professionals) that is a big 

advantage of the logistic regression model. While BBN can provide probabilities that can 

be easily understood and can uncover interesting interactions between different attributes, 

but they suffer the skepticism that accompanies Bayesian approaches, like that a model 

parameter can always be updated by new observations.  

We acknowledge that exploring a different network structure or setting might have 

improved the performance of ANN and BBN. This might indicate that a static model is 

not the optimal solution and there lies the necessity for a re-learning/re-evaluation cycle 

with new observation. This also displays some of the disadvantages of using a static ANN 

in a dynamic process added to the difficulty of establishing etiologic interpretation for the 

calculated weights. It also illustrates the robustness, consistency, and the demonstration of 



a causal/evidential relationship of BBN, and graphical models in general, in the presence 

of class imbalance and its manipulation.  

5.6. Future Work 

Existing research acknowledges that delirium is a major concern after surgery, to patients, 

the health care community, and policy makers. Most of the current research focuses on 

using conventional statistical methods (e.g.: LR). In this work, we demonstrate that an 

alternative approach to modeling medical outcomes has an equivalent general 

performance and a superior internal performance in detecting delirium in adult patients 

after cardiac surgery. We would like to explore the effect of using an ensemble of models 

on the performance. We also would like to test the utility of a dynamic graphical model 

(Markov Chain) on the same dataset. 

It will be exciting to embed these models in a clinical decision support system that is 

connected to an electronic medical record to evaluate their performance. Some of the 

challenges that face this paradigm shift lie in the end users, health care providers, and 

their receptiveness to change. Also the adaptation of electronic health systems and 

patients records is still in its infancy and it has been faced with great skepticism from the 

health care community. Another challenge that we foresee is the presentation of this 

information to the healthcare provider and its effect on their adaptation. Finally, what 

should the health care provider do with this information, what action should they take? 

 In the present economic environment, the improvement of medical care, and the 

escalation of healthcare cost; healthcare professionals, policy makers, and patients must 

use technology to their advantage and make decisions that are based on genuine 

information. The future of personal health records is a single electronic record inclusive 

to all patient encounters and metadata. These applications would not only be useful to the 

patient and the system, but would be a method to collect data in which a dynamic 

predictive model can transform these complex interactions between several characteristics 

into a format that can be understood by machines and domain experts, to forecast a 

potential complication from a specific intervention.   



If we can learn from the Internet and agree on a single format, then aggregating several 

sources of data into a single entity (data warehouse) that is governed yet unconstrained by 

physical, political, and illogical borders will enable the health care community to create 

much more superior models that are based on a large volume of heterogeneous data that is 

more expressive of the inherent variability and diversity in nature. This will prevent the 

undesirable complication, maximize healthcare efficiency, and improve the 

personalization of care. 

Although delirium is a well-recognized entity, there is no specific treatment and most of 

the interventions focus on alleviating its negative effects. The key here is identifying 

these high-risk patients, presenting them with the facts and personalizing their care plan 

to assure that they obtain best possible outcome with the best quality of life based on their 

values and personal goals. 

5.7. Conclusion 

Post-operative complications are a major concern for the healthcare professionals and 

their patients. Of particular concern to patients is the effect of surgery upon brain 

functions. Also with the growth in the aging population, health care is facing an 

interesting shift of patients prospective with an increased attentiveness of the quality of 

life after the intervention. Several authors agree that delirium is associated with negative 

effects and advocate early recognitions and preventive measures[7, 9, 10, 12-15, 20, 22, 

24, 25, 28, 35, 52, 75, 76, 99]. In the absence of solid evidence; patients and policy 

makers rely on healthcare professionals to make the right decisions. Most of the decisions 

that medical professionals make are based on data from large population studies and 

clinical trials. Every patient is objectively comparable to another one, all of them are 

getting the same intervention, randomization, and its ability to show efficacy. This 

approach overlooks the fact that every patient is different, has a limited generalization, 

and it introduces an artificial environment that is difficult to replicate in nature. 

Although there is no lack of data in the medical domain, the use of this data is not 

optimized to extract all hidden information in it. Vasant Dhar stats that “The era of 



limited data and assumption driven modeling is largely over.”[182]. He also states that “If 

a problem is non-stationary and a model is only an approximation anyway, why not build 

the best predictive model based on data available until that time and just update it 

periodically”[182]? The use of machine learning to explore interesting questions humans 

might not consider is a central focus in big data science. 

Recently, there has been a recent trend towards complementing evidence-based medicine 

with personalized medicine[41, 43, 111, 139, 140]. The large volumes of new medical 

research discoveries (e.g.: genetics, new chemotherapy, new procedures, etc.) and the 

changing patient population demographics will progressively confront health care 

professionals and policy makers. With the increased complexity of the generated data, 

computers will serve as an essential asset in improving the understanding of the complex 

interactions in the data. Some authors realize that the power in big data and data mining 

involves its superior ability to forecast the future based on the past (predictive 

modeling)[142, 182]. The utility of predictive modeling and its capability in preventive 

medicine cannot be over emphasized.  

The findings from this work substantiate the effectiveness of machine learning modeling 

and data mining methods in predicting medical outcomes, which are inherently complex, 

and yielding more precise predictions. In the case of delirium, when compared to logistic 

regression, ANN and BBN had a better capability in identifying positive cases even in the 

presence of class imbalance. BBN have shown a better stability through out multiple 

experiments that was not the case for LR or ANN. BBN can provide an easy to 

understand graphical representation of the attributes relationships, can uncover interesting 

interactions and can provide probabilities, which can be easily understood by medical 

professionals. Also, we illustrate the importance of using of multiple measures when 

evaluating model performance (e.g.: F1-Score). Health care professionals should not rely 

on a single measure to evaluate a model performance. Using a single measure, like ROC-

AUC, might lead to false assumptions that might result in wrong decisions.  

The use of novel technologies that supplements high quality, evidence-based medicine 

with rigorously developed complex predictive models will definitely improve the quality 

of care, patient’s outcomes, and reduce the burden on the health system. 



APPENDIX A: ATTRIBUTES 

Below is a description of each attribute category: 

Demographics: Transfer from Another Hospital, Same Day cases, age at surgery, gender, 

date of admission, date of discharge, date of surgery, weight (Kg), height (cm), Smoking.  

Frailty was defined as impairment in activities of daily living scored by the Katz ADL 

index[122], which measures diminishing independence in any of the following: Feeding, 

Bathing, Dressing, Transferring, Toileting, Continence; or limitation in ambulation 

(patient is using a walking aid or requires assistance for normal daily activity or requires a 

wheel chair); or a documented history of dementia[26].  

Comorbidities: diabetes mellitus, diabetes mellitus control, dyslipidemia (DLP), renal 

insufficiency (creatinine above 176 mol/ L), renal failure, renal dialysis, highest 

preoperative creatinine, HTN, pulmonary hypertension (PHTN), CVD, CVA, CVA 

timing, peripheral vascular disease (PVD), COPD, pre-operative intubation, history 

endocarditis and type of endocarditis.  

Previous cardiac intervention: percutaneous intervention (PCI), PCI Date, PCI same 

admission, PCI accident, Emergency Surgery.  

Cardiac specific: history of acute coronary syndrome (ACS), timing of ACS, CHF, 

admission with angina, hemodynamic instability, cardiogenic shock, arrhythmia, type of 

arrhythmia, preoperative atrial fibrillation (AF), type of AF, Canadian Cardiovascular 

Society (CCS) Angina class, NYHA dyspnea class and Valve disease (Stenosis, 

Insufficiency and Etiology).  

Pre-operative: Ejection Fraction and urgency for surgery (elective: stable cardiac function 

in a patient waiting at home to undergo surgery; in-house: the need for hospitalization of 

a patient awaiting surgery; urgent: the need for surgery within 24 hours to minimize 

further clinical deterioration; and emergent: ongoing, refractory cardiac compromise, with 

or without hemodynamic instability, and unresponsive to any form of therapy except 

cardiac surgery without delay). Pre-operative medications included: ACEI, ARB, Beta 

Blockers (BB), Calcium Chanel Antagonist (CaCA), intravenous Heparin (IV-Hep), 



Warfarin, Inotrops, lipid lowering agents, ASA, ASA last dose, Plavix, Plavix last dose, 

and Anti-Platelets stopped prior to Surgery.  

Intra-operative: operation performed (CABG, CABG ± Valve, Valve Replacement and 

Valve Repair), Valve operated on, valve primary pathology (Stenosis, Insufficiency and 

Etiology), Cardioplegia, Cardioplegia Infusion Mode, Clamp Time, Perfusion Time, 

Return to CBP, Preoperative Hemoglobin, IABP, IABP time of Insertion, IABP 

Indications, Pacing, Type of Pacing,  

Post-operative: Inotropes in admission to CVICU, Blood products use (Type and Timing), 

Re-operation, reason for Re-operation, Cardiac Complications (Low CO, Valvular, 

Cardiac Arrest, Heart Block, Permanent PM, AF and New AF), GI Complications 

(Bleeding, Ischemia, Other, and GI Surgery), Infectious Complications (Sternal wound 

Infection (Superficial and Deep), Septicemia, UTI, and Others), Pulmonary 

Complications (Ventilator Prolonged, Days Ventilated, Pulmonary Edema, Re-intubation, 

Hours Ventilated and Hours in CVICU), CVICU Readmission (Ventilation during 

Readmission, Reason for readmission, Multiple CVICU readmission, Renal Failure, Type 

of Renal Failure, Dialysis, Other Complications). 

Discharge attributes: Discharge destination, In-Hospital Mortality, Date of Death, Cause 

of Death 

Examples of newly created attributes: Creatinine Clearance, Body Surface Area, Body 

Mass Index, PCI to Surgery time, Ventilator time, and Return to ICU time.  



 

Figure A-1: Study Dataset Attributes categories 
Newly Created: indicate attributes that are not present in the MHC registry and were 
newly derived from other attributes. 

A. I    Derived Attributes  

In addition to these fairly standard elements, a number of newly created ones were also 

assessed. These included: 

 Body mass index (BMI) (unit= Kg/m2) 

 

• Body surface area (BSA) (unit= m2), using Mosteller formula[183] 

 

• Time from Percutaneous Coronary Intervention to surgery (in hours) 

• Time on mechanical ventilation (in hours) 

• Time to return to the Intensive Care Unit (in hours). 



• Estimated Creatinine Clearance (eCrCl) based on approximation of an estimated 

glomerular filtration rate (eGFR) using either the Cockcroft-Gault and Jelliffe 

equations:  

a. Cockcroft-Gault Equation (unit= ml/min/1.73 m2)[184]   

 

*Where Constant is 1.23 for Male and 1.04 for Female. 

b. Jelliffe formula for Creatinine clearance estimation (unit= ml/min)[185] 

 

CrCl, creatinine clearance (ml/min); Gender: male= 0 & female= 1;  

BSA, body surface area (Mosteller); SCr, serum creatinine ( mol/l); 

 

c. Notes: 

i. Although we are aware that these equations are the simplest, least 

accurate and returns a surrogate of creatinine clearance compared 

to other more sophisticated estimations; they were chosen for the 

ease of their implementation and the availability of its components 

in the dataset. 

ii. We have chosen 2 equations to increase the accuracy of the 

Creatinine Clearance measurement.



APPENDIX B: PREPROCESSING 

 
Figure B-2 CVICUhrs Histogram by Delirium Status  
(0=Absent and 1=Present) 
 

 
Figure B-3: Quintile - Quintile plot for CVICUhrs by Delirium Status  
(0=Absent and 1=Present) 
 

 

 



B.I. In-Hospital Mortality, Post-Operative Stroke and Delirium  

In this analysis, there was no statistical evidence that delirium is associated with short-

term mortality (in-hospital mortality).  The incidence of delirium among patients who 

experienced in-hospital mortality (total=214) was 12.6%, which was not statistically 

different from the rate of delirium among those who survived (Figure 8). In comparison, 

the incidence of stroke was much higher in patients who suffered in-hospital mortality 

compared to those who did not (OR=9.75, CI=7.02-13.51)(Figure B-4). 

 

Figure B-4: Permanent Stroke and Delirium by In-hospital Mortality or Discharge 

* Indicates: statistically significant difference ( =<0.05) 

 

As shown in the exploratory univariate analysis of the full dataset, there was a strong 

association of delirium with several post-operative complications (e.g.: pneumonia, 

pulmonary edema, sepsis, urinary tract infection (UTI), and discharge to an institution) 

but not with post-operative stroke or in-hospital mortality. Because stroke is not this 

study’s primary concern in terms of outcomes – and because the incidence of in-hospital 

mortality was less than 4% and permanent stroke was even less (2%) – we decided to 



focus on the patients who developed delirium and were successfully discharged to either 

home or another institution. Thus, a new dataset, labeled “Alive” with patients who were 

successfully discharged from the institution, was created. The “Alive” dataset had a total 

of 5,584 patients over the study period (January 2006 – December 2012). 

B.II. Statistical Analysis Tables of Dataset Attributes 

Table B-1: Full Dataset - Statistical comparison of pre-operative continuous attributes 
(Normal Distribution) in the presence and absence of delirium 

ATTRIBUTE 
(UNIT) MEASURE 

DELIRIUM 
TOTAL= 5798 TEST STATISTICS 

Yes 
(n= 661) 

No 
(n= 5137) 

Student t-test 
t-value p-value 

Age 
(Year) Mean (SD) 71 (10) 66 (11) - 12.38 < 0.05 
Weight 

(Kg) Mean (SD) 82 (18) 85 (16) 4.4 < 0.05 
Height 
(Cm) Mean (SD) 170 (10) 169 (10) 0.73 0.466 
BMI 

(Kg/m2) Mean (SD) 28.5 (6) 29.4 (6) 4.2 < 0.05 
BSA 
(m2) Mean (SD) 1.9 (0.2) 2 (0.2) 3.94 < 0.05 

Hemoglobin 
(mg/dl) Mean (SD) 125 (19) 132 (18) 9.34 < 0.05 

CrCl-CGE 
(ml/min/1.73 

m2) 
Mean (SD) 64 (30) 81 (35) 13.5 < 0.05 

CrCl-Jel 
(ml/min) Mean (SD) 54 (23) 68 (25) 14.3 < 0.05 

 
 

 

Table B-2: Full Dataset - Statistical comparison of pre-operative continuous attributes 
(Non-Normal Distribution) in the presence and absence of delirium 

ATTRIBUTE 
(UNIT) MEASURE 

DELIRIUM 
TOTAL= 5798 TEST STATISTICS 

Yes 
(n= 661) 

No 
(n= 5137) 

Wilcoxon-Mann Whitney test 
Z-value p-value 

EUROOII 
(%) 

Median 
(1st, 3rd IQR) 

4.4 
(2-10) 

1.7 
(1-4) 17.4314 < 0.05 

MHC-Mort 
(%) 

Median 
(1st, 3rd IQR) 

4.4 
(2-10) 

2 
(1-4) 15.7124 < 0.05 

Creatinine 
( mol/L) 

Median 
(1st, 3rd IQR) 

103 
(87-133) 

93 
(79-112) 9.2791 < 0.05 

 



Table B-3: Full Dataset - Statistical comparison of pre-operative categorical attributes in 
the presence and absence of delirium 

ATTRIBUTE 
(YES) 

DELIRIUM (%) 
TOTAL= 5798 TEST STATISTICS 

Yes 
(n= 661) 

No 
(n= 5137) Chi2 p-value Cramer’s V OR 

(CI) 

SDA 38.28 44.56 9.5 <0.05 0.04 0.86 
(0.79-0.93) 

ACEI 48.56 48.92 0.03 0.86 0.0002 0.99 
(0.9-1.06) 

BB 77.46 77.50 0 0.98 0 1 
(0.9-1.03) 

ASA 82.30 82.99 0.2 0.7 0 1 
(0.96-1.02) 

Plavix 34.80 31.61 2.7 0.09 0.02 1.1 
(1.02-1.2) 

Lipid Ag. 79.58 81.31 1.15 0.28 0.014 0.98 
(0.95-1.01) 

Anti-Coag. 11.35 5.68 31.7 <0.05 0.07 2 
(1.6-2.4) 

HTN 78.97 75.24 4.4 0.04 0.02 1.05 
(1.01-1.1) 

DM 43.12 36.15 12.2 <0.05 0.05 1.2 
(1.1-1.3) 

COPD 20.88 13.67 25 <0.05 0.07 1.5 
(1.33-1.8) 

Frail 10.89 6.52 17.2 <0.05 0.05 1.7 
(1.4-2.04) 

NYHA 
Class  3 55.22 41.93 42.1 <0.05 0.085 1.32 

(1.24-1.4) 

Shock 4.39 1.60 24.3 <0.05 0.065 2.75 
(1.9-3.9) 

A-Fib 20.57 11.21 48 <0.05 0.09 1.8 
(1.6-2.1) 

CVD 21.63 11.66 52.2 <0.05 0.095 1.85 
(1.6-2.1) 

Renal 
Impairment 42.06 27.06 64.3 <0.05 0.11 1.6 

(1.4-1.7) 
IABP 15.58 7.38 52 <0.05 0.094 (1.8-2.5) 

Redo 10.89 6.70 15.5 <0.05 -0.05 1.6 
(1.3-1.99) 

 
  



Table B-4: Full Dataset - Statistical comparison of intra-operative continuous attributes in 
the presence and absence of delirium 

ATTRIBUTE 
(UNIT) MEASURE 

DELIRIUM 
TOTAL= 5798 TEST STATISTICS 

 Yes 
(n= 661) 

No 
(n= 5137) 

Student t-test 
t-value p-value 

Clamp Time (Min) Mean (SD) 93 (45) 83 (39) - 5.6 < 0.05 
Pump Time (Min) Mean (SD) 139 (67) 123 (52) - 6.16 < 0.05 
Core Temp (°C) Mean (SD) 31 (2.7) 31.7 (2.6) 5.5 <0.05 

 
 
Table B-5: Full Dataset - Statistical comparison of intra-operative categorical attributes in 
the presence and absence of delirium 

ATTRIBUTE 
(YES) 

DELIRIUM (%) 
TOTAL= 5798 TEST STATISTICS 

Yes 
(n= 661) 

No 
(n= 5137) Chi2 p-value Cramer’s V OR 

(CI) 
Lt Main 
Disease 23.9 23.0 0.232 0.63 0.006 1 

(0.92-1.2) 

CABG 77.0 78.7 1.05 0.31 0.013 0.98 
(0.94-1.01) 

AVR 35.9 25.7 31 <0.05 0.07 1.4 
(1.3-1.5) 

MVR 5.6 44.8 5.3 0.02 0.03 1.5 
(1.1-1.99) 

OR Inotrops 48.1 29.9 89.6 <0.05 0.12 1.6 
(1.5-1.7) 

Intra-Op TEE 79.4 62.7 70.4 <0.05 0.11 1.26 
(1.2-1.3) 

 
  



Table B-6: Full Dataset - Statistical comparison of post-operative categorical attributes in 
the presence and absence of delirium 

ATTRIBUTE 

(YES) 

DELIRIUM (%) 

TOTAL= 5798 TEST STATISTICS 

Yes 

(n= 661) 

No 

(n=5137) 
Chi2 p-value Cramer’s V OR 

(CI) 

Blood Product 
Within 48hrs 53.6 27.5 187.6 <0.05 0.1799 1.95 

(1.8-2.1) 

pRBC 60.7 29.1 264 <0.05 0.214 2.1 
(1.96-2.2) 

FFP 24.4 10.3 111 <0.05 0.14 2.4 
(2.1-2.7) 

Platelets 19.7 9.5 62.7 <0.05 0.104 2.1 
(1.8-2.4) 

Mechanical 
Ventilation 
>24hrs 

48.7 14.0 481 <0.05 0.29 3.5 
(3.2-3.8) 

CVICU Stay 
>72hrs 56.3 15.6 603 <0.05 0.322 3.6 

(3.4-3.9) 

New A-Fib 43.0 31.5 35.2 <0.05 0.078 1.37 
(1.26-1.48) 

 
  



 
Table B-7: Full Dataset - Statistical comparison of post-operative categorical 
complications in the presence and absence of delirium 

ATTRIBUTE 
(YES) 

DELIRIUM (%) 
TOTAL= 5798 TEST STATISTICS 

Yes 
(n= 661) 

No 
(n= 5137) Chi2 p-value Cramer’s V OR 

(CI) 

New A-Fib 43.0 31.5 35.2 <0.05 0.078 1.37 
(1.26-1.48) 

Tamponade 6.5 2.2 42.8 <0.05 0.09 3 
(2.3-4) 

Pneumonia 21.6 5.4 231 <0.05 0.201 4 
(3.5-4.7) 

Pulmonary 
Edema 22.2 6.8 179.4 <0.05 0.18 3.3 

(2.8-3.8) 

GI Bleeding 2.6 1.1 9.9 <0.05 0.04 2.3 
(1.5-3.6) 

Post-Op 
Dialysis 6.1 2.5 26.8 <0.05 0.07 2.5 

(1.8-3.3) 

Sepsis 10.1 1.7 159.7 <0.05 0.17 5.9 
(4.6-7.65) 

UTI 18.0 5.6 137.1 <0.05 0.154 3.2 
(2.7-3.7) 

Permanent 
Stroke 3.0 1.8 4.3 0.04 0.03 1.7 

(1.1-2.5) 
Temporary 
Stroke 1.8 0.8 6 <0.05 0.03 2.2 

(1.3-3.7) 
Discharge to 
Institution 38.1 10.8 365.7 <0.05 0.25 3.54 

(3.2.3-3.9) 
In-Hospital 
Mortality 4.1 3.6 0.326 0.57 0.008 1.1 

(0.8-1.6) 

  



B.III. Clustering Approaches 

In general, clustering approaches are divided into 5 main categories Partitioning, 

Hierarchical, Density-based, Grid-based, and Sub-space based[64, 97, 186].  

• Partitioning methods: divides the data into groups such that each group must 

contain at least one object. These methods usually adopt “exclusive cluster 

separation”, which means that each object must belong to exactly one and only 

one group. They are usually Distance-based. It uses an iterative relocation 

technique to re-assign observations to different groups for the main goal of 

decreasing the inter-cluster distance between observations from the same class 

while increasing the intra-cluster distance between different clusters. 

• Hierarchical methods: find successive clusters using previously established 

clusters. They create a hierarchical decomposition of the given set of data objects.  

These algorithms usually are either "Bottom-Up" (agglomerative) or "Top-Down" 

(divisive). Bottom-Up approaches begin with each element as a separate cluster 

and merge them into successively larger clusters. Top-Down approaches begin 

with all of the data and progress to split it into sequentially smaller clusters. They 

can use distance, density or continuity as a similarity measure. 

• Density-based methods: the basic idea of using density in clustering is due to 

that distance based algorithms can only find spherical shapes. In general, the 

cluster continues to grow as long as the density (number of objects) in the 

“neighborhood” exceeds some threshold. This way, the cluster can take any shape 

and different clusters can have different shapes. 

• Grid-based methods: These methods use a single uniform grid mesh to partition 

the entire problem domain into cells and the data objects located within a cell are 

represented by the cell using a set of statistical attributes. Clustering is, then, 

performed on the grid cells, instead of the database itself. Since the size of the grid 

is usually much less than the number of the data objects, the processing speed can 

be significantly improved. However, an over or under saturated grid will require 

further analysis. Several authors advocate the use of grid-based methods as an 



initial step and augmenting the analysis of the saturated grids with another 

clustering method (Density or Distance based). 

• Sub-Space methods: look for clusters that can only be seen in a particular 

projection (subspace, manifold) of the data. These methods thus can ignore 

irrelevant attributes. They can be combined with any of the other types of 

clustering methods and focus on a particular dataset projection. 

B.IV. Expectation Maximization Algorithm 

The EM algorithm is a Probabilistic algorithm that belongs to the partitioning clustering 

methods. It attempts to construct a “latent” attribute that can be used to maximize the 

likelihood estimate of the model[64, 115]. This new “latent” attribute is created using 

available observations. EM is considered to be a natural generalization of maximum 

likelihood estimation to the incomplete data case. One of the assets of these models is that 

they are capable of approximating parameters estimates in the presence of incomplete 

data. Ceppellini et al first introduced it in 1955[187]. 

As the name suggests, the EM algorithm has 2 steps: The first step, also called E-Step 

from “Expectation”, entitles the calculation of the expected class probabilities values of 

the missing or latent attribute from the available observed data. This is followed by the 

second step, also called M-Step from “Maximization”, that allows the augmentation of 

the log-likelihood function by re-estimating the expected obtained values from the E-Step, 

under the assumption that all missing values have been replaced in the E-Step and there 

are no missing observations[64-66, 115]. The EM algorithm is iterative in nature, in the 

sense that E- and M-steps are alternated until the changes in the estimated parameters or 

the log likelihood are less than some specified threshold. 

Compared to other partitioning methods, the EM algorithm provides the allocation 

probabilities of an observation to a particular cluster[114]. In other words, an observation 

can be a member in multiple clusters with a membership potential assignment to each 

cluster, expressed in probability. At the end, an observation gets assigned to a specific 

cluster based on the greatest probability value of it has (e.g.: Observation x has a 

membership in Cluster-A with a probability=0.25, Cluster-B with a probability=0.6, and 



Cluster-C with a probability=0.15; in the final output, it is assigned to Cluster-B). The 

beauty of this technique is that the analyst will be able to review the membership 

probabilities of an observation to multiple clusters. EM algorithm can be applied to 

categorical and continuous attributes, unlike the classic implementation of k-means that 

can only accommodate continuous attributes[114]. 

The EM algorithm will converge; but usually this is not the best possible solution. To 

obtain better results and reach a superior answer, the whole process needs to be repeated 

several times, with different initialization. The overall log-likelihood is used to compare 

several attained patterns and the best one is chosen biased on the model fit and its 

representation[64-66, 188]. 

The number of generated clusters can be either pre-determined based on some apriori 

domain knowledge, but in reality the optimal number is not known. There are several 

techniques that are available for the analyst based on heuristics, statistical, information 

theory or other methods. One common and effective technique is to use “v-Fold Cross-

Validation”[141, 189]. In general, it starts by dividing the overall sample into a number of 

v folds. The same type of analysis is then continuously applied to the observations 

belonging to the v-1 folds (training sample), and the results of the analyses are applied to 

sample v (the sample or fold that was not used to estimate the parameters to determine the 

clusters; testing sample) to compute some index of predictive validity (Log-Likelihood). 

The results for the v replications are averaged and return a single model performance 

assessment measure (In the case of EM, cluster assignment likelihood). The use of v-Fold 

Cross-Validation sometimes generate un-realistic number of clusters or assigns a very 

small portion of observations to a specific irrelevant cluster (Over fit the clusters). To 

overcome this issue, a reasonable common approach is start with v-Fold Cross-Validation, 

analyze the clusters, then try to come us with an optimal number of clusters without 

dramatically affecting model performance assessment measure, the “Elbow method”[190]. 

Cluster analysis is an unsupervised learning technique, and we cannot observe the (real) 

number of clusters in the data. However, it is reasonable to replace the usual notion 

(applicable to supervised learning) of "accuracy" with that of "distance." In general, we 

can apply the v-fold cross-validation method to a range of numbers of clusters in k-means 



or EM clustering, and observe the resulting average distance of the observations (in the 

cross-validation or testing samples) from their cluster centers (for k-means clustering); for 

EM clustering, an appropriate measure would be the average (log-likelihood) computed 

for the observations in the testing samples. In the case of log-likelihood the closer your 

log-likelihood is to 0 the better the clustering assignment (range= - :0). 

B.V. Expectation Management Algorithm Clustering 

Experiments 

 

Number of clusters selected by cross validation: 3 

Attribute 

Cluster 
“0” 

N= 2738 (49%) 
“1” 

N= 2171 (39%) 
“2” 

N= 675 (12%) 
ACEI    

• Yes 2737.0234 1.9994 1.9772 
• No 1.9993  2171.0394 675.9612 

ARB    
• Yes 93.0582 2.0005 675.9413 
• No 2645.9646 2171.0384 1.9971 

Total 2739.0227 2173.0389 677.9384 
Log likelihood: -1.04486 



 

 

Figure B-5: ACEI-ARB Clusters by Age  
X-Axis: ACEI-ARB Clusters, Y-Axis: Age in years 
 

 

Figure B-6: ACEI and ARB Clusters in Delirium 

 

 



Although this clustering did not give us any insight, it showed a clear separation that is 

representative of current clinical practice. We can see, Cluster “0” had mainly patients 

who are mainly taking ACEI, Cluster “1” had patients who are on none and cluster “2” 

had patients who are mainly on ARB. Clinically, we usually start with ACEI for the 

treatment of HTN or HF and switch to ARB if a patient start developing side effects of 

ACEI (e.g: dry cough or angioedema). This demonstrates that the EM algorithm is 

capable of identifying a clear existing pattern in the data with minimal input from the data 

analyst. 

 

 

Number of clusters selected by cross validation: 2 
 Clusters 

Attribute 
“0” 

N= 4540 (81%) 
“1” 

N= 1044 (19%) 
Lipid Agent   

• Yes 4540.0027 1.9973 
• No 1.9993 1044.0007 

ASA   
• Yes 4034.3186 595.6814 
• No 507.6834 450.3166 

Total 4542.002 1045.998 
Log likelihood: - 0.89411 



 

Figure B-7: ASA and Lipid Lowering Agent Clusters in Delirium 
 

Here the algorithm identified a group of patients who take ASA and a lipid-lowering 

agent in Cluster “0”, which represents patients with Ischemic Heart Disease (IHD). 

What’s interesting is that 57% of patients in Cluster “1” were on ASA and almost none 

were on lipid-lowering agent, which most probably represent pure Valvular Heart Disease 

patients who are mainly young or with no clinical indication of atherosclerosis.  



 

Number of clusters selected by cross validation: 2 
 Clusters 

Attribute 
“0” 

N= 3556 (64%) 
“1” 

N= 2028 (36%) 
DM   

• Yes 19.113 2029.887 
• No 3537.9995 1.0005 

DM Control   
• None 
• Diet 

3556.0957 
1.0056 

1.9043 
1025.9944 

• Oral 
• Insulin 

1.0056 
1.0056 

294.9944 
709.9944 

Total 3559.1125 2032.8875 
Log likelihood: - 1.03753 

 

Figure B-8: DM and DM Control Clusters in Delirium 

 
Here, the algorithm wanted to split patients to diabetics and non-diabetics. The treatment 

modality did not have an influence the clustering. 

 

 



 

Number of clusters selected by cross validation: 2 
 Clusters 

Attribute 
“0” 

N= 3894 (70%) 
“1” 

N= 1690 (30%) 
Smoking History   

• Yes 3894.0011 1.9989 
• No 1.7848 1690.2152 

Current Smoker   
• Yes 838.9994 1.0006 
• No 3056.7865 1691.2135 

Total 3895.7859 1692.2141 
Log likelihood: - 0.9765 

 

Figure B-9: Smoking History and Current Smoking Clusters in Delirium 
 

Here, the algorithm has decided to split the patients based on their history of smoking. 

22% of patients who had history of smoking are still smoking. Although it dose not 

provide much insight, this information can be used to focus some effort on providing a 

personalized smoke cessation program to this group of patients that will help in their 

secondary prevention. 

  



 

Number of clusters selected by cross validation: 2 
 Clusters 

Attribute 
“0” 

N= 1266 (23%) 
“1” 

N= 4318 (77%) 
Ventricular Arrhythmia   

• Yes 60.0198 124.9802 
• No 1207.9774 4195.0226 

Atrioventricular Block   
• Yes 134.045 253.955 
• No 1133.9522 4066.0478 

Complete Heart Block   
• Yes 43.0229 43.9771 
• No 1224.9743 4276.0257 

Other   
• Yes 1265.9997 2.0003 
• No 1.9975 4318.0025 

Total 1267.9972 4320.0028 
Log likelihood: - 1.00358 

 

 

Figure B-10: Pre-Operative Arrhythmia Clusters in Delirium 
 

Here, the algorithm has decided to split the patients into two groups with almost double 

the representation of arrhythmias in the cluster “0” patients.  



 

Number of clusters selected by cross validation: 2 
 Clusters 

Attribute 
“0” 

N= 3931 (70%) 
“1” 

N= 1653 (30%) 
Beta-Blockers   

• Yes 3019.9711 1320.0289 
• No 913.0295 334.9705 

Ca-Ant   
• Yes 1.9994 1653.0006 
• No 3931.0012 1.9988 

Total 3933.0006 1654.9994 
Log likelihood: - 1.13776 

 

 

Figure B-11: Beta-Blockers and Calcium Channel Antagonists Clusters in Delirium 

 

Here, the algorithm was able to identify two distinct groups. Cluster “0” represents the 

patients who are only on Beta Blockers and Cluster “1” represents the patients who are on 

Beta Blockers and Calcium Channel Blockers. Clinically, Cluster “1” can illustrates the 

patients who are on combination therapy for resistant HTN. 



 

 

Number of clusters selected by cross validation: 4 

Attribute 

Cluster 
“0” 

N= 4926 (88%) 
“1” 

N= 380 (7%) 
“2” 

N= 162 (3%) 
“3” 

N= 116 (2%) 
Pre-Op A-Fib     

• Yes 2.0021 380.0229 162.9935 116.9815 
• No 4925.3694 1.966 1.3325 1.3321 

Paroxysmal     
• Yes 1.673 1.9823 162.3363 1.0084 
• No 4925.6985 380.0066 1.9897 117.3052 

Persistent     
• Yes 1.0002 9.9869 1.0054 1.0075 
• No 4926.3713 372.002 163.3206 117.3061 

Permanent     
• Yes 1.6756 1.9893 1.0061 116.3289 
• No 4925.6958 379.9996 163.3199 1.9847 

Total 4927.3715 381.9889 164.326 118.3136 
Log likelihood: - 0.48894 

 

Figure B-12: Atrial Fibrillation and its pattern Clusters in Delirium 
In this case, the EM algorithm did not offer any help. Although, the Log-Likelihood was 

very good and the clusters are clinically relevant; what it actually did is just create a new 



attribute that has 4 categories: Cluster “0”= no A-Fib, Cluster “1”= Paroxysmal A-Fib, 

Cluster “2”= Persistent A-Fib, and Cluster “3”= Permanent A-Fib. A clinician could have 

done this and it adds no new insight. 

B.VI. Manual Selection based on statistical analysis 

We applied the same principles that we used to test the full dataset. All date attributes 

were used to generate length of stay continuous attributes. Statistical measures of central 

tendency (Mean, Median, Mode, Inter-quartile ranges, standard deviation and others), 

shape of distribution and outliers were examined. Continuous attributes were examined 

and when the shape of the distribution was of close to a normal (Gaussian) distribution; 

mean and standard deviations were used. When the shape was extremely skewed (non-

normal distribution); Median, 25% Inter-quartile range (IQR) and 75% IQR were used. 

Categorical attributes are reported with frequency in percent. 

Continuous attributes with normal distribution were tested using the student t-test for 2 

levels and Analysis of Variance (ANOVA) for more than 2 levels. Continuous attributes 

with non-normal distribution were tested using the Wilcoxon-Mann Whitney test for 2 

levels and Kruskal Wallis test for ordinal attributes. Categorical attributes were examined 

using the Chi-Square test. Table B-8 summarizes the normally distributed attributes that 

were identified as important. We can see that the Age, pre-operative hemoglobin level 

and pre-operative creatinine clearance had a strong influence on delirium. Although, BMI 

was statistically significant, it had a very small effect (R2= 0.0023) and we choose to 

exclude it from the analysis. We also can see that both formulas used to calculate 

creatinine clearance showed that pre-operative calculated renal function has a significant 

influence on delirium; we choose to use the Jelliffe formula results. 

  



 
Table B-8: Alive Dataset - Statistical Comparison of Preoperative Continuous (Normal 
Distribution) Attributes in the Presence and Absence of Delirium 

ATTRIBUTE 
(UNIT) MEASURE 

DELIRIUM 
TOTAL= 5584 TEST STATISTICS 

Yes 
(n= 634) 

No 
(n= 4950) 

Student t-test 
t-value p-value 

Age 
(Year) Mean (SD) 72 (10) 66 (11) 13.06 < 0.05 
BMI 
(Kg/m2) Mean (SD) 28.5 (6) 29.4 (6) 3.78 < 0.05 
Hemoglobin 
(mg/dl) Mean (SD) 126 (19) 133 (18) 8.63 < 0.05 
CrCl-CGE 
(ml/min/1.73 
m2) 

Mean (SD) 64 (30) 82 (34) 19.6 < 0.05 

CrCl-Jel 
(ml/min) Mean (SD) 54 (22) 68 (25) 14.5 < 0.05 

When examining the non-normally distributed pre-operative attributes in Table B-9, both 

the EUROII and MHC scores were both significantly associated with delirium. In this 

analysis, the EUROII score was chosen as it is a more commonly used and widely 

available.  

Table B-9: Alive Dataset - Statistical Comparison of Preoperative Continuous (Non-
Normal Distribution) Attributes in the Presence and Absence of Delirium 

ATTRIBUTE 
(UNIT) MEASURE 

DELIRIUM 
TOTAL= 5584 TEST STATISTICS 

Yes 
(n= 634) 

No 
(n= 4950) 

Wilcoxon-Mann Whitney test 
z-value p-value 

EUROOII 
(%) 

Median 
(1st, 3rd IQR) 

4.2 
(2-10) 

1.6 
(1-3.5) 17.9 < 0.05 

MHC-Mort 
(%) 

Median 
(1st, 3rd IQR) 

4.3 
(2-9) 

2 
(1-4) 16.1 < 0.05 

Creatinine 
( mol/L) 

Median 
(1st, 3rd IQR) 

103 
(87-133) 

92 
(79-110) 9.5 < 0.05 



Table B-10: Alive Dataset - Statistical Comparison of Categorical Attributes in the 
Presence and Absence Of Delirium 

ATTRIBUTE 
(YES) 

DELIRIUM (%) 
TOTAL= 5584 TEST STATISTICS 

Yes 
(n= 634) 

No 
(n= 4950) Chi2 p-value Cramer’s V OR 

(CI) 

Male 76.3 74.2 1.3 0.25 0.015 1.02 
(0.98-1.07) 

Anti-Coag. 11.5 5.6 34.1 <0.05 0.08 2.1 
(1.7-2.5) 

HTN 78.7 75.3 3.5 0.06 0.03 1.05 
(1.01-1.1) 

COPD 16.4 10.7 18.8 <0.05 0.06 1.5 
(1.3-1.8) 

Frail 10.1 6.1 14.5 <0.05 0.05 1.6 
(1.3-2) 

CHF 27.1 15.2 58.5 <0.05 0.10 1.8 
(1.6-2) 

A-Fib 20.3 10.7 50.5 <0.05 0.10 1.9 
(1.6-2.2) 

CVD 21.5 11.3 53 <0.05 0.10 1.9 
(1.6-2.2) 

Renal 
Impairment 41.5 25.8 69.4 <0.05 0.112 1.6 

(1.5-1.8) 

IABP 15.0 5.4 86.4 <0.05 0.124 2.8 
(2.3-3.4) 

Blood Products 
48 hrs 52.8 25.4 207 <0.05 0.193 2.1 

(1.9-2.2) 
Ventilation 
>24 hrs 46.8 11.7 527 <0.05 0.31 4 

(3.7-4.4) 

LCOS 23.5 5.5 264 <0.05 0.22 4.3 
(3.7-5) 

Redo 11.2 6.2 22 <0.05 0.06 1.8 
(1.5-2.2) 

 

Table B-11: Alive Dataset - Statistical Comparison of Ordinal Attributes in the Presence 
and Absence of Delirium 

  KRUSKAL-WALLIS TEST 
ATTRIBUTE Cramer’s V Chi2 p-value 

CCS 0.068 1.3 0.19 
NYHA 0.125 42.2 <0.05 
CVICU length of stay categories 0.34 472.2 <0.05 
KATZ Index 0.03 3.05 0.08 
EF categories 0.113 69.9 <0.05 
Number of Distal Anastomosis 0.039 1.6 0.2 
Number of IMA Distal Anastomosis 0.066 17.8 <0.05 

 



Table B-12: Alive Dataset - Clustered Attributes Association Coefficients in the Presence 
Of Delirium  

ATTRIBUTE CRAMER’S V 
ACEI 0.0021 
ARB 0.034 
Clustered ACEI-ARB 0.041 
BB 0.0001 
CA-Antagonist 0.025 
Clustered BB-CA Antg. 0.025 
ASA 0.005 
Lipid Lower Agent 0.02 
Clustered ASA-Lipid lowering Agent 0.02 
DM 0.044 
DM Control 0.045 
Clustered DM-DM Control 0.043 
Smoking History 0.023 
Current Smoker 0.02 
Clustered Smoking History & Current 0.023 
Clustered Pre-op Arrhythmia 0.039 

 

B.VII. Feature Selection Methods 

 

Searches the space of attribute subsets by greedy hill climbing augmented with a 

backtracking facility. Setting the number of consecutive non-improving nodes allowed 

controls the level of backtracking done. The direction of search can be forward (empty set 

and then add), backward (full set and eliminate) or bidirectional (start with a random 

subset and search in both directions). 

In this work, the bidirectional approach was chosen with a search termination of 8 

attributes and did not specify a start set. 

 

Ranks attributes by their individual evaluations. 

The default setting was used and the algorithm was allowed to give a complete ranking of 

the 92 attributes 



 

Evaluates the worth of a subset of attributes by considering the individual predictive 

ability of each feature along with the degree of redundancy between them. Subsets of 

features that are highly correlated with the class while having low Inter-co-relation are 

preferred. 

Options: 

• Debug: False 

• Locally Predictive: True (Identify locally predictive attributes. Iteratively adds 

attributes with the highest correlation with the class as long as there is not already 

an attribute in the subset that has a higher correlation with the attribute in 

question) 

• Number of Threads: 1 (The number of threads to use) 

• Pre-Compute Correlation Matrix: False (Pre-compute the full correlation matrix at 

the outset, rather than compute correlations as needed during the search) 

• Missing Separate: False (Treat missing as a separate value)  

• Pool Size: 1 (The size of the thread pool) 

 

This method assesses the worth of an attribute by recursively sampling an observation 

and deliberating the value of the given attribute for the nearest observation of the same 

and different class. It is highly tolerant of noise, can easily detect feature interactions, and 

is applicable to both binary and continuous data. However, it cannot discriminate 

correlated attributes and is affected by the class imbalance. 

Options: 

• Number of Neighbors: 10 (Number of nearest neighbors for attribute estimation) 

• Sample Size: -1 (Number of instances to sample. -1: indicates that all instances 

will be used for attribute estimation) 



• Seed: 1 

• Sigma: 2 (Set influence of nearest neighbors) 

• Weight By Distance: False (Weight nearest neighbors by their distance) 

 

Measuring the Information gain ratio with respect to the class establishes the influence of 

the attribute. 

 

Options: 

• Missing Merge: True (Distribute counts for missing values) 

 

Calculates the probabilistic influence of an attribute as a two-way function. 

(Attribute Classes association) 

Options: 

• Missing Merge: True (Distribute counts for missing values) 

 

Assess the impact of an attribute symmetrical uncertainty with respect to the class. 

 

Options: 

• Missing Merge: True (Distribute counts for missing values) 



APPENDIX C: MODELING 

 
C.I Hold-Out or Cross-validation 

Several methods are used to test a model performance (e.g.: Cross-Validation, Leave one 

out, Bootstrapping, Random sub-sampling and Hold-Out). The choice of the method is 

primarily based on the amount of available data. The goal is to maximize the amount of 

data available for training to support the algorithm learning process. Cross-Validation 

starts by dividing the data set in “k” mutually exclusive partitions. These “k” partitions 

will be the test sets for each of the k models that will be built with the remaining data. 

The Hold-out method will split the original full data set into two partitions, one for 

training and another for testing. It is done by randomly selecting observations from the 

full dataset that are not used in any way in the building of the model. In Cross-Validation 

several models are built, tested and their performance averaged; in the Hold-out method a 

single model is obtained and this model is tested on a single test set. Table C-13 

illustrates some of the pros and cons of the Hold-out method and Cross validation.  

The cost of the holdout method comes in the amount of data kept out for testing. If the 

model is trained on a small dataset, its error will be exaggerated. Such pessimistic 

predictions are always better in real life implementations in comparison to an over 

confident ones[128]. One of the major advantages of Hold-Out sample is that it emulates 

reality (predicting the future/unknown based on the past/known) and doesn’t minimize 

the effect of uncertainty[191]. The Hold-out method is usually preferred when the dataset 

is large. The definition of large is not really solid but most authors prefer the use of this 

method if you have more than 1000 observations in your dataset[56, 64]. In simple Hold-

Out, some of the attributes - mainly the prediction class - may exhibit a different 

distribution across datasets (training versus testing). To avoid this, experts encourage 

stratification (Stratified Hold-Out sample), this ensures that most attributes - mainly the 

outcome/class – has a comparable distribution across datasets[65]. 

 



The Stratified Hold-Out method was used to ensure equal representation of essential 

attributes across the datasets (Table 4-1). An 80/20 split was used, 80% for training and 

20% for testing (Figure 4-1). This split will maximize the amount of available data for the 

learning step. That resulted in a training dataset based on 4467 patients and a testing set 

of 1117 patients. To address the issue of improper representation of the problem space 

due to random sampling, we made sure that both datasets have a similar distribution of 

several clinically relevant attributes. By doing so, we assure the generalizability and 

applicability of our results to the general population. Table 3-4 demonstrates some of the 

characteristics of the training and test subsets. This final datasets (Training and Test) had 

a list of 22 candidate attributes (Table C-14). 

 
Table C-13: Pros and Cons of Hold-Out and Cross-validations methods 

 Hold-Out Cross-validation 

Pros 

• No parametric assumptions 

• Highly accurate in large sample  

• Easy Implementation 

• Simple 

• No parametric assumptions 

• Better if sample size is an issue 

• Utilizes all observations 

• Simple 

Cons 

• Overly cautious 

• If not applied correctly, results 

are at risk of contamination 

• Empirical choice of set size  

• Some of the observations are not 

used for learning 

• Computationally expensive 

• Empirical choice of fold size 

• Somewhat cautious 

• Error is an average 

 

 

  



Table C-14: Final Alive Datasets (Training and Testing) and Attributes Missing Values 
Frequency Counts 

   Missing 

Attribute Type Possible Values Training 

N= 4467 

Test 

N= 1117 

Length of Stay In 
the ICU  

Ordinal <24, 24-72, >72 hrs 0 0 

Prolonged 
Ventilation 

Categorical Yes/No 0 0 

EUROII Score Continuous 0-100 % 0 0 
Age Continuous 19-95 years 0 0 
Procedure Difficulty Categorical Single/Combined 0 0 
Blood Product 
Within 48 hrs 

Categorical Yes/No 0 0 

Intra-Operative TEE Categorical Yes/No 8 8 

Timing of IABP Ordinal 
None, Pre-, Intra-, Post-
Operative 

0 0 

Intra-Op Inotrops Categorical Yes/No 1 1 
Pre-Op Creatinine 
Clearance 

Continuous 4-203 ml/min 13 1 

EF categories Ordinal <30 30-50, >50 % 19 6 
Pre-Op Hemoglobin Continuous 10-196 mg/dl 9 4 
Pre-Op A-Fib Categorical Yes/No 0 0 

AS Ordinal 
None, Trivial, Mild, 
Moderate, Critical 

106 35 

CVD Categorical Yes/No 0 0 
Clustered DM Categorical Cluster 1 or Cluster 2 0 0 
Frail Categorical Yes/No 0 0 
History of Turn 
Down 

Categorical Yes/No 0 0 

MR Ordinal 
None, Trivial, Mild, 
Moderate, Sever 

107 36 

Clustered 
Arrhythmia 

Categorical Cluster 1 or Cluster 2 0 0 

COPD Categorical Yes/No 0 0 
Gender Categorical Male/Female 0 0 
Delirium Categorical Yes/No 0 0 



C.II Fundamental Terms Definitions 

Most of these definitions were obtained from these resources[53, 54, 60, 61, 63-68, 82, 93, 

124, 125, 127, 129, 130, 133, 172, 176, 182, 192-195]. 

True Positive (TP): the number of observations correctly labeled as belonging to the 

positive class.  

False Positive (FP): the number of observations in-correctly labeled as belonging to the 

positive class. 

True Negative (TN): the number of observations correctly labeled as belonging to the 

negative class.  

False Negative (FN): the number of observations in-correctly labeled as belonging to the 

negative class. 

Confusion Matrix = Contingency Table: is a specific table layout that allows 

visualization of an algorithm performance. Each column of the matrix represents the 

instances in a predicted class (by the algorithm), while each row represents the instances 

in an actual class (from the real data). The name stems from the fact that it makes it easy 

to see if the system is confusing two classes (i.e. commonly mislabeling one as another). 

 

Table C-15: Confusion Matrix Example 

  Predicted Class  

  + -  

Actual Class 

+ True 

Positive 

False 

Negative 

Sensitivity 

(Recall) 

- False 

Positive 

True 

Negative 
Specificity 

  
PPV 

(Precision) 
NPV Accuracy 



 

Predictive Accuracy = Recognition Rate = Accuracy: represents the test performance 

on the entire data irrespective of the classes or their distribution. It relates to a test ability 

to identify observations assignment correctly. 

 

True Positive Rate (TPR) = Recall = Sensitivity: relates to a test ability to identify 

observations with a condition correctly. How inclusive is the test?. In a medical context, it 

is the probability that a test will be positive in an individual that actually have or will 

develop the disease. 

 

True Negative Rate (TNR) = Specificity: relates to a test ability to identify observations 

without the condition correctly. In a medical context, it is the probability that a test will 

be negative in an individual that actually does not have or will not develop the disease. 

 

Positive Predictive Value (PPV) = Precision: is the degree of correctness. It is the 

percentage of actually positive observations that were considered by the test as positive. 

In a medical context, it is the probability that a patient has the disease if the test is 

positive. 

 

Negative Predictive Value (NPV): It is the percentage of actually negative observations 

that were considered by the test as negative. In a medical context, it is the probability that 

a patient does not have the disease if the test is negative. 

 



Kappa Statistic: is a measure that compares observed accuracy with expected accuracy 

(random chance)[134].  

 

It is used to evaluate a single model or evaluate different models that were used on the 

same data. In addition, it takes into account random chance (agreement with a random 

model). It is often used as a measure of reliability two or more independent observers are 

evaluating the same thing[135]. In machine learning, one rater is the “actual truth” (the 

actual values of each instance to be classified), obtained from the data, and the other rater 

is the algorithm used to perform the classification[64-66, 134]. The Kappa statistic is 

standardized to lie on a scale of (-1,1). A value of 1 indicates perfect agreement, 0 is 

exactly what is expected if it was due to a stochastic process (random chance), and 

negative values indicate potential systematic disagreement (Figure C-13)[135].  

-1 – 0 < 0 0.01-0.2 0.21-0.4 0.41-0.6 0.61-0.80 0.81-0.99 

Disagreement Chance Agreement 

Worse  Poor Slight Fair Adequate Significant Complete 

 
Figure C-13: Kappa Statistic Interpretation Scale 

 

F-measure = F1 = F-score: is defined as a harmonic mean of precision and recall[64, 65]. 

 

Is the harmonic mean better than the arithmetic mean?[61, 66] When comparing ratios, 

the harmonic mean gives a more realistic picture of the true mean compared to the 

arithmetic mean. The harmonic mean (Hmean) is one of the three Pythagorean means 

(arithmetic, harmonic and geometric). The arithmetic mean (Amean) is basically a 

summation values (average) over their n values. The geometric mean (Gmean) specifies the 

AgreementDisagreement



central tendency of a set of numbers by using the product of their values. The Gmean is 

used to when comparing multiple sets that have different ranges, it "normalizes" the 

ranges being averaged, so that no range dominates the weighting. Since the Hmean of a list 

of numbers tends strongly toward the least elements of the list, compared to the arithmetic 

mean, it tends to diminish the influence of outliers and augment the impact of small 

ones[136]. 

 

 

 

Suppose we have a system that has a sensitivity/recall= 0.95 and a positive predictive 

value (PPV)/precision= 0.25. The Amean = 0.6, Gmean = 0.5, and the Hmean = 0.4. 

 

 

 

 

As we can see from the example, the Hmean is a more practical score that have a more 

precise and vigilant representation of the system performance, demonstrating the worst 

case scenario. The Amean is overoptimistic and the Gmean is intermediate. 

 

 



Receiver Operator Characteristics Curve [126, 129, 130, 132, 196]: developed in the 

1950's after World War II as a by-product of research into making sense of radio signals 

contaminated by noise. So called because radio receiver operators (Electrical and Radar 

Engineers) invented them after the attack on Pearl Harbor to determine how the US radar 

had failed to detect the Japanese aircraft. It is a two dimensional graph that illustrates the 

performance of a model by plotting the False Positive Rate (1-specificity) on the x-axis 

against the True Positive Rate (sensitivity) on the y-axis for all potential points. In doing 

so, it demonstrates the trade-off between true and false alarm rates. They allow 

visualization of performance over a spectrum of different conditions instead of just 

relying on a point estimate (e.g.: Accuracy)[131].  

Figure C-14 illustrates several examples of ROC curves. Curves A and B represents the 

characteristics of tests more typically seen in routine clinical use. Curve C represent a 

curve that is ideal or perfect, with a very high sensitivity and specificity. The AUC 

represents the overall accuracy of a test, with a value approaching 1.0 indicating a high 

sensitivity and specificity. The line of zero discrimination indicates the test is no better 

than chance or random guessing, which is equal to 50% or an AUC of 0.5. AUC has been 

related to the Wilcoxon statistic. Wilcoxon statistic has been defined as an estimate of 

‘true’ area under the ROC curve, area constructed from an infinite sample[131]. 

Most statistical books and machine learning texts grade the general performance of a 

model based on the AUC that it covers. There are 6 categories: AUC 0.9-1 is considered 

“Excellent,” AUC 0.8-0.9 is “Good,” AUC 0.7-0.8 is “Fair,” AUC 0.6-0.7 is “Poor,” 

AUC 0.5-0.6 is “Fail”, and AUC < is “Undesirable.” The last category indicates that the 

new test performs worse than random guessing and can be even harmful. An AUC of a 

classier is equivalent to the probability that the classier will rank a randomly chosen 

positive instance higher than a randomly chosen negative instance. It is also considered to 

be non-parametric since it has similar statistical properties to the Wilcoxon test of 

ranks[127, 130, 132]. 

When comparing “n” ROC-AUC of several models that were developed from the same 

dataset, Hanley and McNeil[132] developed a method to that takes into account the 

correlation between the AUC induced by the paired nature (same cases) of the data. They 



introduced a correlation coefficient “r” that establishes the correlation between the 

curves based on the relationship of the correlation coefficient of abnormal cases “rA” and 

the normal cases “rN”. These correlations can be calculated using the Pearson product-

moment method for continuous values or the Kendall tau for categorical attributes. In this 

project, we were aiming on at least an AUC of  0.75.  

 

Figure C-14: ROC Curve  
(L) Line of zero discrimination (AUC=0.5); (A) a test with an AUC=0.65; (B) a test with 
an AUC=0.80; (C) perfect test with an AUC=0.99. 

 

McNemar’s Test: was developed by Quinn McNemar in 1947[197]. It is applied to 2 × 2 

confusion matrix with a binary attribute. Mainly used to analyze matched pairs of data, to 

determine whether the row and column marginal frequencies are equal. It is considered a 

variant of the 2 test and is considered to be non-parametric[133]. This test have been 

described and used by several authors in machine learning literature and some authors 



advocate it’s use as an adjunct, and some consider it superior, to the ROC-AUC for the 

development and improvement of algorithms[62, 133].  

In machine learning, each algorithm will have two possible outcomes: Success = s, when 

the algorithm prediction agrees with the real data results (TP or TN) or Failure (f), when 

the algorithm prediction contradicts what was observed (FP or FN). After that, the 

outcome of each algorithm is compared to the other one and 4 possible results are 

generated in a 2 × 2 confusion matrix. Table C-16 illustrates the possible results of 

comparing two algorithms, using the same dataset, to apply the McNemar’s Test[62]. 

Table C-16: McNemar Test Confusion Matrix for 2 Algorithms  

 Algorithm A Success Algorithm A Failure 

Algorithm B Success Nss Nfs 

Algorithm B Failure Nsf Nff 

 

Nff indicates the failure of both algorithms frequency, Nss indicates the success of both 

algorithms frequency, Nsf denotes the frequency when algorithm A succeeded but 

Algorithm B failed, and Nfs denotes the frequency when algorithm A failed but Algorithm 

B succeeded. Although interesting, Nss and Nff do not illuminate the difference between 

the two algorithms performance. On the other hand, the Nsf and Nfs do show case the 

performance discrepancies. 

The McNemar test uses the Z-score table of Normal distribution because it assumes that 

the Central Limit Theorem is valid (number of tested observations is ≥ 30). 

 

If the Z-score = 0, the two algorithms have a comparable performance. As this value 

diverges from 0 in positive direction, this indicates that their performance differs. A z-

score of 1.96 indicates a 95% confidence level that there is a difference between the two 



algorithms (two-tailed) and if we wanted to test that one is better, then it will have a 

97.5% confidence level that one is better (one-tailed). It is capable of detecting a real 

difference between two scenarios when there is one, which means that it has a low Type-I 

error (detecting a difference when, in reality, there is no difference). 

 

C.III Screening Test and Performance Measures in the Context 

In real life, tests are performed in order to corroborate or refute a hypothesis or suspicion, 

which is typically based on some prior knowledge of a documented pattern in nature. In 

medicine, the main reason for performing a diagnostic test is to confirm or eliminate the 

presence of a specific problem, guiding the actions of professionals and often playing an 

instrumental role in preventing death and/or further deterioration [60, 63, 193]. 

Sensitivity, specificity, PPV, and negative predictive values (NPV) are commonly used 

measures in the evaluation of a diagnostic/screening test[60, 194]. The optimal test is a 

one that is highly sensitive and specific. Sensitivity and specificity are independent from 

the disease prevalence, but PPV and NPV are not. In reality, there is always a tradeoff 

between sensitivity and specificity; they are inversely proportional.  

Test with high sensitivity (recall) but low specificity are good at detecting the disease 

(true detectives), but are sometimes too good in that they also often generate false 

positives. High sensitivity is of particular importance when the disease is relatively 

serious, treatable with good survival rates, and the "cure" is relatively inexpensive (e.g., 

breast cancer, prostate cancer, HIV in blood donors). Tests with a low sensitivity (Recall) 

but high specificity are good in excluding a disease. High specificity is important when 

the disease is fatal, relatively expensive (test or intervention), rare, and has a high 

complication rate (e.g., early cases of AIDS, terminal cases of cancer, limb ischemia 

requiring amputation). 

Sensitivity and specificity usually remain fairly consistent across different populations 

[193]. It is important to note, however, that sensitivity and specificity do not specify 

information of an individual patient but rather about the group of people that underwent 



the test. Patients, and their doctors, are typically not interested in the probability of having 

a positive test if they already know that they have the disease. Instead, they are more 

interested in the opposite: their likelihood of having the disease given a positive or 

negative test result. To answer this question, PPV (Precision) and NPV are used, because 

they reflect the applicability of a test in practice. Unfortunately, they also have one major 

limitation: they are incidence-dependent. Thus, having a highly sensitive test for a rare 

outcome will result in a low PPV and a very high NPV, because the number of the “false 

positive” examples will be extremely high and generate a drop in the PPV. This is a 

common clinical situation, since the number of people without the condition is usually 

much larger than the number of those with the condition; as a result, even a very good test 

can easily yield more false positives than true ones [195]. An acceptable complementary 

approach in clinical medicine is to subject patients who are initially positive to a test that 

has high sensitivity but low specificity, followed by a second test that has low sensitivity 

but high specificity. This approach makes certain that almost all of the false positive cases 

can be appropriately identified as disease free [60, 63, 193, 194]. 

 

C.IV Addressing Class Imbalance 

Although balance is vitally important in scientific experimentation in order to eliminate 

random and confounding effects, truly achieving absolute balance is excessively rare. 

Fortunately, negative events (e.g: medical complications, financial loss, fraud, mechanical 

malfunction, death….etc) are not that common. In data science, the definition of an 

imbalanced dataset relates to the representation of the classes/outcomes compared to each 

other, with imbalance arising when there are many more samples from one class than 

from the rest of the classes. Specifically, data sets are unbalanced when one or more of 

the classes represent a small proportion of the set (called the minority class) while other 

classes make up the majority. In this situation, classification algorithms tends to predict 

the majority class very well but perform poorly on the minority class, an effect that has 

been attributed to three main reasons[57-59]: 1) the goal of minimizing the overall error 

(maximize accuracy), to which the minority class contributes very little; 2) the 



algorithm’s assumption that classes are balanced; and, 3) the assumption that impact of 

making an error is equal. 

In reality, these assumptions usually do not hold. In the medical example of a patient who 

presents to the emergency room (ER) with chest pain, sending a patient home when they 

actually have a heart attack (i.e., missing a heart attack, “FN”) has serious consequences 

(e.g., another heart attack, possible death) and is therefore more costly than keeping a 

patient in the ER for observation when he or she may not have had a heart attack (FP).  

Class imbalance is a popular problem in the data science community[56-59, 137]. As 

detailed below, the two main strategies for dealing with the issue depend on the level of 

the intervention (data or algorithm) [56-59].  

 

A direct approach to deal with class imbalance is to manipulate the data, over-sampling 

the minority class, under-sampling the majority class, or doing both. Because data level 

manipulation methods are considered to be part of preprocessing, they can be applied to 

any algorithm. Although several authors have shown the ease and advantages of these 

methods, there are some drawbacks. Under sampling, because it discards some of the 

observations, creates the risk of losing some potentially important information. In the case 

of over sampling, artificially increasing the size of the creates the danger of overfitting 

the results to the training set, such that the algorithm will and it will fail to generalize. 

In an attempt to fairly assess the effect of data manipulation on the model’s performance, 

both approaches were independently applied in this work. The two data level 

manipulation methods that were available and used in WEKA [103] are:  

1. SpreadSubSample produces a random sub-sample by under-sampling the majority 

class (by either specifying a ratio or the number of observations). Here, decreasing 

the number of the majority class instances reduces the difference between the 

minority and the majority class. Under-sampling is considered an effective 

method for dealing with class imbalance. In this approach; a subset of the majority 

class is used learn the model. Many of the majority class examples are ignored, 

the training set becomes more balanced which makes the training more 



efficient[64, 65, 176]. The most common type of under-sampling is random 

majority under-sampling (RUS). In RUS, observations from the majority class are 

randomly removed. The main disadvantage of this approach is that we might 

overlook potentially important hidden information[57, 176]. 

2. Synthetic Minority Over-sampling Technique (SMOTE) [58], the algorithm 

oversamples the minority class by creating synthetic instances using a k-nearest-

neighbor approach. The user can specify the over-sampling percentage, as well as 

the number of neighbors to use when creating synthetic instances. Here, 

artificially increasing the number of the minority class instances reduces the 

difference between the classes. SMOTE generates new artificial observations from 

similar observations, based on their feature subspace similarity, in the sample 

space. Described by Chawla in 2002[198] as a technique to overcome the issue of 

data imbalance and its effect on the predictive power of a model. Compared to 

random over-sampling with replacement, which predisposes to overfitting; this 

technique generates a more general and less specific minority class decision space. 

The minority class is over-sampled by taking each observation in the minority 

class and constructing a new simulated observation along the vector subspace that 

is common to all/any of “ith” new observation nearest neighbors. The neighbors 

from the k-nearest neighbors are randomly chosen, based on the amount of 

required over-sampling. This will create new simulated observations that will 

have shared similarities that are common to its sample subspace in the minority 

class (k-nearest neighbors), rather than making exact copied of the same minority 

class.  

 

Algorithm parameter manipulation techniques involve manipulation of a parameter (e.g., 

cost of error, probability, threshold, etc.), such that the classifier is penalized for making 

mistakes and rewarded for making the right choice. The most commonly used algorithmic 

parameter manipulation is cost-sensitive learning, which takes into account the effect of 

making an error (cost) on the final performance assessment of the algorithm. It can be 

categorized into three main types[59]: 1) applying costs to the dataset as a form of data 



space weighting, 2) applying cost-minimizing techniques to multiple algorithms 

(ensemble methods), and, 3) incorporating costs directly into the classifier. 

If the cost of misclassification is known, then applying it to the cost matrix is 

straightforward. If the cost of misclassification is not known or hard to estimate, several 

authors advocate the use of different techniques to estimate cost. Zadrozny and Elkan 

argue that when conditional probabilities and cost are not known or the problem feature 

space is not well defined, cost can be expressed in a range instead of a single value[70]. 

The presence of class imbalance complicates the situation [57]. The simplest and most 

direct approach in a two-class problem is to equalize the cost by dividing the number of 

majority over the number of minority, then applying that ratio to the minority class[199]. 

The constructed cost-factors will balance potential total cost of the false positives to the 

potential total cost of the false negatives. Though this technique is attractive, equalizing 

cost assumes the homogeneity of cost across the population. 

In WEKA, applying cost to a classifier can be done in the meta-classifier tab, with 

“CostSensitiveClassifier” making its base classifier cost-sensitive. Two methods can be 

used to introduce cost-sensitivity: reweighting training instances according to the total 

cost assigned to each class, or predicting the class with minimum expected 

misclassification cost (as opposed to the most likely class). Applying the reweighting 

technique requires that the analyst has a deep understanding of the domain, as well as a 

sense of the attached cost to the misclassification. Based on that, the reweighting 

technique was used in this work. 

  



C.V Predictive Models 

 

As the dependent attribute is non-linear in nature (Delirium= Yes/No), the use of linear 

regression is inappropriate. LR is the most commonly used method in the medical 

literature[8, 10, 11, 13, 15, 17-20, 22, 23, 28, 29, 35, 37, 51, 52, 75, 79]. LR examines the 

relationship between a binary outcome (dependent) attribute such as presence or absence 

of disease and predictor (independent) attribute(s), these independent attribute(s) can be 

continuous like age, categorical like gender, or even ordinal level of education. The 

presence or absence of a disease within a specified time period might be predicted from 

knowing the patient age, past medical history, family history, and any other attributes[53, 

54]. 

Unlike linear regression models that are based on ordinary least squares algorithms, LR 

makes fewer assumptions. The outcome attribute does not need to be linearly related to 

any of the predictors but its natural log does, data does not need to fit a Gaussian 

distribution, no homoscedasticity (the standard deviations of the error terms are constant 

and is independent from other values), and it allows categorical or ordinal predictor 

attributes to be used in the model[54]. 

If X1, X2, X3,…,Xn represents independent attributes (e.g.: Age, Gender, history of CVD, 

Level of education, etc…), Y signifies the outcome presence (Y=1 or Yes) or its absence 

(Y=0 or No), the following equation explains the linear relationship between the 

probability of the outcome existence (p) and the independent attributes: 

 

where 0 is the intercept (constant) and 1,…, n are the regression coefficients for the 

independent attributes X1,…,Xn. Because the outcome is binary in nature, a patient can 

only have one out of the two outcomes. The probability of the outcome (p) can be 

calculated by mathematically transforming the original linear regression equation to yield 

the natural log of the odds of being in one outcome category versus the other category. 



 

Each regression coefficient signifies the magnitude of influence the corresponding 

independent attribute on the outcome. The effect of the independent attributes on the 

outcome is usually expressed in odds ratio, which represents the effect by which the odds 

of an outcome change for a one-unit change in the independent attribute[53, 54, 144]. 

One of the key steps in building a LR model is independent attribute selection, which is 

usually based on their statistical significance or clinical relevance. Regardless of applied 

the selection criteria, the analyst must be aware of the potential role of cofounders. 

Confounding attributes are those whose relationship to both the outcome and another 

independent attribute obscures the true association between that independent attribute and 

the outcome[53]. 

Although LR models are considered to be less stringent and have less assumptions 

compared to linear regression, it still has some basic assumptions that must be met[53, 

54]: 

1. Independence of errors: observations are not related or repeated (no duplicate 

measurement of the same patient). 

2. Continuous independent attributes are linear to the natural logarithmic scale. 

3. Absence of co-linearity or redundancy between independent attributes. 

4. Lack of outlier effect 

5. Interactions between independent attributes: the effect on model performance and 

complexity should be always acknowledged. 

One of the specific goals in LR, and generally in predictive modeling, is to generate the 

most concise model that best explains the outcome without losing any important 

information and avoiding overfitting. The usual recommendation is to have 10 

independent attributes; each one should have at least 10 cases in each outcome and 

preferably 50 cases in each outcome. 

Another important consideration that the analyst must keep in mind is the model building 

method, candidate attributes inclusion. These methods are all based on the statistical 



contribution of the attribute in the improvement of the model fit. Three different methods 

are available: Direct, Sequential or Stepwise. In the direct approach, all independent 

attributes are assumed to be equally important and are included in the model. The 

sequential approach adds or deletes attributes in a systematic manner and observes their 

effect. Stepwise selection chooses attributes based on predefined statistical criteria, which 

is influenced by the data. Forward, Backward and Subset selection are the most 

commonly used types of the stepwise methods. In Forward selection, the model starts 

with no predictors in the model. It then starts adding independent attributes with the 

smallest p-value, one at a time. It continues doing this until no more improvement in the 

model fit. In Backward selection, the model starts with all of the predictors in the model. 

It then starts removing independent attributes with the largest p-value, one at a time. It 

continues doing this until the model reaches best fit. In the subset method, different 

models are generated and compared to determine the best fit[54]. 

 

Artificial Neural Networks (ANN) is a computer model inspired by the biological 

function of the brain. It consist of highly interconnected neurons (nodes), and their overall 

ability to predict outcomes is determined by the connections between these neurons[64, 

66]. They apply nonlinear mathematical models to simulates the brain's own problem-

solving process. Just as humans apply knowledge gained from past experience to new 

problems or situations, a neural network base its new decisions on previously solved 

examples by building a system of "neurons"[150]. They are considered to be complex 

non-linear systems that can deal with noisy or incomplete data, allow multiple and 

simultaneous multilevel interactions, and have a high ability to generalize based on the 

input[57, 65, 144]. They are mainly used in pattern recognition and forecasting, where a 

precise computational answer is not necessary and the goal is mainly of approximation. 

They are also used when the number of attributes is large and the relationship between 

them is not really well understood.  

ANN models are just a simple representation of a real network of neurons. Like a network 

of neurons in the brain, they learn by adjusting the connection weights between present 

neurons. Learning from reality (AKA: Adaptive learning), self-organization, parallel 



processing, it is dynamic, deals efficiently with non-linear relationships, and high 

tolerance to redundant information are some of the major strengths of ANN[152]. Some 

of the drawbacks of ANN are that the model is highly dependent on the quality of the 

input data; the model is unpredictable as the network try’s to find the optimal solution by 

independently (AKA: Black Box Modeling); and they tend to be slower to train. 

Usually, a neural network is organized in layers. Each layer is composed of several nodes 

(neurons). The layers are usually divided into 3 main categories: input, hidden, and output. 

The layers are connected to each other in a specific sequence; with the input layer passing 

a signal to the hidden layer that manipulates that signal with a specified activation 

function. After that, the new signal either activates or inhibits the output layer. In a 

classification task; the input layer represents the attributes, and the output layer represents 

the outcome. The hidden layer represents the actual processing of information and where 

most of the work happens. There is usually a single level in the input and output layers. In 

contrast, the hidden layer can be made of 1 level. Increasing the levels in the hidden 

layer will increase the network complexity, but that does not necessarily improve the 

performance of the network and will lead to over-fitting[64-66].  

 

Figure C-15: ANN Architecture 
 



Most ANN will have some form of “learning rule” that modifies the weights of the 

connections based on the input. There are several types of artificial neural networks, but 

the most commonly used in a supervised learning task, classification, is the BPNN. In this 

type learning occurs with each cycle or “epoch” (i.e. each time the network is presented 

with a new input pattern) through a forward activation flow of outputs, and then 

backwards error propagation of weight adjustments. In simple terms, the neural network 

firstly presented with a pattern on which it makes an arbitrary guess as to what it may be. 

It then compares the its results to the actual data and measures how far is the answer was 

from the right one, and based on this difference it makes an appropriate adjustment to the 

weights of its connection. In the case of a binary classification task; the sigmoid, or 

logistic, function is usually used as an activation function. The use of this function allows 

the BPNN to model classification problems that are linearly inseparable[64].

 

Figure C-16: Back Propagation Algorithm 

 

Some of the major criticisms of BPNN are: the difficulty of directly interpreting the 

symbolic meaning of the denoted connection weights, what happens inside the “hidden 

layer” in the network, and the network structure is based on the analyst understanding of 

the problem in hand. The issue with the network structure is that there is no clear rules 

that governs its construction, it is mainly an iterative process based on a trial and error 

strengthened by good domain knowledge. In binary classification, the assignment of an 

observation to one possible outcome is based the output threshold of 0.5 probability of 

the observation belonging to that class[64, 65]. 



 

Simply put, a Probability how likely is something is going to happen. This means that we 

will never be absolutely certain if an event is going to occur or not. The best we can do is 

attributing the possibility of it occurring. It is usually represented on a scale between 0 

and 1.This can be represented mathematically with the following equation:  

 

In decision-making, Probabilities usually are thought of as a guides rather than absolute 

numbers, because they clearly establish the intrinsic uncertainty. In statistics, Bayes Rule 

is considered to be in the core of probability theory[153]. In Bayesian terms, probability 

measures a degree of belief. It links the degree of confidence of an event occurring with 

and without accounting for a condition. This can be represented mathematically with the 

following equation: 

  

Where Y is the event, X is the conditioning attribute and “|” is the symbol for given. 

In the case of multiple attributes, the product of multiplying multiple probabilities can be 

used to infer the probability of the event provided that the attributes satisfy one major 

assumption, class-conditional independence. This assumes that all of the attributes values 

are independent of one another (There are no relationships between any of the attributes). 

Unfortunately, in reality this rarely happens. In a biological system, there are so many 

interconnected and simultaneous interactions that are heavily influenced by earlier events. 

To mitigate the effect of class-conditional independence, BBNs were introduced[154, 

155]. BBN is a result of the successful partnership between graph theory and Bayesian 

thermo. BBN decomposes the problem space to multiple smaller subspaces, identifies a 

joint conditional probability distribution that is relevant to each subspace, and constructs 

links (Arcs) between these subspaces based on a probabilistic dependency pattern. A 

BBN has two main components: a DAG and a CPT for each attribute[64, 65]. Having 

graph they is directed implies the casual relationship between a parent attribute and its 

children. Preventing the possibility of an attribute to have a cycle or a trail back to itself 



augments the understanding of the causal relationship and eliminates ambiguity[67, 125, 

155]. There are two basic methods to construct the graph (Network Topology): If the 

structure is known and relationships are well understood, it can be built by the expert and 

the data passed through it to identify probabilities; but if the relationships and 

dependencies are not clear, the graph structure can be deduced from the data[64, 67, 125]. 

Each attribute will have a CPT that is only based on the dependencies that it has with its 

antecedents/parents[67, 125, 155]. This way, the attribute will be conditionally 

independent from all of the other attributes that it has no direct connections with (children 

or parents)[64, 67, 125]. 

The main advantages of this approach are that: it acknowledges the existence of some 

dependencies between connected attributes but yet class conditional independence 

between subgroups of unconnected attributes; provide a simple, yet elegant, graphical 

representation of the internal relationships, handles noisy data very well, the model is 

transparent as all of the model parameters have a clear semantic interpretation “White 

Box Modeling”, multipurpose as it can provide causal or evidential relationships, easily 

adjustable as it can be improved by expert knowledge, and is augmented by a probability 

distribution that can be easily interpreted by humans and machines which are central for 

decision-making[67, 125, 156]. Some of the limitations of this approach are that: it is 

heavily dependent on the input data quality, it requires discretization of continuous values 

(most algorithms have a built in function to discretize continuous attributes based on their 

distribution shape), and it requires that there is no missing data (most algorithms have a 

built in function to replace missing data). 

  



C.VI   SAS and WEKA Experiments Setting and Options 

 

 

Figure C-17: Logistic Regression SAS Code 



 

 

Figure C-18: ANN-Standard Setting in WEKA 3.7 
  



Options: 

Debug: If set to true, classifier may output additional info to the console. 

Decay: This will cause the learning rate to decrease. This may help to stop the network 

from diverging from the target output, as well as improve general performance. 

Learning Rate: The amount the weights are updated. 

Training Time: The number of epochs to train through. 

Seed: Seed used to initialize the random number generator. 

Validation Threshold: Used to terminate validation testing. The value here dictates how 

many times in a row the validation set error can get worse before training is terminated. 

Auto Build: Adds and connects up hidden layers in the network. 

GUI: Brings up a gui interface.  

Hidden Layers: This defines the hidden layers of the neural network.  

Normalize Numeric Class: This will normalize the class if it's numeric.  

Val File: Set the name of a validation file in data source format. 

Nominal To Binary Filter: This will preprocess the instances with the filter. 

Validation Set Size: The percentage size of the validation set. 

Normalize Attributes: This will normalize the attributes. 

Sec File: Set the name of a secondary training file in data source format. 

Momentum: Momentum applied to the weights during updating. 

Reset: This will allow the network to reset with a lower learning rate. 

 



 

Figure C-19: ANN With 1 Hidden Layer 
 



 

Figure C-20: ANN With 2 Hidden Layers Setting 

 



 

WEKA 3.7 has a separate section for Bayesian Models under its Classify tab. The main 

two options are a Bayes Net model or different types of Naïve Bayesian models. WEKA 

allows the user to manipulate several parameters when constructing the network (Figure 

C-21). If the network structure is known, then it can be built and loaded as an “xml” 

external file [171]; alternatively, it can be determined based on the data using different 

search algorithms that are provided in WEKA.  

The searchAlgorithm option provides the option to learn the network structure from the 

data. Four main categories exist under this tab: Conditional independence tests, fixed, 

global score, and local score. In the case of local score metrics, learning a network 

structure can be considered an optimization problem where a quality measure of a 

network structure given the training data needs to be maximized. In the case of global 

score metrics, an internal cross validation is applied. The network structure can be learned 

and then validated using left out observations, thus providing an out-of-sample evaluation 

method by repeatedly splitting the data in training and validation sets [65, 171]. 

The default WEKA setting is local scoring metrics, primarily because they are 

computationally less expensive. The local scoring metrics have several algorithms: K2, 

Hill Climbing, LAGD Hill Climbing, Simulated Annealing, and others. The K2 algorithm 

(Figure C-22) is a greedy hill climbing approach that adds connections in a fixed order for 

all of the attributes. It processes each attribute in a cycle and examines the effect of 

adding connections from other attributes to the current one. In each cycle it chooses the 

structure that maximizes the network score. When there is no further improvement, it 

moves to the next attribute [65, 171].  

The estimator option is the way the CPT is estimated after the structure of the network is 

learned. The SimpleEstimator algorithm calculates the CPT of each node directly based 

on its connections without accounting for the other none connected nodes. Alpha is a 

parameter related to setting the initial value of each observation and is used to estimate 

the probability tables. WEKA uses a correction to prevent zero probabilities[171]. The 

default setting in WEKA is the SimpleEstimator algorithm, with an Alpha=0.5. 



 

 

Figure C-21: Default Bayesian Belief Network Setting 

 

 

Figure C-22: The K2 Search Algorithm Setting 

 



 

Figure C-23: LAGD Hill Climbing Algorithm Setting 
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